

Faculty of Engineering and Technology

REGULATION 2021

DEPARTMENT OF PHARMACEUTICAL ENGINEERING

Programme

B.E.PHARMACEUTICAL ENGINEERING Full Time (4 Years)

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VIII)

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
FOI	
	fundamentals, and an engineering specialization to the solution of complex engineering
D 00	problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
DOQ	need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader
10)	in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO12	leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the broadest context of technological change
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Pharmaceutical Engineering programme will be able to:

PSO1	To identify, formulate, design, analyze and develop processes and technologies for
	pharmaceutical products for societal usage and economically sustainable for the
	present and future.
PSO2	To assess the human health and environmental issues and provide various risk
	reduction methods as well as relevant professional mitigation measures.
PSO3	To function in a multi-disciplinary team and understand the professional ethics and
	responsibilities and equip themselves for higher learning for addressing technological
	challenges.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	To prepare students to gain the fundamentals and advances in the engineering and
	pharmaceutical principles and to enhance their skills to solve problems in engineering
	and technology, thus preparing them for a wide spectrum of career avenues in
	academia, research, and industries of pharmaceutical, biomedical, biotechnology,
	business, government and other pharmaceutical pursuits.
PEO2	To facilitate the students to understand simple and complex engineering and
	management principles, to enhance their communication and technical skills to work
	successfully as an individual, as a member/leader in a team and to manage projects in
	multidisciplinary environments.
PEO3	To provide collegial and nurturing environment for the students to realize the
	professional, ethical obligations and their concern to protect the health and
	welfare of the public and to be accountable for the social and environmental
	impact of their practice

VINAYAKA MISSION'S RESEARCH FOUNDATION DEEMED TO BE UNIVERSITY, SALEM

CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories

DEPARTMENT OF PCE

Sl. No.	Category of Courses	Туре	s of Courses	Suggested Breakupof Credits (min – max)				
1.	A.	Humanities and including Mana	Social Sciences gement courses	9-12				
2.	Foundation Courses	Basic Science c	ourses	18-25				
3.		workshop, draw	ence courses including ing, basics of nical/computer etc.	18 - 24				
4.	B. Professional	Core courses		48-54				
	C	Professional Electives		12				
	C. Elective Courses		ed/ Industry Supported/ d/ Industry Sponsored	6				
5.				Innovation, Entrepreneurship, Skill Development etc.	6-9			
		Open Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	6-9				
	D.	Project work		8				
	Courses for Presentation	Mini Project		3				
9.	of technical	Seminar		Seminar		Seminar		1
	Skills related to the specialization	Internship in ind	lustry or elsewhere	3				
13.	**E. Mandatory Courses	0Credit course (Minimum 2 courses to be completed)						
	1	Minin	num Credits to be earned	160				
	credits earned in canned in canned in canned in canned in the degree.	ategory 'E' Cour	ses will not be counted in C	CGPA calculation for				

	B.E. –PHARMACEUTICAL I	ENGINEERING	- SEMESTE	R I TO	VIII							
HU	MANITIES AND SCIENCES INCLUD	ING MANAGE	MENT COUL	RSES -	CRE	DITS	(9-12)					
CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUIS ITE				
34121H01	TECHNICAL ENGLISH	ENG	FC-HS	3	0	0	3	NIL				
	BUSINESS ENGLISH	ENG	FC-HS	3	0	0	3	NIL				
34121H81	ENGLISH LANGUAGE LAB	ENG	FC-HS	0	0	4	2	NIL				
	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB	ENG	FC-HS	0	0	2	1	NIL				
	TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL				
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL				
BASIC SCIENCES COURSES - CREDITS (18-25)												
34121B02	MATHEMATICS FOR BIO- ENGINEERING	MATH	FC-BS	2	1	0	3	Nil				
	BIOSTATISTICS	MATH	FC-BS	2	1	0	3	MATHEM ATIS FOR BIO- ENGINEE RING				
	NUMERICAL METHODS FOR BIO-ENGINEERS	MATH	FC-BS	2	1	0	3	NIL				
34121B04	PHYSICAL SCIENCES	PHY & CHEM	FC-BS	4	0	0	4	NIL				
34121B81	PHYSICAL SCIENCES LAB	PHY & CHEM	FC-BS	0	0	4	2	NIL				
	SMART MATERIALS AND NANOTECHNOLOGY	РНҮ	FC-BS	3	0	0	3	NIL				
	FUNDAMENTALS OF CHEMISTRY	CHEM	FC-BS	3	0	0	3	NIL				
	FUNDAMENTALS OF BIOCHEMISTRY (THEORY AND PRACTICALS)	BTE	FC-BS	3	0	2	4	NIL				
	FUNDAMENTALS OF MICROBIOLOGY (THEORY AND PRACTICALS)	BTE	FC-BS	2	0	2	3	NIL				
	ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL				
INCLUD	NG WORKSHOP, DRAWING, BASIC	CS OF ELECTR		ANIC	AL/CO	OMPU	TER	ETC				
35021E01	FOUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL				
	PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL				
	PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL				
	CODE 34121H01 34121H81 34121H81 34121B02 34121B02 34121B04 34121B04 34121B04 34121B04	A. FOUNUNITIES AND SCIENCES INCLUDCODECOURSE34121H01TECHNICAL ENGLISH34121H01ENGLISH LANGUAGE LAB34121H01ENGLISH LANGUAGE LABPROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LABTOTAL QUALITY MANAGEMENT LAB34121B02INIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY34121B02MATHEMATICS FOR BIO- ENGINEERING34121B02MATHEMATICS FOR BIO- ENGINEERING34121B02NUMERICAL METHODS FOR BIO-ENGINEERS34121B04PHYSICAL SCIENCES LAB34121B05SMART MATERIALS AND NANOTECHNOLOGY34121B04PHYSICAL SCIENCES LAB34121B05SMART MATERIALS OF CHEMISTRY (THEORY AND PRACTICALS)FUNDAMENTALS OF BIOCHEMISTRY (THEORY AND PRACTICALS)S021E01FOUNDAMENTALS OF MICROBIOLOGY (THEORY AND PRACTICALS)35021E01FOUNDAMENTAL SCIENCES35021E01POUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)PYTHON PROGRAMMING (THEORY AND PRACTICALS)35021E01PYTHON PROGRAMMING (THEORY AND PRACTICALS)	A. FOUNDATION COUR HUMANITIES AND SCIENCES INCLUDING MANAGE CODE COURSE OFFERING DEPT. 34121H01 TECHNICAL ENGLISH ENG 34121H81 BUSINESS ENGLISH ENG 34121H81 ENGLISH LANGUAGE LAB ENG 34121H81 ENGLISH LANGUAGE LAB ENG PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB MANAGE 101AL QUALITY MANAGEMENT MANAGE VINIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY ENG 34121B02 MATHEMATICS FOR BIO- ENGINEERING MATH 34121B04 PHYSICAL SCIENCES MATH 34121B04 PHYSICAL SCIENCES LAB PHY & CHEM 34121B04 PHYSICAL SCIENCES LAB PHY & CHEM 34121B04 PHYSICAL SCIENCES LAB PHY & CHEM 34121B04 PHYSICAL SCIENCES LAB PHY & CHEMISTRY 34121B04 PHYSICAL SCIENCES LAB PHY & CHEMISTRY SMART MATERIALS AND NANOTECHNOLOGY PHY GUNDAMENTALS OF BIOCHEMISTRY BTE GUNDAMENTALS OF BIOCHEMISTRY BTE GUNDAMENTALS OF BIOCHEMISTRY BTE MICROBIOL	A. FOUNDATION COURSESUNINTERS AND SCIENCES INCLUDING MANAGEMENT COURSECODECOURSEOFFERING DEFT.CATEGORY34121H01TECHNICAL ENGLISHENGFC-HS34121H81ENGLISH LANGUAGE LABENGFC-HS34121H81ENGLISH LANGUAGE LABENGFC-HSPROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LABENGFC-HS1000TOTAL QUALITY MANAGEMENTMANAGFC-HS1011TOTAL QUALITY MANAGEMENTMANAGFC-HS1012UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONYENGFC-HS34121B02MATHEMATICS FOR BIO- ENGINEERINGMATHFC-BS34121B04PHYSICAL SCIENCESMATHFC-BS34121B04PHYSICAL SCIENCES LABPHY & CHEMFC-BS34121B04PHYSICAL SCIENCES LABPHY ENGINEERINGFC-BS34121B04PHYSICAL SCIENCES LABPHY CHEMSTRYFC-BS34121B04PHYSICAL SCIENCES LABPHY CHEMSTRYFC-BS34121B04PHYSICAL SCIENCES LABPHY ENGINEERINGFC-BS34121B04PHYSICAL SCIENCES LABPHY ENGINEERINGFC-BS34121B05PHONDAMENTALS OF MICROBIOLOGYBTE ENGINEERINGFC-BS34121B06FUNDAMENTALS OF CHEMSTRYBTE ENGINEERINGFC-BS35021E01FOUNDAMENTALS OF MICROBIOLOGYBTE ENGINEERINGFC-BS35021E01FOUNDATIONS OF COMPUTING AND PRACTICALS)CSEFC-ES35021E01	A. FOUNDATION COURSESHUMANITIES AND SCIENCES INCLUDING MANAGEMENT COURSESCODECOURSEOPFERING DEFT.CATEGORYL34121H01TECHNICAL ENGLISHENGFC-HS334121H01TECHNICAL ENGLISHENGFC-HS334121H01ENGLISH LANGUAGE LABENGFC-HS0PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LABENGFC-HS310TAL QUALITY MANAGEMENTMANAGFC-HS3UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONYENGFC-HS3BASIC SCIENCES COURSES - CREDITS (18-25)34121B02MATHEMATICS FOR BIO- ENGINEERINGMATHFC-BS234121B04PHYSICAL SCIENCESMATHFC-BS234121B04PHYSICAL SCIENCES LABPHY & CHEMFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B05FUNDAMENTALS OF INCROBIOLOGYBTEFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B04PHYSICAL SCIENCES LABCHEMFC-BS334121B05FUNDAMENTALS OF INCROBIOLOGYBTEFC-BS33412	IUMANITIES AND SCIENCES INCLUIDING MANAGEMENT COURSECATEGORY DEFT.I.T34121H01TECHNICAL ENGLISHENGFC-HS3034121H81ENGLISH LANGUAGE LABENGFC-HS0034121H81ENGLISH LANGUAGE LABENGFC-HS00PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT 	A. FOUNDATION COURSES HUMANITIES AND SCIENCES INCLUDING MANAGEMENT COURSES - CREDITS. CODE COURSE OFFENNO CATEGORY L T P 34121H01 TECHNICAL ENGLISH ENG FC-HS 3 0 0 34121H81 ENGLISH LANGUAGE LAB ENG FC-HS 0 0 4 PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB ENG FC-HS 3 0 0 UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY ENG FC-HS 3 0 0 34121B00 MATHEMATICS FOR BIO- ENGINEERING MATH FC-BS 2 1 0 34121B01 MUMERICAL METHODS FOR BIOSTATISTICS MATH FC-BS 2 1 0 34121B02 MATHEMATICS FOR BIO- ENGINEERS MATH FC-BS 2 1 0 34121B04 PHYSICAL SCIENCES MATH FC-BS 2 1 0 34121B04 PHYSICAL SCIENCES LAB PHY & CHEM FC-BS 3 0 0 34121B04 PHYSICAL SCIENCES LAB PHY & CHEM <td>A. FOUNDATION COURSES HUMANTIES AND SCIENCES INCLUDING MANAGEMENT COURSES - CREDITS (9-12) CODE COURSE OPFENS OBERT, BERNS DEFT, 34121H01 CATEGORY L T P C 34121H01 TECHNICAL ENGLISH ENG FC-HS 3 0 0 3 34121H01 TECHNICAL ENGLISH ENG FC-HS 0 0 4 2 34121H01 ENGLISH LANGUAGE LAB ENG FC-HS 0 0 2 1 34121H01 ENGLISH LANGUAGE LAB ENG FC-HS 0 0 2 1 AB TOTAL QUALITY MANAGEMENT MANAG FC-HS 3 0 0 3 UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY FNG FC-HS 3 0 0 3 34121B02 MATHEMATICS FOR BIO- NATHEMATISTICS MATH FC-BS 2 1 0 3 34121B04 PHYSICAL SCIENCES MATH FC-BS 3 0 0 4 2</td>	A. FOUNDATION COURSES HUMANTIES AND SCIENCES INCLUDING MANAGEMENT COURSES - CREDITS (9-12) CODE COURSE OPFENS OBERT, BERNS DEFT, 34121H01 CATEGORY L T P C 34121H01 TECHNICAL ENGLISH ENG FC-HS 3 0 0 3 34121H01 TECHNICAL ENGLISH ENG FC-HS 0 0 4 2 34121H01 ENGLISH LANGUAGE LAB ENG FC-HS 0 0 2 1 34121H01 ENGLISH LANGUAGE LAB ENG FC-HS 0 0 2 1 AB TOTAL QUALITY MANAGEMENT MANAG FC-HS 3 0 0 3 UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY FNG FC-HS 3 0 0 3 34121B02 MATHEMATICS FOR BIO- NATHEMATISTICS MATH FC-BS 2 1 0 3 34121B04 PHYSICAL SCIENCES MATH FC-BS 3 0 0 4 2				

4		BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC-ES	4	0	0	4	NIL
5		BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE & ECE	FC-ES	0	0	4	2	NIL
6		BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC-ES	4	0	0	4	NIL
7		ENGINEERING SKILLS PRACTICALS LAB	CIVIL & MECH	FC-ES	0	0	4	2	NIL
8	34421E81	ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	0	0	6	3	NIL
9		WORKSHOP PRACTICES	MECH	FC-ES	0	0	4	2	NIL
10	34421E03	MANUFACTURING ENGINEERING FOR PHARMACEUTICAL ENGINEERS	MECH	FC-ES	3	0	0	3	NIL

		B. PROI	FESSIONAL						
	_	CORE COURSES	5 - CREDIT	FS (48-54)				_	
S. NO	CODE	COURSE	OFFERIN G DEPT.	CATEG ORY	L	Т	Р	с	PREREQUISITE
1	36921C01	HUMAN PHYSIOLOGY(THEORY AND PRACTICALS)	PE	CC	3	0	4	5	Nil
2	36921C02	PHARMACEUTICAL CHEMISTRY	PE	CC	3	0	0	3	Nil
3	36921C81	PHARMACEUTICAL CHEMISTRY LAB	PE	CC	0	0	4	2	Nil
4	36921C03	PHYSICAL PHARMACEUTICS (THEORY AND PRACTICALS)	PE	CC	3	0	2	4	Nil
5	36921C04	UNIT OPERATIONS IN PHARMA INDUSTRIES	PE	CC	3	0	0	3	Nil
6		FLUID MECHANICS AND TRANSFER PROCESSES	PE	CC	3	1	0	4	Nil
7		CHEMICAL ENGINEERING THERMODYNAMICS	PE	CC	3	0	0	3	Nil
8		CHEMICAL ENGINEERING THERMODYNAMICS LAB	PE	CC	0	0	4	2	Nil
9		PHARMACEUTICAL BIOPROCESS ENGINEERING	PE	CC	3	0	0	3	Nil
10		PHARMACEUTICAL BIOPROCESS ENGINEERING LAB	PE	CC	0	0	4	2	Nil
11		MEDICINAL CHEMISTRY	PE	CC	3	0	0	3	FUNDAMENTA LS OF CHEMISTRY
12		MEDICINAL CHEMISTRY LAB	PE	CC	0	0	4	2	Nil
13		PHARMACOLOGY AND PHARMACOTHERAPEUTICS	PE	CC	3	0	0	3	HUMAN PHYSIOLOGY
14		PHARMACEUTICAL ANALYSIS	PE	CC	3	0	0	3	Nil

15	PHARMACEUTICAL ANALYSIS LAB	PE	CC	0	0	4	2	Nil
16	INDUSTRIAL PHARMACY - I	PE	CC	3	0	0	3	Nil
17	INDUSTRIAL PHARMACY - II	PE	CC	3	0	0	3	Nil
18	INDUSTRIAL PHARMACY LAB - I	PE	СС	0	0	4	2	Nil
19	INDUSTRIAL PHARMACY LAB - II	PE	CC	0	0	4	2	Nil

		C. ELECT	IVE COUR	SES					
		PROFESSIONAL EL	ECTIVES -	CREDIT	S (12)			_
S. NO	CODE	COURSE	OFFERIN G DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE
1		REGULATORY REQUIREMENTS IN PHARMA INDUSTRIES	PE	EC-PS	3	0	0	3	NIL
2		HERBAL TECHNOLOGY	PE	EC-PS	3	0	0	3	NIL
3		PHARMACEUTICAL PROCESS DESIGN	PE	EC-PS	3	0	0	3	NIL
4		CHEMISTRY OF NATURAL PRODUCTS	PE	EC-PS	3	0	0	3	FUNDAMENTALS OF CHEMISTRY
5		MOLECULAR PATHOGENESIS OF INFECTIOUS DISEASES	PE	EC-PS	3	0	0	3	NIL
6		BIOSIMILARS AND BIOGENERICS	PE	EC-PS	3	0	0	3	NIL
7		SAFETYAND HEALTH MANAGEMENT	PE	EC-PS	3	0	0	3	NIL
8		FUNDAMENTALS OF BIOINFORMATICS	PE	EC-PS	3	0	0	3	NIL
9		COMPUTER AIDED DRUG DESIGN	PE	EC-PS	3	0	0	3	FUNDAMENTALS OF BIOINFORMATICS
10		CELL LINES AND ANIMAL CELL CULTURE	PE	EC-PS	3	0	0	3	NIL
11		BIOPROCESS EQUIPMENT DESIGN	PE	EC-PS	3	0	0	3	NIL
12		INSTRUMENTATION AND PROCESS CONTROL	PE	EC-PS	3	0	0	3	NIL
13		CHEMICAL REACTION ENGINEERING	PE	EC-PS	3	0	0	3	NIL
14		IMMUNOTECHNOLOGY	PE	EC-PS	3	0	0	3	NIL
15		MOLECULAR PHARMACEUTICS	PE	EC-PS	3	0	0	3	NIL
16		ENZYMOLOGY	PE	EC-PS	3	0	0	3	NIL

IN	INDUSTRY DESIGNED/ INDUSTRY SUPPORTED/ INDUSTRY OFFERED/ INDUSTRY SPONSORED COURSES - CREDITS (6)										
S. No	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE		
1	36921101	BIOPHARMACEUTICS	KNOVON AT	EC-IE	3	0	0	3	NIL		
2	36921102	CLINICAL RESEARCH	KNOVON AT	EC-IE	3	0	0	3	NIL		
3		PHARMACOKINETICS AND PHARMACODYNAMICS	KNOVON AT	EC-IE	3	0	0	3	NIL		
4		LEARNING IT ESSENTIALS BY DOING	INFOSYS	EC-IE	3	0	0	3	NIL		
5		MOBILE APPLICATION DEVELOPMENT	INFOSYS	EC-IE	3	0	0	3	NIL		

	OPEN ELECTIVE - INNOVATION ENTREPRENEURSHIP, SKILL DEVELOPMENT ETC. CREDITS (6-9)											
S. No	CODE	COURSE	OFFERING DEPT.	CATEGO RY	L	Т	Р	С	PREREQUISITE			
1		INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL			
2		NEW VENTURE PLANNING AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL			
3		SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL			
4		ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL			
5		INTELLECTUAL PROPERTY RIGHTS	MANAG	OE-IE	3	0	0	3	NIL			

	OPEN ELECTIVE - EMERGING AREAS CREDITS (6-9)													
S. No	CODE	COURSE	OFFERING DEPT.	CATEGO RY	L	Т	Р	С	PREREQ UISITE					
1		PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	Nil					
2		BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	Nil					
3		INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	Nil					
4		FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	Nil					
5		DISASTER MITIGATION AND MANAGEMENT	CIVIL	OE-EA	3	0	0	3	Nil					
6		MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	Nil					
7		FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	Nil					
8		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	Nil					
9		DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	Nil					
10		INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	Nil					
11		GREEN POWER GENERATION SYSTEMS	EEE	OE-EA	3	0	0	3	Nil					
12		INDUSTRIAL DRIVES AND AUTOMATION	EEE	OE-EA	3	0	0	3	Nil					
13		3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	Nil					
14		INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	Nil					
15		CYBER SECURITY	CSE	OE-EA	3	0	0	3	Nil					

	CATEGORY D – COURSES FOR PRESENTATION OF TECHNICAL SKILLS													
S. No	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE					
1		PROJECT WORK	PE	PI-P	0	0	16	8	Nil					
2		MINI PROJECT	PE	PI-M	0	0	6	3	Nil					
3		SEMINAR	PE	PI-S	0	0	2	1	Nil					
4		INTERNSHIP	PE	PI-IT	3	WEEK	S	3	NIL					

E. MANDATORY COURSES

INDUCTION TRAINING, INDIAN CONSTITUTION, ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE, EMPLOYABILITY ENHANCEMENT, NSS, RRC, YRC, SPORTS AND GAMES, STUDENT CLUBS, UNNAT BHARAT ABHIYAN, SWACHH BHARAT ETC.

S. No	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE
1	34121Z81	YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL
		ANY TWO OI	F THE FOLLO	WING COU	RSES	5			
2		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL
3		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL
4		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL
5		NCC/NSS/RRC/YRC/ STUDENT CLUBS/UNNAT BHARAT ABHIYAN/SWACTH BHARAT	GEN	AC	0	0	2	0	NIL
6		SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL

	SPECIALIZATION – INDUSTRIAL PHARMACY (CREDITS - 15)														
S. No	CODE	COURSE	OFFERI NG DEPT.	CATEG ORY	L	Т	Р	С	PREREQ UISITE						
1		COSMETIC TECHNOLOGY	PE	EC-SE	3	0	0	3	NIL						
2		VACCINE TECHNOLOGY	PE	EC-SE	3	0	0	3	NIL						
3		VALIDATION IN PHARMACEUTICAL INDUSTRIES	PE	EC-SE	3	0	0	3	NIL						
4		PHARMACEUTICAL PACKAGING TECHNOLOGY	PE	EC-SE	3	0	0	3	NIL						
5		DOWNSTREAM PROCESSING	PE	EC-SE	3	0	0	3	NIL						
6		QUALITY CONTROL AND QUALITY ASSURANCE	PE	EC-SE	3	0	0	3	NIL						
7		ADVANCED INDUSTRIAL PHARMACY	PE	EC-SE	3	0	0	3	NIL						
8		FUNCTIONAL FOODS AND NUTRACEUTICALS	PE	EC-SE	3	0	0	3	NIL						
9		NOVEL DRUG DELIVERY SYSTEMS	PE	EC-SE	3	0	0	3	NIL						

A. FOUNDATION COURSES

HUMANITIES AND SCIENCES INCLUDING MANAGEMENT COURSES CREDITS (9-12)

34121H01	TECHNICAL ENGLISH	Category	L	Т	Р	Credit	
		FC-HS	3	0	0	3	

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To en	able stu	dents to	o devel	op LSR	W skill	ls in En	glish. (I	Listenin	g, Speak	ing, Re	ading, and	Writing	.)	
2	To ma	ake ther	n beco	me effe	ctive co	ommun	icators								
3	To en	sure that	ıt learne	ers use	Electro	onic me	dia mat	erials fo	or devel	oping la	nguage				
4	To aid	d the stu	idents v	vith em	ployabi	ility ski	lls.								
5	To de	velop tł	ne stude	ents cor	nmunic	ation sl	cills in t	formal a	and info	ormal situ	ations				
COU	RSE OU	TCOM	IES												
On the	success	sful con	pletior	of the	course,	studen	ts will b	be able	to						
CO1.]	Listen, r	ememb	er and r	respond	to othe	ers in di	fferent	scenari	0			Rememb	er		
										onunciati	on in	Understa	nd		
	nt situat		1		5		2		1						
CO3. 7	Го make	e the stu	dents e	xperts i	n profe	ssional	writing	5				Apply			
CO4	To mak	e the stu	ıdents i	n profi	cient teo	chnical	commu	inicator				Apply			
										careers	in	Analyze			
	ss, techi			•				U				2			
MAPI	PING W	/ITH P	ROGR	AMM	E OUT	COME	ES AND) PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				L	L	M	M	M		S		S	S		S
$\frac{CO1}{CO2}$						111	L			S S		S S	M		S
$\frac{CO2}{CO3}$				L				L					M	M	
$\frac{CO3}{CO4}$	L					M			M	S	L		S	M	S
$\frac{CO4}{CO5}$			L	S					IVI	8		S S	M		<u>S</u>
	ong; M-l		L									3	IVI		<u> </u>

SYLLABUS SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms -Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks, New Norms) - Extempore.

SPEAKING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

English as language of Opportunity and Employability- Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming-Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation – Technical Jargons

TECHNICAL WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae.

ТЕХТВООК

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

Course Designers:

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

course	2 •0.8.1 • · · ·	
S.No.	Name of the Faculty	Mail ID
1.	Dr. Jennifer G Joseph, Prof. and Head, H&S	jennifer@avit.ac.in
2	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in

					BUS	INESS	ENG	LISH			Catego	ory L	T	P Cr	edit
											FC-H	IS 3	0	0	3
Langua Englis		ternatio	onal lan	guage p	olays a	vital ro								her langu ifferent f	
PRER	EQUIS	ITE: N	IL												
COUF	RSE OB	JECTI	VES												
1	To in	npart ar	nd enha	nce cor	porate c	commu	nicatior	1.							
2	To er	nable le	arners t	to devel	op pres	entation	n skills								
3	To b	uild coi	nfidenc	e in lea	rners to	use En	glish ir	Busine	ess cont	ext					
4					ofessio										
5	-	.		ith emp	loyabili	ity and	job sea	rching s	skills						
	RSE OU														
	success		<u> </u>						to		I .				
	Commu								• ,•	• 1•		Understa	and		
	demons [®] erent sce		teraction	n skills	and cor	isider h	OW OW	n comm	iunicati	on is adj	usted	Apply			
	Use strei		d oral a	and writ	ten skil	ls in th	e busin	ess con	text			Apply			
	Create in	-										Apply			
	Have be											Apply			
									GRAM	ME SPE			MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O
CO1	M		L		L	S	S		M	S		S	S		+
CO2		Μ	S	M		Μ	M		L	S		S	M		
CO3	L	Μ				Μ		L		S	L	M		Μ	
CO4		L	Μ	M			L	M	M	S	L	Μ	Μ		Μ
CO5	1	L		Μ		L	L			S		S	M	M	S

SYLLABUS

Basics of Language and Listening Skills: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business

SPEAKING SKILLS AND READING SKILLS: Extempore, Listening to TED Talks and discussion on the topic heard, Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Understanding Ideas and making Inferences-- FAQs -

E - Mail Netiquette - Sample E- mails , Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions

CORPORATE COMMUNICATION: What is Corporate Communication? Types of Office communications - Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences

WRITING SKILLS Technical Articles – Written communication Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXTBOOK

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Jennifer G Joseph	Professor & Head	English	jennifer@avit.ac.in
2	Dr. P. Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

34121	H81			ENGL	ISH L	ANGU	AGE	LAR		0	ategoi	y L	T	P C	redit
54121	1101			LINCL		muuu	TOE				FC-HS	5 0	0	4	2
PREA												·		·	
												cts as a			arning
				anguag	e skills	throug	gh inte	eractive	lesson	s and co	mmun	icative mo	ode of t	eaching.	
PRER	EQUI	SITE:	NIL												
COUR															
1	To un	derstan	id com	munica	ation n	uisance	es in th	ne corpo	orate se	ector.					
2			d the	role of	mother	tongu	e in se	cond la	nguage	e learnin	g and t	o avoid in	nterfere	nce of m	other
	tongue											11.00	<u> </u>		
3									ate effe	ectively	throug	n differen	t activit	ties	
4				apply		1									
5				erstand	the pra	ctical a	aspect	s of cor	nmunio	cation					
		UTCO													
								will be)					
								l interv				Understa	nd		
								l public	speaki	ing.		Apply			
CO3. (Give be	etter joł	o oppo	rtunitie	s in co	rporate	e comp	oanies				Apply			
				ng of r ip activ		s of E	nglish	langua	age th	rough a	udio-	Apply			
						onfide	nce w	hich in	turn e	nhances	their	Apply			
employ															
MAPP	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	ROG	RAMM	E SPE	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO 3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PSO3
CO1		S	M	S		L			S	S	M				M
CO2	Μ								М	S		М	М		M
CO3	М									S		M			М
CO4	М									М			М		М
CO5	М			S						М			М		S
S- Stro	ng; M-	Mediu	m· L-	[ow				1		I	1		1	1	1

SYLLABUS

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group

wise, Individual. Role Play

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette.

MODULE V: Case study of Etiquette in different scenario.

Course Designers:

1 Dr. Jennifer G Joseph, Prof. and Head, H&S English jennifer@avit.ac	
I DI. Jemmer G Joseph, I Ton. and fread, free S English Jemmer Wavit.ae	o.in
2 Dr.P.Saradha Associate Professor English saradhap@vmkv	vec.edu.in

				ESSIC						D	Catego	ory L	Т	P C	redit
			PEF	RSONA	LITY	DEV	ELOP	MENT	LAB		FC-H	S 0	0	4	2
Тс	o develo	p stud	ents wi	ith goo	d prese	ntation	and w	vriting	skills (Profess	ionally 8	e technic	ally). A	Articulate	and
en	unciate	words	and se	entence	s clear	y and	effecti	vely. D	evelop	proper	listening	g skills. I	Unders	tand diffe	erent
	riting te					-		-	-						
		-		styles						g useu.					
	REQUI														
	RSE O														
1	To de	evelop	comm	unicatio	on and	person	ality s	kills.							
2				de skill	ls, trair	to imp	prove s	self-lea	rning /	researc	hing abi	lities, pr	esentati	on skills	&
2		ical wr		4	Lawy 1. 11		1								
3 4				ts emp				ical and	Imoral	values					
4 5	_			letters,			-				•				
-	$\frac{10 \text{ pl}}{\text{RSE O}}$			icticis,	ICSUIIK	s and j	ou app	Jiicano	II Suaw	igics.					
	e succes			ion of t	he cou	rse. stu	dents	will be	able to)					
	Improv											Apply			
									sentatio	on skills		Apply			
compl	lete give	en task	s.												
	-		arity ar	nd conf	idence	thereby	y enha	ncing e	employ	ability s	skills 4	Apply			
	student														
	Have b		1 value	systen	n that c	an be p	oractic	ed for e	enhanc	ed	1	Apply			
	sional l Improv		waah	10.000.00	d ugo	the arras in		muiata	aituati		1	Understa	and a		
											E SPEC			MFS	
	PO1	PO2	PO	PO4	PO5	PO6	PO	PO8	PO9	PO1	PO11	PO12	PSO1		PSO
COS		102	3	104	105	100	РО 7	100	107	0			1301	1302	150.
CO1	M	Μ	-	-	-	Μ	M	-	M	S	_	_			
$\overline{CO2}$	M	-	-	-	-	-	-	-	S	M	-	-			
CO3	-	-	-	-	-	-	Μ	-	S	S	-	_			
CO4	-	-	-	-	-	-	-	-	-	-	-	-			
CO5	S	-	-	-	-	-	-	-	Μ	S	-	Μ			
S- Str	ong; M	-Mediu	ım; L-l	Low											
SVLI	ABUS														

SYLLABUS

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication, Barriers and Filters in Listening Skill, Active and Passive listening, exposure to English language through various activities and maintaining a vocabulary dairy improving confidence in Language usage using activities,

UNIT - II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a

report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

UNIT IV. SPEAKING SKILLS AND ESSENCE OF SOFT SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation, Time management, Team work skills, Leadership skills, Adaptability and bettering oneself, Persuasion skills.

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria& Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw – Hill.

Course Designers:

COUF	COURSE DESIGNERS										
S.No	Name of the Faculty	Mail ID									
1.	Dr. Jennifer G Joseph, Prof. and Head	jennifer@avit.ac.in									
2.	Dr. P.Saradha, Associate Professor	saradhap@vmkvec.edu.in									

TOTAL QUALITY	Category	L	Т	Р	Credit
MANAGEMENT	FC-HS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts-Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - **OC curve** - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the	Designation	Department	Mail ID	
	Faculty	8	1		

1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

Course Code	Course Title	Category	L	Т	Р	С
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC-HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours : 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COUF	RSE DESIGNERS			
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
1	Dr.S.P.Sangeetha	Vice Principal(Academics)	AVIT	sangeetha@avit.ac.in
2	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin

BASIC SCIENCE COURSES

34121B02	MATHEMATICS FOD DIO ENCINEEDING	Category	L	Т	Р	Credit
54121002	MATHEMATICS FOR BIO-ENGINEERING	FC-BS	2	1	0	3

PREAMBLE

Matrices have found to be of great utility in many branches of engineering applications. Many physical laws and relations can be expressed mathematically in the form of differential equations. Statistical methods are important tools which provide the engineers with both descriptive and analytical methods for dealing with the variability in observed data. This course offers the knowledge of solving optimization problems, to develop skills and knowledge of standard concepts in ordinary differential equations, to analyze Statistical data and draw conclusion from those analyses.

PREREQUISITE

	-														
COUR	RSE O	BJECT	FIVES												
1	To re	call the	e advan	ced ma	atrix kr	nowled	ge to H	Enginee	ering p	roblems					
2	To in calcu	1	their a	bility	in solv	ing ge	ometri	cal app	olicatio	ons of di	fferentia	al calcul	lus probl	lems an	d integral
3	To en	able th	e stude	ents to	solve c	ordinar	y diffe	rential	equation	ons.					
4								re grou sureme	-	data and	l choos	e the b	est centi	al tend	ency and
5	⁵ To compute and interpret the correlation and regression coefficients that arise in engineering problems														
COURSE OUTCOMES															
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents	will be	able to)					
CO1. /	Apply	the mat	trix ope	eration	s, inclu	iding in	nverses	s and de	etermir	nants				Appl	у
CO2.	Apply	the con	cept of	differ	entiatio	on in fu	inction	s of sir	ngle an	d severa	l variab	les.		Appl	у
CO3. /	Apply]	knowle	dge of	Ordina	ary diff	ferentia	al equa	tions in	1 biolog	gical pro	cesses.			Appl	у
CO4. groupe						easure	s of c	entral	tenden	cy, disp	persion a	and loca	ation for	Appl	у
CO5. 4	Apply	the con	cept of	correl	ation a	nd reg	ressior	n in cor	nputati	onal bio	logy.			Appl	у
MAPF	PING V	WITH	PROG	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC O	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L					М				L			

CO2	S	М	L		 	 М	 	 L	 	
CO3	S	М	М	L	 	 М	 	 М	 	
CO4	S	S	М	L	 	 М	 	 М	 	
CO5	S	М	М	L	 	 М	 	 М	 	

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES:

Basic properties of Matrices – Inverse – Characteristic Equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley-Hamilton theorem (Without proof)

DIFFERENTIAL CALCULUS & INTEGRATION:

Ordinary Differentiation – Basic Concepts – Slope –Second order derivates – Partial Differentiation– Maxima and Minima of a function of two variables.

Concept of integration-Integration of Rational and Trigonometric functions - Substitutions - Integration by parts.

ORDINARY DIFFERENTIAL EQUATIONS:

Formation of differential equations - Solution of first order equation - Variable separable, Solution of Linear

differential equation of the form $\frac{dy}{dx} + Py = Q$

DESCRIPTIVE STATISTICS:

Frequency distribution – Measure of Central Tendency – Mean, Median, Mode – Measures of Dispersion – Skewness, Kurtosis and Moments.

CORRELATION AND REGRESSION ANALYSIS:

Correlation – Methods of Correlation – Rank Correlation – Regression – Regression equation – Multiple and Partial Correlation –Multiple Correlation coefficients – Partial Correlation coefficients.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. S.P. Gupta, "Statistical Methods", 34th Edition, Sultan Chand & Sons Publishers (2006).

REFERENCES:

1. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd.,

Singapore (2012).2. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S. Punitha	Asso. Professor	Mathematics	punitha@vmkvec.edu.in
2	Dr. S. Gayathri	Asst. Professor	Mathematics	gayathri@avit.ac.in

BIOSTATISTICS	Category	L	Т	Р	Credit
(Statistical table permitted for Examination)	FC-BS	2	1	0	3

PREAMBLE

The Biological data come from a wide range of sources, including genomic studies, experiments with cells and organisms, and clinical trials. Statistical methods are important tools which provide the engineers with both descriptive and analytical methods for dealing with the variability in observed data. It introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests and designing the experiments with several factors. Statistical Quality control is a method of quality control which employs statistical methods to monitor and control a process and ensure the process operates efficiently, producing more specification-conforming product.

PREREOUISITE - Mathematics for Bio-Engineering

COURSE OBJECTIVES

1	Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries
2	Gain fundamental knowledge of the probability concepts and random variables with respect to how they are applied to statistical data.
3	To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the measurements made on the sample.
4	To get exposed to the statistical methods designed to contribute to the process of making scientific judgments in the face of uncertainty and variation.
5	To understand the concept of Quality control and the use of operating characteristic (OC) curves in Acceptance sampling.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

Plan a statistical data investigation in the biosciences and related fields, and propose a method for CO1. Apply data collection and analysis. Identify and recognize the appropriate sample survey design for related problems

CO2. Apply probability rules and probability models to solve problems and translate real-world problems Apply into probability models. .

CO3. Apply the concepts of large/small sample tests into real life problems

CO4. Interpret results from Analysis of Variance (ANOVA), a technique used to compare means amongst Apply more than two independent populations.

Apply

CO5. Prepare Control charts and decide on the in-control status of the process. Estimate whether a lot is Apply acceptable or unacceptable based on acceptance sampling plans.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

S- Strong: M-Medium: L-Low															
CO5	S	М	М	L				М				М			
CO4	S	S	М	L				М				М			
CO3	S	S	М	L				М				М			
CO2	S	S	М	L				М				М			
CO1	S	S	М					М				М			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

<u>s-strong;</u> wi-wiealum; L-Low

SYLLABUS

INTRODUCTION TO BIOSTATISTICS:

Statistics – Collection of data – Primary & Secondary Data – Classification & Tabulation of data – Diagrammatic and Graphical representation of data – Sampling – Methods of Sampling – Random and Non-Random Sampling – Limitations of sampling.

PROBABILITY AND RANDOM VARIABLES

Probability concepts - Conditional probability – Baye's theorem - Random variables – Discrete and continuous random variables – Expectation – Variance – Standard Distribution – Binomial, Poisson, Normal (Problems only)

TESTING OF HYPOTHESIS:

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) – Chi-square Tests for Goodness of fit – independence of attributes.

DESIGN OF EXPERIMENTS:

Analysis of Variance – One Way Classification – Two Way Classification – Completely Randomized Design – Randomized Block Design – Latin Square Design.

STATISTICAL QUALITY CONTROL:

Introduction – Process control – Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling.

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition (2017).
- 2. P.N. Arora, P.K. Malhan, "Biostatistics", Himalaya Publishing House (2010).

REFERENCES:

- 1. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition (2007).

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. P. Sasikala	Professor	Mathematics	sasikala@vmkvec.edu.in
2	Dr. S. Gayathri	Asst. Professor	Mathematics	gayathri@avit.ac.in

			NUI	MERIO				OR B	[0-	Categ	gory	L	Т	Р	Credit
					ENGI	NEER	ING	ING		FC-I	BS	2	1	0	3
PREA	MBLE									•					
	-	-						-			-				algebrai
-	•		-		-							-		-	tions an
	ations 1 ical ori				scien	ce are	as and	devel	ops pr	oblem s	solving	skills v	with bot	h theore	etical an
	matics		o -Engi	neering	5										
COUF	RSE OI	BJEC	ΓIVES												
1	To far	niliar w	vith nun	nerical	solution	n of equ	ations								
2	To be	get exp	osed to	finite o	lifferen	ces and	interpo	olation							
3	To be	thoroug	gh with	the nur	nerical	Differe	ntiatior	and in	tegratio	n					
4	To fin	d nume	erical sc	olutions	of ordi	nary di	fferentia	al equat	ions						
5	To cu	ve fit d	lata usi	ng seve	ral type	s of cur	ves.								
COUF	RSE OI	UTCO	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to)					
	Solve th Enginee	-	m of li	near alg	ebraic	equatio	ns and	single	non line	ear equat	ions aris	ing in th	e field o	f Appl	у
CO2. A	Apply m	ethods	to find	interme	ediate n	umerica	al value	& poly	nomial	of nume	rical dat	a.		Appl	у
CO3. A	Apply m	ethods	to find	integra	tion, de	rivative	s of on	e and ty	vo varia	able func	tions.			Appl	у
CO4. S	Solve the	e initial	value j	problem	is using	single	step an	d multi	step me	thods.				Appl	у
CO5. (Compute	e and in	terpret	the met	hod of	least sq	uares							Apply	
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L				L				М			
CO2	S	М	М	L				М				М			
CO3	S	М	M	L				L				М			
CO4	S	М	L					М				L			
CO5	S	М	L					L				M			
S- Str	ong; M	-Medi	ium; L	-Low											
SYLL	ABUS														
	TION			-							~ • •	2			
Metho	d of fa	ilse po	osition,	Newt	on-Rap	hson 1	nethod	tor s	ingle v	variable,	Solutio	ons of a	linear	system	by Gaus

Elimination, Gauss-Jordan, Jacobian and Gauss- Seidel methods

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL INTEGRATION AND DIFFERENTIATION

: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both1/3rd and 3/8th) rules.

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS:

Euler's method -Euler's modified method -Taylor's method and Runge-Kutta method for 4th order -Multistep methods -Milne's and Adams' methods.

CURVE FITTING

Curve fitting by method of least squares and method of moments - Fitting of a straight line - a parabola and Curves of the form $y=ae^{bx}$, $y=ab^{x}$, $y=ax^{b}$.

TEXT BOOKS:

- 1. Dr.B.S.Grewal, "Numerical Methods in Engineering & Science", Khanna Publishers (2007).
- 2. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).

REFERENCES:

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).
- 2. T. Veerarajan, T. Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2004).

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M.Vijayarakavan	Asso.Prof	Mathematics	vijayarakavan@vmkvec.edu.in
2	Dr. S. Gayathri	Asst. Professor	Mathematics	<u>gayathri@avit.ac.in</u>

COURSE DESIGNERS

3/121 D0/			YSICA			- 5 PHYS				Category L		L	Т	Р	Credit
		Par	t A: EN	GINE	ERING	FHYS	SICS			FC-BS	8	2	0	0	2
domains.	ing Ph Unde comm	erstand unicat	ling the ion, pro	concep duction	ots of la	aser, typ	bes of l	asers, t	he prop	agation of	of light t	hrough f	ibers, ap	plications	engineering s of optical o fabricate
PREREC	-		NIL												
COURSI			VES												
				ies of la	aser and	l to exp	lain pri	nciples	oflase	•					
			applica				P			- 					
			princip			ics									
			applica												
-						in Non	-destru	ctive te	sting						
COURSI	•			1-					8						
On the	succes	ssful co	ompleti	on of th	e cours	e, stude	nts wil	l be abl	e to						
CO1. U	Inders	tand tl	he princ	iples la	ser, fib	er optic	s and u	ltrasoni	cs				Underst	and	
CO2. U	Inders	tand th	e const	ruction	of lase	r, fiber o	optic ar	nd ultra	sonic ec	quipment	s		Underst	and	
	Demon evices		the wo	rking o	of laser	, fiber	optic a	and ulti	rasonic	based c	omponer	nts and	Apply		
CO4. Ir	nterpre	et the p	otentia	l applic	ations o	of laser,	fiber o	ptics ar	d ultra	sonics in	various	fields	Apply		
	 D5. Differentiate the working modes of various types of laser, fiber optic and ultrasonic Analyze devices. 														
MAPPIN	G W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М									M	M		М
CO2	S		L									M	M		
CO3 CO4	S S	М		M M	М	S	M M					M M	M S		М
CO4 CO5	S S	M	M	11/1	11/1	3	111					M	M		1V1
S- Strong				W				I	ı	ļ		۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	<u> </u>	ı	ı

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission - Population Inversion - Einstein coefficients - Lasing action - Types of Laser - Nd:YAG laser, CO2 laser, GaAs laser - Applications of Laser - Holography - construction and reconstruction of a hologram.

Unit: II

Unit: I

FIBRE OPTICS: Principle and propagation of light in optical fibers - numerical aperture and acceptance angle - types of optical fibers (material, refractive index, mode) - Applications: Fiber optic communication system - fiber optic displacement sensor and pressure sensor.

Unit: III

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOKS

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in							
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in							

9 hours

9 hours

9 hours

		PH	IYSIC	AL SC	ENCE	S PART	Г-В	Categ	gory	L	Т	P		Credit	
341	21B04	- 1	ENGIN	EERIN	IG CH	EMIST	RY	FC-	BS	2	0	0		2	
PRE/	AMBLI	£								1					
The o	bjective	e of thi	s cours	e is to l	better u	nderstan	nd the l	basic co	oncepts	of chem	nistry ai	nd its ap	oplicatio	ons in d	liverse
engin	eering	domaiı	ns. It	also in	nparts	knowled	lge or	n the p	oroperti	es of v	water a	and its	treatm	ent me	thods,
Electr	ochemi	stry, co	orrosion	n and ba	atteries,	propert	ties of	fuel and	d comb	ustion.	This co	urse als	o provi	des an i	idea to
select	the mar	terial fo	or vario	us engi	neering	applicat	tions a	nd their	charact	terizatio	n.				
PREF	REQUI	SITE	N	IL											
COU	RSE O	BJECT	FIVES												
1	To Pro	ovide tl	ne knov	vledge o	on wate	r treatme	ent.								
2						felectro		try, mee	chanism	n of diffe	erent co	rrosion	and pri	nciple a	ind
	worki	ng of b	atteries										-	-	
3	To ex	plain di	ifferent	types o	f fuel, p	oropertie	es and i	ts impo	rtant fe	atures.					
COU	RSE O			* 1				•							
On the	e succes	ssful co	mpleti	on of th	e cours	e, studer	nts will	be able	e to und	erstand					
CO1.						oply and					nent me	thods.	App	oly	
					-			•						•	
CO2.	Desci	ribe ter	ms inv	volved i	in elect	rochemi	istry, t	he cont	trol me	thods o	f corro	sion an	d Ana	lyse	
	work	ing of e	energy s	storage	devices	•									
		-													
CO3.	Unde	rstand	the qua	lity of f	uels fro	m its pro	opertie	s and th	ie impo	rtant fea	tures of	f fuels	Ana	lyse	
			1		-	OMES A		1	-	1					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	M	L	-	M	S	M	-	-	-	M	M	M	M
	S	S	L	L	-	S	S	S	-	_	-	S	M	L	M
CO^2							5						141		1.11
CO2	5														
CO2 CO3	S	М	M	L	L	L	М	М	-	-	-	S	-	М	М

Syllabus

UNIT – I: WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

UNIT – II: ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - Galvanic cell-Electrochemical cell representation - EMF series and its significance. Corrosion – Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries, Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel

9hrs

9hrs

cell (SOFC)

UNIT – III FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values- theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

TEXTBOOK

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

REFERENCES

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers:

N	ame of the Faculty	Mail ID
D	r. A.R. Sasieekumar	sasieekhumar@vmkvec.edu.in
D	r. R. Nagalakshmi	nagalakshmi.chemistry@avit.ac.in

9hrs

3412	21B81		PART		EAL A	SCIEN ND VI YSICS	RTUA		IN		tegory C-BS	L 0	Т 0	P 2	Credi t
DDFA	MBLE										D 5	U	U	2	
In this viscosi determ	laborate ty of w	ater, wa	aveleng limensi	gth of s on of ol	pectral ojects li	lines, t ke the s	hermal size of a	conduct microj	ctivity a particle	and band and thicl	gap. Sor	ne of th	ne experi	ments in	modulus, volve the he above
PRER	EQUIS	ITE N	IL												
COUR	RSE OB	JECTI	VES												
1	To im	part bas	sic skill	s in tak	ing rea	ding wi	th preci	sion of	physics	s experin	ients				
2	To inc	ulcate	the hab	it of ha	ndling	equipme	ents app	propriat	ely						
3	To ga	in the k	nowled	ge of p	racticin	g exper	riments	througl	n virtua	l laborato	ory.				
4	To kn	ow the	importa	ance of	units										
5				h accur	acy										
COUR	RSE OU	TCOM	IES												
On tl	he succe	ssful co	ompleti	on of th	e cours	se, stude	ents wil	l be abl	e to						
CO1.				rtance of and obtain			perform	ning th	e exper	iments,	calculatio	ng the	Underst	tand	
CO2.	Operat	e the ea	quipme	nts with	precis	ion							Apply		
CO3.	Practic	e to ha	ndle the	e equipi	nents ii	n a syste	ematic	manner					Apply		
CO4.	Demoi	nstrate f	the exp	eriment	s throu	gh virtu	al labor	ratory					Apply		
	Calcul					0							Analyz	e	
					-	COME	S AND		TRAM	ME SPF	CIFIC O	UTCO	MFS		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2	PSO3
COS		r U2	105	104	105	100		100	109		TOH	2	1501	1502	1303
CO1	S	S													
CO2	S	S	М	М	S				М			М	М		М
CO3	S														
CO4	S	S	M	M	S							S	M		M
CO5		S	 т.т												
	ong; M-N	viedium	1; L-L0	W											
SYLL 1. 2. 3. 4. 5	Young Rigidi Viscos Veloci	ty modu ity of a ty of ul	ulus of liquid trasoni	a wire - - Poiser c waves	Torsio uille's n in liqu	ids - U	dulum	c Interf	eromete	er					
5. 6.				nation u		aser Ing – Sp	ectrom	eter							

- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A - Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka

Mission's Research Foundation (Deemed to be University), Salem.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

e				P	HYSIC	CAL S	CIEN	CES			Catego	r L	T	P C	redit
3412	1B81	P	PART	B - EN	GINE	ERIN	G CHI	EMIST	RY L	AB	y FC-BS		0	2	1
helps study idea a	the stud gives c	dents lear ba rdness	to undo asic app s and it	erstand plicatic ts disac	the ap n orier	oplication ted kr	ions of nowled	f Engir ge abo	neering ut elec	Chemis trochem	ials of E stry. The istry. Wa handling	Ingineer electro ater tech	ring Ch des, Ce mology	emistry. ell and b study g	It also atteries ives the
	REQUI		•												
			IL												
	RSE O				C1		41	a			a				
1		-				-					and the e	ngineer	ing cor	icept.	
2	To in	culcate	e the ki	nowled	lge of v	vater a	nd elec	etroche	mistry						
3	To la	y foun	dation	for pra	ctical a	applica	tions o	of chem	nistry in	n engine	ering asp	ects.			
COU	RSE O	UTCC	OMES												
On the	e succes	sful c	omplet	ion of	the cou	ırse, sti	udents	will be	e able t	0					
	Unders						ture st	udies.			U	Jndersta	ind		
	Analyze											Apply			
CO3.	Apply t	he pra	ctical l	knowle	dge in	engine	ering a	aspects			A	Apply			
MAP	PING V	VITH	PRO	GRAM	IME O	UTCO	OMES	AND	PROG	RAMM	E SPEC	CIFIC C	OUTCO	OMES	
COS	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	2 M	M	-	L	М	M	S	_	_	_	М	_	_	
$\frac{CO1}{CO2}$	S	M	M	-	L	M	M	L	-	-	-	M	-	-	-
CO3	S	S	М	-	L	М	М	M	-	-	-	М			
S- Stre	ong; M-	Medi	um; L-	Low											
 2. Esti 3. Aci 4. Esti 5. Det 6. Esti 7. Esti 8.Estin 	erminat imation d Base imation erminat imation imation f BOO	of Hy titratic of Fer ion of of So of Co of Iron K:	drochl on by p rrous ic Dissol dium b pper fr n by Sp	oric ac H metl on by P lved ox y Flam om Co bectrop	id by c nod otentic tygen b ie phot pper O hotome	onduct ometric oy Win ometer ore Solu eter	metri metho kler's p	od							
1. Eng	gineerin	g Che	mistry	Lab M	anual l	oy VM	U.								
	RSE DI														
S.No	Name	e of the	e Facul	ty				Mai	1 ID						
1.	Dr.R.	Nagal	akshmi	i				nag	alakshr	ni.chem	istry@av	vit.ac.in			
2			Sundern								vmkvec.e				

	SMART MATERIALS AND NANOTECHNOLOGY	Category	L	Т	Р	C
	Total Contact Hours: 45					
	Prerequisite: Physical Sciences – Engineering Physics	FC-BS	3	0	0	3
Pream	ıble:					
This s	yllabus enables the students to learn the applications of smart mate	rials and uses of vario	ous sm	art eng	ginee	ring
device	s. The syllabus also discusses about the nanomaterials, the	r unique properties	and a	pplica	ation	s in
variou	is fields.					
Cours	e Objectives:					
1	Gain the knowledge about the concepts of smart systems and var	ious smart materials.				
2	Realize about the smart sensor materials which are used for Indu	strial Applications.				
3	Understand about the Industrial application oriented Smart mater	ials'Actuators.				
4	To learn the properties and classifications and importance of Nar	omaterials				
5	Understand the characteristic features of materials at nanoscale a	nd their potential appl	ication	15		
COS	Course Outcomes: On the successful completion of the course,	students will				
CO1	Learn the smart-properties of various functional materials		Learn			
CO2	understand the applications of different smart materials as sensor	s	Under	stand		
CO3	understand the applications of different smart materials as actuate	ors	Under	stand		
CO4	Gather knowledge on unique properties of nanomaterials		Learn			
CO5	Use of Nanomaterials for industrial applications		Acqui	re		
CO6	Gain knowledge about nanomaterials in health care industry					

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
	S														
CO1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO3	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO4	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO6	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-

S – strong, M- Medium, L - Low

Syllabus

UNIT: I

Overview of Smart Materials: Introduction to Smart materials -piezoelectric materials - piezoelectricity magnetostriction materials - magnetostriction effect- shape memory alloys (SMA) - photoelastic materials photoelasticity.

UNIT: II

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors - stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

UNIT: III

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators -Industrial Applications: robotic artificial muscles, materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

UNIT: IV

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

UNIT: V

Selected Applications of Nanomaterials: Medical diagnostics - nanomedicine - targeted drug delivery -Biosensors; Information storage - nanocomputer - molecular switch - single electron transistors; design and fabrication of MEMS and NEMS devices.

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-Interscience Inc., Publication, 1st Edition, 2020.
- 4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY INDIA 2014.

REFERENCE BOOKS

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.
- 3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.
- 4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.

COUF	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics	Dhanalakshmi.phy@avit.ac.in
2	Dr G. SURESH	Asso. Professor	Physics	suresh.physics@avit.ac.in
3	Dr. R. N. VISWANATH	Professor	Physics	rnviswanath@avit.ac.in

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

FUNDAMENTALS OF	Category	L	Т	P	Credit
CHEMISTRY	FC (BS)	3	0	0	3

PREAMBLE

Fundamentals of Chemistry provide a detailed understanding of the fundamental principles behind the Atomic structure, chemical bonding, stereoisomerism, and reaction mechanisms of the chemical compounds such as aliphatic, aromatic and heterocyclic compounds.

PREREQUISITE

NIL

COURSE OBJECTIVES

COURSE OBJECTIVES
1 To explain the periodic properties of elements, types of bonding, Valence bond and Molecular orbital
theory
2 To describe the fundamental concepts in stereochemistry & its significance
3 To summarize aliphatic compounds & its reaction mechanism
4 To compose the structure and reactions of aromatic compounds
5 To explain the structure and reactions of heterocyclic compounds
COURSE OUTCOMES
On the successful completion of the course, students will be able to understand
CO1. Gain the knowledge about the periodic properties of elements and different types of Remember
bonding involved in chemical reactions
CO2. Understand the types of stereoisomerism & its importance Understand
CO3. Acquire the basic knowledge on aliphatic compounds and its important reactions of Understand
aliphatic compounds
CO4. Demonstrate the structure and important reactions of aromatic compounds Understand
CO5. Discuss the heterocyclic compounds with heteroatom N, O and S Understand
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOME
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03
CO1 L L L L L
CO2 L L L L L
CO3 M L M L - - - - M L L - GO4 G
CO4 S M S S - - - - M M M - CO4 S M S S - - - - M M M -
CO5 L S S S S M M -

S- Strong; M-Medium; L-Low

Syllabus

UNIT- I ATOMIC STRUCTURE AND CHEMICAL BONDING

Classification of elements – General characteristics of s, p, d and f- Block elements – Periodicity of properties-Definition and Periodicity of Atomic radii and Ionic radii, Ionization potential, Electron affinity and Electronegativity- Ionic bond & Covalent bond:- Conditions for the formation of ionic and covalent bond - General properties, Hydrogen bonding:-types, examples and effect on properties - Valence Bond theory – Molecular Orbital theory:- molecular orbital diagrams of diatomic and simple polyatomic molecules N2, O2 and their ions; HCl, BeF2.

9hrs

UNIT- II STEREOCHEMISTRY

Introduction, definition, Optical activity, specific rotation, asymmetric centre, chirality, achiral molecules, Elements of symmetry, resolution of racemic mixtures, Walden inversion - Asymmetry synthesis, specification of R-S notations - Optically activity of compounds without asymmetric carbon atoms: Allenes, spirenes and biphenyl compounds - Geometrical Isomerism: Definition with example, designation of Cis-trans and E-Z notation with examples, Geometrical isomerization of Maleic acid and fumaric acids, aldoximes and ketoximes, Determination of configuration of geometrical isomers.

UNIT- III CHEMISTRY OF ALIPHATIC COMPOUNDS

Alkanes , Alkenes and Alkynes : Preparation and reactions (Any four for each case) - Ethers- Preparation and properties of diethyl ether and vinyl ether - Carbonyl Compounds (Aldehydes, Acids and Ketones)- general methods of preparation and properties - Amines- Classification of amines, preparation and Properties of aliphatic amines - Nitro compounds- Preparation and properties of nitro methane, nitroso methane. Reactive intermediates - carbocations, carbanions, carbanes. Reaction mechanisms - SN1, SN2, E1 and E2

UNIT- IV CHEMISTRY OF AROMATIC COMPOUNDS

Nomenclature – structure and stability of benzene – Aromaticity and Huckel's rule - General methods of preparation of benzene – Reaction and Mechanism of electrophilic aromatic substitutions- examples of electrophilic aromatic substitution reactions – nitration- sulphonation- halogenation- Friedel-Crafts alkylation and acylation - reduction- orientation and reactivity of substituted benzenes- ortho/para ratio- synthesis of substituted benzenes using arene diazonium salts- nucleophilic aromatic substitutions- benzyne. Polynuclear aromatic hydrocarbons – preparation, properties and uses of naphthalene- anthracene and phenanthrene.

UNIT- V CHEMISTRY OF HETEROCYCLIC COMPOUNDS

Definition, Classification and nomenclature of heterocyclic compounds, structure, aromaticity in 5-membered and 6-membered rings containing one heteroatom and fused systems; Synthesis of Furan, Pyrrole (Paal-Knorr synthesis), Thiophene, Pyridine (Hantzsch synthesis); Indole (Fischer synthesis); Quinoline and isoquinoline (Skraup synthesis and Bischler-Napieralski synthesis); Electrophilic substitution reactions of pyrrole and pyridine.

Text Book

- 1. K.S. Tewari, N.K. Vishnoi and S.N. Mehrotra, A Textbook of Organic Chemistry, 2nd Edition, Vikas Publishing House (Pvt.) Ltd., New Delhi, 2004.
- 2. R.T. Morrison and R. N.Boyd, Organic Chemistry, 6th edition, Prentice-Hall of India Ltd, New Delhi, 1992.
- 3. A Textbook of Organic Chemistry, Arun Bahl, B.S. Bahl, 22nd Edition. Publisher: S Chand .
- 4. Jerry March, Advanced Organic Chemistry, 5 th Edition, John Wiley and Sons, New York, 2004

Reference Book

- 1. Organic Chemistry, I.L.FINAR. 5th Edition. (Volume I & II) Pearson Publisher
- 2. Organic Reactions Stereochemistry and Mechanism P. S. Kalsi. 4th Edition. New Age International Publishers.
- 3. F.A.Carey, Organic Chemistry, 3rd edition, Tata-McGraw Hill Publications, New Delhi,

9hrs

9hrs

9hrs

9hrs

1999.

4. B.Y.Paula, Organic Chemistry, 3rd edition, Pearson Education Inc, Singapore, 2002

Course Designers:

Mail ID	
nagalakshmi.chemistry@avit.ac.in	
tamilvanan@vmkvec.edu.in	
_	nagalakshmi.chemistry@avit.ac.in

FUNDAMENTALS OF BIOCHEMISTRY	Category	L	Т	Р	Credit
(THEORY & PRACTICALS)	FC (BS)	3	0	2	4

PREAMBLE

Essentials of biochemistry deals with the study of biomolecules found in living organism. The course exposes the students to classification, properties, basic structure and functions of biomolecules like carbohydrate, amino acid, lipids, nucleic acid and vitamins. Knowledge of this course will enable students to understand the importance of biomolecules and give awareness to the various diseases associated with the deficiency of biomolecules and its associated diseases.

PREF	PRERQUISITE – NIL														
COU	COURSE OBJECTIVES														
1	To u	inderstand the	basic s	structur	e and p	ropertie	es of ca	rbohyd	rate, lip	ids, ami	no acids	and nuc	leic ac	ids	
2	To e	mphasize the f	unctio	nal imp	portanc	e and ro	ole of b	iomole	cules in	living o	rganism	s			
3	To i	To illustrate the nutritional importance of Minerals.													
4	To i	llustrate the nu	trition	al impo	ortance	of Vita	mins ar	nd its de	eficienc	y diseas	es.				
COU	RSE O	UTCOMES													
On the	e succe	ssful completion	on of t	he cour	se, stuc	lents w	ill be al	ole to							
CO1.	Recall	the Definition	ns, cla	ssificat	ion, pr	operties	s and s	tructure	e of car	bohydra	tes, lipi	ds, Re	membe	er	
amino	acids a	and protein													
CO2.	CO2. Discuss the biological importance of biomolecules and its nutritional value. Understand														
CO3.	Identif	y about the stru	ictures	of am	ino acid	ls, prote	eins and	l Nucle	ic acids	5.		Un	derstar	nd	
CO4.	Prepare	e solutions and	biolog	gical bu	uffers							Ap	ply		
CO5.	Determ	nine the quality	and q	uantity	of bior	nolecul	les					An	alyze		
MAP	PING	WITH PROG	RAM	ME OI	UTCO	MES A	ND PR	OGRA	MME	SPECI	FIC OU	TCOM	ES		
COS	PO1	PO2	PO3		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PS
													1	2	03
CO1	М	-	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	-	М	-	-	-	-	-	-	-	-	-	-	-	-
CO3	М	-	М	-	-	-	-	-	-	-	-			-	-
CO4	S	М	М	S	M	L	-	-	-	-	-	L	L S		-
CO5	S	М	М	S	M	М	-	-	-	-	-	L	М	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

CARBOHYDRATE AND LIPIDS

Biological importance, Nomenclature and Definition, Classification and Properties of Monosaccharides, Formulation of monosaccharides, Disaccharides, Oligosccharides and Polysaccharides (Homopolysaccharides and Heteropolysaccharides). Biological importance, Definition and Classification. Fattyacids: classification,

nomenclature, structure and properties of saturated and unsaturated fatty acids. Essential fatty acids, Triacylglycerols: nomenclature, physical properties, chemical properties.

AMINO ACIDS AND PROTEINS

Amino acids – Classification, Structure, Properties and Biological importance. Proteins – Classification, Structural organization of Proteins – Primary, Secondary (α -helix, β -pleated structure, triple helix), Tertiary and Quaternary (Myoglobin and Hemoglobin).

NUCLEIC ACIDS

Nucleosides and nucleotides, Composition of RNA and DNA, Physico-chemical properties of nucleic acids – effect of alkali, acid and heat (denaturation and renaturation), features of phosphodiester bond,. Complementary base pairing, secondary structure of RNA, features of DNA double helix (Watson-Crick model), Nucleoproteins – histone and non histone.

PRACTICAL'S

1. pH measurements and Buffer preparations.

TITRIMETRIC EXPERIMENTS

- 2. Determination of Saponification value of Edible oil
- 3. Determination of Iodine value of Oil
- 4. Determination of Acid number of Edible oils.
- 5. Titration curves of Amino acids

BIOCHEMICAL PREPARATIONS

- 6. Estimation of chlorophyll from plant material.
- 7. Detection of adulteration of Milk
- 8. Casein from Milk.
- 9. Starch from Potato.
- 10. Determination of Total Oil Content by Soxhlet Method.

TEXT BOOKS

- 1. "Fundamentals of Biochemistry", Jain J.L., Sunjay Jain and Nitin Jain., S.Chand& Company Ltd., 6th Edition, 2005.
- 2. Fundamentals of Biochemistry, Jain J.L., Sunjay Jain and Nitin Jain., S.Chand& Company Ltd., 6th Edition, 2005.

REFERENCES:

1. "Text Book of Biochemistry for Medical Students", Ambika Shanmugham, Lippincott Williams & Wilkins, 7th Edition, 2012.

2. "Biochemistry", Rastogi S.C. Mc. Graw-Hill Publishing Company Ltd, 6th Edition, 2007.

3. "Principles of Biochemistry", David L. Nelson and Michael M. Cox, W. H. Freeman and Company, 4th Edition, 2005.

4. "Text book of Biochemistry", Sathyanarayana U and Chakrapani U., Uppala Author Publishers Interlinks, 3rd Edition, 2006.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Anandakumar	Assistant Professor	Biotechnology	anandakumars@vmkvec.edu.in
2				

FUNDAMENTALS OF MICROBIOLOGY	Category	L	Т	Р	Credi t	
(THEORY & PRACTICALS)	FC-BS	2	0	2	3	

PREAMBLE

Microbiology deals with the study of microbes. It will cover a wide spectrum of classification, cellular organization and characteristics of microscopic organisms, diseases caused and beneficial effects, environmental damage or stress. Microbiologists often use cutting-edge techniques and sophisticated machinery along with other applied fields of research like biotechnology, genetics to study microbes and their complex mechanisms. Knowledge of these principles will enable students to understand how they react under different conditions and how they cause different diseases.

PREREQUISITE - NIL

COUR	SE OB	BJECT	IVES													
1	To de	To describe about the evolution of microorganisms and microscopy. To Explain the Structure and replication in microorganisms – concepts.														
2	То Ех	xplain t	he Stru	icture a	nd repl	ication	in mic	roorga	nisms -	- concep	ts.					
3	To interpret the effects of Microbes in food and the clinical importance of microorganisms.															
4	Describe the safe practices in a microbiology laboratory and handling method of glass wares and instruments.															
5	Perform transfer of living microbes using aseptic technique.															
COUR	SE OU	JTCON	MES													
After tl	ne succ	essful o	comple	tion of	the cou	ırse, lea	arner w	ill be a	ble to							
CO1. E	xplain	about l	nistoric	al pers	pective	of mic	robiolo	ogy and	its dev	velopme	nts		U	nderstan	d	
	CO1. Explain about historical perspective of microbiology and its developmentsUnderstandCO2.Describe the fundamental structure, functions of a cell and the control of microbes using physical and chemical methodsUnderstand															
соз. Г					utrition	al requ	iremen	ts for g	rowth				A	pply		
CO4. E	xperim	ent wi	th micr	oscope	to reve	eal the	structu	re and f	function	n of mic	roorgani	sms	А	pply		
specim	ens						-			e of bact		Ũ		pply		
MAPP	ING W	VITH I	PROG	RAMN	IE OU	TCOM	IES Al	ND PR	OGRA	MME S	SPECIF	TIC OUT	ICOM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	M	M	L	M	-	-	-	-	-	-	-	-	-	-	-	
CO2	S	L	М	М	-	-	-	-	-	-	-	-	M	-	-	
CO3	S	S	M	S	-	-	-	-	-	-	-	-	-	-	-	
CO4	S	-	-	-	L	-	М	-	-	-	-	-	M	М	S	
CO5	M	S	М	-	-	-	M	-	-	-	-	-	M S S			
S- Strong; M-Medium; L-Low																

SYLLABUS

WORLD OF MICRORGANISMS AND MICROSCOPY

Historical review of the foundation of microbiology, Characteristics of microorganisms, Taxonomy methods of studying microorganisms, Microscopy - Light, Electron, Micrometry.

STRUCTURAL ORGANISATION OF MICROORGANISMS

General structural and cellular organization of Bacteria, virus, fungi, algae and protozoa.

MICROBIAL GROWTH AND NUTRITION

Nutritional requirements, Growth of microorganisms, Aerobic and anaerobic growth, Different methods of microbial enumeration, Methods of preservation of microbes. Effects of physical, chemical and environmental factors on microbial growth.

PRACTICE SYLLABUS

- 1. Sterilization techniques and handling method of glass wares and instruments
- 2. Culture Media Preparations
 - a. Broth media
 - b. Agar
- 3. Culturing of Micro organisms
 - a. Pure Culture techniques b. Streak plate c. Pour plate
- 4. Quantification of microorganisms Microscopy
 - a. Serial dilution and plating
- 5. Preservation of Bacterial Culture

TEXT BOOKS:

- 1. Pelzar, M.J., Chan, E.C. S and Krieg, N.R. 1993. Microbiology. Tata McGraw Hill Edition. New Delhi. India.
- 2. Ananthanarayan and Jayaram Paniker, 1999. Text Book of Microbiology. Orient Longman Publishers.

REFERENCES:

- 1. Talaro, K., Talaro A. Cassida Pelza and Reid, 1993. Foundation in Microbiology. W.C. Brown Publishers.
- 2. Prescott, Harley and Klen, 2003. Microbiology. McGraw Hill Publications. 5thEdn.
- 3. Frazier, W.S. and Weshoff, D.C., 1988. Food Microbiology, 4th Edn., McGraw Hill Book Co., New York.
- 4. George, J.B., 1987. Basic Food Microbiology. CBS Publishers and Distributors. 5. Cappuccino, J. G. and Sherman, N., 1999. Microbiology: A laboratory Manual. 4th Edition, Addison -

Wesley.

6. Collee, J. G., et al., 1996. Mackie and McCartney Practical Medical Microbiology. 4th Edition, Churchill Livingstone.

7. Sundararaj, T., 2007. Microbiology laboratory manual. A swathy Sunndararaj.

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.M.Sobana	Assistant Professor	Biotechnology	sobanam@vmkvec.edu.in
2	Dr.R.Balachandar	Assistant Professor G-II	Biotechnology	Balachandar.biotech@avit.ac.in

	ENVIKUNWIEN I AL SCIENCES	Categor V	L	Т	P	Credit
	(Common to All Branches)	FC-BS	3	0	0	3
sciences.] conserving	ental science is an <u>interdisciplinary field</u> that integrates physical, che Environmental studies deals with the human relations to the environment the environment for the future. Environmental engineering focuses of agement for sustainable development by improving the environmenta	onment on the va	and rious	societ issue	al pros	oblems an
PREREQU	JISITE NIL					
COURSE	OBJECTIVES					
	To inculcate the knowledge of significance of environmental studies a resources.	and conse	ervati	on of	the n	atural
2 7	To acquire knowledge of ecosystem, biodiversity, it's threats and the	need for	conse	ervatio	on	
3 7	To gain knowledge about environmental pollution, it's sources, effect	s and co	ntrol	neasu	ires	
	To familiarize the legal provisions and the national and international of environment	concern	for the	e prote	ectior	ı of
	To be aware of the population on human health and environment, role health and environment.	of techr	ology	y in m	onito	ring humai
COURSE	OUTCOMES					
On the succ	cessful completion of the course, students will be able to					
CO1. Unde	rstand the importance of environment and alternate energy resources	Uno	lersta	nd		
	ate the awareness and recognize the social responsibility in ecosystem ersity conservation	App	oly			
CO3. To de the problem	evelop technologies to analyse the air, water and soil pollution and sol	ve App	oly			
	valuate the social issues and apply suitable environmental regulations nable development	Eva	luate			
CO5. To id	entify and analyse the urban problems, population on human health an	nd Ana	lyse			

						-		_							
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	M	M	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	M	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-
C Ctu	C. Stronger M. Madiners I. Larry														

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT –I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems -Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT –II ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values -India as a mega-diversity nation - hot-spots of biodiversity -Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts - endangered and endemic species of India - Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT – III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation - rain water harvesting, watershed management -Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population - Population growth & Population Explosion - Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
 Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

6 hrs

6 hrs

6 hrs

6 hrs

6 hrs

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE DESIGNERS							
S.No.	Name of the Faculty	Mail ID					
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in					
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in					

ENGINEERING SCIENCE COURSES INCLUDING WORKSHOP, DRAWING, BASICS OF ELECTRICAL/MECHANICAL/COMPUTER ETC. CREDITS (18-24)

	E01 FOUNDATIONS OF COMPUTING ANI PROGRAMMING	ND	Categ	ory	L	Т	P	Cr	edit							
35021H	E01		(TH)GRA Z AND			AL)		FC-I	ES	2	0	2		3
PREAM	MBL	E	(1		
This course aims to provide the fundamental concepts of Computer operations like hardware and software																
installation, and emphasizing principles programming languages. Studying the fundamentals database languages, commands and internet basics.																
<u> </u>				a inter	met ba	sics.										
PRERQUISITE – Nil COURSE OBJECTIVES																
					edge o	f hard	ware c	ompon	ents o	of comp	uters an	d clas	sifi	ration	IS	
2	To in	troduc	e and	demor							ons and					
			packa	<u> </u>		•	1	1		0						
				_	_	_	_				umming					
							U		stems	langua	ges and	comn	nanc	ls use	d.	
5.	To lea	arn ba	sics of	Interr	net and	Web	servic	es.								
COUR	SE O	UTC	OMES	5												
On the			-													
CO1. To function		erstan	d the]	Basic l	cnowle	edge o	n com	puter h	ardwa	re and i	its	U	nde	rstand	1	
CO2. T		know	ledge	of Fun	damen	tals of	vario	us Ope	rating	System	1	TI	ndo	rstand	1	
function	ns and	l soft	wares.					-		-			nue	stanc	ł	
CO3.To program				e prir	nciples	of]	orogra	mming	and	catego	ories o	f A	pply	7		
CO4.To classifio	o dem	onstra		atabase	e Mana	igemei	nt Syst	tems la	nguag	es and	their	A	pply	1		
CO5.To			ds and	demo	nstrate	s the I	nterne	t Basic	s.			A	pply	/		
MAPP	ING	WITH	I PRC	GRA	MME	OUT	COM	ES AN	D PR	OGRA	MME	SPEC	IFI	C OU	TCON	1ES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		SO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-		S	М	-
CO2	S	Μ	М	-	М	-	-	_	-	-	-	М		S	М	M
CO3	S	S	s	-	М	-	-	-	-	-	-	- S -		M		
CO4	S	S	S	-	S	-	-	-	-	-	-	-		S	М	М
CO5	S	Μ	М	-	М	-	-	-	-	-	-	S S M M				M
S- Stror	ng; M	-Medi	ium; L	-Low	I					1	I				1	1

SYLLABUS

Introduction to computers:

Computer – Characteristics of computers -Generations of computers- Types of Computers- Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting.

Software applications:

Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

Lab Component-Ms Word,,Ms Excel,Ms powerpoint.

Introduction to programming

Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

Fundamentals of Operating System and DBMS :

Operating Systems: Introduction, Functions of an operating System, types of Operating Systems Introduction to Database Management Systems- -File system vs DBMS, Database applications, Database users, Introduction to SQL, Classification of SQL:DDL, DML, DCL, TCL Lab Component- DDL, DML, DCL, TCL constraints

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet Basics of HTML – Applications of HTML – HTML Fonts – anchor tag and its attributes – Using images in HTML programs – list tag - Table tag.

Lab Component -HTML programs TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014

REFERENCES:

- 1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta, 2019.
- 2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd

Edition, Addison Wesley, 2011

COURSE DESIGNERS								
Name of the Faculty	Designation	Department	Mail ID					
K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in					
Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in					

PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CATEGORY	L	Т
	FC-ES	2	0

PREAMBLE

The purpose of this course is to introduce Python, a remarkably powerful dynamic programming language to write code for different operating systems along with application domain. Python has evolved on more popular and powerful open source programming tool

Р

2

CREDIT

3

PRERQUISITE :NIL

COURSE OBJECTIVES

1.	To provide basic knowledge on Python programming concepts.
2.	To introduce different methods in list, string, tuple, dictionary and sets.
2	

- **3.** To compute different programs using python control statements.
- 4. To learn about different functions in python.
- 5. To compute the exception handling functions and file concepts.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Learn python statements, comments and indentation, tokens, input and output methods using various example programs.	Understand
CO2. Apply the different methods involved in List, String, Tuples and Dictionary.	Apply
CO3. Design solutions for complex programs using decision making and looping statements.	Apply.
CO4.Apply the function programs with all the concepts like lambda and recursion.	Apply.
CO5. Compute the exception handling programs, file concept programs and understand the concepts .	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	Р 05	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	-	-	М	Μ	Μ
CO2	S	M	М	М	М	-	-	-	-	-	-	-	S	М	Μ
CO3	Μ	S	S	S	М	-	-	-	-	-	-	-	М	М	Μ
CO4	S	S	S	S	М	-	-	-	-	-	-	-	S	S	М
CO5	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
S- Stron	S- Strong; M-Medium; L-Low														

SYLLABUS

INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

CONTROL STATEMENTS

Flow Control-Selection control Structure- iterative control structures.

FUNCTIONS

Introduction-Declaration of function-Types of function-Types of Arguments-parameters-recursion and lambda function

FILE HANDLING AND EXCEPTION HANDLING

FILES:Open,read ,write, append ,close,tell and seek method,.Exception Handling:errors and exceptions-Raising exceptions-user defined exception

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 2st Edition, O'Reilly Media, 2019.
- 2. Programming With Python- II 'Himalaya Publishing House Pvt Ltd, 2018.
- 3. "Dive Into Python3" by Mark Pilgrim, 2012

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Dr.V.Amirthalingam	Assistant Professor	CSE	amirthalingam@vmkvec.edu.in

PROGRAMMING FOR PROBLEM SOLVING	Category	L	Т	Р	Credit	
	FC-ES	3	0	0	3	

PREAMBLE

The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

PREREQUISITE-NIL

COUR	SEOB.	JECTI	VES												
1.	To ga	in basi	c know	ledge a	ibout si	imple a	lgorith	ms for	arithm	etic and	logical	problems.			
2.	To le	arn ho	w to wi	rite a pi	ogram	, syntax	x and lo	ogical e	errors.						
3.	To un	derstar	nd how	to deco	ompose	e a proł	olem in	to func	tions a	nd synth	esize a	complete	progran	1.	
COUR	SEOU	ГСОМ	ES												
On the	success	ful con	npletior	n of the	course	, studen	ts will	be able	to						
CO1: I	Formula	ate sim	ple alg	orithms	for ar	ithmeti	c and lo	ogical	oroblen	1S.		Understand	1		
CO2: 7	Fest and	l execu	te the	orogran	ns and	correct	syntax	and lo	gical e	rrors		Apply			
CO3: I	mplem	ent cor	ditiona	al branc	hing, i	teration	n and re	ecursio	n.			Apply			
CO4: I	Decom	ose a 1	oroblen	n into f	unction	ns and s	synthes	ize a co	omplete	e prograi	n.	Analze			
	Use arra						•		•	nms and		Apply			
MAPP	INGW	ITHPF	ROGRA	AMME	OUTC	OMES	SANDP	ROGR	AMM	ESPECI	FICO	UTCOMES	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	l PO12			
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
S-Stror	ng; M-N	ledium	; L-Lov	N		1			1						

SYLLABUS

UNIT – I: INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

UNIT - II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators,-bitwise and conditional operators-special operators- operator precedence and associativity- evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

UNIT – III: ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arraysinitialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms-Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functionscall by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

UNIT – IV: STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functionsstring handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of Pointers- functions returning pointers,-Dynamic memory allocation

UNIT – V: STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structuresstructures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

REFERENCES

~

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

Course	e Designers:			
S.No.	Name of the Faculty	Designation	Department	MailID
1.	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in
2.	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in

		BA	SICS	OF EL		RICAL GINEE		ELEC	TROM	NICS	Categ	ory	L	Т	P (Credit
			A.	BASIC	CELE	CTRIC	CAL E	NGIN	EERI	NG	FC-I	ES	2	0	0	2
	MBL		ourse	which	highlig	hts the	basic	concen	ts and	outling	of Flect	ricala	nai	noorii	ng. The c	oncents
-	-	•						-					-		beginner	-
	ering g		-	J			p					5	8	101		
PRER	REQUI	SITE	– Nil													
COUI	RSE O	BJEC	TIVE	5												
1	To ex	xplain	the bas	sic laws	s used	in Elec	trical c	circuits	and va	arious ty	pes of 1	neasui	ring	; instr	uments.	
2	To ex	xplain	the dif	ferent o	compo	nents a	nd fun	ction o	f electr	rical dc	and ac 1	nachir	nes.			
3	To u	ndersta	and the	funda	mental	s of sat	fety pro	ocedure	es, Eart	thing an	d Powe	r syste	m.			
COUI	RSE O	UTCO	OMES													
On the	e succe	ssful c	omple	tion of	the co	urse, st	udents	will be	e able t	0						
CO1:]	Explain	n the e	lectrica	al quan	tities a	nd bas	ic laws	ofele	ctrical	enginee	ring.]	Ren	nemb	er	
CO2:]	Demor	nstrate	Ohm's	and F	araday	's Law	•						App	oly		
CO3:]	Descril	be the	basic c	oncept	s of m	easurin	ig instr	uments	5.			1	Unc	lersta	nd	
CO4:	Explai	in the c	operati	on of e	lectric	al macl	ninerie	s and it	s appli	cations.		1	Unc	lersta	nd	
CO5:]	Explai	n the e	lectrica	al safet	y and j	protect	ive dev	vices.				1	Unc	lersta	nd	
	-			• -		-	-	eneratio	on syste	ems by	applicat	tion	Ana	alyze		
				onvent										•		
															COMES	DCO2
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12	2 P	SO1	PSO2	PSO3
CO1	S	M	-	-	M	L	-	-	-	L	M	L	_	S	M	L
CO2	S	M	M	L	M	-	-	-	S	M	M	L	_	S	L	-
CO3	S	M	M	М	М	-	-	-	-	L	M	L	_	S	M	L
CO4	S	Μ	L	L	М	L	-	-	-	L	М	L	_	S	L	-
CO5	S	М	L	-	М	S	-	-	-	L	L	L	_	-	-	-
CO6	S	М	-	-	М	L	S	L	-	L	L	L		М	L	М
S- Stro	ong; M	-Medi	um; L-	Low												

SYLLABUS ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis-Power and Power factor – Single phase and Three phase balanced circuits -Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu. in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

				SIC EI	LECTR	RONIC	S ENG	INEEF	RING	-	FC-ES	2	0 0)	2
	rse aim ing con rs. It ena	icepts ables	. The the stu	course dent to	begins design	with small o	classifi ligital l	cation ogics li	of vari ke mul	comportous activitiplexer,	ents, dig ve and p	gital log	gics and compone encoder, o	commur nts, diod	nicatior les and
PRERQ	UISITE	E – Ni	il												
COURS	E OBJI	ECTI	VES												
1 Т	Го learn	and i	dentify	variou	s active	e and pa	issive c	ompone	ents and	l their wo	orking pr	inciples.			
2 Т	Го unde	rstand	l the nu	mber c	onversi	ion syst	ems an	d worki	ng Prin	ciples of	logic ga	tes.			
3 Т	Го learn	the d	igital lo	ogic pri	nciples	and rea	alize ad	ders, m	ultiplex	er, etc.,					
4 Т	Го unde	rstanc	l the ap	plicatio	on-orier	nted cor	ncepts i	n the V	arious c	communi	cation sy	stems.			
COURS	E OUT	COM	IES												
On the su	uccessfu	ıl con	pletior	n of the	course	, studen	ts will	be able	to						
CO1. Intelectronic												Jndersta	nd		
CO2. Co	onstruct										their	Apply			
CO3. Experation	xecute	numł	per sys	stem c	onversi	ons ar	nd com	npute s	several	digital	logic A	Apply			
CO4. D given dat	Design a		s, Mult	iplexer	, De-M	Iultiple	xer, En	coder,	Decode	er circuit	ts for	Apply			
CO5. Exapplications	xpose	the v										Jndersta	nd		
	NG WI	ТН Р	ROGR	AMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPI	ECIFIC	OUTCO	MES		
COS I	PO1 I	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
CO5	s	М	-	-	-	-	-	-	L	L	-	L	S	-	L
S- Strong		edium	n: L-Lor	w											

SYLLABUS

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM, PCM, DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

			BASI	C ELE			ND EL NG LA		ONICS	5	Categ	ory	L	Т	P (Credit
			A.B	ASIC 1					RING		FC-F	ES	0	0	2	1
It is a l	MBLE laborate	ory cou		ch fam	iliarizes	s the ba	sic elec	etrical w	viring, 1	measurer	nent of	elect	rical	quanti	ties and	various
PRER	QUISI	TE – N	IIL													
COUR	RSE OF	BJECT	IVES													
1	To le	arn the	resider	ntial wii	ring and	l variou	is types	ofelec	trical w	viring.						
2	Tom	easure	the var	ious ele	ctrical	quantit	ies.									
3	_					•		measu	rement	of earth	resistar	ice				
-	RSE OU															
				n of the		atuda		ha ahla	to							
			-	n of the				be able	10			A 1	1			
	•			s types			U					Appl	-			
				ntal par								Anal	•			
CO 3:	Measur	e the ea	arth res	istance	of vario	ous elec	trical n	nachine	ries.			Appl	y			
MAPF	PING V	VITH I	PROGI	RAMM	E OUI	COM	ES AN	D PRO	GRAM	IME SP	ECIFIC	C OU	TC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO:
CO1	S	М	L		S							L	-	М	L	
CO2	S	М	S	S					М			N	1	М	L	
CO3	L	S	L		S					L		L		М	L	
S- Stro	ong; M-	Mediur	n; L-Lo) W						1						
	OF EX															
 F. S. S. M. M	luoresc tair cas leasure leasure lypes of RENC	ent lam e wiring ment of ment of Wiring ES	p wirin g. f electri f energy , Joints	g. cal qua y using	ntities - single p easuren	- voltag bhase er	ge, curre	ent, pow neter.	ver & p	energy n ower fac an electri	tor in R			it.		
	RSE DE	-		vianual												
S.No.			he Fac	ulty	Designation					-	rtment				ail ID	
1	Dr. R	. Deva	rajan		Professor					EEE/V	MKVE				vmkvec.	
2	Dr. G	i. Rama	ıkrishna	aprabu	Assoc	iate Pro	ofessor			EEE/VMKVEC ramakrishn .edu.in					prabu@	vmkve
3		. Saran	•				fessor (· /		EEE/AVIT dsaranya@avit.ac.in						
4	Mr. S.	. Prakas	sh		Assist	ant Pro	fessor ((Gr-II)		EEE/	AVIT	s	prak	ash@a	vit.ac.in	

PREAM		D						FICES I NGINE		. –	ategory				-
гкгди	DIF	PA	AKTB	- BASI	L ELE		NICS E	NGINE	EKINC	J	FC-ES	0	0 2	2	2
This cou	rse is t	-	-			0			0	0	It starts ruct and			ion of onic proj	ects
PRERQ	UISIT	$\Gamma E - N$	il												
COURS	E OB	JECTI	VES												
1	To fan	niliarizo	e the ele	ectronic	c compo	onents,	basic el	lectroni	c equip	ments an	d solderi	ng techn	iques.		
2 7	To stu	dy the	characte	eristics	of Dioc	les, BJ	Γ and F	ET.							
3 7	To unc	lerstan	d the pr	inciples	s of var	ious dig	gital log	gic gates	5.						
4	To unc	lerstan	d the co	oncept o	of basic	modula	ation te	chnique	S						
COURS	E OU	TCOM	1ES												
On the su	uccess	ful con	npletion	n of the	course,	, studen	ts will	be able	to						
CO1. Fai	miliari	ze witl	n the fu	ndamer	ntals of	solderi	ng tech	niques.				Un	derstand		
CO2. Co di				for PN erse res			de char	acteristi	ics also	determin	ne	Ap	ply		
CO3. Co	onstruc	t clipp	er and c	lamper	circuit	and ve	rify the	ir voltag	ge level	S		Ap	ply		
CO4. Co	onstruc	t and ju	ustify o	peration	n simpl	e voltag	ge regul	lator for	given	Zener die	ode	Ap	ply		
CO5. Ve NA	•	e truth NOR, 2		and cha	racteris	stics of	logic ga	ates (Al	ND, OR	, NOT,		Ap	ply		
MAPPI	NG W	ТТН Р	ROGR	AMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPF	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
CO5	S	М	-	-	-	-	-	-	L	L	-	L	S	_	L
S- Strong		Andine													

Syllabus

LIST OF EXPERIMENTS

1. Practicing of Soldering and Desoldering.

2. Characteristics of PN junction Diode and find the forward and reverse resistance

3.Construct and Study simple clipper and clamper circuits

- 4. Characteristics of Zener diode and determine the break down voltage and diode resistance
- 5.Construct and Study simple voltage regulator using zener diode
- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

COURSE DESIGNERS

COUN	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

			A	-BAS	SICS (OF CI	VIL		Ca	tegory	L	Г		Р	C	edit
				ENC	GINE	ERIN	G		F	C-ES	2	0)	0		2
Engir	neering	discip	oline to	o the s	studen	ts of a	ll bra	nches	ofEng	and inc gineerin Tession i	g and t	o prov	ide t	he s	tudent	s an
Prere	equisite	e –NII														
Cour	se Obj	ective	•													
1										il engin	0					
2										surveyi	<u> </u>					
										se, stud					1 4 .	1
CO1		ll the					r in	societ	y and	l to rel	ate the	e vario	ous	Un	dersta	nd
CO2	Expla		ifferer	nt typ	pes o	f bui	0	, bui	lding	compo	onents,	buildi	ing	Ap	ply	
Map	ping w	ith Pr	ogran	nme (Dutco	mes a	nd Pr	ograr	nme S	specific	Outco	mes				
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS		PSO	PSO
<u></u>	1	2	3	4	5	6 M	7 T	8	9	0	1	2	1		2	3
CO1	S	-	-	-	-	M	L	-	-	-	-	-				
CO2	S	-	-	-	-	M	L	-	-	-	-	-				
S- Sti Sylla	rong; N	M-Me	dium	; L-L(DW											
Surve Cons types Timb Elemo Plann buildi	eying ,F truction , uses, j er, San ents of ing: G ing Pla in, Elev	Phases on Ma proper d, Cor Build eneral nning, vation	of Su terials ties an ncrete, ing Ca l Requ J Impo & Sea	rveyin s: nd imp , steel onstru uiremo ortance ction o	ng portan ction: ent of e of Pl of Res	ce of f Build anning sidenti	Civil I ding, g, Lay al Bu:	Engine Eleme out of	eering entary f resid Const	materia princip ential & g on th	lls like, bles an c indust c Classi	Rocks d basic rial bu ficatio	, Bri c rec ildin n of cleme	icks quir lgs , bui ents	, Cemo ements Introd ldings	ent, 5 of a uctior
-	-	-					-	ion of	Wall	-	h Door	& Wii	ıdov	v		
drawi	-	-					-	ion of	Wall	Throug	h Door	& Win	ndov	V		
drawi	ing, Int Books Basi	roduct	tion to	build	ing by	yelaws	s, Sect			-						
drawi Text 1 Refer	ng, Int Books Basi VMU cence F	roduct c Civi J, Sale Books	tion to 1 and 1 em	build Mecha	ing by anical	velaws Engir	s, Sect	g, Sch	ool of	Throug Mechai	nical E	nginee	ring	Scie	ences,	
drawi Text 1 Refer 1	ng, Int Books Basi VMU cence F Civil	roduct c Civi J, Sale Books Engg	tion to 1 and 1 em	build Mecha	anical	Zelaws Engir	s, Sect neering gwala	g, Sch Publi	ool of cation	Throug Mechan Charota	nical E ar Pub.	ngineer House	ring e Ana	Scie	ences,	
drawi Text 1 Refer 1 2	ng, Int Books Basi VMU cence E Civil Surve	roduct c Civi J, Sale Books Engg eying	ion to 1 and 2 m . Draw Vol .I	build Mecha ving b & II t	anical y S. C	Engir C. Rang B. C.	s, Sect beering gwala Puna	g, Sch Publi mia Pu	ool of cation ublica	Throug Mechar Charota tion Lax	nical E ar Pub. ami Pul	ngineer House	ring Ana n De	Scie and elhi	ences,	
drawi Text 1 Refer 1 2 3	ng, Int Books Basi VMU Civil Surve Engin	roduct c Civi J, Sale Books Engg eying neerin	l and l m . Draw Vol .I g Mat	build Mecha ving b & II l erial,	ing by anical y S. C by Dr. Autho	Engir Engir 2. Rang B. C. or : Dr	s, Sect leering gwala Punat	g, Sch Publi mia Pi Rangy	ool of cation ublicat wala, l	Throug Mechan Charota tion Lax Publishe	nical E ar Pub. ari Pul ari Pul	ngineer House plicatio rotar Pr	ring Ana n Do ub. H	Scie and elhi Hou	ences,	
drawi Text 1 Refer 1 2 3 4	ng, Int Books Basi VMU Civil Surve Engin	roduct c Civi J, Sale Books Engg. eying neerin ling C	l and l m . Draw Vol .I g Mat onstru	build Mecha ving b & II l erial,	ing by anical y S. C by Dr. Autho	Engir Engir 2. Rang B. C. or : Dr	s, Sect leering gwala Punat	g, Sch Publi mia Pi Rangy	ool of cation ublicat wala, l	Throug Mechar Charota tion Lax	nical E ar Pub. ari Pul ari Pul	ngineer House plicatio rotar Pr	ring Ana n Do ub. H	Scie and elhi Hou	ences,	

			the College	
1	C.Kathirvel	Associate Professor	Civil / VMKVEC	kathirvel@vmkvec.edu.in

			B-BAS	SICS	OF M	ECH	ANICA	٩L	Ca	ategory	L	L I	Γ	Р	0	credit
				ENC	GINE	ERIN	G		F	C-ES	2	0)	0		2
Prean																
			0	00						e areas o	0	0				
										the basic	manuf	acturing	g tec	hnic	ques an	d
			t an A	utomo	bile Er	nginee	ring Cor	mpone	ents.							
	quisite															
	se Obje		1		1 (<u>, , .</u>	1	4.1.				<u> </u>				
$\frac{1}{2}$				<u> </u>			-	+		g process				-		
$\frac{2}{C}$						•		-		notive en	-	•		nt cc	mpone	nts.
						<u> </u>				tudents					1	
<u>CO1.</u>	1		<u> </u>			<u> </u>			<u> </u>	ocesses i			g		pply	
CO2.				•			U	/		nportant		nents		A	pply	
Mapp	ing wit	th Prog	gramn	ne Ou	tcome	s and	Program	mme	Speci	fic Outo	comes					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	М	М	L	L	Μ	- -	-	-	-	-	М	L		-	-
CO2	S	М	L	L	L	М		-	-	-	-	М	L		_	-
S_ Stre	որσ∙ Μ_	Medim	m• I ₋I	ow												
		Mediu	m; L-L	20W												
Syllat	ous															
Syllat FOUN	ous NDRY .	AND V	WELD	ING	ing -	Types	Patter		efiniti	ion Fur	nction	Foundr	v to	ols	Greet	n San
Syllat FOUN Found	Dus NDRY . Iry: Int	AND V roduct	WELD ion to	ING	ing -	Types	, Patter	m- D	efiniti	ion, Fur	nction.	Foundr	y to	ools.	Green	n San
Syllat FOUN Found Mould	DUS NDRY Iry: Int ling app	AND V roduct	WELD ion to on.	OING Casti	•								-			
Syllat FOUN Found Mould Weldi	DUS NDRY Iry: Int ling app ng: Int	AND V roduct plicatic roduct	WELD ion to on. ion to	DING Cast	ing, C	Classifi		– Ga	s wel	lding, A			-			
Syllat FOUN Found Mould Weldi Defini	NDRY NDRY Iry: Int ling app ng: Int itions. A	AND V roduct plicatic roduct Arc We	WELD ion to on. ion to elding	DING Casti weld - Meth	ing, C ods ar	Classifi nd Mee	ication -	– Ga s – Aj	s wel	lding, A			-			
Syllat FOUN Found Mould Weldi Defini AUTC Introd	NDRY NDRY lry: Int ling app ng: Int itions. A DMOT uction,	AND V roduct plicatic roduct Arc We IVE E Two s	WELD ion to on. ion to elding NGIN troke a	DING Casti weld - Meth ES Al	ing, C ods an ND CC ur stroł	Classifi nd Mec DMPC ce cycl	ication - chanisms DNENTS le – Petr	– Ga s – Aj S rol and	s wel pplica d Dies	lding, A tions. sel Engir	rc Wel	ding, T nstructi	ΓIG, on a	M.	IG, Pla working	asma -
Syllat FOUN Found Mould Weldi Defini AUTO Introd	Dus NDRY lry: Int ling app ng: Int itions. <i>A</i> DMOT uction, mentals	AND V roduct: blicatic roduct Arc We IVE E Two st s of au	WELD ion to on. ion to elding NGIN troke a troke a	DING Casti weld - Meth ES Al und fou	ing, C ods ar ND CC ur strol mpone	Classifi nd Mec DMPC ants - 1	ication chanisms DNENTS le – Petr Brakes,	– Ga s – Aj S rol and	s wel pplica d Dies	lding, A tions.	rc Wel	ding, T nstructi	ΓIG, on a	M.	IG, Pla working	asma -
Syllat FOUN Found Mould Weldi Defini AUTC Introd Funda supply	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals y system	AND V roduct: blicatic roduct Arc We IVE E Two st s of au	WELD ion to on. ion to elding NGIN troke a troke a	DING Casti weld - Meth ES Al und fou	ing, C ods ar ND CC ur strol mpone	Classifi nd Mec DMPC ants - 1	ication chanisms DNENTS le – Petr Brakes,	– Ga s – Aj S rol and	s wel pplica d Dies	lding, A tions. sel Engir	rc Wel	ding, T nstructi	ΓIG, on a	M.	IG, Pla working	asma -
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text I	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals y system Books	AND V roduct: blicatic roduct Arc We IVE E Two s s of au ns, Exh	WELD ion to on. ion to elding NGIN troke a itomot naust e	DING Casti weld - Meth ES Al ive con missio	ing, Colors an ND CO In strol In strol In and	Classified Mec DMPC and cycle ants - 1 contro	ication chanisms DNENTS le – Petr Brakes, l.	– Ga s – Aj S col and Clute	s wel pplica d Dies hes, C	lding, A tions. sel Engir Governoi	rc Wel nes - Co r, Flywl	ding, T nstructi neel, Ax	ΓΙG, on a xles,	M und y Dr	IG, Pla working ives etc	asma – g, c., Fue
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text I 1	NDRY Iry: Int ling app ng: Int itions. A DMOT uction, mentals y system Books Basic	AND V roduct blicatic roduct Arc We IVE E Two si s of au ns, Exh c Civil	WELD ion to on. ion to elding NGIN troke a itomot naust e	DING Casti weld - Meth ES Al ive con missio	ing, Colors an ND CO In strol In strol In and	Classified Mec DMPC and cycle ants - 1 contro	ication chanisms DNENTS le – Petr Brakes, l.	– Ga s – Aj S col and Clute	s wel pplica d Dies hes, C	lding, A tions. sel Engir	rc Wel nes - Co r, Flywl	ding, T nstructi neel, Ax	ΓΙG, on a xles,	M und y Dr	IG, Pla working ives etc	asma g, c., Fue
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text I 1 Refer	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals y system Books Basic ence Ba	AND V roduct: blicatic roduct: Arc We IVE E Two st s of au ns, Exh c Civil poks	WELD ion to on. ion to elding NGIN troke a troke a nutomot naust e and M	DING Casti - Weld - Meth ES AI und fou ive con missio	ing, C ods ar ND CC Ir strol mpone n and ical Er	Classifi ad Mec DMPC (contro nginee	ication chanisms DNENTS le – Petr Brakes, l. <u>ring, Scl</u>	– Ga s – Aj S ol and Clute hool c	s wel pplica d Dies hes, C	lding, A tions. sel Engir Governor chanical	rc Wel nes - Co r, Flywl Engine	ding, T nstructi neel, Ax ering Se	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	g, c., Fue Salen
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text 1 1 Refer 1	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals y system Books Basic ence Be Dan H	AND V roduct: blicatic roduct Arc We IVE E Two s ⁱ s of au ns, Exh c Civil ooks B Marg	WELD ion to on. ion to elding NGIN troke a itomot naust e and M	DING Casti Weld - Meth ES An ive con missio lechan	ing, C ods ar ND CC ar strok mpone <u>n and</u> ical Er inical I	Classifi ad Mec DMPC ce cycl mts - 1 contro nginee Engine	ication chanisms DNENTS le – Petr Brakes, (l. ring, Scl cer's Har	– Ga s – Aj S col and Clute hool c	s wel pplica d Dies hes, C of Mee	lding, A tions. sel Engir Governor chanical cademic	rc Wel nes - Co r, Flywl Engine Press, A	ding, T nstructi neel, Ax ering So Auburn	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	g, c., Fue Salen
Syllat FOUN Found Mould Weldi Defini AUTC Introd Funda supply Text 1 1 Refer 1 2	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, uction, mentals y system Books Basic Basic ence Ba Dan K.Ve	AND V roduct: plicatic roduct Arc We IVE E Two sis s of au ns, Exh c Civil poks 3 Marg nugopa	WELD ion to on. ion to elding NGIN troke a tromot naust e and M ghitu, al, Bas	DING Casti Weld - Meth ES Al ive con missio Iechan Mecha ic Mec	ing, C lods an ND CC Ir strol mpone n and ical Er inical I chanica	Classifi ad Mec OMPC ce cycl contro nginee Engine al Eng	ication - chanisms DNENTS le – Petr Brakes, - l. ring, Scl ring, Scl cer's Han ineering	- Ga s - Aj S col and Clute hool c ndboc g, Anu	s wel pplica d Dies hes, C of Mee ok, Ac	lding, A tions. sel Engir Governor chanical cademic	rc Wel nes - Co r, Flywl Engine Press, A tions, C	ding, T nstructi neel, Az ering So Auburn	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	sma g, c., Fue Salen
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text 1 1 Refer 1 2 3	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals v system Books Basic ence Be Dan H K.Ve N R.	AND V roduct: blicatic roduct Arc We IVE E Two s' s of au ns, Exh c Civil ooks B Marg nugopa Banapu	WELD ion to on. ion to elding NGIN troke a itomot naust e and M ghitu, al, Bas urmath	DING Casti Weld - Meth ES An ive con missio lechan Mecha ic Mecha	ing, C ods ar ND CC ar strol mpone n and ical Er ical Er inical I chanica c Mecl	Classifi ad Mec DMPC ce cycl mts - 1 contro nginee Engine al Eng hanica	ication chanisms DNENTS le – Petr Brakes, (l. ring, Scl ring, Scl eer's Han ineering l Engine	– Ga s – Aj S col and Clutc hool c ndboc g, Anu eering	s wel pplica d Dies hes, C of Me ok, Ac radha	lding, A tions. sel Engir Governor chanical cademic Publica as Publica	rc Wel nes - Co r, Flywl Engine Press, A tions, C	ding, T nstructi neel, Ax ering So Auburn Chennai Noida	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	sma g, c., Fue Salen
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text I 1 Refer 1 2 3 4	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals y system Books Basic ence Be Dan H K.Ve N R. T J Pr	AND V roduct: plicatic roduct Arc We IVE E Two sis s of au ns, Exh c Civil Doks 3 Marg nugopa Banapu rabu, B	WELD ion to on. ion to elding NGIN troke a itomot naust e and M ghitu, al, Bas urmath	DING Casti Weld - Meth ES An ive con missio lechan Mecha ic Mecha	ing, C ods ar ND CC ar strol mpone n and ical Er ical Er inical I chanica c Mecl	Classifi ad Mec DMPC ce cycl mts - 1 contro nginee Engine al Eng hanica	ication chanisms DNENTS le – Petr Brakes, (l. ring, Scl ring, Scl eer's Han ineering l Engine	– Ga s – Aj S col and Clutc hool c ndboc g, Anu eering	s wel pplica d Dies hes, C of Me ok, Ac radha	lding, A tions. sel Engir Governor chanical cademic	rc Wel nes - Co r, Flywl Engine Press, A tions, C	ding, T nstructi neel, Ax ering So Auburn Chennai Noida	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	sma g, c., Fue Salen
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text I 1 Refer 1 2 3 4	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals v system Books Basic ence Be Dan H K.Ve N R.	AND V roduct: plicatic roduct Arc We IVE E Two sis s of au ns, Exh c Civil Doks 3 Marg nugopa Banapu rabu, B	WELD ion to on. ion to elding NGIN troke a itomot naust e and M ghitu, al, Bas urmath	DING Casti Weld - Meth ES An ive con missio lechan Mecha ic Mecha	ing, C ods ar ND CC ar strol mpone n and ical Er ical Er inical I chanica c Mecl	Classifi ad Mec DMPC ce cycl mts - 1 contro nginee Engine al Eng hanica	ication chanisms DNENTS le – Petr Brakes, 1 l. ring, Scl eer's Han ineering l Engine pring, SC	- Ga s - Aj S col and Clutc hool c ndboc g, Anu cering	s wel pplica d Dies hes, C of Mee ok, Ac radha , Vika CH Pu	lding, A tions. sel Engir Governor chanical cademic Publica as Publica	rc Wel nes - Co r, Flywl Engine Press, A tions, C	ding, T nstructi neel, Ax ering So Auburn Chennai Noida	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	sma g, c., Fue Salen
Syllat FOUN Found Mould Weldi Defini AUTO Introd Funda supply Text I 1 Refer 1 2 3 4	NDRY Iry: Int ling app ng: Int itions. A OMOT uction, mentals v system Books Basic ence Bo Dan H K.Ve N R. T J Pn se Desig	AND V roduct: plicatic roduct Arc We IVE E Two sis s of au ns, Exh c Civil Doks 3 Marg nugopa Banapu rabu, B	WELD ion to on. ion to elding NGIN troke a itomot naust e and M ghitu, al, Bas urmath Basic M	DING Casti Weld - Meth ES An ive con missio lechan Mecha ic Mechan ic Mechan	ing, C ods ar ND CC ar strol mpone n and ical Er ical Er inical I chanica c Mecl	Classifi ad Mec DMPC ce cycl ents - 1 contro nginee al Eng hanica nginee	ication chanisms DNENTS le – Petr Brakes, • l. ring, Scl er's Har ineering l Engine cring, SC	– Ga s – Aj S col and Clutc hool c ndboc g, Anu eering	s wel pplica d Dies hes, C <u>of Me</u> <u>ok, Ac</u> radha c, Vika CH Pu ent /	lding, A tions. sel Engir Governor chanical cademic Publica as Publica blication	rc Wel nes - Co r, Flywl Engine Press, A tions, C	ding, T nstructi neel, Ax ering So uburn thennai Noida mai	ΓIG, ion a xles, cien	M und Dr ces,	IG, Pla workin; ives etc VMU,	g, c., Fue Salen

			A-BA	SICS	OF CI	VIL		Ca	tegory	L]	۲ I	C	redit
			ENG	INEEF	RING	LAB		F	C-ES	0	() 2	;	1
studen	eering S ts. It de	Skills Pra als with t tools, p	fitting, o	arpentry	y, sheet	metal	and re							
	<u> </u>	e –NIL	laining	.ne job t		CACCUL								
	se Obj													
		ate a fur	ndamen	al base	of cor	ncepts	used	in Civ	il engine	eering.				
		be the in							<u> </u>	0				
		comes:				-				<u> </u>	ill be a	able to		
CO1	-	are the d											pply	
CO2	Prepa	re the dif	ferent ty	pes of j	oints us	sing w	ooden	materi	al				pply	
Mapp	oing wi	ith Prog	ramm	Outco	omes a	nd Pr	ograr	nme S	pecific	Outco	mes			
СО	PO	PO 1	PO PO) PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSC
0	1	2	3 4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	M	L L	M	M	L	-	L	L	-	-			
CO2	S	М	L L	M	M	L	S	М	М	М	М	L		
S- Str	ong; N	A-Medi	um; L-	Low										
Syllal	ous													
Buildi 1. Stud	0	umbing a	and carp	entry co	mpone	nts of	resider	ntial an	d industi	rial buil	dings, S	Safety a	spects.	
	oing W													
		pipeline j	oints, it	s locatio	on and	functi	ons: v	alves,	taps, cou	uplings,	unions	s, reduc	ers, elb	ows i
	nold fitt	ings. pe conne	ections r	auirem	ents for	numn	e and t	urhine	C					
		of plum								rks.				
5. Han	ds-on-e	exercise:	Mixed p	ipe mat	erial co	nnecti	on - P	ipe cor	nnections		ifferent	t joining	g compo	nents.
6. Den	nonstra	tion of p	umbing	require	ments c	of high	-rise b	uilding	s .					
Carne	ntry 11	sing Pow	or Tool	anly										
		e joints i			vindow	s and f	urnitu	re.						
	5	5	,	,										
		ercise: W	ood woi	k, joints	by saw	ving, p	lannin	g and c	utting.					
Text]	Books													
ТСЛ	Dacia	civil eng	ineering	Lab Ma	inual by	y Depa	rtmen	t of Civ	il Engine/	eering, '	VMRF.			
	Dasic													
1		anora												
1	se Desi	igners ty Name	Desig	nation			-		Name of	Ema	il id			
1 Cours	se Desi Facul	-		nation iate Pro	feesor	th	e Coll				il id rvel@v	mkues	edu in	

		ENG	INE	RING	G SKII LAB	LLS P	RACTI	CE	Cate	gory	L	Т	Р	Credi	it
			B. B		MEC INEE		CAL		FC-	ES	0	0	4	2	
carpei	shop is	undry a	and w	raining elding	g pract relate	tice to d exer	Mechan ccises. A								
Prere	quisite	-NIL													
Cour	se Obje	ctive													
1	To per	form th	e prac	tice in	differ	ent typ	es of fitt	ting p	process	ses.					
2	To exe	cutive	joints	using	woode	n mate	rials.								
3	To app	ly in de	epth kı	nowled	lge in	metal	joining p	proce	sses.						
4	To den	nonstra	te the	patterr	n using	, found	lry proce	esses							
Cours	se Outc	omes:	On th	e succ	essful	comp	letion of	the	course	e, stud	ents w	vill be	able to		
CO1.							using M							Apply	,
CO2.	Pract	tice the	differ	ent tyr	bes of i	joints 1	using wo	oden	mater	ial				Apply	
CO3.							ints in m				ing			Apply	
CO4.					• •		ind moul		<u> </u>		<u> </u>			Apply	
Manr							Progran		Snecif	ic Out	come				
CO	PO	PO2	PO	РО	PO	PO		PO	PO	РО	РО	РО	PSO	PSO	P
C01	1 S	102	3 L	4	5	6	7	8	9 M	10	11	12	1 L	2	0
$\frac{CO1}{CO2}$	S	-	L L	-	-	-	-	-	M	-	-	-	L	-	
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	-	L	-	-	-	-	-	М	-	-	-	L	-	-
S- Str	ong; M	[-Medi	um; L	-Low											
Syllal	bus														
LIST	OF EX	PERI	MENT	ГS											
Vee – Prepa Prepa Half- Dove	Fitting Fitting ration o ration o Lap Joi Tail Joi oint – W	f a mou f a mou nt in Ca nt in C	ıld for arpent arpent	a split ry											

Text B	Books			
1	BASIC MECH	IANICAL ENGIN	NEERING, LAB MANUAI	L
Refere	ence Books			
1	K.Venugopal, B	asic Mechanical E	Engineering, Anuradha Publi	cations, Chennai
2	NR. Banapurma	th, Basic Mechani	cal Engineering, Vikas Publ	ications, Noida
Cours	e Designers			
S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	V K Krishnan	Associate Professor	Mech / VMKVEC	vkkrishnan@vmkvec.edu.in
2	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu. in

34421E81	ENGINEERING GRAPHICS	Category	L	Т	Р	Credit
54421201	AND DESIGN	FC-ES	0	0	6	3

Preamble

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Prerequisite

NIL

Course	e Obje	ctive													
1			ent the	orthog	aphic	projec	tions of	of poir	nts, stra	aight li	nes, pla	ane sur	faces	and soli	ds.
2	Тосо	onstrue	et the c	orthogra	phic p	rojecti	ons of	sectio	ned so	olids an	d true	shape	of the	section	5.
3	To de	evelop	latera	l surface	es of t	he unc	ut and	cut so	lids.			-			
4	To di	raw th	e picto	rial proj	ectior	ns (isor	netric	and pe	erspect	tive) of	simple	e solids	5.		
5	To di	raw th	e ortho	graphic	views	s from	the gi	ven pi	ctorial	view.					
Course	e Outc	omes:	On th	e succe	ssful	compl	etion (of the	course	e, stud	ents w	ill be a	ble to)	
CO1.				orm of one surface		•		lograp	hic pro	ojectior	ns of p	oints,		Apply	
CO2.				e form of the		e	of the c	orthogr	aphic	project	ions of	f sectio	oned	Apply	
CO3.	Deve	lop la	teral su	irfaces o	of the	solid s	ection	and cu	it section	ion of s	olids.			Apply	
CO4.	Draw	the p	ictoria	l project	tions (isomet	tric and	d persp	pective	e) of sir	nple so	olids.		Apply	
CO5.	Draw	the o	rthogra	aphic vi	ews fr	om the	e giver	n picto	rial vie	ew.				Apply	
Mappi	ng wit	h Pro	gramr	ne Outo	comes	and P	Progra	mme	Specif	ïc Out	comes		I		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	L								L		
CO2	S	S	L	S	L								L		
CO3	S	S	L	S	L								L		
CO4	S	М	L	S	S								L		
CO5	S	S	L	S	L								L		
S- Stro	ng; M-	Mediu	m; L-I	JOW							1				L
Syllab	us														
PLAN	E CUI	RVES	AND	DIMEN	ISIO	NING									

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of

ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of

involutes of square and circle – Drawing of tangents and normal to the above curves. Dimensioning. Projection of points.

PROJECTION OF SOLIDS

Projection of lines, Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section.

Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ORTHOGRAPHIC VIEWS AND ISOMETRIC VIEWS - First angle projection - layout views -

Representation of Three Dimensional objects -multiple views from pictorial views of objects.

Principles of isometric View - isometric scale - Principles of isometric projection - isometric scale -

Isometric projections of simple solids and truncated solids – Prisms, pyramids, cylinders, cones.

INTRODUCTION TO AUTO CAD

Introduction to Auto CAD- Basic introduction and operational instructions of various commands in AutoCAD. Limit System- Tolerance, Limits, Deviation, Actual Deviation, Upper Deviation, Lower Deviation, Allowance. Preparation of manual parts drawing and assembled sectional views from orthographic part drawings,

Text B	ooks			
1	Natarajan K V, "Enginee	ring Graphics", T	ata McGraw-Hill P	ublishing Company Ltd. New
_	Delhi.			
2	K.Venugopal and V.Prabl	nu Raja, "Engineer	ring Graphics", New	Age International Private
	Limited.			
3	K.R.Gopalakrishna"Engir	eering Drawing"	(Vol. I & II), Subha	s Publications, 2014.
4	Bhatt-N.D"Machine Dra	wing"-Published l	by R.C.Patel- Charts	star Book Stall-
	Anand- India- 2003			
Refere	nce Books			
1	N.D. Bhat and V.M. Panc	hal, Engineering C	Graphics, Charotar F	Publishers 2013
2	E. Finkelstein, "AutoCAl	D 2007 Bible", Wi	ley Publishing Inc.,	2007
3	R.K. Dhawan, "A text boo	ok of Engineering	Drawing", S. Chano	l Publishers, Delhi,2010.
4	DhananjayA.Jolhe, "Engi	neering Drawing	with an Introduction	n to AutoCAD", Tata McGraw
	Hill Publishing Company	Limited, 2008.		
5	G.S. Phull and H.S.Sandh	u, "Engineering G	raphics", Wiley Put	olications, 2014.
Course	e Designers			
S.No	Faculty Name	Designation	Dept / College	Email id
1	Dr. S.Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

Alternative NPTEL/SWAYAM Course:

S.	NPTEL Course Name	Instructor	Host	Duriation
No.			Institute	
1.	Engineering Graphics and	Prof. Naresh	IIT Delhi	12 weeks
	Design	Varma Datla,		
		Prof. S. R. Kale		
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and	Prof. Rajaram	IIT	12 weeks
	Computer Graphics	Lakkaraju	Kharagpur	

									Cate	gory	L	Т	Р	Cre	dit
			WOF	RKSH	OP PI	RACT	ICES		FC-	ES	0	0	4	2	
Prean	ıble														
														his cou	
														process	
	with ma bit of se										ated ex	cercise	s. Also,	it will ir	Iduc
	quisite		g rigni	toois,	pianni	ing the	job ai	ia its e	xecutic)11.					
	e Obje														
	0		he stud	lents v	vith ha	nds or	exper	ience	on vario	ous ha	sic en	vineeri	ng pract	tices in	
	Engine				1011 110	1145 01	enper			045 04	.510 011	5	ing prace		
2	To hav	<u> </u>	dy and	l hands	s-on-ex	kercise	on plu	umbing	g and ca	arpent	ry con	poner	its.		
3	To hav											1			
Cours	e Outc	omes:	On th	e succ	essful	comp	letion	of the	course	e, stud	ents v	vill be	able to		
						-			nts will					. 1	
CO1.	comp	onent	s with	their o	wn ha	nds.								Apply	
CO2.	diffe	rent m	anufac	turing	proces	sses.			ional to					Apply	
CO3.		mbling interes		rent co	mpone	ents, th	iey wil	l be at	ole to p	roduce	e small	devic	es of	Apply	
Марр	ing wit	h Prog	gramn	ne Ou	tcome	s and	Progra	amme	Specif	ic Out	tcome	5			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PS
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
CO1	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
	ong; M	-Medi	um; L	L-Low											
Syllab															
	e Cont														
	anufact			ls - ma	chinin	g and	joining	g meth	ods.						
	ting op		IS												
	rpentry asting.	•													
	n Smith	v													
	ires &	•	c												
				- casti	ng fo	rmina	t mac	hining	, ioini	na aa	lvance	d ma	nufactu	ring	
metho			liious	- casti	ing, it	11111112	5, 111ac	111111112	5, John	ng, at	i v anov	Ju IIIa	ilulaciu	ing	
	ig oper	ations	& no	wer											
	Carper		æ po												
	l castir														
	ing (ar		ing &	gas v	veldin	g)									
	Shop 1		<u> </u>	<u> </u>		<i>U</i> /									
1. Fa	cing, T	urning,	, Step '			lling, S	Surface	e finish	-Macl	hine S	hop				
	and V F	•		•	.										
	ngle pie														
	lf- Lap														
	p Joint, en Sco														
6 0															

Text B	looks			
1	WORKSHOP/	MAN	UFACTURING PRAC	FICES, MANUAL
Refere	nce Books			
1				and Nirjhar Roy S.K., "Elements of Workshop ters and publishers private limited, Mumbai
2				and Vol. II, Tata McGraw Hill House.
3				ing, Vikas Publications, Noida.
4				Anuradha Publications, Chennai.
			ned through Virtual	
				/LaserSpotWelding/Theory.html?domain=
1	Welding shop	Me		g&lab=Welcome%20to%2 0Microma chining
2	Casting	vlał		nl?domain=Mechanical%20Eng 20to%20FAB%20laboratory
Course	e Designers			•
S.No	Faculty Name	De sig nat ion	Department / Name of the College	Email id
1	T.Raja	As so. Pro f	Mech / VMKVEC	rajat@vmkvec.edu.in
2				

34421E03	MANUFACTURING ENGINEERING FOR	Category	L	Т	Р	Credit
	PHARMACEUTICAL ENGINEERS	FC-ES	3	0	0	3
Preamble		•			•	
This course pro	vides an introduction to Basic M	Ianufacturin	ig Enginee	ring fo	or Pharmace	utical
Engineers with	a focus casting, welding, formin	ig process, S	Sheet meta	l work	ing and plas	tic
Engineering and	d also provides knowledge on th	e working,	advantages	s, limit	ations and a	pplications
of various mach	ining processes. Machine tools	are power d	riven mac	hine fo	r making pr	oducts of a

given shape, size and accuracy by removing metal from the metal block

Prere	equisit	e : NIL	1												
Cour	se Obj	ective													
1	To ide	entify an	nd exp	lain m	anufac	turing	concept	s							
2	To un	derstan	d the n	nanufa	cturing	g proce	ss of co	nventi	onal a	nd spec	ial casti	ing proc	cess of	foundry	
	techno	ology													
3	To im	part the	know	ledge	of vari	ous typ	es weld	ling pr	ocess	in metal	ljoining	g proces	sses.		
4	To ap	ply fund	lament	tals of	metal	cutting	process	ses and	l cutti	ng tools					
5	To ap	ply the	knowl	edge o	f diffe	rent op	erations	on sp	ecial n	nachine	s and va	arious t	ypes of	work h	olding
	device	es													
6	To im	part the	knowl	edge o	of vario	ous met	tal form	ing pr	ocesse	s.					
7	To kn	ow the	workir	ıg prin	ciples	of the	various	uncon	ventio	nal, con	ventior	nal mac	hining	operatio	ns and
	also n	netal for	ming j	proces	ses										
Cour	se Out	comes	: On t	he su	ccessi	ful con	npletio	n of t	he co	urse, st	tudent	s will k	oe able	to	
COI	Disc	uss the	concep	ot of m	nanufa	cturing	concep	ts and	new te	echnolo	gies use	ed in		Underst	h n n
CO	indu	stry.												Undersi	and
CO2	Exp	ain the	worki	ng prir	nciples	of vari	ious me	tal cas	ting pr	ocesses	and to	identify	y ,	Underst	h a a
002	the	defects	and in	terpret	cause	s in the	e produc	t of m	etal ca	sting pr	ocesses	5.		Undersi	and
	Disc	uss the	worki	ng prir	nciples	of vari	ious me	tal joir	ning pr	ocesses	and				
CO3	3. mac	nines/ec	quipme	ents us	ed and	Select	the suit	able jo	oining	method	s for fa	bricatio	on/	Underst	and
	asse	nbly of	produ	cts.											
CO4	4. Und	erstand	the ch	ip forn	nation	for dif	ferent ci	utting	forces	and cut	ting too	ol life.	1	Underst	and
CO	Und	erstand	the wo	orking	princi	ple and	operati	ons of	Shape	er, Milli	ng, Dri	lling an	d ,	Underst	and
0.). bori	ng Macl	hines											Undersi	anu
CO	6. App	ly the co	oncept	s of va	rious	metal f	orming	proces	ses					Appl	у
CO	, Exa	nine the	e work	ing pri	inciple	ofvar	ious cor	ventio	onal m	achine t	ools, w	ork and	1	A	
CO	unco	nventic	onal ma	anufac	turing	proces	ses.							Appl	У
Map	ping w	ith Pro	ogram	me O	utcor	nes an	d Prog	gramn	ne Sp	ecific (Dutcon	nes			
CO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	-	-	-	-	-	-	-	-	-	М	-	-
CO2	S	М	S	-	-	-	-	-	-	-	-	-	М	-	-
CO3	S	М	S	-	-	-	-	-	-	-	-	-	М	-	-
CO4	S	L	S	L	-	-	-	-	-	-	-	М	M	-	-
CO5	S	L	S	L	-	-	-	-	-	-	-	M	M	-	-
CO6	S	L	S	L	-	-	-	-	-	-	-	М	М	-	-

CO7		S	L	S	L	-	-	-	-	-	-	-	M	M	-	-
S- Str	.01	ng; M-N	lediun	n; L-L	.ow	I	-1	1	1	1	I	1	1	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	1	
SYL	L	ABUS														
INTR	20	DUCT	ION	TO M	IANUI	FACT	TURIN	G								
Manu	uf	àcturin	g –	Role	of M	anuf	acturin	g in tł	ne de	velopr	nent o	fac	ountry	- class	sificat	ion o
manu	ıfa	acturin	g proo	cesses	5.											
CAST	ΓI	NG														
Fund	aı	mentals	of m	etal c	asting	- Ty	pes of	pattern	s – sa	nd mo	ld mak	ing –d	ifferen	t castin	g tech	nique
					-	-	-	Testing				-			C	1
• -		NG PR					0			1			0			
						ocess	es - F	rinciple	es of	Oxv-	acetyle	ne ga	s weld	ing-A.	C met	tal ar
								l arc we								
								elding-								
					-			ering an			ann we	Jaing	luber	ocum v	v crain	5, un
		·			• •			& CUT			US					
								ormation				lique c	utting)-	Chip th	icknes	s ratio
				•			•	es of chi		•		-	•	•		
		•				•	• •	life: Ta	•		-					•
		ool wea			~ ~									C		
MAC	H	ININC	F PRO	OCES	SSES											
Introd	lu	ction, (Classi	ficatio	n, woi	king	princip	ole, ope	rations	perfo	rmed:	Lathe,	Shaper	, Plann	er, Ho	rizont
						•	· ·	Cylindr		•			•			
of CN	JC	c machi	nes. S	uper f	inishin	g pro	cesses:	Lapping	, Honi	ng, Su	per fini	shing,	Polishir	ıg & Bu	ffing.	
MET	ΓΑ	L FO	RMI	NG P	ROCI	ESSE	2S									
Cold	а	nd hot	wor	king	of me	tals -	- Bulk	metal	formi	ng- S	heet m	etal fo	orming-	High	Energ	y Ra
								lectro h								
				-			-	NOLOC	-				0		0	
Need	l	and C	lassif	icatio	on of	Add	itive	Manufa	cturin	g Teo	chnolog	gy -]	Produc	t deve	lopme	nt ar
								hnolog		-					1	
Text E							0				11					
			nenta	l of N	Iodern	Mar	ufactu	ring : N	likell	P.Gro	over					
2.								logy (N				esses)	: S. Ch	and.		
		ice Bo									8-100					
1.				aiian	Steve	n R S	Schmid	l, "Man	ufactu	ring P	rocess	es for	Engine	ering N	lateria	15"
1.		4/e, Pe	_	-				, iviali	uruetu	11115 1	100055		Engine		iateric	
2.		-			-			n Techn	ology"	16th	Edition	Khan	na Duhl	ishers 7	2001	
2. 3.					-			ald A. K								, 5th
5.		E. Paul Edition,	-						011501,	wrater	11115 1110	111000	55C5 III .	ivialiula	ciuiiii	5, Jul
4.								(Volum	e 1)	Found	ry Ford	ing and	4 W/614;	ng Ath	Edition	n Tata
7.		r. n. Ka McGrav			-				c 1) –	i Junu	y, 1012	,ing all		11g, 4 11	Lanio	1, 1 ata
5.								olo. Iodern N	lanufa	eturine	n Mater	als Pr	DCESSES	and Sve	stems	
5.		Publish					10 01 10		iununa	- rui 111 <u>8</u>	, 1010101	ais, 110		and by:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
						512.										

Alternative NPTEL/SWAYAM Course

S.No NPTEL /SWAYAM Course Name

Host Institution Duration

1	Manufacturing Process I & II	0.		Shantanu charya	II	T Kanpur	12 weeks	
Course	Designers							
S.No	Faculty Name	Designation	n Department/Nat			Email id		
		2.0.9.000		of the College				
1	R.Jayaraman	Associate Professor		MECH/VMKVEC		jayaramanr@vmkvec.ed		
2	C.Thangavel	Associate Prof	essor	MECH/VMKVEC	2	thangavel@v	mkvec.edu.in	
3	M.Saravanan			MECH/AVIT		<u>saravanan@a</u>	vit.ac.in	

CORE COURSES CREDITS (48-54)

B. PROFESSIONAL

3692	1C01					PHY					Categor	y L	Т	Р	Credit
				(THE	ORY A	AND P	RACT	ICALS	5)		CC	3	0	4	5
human tissues	urse ain body; o	describe ans of t	e the v	arious	homeo	static r	nechan	isms aı	nd their	and histo imbalanc eciate coo	es of va	rious sy	stems; id	entify th	e various
PRER	EQUIS	ITE - N	JIL												
COUR	SE OB	JECTI	VES												
1	To det	fine the	signifi	cance of	of anato	omy an	d physi	ology							
2	To de	velop a	n under	standir	ıg abou	it the st	ructure	and fu	nctions of	of various	organs	of the h	uman boo	ly	
3	To des	scribe tl	he vario	ous org	ans of	the hun	nan bo	dy;							
4	To der	monstra	te the v	various	homeo	static 1	nechar	isms ar	nd their i	imbalance	es of vari	ous syst	ems		
5	To ide	entify th	e vario	us tissu	ies and	organs	s of the	differe	nt syster	ns of the	human k	ody			
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the	course	, stude	nts will	be able	e to						
CO1. R	Recall th	e basics	s of ana	atomy a	ind phy	vsiolog	ý					Rer	nember		
CO2. E	Discuss 1	the imp	ortance	of stru	cture a	nd org	ans of l	numan l	body.			Une	lerstand		
CO3. S	ketch tł	ne signi	ficance	associ	ated wi	th diffe	erent or	gans.				Apj	oly		
СО4. Г	Distingu	ish one	organ s	system	from tl	ne othe	r and th	neir sigi	nificance	2.		Ana	alyse		
CO5. In	nvestiga	te the c	ompos	ition ar	nd func	tions of	f the or	gan sys	stems.			Cre	ate		
MAPP	ING W	TTH P	ROGR	AMM	E OUI	COM	ES AN	D PRC	OGRAM	IME SPE	CIFIC	OUTCO	MES	1	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	L	L	L	-	L	-	-	-	-	L	L	-	-
CO2	S	L	М	S	L	L	-	-	-	-	-	L	L	-	L
CO3	M	L	M	L	L	-	-	L	-	-	-	М	M	L	-
CO4	L	L	L	L	М	-	-	-	-	-	-	L	L	-	-
CO5	M	М	L	L	М	-	-	-	-	-	-	М	S	-	-
S- Stro	ng; M-N	Aedium	i; L-Lo	W											
SYLL	ABUS														

FOUNDATIONS OF PHYSIOLOGY, HOMEOSTASIS

Organization of the Human Body, Chemical Foundations – Atoms, Ions, Molecules, Bonds, Solutions, Classes of organic molecules; Physical Foundations – Morphology of the cell (plasma membrane, nucleus, cell organelles). Elementary tissues of the human body: epithelial, connective, Muscular and nervous tissues-their sub-types and characteristics, Cellular Transport – Intracellular movement, Intercellular movement, Movement of molecules across the plasma membrane.

NERVOUS SYSTEM

Anatomy and physiology of brain, blood-brain barrier, spinal cord, structure and types of the neuron, synapses neurotransmitters, organization of spinal and cranial nerves, central and peripheral nervous system, autonomic nervous system, receptors membrane potentials – graded potentials and action potentials, physiology of vision, audition, olfaction, taste and skin

GASTROINTESTINAL AND RENAL SYSTEM

Anatomy and physiology of the gastrointestinal tract (secretion, motility, digestion and absorption), structure and function of the liver, spleen, gallbladder, pancreas; the renal system structure – Anatomy and physiology kidney; structure of the nephron and network of blood capillaries, urinary tract, formation of urine, concentration of urine; regulation of acid base balance

CARDIOVASCULAR AND RESPIRATORY SYSTEM

Anatomy and physiology of the heart, lungs, cardiac cycle; circulation of blood, heart rate, blood pressure, ECG and heart sounds, systemic and portal circulation; vascular system – arteries, arterioles, capillaries, venules. Anatomy of the respiratory tract, mechanism and dynamics of respiration, lung volumes, transport of oxygen and carbon dioxide

ENDOCRINE AND REPRODUCTIVE SYSTEM

Anatomy and physiology of Pituitary, thyroid, parathyroid, adrenal and pancreatic hormones and disorders of these glands, endocrine control of growth and metabolism; pineal, thymus, testes, ovaries, structure and physiology of reproductive systems, sex hormones, physiology of fertilization, menstruation, menopause, spermatogenesis and oogenesis, pregnancy and

parturition and clinical disorders

PRACTICALS

- 1. Determination of bleeding time.
- 2. Determination of clotting time.
- 3. Determination of blood grouping.
- 4. Estimation of haemoglobin content.
- 5. Determination of RBC count.
- 6. Determination of WBC count.

- 7. Determination of pulse rate
- 8. Determination of heart rate.
- 9. Determination of blood pressure.
- 10. Erythrocyte sedimentation rate Westergrens method.

TEXT BOOKS

- Waugh, Anne and Allison Grant, "Ross and Wilson Anatomy and Physiology in Health and Illness", X Edition, Churchill – Livingstone / Elsevier), 2006.
- Ganong, W.F., "Review of Medical Physiology", XXIV Edition (A Lange Medical book series) McGraw Hill (International Ed.) 2014.
- 3. Khurana, Indu, "A Textbook of Medical Physiology" Elsevier, 2006.
- 4. Johnson, L.R., "Essential Medical Physiology", III Edition, Academic Press /Elsevier), 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr S.Anusuya	Associate Professor	Pharmaceutical Engineering	dr.s.anusuya@vmkvec.edu.in
2.	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.i n

36921C02	PHARMACEUTICAL CHEMISTRY	Category	L	Т	Р	Credit
00/21002		СС	3	0	0	3

PREAMBLE

The students will able to understand important physical and chemical properties, pharmaceutical uses, storage conditions and chemical incompatibility of various important medicinal compounds. The discipline also includes concepts and processes of drug discovery, delivery, biomedical Analysis, Pharmacology, Pharmacokinetics, and Pharmacodynamics.

PREREQUISITE -NIL

COURSE OBJECTIVES

- 2 To Describe the Drug-based cures and remedies for disease
- 3 To Demonstrate antibiotics as life-saving remedies
- 4 To Compare the uses of various radio-pharmaceutics.
- 5 To Outline Quality assurance of drug.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Explain the role of buffer and pH in different reaction and the function of antioxidant.UnderstandCO2. Summarize the function of antimicrobials and astringents, Sulphur and its compounds.Understand

 CO3. Illustrate the mechanism of action of antibiotics and their side effects and the functions
 Understand &

 of GI agents and topical agents.
 Apply

 CO4. Examine the use of radiopharmaceuticals in drug formulation and diagnostics.
 Analyse

Analyse

CO5. Appraise the quality of a pharmaceutical product.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	М	L	Μ	-	L	L	L	-	-	-	L	-	L	-
CO3	L	М	S	S	L	L	-	L	-	-	-	-	-	L	-
CO4	-	-	-	-	-	L	-	L	-	-	-	-	-	-	M
CO5	-	-	-	-	L	S	L	S	-	-	-	-	-	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

ACIDS, BASES, BUFFERS AND ANTIOXIDANTS

Acids, Bases, Buffers - Boric acid, Hydrochloric acid, Strong Ammonium hydroxide, Sodium hydroxide and official buffers. Antioxidants- Hypophosphorous acid, Sulphur dioxide, Sodium bisulphite, Sodium metabisulphite, Sodium thiosulphate, Nitrogen and Sodium nitrite.

ANTIMICROBIALS, SULPHUR AND ITS COMPOUNDS, ASTRINGENTS

Antimicrobials - Hydrogen peroxide, Potassium permanganate, Chlorinated lime, Iodine, Solutions of Iodine,

Povidone - iodine, Boric acid, Borax, Silver nitrate, Mild silver protein, Mercury yellow, Mercuric oxide, Ammoniated mercury. Sulphur and its compounds- Sublimed sulphur, Precipitated sulphur, Selenium sulphide. Astringents- Alum and Zinc Sulphate.

ANTIBIOTICS , GASTRO INTENSTINAL AGENTS AND TOPICAL AGENTS

Antibiotics: Benzyl penicillin, Phenoxy methyl penicillin, Ampicillin, Gentamicin, Neomycin, Erythromycin, Tetracycline, Cephalexin, Chloramphenicol. Gastrointestinal agents: Acidifying agents - Dilute hydrochloric acid, Antacid - Aluminium phosphate. Topical agents- calamine.

RADIO PHARMACEUTICALS AND CONTRAST MEDIA

Radio activity-Alpha; Beta and Gamma Radiations, Biological effects of radiations, Measurement of radio activity, G.M. Counter, Radio isotopes-their uses, Storage and precautions with special reference to the official preparations. Radio opaque contrast media-Barium sulfate.

QUALITY CONTROL OF DRUGS AND PHARMACEUTICALS

Importance of quality control, significant errors, methods used for quality control, sources of impurities in pharmaceuticals. Limit tests for Arsenic, Chloride, Sulfate, Iron and Heavy metals.

TEXT BOOKS

- 1. Bentley and Driver's Textbook of Pharmaceutical Chemistry.
- 2. Inorganic Medicinal and Pharmaceutical Chemistry by J.H. Block, E.B. Roche, T.O.Soine and C.O.Wilson.
- 3. Roger's Inorganic Pharmaceutical Chemistry by T.O.Soine and C.O.Wilson.
- 4. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake Vol. I.
- 5. Pharmaceutical Chemistry by M.L. Schroff.

REFERENCES

- 1. Mohammed Ali, Pharmaceutical Chemistry-I (Inorganic), 1stedition, CBS.
- 2. Daniel Lednicer, The Organic Chemistry of Drug Synthesis, Hardcover, Good 2007, Wiley-Interscience.
- 3. Indian Pharmacopoeia 1996.

S.	Name of the	Designation	Department	Mail ID
No.	Faculty			
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical	jaishri@vmkvec.edu.in
1		Assistant Trocssor	Engineering	

24	(0)1(0)	1	PHAF	RMAG	CEUT	TICA	L CH	EMIS	TRY	Ca	tegory	L	Т	P	Credit
30	5921C8	1				LAB					CC	0	0	4	2
PR	EAMB	LE													
The	subjec	t dea	ls with	n diff	erent	analy	vtical	metho	ods of	orgar	nic and	inorg	anic c	ompo	ounds in
pha	rmaceu	tical in	ndustri	es.											
PR	ERQUI	SITE	- NIL												
CO	URSE	OBJE	CTIV	ES											
1	To out	line th	ne pres	ence a	and lir	nitatio	ons of	impu	rities i	n the p	harmac	eutica	l substa	ances	
2	To exp	olain c	lifferen	t iden	tificat	tion te	ests fo	or vario	ous che	emical	compo	unds			
3	To Im	pleme	nt diffe	erent p	prepar	ation	and st	tandar	dizatio	on met	nods				
4	To uno	lersta	nd the	princi	ples o	f diffe	erent a	assays	and to	incul	cate the	abilit	y to app	oly th	is for
	To understand the principles of different assays and to inculcate the ability to apply this for quantitative analysis of various drugs														
5	To un	dersta	nd the	princ	iples (of cor	nducto	ometri	c and	potenti	ometri	c titrat	ions ar	nd fin	ding the
	To understand the principles of conductometric and potentiometric titrations and finding the normality of a solution using these electro analytical methods														
6	To out	line th	ne pres	ence a	and lir	nitatio	ons of	impu	rities i	n the p	harmac	eutica	l substa	ances	
CO	URSE	OUT	COME	S											
Afte	er comp	letion	of cou	irse st	udent	is abl	e to k	now							
CO	l. Abili	ty to t	est diff	erent	impu	rities	and th	eir lin	nits in	drugs				Ren	ember
CO	2. Unde	rstanc	ling the	e prino	ciples	in dif	ferent	t ident	ificatio	on tests	5			Und	erstand
CO	3. Prepa	uring a	ind star	ndardi	zing	liffere	ent rea	agents						App	ly
CO	4. Und	erstan	ding th	e prin	ciples	s of va	arious	titrati	ons an	d appl	ying the	em for		App	
	5. Estin			-	-									Ana	
												SPEC	IFIC C		OMES
COS		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	
CO1		-	L	L	-	_	-	-	-	-	_	-	-	-	-
CO2	М	Μ	L	Μ	-	L	L	L	-	-	-	L	-	L	-
CO3		S	S	S	L	L	-	L	-	-	-	-	-	L	-
CO4		-	-	-	-	L	-	L	-	-	-	-	-	-	-
CO5		-	-	-	L	S	L	S	-	-	-	-	-	-	-
S- S	strong;	M-Me	dıum;	L-Lov	N										

SYLLABUS

1. Limit tests for

Chlorides and Sulphates, Iron, Heavy metals, Lead, Arsenic

2. Identification test

Magnesium hydroxide, Ferrous sulphate, Sodium bicarbonate, Calcium gluconate, Copper sulphate

3. Preparation and standardization of

Sodium hydroxide, Sulphuric acid, Sodium thiosulphate, Potassium permanganate, ceramic ammonium sulphate

4.Assay for the following compounds along with standardization of titrants

a)Ammonium chloride by Acid base titration

- b) Ferrous sulphate by Cerimetry
- c) Copper sulphate by Iodometry
- d) Calcium gluconate by Complexometry
- e) Hydrogen peroxide by Permanganomaetry
- f) Sodium benzoate by non- aqueous titration
- g) Sodium Chloride by Precipitation titration

5.Test for purity

- a) Swelling power of bentonite
- b) Neutralizing capacity of aluminium hydroxide gel
- c) Determination of potassium iodate and iodine in potassium iodide

6.Determination of Normality by electro-analytical methods

- a) Conductometric titration of strong acid against strong base.
- b) Conductometric titration of strong acid and weak acid against strong base.
- c) Potentiometric titration of strong acid against strong base.

7. Preparation of inorganic pharmaceuticals

Boric acid, Potash alum, Ferrous sulphate

REFERENCE BOOKS:

 A.H.Bockett and J.B.Stenlake's Practical Pharmaceutical chemistry Vol I and II. Stahlone Press of University of London, 4th Edition.

- 2. A.I.Vogel, Text Book of Quantitative Inorganic analysis.
- 3. P.Gundu Rao, Inorganic Pharmaceutical chemistry, 3rd Edition
- 4. M.L.Schroff, Inorganic Pharmaceutical chemistry
- 5. Bentley and Drivers, Text Book of Pharmaceutical chemistry
- 6. Anand and Chatwal, Inorganic Pharmaceutical chemistry

coen				
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in
2.	Dr.P.David	Assistant professor	Pharmaceutical	davidannaraj@vmkvec.edu.i
2.	Annaraj	Assistant professor	Engineering	n

36921C03	PHYSICAL PHARMACEUTICS	Category	L	Т	Р	Credit
50721005	(THEORY AND PRACTICALS)	CC	3	0	2	4

PREAMBLE

The course deals with the various physical, physicochemical properties and principle involved in dosage form formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

PRERQUISITE - NIL

COURSE OBJECTIVES

1	To discuss various physicochemical properties of drug molecules in the designing the dosage forms.
2	To perform the formulation of emulsions and suspensions, access the physical stability of the product.
3	To execute the principles of chemical kinetics & to use them for stability testing and determination of expiry date of formulations.
4	To compare the rheology of Newtonian and non-Newtonian fluids and to determine the various possible interaction of protein with drugs.
5	To outline the various laws of thermodynamics associated with formulation of dosage forms.
CO	URSE OUTCOMES
Afte	er completion of course, student is able to know

CO1. Describe the properties of drug molecules in the dosage form design Understand

Apply

Apply

- CO2. Demonstrate the formulation of emulsions and suspensions.
- CO3. Illustrate the stability of various formulations.

CO4. Differentiate the rheology of various fluids used in development of various formulations. Analyse

CO5. Analyze the effects of different properties of molecules in drug formulation and action Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

									-					-	
COS	РО	PO	РО	РО	PO	PO	PO	PO	PO9	PO1	PO11	PO1	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8		0		2			
CO1	М	L	-	-	-	-	-	-	-	L	L	-	L	L	-
CO2	М	-	М	М	-	-	-	-	М	М	L	-	М	М	-
CO3	М	-	Μ	Μ	-	-	-	-	М	М	L	-	М	М	-
CO4	М	L	-	L	-	-	-	-	L	L	-	-	М	-	-
CO5	L	-	L	-	-	-	-	-	-	-	-	L	-	-	М
S- Strong; M-Medium; L-Low															
SYLL	ABUS	5													

Physical properties of drug molecules & Colloids

Physical properties- Bulk characteristic-crystallinity and polymorphism, Hygroscopicity, flow property, compressibility, excipient compatibility. Solubility analysis—Ionisation constant, Solubilisation, Partition coefficient, thermal effect, Dissolution, common ion effect. Stability analysis. Introduction, types of colloidal systems, optical properties of colloid, kinetic properties of colloids, electric properties of colloids, solubilization.

Coarse Dispersions Surface & Interfacial Phenomenon

Suspensions, interfacial properties of suspended particles. Formulation of suspensions, emulsions and theories of emulsification. Physical stability of emulsions, preservation of emulsions, rheologic properties of emulsions. Liquid interfaces, adsorption at liquid interfaces, adsorption at solid interfaces, Electrical properties of interfaces, surface tension and its determination, classification of surfactants.

Kinetics

Rates and orders of reaction, influence of temperature and other factors on rates, decomposition and stabilization of medical agents, kinetics in the solid state, accelerated stability analysis, kinetics of drug transport in vivo.

Diffusion, Dissolution, Complexation & Protein Binding

Definitions, Steady state diffusion, Procedures and apparatus for diffusion, dissolution and drug release, factors affecting dissolution,Metal-complexes, organic molecular complexes, inclusion compounds, methods of analysis of complexes, crystalline structures of complexes and thermodynamic basis of stability constants, complexation, protein binding and drug action.

Micromeritics & Rheology

Particle size and size distribution, methods of determining particle size, particle shape and surface area, methods of determining surface area, pore size, derived properties of powders. Viscosity, Newtonian and non-Newtonian fluids, thixotropy and its application, Rheology of disperse system, viscometers.

PRACTICALS

- 1. Determination of latent heat, vapor pressure, critical point.
- 2. Studies on polymorphs, their identification and properties.
- 3. Determination of particle size, particle size distribution and surface area using various methods of particle size analysis.
- 4. Determination of derived properties of powders like density, porosity, compressibility, angle of repose, etc.
- 5. Determination of surface/interfacial tension, HLB value and critical micellar concentration (CMC) of surfactants.

- 6. Study of rheological properties of various types of systems using different viscometers.
- 7. Study of different types of colloids and their properties.
- 8. Preparation of various types of suspensions and determination of their sedimentation parameters.
- 9. Preparation and stability studies of emulsions.
- 10. Studies on different types of complexes and determination of their stability constants.
- 11. Determination of half-life, rate constant and order of reaction.
- 12. Preparation of pharmaceutical buffers and determination of buffer capacity.
- 13. Experiments involving tonicity adjustments.

TEXT BOOKS

- 1. Manavalan, R. and Ramasamy. C. "Physical Pharmaceutics" 2nd Ed., Vignesh Publishers, 2015.
- 2. C.V.S. Subrahmanyam, Text book of physical pharmaceutics, 3rdEdn., Vallabh prakashan, 2015.
- 3. Hadkar. U. B., Physical Pharmacy, Nirali Prakashan; 12th edition, 2017.

REFERENCES

- Alfred N. Martin, Patrick J. Sinko, Martin's Physical Pharmacy and PharmaceuticalSciences: Physical Chemical and Biopharmaceutical Principles in the PharmaceuticalSciences, sixth edition, Lippincott Williams & Wilkins, 2011.
- David B. Troy, Paul Beringer, Remington: The science and practice of pharmacy, 21stEdition, Lippincott Williams and Wilkins, 2006
- **3.** Humphrey Moynihan and Abinacrean "Physicochemical Basis of Pharmaceuticals" OxfordUniversity Press, 2009.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.R.Durgasree	Assistant Professor	Pharmaceutical engineering	durgashree@vmkvec.edu.i n
2	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in

369	021C04		UN	IT OP				HARN	ЛА	C	ategory	L	Т	Р	Cı	edit				
					IND	USTR	IES				CC	3	0	0		3				
PREA	AMBLI	E:								I					-					
	-		-		-					-	cle size	-			-					
formu	lation.	Unders	standin	g the	mecha	nism	of bas	sic pha	armace	eutical	operation	ns incl	ludir	ng si	ize red	uction				
mixin	g, sepa	ration p	rocesse	es, filtr	ation,	centrif	ugatio	n and	crystal	llizatior	n and eva	aporati	on.							
PREI	REQUI	SITE -	NIL																	
COU	RSE O	BJECT	TIVES																	
1	To lis	t out th	e const	ruction	mater	rials of	f pharr	naceut	ical pl	ant.										
2	To de	escribe	the Ch	aracter	izatio	n and	prope	erties o	f parti	culate s	solids and	d scree	ning	, equ	ipment					
3	To de	monstra	ate the	crystal	lizatio	n oper	ations	and it	s mecł	nanism.										
4	To de	scribe t	the theo	ory of f	iltratio	n and	centri	fugatio	on proc	cesses.										
5	To de	scribe t	he con	cept of	mixin	g of p	owder	ed mat	erials	and its	mechani	sm.								
COU	RSE O	UTCO	MES																	
On th	e succe	ssful co	mpleti	on of tl	ne cou	rse, sti	udents	will b	e able	to										
CO1.]	Recogn	ize the	constru	ction r	nateria	ls for	pharm	aceuti	cal pla	int and	its prope	rties.			Remem	ıber				
CO2.]	Discuss	the pro	operties	and cl	naracte	erizatio	on of p	articul	ate so	lids.				1	Underst	and				
CO3.	Discus	s the Cł	naracter	rs of cr	ystals	and m	echan	ism of	nuclea	ation.				1	Underst	and				
CO4.	Illustra	te the tl	neories	of filtr	ation a	and fac	ctors a	ffectin	g it.						Appl	у				
CO5.	Catego	rize the	proces	s of ce	ntrifug	gation	and ce	entrifu	gal filt	ers in ii	ndustrial	proces	ss.		Analy	ze				
MAP	PING	WITH	PROG	RAM	ME O		DMES	AND	PRO	GRAM	ME SPI	- ECIFI	C O	UTC	COMES	5				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		501						
CO1	L	-	-	-	-	-	-	-	-	-	-	-		-	L					
CO2	M	M	M	-	-	L	М	-	-	-	-	L		-						
CO3	S	S	S	S	-	-	-	-	-	-	-	L								
	М	М	L	М	-	-	-	-	М	-	-	-		М	M L -					
CO4		M - M - M S M -																		

SIZE REDUCTION & SEPARATION

Properties and characterization of particulate solids —Analysis and technical methods for size determination of powders - Size reduction equipment – Principles, construction, working, uses, merits and demerits of - hammer mill, ball mill, fluid energy mill, edge runner mill, end runner mill. Separation equipments - uses, merits and demerits of sieve shaker, cyclone separator, air separator, bag filter, elutriation tank.

CRYSTALLIZATION

Characters of crystals like purity, size, shape, geometry, forms, size and its factors - Solubility curves- Super saturation theory and its limitations- nucleation mechanism and crystal growth. Crystallizers- Principles, construction, working, uses, merits and demerits of agitated batch crystallizer, swenson walker crystallizer, krystal crystallizer, vacuum crystallizer. Caking of crystals and its prevention.

FILTRATION AND CENTRIFUGATION

Theory of filtration, filter aids, filter media- Factors affecting filtration- Principles, construction, working, uses, merits and demerits of plate & frame filter, filter leaf, rotary drum filter, meta filter, cartridge filter, membrane filters and seidtz filter. Principles of centrifugation- Uses, merits and demerits of perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

MIXING AND DISTILLATION

Mixing of powdered materials – Mechanism of random mixing and interactive mixing. Sampling techniques, size and mixing indices. Factors affecting the mixing process. Principles, construction, working, uses, merits and demerits of double cone blender, twin shell blender, ribbon blender, sigma blade mixer, planetary mixers, propellers, turbines, paddles &silverson emulsifier. Simple distillation, preparation of purified water and water for injection BP by distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation

EVAPORATION AND DRYING

Theory of evaporation, Factors influencing evaporation. Principles, construction, working, uses, merits and demerits of - Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator. Theory of drying, mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. Principles, construction, working, uses, merits and demerits of - Tray dryer, drum dryer, spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer. **TEXT BOOKS**

1. McCabe WL, Smith J.C and Harriott "Unit operations of Chemical Engineering" McGraw Hill International Book Co. London 2004.

- 2. GirishK.Jani, "Pharmaceutical Engineering I, Unit Operation I" B.S.ShahPrakashan, India, 2006.
- 3. Cooper and Gunn's Tutorial Pharmacy, Edited by SJ Carter, CBS Publishers, New Delhi, 2005.

REFERENCES:

1. Badger, W.L and Banchero, J.T "Introduction to Chemical Engineering" Tata McGrawHill,2002

2. Coulson, J.M. and Richardson, J.F." Chemical Engineering" 3rd Edition, Butterworth Heinemann Publication, 2001.

3. K. Sambamurthy, Pharmaceutical Engineering New Age International (P) Ltd., Publishers, New Delhi, 1998.

	JRSE DESIGNERS						
S.No	Name of the Faculty	Designation	Department	Mail ID			
1	Ma D Durgo graa	Assistant Professor	Pharmaceutic	durgashras@umlayas adu in			
1.	Ms.R.Durgasree	Assistant Professor	al engineering	durgashree@vmkvec.edu.in			
2	Mr.A.Arunagiri	Assistant Professor Pharmaceutic arunagiri@ymk	amuna ciri Qumlayaa adu in				
2.	MI.A.Arunagiri	Assistant Floresson	al engineering	arunagiri@vmkvec.edu.in			

NEW	FLUID MECHANICS AND TRANSFER	Category	L	Т	Р	Credit
	PROCESSES		3	1	0	4

PREAMBLE

This is an introductory course in different mode of heat and mass transfer and also fluid mechanics. The subject has a wide scope and is of prime importance in almost all fields of engineering and biological systems. The course emphasizes the underlying concepts of the conduction and convection modes of heat transfer and enumerates the laws and governing equations relating to the rates of heat transfer, based on derivation from fundamentals. There is a well balanced coverage of physical concepts, mathematical operations along with examples and exercise problems of practical importance. After completion of the course, the students will have a strong foundation on heat and mass transfer.

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To understand the basic properties of fluids and fluid flow measurements
---	--

- 2 To understand stress strain relationship and bernoulli's equation
- 3 To understand different modes of heat transfer operations
- 4 To analyze the performance of heat exchanger and outline the applications
- 5 To understand the basics of mass transfer principles

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the basic properties of fluids and fluid flow measurements	Understand
CO2.Understand stress – strain relationship and bernoulli's equation	Understand
CO3. Ability to differentiate different modes of heat transfer operations	Apply

CO4. Ability to apply the basics of mass transfer principles

CO5. Analyse the performance of heat exchanger and outline the applications

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Apply

Analyze

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	L	-	-	-	-	-	-	-	-	-	L	-	-
CO2	М	-	М	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	-	S	S	-	-	L	-	-	-	-	L		-	-
CO4	L	L	М	L	-	-	-	-	-	-	-	-	-	L	-
CO5	М	М	М	L	-	-	-	-	-	-	-	-	L	-	-
S- Str	ong; M	-Medi	um; L-	Low											
SYLL	SYLLABUS														

FLUID MECHANICS

Fluid definition- compressible, in compressible fluids, Newtonian and Non-newtonian fluids, Fluid Dynamics – equation of continuity – Bernoulli's equation – press loss in straight pipes – in fittings – expansion and contraction losses (applied to Newtonian Fluids only) Fluid flow measurement, Orifice, venture &Rotameter for Newtonian fluids.

FLUID FLOW

Laminar and turbulent flow – Basic equations of fluid flow, – Shear – Stress relationships, Operational principles of different types of pumps, compressors and valves, friction factor and its calculation in 25 laminar and turbulent flow

HEAT TRANSFER – CONDUCTION & CONVECTION

Conduction – Fourier's fundamental equation – thermal conductivity and thermalresistance - linear heat flow – heat transfer through homogenous wall, composite walls, radial heat flow through cylinders and sphere – extended surfaces (fins) — solving problems in heat transferby conduction.

Newton Rikhman's law – film coefficient of heat transfer - convection – free and forced convectiondimensional analysis and its application – factors affecting the heat transfer coefficient in free and forced convection heat transfer – overall heat transfer coefficient - solving problems in heattransfer by convection.

RADIATION & HEAT EXCHANGERS

Heat exchangers – parallel, counter and cross flow – Logarithmic Mean Temperature Difference – overall coefficient of heat transfer – tube in tube heat exchanger, shell and tube heat exchanger, double pipe heat exchanger – applications of heat exchangers.

Radiation heat transfer – concept of black and grey body - monochromatic total emissive power – Kirchoff's law – Planck's law - Stefan-Boltzman's law – heat exchange through non-absorbingmedia - solving problems in heat transfer by radiation.

MASS TRANSFER

Fick's law of diffusion – Analogy with momentum and heat transfer, diffusivities of gases and liquids, diffusion in binary mixtures, Interphase mass transfer – Film theory of mass transfer, determination of volumetric mass transfer coefficient – Overview of separation operations with examples, ideal stage concept – Mass transfer equipment – Distillation, liquid extraction, gas absorption, drying.

TEXT BOOKS

- 1. Bellaney, P.L. "Thermal Engineering". Khanna Publishers, New Delhi, 2001
- 1. Geankoplis C.J. "Transport Process and Unit Operations". Prentice-Hall of India PrivateLimited, New Delhi, 1999
- 2. Frank M. White, Fluid Mechanics, 4th edition, McGraw-Hill Publishing, 2011

REFERENCES

- 1. Jacob and Hawkins. "Elements of Heat Transfer". John Willey and Sons Inc. New York, 1983.
- 2. EcKert, E.R.G. "Heat and Mass Transfer". McGraw Hill Book Co., New York, 1981.
- 3. Holman, E.P. "Heat Transfer". McGraw-Hill Publishing Co. New Delhi, 2001.

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	1.Mr.A.ArunagiriAssistant ProfessorPharmace		Pharmaceutical	arunagiri@vmkvec.edu.in
	g		engineering	<u></u>
2	Ms. R. Durgasree	Assistant Professor	Pharmaceutical	durgashree@vmkvec.edu.in
2.	The first of the f	1010500	engineering	

			0	CHEM	IICAI	LENC	GINEE	RING		Categ	gory	L	Т	P	Cr	edit
				TH	ERM	ODY	NAMI	CS		C	<u> </u>	3	0	0		3
PREA	MBLE	C														
The cou	arse in	trodu	ces the	e basi	e prino	ciples	and cal	culation	n techni	ques in	the fie	ld of ch	emica	al en	gineer	ing. It
provide					-			-	-							
which 1	-						-		•						-	ides a
basis fo				-	rs to r	ealize	the che	mical e	ngineer	ring asp	ects of s	subsequ	ent n	odu	les.	
PRER	EQUI	SITE	- NIL													
COUR	SE OI	BJEC	TIVE	S												
1 T	o Sum	mariz	e first	law c	of them	nodyr	amics	to ident	ify, for	nulate a	and solv	ve engir	leerin	g pro	oblems	
2 T	o dem	onstra	te the	pract	ical in	plicat	ions of	thermo	dynami	c law ii	n engine	ering d	esign			
3 T	o imp	lemen	t powe	er gen	eration	n and i	refriger	ation pi	ocesses	5.						
4 T	o outli	ine the	e parti	al mo	ar pro	perty	and des	cribe it	s role ir	n detern	nining tl	he prop	erties	of n	nixture	s.
			-						al equili			1 1				
COUR	SE O	UTCC	OMES	5												
On the	succes	sful c	omple	etion o	f the c	ourse	, studer	ts will	be able	to						
CO1. 1	Explai	n abo	out co	rrelati	on of	matl	nematic	s, scie	nce an	d engir	neering		Un	ders	tand	
princip	les for	probl	em so	lving	in pro	cess in	dustrie	s.								
CO2. [)emon	strate	the fu	ındam	ental	concep	ots of the	nermod	ynamic	s to ove	ercome			App	ly	
existing																
CO3. D	oifferen	ntiate	the mi	ixture	based	on me	olar pro	perty.						App	ly	
CO4. A	bility	to app	oly law	vs of t	hermo	dynan	nics to	biologie	cal proc	esses			A	naly	/ze	
CO5. A	pprais	se the	equili	brium	of a s	ystem							A	naly	/ze	
MAPP	ING V	VITH	PRO	GRA	MME	OUT	COMI	ES ANI) PRO	GRAM	ME SP	L ECIFI	C OU	TCO	OME	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	S	М	-	L	-	-	-	-	-	-	-	-	М		-	-
CO2	M	М	-	-	-	-	-	-	-	-	-	-	-		-	-
CO3	S	S	-	M	L	L	-	-	-	-	-	-	-		-	-
CO4	S	S	S	L		-	-	-	-	-	-	-	-		-	-
CO5	S	М	-	M	L	-	-	-	-	-	-	L	-		-	-
S- Strop	ng; M-	Medi	um; L	-Low												
SYLLA	BUS															

FUNDAMENTAL CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Scope of thermodynamics – Basic concepts – Thermodynamic system – State and equilibrium – Process and cycles – Temperature and zeroth law of thermodynamics –Properties of pure substances – First law of thermodynamics – First law analysis of closed systems and control volumes and its application.

ENTROPY AND THE SECOND LAW OF THERMODYNAMICS

The Clausius inequality – Entropy – Causes of entropy change – Entropy change of Pure substances – Thermal energy reservoirs – Heat engines – Perpetual motion machines –Reversible and irreversible processes – The Carnot cycle and principles – The Carnot Heat engine – The second law efficiency – Second law analysis of open and closed systems.

REFRIGERATION, VAPOR AND COMBINED POWER CYCLES

Refrigeration and liquefaction process, Thermodynamic Potentials, thermodynamic correlation, Maxwell relations, criteria for Equilibria and stability, Clapeyron equation.

MOLAR PROPERTIES OF SOLUTIONS AND MIXTURES

Partial molar properties, ideal and non-ideal solutions, standard states definition and choice, Gibbs-Duhem equation, activity and property change of mixing, excess properties of mixtures.

PHASE EQUILIBRIA AND CHEMICAL REACTION EQUILIBRIA

Activity coefficient-composition models, thermodynamic consistency of phase equilibria, Chemical Reaction equilibria, Extent of reaction, equilibrium constant and standard free energy change.

TEXT BOOKS:

1. Smith, J.M. and Van Ness, "Introduction to Engineering Thermodynamics", 5thEdition, McGraw Hill, 1996.

2. Narayanan, K.V., "A Text Book of Chemical Engineering Thermodynamics", Prentice Hall of India, 2002.

REFERENCES:

Stanley I. Sandler, "Chemical, Biochemical and Engineering Thermodynamics", John-Wiley, 4thedition, 2006

- 2. Hougen and Watson, "Chemical Process Principles" Vol. II, CBS Publishers, 2002.
- 3. Kyle, "Chemical and Process Thermodynamics", 2nd Edition, Prentice Hall of India, 2000.
- 4. Rao, Y.V.C., "Chemical Engineering Thermodynamics", Universities Press, 1997.

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Ms.R.Durgasree	Assistant Professor	Pharmaceutical engineering	durgashree@vmkvec.edu.in
2.	Mr.A.Arunagiri	Assistant Professor	Pharmaceutical engineering	arunagiri@vmkvec.edu.in

CHEMICAL ENGINEERING	CATEGORY	L	Т	Р	Credit
THERMODYNAMICS LAB	СС	0	0	4	2

PREAMBLE

Chemical engineering laboratory includes pilot and lab scale experimental set-up on Fluid mechanics, Unit Operations, Mass Transfer and Heat Transfer. It helps students for the development of their skills in understanding and operating basic and more complex industrial systems

PRERQUISITE - NIL

COURSE OBJECTIVES

1 To learn chemical engineering principles and their practical applications in the areas of mass transfer, reaction engineering and particle mechanics.

2 To analyze and design chemical processes that span molecular to macroscopic scales.

3 To determine different coefficients and factors involved in fluid flow

4 To construct the governing equations for designing and analyzing heat transfer equipment

COURSE OUTCOMES

After completion of course student is able to know

CO1. Calibrate flow meters

CO2. Design and operate filtration equipments

CO3. Characterize particles and perform size analysisAnalyzeCO4. Evaluate the constants for crushingAnalyzeCO5. Analyze Solid liquid separation in industrial equipment based onAnalyzeCO6. Determine minimum fluidization velocity in a fluidized bedAnalyze

Understand

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	L	-	-	-	-	-	-	-	S	L	L
CO2	М	М	М	М	L	-	-	-	-	-	-	-	S	L	L
CO3	М	М	S	М	М	-	-	-	-	-	-	-	S	L	L
CO4	М	М	М	S	L	-	-	-	-	-	-	-	S	L	L
CO5	М	М	М	S	М	-	-	-	-	-	-	-	S	L	L
CO6	М	М	М	М	L	-	-	-	-	-	-	-	S	L	L
S- Strong; M-Medium; L-Low															

SYLLABUS

- 1. Flow measurement a) Orifice meter b) Venturimeter, c) Rotameter
- 2. Filtration.
- 3. Heat exchangers.
- 4. Simple and Steam distillation.
- 5. Pressure drop in pipes and packed columns.
- 6. Distillation in packed column.
- 7. Liquid liquid equilibria in extraction.
- 8. Solid liquid extraction
- 9. Adsorption equilibrium.
- 10. Determination of Screen effectiveness.
- 11. Sedimentation.
- 12. Mechanical equivalent of heat heat, work and the first law of thermodynamics.
- 13. Calorimetry heat capacities, heat of formation, Hess's law

TEXT BOOKS:

1. M. D. Koretsky, Engineering and Chemical Thermodynamics, John Wiley & Sons, 20132.

REFERENCE BOOKS:

- N. de Nevers, Physical and Chemical Equilibrium for Chemical Engineers, 2nd Ed., Wiley, 2012.
- J. W. Tester and M. Modell, Thermodynamics and Its Applications, 3rd Ed., Prentice Hall, 1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Ms.R.Durgasree	Assistant Professor	Pharmaceutical engineering	durgashree@vmkvec.edu.in			
2	Mr.A.Arunagiri	Assistant Professor	Pharmaceutical engineering	arunagiri@vmkvec.edu.in			

			PH	IARN	IACE	UTIC	CAL B	BIOPF	ROCE	SS	Catego	ory	LT	P	Credit
					EN	GIN	EERI	NG			CC		3 0	0	3
PRE	AMBI	Æ													
The s	subject	prov	ides k	nowle	edge in	nvolvi	ng ba	sic pri	inciple	of fer	mentatio	on proc	cess, bi	oreacto	r design,
scale	up and	d reco	ombina	ant pr	otein	produ	ction	along	with c	case stu	idies, to	help t	he stuc	lents ur	derstand
ferme	entation	n proc	esses	involv	ved in	Pharn	naceut	tical I1	ndustr	ies.					
PRE	REQU	ISIT	E - NI	L											
COU	RSE (OBJE	CTIV	ES											
1	To in	1part k	nowle	dge or	desig	n and o	operati	on of f	ermen	tation pi	rocesses	with all	its prei	equisite	s.
2	To in	npart k	nowle	dge or	desig	n and o	operati	on of f	ermen	tation pr	rocesses	with all	its prer	equisite	s.
3		^		-			^	biopro					•	•	
4					or in (-							
5		-							ent sen	aration	of biomo	lecules			
-	RSE C	-			iung o		epts m		in sep			fecules			
					<u> </u>	.1	1		•11.1	11					
				-						be able				1 1	
	-		ledge	on des	ign and	d opera	ation o	f ferme	entatio	n proces	sses with	all its		Unde	rstand
	uisites.		ladga	on dec	ion on	donard	ntion o	fform	ntatio	n nroad	ses with	all ita		Appl	
	quisites		leage	on ues	ign and	u opera			matio	ii proces	SCS WITH	anns			y
	Demo		e the s	structu	ired m	nodel o	of biop	oroces	s					Appl	y
CO4.	Organ	ize a	biorea	ictor i	n CST	R mo	del	-						Anal	
CO5.	Develo	op an u	underst	tanding	g of co	ncepts	in effi	icient s	eparati	ion of bi	iomolecı	ıles		Evalı	iate
МАР	PING	- 	тц	PD			F C	UTC	OME	<u>s an</u>	D P			 F SP	ECIFIC
	COM			1 1.	JUK		Ľ		UNIL	5 AI		NUUN			LUIII
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	-	-	L	L	-	L	L	L	L	-
	M	M	M	M	-	_	L	-	-	-	L	L		-	
CO2	S	S	S	S	L	L	-	L	L	L	L	L	L	L	-
CO2 CO3				1	М		-	_	_	-	_	_	1_	L	_
	M	L	L	M	IVI	- 1	-		- 1	-			-		-

METABOLIC STOICHIOMETRY AND ENERGETICS

Outline of Stoichiometry and energetics – Growth yields, Growth yields based on total energy and ATP generation – Conservation of mass principles - Carbon and oxygen balances, ATP generation during growth –

Relationship between substrate consumption, growth, respiration and noncellular products – Growth energetics of aerobic and anaerobic process

MICROBIAL GROWTH, KINETICS, MAINTENANCE AND PRODUCT FORMATION

Establishment of growth kinetic equations for batch, fed batch and continuous culture – Basic unstructured kinetic models of growth and product substrate utilization – Negative biokinetic rates – Multisubstrate kinetics – Mixed population kinetics - Kinetic models for microbial product formation - Kinetic model equations for inhibition by substrates and products.

STRUCTURED MODELS

Structured models for growth and product formation – Compartmental and metabolic models – Mechanistic models - Product formation kinetics – Gaden's and Deindoerfer's classifications – Chemically and genetically structured models – Kinetics models of heterogenous bioprocesses – Biofilm kinetics, Unstructured models of pellet growth – Considerations for the production of r-DNA products.

BIOREACTOR DESIGN & CONSTRUCTION

Basic design and construction of CSTR, bioreactor design of agitator/agitator motor, power consumption in aerated bioreactor, design of sparger, mixing time estimation, oxygen mass transfer capability in bioreactor, Removal of Heat in bioreactor, Main parameters to be monitored and controlled in fermentation processes.

DOWNSTREAM PROCESSING AND CASE STUDIES

Characteristics of biological materials: pre-treatment methods; Separation of cell mass: centrifugation, clarification and filtration; Different methods of cell disruption; Advantages; Disadvantages; Solid shear method and liquid shear method; Different concentration methods: evaporation, distillation, crystallization, evaporation, SCFE, solvent extraction, phase separation, drying-Case studies on Production of penicillin, recombinant Insulin. Case studies should deal with strain improvement, medium design, reactor design & process optimization

TEXT BOOKS

- Michael L. Shuler and Fikret Kargi, Bioprocess Engineering, Basic Concept, 2nd Edition, Prentice Hall PTR, 2002.
- 2. Pauline Doran, Bioprocess Engineering Calculation, Blackwell Scientific Publications

REFERENCES

- 1. Anton Moser, "Bioprocess Technology, Kinetics and Reactors", Springer Verlag.
- 2. James E. Bailey & David F. Ollis, Biochemical Engineering Fundamentals, McGraw Hill.
- 3. James M. Lee, Biochemical Engineering, PHI, USA.
- Atkinson, Handbook of Bioreactors, Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Decker Inc.

	 Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc. COURSE DESIGNERS 												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Mr. Arunagiri A	Assistant Professor	Pharmaceutical Engineering	arunagiri@vmkvec.edu.in									

			PE	IARM	IACE	UTIC	CAL B	IOPF	ROCE	SS	Catego	ory	L	T	Р	Credit
					ENGI	(NEE)	RING	LAB	5	-	CC		0	0	4	2
PREA	AMBI	ĿE														
The c	ourse	provi	des th	ne stud	lent v	vith th	ie bas	ics of	<i>biore</i>	actor t	echnolo	gy. It	speci	fica	lly fo	cuses on
biorea	actor]	perfor	mance	e and	oper	ation	and	on the	e kine	etics re	elated t	o micr	obial	gr	owth,	product
forma	tion, f	unctio	on of e	enzym	es and	l trans	fer ph	enom	ena.							
PREI	REQU	ISIT	E - N	IL												
COU	RSE (OBJE	CTIV	ES												
1	To Ir	nterpro	et the	conce	ot of d	lesign	and p	rocedu	ures to	o evalua	ate the p	erform	ance	oft	hebio	reactor
	in bi	oproce	ess.													
2	To P	erforn	n enzy	me in	nmobi	lizatic	n in b	oioproo	cess in	dustry						
3	To D	emon	strate	the m	edia o	ptimiz	zation	based	on th	e proce	ess.					
4	To C	Dutlin	e the	engin	eering	g prin	ciples	of b	ioproc	esses	includin	g char	acter	istic	es of	different
				-	-		-		-		nsiderat	-				
5				-						-	ss indus					
COU	RSE (-								1						
After	the su	ccessf	ful cor	npleti	on of	the co	urse. l	earnei	r will	be able	to					
				-							stand th	e diffe	rence		Unde	erstand
	en bio					-		r	8,							
		-				-		omme	rcial p	process	es using	biorea	ctors		Appl	у
CO3.	Demo	nstrat	e biop	process	ses in	a bact	erium	, fung	i or ye	east, an	d their e	nergy			Appl	у
metab	olism	and c	arbon	sourc	es thro	ough v	variou	s para	meter							
CO4.	Devel	op a I	Biopro	ocess d	esign	and o	perati	on and	l selec	t suital	ole the b	oioreact	or fo	r	Anal	yse
a proc			1	1 .		. 1 .	<u> </u>	1 '							<u>г</u> 1	
<u>CO5.</u> MAP	Evalu PING		nalyse ITH		1	MM		biopr DUTC			ND P	ROGR		ME	Evalı SP	Late PECIFIC
	COM															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	L	L	L	L	L	-	-	-	L	_	L	L	L		L	-
CO2 CO3	M	M S	M	M	- T	- т	-	- T	- т	- T	L	L			- т	-
CO3	S M	S L	S L	S M	L M	L -	-	L	L -	L	L	L		-+	L L	-
CO5	L	L	L	L	M	_	_	L	-	S	M	M	S	\neg	M	-
S- Str	ong; N	A-Mee	dium;	L-Lov					<u>ı</u>		1					_!
SYLI	LABU	S														
1. Enz	zyme l	cinetic	cs – D	etermi	natior	n of M	lichae	lis - M	lenten	param	eters					

- 2. Enzyme activity Effect of Temperature and Deactivation Kinetics
- 3. Enzyme activity Effect of pH
- 4. Enzyme inhibition kinetics
- 5. Enzyme immobilization Gel entrapment
- 6. Enzyme immobilization Cross-linking
- 7. Enzymatic conversion in Packed bed Column
- 8. Growth of Bacteria Estimation of Biomass, Calculation of Specific Growth Rate, Yield Coefficient
- 9. Optimization by Plackett Burman Design
- 10. Optimization by Response Surface Methodology

TEXT BOOKS

- Michael L. Shuler and FikretKargi, Bioprocess Engineering, Basic Concept, 2nd Edition, Prentice Hall PTR, 2002.
- 2. Pauline Doran, Bioprocess Engineering Calculation, Blackwell Scientific Publications

REFERENCES

- Bailey, J.E. and Ollis, D.F. "Biochemical Engineering Fundamentals" 2ndEdition, McGraw Hill, 1988.
- 2. Lee, James M. "Biochemical Engineering", PHI, U.S.A.Stanbury, P.F. etal.
- 3. Principles of Fermentation Technology", 2ndEdition, Butterworth Heinemann /Elsevier, 1995.
- 4. El-Mansi, E.M.T. etal., "Fermentation Microbiology and Biotechnology", II

Edition, CRC / Taylor & Francis, 2007.

 Peppler, H.J. and D. Perlman "Microbial Technology" (vol. I Microbial Processes and Vol. I Fermentation Technology)" 2nd Edition, Academic Press / Elsevier, 2004Inc.

COU	RSE DESIGNERS			
S.	Name of the	Designation	Department	Mail ID
No.	Faculty			
1.	Mr. A. Arunagiri	Assistant Professor	Pharmaceutical Engineering	arunagiri@vmkvec.edu.in

MEDICINAL CHEMISTRY	Category	L	Т	Р	Credit
	CC	3	0	0	3

PREAMBLE

The course highlights the importance of Medicinal Chemistry in all our lives and the fascination of working in a field that overlaps the disciples of chemistry, biology, biochemistry, pharmacology etc. It gives brief understanding about drug-receptor interactions, lead discovery, drug design and molecular mechanism by which drug act in the body. The course emphasizes on various drug targets in the body and drug development strategies with mechanism of action of antibacterial agents and concept of drug resistance.

PREREQUISITE – Fundamentals of Chemistry **COURSE OBJECTIVES** 1 To state the chemical basis of drug action including physicochemical and steric properties of drug. 2 To discuss the classification, chemical nomenclature, generic names and synthesis of various medicinal agents. To describe the structure activity relationship, biochemical/ molecular basis of mechanism of action and 3 uses of drug. 4 To implement corresponding knowledge for the development of biologically and clinically active drugs To compare the basic biological and pharmacological interactions by using both natural products and 5 total synthesis of bioactive molecules. **COURSE OUTCOMES** After the successful completion of the course, learner will be able to Remember CO1. Recall the importance of the physical properties of drugs with respect to the ionization, solubility and efficacy of drugs CO2. Discuss how drugs are developed and demonstrated the importance of chemistry in the Understand development and application of therapeutic drugs. CO3. Illustrate how changes in the chemical structure of drugs affect efficacy. Apply CO4. Practice a working knowledge of chemical structures and nomenclature Apply CO5. Develop the ability to suggest suitable techniques to synthesis different drug molecules. Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	-	-			-	-			-	-		-			
COS	PO1	PO2	PO	PO	PO	PO	PO	PO	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
CO1	L	L	L	L	-	-	-	-	-	L	-	-	L	-	-
CO2	М	М	Μ	Μ	-	-	-	L	-	-	-	-	L	-	-
CO3	S	S	S	S	-	-	-	-	-	-	-	-	L	-	-
CO4	04 ^M ^M ^M ^M ^M ^M ⁻ M														
CO5	CO5 L L L L S M M M -														
S- Str	S- Strong; M-Medium; L-Low														
SYL	LABUS														

PRINCIPLES OF MEDICINAL CHEMISTRY

Physicochemical properties in relation to biological action: Ionization, Drug distribution and pKa values and their relation to drug transport, hydrogen bonding, redox potential, surface activity and chelation. Steric properties of drugs: optical and geometrical isomerism. Functional group and their effects of on drug action: steric effect, concept of isosterism, bioisosterism, homologs and analogs.

DRUGS ACTING ON SYNAPTIC AND NEURO-EFFECTOR JUNCTION SITES

Classification, biochemical/molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects, physiochemical properties and synthesis of selected drugs belonging to the class of Cholinergics, Anticholinergics, Anticholinesterases, Adrenergics, ganglionic blockers and neuromuscular blockers.

DRUGS ACTING ON THE CENTRAL NERVOUS SYSTEM

Classification, molecular basis of mechanism of action, structure activity relationship and synthesis of Hypnotics and Sedatives, Opioid analgesics, Anticonvulsants and Psychopharmacological agents (neuroleptics, antidepressants, anxiolytics).

DRUGS ACTING ON CARDIOVASCULAR SYSTEM AND RENAL SYSTEM

Structural basis of mechanism of action, structure activity relationship including physiochemical properties, and synthesis of selected drugs belonging to the class of anti-anginal, vasodilators, calcium channel blockers, cardiac glycosides, anti-arrthymic agents, anti-hyperlipidemic agents, anti-platelet inhibitors, anti-coagulants and anti-thrombolytics ; diuretics and anti-diuretics

AUTOCOIDS

Synthetic procedures, uses, structure activity relationship including physicochemical properties of the following classes of drugs Antihistamines, Eicosanoids, Analgesic-antipyretics, Anti-inflammatory (non-steroidal) agents.

TEXT BOOKS:

- 1. AshutoshKar, Medicinal Chemistry, 6th Edition, New Age International (P) Ltd. Publishers, New Delhi 2015.
- 2. Graham L. Patrick, An introduction to Medicinal Chemistry, 6thEdition, Oxford University Press, 2017.
- 3. Ilango, K. and Valentina, P., "Text book of Medicinal Chemistry", Vol.1, 1stEdition, Keerthi Publishers, 2007.

REFERENCES:

- 1. Donald J. Abraham, Burger's Medicinal Chemistry and Drug Discovery, Vol V, 6th Edition, John Wiley and Sons, Inc.,2003.
- William O Foye, Thomas L Lemke, David A Williams Foye's Principles of Medicinal Chemistry, 7th Edition, Wolters Kluwer Health Adis (ESP) Publisher, 2012.

3. Indian Pharmacopoeia, Vol-I, 7th Edition, Published by Indian Pharmacopoeia Commission India, 2014.

COU	RSE DESIGNERS			
S.N 0.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.R.Jaisri	Assistant professor	Biotechnology	jaishri.vmkvec@vmrf.edu.in
2	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in

MEDICINAL CHEMISTRY LAB	Category	L	Τ	Р	Credit
	CC	0	0	4	2

PREAMBLE

The main aim of the medicinal chemistry is to provide advances in the method of drug designing and chemical synthesis. It is a stimulating field which has the scientific principles applied for the research of new pharmaceuticals. The course will distribute an effective knowledge about the synthesis of drug.

PREREQUISITE - NIL

COURSE OBJECTIVES

1 - L L - L -	1	T		• 4		1	1 4		1	1 1	• ,	C 1	1	•,		
To implement the chemical synthesis and structural activity relationship of different class of drugsTo outline the mechanism pathways of different class of medicinal compoundsTo construct the various methods for the drug analysisDURSE OUTCOMESter the successful completion of the course, learner will be able to01. Identify the synthetic outlines require for drugs synthesisRemember2. Interpret the preparation of pharmaceutical solutionsUnderstand03. Illustrate the effects in different methods of drug synthesisApplyAnalyseEvaluate the drug synthesized and their effectsAnalyseS Test the purity and qualiy of the synthesized drugEvaluateS POI PO PO3 PO4 PO5 PO6 PO7 P PO9 PO10 PO11 PO12 PS0 PS02 PS03I - L L - L L L L M2M M L M M L L M2 M M L M M L L M3 S S S L4 L L S M4 L L S M5 L L S M5 L L S M5 L L5 L L -		lor	ecog	nize tr	ie corre	elation	betwe	een m	edici	nal ch	lemistry	y of a di	rug and	its cur	e.	
drugsTo outline the mechanism pathways of different class of medicinal compoundsTo construct the various methods for the drug analysisDURSE OUTCOMESter the successful completion of the course, learner will be able to01. Identify the synthetic outlines require for drugs synthesisRemember02. Interpret the preparation of pharmaceutical solutionsUnderstand03. Illustrate the effects in different methods of drug synthesisApply04. Evaluate the drug synthesized and their effectsAnalyse05. Test the purity and qualiy of the synthesized drugEvaluateS POI PO PO3 PO4 PO5 PO6 PO7 P PO9 PO10 PO11 PO12 PS0 PS02 PS0312MM2L-2MM4LL-4LL-5LL-5LL-5LL-5LL-5LL-5LL-6LL-7N8N900090009009009009009009009009009<	2	To i	nterp	oret the	e chemi	stry of	f drug	s with	resp	ect to	their a	ctivity.				
To outline the mechanism pathways of different class of medicinal compoundsTo outline the mechanism pathways of different class of medicinal compoundsTo construct the various methods for the drug analysisOURSE OUTCOMESter the successful completion of the course, learner will be able to01. Identify the synthetic outlines require for drugs synthesisRemember02. Interpret the preparation of pharmaceutical solutionsUnderstand03. Illustrate the effects in different methods of drug synthesisApply04. Evaluate the drug synthesized and their effectsAnalyse05. Test the purity and qualiy of the synthesized drugEvaluateAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFICJTCOMES5P01P0P03P04P05P06P07PP09P010P011P012PS0PS02PS031LLL2MMLMLL3SSLL4LL5LL5LL <td>3</td> <td>To i</td> <td>mple</td> <td>ement t</td> <td>the che</td> <td>mical</td> <td>synthe</td> <td>esis an</td> <td>d str</td> <td>uctura</td> <td>al activi</td> <td>ty relat</td> <td>ionship</td> <td>of diff</td> <td>ferent cl</td> <td>ass of</td>	3	To i	mple	ement t	the che	mical	synthe	esis an	d str	uctura	al activi	ty relat	ionship	of diff	ferent cl	ass of
To construct the various methods for the drug analysisDURSE OUTCOMESter the successful completion of the course, learner will be able to01. Identify the synthetic outlines require for drugs synthesisRemember02. Interpret the preparation of pharmaceutical solutionsUnderstand03. Illustrate the effects in different methods of drug synthesisApply04. Evaluate the drug synthesized and their effectsAnalyse05. Test the purity and qualiy of the synthesized drugEvaluateEvaluateAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFICUTCOMESSP01P0P03P04P05P06P07PP09P010P011P012PS0PS02PS031LLL2MMLMML3-SSLL4LL5LL6LL7POPO3PO4PO5PO6PO7PPO9PO10PO11PO12PS0PS02PS031 <td></td> <td>drug</td> <td>gs</td> <td></td>		drug	gs													
UNREPOURSEOURSE OUTCOMESter the successful completion of the course, learner will be able toOI. Identify the synthetic outlines require for drugs synthesisRemember20. Interpret the preparation of pharmaceutical solutionsUnderstand03. Illustrate the effects in different methods of drug synthesisApply04. Evaluate the drug synthesized and their effectsAnalyse05. Test the purity and quality of the synthesized drugEvaluateEvaluateAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFICUTCOMESSPO1PO3PO4PO5PO6PO7PPO9PO10PO11PO12PS0PS02PS031LLL2MMLMLL2MMLMLL3-SSLL4LL5LLSM5LLSS6	4	То	outli	ne the	mecha	nism p	athwa	ys of	diffe	erent c	lass of	medicir	nal com	pound	S	
ter the successful completion of the course, learner will be able to 0.1. Identify the synthetic outlines require for drugs synthesis Remember 0.2. Interpret the preparation of pharmaceutical solutions Understand 0.3. Illustrate the effects in different methods of drug synthesis Apply 0.4. Evaluate the drug synthesized and their effects Analyse 0.5. Test the purity and quality of the synthesized drug Evaluate Apply Evaluate Apply Evaluate Apply Evaluate Apply Evaluate Analyse By PO1 PO PO3 PO4 PO5 PO6 PO7 P PO9 PO10 PO11 PO12 PS0 PS02 PS03 1 L L M L L M 2 M M L M M L L M 3 S S L	5	Тос	const	ruct th	e vario	us met	thods	for the	e dru	g anal	ysis					
D1. Identify the synthetic outlines require for drugs synthesisRememberD2. Interpret the preparation of pharmaceutical solutionsUnderstandD3. Illustrate the effects in different methods of drug synthesisApplyD4. Evaluate the drug synthesized and their effectsAnalyseD5. Test the purity and qualiy of the synthesized drugEvaluateAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFICEvaluateUTCOMESSP01P0P03P04P05P06P07PP09P010P011P012PS0PS02PS031LLL2MMLMML3SSLM4LLSS5LLSM	COU	RSE	OUI	COM	ES											
D2. Interpret the preparation of pharmaceutical solutionsUnderstandD3. Illustrate the effects in different methods of drug synthesisApplyD4. Evaluate the drug synthesized and their effectsAnalyseD5. Test the purity and quality of the synthesized drugEvaluateD6. Test the purity and quality of the synthesized drugEvaluateD7. Test the purity and quality of the synthesized drugEvaluateD7. Test the purity and quality of the synthesized drugEvaluateD7. Test the purity and quality of the synthesized drugEvaluateD8. POIPOPO3PO4PO5PO6PO7PPO9PO10PO11PO12PS0PS02PS03ILIIIIIIIIIIIIIIIIIIIIII </td <td>After</td> <td>the su</td> <td>icces</td> <td>sful co</td> <td>ompleti</td> <td>on of</td> <td>the co</td> <td>urse, l</td> <td>earn</td> <td>er wil</td> <td>l be abl</td> <td>e to</td> <td></td> <td></td> <td></td> <td></td>	After	the su	icces	sful co	ompleti	on of	the co	urse, l	earn	er wil	l be abl	e to				
A prime product of the synthesisApplyApplyAnalyseO3. Illustrate the effects in different methods of drug synthesisApplyAnalyseEvaluate the drug synthesized and their effectsAnalyseEvaluateO5. Test the purity and quality of the synthesized drugEvaluateAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFICJTCOMESSPO1PO1PO11PO12PS02PS031-LLLLLLAnalyseSPO1PO1PO11PO12PS02PS031-LL2MMLL2MML2MML2MM <td>CO1.</td> <td>Iden</td> <td>tify t</td> <td>he syn</td> <td>thetic o</td> <td>outline</td> <td>s requ</td> <td>ire fo</td> <td>r dru</td> <td>gs syr</td> <td>nthesis</td> <td></td> <td></td> <td></td> <td>Remen</td> <td>nber</td>	CO1.	Iden	tify t	he syn	thetic o	outline	s requ	ire fo	r dru	gs syr	nthesis				Remen	nber
A Point PropertiesAnalyseAnalyseEvaluateAnalyseEvaluateAnalyseEvaluateAnalyseEvaluateAnalyseEvaluateAnalyseEvaluateAppind with programme of the synthesized drugEvaluateAppind with programme of the synthesized drugEvaluateSolution of the synthesized drugEvaluateSolution of the synthesized drugEvaluateAppind with programme output of the synthesized drugEvaluateAppind with programme output of the synthesized drugEvaluateAppind with programme output of the synthesized drugSolution output of the synthesized drugEvaluateSolution output of the synthesized drugDisplay="6">Solution output outpu	CO2.	Interp	oret t	he pre	paratio	n of pl	harma	ceutic	al sc	olution	S				Under	stand
D5. Test the purity and quality of the synthesized drug Evaluate APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC JTCOMES S P01 P0 P03 P04 P05 P06 P07 P P09 P010 P011 P012 PS0 PS02 PS03 1 - - L L L L - - - - - 2 M M L M - - M L -	CO3.	Illust	rate 1	the eff	ects in	differe	ent me	thods	of d	rug sy	nthesis				Apply	
APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC JTCOMES S P01 P0 P03 P04 P05 P06 P07 P P09 P010 P011 P012 PS0 PS02 PS03 1 - - L L L - - - L - <t< td=""><td>CO4.</td><td>Evalı</td><td>iate t</td><td>he dru</td><td>g syntl</td><td>nesized</td><td>l and t</td><td>their e</td><td>ffect</td><td>S</td><td></td><td></td><td></td><td></td><td>Analy</td><td>se</td></t<>	CO4.	Evalı	iate t	he dru	g syntl	nesized	l and t	their e	ffect	S					Analy	se
S PO1 PO PO3 PO4 PO5 PO6 PO7 P PO9 PO10 PO11 PO12 PS0 PS02 PS03 1 - - L L - - - L -	CO5.	Test	the p	urity a	nd qua	liy of	the syn	nthesi	zed o	drug					Evalua	ate
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				TH P	ROGR	AMM	IE OU	JTCO	ME	S AN	D PRO	GRAN	IME SI	PECIF	TIC	
1 1 L L L L L L 1 L 1 L 1	COS	PO1	PO	PO3	PO4	PO5	PO6	PO7	Р	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO1	-				-	L			-	-	-		-	-	-
4 L L - - S - S -	CO2	M	M			-	-	M		-	-	-	L	M	-	-
L L I I I I I I I I 5 L L - - S M - - - - - S - -	CO3	-		S	S	-		-		-		-	-	-	-	-
	CO4			-	-			-	S	-	S	-	-	-	-	-
Strong: M-Medium: L-Low	CO5	L	L	-	-	S	M	-	-	-	-	-	-	S	-	-
	S- Sti	rong;]	M-M	edium	; L-Lo	W										

- 1. Study on stereo-chemistry of some selected drugs with models and in-silico viewer
- 2. Synthesis of anti-inflammatory/analgesic and its analysis (Eg. Paracetamol, aspirin).
- 3. Synthesis of antimicrobial drugs and its analysis (Eg. Hexamethylenetetramine)
- 4. Synthesis of anticonvulsant drugs involving minimal steps (Eg. Phenytoin) and its analysis.
- 5. Synthesis of sulphonamide drugs (Eg. Suphacetamide) and its analysis
- 6. Synthesis of anthelmintic drugs and its analysis (Eg. Benzimidazoles)
- 7. Synthesis of antiseptic organic compounds (Eg. Iodoform) and its analysis

TEXT BOOKS

- A Text Book of Medicinal Chemistry Vol. I and II by Surendra N. Pandeya, S.G. Publisher,
 6, Dildayal Nagar, Varanasi -10.
- 1. Pharmaceutical Chemistry drug Synthesis Vol. I and II by H. J. Roth and A. Kleemann.

REFERENCE BOOKS

- 1. Wilson and Gisvold's Text book of Organic, Medicinal and Pharmaceutical Chemistry,
- 2. Lippincott-Raven Publishers-New York, Philadelphia.
- 3. William.O.Foye, Principles of Medicinal Chemistry, B.I. Waverly Pvt. Ltd., New Delhi.
- 4. Indian Pharmacopoeia

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S. ANUSUYA	Associate Professor	Pharmaceutical Engineering	dr.s.anusuya@vmkvec.edu.i n
2.	Dr DAVID ANNARAJ P	Assistant Professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.i n

			PH	ARMA	COLO	DGY A	ND			Catego	ry	L	Т	Р	Credit
			PHAR	MAC	OTHE	RAPE	UTICS			CC		3	0	0	3
PREA	MBLE														
To pr	ovide ad	lvanced	know	ledge	in det	ail on	the ph	narmac	cology	of drug	gs and	toxicolo	ogy. B	asic prin	ciples of
pharm	acology,	includ	ing rec	eptor 1	nechar	nisms,	drug di	istribu	tion an	nd metal	oolism,	and pha	armaco	kinetics.	Lectures,
labora	tories, an	d tutori	als on t	the inte	raction	s of dr	ugs and	biolo	gical sy	/stems a	s a basis	for ratio	onal dis	sease ther	apy.
PREF	REQUISI	ТЕ - Н	UMAN	V PHYS	SIOLO	GY									
COUI	RSE OBJ	ECTI	VES												
1	To defin	ne the	variou	s facto	rs that	can a	affect th	ne act	ion of	drugs a	and Dis	cuss the	vario	us routes	of drug
	adminis	tration	with ad	vantag	es and	disadva	antages	of the	variou	s routes	and the	basic pr	inciple	s of toxic	ology.
2	To categ	gorize tl	ne effec	ts of d	rugs pe	rtainin	g to Ne	rvous	System	n and the	concep	t of esse	ntial di	ugs.	
3	To assor	t the ef	fects of	f drugs	pertair	ing to	haemop	oietic	system	n and C	VS and t	the conc	ept of e	essential of	drugs.
4	To class	ify the	effects	of dru	gs pert	aining	to GIT,	Respi	ratory	System	& Excre	etory System	stem a	nd the c	oncept of
	essential	drugs.													
5	To stud	y the B	rief ou	tline of	f the ir	nportai	nce of 1	rationa	al presc	cribing c	of drugs	and als	o knov	v the prir	ciples of
	chemoth	erapy.													
COU	RSE OU	ГСОМ	ES												
After	the succe	ssful co	mpletio	on of th	e cour	se, lear	ner will	l be ab	le to						
CO1.I	Discuss al	oout the	e compl	ete info	ormatio	on of di	rugs in j	pharm	acolog	y and to:	xicology	<i>'</i> .	ι	Jnderstar	ıd
	Define will eutics.	hat dru	gs do	to the	living	organi	isms an	nd hov	v their	effects	can be	applied	l to 1	Apply	
	Jnderstan	d the s	systemi	c effec	t of d	rug act	ion on	huma	n body	with t	ypical e	xamples	s of 1	Apply	
drugs.															
CO4.I	Describe t	he syst	emic ef	fect of	drug a	ction of	n huma	n body	y and th	neir phys	siologica	ıl	1	Apply	
	Examine	the pr	inciple	s of c	hemot	herapy	and 1	how t	heir e	ffects c	an be	applied	to I	Evaluate	
	eutics.	1	1			15						11			
MAP	PING W	ITH PI	ROGR	AMMI	E OUT	COMI	ES ANI	D PR(OGRA	MME S	PECIFI	C OUT	СОМІ	ES	
COS	PO1	PO	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO3
		2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	L	L	-	-	L	-	-	-	-	-	-	-	L	-	M
CO2	-	M	-	L	- T	-	-	L	-	-	-	-	L	-	L
CO3 CO4	-	M M	-	L L	L L	-	_	L L	-	-	-	-	L L	-	L L
C04 C05	- M	M	- M	M	M	-	-	L -	-	-	-	-	L -	-	L M
			1	1		1	I		1	1		I	1		-··-
S- Stro	ong; M-N	ledium	; L-Lov	V											

INTRODUCTION TO PHARMACOLOGY AND TOXICOLOGY

Sources of drugs, dosage forms and routes of drug administration, pharmacodynamics. Combined effect of drugs, factors modifying drug action, tolerance and dependence. Basic and clinical pharmacokinetics. Adverse drug reactions.

Drug interactions, Bioassay of drugs and biological standardization, Overview of drug discovery and development.Definition of poison, general principles of treatment of poisoning, Heavy metals and heavy metal antagonists, OECD guidelines for testing acute, sub-acute, and chronic toxicity, genotoxicity, carcinogenicity, teratogenicity and mutagenicity of drugs and chemicals.

PHARMACOLOGY OF DRUGS ACTING ON NERVOUS SYSTEM

Nerve conduction/transmission in the C.N.S, general anaesthetics, sedatives, hypnotics, Psychopharmacological agents – Antipsychotics, antidepressants, neuroleptics, antipyretics, anti-inflammatory (NSIADs) and anti-gout drugs, narcotic analgesics and antagonists, C.N.S. stimulants, drug addiction and drug abuse. Neurotransmitters: dopamine, 5-HT, excitatory amino acids, GABA, glycine, cannabinoids, melatonin etc; Neurotransmitters receptors, their agonist and antagonists. Neuromodulators, neuromediators and transporters.

PHARMACOLOGY OF DRUGS ACTING ON HAEMOPOIETIC SYSTEM AND CARDIOVASCULAR SYSTEM

Haematinics, Anticoagulants, vitamin K and haemostatic agents, Fibrinolytic and anti-platelet drugs, Blood plasma volume expanders. Histamine, 5-hydroxytryptamine, Prostaglandins and their antagonists, cardiac glycosides and other drugs for congestive heart failure, anti-arrythmatic, anti-anginal, anti-ischemic, and anti hypertensive drugs.

PHARMACOLOGY OF DRUGS ACTING ON GASTROINTESTINAL TRACT, RESPIRATORY SYSTEM AND EXCRETORY SYSTEM

Antacids, anti-secretory and anti-ulcer drugs, Laxatives and Anti-diarrhoeal drugs, Appetite stimulants and suppressants, Emetics and anti-emetics. Anti-asthmatic drugs including bronchodilators, leukotriene inhibitors, anti-tussives and expectorants, Respiratory stimulants. Histamine and anti histamine.Diuretics and Antidiuretics, Urinary Antiseptics, Cholinergics and Anti-Cholinergics, Acidifiers and Alkalanizers.

CHEMOTHERAPY

General principles of chemotherapy; Sulfonamides; Antibiotics – Penicillins, Cephalosporins, Chloramphenicol, macrolides, Quinolones, fluroquinolones and other antibiotics; Chemotherapy of tuberculosis, leprosy, fungal diseases, viral diseases, urinary tract infections and sexually transmitted diseases; Chemotherapy of malignancy and immune suppressive agents.

TEXTBOOKS

- 1. Goodman and Gilman's, "The Pharmacological Basis of Therapeutics".12th Edition, 2010.
- 2. Katzung, B.G., Trevor AJ. Basic and Clinical Pharmacology, Prentice Hall International. 12thEdition, 2011.
- 3. Tripathi, K.D. Medical Pharmacology, VIIth edition, 2013.
- 4. Kulkarni S K, Handbook of Experimental Pharmacology, 4th Edition, 2012.
- 5. Rang, M.P, Dale M.M, Reter J.M- Pharmacology.8th Edition, 2016.
- 6. Satoskar, "Pharmacology and Pharmacotherapeutics", 24th Edition, 2015. 6. Tripathi, K.D. "Medical Pharmacology", 7th Edition, 2016

REFERENCES

- 1. Goodman and Gilman's, "The Pharmacological Basis of Therapeutics".12th Edition, 2010.
- 2. Katzung, B.G., Trevor AJ. Basic and Clinical Pharmacology, Prentice Hall International. 12thEdition, 2011.
- 3. Tripathi, K.D. Medical Pharmacology, VIIth edition, 2013.
- 4. Kulkarni S K, Handbook of Experimental Pharmacology, 4th Edition, 2012.
- 5. Rang, M.P, Dale M.M, Reter J.M- Pharmacology.8th Edition, 2016.
- 6. 5. Satoskar, "Pharmacology and Pharmacotherapeutics", 24th Edition, 2015. 6. Tripathi, K.D. "Medical Pharmacology", 7th Edition, 2016

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms. R. Jaishri	Assistant professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in

	Category	L	Т	Р	Credit
PHARMACEUTICAL ANALYSIS	CC	3	0	0	3

PREAMBLE

To provide the student with a basic understanding of the format of the pharmacopoeial monograph and the major physical and instrumental methods used in the monographs to specify standards, the scope, advantages and disadvantages together with a brief account of the regulatory framework such as The Drugs and Cosmetics Act 1940 and an introduction to the ICH Guidelines.

PRERQUISITE NIL											
COURSE OBJECTIVES											
1 To discuss about the principles of modern analytical techniques in Pharmacy.											
2 To summarize the use of modern techniques of analysis used in different areas / fields of pharmacy.											
To implement the given technical training and its applications in day to day practices.											
4 To give hands on training on the usage of various spectroscopic techniques											
5 To give participatory training on the utilities diverse Chromatographic procedure.											
COURSE OUTCOMES											
After completion of course student is able to know											
CO1. Develops ability to handle the modern analytical instruments like UV/Vis, Mass Understand upectroscopy and HPLC.											
CO2. Develops ability to involve in phytochemical and biological standardization of Apply pharmaceutical products.											
CO3. Develops ability to handle the modern analytical instruments like IR, NMR Apply											
CO4. Infer the modern analytical techniques, which is important for qualitative as well Analyze as quantitative analysis of drug substances and drug product.											
CO5. Develops ability to involve in phytochemical and biological standardization of Analyze											
pharmaceutical products.											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COSPOPOPOPOPOPOPOPOPO1PO1PSOPSOPSO											
CO1 M L L - - - - - M M M M											
CO2 M M M M - - - - - S S M M											
CO3 S S S L L L M - M											
CO4 M M M M - - - - S M M M											
CO5 S M L M M - - - - S M S S											
S- Strong; M-Medium; L-Low											

UV-VISIBLE SPECTROSCOPY

Theory of atomic and molecular spectra, Electronic transitions, Beer and Lambert's law, Derivation and deviations, Chromophores, Auxochromes, Spectral shifts, Solvent effect on absorption spectra. Instrumentation - Sources of radiation, wavelength selectors, sample cells, Detectors Barrier layer cell, Photo tube, PMT, PDA detectors; Applications in pharmaceuticals.

ATOMIC ABSORPTION SPECTROSCOPY

Principles, Instrumentation, Operation – single and double beam spectroscopy; sampling technique – Detection limit, Difference between Atomic absorption spectroscopy and Flame spectroscopy; Applications in pharmaceuticals.

ELECTROCHEMICAL, IR AND NMR SPECTROSCOPY

Potentiometry, Conductometry, Polarography, Colorimetry and Flourimetry .Principles of vibrational spectroscopy – Instrumentation and sampling techniques – Applications in pharmaceutical sciences – NMR principles – Instrumentation – Applications in pharmaceuticals.

THERMAL AND X-RAY DIFFRACTION METHODS

Thermogravimetry, Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC). Introduction, generation of X-rays, elementary crystallography, Miller Indices, X-rays diffraction, Bragg's law, X-ray powder diffraction, X-ray powder diffractometer, obtaining and interpretation of X-ray powder diffraction data.

MASS SPECTROMETRY AND CHROMATOGRAPHIC METHODS

Basic principles, instrumentation and ionization methods; atmospheric pressure ionization (API), chemical ionization (CI), electron impact ionization (EI), fast atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), time of flight (TOF); Applications in pharmaceuticals. Chromatography and its types: principle, theory, instrumentation, solvents system, packing materials and applications.

TEXT BOOKS

- 1. A. H. Beckett & J. B. Stenlake, "Practical Pharmaceutical Chemistry", Part II, 4th Edition, Bloomsbury Academic, 2001.
- 2. Hobert H. Willard, "Instrumental Methods of Analysis", 7th Edition, CBS Publishers & Distributors, 2004.
- 3. B.K. Sharma, "Instrumental Method of Chemical Analysis", Krishna's Education Publishers, 2014.
- 4. P. D. Sethi, "HPTLC: High Performance Thin Layer Chromatography: Quantitative Analysis of Pharmaceutical Formulations", 1st edition, CBS, 2013.

REFERENCES

1. Robert M. Silverstein, Francis X .Webster, David J. Kiemle, David L. Bryce, Spectriometric identification

of Organic Compounds", 8th Edition, Wiley, 2014.

- 2. Mendham J, "Vogel's Text Book of Quantitative Chemical Analysis", 6th Edition, Pearson Education 2009.
- Douglas A. Skoog, F. James Holler, Stanley R. Crouch, "Principles of Instrumental Analysis", 7th Edition, Brooks Cole, 2017.
- 4. William Kemp, "Organic Spectroscopy" W.H. Freeman, New York, 3rd Edition, 2011.

COUR	COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical Engineering	sowmiya@vmkvec.edu.in							
2.	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in							

			PHA	RMA	CEUI	ГІСА	LAN	NALY	SIS	Ca	tegory	r L	Т	P	Credit
					L	AB					CC	0	0	4	2
PRE.	AMB	LE								1			-1	I	
This	subjec	et dea	ıls wi	th vari	ious a	dvan	ced a	nalyti	cal ins	strumei	ntal teo	chniqu	es for i	identi	fication,
Chara	acteriz	ation	and o	quantif	ication	n of o	drugs	. The	course	e is des	igned	to imp	art the	know	ledge in
the fi	ield of	Phar	mace	utical a	analys	is. Tl	he va	rious	moder	n analy	vtical to	echniq	ues like	e UV-	Visible,
IR, N	MR,	Mass	, GC,	HPLC	C, diffe	erent	chron	natog	raphic	metho	ds and	l other	import	ant to	pics are
taugh	nt to er	nable	the st	udents	to und	dersta	and a	nd app	ply the	princip	ples in	volved	in the	deterr	nination
of di	fferen	t bull	c drug	gs and	their	form	nulatio	on. In	additi	ion to	the the	eoretic	al aspe	cts, tl	ne basic
practi	ical kr	nowle	dge re	elevant	t to the	e ana	lysis a	also ir	nparte	d.					
PRE	RQUI	SITE	C												
NIL															
COU	IRSE	OBJI	ECTI	VES											
1 7	To ma	ke sti	idents	famili	iar wit	th the	prine	ciples	of mo	dern ar	nalytica	al tech	niques		
8	and it'	s app	licatio	on in pl	harma	cy.									
2 7	To fan	niliari	ze stu	idents	in use	of m	oderr	n tech	niques	of ana	lysis u	sed in	differer	nt area	ns /
f	To familiarize students in use of modern techniques of analysis used in different areas / fields of pharmacy.														
3 7	To give training in use of the technique & its applications in day to day practice.														
4 7	To build on the basics learned at UG level & give latest advances in the area.														
5	To give more stress on application-based knowledge than instrumentation basedone.														
6															
	TO giv				ng on i	use o	1 as n	nany c	lifferer	nt instr	uments	s aspos	sible.		
				ourse s	tudant	tic ol	ala ta	lenou	7						
	-									in Dhe		ductor		Dama	ember
				f the value r					ts used		iiiia ii	laustry			
	-					-		-						App	
									nalysis					Und	erstand
CO4.	. Appl	ying t	heore	tical k	nowle	dge a	and pi	actica	al skills	s in usi	ng the	instru	nents	App	y
CO5. (Conce	pt of	mode	rn ana	lytical	tech	nique	s, wh	ich is i	mporta	nt for	qualita	tive	Und	erstand
	-			-		<u> </u>			nd drug						
CO6.	. The a	inalys	is of	various	s drug	s in s	ingle	and c	ombin	ation d	osage	forms		Anal	yse
MAP	PINC	G W	ITH	PRO	GRAN	MMI	E O	UTCO	OMES	ANI) PR	OGRA	MME	SPI	ECIFIC
	COM														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	S	М	М	L	L	-	-	-	-	-	-	-	-	-
CO2	М	S	М	S	М	L	-	-	-	-	-	-	-	-	-
	S	М	М	S	М	М	-	-	-	-	-	-	-	-	-
CO3			S	M	Μ	М	-	-	-	-	-	-	-	-	-
CO4	S	S		T	T	- T									
	S S M	S M M	M S	L M	L S	L M	-	-	-	-	-	-	-	-	-

- 1. Calibration glassware
- 2. Calibration of pH meter and pH measurement of various buffers
- 3. Calibration of UV Spectroscopy
- 4. Calibration of HPLC
- 5. Calibration of flourimetry
- 6. Acid Base Titrations (minimum of 2 experiments)
- 7. Complexometric Titrations (minimum of 2 experiments)
- 8. Separation and calculation of Rf values by using paper chromatography, TLC
- 9. Technique (2-3 experiments)
- 10. Experiment base on HPLC (Isocratic and gradient) Techniques (2 experiments)
- 11. Determination of λ max of different drugs and preparation of calibration curve
- 12. Estimation of single drug (raw material/ formulations) by UV spectrophotometry. (minimum of 4 experiments)
- 13. Estimation of multicomponent formulation by UV- Spectrophotometer (minimum of 4 experiments)
- 14. Identification of different functional groups by IR (amino group, alcoholic group amide, ester, acid group etc).

TEXT BOOKS:

- 1. Text book of pharmaceutical analysis by S.Ravishankar.
- 2. Instrumental methods of chemical analysis by Chatwal. K, Anand, 5th edition.
- 3. Spectroscopy by B.K.Sharma

REFERENCE BOOKS:

- 1. Spectrometric identification of organic compounds by Silverstein, Webster.
- 2. Fundamentals of analytical chemistry by Skoog
- 3. Organic spectroscopy by Y.R.Sharma.
- 4. Instrumental methods of analysis by Willard, Merit, Dean, Settle.

COURSE DESIGNERS

S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
			Pharmaceutical	
1	Ms. R. Jaishri	Assistant Professor	Engineering	jaishri@vmkvec.edu.in
2	Dr.P.David	Aggistant professor	Pharmaceutical	davidannaraj@vmkvec.edu.i
2.	Annaraj	Assistant professor	Engineering	n

INDUSTRIAL PHARMACY-I	Category	L	T	Р	Credit
	CC	3	0	0	3

PREAMBLE

This course is designed to impart a fundamental knowledge and to provide the concepts of various parameters involved in the formulation and development of various solid dosage forms, semisolid and semi liquid formulations and to employ the different unit operations in the preparation and manufacturing of these dosage forms.

PRERQUISITE - NIL

COURSE OBJECTIVES

To impart the knowledge on the principles of solid and semisolid dosage forms formulation 1 anddevelopment. To summarize the concepts involved in troubleshooting and improvement of solid dosage 2 forms, semi-solid and semi-liquid dosage forms To describe the various pharmaceutical dosage forms and their manufacturing techniques 3 To provide the knowledge on the formulation and evaluations of dosage forms. 4 To select the appropriate method of achieving a successful dosage form formulation. 5 **COURSE OUTCOMES** After the successful completion of the course, learner will be able to CO1. To understand the Technology of various solid and semisolid dosage forms. Understand CO2. To Recognize the formulation concepts and evaluate different dosage forms Understand to meet out the requirements. CO3. To be able to execute this knowledge in Pharmaceutical Formulation Apply industries CO4. To organize the difference between theoretical and practical concept used in Apply industry CO5. To Apprehend the advances in solid dosage forms, semi solid dosage forms Apply and dispersions SPECIFIC MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME **OUTCOMES** COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1	М	T	T	Т		т							Т		
001	M		L	L	-	L	-	-	-	-	-	-	L	-	-
CO2	Μ	L	L	L	-	L	-	-	-	-	-	-	L	-	-
CO3	S	M	M	M	L	-	-	-	-	-	-	-	S	L	-
CO4	S	M	M	M	L	-	-	-	-	-	-	-	М	L	-
CO5	S	M	S	-	Μ	-	-	-	-	-	-	-	S	M	-
S. Stranger M. Madiner I. I. and															

S- Strong; M-Medium; L-Low

SYLLABUS

PREFORMULATION CRITERIA

Study of physical /physicochemical properties of drugs like physical form, particle size, shape, density, wetting, dielectric constant, solubility, dissolution, organoleptic properties and their effect on formulation, stability and bioavailability. Study of chemical properties of drugs likehydrolysis, oxidation, reduction, racemisation, polymerization etc., and their influence onformulation. Stability studies, Importance of accelerated stability study, effect of various environmental / processing on stability of the formulation and techniques for stabilization of products against the same.

ADDITIVES AND EXCEPIENTS

Vehicles, stabilizers, preservatives, suspending agents, emulsifying agents, solubilizers, disintegrants, lubricants, glidants and antiadherents, Surfactants and Colors in Tablets, Swellable and Rigid Matrices – Controlled Release Matrices with Cellulose Ethers, Carrageenan in Solid Dosage Form Design, Direct Compression and the Role of Filler-binders.

SOLID DOSAGE FORMS

TABLETS

a. Introduction, ideal characteristics of tablets, classification of tablets, Excipients, Formulation of tablets, granulation methods, process of compression, effect of friction, force – volume relationships in compression (Heckel's plot), tablet manufacturing techniques, Equipments and machinery for small and large scale tablet manufacturing, processing problems.

b. Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.

c. Quality control tests: In process and finished product tests

CAPSULES

a. Capsule: Introduction & Types

b. Hard gelatin capsules: Introduction, Production of hard gelatin capsule shells, size of capsules, formulation of hard gelatin capsules, capsule filling & manufacturing defects. In process and

final product quality control tests for capsules.

c. Soft gelatin capsules: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications

d. Pellets: Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets

SEMISOLID DOSAGE FORMS AND DISPERSIONS

Properties of semisolid dosage form, Types: ointments, creams, paste, gels, suppositories., advantages and disadvantages.Mechanisms of drug penetration, factor influencing penetration.Semisolid bases and their selection. General formulation of semisolids, manufacturing procedure, evaluation and packaging.

TEXT BOOKS

- 1. Lachman, Leon et al. "The Theory and Practice of Industrial Pharmacy" III Ed., VarghesePublishing House, 1987.
- 2. Larry L. Augsburger, Stephen W. Hoag, Pharmaceutical dosage forms: tablets, vol 3, rational design and formulation, Informa health care USA, Inc, 2008 III edition
- 3. Aulton, Michael E. "Pharmaceutics: The Science of Dosage Form Design" II Ed., hurchill Living stone, 2002.
- 4. Allen, Loyd V. et al. "Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems" IX Ed., Wolters Kluver/LippinCott Williams & Wilkins, 2011.
- 5. H. A. Liberman, L. Lachman, and J. B. Schwartz: Pharmaceutical dosage forms: Tablets, Vol.1,2 and 3, II Edition Marcel Dekker, 1989.
- 6. Marcel Dekker, Drug stability- Principles and practice by Cartensen & C.J.Rhodes, 3rd Edition, series, Vol 107.

REFERENCES

- 1. Remington's Pharmaceutical Sciences, A. R. Gennaro Mac Pub. Co. Easton, Pennsylvania1990.
- 2. Indian Pharmacopoiea, British Pharmacopoiea, United States Pharmacopoiea
- 3. Boca Raton, Coated Pharmaceutical Dosage Forms, K. H. Bauer, CRC Press, Med Pharm.
- 4. G. C. Cole, Pharmaceutical Coating Technology, New York,
- 5. Ridgway. K, Hard Capsules, Pharmaceutical Press. London.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. P. David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.e du.in
2	Mrs. Pillai Divya U	Assistant Professor	Pharmaceutical Engineering	pillaidivyau@vmkvec.ed u.in

INDUSTRIAL PHARMACY-II	Category	L	T	Р	Credit
	CC	3	0	0	3

PREAMBLE

This course enables the student to understand the design, development and manufacturing of sterile drug dosage forms. This course also focuses towards formulation development and product manufacture of quality sterile dosage forms that meet or exceed expected good manufacturing practice requirements.

PRERQUISITE - NIL

COURSE OBJECTIVES

1	To de	scribe	the p	rincip	les of	parer	nteral	dosag	ge form	formu	lation				
2	To exe	ecute	the co	oncept	s invo	olved	in the	manı	Ifactur	e of ste	rile pr	oducts			
3	To sol	ve the	e diffi	cultie	s asso	ciated	l with	drug	delive	ry to ea	ar, oph	thalmio	c and N	asal reg	ion
4	To learn the techniques to overcome the challenges associated with drug formulations.														
5	To prepare parenteral based on the guidelines of regulatory bodies.														
CO	COURSE OUTCOMES														
Afte	After the successful completion of the course, learner will be able to														
COI	. Desc	ribe t	he pri	nciple	ofm	anufa	cturin	g par	enteral	produ	cts			Unders	tand
	. Illust leprod		he var	rious s	strateg	gies in	volve	ed in n	nanufa	cturing	; of			Apply	
	1		ite dru	ıg del	ivery	to ear	, nose	e and o	ophtha	lmic or	gans.			Apply	
CO4	. Exan	nine t	he cha	alleng	es in f	formu	lating	; a dru	ıg in va	rious o	losage	forms		Analyse	
	. App ceting		-			mula	tion, r	nanuf	àcturir	ig, pac	kaging	and		Evalua	te
	-		-			MM	E O	UTC	OMES	ANI) PR	OGRA		SPEC	CIFIC
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	L	L	-	-	-	-	-	-	-	-	-	-	-
CO2	M	M	L	M	-	L	L	L	-	-	-	L	-	L	-
CO3	L	S	S	S	L	L	-	L	-	-	-	-	-	L	-
CO4	-	-	-	-	-	L	-	L	-	-	-	-	-	-	-

CO5	-	-	-	-	L	S	L	S	-	-	-	-	-	-	-
S- Sta	rong;	M-Me	edium	; L-L	ow										

LIQUID DOSAGE FORMS

Monophasic liquids: Definitions & preparations of syrups, gargles, mouth washes, Throat paint, Ear drops, Nasal drops, Liniments and lotions, Enemas and collodions. Biphasic dosage forms: Suspensions and emulsions, advantages and disadvantages, classification, test for the type of emulsion, formulation, stability and evaluation.

INTRODUCTION TO PARENTERAL PRODUCTS

Pre-formulation factors, routes of administration, water for injection, pyrogenicity, nonaqueousvehicles, isotonicity and methods of its adjustment. Formulation details, containers and closuresand their selection; Prefilling treatment, washing the container and closers, preparation of solution and suspension, filling, closing of ampoules, vials, infusion fluids, lyophilization, preparation ofsterile powders, equipment for large scale manufacture and evaluation of parenteral products.

ASEPTIC TECHNIQUES IN PARENTERALS

Aseptic techniques: Source of contamination, methods of prevention, design of aseptic area, laminar flow bench, air handling units, services and maintenance; Stability evolution of sterile pharmaceutical dosage forms; special precautions on blood products, glandular products, medical sutures, ligatures.

EAR, NASAL AND OPHTHALMIC DRUG DELIVERY

Nasal and ocular drug delivery overview, membrane transport processes in the eye, nasal and ocular drug transfer following systemic drug administration, ocular pharmacokinetics and pharmacodynamics ocular penetration enhancers, corneal collagen shields for ocular drug delivery, the noncorneal route in ocular drug delivery, ocular iontophoresis, muco adhesive polymers in ophthalmic drug delivery, dendrimers, new experimental therapeutic approaches for degenerative diseases of the retina, gene, oligonucleotide, and ribozyme therapy in the eye.

FORMULATION CHALLENGES

Formulation challenges – multiple vitamin and mineral dosage forms, botanicals formulation into oral solid dosage forms, special tablets formulation for slow oral dissolution, osmotic systems, tableting of multi particulate modified release systems.

TEXT BOOKS

1. Pharmaceutical Dosage Forms Parenteral Medications, Third Edition Volume 3, Sandeep

Nema, John D. Ludwig, Informa Healthcare is a trading division of Informa UK Ltd

- 2. Lachman, Leon et al. "The Theory and Practice of Industrial Pharmacy" III Ed., Varghese Publishing House, 1987.
- 3. Aulton, Michael E. "Pharmaceutics: The Science of Dosage Form Design" II Ed., Churchill Livingstone, 2002.
- 4. Ophthalmic Drug Delivery Systems Second Edition, Revised and Expanded, Ashim K. Mitra,
- 5. 2003 Marcel Dekker
- 6. Allen, Loyd V. et al. "Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems"

REFERENCES

- 1. Remington's Pharmaceutical Sciences (RPS).
- 2. Modern Pharmaceutics by Banker and Gilberts.
- 3. Theory and Practice of Industrial Pharmacy by Lachman

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. V. Muruganantham	Associate Professor	Pharmaceutics	svmanand@yahoo.com							
2	Dr.R.MargretChandir a	Professor	Pharmaceutics	mchandira172@gmail.c om							

				IND	USTR	RIAL I	РНАБ	RMAC	Y LA	B-I	Cate	egory	L	Т	P	Credit
					0011						0	C	0	0	4	2
PREA	AMB	LE	-													
																emicals
																propriate
	-				age fo	orms a	nd illı	ıstrate	impor	tant ph	ysical j	princip	les, a	and v	vill de	evelop
basic																
PRE																
COU	_															
1	_									d dosag	ge forn	ıs				
2	То	aware	abou	t diffe	erent ł	bases in	n sem	isolid	formul	ations.						
3	То	outlin	e the	signif	icance	e of ph	ysical	and c	hemica	al facto	rs whic	ch affe	ct dr	ug fo	ormula	ation.
COU																
										e able						
										ge forn				Un	dersta	nd
CO2.	Discu	uss di	fferen	t phar	mace	utical	calcul	ation i	nvolve	d in fo	rmulati	ion		Une	dersta	nd
CO3.	Emp	loy th	e con	cept o	f wet	granul	ation	in tabl	et prep	aration	l			Ap	ply	
										1 dosag		IS		Ana	alyze	
CO5.	Eval	late th	ne stal	oility	of oin	tments	s and o	creams	5					Eva	aluate	
			TH P	ROG	RAM	ME O	UTC	OMES	S AND	PRO	GRAM	IME S	PEC	CIFIC	С	
OUT COS	COM PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	D	SO1	PSO2	PSO3
CO1	M	L	L	L	L	L	10/		109	-	1011			301	1502	. 1303
CO1 CO2	M M	L L	L L	L L	L L	L L	-	-	-	-	-	-		-	-	-
CO3	S	M	L M	M		 M	- L	-	-	-	-	-		- L	-	-
CO4	<u> </u>	S	M	S	<u>з</u> М	M	M	-	-	-	-			L L	- L	
CO5	M	M	S	S	S	M		-	-	-		-		<u>ь</u> М	M	
-			10 100; L-I		5	TAT					-	-		111	111	

- 1. Preparation of tablets wet granulation method
- 2. Preparation of tablets dry granulation method
- 3. Preparation of capsules
- 4. Preparation of powders
- 5. Preparation of ointments
- 6. Preparation of creams
- 7. Preparation of pastes
- 8. Preparation of gels

9. Preparation of suppositories

REFERENCES:

- 1. Howard C. Ansel, Pharmaceutical Calculations. 15th edition,
- 2. Howard C. Ansel, Nicholas G. Popovich and Lloyd V. Allen, Pharmaceutical Dosage Forms and Drug Delivery Systems, , Jr. 9th Edition, 2009.
- 3. Thompson J.E , A Practical Guide to Contemporary Pharmacy Practice, 1998.
- 4. Remington's Pharmaceutical Sciences, 20th Edition, 2000.

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Dr.S.Anusuya	Associate Professor	Pharmaceutical Engineering	dr.s.anusuya@vmkvec.edu.in

				INDUSTRIAL PHARMACY LAB-II	Т	P	Credit										
											(CC	0	0	4	2	
PREA	AMB	LE	ł														
This c	course	e prov	ides t	he kn	owled	ge on	the th	eory a	nd prol	blems i	nvolve	ed ininc	orpo	oratin	ng che	micals	
into st	table	dosag	e forr	ns sui	table	for hu	nan n	nedicat	tion. It	also de	escribe	s the ba	asics	oftl	ne app	oropriate	
handli	ing, u	se of	vario	us dos	age fo	orms a	nd illu	ıstrate	import	tant ph	ysical j	princip	les, a	and v	vill de	velop	
basic	mani	pulati	ve ski	lls.													
PREF	REQ	UISIT	TE - N	JIL													
COU	RSE	OBJI	ECTI	VES													
1	То	get fa	miliar	rize w	ith dif	fferent	liquic	l dosag	ge form	ıs							
2	To get familiarize with different liquid dosage formsTo aware about different aseptic conditions to be maintained in parentral formulation.																
3	То	outlin	e the	signif	icance	e of su	spensi	ion and	d emul	sions in	n drug	formul	atior	ıs.			
COU	RSE	OUT	COM	ES													
On the	e suc	cessfu	l com	pletic	on of t	he cou	rse, st	tudents	s will b	e able	to						
CO1.	Reco	gnize	the fo	ormula	ation	aspects	s of st	reile d	osage f	forms				Understand			
CO2.	Discu	uss di	fferen	t phar	mace	utical	calcul	ation i	nvolve	d in fo	rmulat	ion		Uno	dersta	nd	
CO3.	Empl	loy th	e con	cept o	f emu	lsion i	n drug	g form	ulation	S				App	ply		
CO4.	Iluus	trate t	he os	motic	press	ure of	optha	lmic fo	ormula	tions				Ana	alyze		
CO5.	Evalı	late th	ne stal	bility	of em	ulsion	5.							Evaluate			
MAP	PINC	TWI	ГН Р	ROG	RAM	ME O	UTC	OME	5 AND	PRO	GRAN	IME S	PEC	L LIFIC	7		
OUT															-		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	SO1	PSO2	PSO3	
CO1	М	L	L	L	L	L	-	-	-	-	-	-		-	-	-	
CO2	М	L	L	L	L	L	-	-	-	-	-	-		-	-	-	
CO3	S	М	М	M	S	М	L	-	-	-	-	-		L	-	-	
CO4	Μ	S	М	S	М	М	М	-	-	-	-	-		L	L	-	
CO5	М	М	S	S	S	М	-	-	-	-	-	-		Μ	M	-	
S- Stro	ng; M	-Mediu	ım; L-l	Low		1		1	1	1	1	1			1	I	

- 1. Preparation of monophasic liquid dosage forms:
 - For internal use drops, solutions, syrups, elixirs, linctus, mixture, injections
 - For external use gargles, mouthwash, eye drops, nasal drops, ear drops, lotion, liniments
- 2. Preparation and evaluation of biphasic liquid dosage forms: suspensions & emulsions –both o/w and w/o types

REFERENCES

- 1. Howard C. Ansel, Pharmaceutical Calculations. 15th edition,
- 2. Howard C. Ansel, Nicholas G. Popovich and Lloyd V. Allen, Pharmaceutical Dosage Forms and Drug Delivery Systems, , Jr. 9th Edition, 2009.
- 3. Thompson J.E, A Practical Guide to Contemporary Pharmacy Practice, 1998.
- 4. Remington's Pharmaceutical Sciences, 20th Edition, 2000.

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.i n							
2	Dr.S.Anusuya	Associate Professor	Pharmaceutical Engineering	dr.s.anusuya@vmkvec.edu.in							

C. ELECTIVE COURSES

PROFESSIONAL ELECTIVES CREDITS (12)

		F	REGU	LAT	ORY	REQI	JIRE	MENT	S	Catego	ory	L	T	Р	C	redit
			IN	PHA	RMA	IND	USTR	IES	-	EC-I	PS	3	0	0		3
PRE	AMB	LE														
Гhis	cours	e enab	les th	e stud	ents to	o knov	w abo	ut the	requi	rements	for the	good n	nanufa	actur	ing pra	actices
urre	ently fo	ollowe	ed in p	harma	ceutic	al ind	ustry,	require	ement	s related	to fact	tories ac	ts and	l rule	es, whi	ch is a
		-			d to w	ater a	nd air	pollut	tion a	nd the 1	regulati	on for h	andlii	ng ar	nd stor	age o
	mmab															
	REQ															
	JRSE															
1												g bodies	s invo	lved	in the	
_										eutical in			Fadara ar			
2	guide		eginne	ers in t	ne pri	ncipie	s invo	olved in	i the p	practice	of GM	P, biosat	lety af	ia ei	nical	
3	-		1 1		4	1	1	4	. 4							
	lo pro	epare t	the do	cumen	its for	apply	ing th	e pater	its.							
1	To gu	ideline	es for	valida	tion p	rocess	in the	e indus	try.							
5	To do	cumer	nt the 1	results	for th	e aud	it.									
COI	JRSE	OUT	COM	ES												
				-						be able				1		
		-								industri					membe	
			-			indu	stry n	nanufa	cturir	ng pract	ices an	d regul	atory	Un	derstai	nd
-	cts of	-	• •											<u> </u>		
				-			-	ivities							ply	
CO4	. Test	the gu	idelin	es and	analy	tical p	proced	lures fo	or the	method	ology			An	alyze	
			-					-			-	ts and fe		Eva	aluate	
he a	spects	involv	ved in	docur	nent p	orepara	ation f	for pha	rmace	eutical p	oroduct	registrat	tion			
MA]	PPINO	G WIT	TH PR	ROGR	AMN	1E OI	UTCC	OMES	AND	PROG	RAMN	AE SPE	CIFI	C O	UTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-		-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-			-	-
CO3	M	М	-		L	-	-	-	-	-	-	L	I	_	-	-
CO4	М	М	-	-	S	-	L	-	-	-	-	-	-		М	-
CO5	М	М	L	L	S	S	-	L	-	-	-	-	-		L	L
S- S1	trong;	M-Me	dium;	L-Lo	W		1	I		L	1	I		1		<u> </u>

REGULATORY CONCEPTS

Quality assurance - Quality control - Practice of cGMP - Schedule M - USFDA.

REGULATORY ASPECTS

Pharmaceuticals: Bulk drug manufacture; Personnel, Buildings and Facilities, Process Equipment,Documentation and Records, Materials Management, Production and In-Process Controls,Packaging and Identification Labelling of API's and Intermediates, Storage and distribution, Biotechnology derived products; Principles, Personnel, Premises and equipments, Animal quarters and care, production, labelling, Lot processing records and distribution records, quality assurance quality control.

INTELLECTUAL PROPERTY RIGHTS

Patent system – Different types of patents – Filing process of application for patent – Infringementof patents – The patent rules 2003 as amended by the patents (amendment) rules 2016.

ICH GUIDELINES

Quality guidelines – Impurities in new drug substances (Q3A(R2)) – Impurities in newdrugproducts(Q3B(R2)) – Validation of analytical procedures text and methodology (Q2(R1)).

QUALITY AUDIT AND SELF INSPECTIONS

SOPs - Documentation - Loan license auditing - Common technical documentation (CTD) - Drug

TEXT BOOKS

1. C.V.Subbrahmanyam&J.Thimmasetty, Pharmaceutical regulatory affairs, 1stEdn.,VallabhPrakashan, New Delhi, 2012.

2. Willig, H., Tuckeman, M.M. and Hitchings, W.S., "Good Manufacturing Practices forPharmaceuticals", 5th Edition, Marcel Dekker Drugs and the Pharmaceutical Sciences, byCRC Press, New York, 2000.

3. N Udupa, Krishnamurthy Bhat, A Concise Textbook of Drug Regulatory Affairs, ManipalUniversity Press (MUP); First Edition, 2015.

REFERENCES

1. Ira R. Berry, The Pharmaceutical Regulatory Process, marcel dekker Series: Drugs and the Pharmaceutical Sciences, by CRC Press, NewYork, 2004.

2. Mindy J. Allport-Settle, Current Good Manufacturing Practices: Pharmaceutical, Biologics, and Medical Device Regulations and Guidance Documents Concise Reference, Pharmalogika Inc., USA, 2009.

3. Sharma, P.P., "How to Practice GMPs", 3rd Edition, Vandana Publications, 2006.

COURSE DESIGNERS

00011							
S.No.	Name of the Faculty	me of the Faculty Designation Department					
1	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical	davidannaraj@vmkvec.			
1	DI.I .DavidAlillalaj	Assistant professor	Engineering	edu.in			
2	Ms. R. Jaishri	Assistant professor	Pharmaceutical	jaishri@vmkvec.edu.ir			
2			Engineering				

			יתקון		FFCT	ΙΝΙΛΙ	0.01	7	Cat	egory	L	Т	Р		С	
		1	HERI	BAL '	IECF	INUI	JUGI	(EC	C-PS	3	0	0		3	
To a	-	knowl	-		-	-						oal prep f herbal		and also	o give	
PREF	REQUI	SITE	- NIL													
COUI	RSE OI	BJEC	TIVE	ES												
1	To list and me	-		•	-		cation	& sou	irce of	f crude	drugs, 1	taxonon	ny of m	edicinal	plant	
2	 To discuss the Phyto-chemical screening techniques and able to identify the Phyto-constitutes of plants. To implement fundamental principles on cultivation, collection processing and evaluation of the phyto-constitute of the phyto-constitutes of the plants. 															
3	To im medici			ndamo	ental	princi	ples (on cu	ltivati	on, coll	ection	process	ing and	evaluat	ion o	
4	To cat safety,	-				-				al prepa	arations	, histor	y, clinic	al asses	sment	
5	To ge produc						of 1	aw n	nateria	als, for	mulatio	n, and	herbal	pharma	cy fo	
COUI	RSE O	UTCC	OMES	5												
After 1	the succ	essfu	l com	pletio	n of tl	he cou	ırse, l	earnei	r will	be able	to					
CO1.]	CO1. Recall extraction techniques used for herbal drugs.											Remember				
	CO2. Recognize the history and present status of herbs in cosmetics and the techniques of incorporation of herbal extracts											and the	Understand			
	Demon to the c					-	•	vse he	rbal re	esearch	and cor	ntribute	Apply			
	Develop screenii			-	ues f	òr st	andar	dizati	on of	f extra	cts and	d their	Analy	vse		
(make				•		•	•	p of ev and et		l based herbal	Evalu	ate		
MAPI OUT(PING COME	WI7 S	ГН	PRO	GRA	MMF	E O	UTC	OME	S AN	D Pl	ROGRA	AMME	SPE	CIFIC	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO	
CO1	L	L	-	-	-	-	-	-	-	-	-	L	-	-	-	
CO2	S M	S	- M	-	- T	-	-	-	-	-	-	L	-	-	-	
CO3 CO4	M L	M L	M L	M L	L M	-	-	-	-	-	-	L S	-	-	-	
C04	L	M	L	M	L	-	-	-	-	-	-	M	- M	S	- S	
						I	l							-		
S- Stro	$nn\sigma \cdot w$. vieni	nm. L	- OW												

INDIAN SYSTEMS OF MEDICINE

Introduction, basic principles and treatment modalities of Ayurveda – Unani – Homeopathy –Siddha – naturopathy- Introduction and streams of Yoga. Asanas, Pranayama, Meditations and relaxation technique. Classification of herbs - Harvesting – Post harvesting – Conditions of storage- seasonal and geographical variation.

In-vitro CULTURE OF MEDICINAL PLANTS

Requirements – Setting up a tissue culture lab – Basic laboratory procedure – Processing of plat tissue culture – Growth profile – Growth measurement – Plant tissue culture methods – Callus culture – Types of tissue culture – Tissue culture of medicinal plants – Applications of plant tissue culture.

EXTRACTION, ISOLATION AND ANALYSIS OF PHYTO PHARMACEUTICALS

Traditional and modern extraction technique: Successive solvent extraction- Super critical fluid extraction – Steam distillation – Head space techniques – Sepbox – General extraction process: Carbohydrates – Proteins – Alkaloids –Glycosides. Isolation and purification of phytochemicals: Quinine from cinchona, vincristine from Vinca, sennoside from senna, Euginol from clove oil.

SCREENING METHODS FOR HERBAL DRUGS

Screening methods for anti-fertility agents – Antidiabetic drugs – Antianginal drugs – Diuretic – Analgesic activity – Antipyretic activity – Anticancer activity – Evaluation of hepatoprotective agents – anticonvulsive- Antiulcer drugs.

STANDARDIZATION AND CONSERVATION OF HERBAL DRUGS

Importance of standardization – Problems involved in the standardization of herbs- Standardization of single drugs and compound formulations – WHO guidelines for the quality assessment herbal drugs– Estimation of parameter limits used for standardization – Conservation strategies of medicinal plants – Conservation types – Government policies for protecting the traditional knowledge.

TEXT BOOKS

- 1. Agarwal, S.S. and Paridhavi, M., "Herbal Drug Technology" Universities Press (India) Private Limited, 2007.
- 2. Wallis, T.E., "Textbook of Pharmacognosy" 5th Edition, CBS Publishers and Distributors, 2005.
- 3. Indian System of Medicine and Homeopathy in India, Planning and Evaluation Cell, Govt. Of India, New Delhi, 2001.
- 4. Yoga- The Science of Holistic Living by V.K.Yoga, Vivekananda Yoga Prakashna Publishing, Bangalore, 2005.
- 5. Quality Control Methods for medicinal plant material, WHO Geneva, 1998.

REFERENCES

- 1. Evans, W.C., "Trease and Evans Pharmacognosy" 15th Edition, Elsevier Health Sciences, 2001.
- 2. Pulok K. Mukherjee., "Quality control of Herbal Drugs" Reprint edn, Business Horizons, New Delhi, 2012.
- 3. Daniel, M., "Herbal Technology : Concepts and Advances" Satish Serial Publishing House, 2008.

COUR	SE DESIGNERS					
S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical Engineering	sowmiya@vmkvec.edu.in		

PHARMACEUTICAL PROCESS	Category	L	Т	P	Credit
DESIGN	EC-PS	3	0	0	3

The pharmaceutical process design is a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management. It is emerging to enhance the assurance of safe, effective drug supply to the consumer, and also offers promise to significantly improve manufacturing quality performance.

PREREQUISITE - NIL

COURSE OBJECTIVES

To recognize meaningful product quality specifications that are based on clinical performance. 1

- 2 To discuss on process capability and product variability.
- 3 To summarize how to reduce defects by enhancing product and process design, understanding, and control.
- 4 To implement new technologies in product development and manufacturing efficiencies.
- 5 To outline root cause analysis and post approval change management.

COURSE OUTCOMES

- After the successful completion of the course, learner will be able to
- Remember CO1. Recognize the opportunities and constraints of the drug development process.
- CO2. Describe a process for manufacturing a desired product or parallel products. Understand
- CO3. Identify a variety of processing alternatives for manufacturing a desired product. Understand Apply

CO4.Operate different techniques for complex process simulation.

CO5. Validate process design by taking regulatory requirements into consideration.

MAPPING WITH **PROGRAMME OUTCOMES** AND **PROGRAMME SPECIFIC** OUTCOMES

Analyse

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	L	L	L	L	L	L	-	L	L	L	L	L	L
CO2	M	M	L	Μ	L	-	L	L	-	-	-	L	L	L	-
CO3	L	M	M	S	-	L	-	-	-	-	-	-	L	L	-
CO4	M	L	L	-	L	L	L	L	-	-	-	-	M	-	-
CO5	L	L	L	-	L	L	L	M	-	-	-	-	L	-	-
S- Str	S- Strong; M-Medium; L-Low														

SYLLABUS

EVOLUTION OF PROCESS DESIGN AND MANAGEMENT

Introduction, Universal Principles of Process, Revolutionary Thinkers on Process, Language and Boundaries, Artisan heritage.

FIVE PROCESS ELEMENTS

Man: The Mind of the Process, Machine: The Voice of the Process, Method: The Techniques of Process Control, Materials: The Life-Blood of the Process, Environment.

EFFECTIVE PHARMACEUTICAL PROCESS DESIGN AND MANAGEMENT

Changing the Way We Think, Cause and Effect: Getting to the Root Cause, Corrective Action and Preventive Action, Process-Driven Quality Systems, Statistics and Decision Boundaries: Data Certainty, Problem-Solving Tools and Techniques, Reducing Risk: The New Paradigm, Customers, Process Integrated Accounting.

KEY ELEMENTS OF QUALITY BY DESIGN

Target product profile, Target product quality profile, Design and development of product, Design of experiments - Comparative experiments, Screening experiments, Response surface Modeling, Regression Modeling; Common experimental designs, Risk assessments.

PROCESS ANALYTICAL TECHNOLOGY

Introduction, Process analytical technology tools; Multivariate tools for design, data acquisition, and analysis, Process analyzers, Process control tools, Continuous improvement and knowledge management tools, Critical quality attributes, Control strategy, Product lifecycle management and continual improvement, Change management system.

TEXT BOOKS:

1. Kate McCormick, D. Wylie McVay Jr, Pharmaceutical Process Design and Management, Routledge; 1 edition, 2016.

REFERENCES:

 Kannissery Pramod, M. Abu Tahir, Naseem A. Charoo, Shahid H. Ansari, and Javed Ali: Pharmaceutical product development: A quality by design approach, International journal of pharmaceutical investigation, 2016.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr. A. Arunagiri	Assistant professor	Pharmaceutical	arunagiri@vmkvec.edu.in

	engineering	
--	-------------	--

CHEMISTRY OF NATURAL PRODUCTS	Category	L	Т	Р	Credit
CHEMISTRY OF NATURAL I RODUCTS	EC-PS	3	0	0	3

The students will understand the main classes of natural products and their distinctive pharmacological effects. It further gives a proper understanding about extraction, isolation, chemical tests and medicinal properties of various alkaloids and vitamins. This would enable the students to learn the chemistry, synthesis and structural elucidation f natural products.

PREREQUISITE - Fundamentals of Chemistry

COURSE OBJECTIVES 1 To explain the chemistry and medicinal importance of natural compounds as lead molecules for new drug discovery. 2 To discuss about the classification, isolation, purification and structural characterization of simple constituents from natural source. 3 To interpret general method of structural elucidation of compounds of natural origin. 4 To outline the medicinal and pharmaceutical uses of vitamins and flavanoids. 5 To develop theoretical knowledge of students in the chemistry of natural products and to explore Thisknowledge for practical applications.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Explain the chemistry of carbohydrates, heterocyclic compounds, amino acids, proteins understand and nucleic acids.

CO2. Describe the fundamentals of terpenoids, alkaloids, vitamins, lipids and steroids.

CO3. Summarize the biosynthesis, biological activity and stereochemistry of pharmaceutical Apply products.

 CO4. Identify natural products using various chromatographic and spectroscopic methods.
 Apply

 CO5. Demonstrate various methods to test the activity of natural products
 Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

															-
COS	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO1	М	L	L	L	-	-	-	-	-	-	-	L	-	-	М
CO2	M	L	L	L	-	-	-	-	-	-	-	L	-	-	М
CO3	S	М	M	М	M	-	-	-	-	-	-	L	М	М	-
CO4	S	S	М	S	S	-	-	-	-	-	-	М	М	М	М
CO5	S	S	M	S	S	-	-	-	-	-	-	М	М	М	М
S- Stror	S- Strong; M-Medium; L-Low														

SYLLABUS

STRUCTURAL CHARACTERISATION OF NATURAL PRODUCTS

Chemical and spectral approaches to simple molecules of natural origin. Identification of natural products by chromatographic and spectroscopic methods and application of I.R., N.M.R. and Mass Spectroscopy in the structural elucidation of organic compounds.

GLYCOSIDES

Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, medicinal properties and structural elucidation of sennosides, cardenolides and bufadienolides, digoxin and digitoxin, scillaren A and ouabain.

ALKALOIDS

Classification, chemistry, general methods of extraction, isolation, chemical tests, and structural elucidation of pyridine alkaloids, tropane alkaloids, quinoline and iso-quinoline alkaloids, phenanthrene alkaloids, indole alkaloids, imidazole alkaloids, alkaloid amines, glycoalkaloids and xanthene alkaloids.

FLAVONOIDS

Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, medicinal properties and structural elucidation of flavonoids, quercetin.

TERPENES

Terpenes–special isoprene rule, mono, diterpenes, triterpenoids and sesquiterpenes and structural elucidation of citral, carvone, menthol and camphor; Steroids – cholesterol, colour reactions of steroids, stigmasterol, β -sitosterol, bile acids, ergosterol, diosgenin, solasodine and hecogenin.

TEXT BOOKS

- 1. Chemistry of Organic Natural Products (Vol.-1 & 2) by O.P. Agarwal.
- 2. Organic Chemistry of Natural Products (Vol.-1 & 2) by GurdeepChatwal.
- 3. Organic Chemistry (Vol.-2) by I.L. Finar.

REFERENCES

1. Wallis, T.E. Textbook of Pharmacognosy, 5th Edition, CBS Publishers, 2005.

2. Pharmacognosy by Brady and Tyler.E.

3. Pharmacognosy by G.E. Trease&W.C.Evans.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical Engineering	sowmiya@vmkvec.edu.in

MOLECULAR PATHOGENESIS OF	Category	L	Т	Р	Credit	
INFECTIOUS DISEASES	EC-PS	3	0	0	3	

This course is designed to promote high quality research advancing the understanding of pharmaceutics at the molecular level while providing a forum for research among the fields of physical and pharmaceutical chemistry, biochemistry, molecular and cell biology and materials science focused on drug delivery.

PRERQUISITE-NIL

COURSE OBJECTIVES

1 10 understand about the interoblar toxins and modern morecular pathogenesis.		1	To understand about the microbial toxins and modern molecular pathogenesis.
--	--	---	---

2 Toknow about the host pathogen interaction and identifying virulence factors

3 To control pathogens by modern approaches.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Describe the basic concepts of Host pathogen interactions at the level of Understand cellular and molecular networks.

CO2. Differentiate the Host- Defense mechanism against Pathogens and Understand Pathogenic Strategies.

CO3. Diagnosis of diseases through the examination of molecules. Apply

CO4. Applying the principles of host-pathogen interactions in virulence assays. Apply Analyze

CO5.Examine the modern therapeutic strategies on various pathogens.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	L	-	-	_	_	-	-	-	-	L	-	_
CO2	L	М	Μ	M	_	L	_	_	_	_	_	L	М	-	L
CO3	L	М	M	M	_	L	_	_	_	_	_	L	М	_	L
CO4	L	S	_	L	_	_	_	_	_	_	_	-	М	-	L
CO5	M	S	_	L	_	_	_	M	_	-	-	М	M	-	M
				. .											

S- Strong; M-Medium; L-Low

SYLLABUS

OVERVIEW AND HOST-DEFENSE AGAINST PATHOGENS AND PATHOGENIC STRATEGIES

Historical perspective - discovery of microscope, Louis Pasteur's contributions, Robert Koch's

postulates, early discoveries of microbial toxins, toxic assays, vaccines, antibiotics and birth of molecular genetics and modern molecular pathogenesis studies, Various pathogen types and modes of entry.

Attributes & components of microbial pathogenesis, Host defense: skin, mucosa, cilia, secretions, physical movements, limitation of free iron, antimicrobial compounds, mechanism of killing by humoral and cellular defense mechanisms, complements, inflammation process, general disease symptoms, Pathogenic adaptations to overcome the above defenses.

MOLECULAR PATHOGENESIS - I (WITH SPECIFIC EXAMPLES)

Virulence, virulence factors, virulence- associated factors and virulence lifestyle factors, molecular genetics and gene regulation in virulence of pathogens, Vibrio Cholerae: Cholera toxin, coregulatedpili, filamentous phage, survival E.coli pathogens: EnterotoxigenicE.coli (ETEC), labile & stable toxins, Entero- pathogenic E.coli (EPEC), type III secretion, cytoskeletal changes, intimate attachment; EnterohaemerrohogicE.coli (EHEC), mechanism of bloody diarrhoea and Hemolytic Uremic Syndrome, EnteroaggregativeE.coli (EAEC).

MOLECULAR PATHOGENESIS – II (WITH SPECIFIC EXAMPLES)

Shigella: Entry, macrophage apoptosis, induction of macropinocytosis, uptake by epithelial cells, intracellular spread, inflammatory response, tissue damage Plasmodium: Life cycle, erythrocyte stages, transport mechanism and processes to support the rapidly growing schizont, parasitiparous vacuoles, and knob protein transport, Antimalarials based on transport processes.

EXPERIMENTAL STUDIES ON HOST-PATHOGEN INTERACTIONS

Virulence assays: adherence, invasion, cytopathic, cytotoxic effects. Criteria & tests in identifying virulence factors, attenuated mutants, molecular characterization of virulence factors, signal transduction & host responses. Influenza virus: Intracellular stages, Neuraminidase &Haemagglutinin in entry, M1 & M2 proteins in assembly and disassembly, action of amantidine.

APPROACHES TO CONTROL PATHOGENS

Classical approaches based on serotyping. Modern diagnosis based on highly conserved virulence factors, immuno& DNA-based techniques. New therapeutic strategies based on recent findings on molecular pathogenesis of a variety of pathogens, Vaccines - DNA, subunit and cocktail vaccines.

TEXT BOOKS:

- 1. Iglewski B.H and Clark V.L " Molecular basis of Bacterial Pathogenesis ", Academic Press, 1990.
- 2. Eduardo A. Groisman, Principles of Bacterial Pathogenesis, Academic Press, 2001.

REFERENCES:

- 1. Peter Williams, Julian Ketley& George Salmond, "Methods in Microbiology : Bacterial Pathogenesis, Vol. 27", Academic Press, 1998.
- 2. Recent reviews in Infect. Immun., Mol. Microbiol., Biochem. J., EMBO etc
- 3. Nester, Anderson, Roberts, Pearsall, Nester, "Microbiology: A Human Perspective", McGraw Hill, 3rd Edition, 2001.
- 4. Brenda B. Wilson, Abigail A. Salyers, Dixie D. Witt, Malcolm E. Winkler, "Bacterial Pathogenesis", ASM press, 3rd Edition, 2011.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in

			DIO	SIMI	LVDO		ם ח	I CEN	ERIC	'S	Ca	tegory	L	Т	P	Credit
			DIU	511711	LAK) ANI	Ј ЫС	JGEN	EKIC	.0	E	C-PS	3	0	0	3
PREA	MBL	E											1 1			
The a	im of	this c	ourse	is to	prov	ide k	nowle	edge	about	basics,	manı	ufacturin	ng and	regu	lator	y affair
associ	ated wi	th bio	generi	cs and	d bios	imilar	s.It al	so of	fers kn	owledge	e in cl	haracteri	zation	of bio	o gen	erics an
biosin	nilars us	sing an	alytic	al met	thods	and p	resum	ption	s of th	erapeuti	cequi	valence	along	with c	ase s	studies.
PREF	REQUI	SITE -	- NIL													
COU	RSE O	BJEC	FIVE	S												
1	To d	efine b	io ger	erics	and b	iosim	ilars a	long	with th	eir regu	latory	/ affairs.				
2	To e	xplain	about	produ	iction	and c	urren	t mark	ket valu	ue of bio	o gene	erics and	l biosin	nilars		
3	Top	erform	chara	cteriz	ation	of bio	simila	ars us	ing va	rious ana	alytic	al metho	ods.			
4	To o	utline	variou	s imm	nune r	eactio	ns as	sociat	ed witl	n biopha	irmac	euticals.				
5	To cl	heck th	e app	licatio	ons of	biosii	nilars									
COU	RSE O	UTCO	MES													
After	the suce	cessful	comp	letion	of th	e coui	se, le	arner	will be	e able to						
										biosimi				Reme	mbe	r
								-		f bio gei		and				
biosin			Suluti	0115 11	i prou	uetioi	i unu	marix	ung o			und	1	Unde	rstan	d
		trate v	arious	meth	ods o	f char	acteri	zatior	of bio	similars	5.			Apply	V	
CO4.	To exa	nine a	dverse	imm	une re	action	ns of t	oiopha	armace	uticals.				Analy	/se	
CO5.	To vali	date th	e stab	ility o	f follo	ow on	biolo	gics&	appli	cations.]	Evalu	ate	
MAP	PING V	WITH	PRO	GRA	MME	OUT	CON	AES A	AND P	ROGR	AMN	AE SPE	CIFIC	OU	ГСО	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12	PSO1	PSC)2	PSO3
CO1	-	-	L	L	-	L	L	L	-	-	<u> </u>	L	-		-	-
CO2	M	M	L	M	-	-	M	L	-	-	-	L	-		-	-
CO3	-	-	S	S	-	-	-	L	-	-	-	-	-		-	L
CO4	L	L	-	-	-	S	-	S	-	S	-	-	M		-	-
	L	L			S	М								+		M

S- Strong; M-Medium; L-Low

SYLLABUS

BIOGENERICS INTRODUCTION

Definition: Generics and its advantages; Biogenerics and Biosimilars; Why biosimilars arenot (bio) generics; The advent of Biosimilars; The role of patents in the drug industry;Protein-based biopharmaceuticals; Manufacturing processes; Global market; InternationalNon-proprietary Names (INN) nomenclature system biosimilars regulation (EU position, USpathways, Government initiatives)

BIOSIMILARS AND ITS SCENARIO

Approved follow-on proteins/Biosimilars; Characteristics of highselling peptides and proteins,; Products with expired patents; Challenging originator's patents; Target productsfor FOB (followon biological)/Biosimilarsdevelopment peptides; Recombinantnonglycosylated proteins; Recombinant glycosylated proteins; Industries dealing withbiogenerics and its market value; World scenario; Indian scenario.

CHARACTERIZATION OF BIOSIMILARS

Approaches to the characterization of biosimilars; Problems in characterizing biologics(Types of biologic, Peptides, Non-glycosylated proteins, Glycosylated proteins, Monoclonalantibodies); Equivalence issues; Post-translational modifications; Effect ofmicro-heterogeneity; Pharmacokinetics; Pharmacodynamics; and Clinical efficacy; Analyticalmethods for the characterization of biosimilars (Chromatography, Protein sequencing, Massspectrometry, UV absorption, Circular dichroism, X-ray techniques, Nuclear magneticresonance, Electrophoresis, Western blotting, Bioassays, ELISA, Immunoprecipitation andother procedures)

IMMUNOGENECITY OF BIOPHARMACEUTICALS

Immunogenicity of biopharmaceuticals: Immunogenicity; Factors contributing toimmunogenicity (product-related factors, host-related factors), Consequence of immunogenicity to biopharmaceuticals; Measurement of immunogenicity

BIOSIMILARS AND BIOGENERICS APPLICATIONS

Applications:Erythropoietin, Insulin, Somatotropin, Interleukin-2, Interferon Granulocyte macrophage-CSF, DNase, Factor VIIa, Factor IX, Factor VIII, Activated protein C, Tissue plasminogen activator, Monoclonal antibodies etc.

TEXT BOOKS

1. Niazi, Sarfaraz K. "Handbook of Biogeneric Therapeutic Proteins: Regulatory, Manufacturing, Testing, and Patent Issues". CRC Press, 2006.

2. Ho, Reedney J. Y., MiloGibaldi. "Biotechnology & Biopharmaceuticals TransformingProteins and Genes into Drugs".

REFERENCES

1. Niazi, Sarfaraz K. "Handbook of Biogeneric Therapeutic Proteins: Regulatory, Manufacturing, Testing, and Patent Issues". CRC Press, 2006.

2. Ho, Reedney J. Y., MiloGibaldi. "Biotechnology & Biopharmaceuticals TransformingProteins and Genes into Drugs".

COUF	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in

			SAE	TTV	' A NIT) HE	ALTI			EGOR	L	Т	Р	CREI	DIT
					ANI					Y					
					AUE		•1		EC	C-PS	3	0	0	3	i
PRE	AMB	LE													
The e	evalua	tion	of an	y org	anisa	tions'	healt	h and	l safe	ty pro	grams	is an i	ntegr	al part o	of any
														n, safety	
-			-			-	-						s are	not foll	owed,
					ctive	equip	oment	, mer	nbers	partic	ipatior	etc.			
PRE	RQU	[SIT]	E - N	IL											
COU	RSE	OBJ	ECT	IVES	•										
1	To r	ecall	the e	lemer	nts an	d poli	icy of	safet	y and	its im	portan	t in wo	ork er	nvironme	ent.
2	Tot	e acc	quaint	ed w	ith the	e use	of per	sona	l prot	ective	equipr	nents (PPE)		
3	To r	ecog	nise p	rincij	ples o	facci	idents	prev	ention	1					
4	To i	denti	fy ma	jor a	ccider	nt con	trol ir	n indu	ustry.						
5	To f	àmili	arise	with	Proce	ess Sa	fety N	/lanag	gemei	nt (PSI	M) as p	ber OS	HA		
COU	RSE	OUI	CON	AES											
On th	e suc	cessf	ul cor	npleti	ion of	the c	course	, stuc	lents	will be	e able t	0			
CO1.	Recal	l the	eleme	ents a	nd po	olicy of	of safe	ety ar	nd its	import	ant in	work		Remen	nber
	enviro	nmei	nt.												
CO2	. Be a	cquai	nted	with 1	the us	e of p	berson	al pr	otecti	ve equ	ipmen	ts (PPI	E)	Unders	stand
CO3.	Reco	gnise	e prin	ciples	of ac	cider	nts pre	event	ion.					Analys	e
CO4.	Ident	ify n	ajor a	accide	ent co	ntrol	in inc	lustry	7.					Analys	e
CO5.	Fami	liaris	e wit	h Pro	cess S	Safety	y Mana	agem	ent (I	PSM) a	as per (OSHA		Evalua	te
			THP	ROC	GRAN	MME	OUT	CO	MES	AND	PROG	RAM	ME S	SPECIF	IC
	COM	IES					,			· · · · · · ·		1			
CO	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO1	PO1	PS	PS	PS
S	0	02	03	04	05	06	07	08	09	10	1	2	01	02	03
	1 T	T	т	т		т	T					T			 T
CO 1	L	L	L	L	-	L	L	-	-	-	-	L	-	-	L
1	м	L	М	М	L	т	М		т			т			T
CO 2	М	L	М	IVI		L	М	-	L	-	-	L	-	-	L
СО	L	М	М	L	L	M	М	L	-	-	-	M	-	-	L
3															

CO	L	Μ	М	М	L	M	Μ	L	-	L	-	L	-	-	L
4															
CO	L	L	L	L	L	S	L	-	L	L	-	М	-	-	L
5															
S- St	rong;	M-M	ediur	' n; L-l	Low	1	1				1	1	1		

SYLLABUS

ELEMENTS AND POLICY OF SAFETY

Key elements of a safety and Health Management System- Policy & commitment, Planning, Implementation and Operation, Measuring Performance, Auditing and Reviewing performance Initial Safety and health Management System, Safety and health Management System model, safety and Health policy- Developing a workplace Safety and Health Policy.

BIOLOGICAL AND ERGONOMICAL HAZARDS

Classification of Biohazardous agents – examples, bacterial agents, rickettsia and chlamydial agents, viral agents, fungal, parasitic agents, infectious diseases - Biohazard control program, employee health program-laboratory safety program-animal care and handling-biological safety cabinets -building design. Work Related Mucoskeletal Disorders –carpal tunnel syndrome CTS- Tendon pain-disorders of theneck- back injuries.

THEORIES AND PRINCIPLES OF ACCIDENT CAUSATION

Definition: Incident, accident, injury, dangerous occurrences, unsafe acts, unsafe conditions, hazards, error, oversight, mistakes. The effect of accident, unsafe act, unsafe condition, unpredictable performance, Human factors contributing to accidents - causes for unsafe acts. Causes of accidents, Types of accidents, accident statistics, Cost of accident, Direct and indirect cost of an accident, accident/ incident reporting, accident Investigation report.

PERSONAL PROTECTIVE EQUIPMENTS (PPE)

Need for personal protection equipment, selection, applicable standards, and supply, use, care andmaintenance respiratory and non-respiratory personal protective equipment. Respiratory personal Protective devices: Classification of respiratory personal protective devices, selection of respiratory personal protective devices. Non-respiratory personal protective devices: Head protection, Ear protection. Face and eye protection, hand

protection, foot protection, body protection.

MONITORING FOR SAFETY, HEALTH AND ENVIRONMENT

Occupational Health and Environment Safety Management System, ILO and EPA Standards. Industrial Hygiene: Definition of Industrial Hygiene, Industrial Hygiene: Control Methods, Substitution, Changing the process, Local Exhaust Ventilation, Isolation, Wet method, Personal hygiene.

TEXT BOOKS

- Krishnan N.V. "Safety Management in Industry" Jaico Publishing House, Bombay, 1997.
- Lees, F.P., "Loss Prevention in Process Industries" Butterworth publications, London, 2nd edition, 1990.
- 3. Hand book of "Occupational Safety and Health", National Safety Council, Chicago, 1982.

REFERENCES

- 1. R. K. Jain and Sunil S. Rao, Industrial Safety, Health and Environment Management Systems, Khanna publishers, New Delhi (2006)
- 2. Slote. L, Handbook of Occupational Safety and Health, John Willey and Sons, New York .
- Jeanne Mager Stellman, Encyclopedia of Occupational Health and Safety (ILO) Ms. Irma Jourdan publication

S.N o.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr. A. Arunagiri	Assistant Professor	Pharmaceutica 1 Engineering	arunagiri@vmkvec.edu.in

FUNDAMENTALS OF	Category	L	Т	Р	Credit
BIOINFORMATICS	EC-PS	3	0	0	3

The course highlights the importance of Bioinformatics in all our lives and the fascination of working in a field that overlaps the disciplines of biology and computer science. It gives brief understanding about biological databases and their applications in drug design (both structure based drug design and ligand based drug design). The course emphasizes on various software applications useful for biologists and different drug development strategies.

PREREQUISITE – NIL

COU	URSE OBJECTIVES
1	To state the different biological databases available and their various utilities
2	To discuss the applications of the various databases and software which find their utility in drug
2	discovery
3	To describe the algorithms and their basics behind the bioinformatics software.
4	To implement corresponding knowledge for the screening of biologically and clinically active
-	drugs
5	To compare the basic biological knowledge with some programming basics and using them for
5	screening of bioactive molecules.
COL	IRSE OUTCOMES

COURSE OUTCOMES

CO

CO

CO

S

М

L

S

М

L

S

М

L

After the successful completion of the course, learner will be able to

S

М

L

_

М

S

-

-

_

-

-

_

			r												
	Define	-	portan	ce of	biolog	gical o	databa	ises w	vith res	pect to	the nu	icleic a	cids,	Unde	rstand
	. Describ	<u> </u>	drugs	can b	escre	ened t	from a	a data	base ar	nd their	r applio	cations	•	Unde	rstand
	. Sketch discover		ormat	ion cc	ould be	e retri	eved	from	databas	ses wh	ich are	effecti	ive in	Appl	у
CO4	. Discove	er the t	empla	te stru	ucture	requi	ired fo	or hon	nology	mode	ling us	ing BL	AST	Appl	y
CO5	. Conclue	de the	reliabi	lity o	f the p	oroteii	n struc	cture j	predict	ed thro	ough m	odelin	g	Analy	yse
MAI	PPING	WIT	ΗI	PROC	GRAN	IME	01	JTCC	OMES	AN	D Pl	ROGR	AMMI	E SPI	ECIFIC
OUT	COME	5													
CO	PO1	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
CO	L	L	L	L	-	-	-	-	-	L	-	-	L	-	-
CO	M	Μ	M	Μ	-	-	-	L	-	-	-	-	L	_	-

-

-

_

-

-

_

-

-

Μ

_

-

_

_

-

_

L

Μ

Μ

_

-

М

-

-

_

S- Strong; M-Medium; L-Low

SYLLABUS

BIOLOGICAL DATABASES

Introduction to Bioinformatics and Computational Biology, Biological sequences, Biologicaldatabases, Nucleic acid Sequence databases, Protein Sequence databases, structural databases, Primary and secondary databases, Composite databases, Genome specific databases. Data file formats.

SEQUENCE ALIGNMENT

Introduction to sequencealignment & its significance, Types – Global and local, Pairwise sequence alignment andMultiple sequence alignment. Pairwise alignment- Scoring matrices – PAM, BLOSUM. BLAST, PSI BLAST and PHI BLAST, FASTA.

ALGORITHMS FOR SEQUENCE ALIGNMENT

Dynamic programming algorithm for sequence alignment – Global and local alignment, Needleman and Wunsch algorithm, Smith Waterman algorithm. Multiple sequence alignment, ClustalW. Database Searches - BLAST, FASTA, PSI-BLAST, PHI-BLAST.

PROTEIN STRUCTURE

Protein structure –Primary, secondary and tertiary structures, Aminoacids –types, propensity. Ramachandran plot. Motifs, pattern, signatures.Secondary structure prediction methods. Protein tertiary structure, Protein tertiary structure prediction methods - Homology modeling, Ab initio approaches, Threading. Structural classification. Critical Assessment of Structure Prediction (CASP), Molecular docking principles and applications.

PHYLOGENETICS

Introduction to phylogenetics, Phylogenetic tree and its types, Phylogenetic tree prediction methods -Distance method, Maximum parimony method, Maximum likelihood method, UPGMA, Neighbour joining. Tools & softwares for Phylogenetic tree.

TEXT BOOKS

- 1. Arthur K. Lesk, "Introduction to Bioinformatics", Oxford University Press, 4th edition, 2014
- 2. Dan Gusfield, Algorithms on Strings, Trees and Sequences", Cambridge UniversityPress, 1999.
- 3. R.Durbin, S.Eddy, A.Krogh and G.Mitchison, "Biological Sequence Analysis Probabilistic

Models of proteins and nucleic acids", Cambridge University Press, 2013.

4. David W. Mount, "Bioinformatics Sequence and Genome Analysis", Cold Spring Harbor Laboratory Press, 2nd Edition, 2004.

REFERENCES

- M. Michael Gromiha, Protein Bioinformatics: From Sequence to Function, Academic Press, 2010
- D.E. Krane and M.L. Raymer, Fundamental concepts of bioinformatics, Pearson Education Inc. 2006

S.N 0.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
2	Ms.R.Jaisri	Assistant professor	Pharmaceutical Engineering	jaishri.vmkvec@vmrf.edu.in

	Category	L	Т	P	Credit
COMPUTER AIDED DRUG DESIGN	EC-PS	3	0	0	3

The course highlights the importance of drug design using software programs and the fascination of working in a field that overlaps the disciples of chemistry, biology, pharmacy etc. It gives brief understanding about drug-receptor interactions, lead discovery and drug design. The course emphasizes on various programs available s tools for drug design and aid in the process of drug development

COL	JRSE OBJECTIVES	
1	To state the basics of drug design including physicochemical and steric propertie	s of drug.
2	To discuss the chemical structures and importance of various medicinal agents.	
3	To describe the structure activity relationship, biochemical/ molecular basis of m action.	echanism of
4	To implement corresponding knowledge for the design of biologically and clinical drugs computationally	ally active
5	To compare the basic biological and pharmacological interactions of different drustudies leading to design of pharmacophore.	ugs and further
COL	JRSE OUTCOMES	
Afte	the successful completion of the course, learner will be able to	
	. Define the importance of the physical properties of drugs with respect to the ation, solubility and efficacy of drugs	Remember
CO2	. Discuss how drugs are developed and demonstrated the importance of nistry in the development and application of therapeutic drugs.	Understand
	. Illustrate how changes in the chemical structure of drugs affect efficacy.	Apply
CO4	. Practice a working knowledge of chemical structures and nomenclature	Apply
	. Develop the ability to suggest certain design strategies for different drug	Analyse

			-
OUTCO	MES	5	

CO	PO1	PO	РО	PO	PO	PO	PSO	PSO	PSO3						
CO	M	Μ	Μ	Μ	-	-	-	-	-	L	-	-	L	-	-

CO	М	Μ	Μ	Μ	-	-	-	L	-	-	-	-	L	-	-
CO	М	M	Μ	Μ	-	-	-	-	-	-	-	-	L	-	-
CO	M	M	M	Μ	M	-	-	-	-	-	-	-	M	-	-
CO	L	L	L	L	S	-	-	-	-	М	-	-	Μ	Μ	-
a a.		3 6 1'	т	T											

S- Strong; M-Medium; L-Low

SYLLABUS

Drug Discovery

Drug discovery-Strategies and historical developments - Introduction –conventional strategies to drug discovery-molecular mimetic- first and second generation rational approach-Rational drug design-assessment of drug activity.

Pharmacophore in Drug Designing

Pharmacophore – Definition, identification of Pharmacophore features, Pharmacophore modeling-Structure based Pharmacophore modeling, Ligand based Pharmacophore modeling, Pharmacophore Mapping, Pharmacophore based Screening. Conformational search in pharmacophore mapping. Softwares in Pharmacophore modeling and screening

Molecular Modeling, Docking and Screening

Molecular Modeling: Modeling simple molecules. Docking: Intro, Types: Rigid docking, flexible docking, Blind docking, Scoring functions, Docking algorithms. Energy Minimization Methods, comparison between local, global minimum conformation. Virtual screening. Docking and screening softwares – Autodock, Autodock vina.

Molecular Dynamic Simulations

Introduction to Molecular Dynamic Simulations – Force Field, Energy Minimisation, MDS steps: Topology, Solvation, Adding ions, Energy minimization, equilibration, Production of MD run and Analyse results, MDS softwares – GROMACS, AMBER, CHARMM

QSAR

QSAR- Introduction, History and development. SAR versus QSAR, QSAR descriptors. QSAR Model - construction, validation, application. Multidimensional QSAR. Types- 2D QSAR to 6D QSAR. 3D QSAR approaches - COMFA, COMSIA.

TEXT BOOKS

- 1. Patrick Bultinck , Hans De Winter , Wilfried Langenaeker, Jan P. Tollenare, Computational Medicinal Chemistry for Drug Discovery 1st Edition Marcel Dekker Inc. 2004,
- 2. Andrew R. Leach Molecular Modeling Principles and Applications (2nd Ed.). Prentice

Hall ,2009

- 3. Cohen, N.C. "Guide Book on Molecular Modeling in Drug Design", Academic Press / Elsevier, 2006
- 4. Eliel, E.L. "StereoChemistry of Organic Compounds", John Wiley, 1994.

REFERENCES:

- 1. Frenkel, Dean and Berend Smith "Understanding Molecular Simulation: From Algorithms to Applications", 2nd Edition Academic Press, 2002.
- 2. Lee, Mike S. "Integrated Strategies for Drug Discovery using Mass Spectrometry"John Wiley Interscience, 2005.

S.N 0.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.R.Jaisri	Assistant professor	Biotechnology	jaishri.vmkvec@vmrf.edu.in
2	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in

			CE	LL LI	NES A	ND A	NIMA	L CE	LL	C	ategory	L	T	Р	Credit
					CU	LTUR	RE			ŀ	EC-PS	3	0	0	3
PREA	MBL	E													
This c	course	provid	es the	basics	of cel	ll cultu	ire wh	ich is	one of	the ma	ijor too	ls for s	tudyiı	ng the	normal
physic	ology a	nd bio	chemis	stry of	cells, e	effects	of drug	gs and	toxic c	ompour	nds on c	ells.			
PREF	REQUI	SITE	- NIL												
COU	RSE O	BJEC	TIVE	S											
1 7	To prov	ide the	fundan	nentals	of cell	lines ar	nd their	cultiva	tion						
2	To reco	llect the	e funda	mentals	s behind	d anima	ıl cell c	ulture							
3 7	To dem	onstra	te the	charact	eristic	s of ste	em cell	s and c	loning	5					
4 7	To app	ly the 1	nicron	nanipul	lation 1	technol	logy or	n embr	yo's ar	nd in-vi	tro ferti	lization			
5 7	Го арр	araise	the mo	lecular	· diagn	ostic o	f anim	al dise	ases an	nd Trans	genic a	nimal p	roduc	tion	
	RSE O														
On the	e succe	ssful c	omplet	tion of	the co	urse, st	tudents	s will b	e able	to					
CO1.	Unders	tanding	, the fu	ndamer	tals of	cell lin	es and	their cu	ltivatio	n			1	Unders	stand
CO2.	Unders	tanding	g the ba	sics of	animal	cell cul	lture						1	Unders	stand
CO3.	Apply	stem c	ells an	d clon	ing tec	hnique	s for tl	herape	utic ap	plication	ns		1	Apply	
CO4 .	Apply	the m	icroma	nipula	tion te	chnolo	gy on	embry	o's and	l in-vitre	o fertiliz	zation		Apply	
CO5.	Analyz	zing th	e cause	es of ar	nimal c	lisease	s						1	Analys	e
MAP	PING	WITH	PRO	GRAN	IME (DUTC	OMES	S AND	PRO	GRAM	ME SP	ECIFIC	COU	TCON	AES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO	2 PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	L	M	-
CO2	М	М	L	-	-	-	-	-	-	-	-	-	М	М	-
CO3	M	М	М	L	L	-	-	-	-	-	-	-	L	М	-
CO4 CO5	S	- M	S M	- L	M M	-	-	-	-	-	-	-	L	- M	L
	-				I IVI	-	-	-	-	-	-	-	-	I M	-

SYLLABUS

CELL LINES

Culturing of cells– Primary and secondary cell lines – Genetics of cultured cells – Scaling up in suspension –Monolayer culture – Bio-reactors used for animal cell culture –Roller bottle culture– Bioreactor process control – Stirred animal cell culture –Air-lift fermentor, Chemostat/Turbidostat– Cell lines and their applications.

ANIMAL CELL CULTURE

Introduction to basic tissue culture techniques; chemically defined and serum free media; animal cell

cultures, their maintenance and preservation; various types of cultures suspension cultures, continuous flow cultures, immobilized cultures; somatic cell fusion; cell cultures as a source of valuable products; organ cultures.

STEM CELL AND CLONING

Characteristics of ES cells –Types of stem Cells – ES cell research–In vitro derivation of gametes – Maintenance of stem cells in culture and applications – Somatic cell nuclear transfer –Gene expression of pluripotent cells –Cellular reprogramming –Induced pluripotency– Cloning techniques in animals and therapeutic cloning.

MICROMANIPULATION OF EMBRYO'S

Micromanipulation technology; equipments used in micromanipulation; enrichment of x and y bearing sperms from semen samples of animals; artificial insemination and germ cell manipulations; in vitro fertilization and embryo transfer; micromanipulation technology and breeding of farm animals.

ANIMAL DISEASES AND THEIR DIAGNOSIS

Bacterial and viral diseases in animals; monoclonal antibodies and their use in diagnosis; molecular diagnostic techniques like PCR, in-situ hybridization; northern and southern blotting; RFLP.

TEXT BOOKS:

- 1. Ranga M.M. Animal Biotechnology. Agrobios India Limited, 2002
- 2. Ramadass P, Meera Rani S. Text Book Of Animal Biotechnology. Akshara Printers, 1997.
- 3. R.Ian Freshney Culture of Animal ceas, A Manual of basic technique 4th Edition 2002.

REFERENCES:

1. Masters J.R.W. Animal Cell Culture: Practical Approach. Oxford University Press, 2000

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. A. Arunagiri	Assistant Professor	Pharmaceutical	arunagiri@vmkvec.edu.in
	WII. A. Alunagili	A5515tant 110105501	Engineering	
2	Ms. S. Sowmiya	Assistant Professor	Pharmaceutical	sowmiya@vmkvec.edu.in
	wis. S. Sowilliya	Assistant FIOICSSOI	Engineering	

			BI	OPR	OCES	S EOI	UIPM	ENT		Cate	gory	L	T	P	0	redit
						SIGN				EC	-PS	3	0	0		3
PRE	AMBL	E														
The c	ourse a	ims to	deal v	with p	rocess	and m	nechan	ical de	esign, e	ngineer	ring drav	wing of	various	s equi	pment	s.
PRE	RQUIS	SITE -	NIL													
COU	RSE C)BJE(CTIVE	ËS												
1	To desi	gn the	plant	layou	t, selec	ction a	nd fab	ricatio	on of pla	ant proc	cess equ	ipments				
2	To dis	cuss th	ie fund	lamen	tal prin	nciples	s and c	lesign	layout	of Heat	exchan	ger, Cor	ndensoi	r and	Reboi	lers
3	To disc	uss de	sign c	onside	eration	ofequ	uipmer	nts like	e Evapo	orators,	Cooling	g towers	etc.			
4	To desi	gn Ab	sorptio	on, Ex	tractic	on and	distill	ation o	column							
5	To disc	uss th	e desig	gning	of pres	sure v	vessels	, Stora	ige vess	sels and	Bioread	ctors.				
COU	RSE C	OUTC	OMES	5												
After	comple	etion o	of cour	se, stu	ident v	vill be	able to	0,								
CO1.	Apply	the sk	ills in	therm	al desi	gn of	heat tr	ansfer	equipn	nent lik	e shell a	and tube	,		Appl	y
			-	-	-	porato	rs, and	l asses	sing the	ermal et	fficiency	y of				
	bove eq		-				<u>(</u> Г									1
	Outlin	e gene		sign co	onside	rations	S OI EV	apora	tor, Dry	ers etc.	•				Appl	y
	Apply bsorpti		•	s invol	ved in	phase	e separ	ation a	and des	ign of c	listillatio	on, Extra	action		Appl	у
	•			e for d	esigni	ng the	proce	ss equ	ipment	and im	portant	paramet	ers of		Anal	vse
	layout		C		C	C						•				-
			•				-			neters fo	or pressu	are vesse	els and		Anal	yse
	anical s	^			-									maa		
			1			1		-	1	-	1	SPECIF	1			
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO9	PO1	PO11	PO1	PSO		PSO	PSO3
CO1	M M	M L	L M	L M	L L	L L	S S	- S	-	-	M	L M	- L		M M	L M
	11/1		M	M			S	S	-	-	-	M	L		M	M
CO2	M	L	I IVI		. =		1		1	1	1	1			-	
CO2 CO3 CO4	M L	L M	M	M	M	L	M	M	-	-	М	-	Μ		S	-

SYLLABUS

INTRODUCTION TO PLANT LAYOUTS

Design of Plant Layout- Pipelines and Pipe Layouts- Schematics and Presentation Materials of Construction and Selection of process equipment

FUNDAMENTALS OF DESIGN EQUATIONS AND DRAWING

Fundamental principles-general design equations and drawing considerations of Heat Exchangers-Condensers-reboilers.

DESIGN CONSIDERATIONS OF EQUIPMENTS

General design and drawing considerations of Cooling Tower, cooling coil, evaporators, Dryers, economic evaluation.

PROCESS EQUIPMENT DESIGN

Process equipment design of Absorption column, Distillation Column, bubble cap tray column, Extraction Column, Adsorption column.

BIOREACTOR AND FERMENTOR DESIGN

Packed Bed Reactors, Plug flow reactor, Continuous stirred tank reactor, Pressure Vessel, Storage Vessel and Fermenter.

TEXT BOOKS:

- Green D. W., "Perry's Chemical Engineer's Handbook", 8th Edition McGraw Hill, 2007
- 2. M. V. Joshi and V. V. Mahajan, "Process Equipment Design", 3rd Edition, MacMillan India Ltd., 1996.

REFERENCES:

- 1. 1. Baranan, C.R., "Rules of Thumb for Chemical Engineers", Gulf Publishing Co, Texas, 1996.
- 2. R. K. Sinnott, "Coulson & Richardson's Chemical Engineering", Vol. 6, Butterworth Heinemann, Oxford, 1996.
- 3. Dawande, S. D., "Process Design of Equipments", 4th Edition, Central Techno Publications, Nagpur, 2005.
- 4. Coulson and Richardson's., "Chemical Engineering Design Volume 6", Pergamon; 2nd edition,1991

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.R.Durga Shree	Assistant Professor	Pharmaceutical Engineering	durgashree@vmkvec.edu.in

		INUI	VIEINI	ATI	ON A	ND P	ROC	ESS	Catego	ory]		P	Credit
			C	CONT	ROL	1		F	EC-P	s :	3 0	0	3
PREAMBLE													
To familiarize th	ie stude	ents wi	th con	cepts	of pro	ocess (lynam	ics and	l contro	l leadin	g to co	ntrol	
ystem design.	This cou	ırse al	so intr	oduce	es dyr	amic	respoi	nse of o	open an	d closed	d loop s	systems	, contro
oop component	s and st	ability	v of con	ntrol s	systen	ns aloi	ng wit	h instru	ımentat	ion.			
PREREQUISI	re - Ni	L											
COURSE OBJ	ECTIV	ES											
To Discu	ss the b	asic p	rincipl	es of	instru	menta	tion.						
To Demo	nstrate	the pr	ocess r	necha	anism	invol	ved in	open le	oop syst	tem.			
To Perfo	m feed	back c	control	proce	ess.								
- To Const	ruct fre	quenc	y respo	onse f	or bo	th feed	lback	and not	n-feedb	ack sys	tem.		
To Outlin	ne advai	nced c	ontrol	syste	m ove	er diffe	erent p	rocess	in phar	maceuti	ical ind	ustry.	
COURSE OUT	COMF	ES											
After the succes	sful cor	npleti	on of tl	he coi	urse, l	earnei	will will	be able	to				
CO1. Describe t	he basic	c princ	ciples &	& imp	ortan	ce of j	oroces	s contro	ol in inc	lustrial		Unde	rstand
process pl		1	1	1									
CO2. Generalize	the rec	quired	instru	menta	tion a	nd fin	al ele	ments t	o ensur	e that w	vell-	Apply	/
tuned cont													
CO3. Illustrate t	_					-				r the ef	ficient	Apply	/
design of the construction design of the constru						U				relevat	nt to	Apply	J
			requen		spons	, una	0 11101	en ar a c		1010 (01	10 00		
	ntrol			rocess	s cont	rol sys	stems	to indu	strial pr	ocess.		Analy	/se
process cc CO5. Develop d		nd ope	erate pi										
process co CO5. Develop d		-	erate pr			UTC	OME	S AN	ND P	ROGR	AMM	É SP	ECIFIC
process co CO5. Develop d	esign a	-	-			OUTC	OME	S AN	ND P	ROGR	AMM	E SP	ECIFIC
process cc CO5. Develop d	esign ai VITH	-	OGRA			PO8	OME PO9	S AN PO10	ND P PO11	ROGR	AMM PSO1	E SP	PSO3
process cc CO5. Develop d MAPPING V DUTCOMES COS PO1 PO2 CO1 L -	esign an VITH PO3 L	PO4 L	PO5 L	MMI	E C		PO9 -			PO12	PSO1	PSO2	
process co CO5. Develop d MAPPING V DUTCOMES COS PO1 PO2 CO1 L - CO2 M M	PO3 L L	PO4 L M	PO5 L L	MM PO6 - -	E C PO7	PO8 L -	PO9 - L		PO11 - -	PO12 - L	PSO1 - L	PSO2 - L	PSO3 - -
process co CO5. Develop d MAPPING V DUTCOMES COS PO1 PO2 CO1 L - CO2 M M	esign an VITH PO3 L	PO4 L	PO5 L	MMI	E C PO7	PO8	PO9 -			PO12	PSO1	PSO2	

pressure, fluid flow, liquid weight and weight flow rate, viscosity, pH, concentration, electrical and thermal conductivity, humidity of gases.

OPEN LOOP SYSTEMS

Laplace transformation, application to solve ODEs. Open-loop systems, first order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag.

CLOSED LOOP SYSTEMS

Closed loop control systems, development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, principles of pneumatic and electronic controllers, transient response of closed-loop control systems and their stability

FREQUENCY RESPONSE

Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, bode diagram, stability criterion, tuning of controller settings.

ADVANCED CONTROL SYSTEMS

Introduction to advanced control systems, cascade control, feed forward control, Smith predictor controller, control of distillation towers and heat exchangers, introduction to computer control of chemical processes

TEXT BOOKS

- 1. Stephanopoulos, G., "Chemical Process Control ", Prentice Hall of India, 2003.
- Coughnowr, D., "Process Systems Analysis and Control ", 2ndEdn., McGraw Hill, New York, 1991.

REFERENCES

- 1. Marlin, T. E., "Process Control ", 2ndEdn, McGraw Hill, New York, 2000.
- Smith, C. A. and Corripio, A. B., "Principles and Practice of Automatic Process Control", 2nd Edn., John Wiley, New York, 1997.

coens	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Ms.R.Durga Shree	Assistant Professor	Pharmaceutical Engineering	durgashree@vmkvec.edu.in

CHEMICAL DEACTION ENCINEEDING	Category	L	Т	Р	Credit	
CHEMICAL REACTION ENGINEERING	EC-PS	3	0	0	3	

Chemical reaction engineering course covers the basic concepts of types of reactions, variable affecting the rate of reaction, predicting the rate equations for different types of reactions and also to study about different reactor systems, deriving the performance equations and predicting the rate equations in chemical reaction engineering system.

PREREQUISITE

NIL

COURSE OBJECTIVES

To Define chemical reactors and reaction systems. 1

To Discuss about biodiversity in marine environment and their resources 2

To Outline the conversion and yield for chemical reactions. 3

To Develop the appropriate selection technique for intended problem. 4

To Learn conceptual design of separation processes and design of equipment involved. 5

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Recall the algorithm that allows the student to solve chemical engineering	Remember
through logic rather than memorization.	
CO2. Describe the steps in a catalytic mechanism and how those about deriving a rate	Understand
law, mechanism and rate limiting step that are consistent with experimental	
data.	

CO3. Calculate the reaction order and specific reaction rate from experimental data.	Analyse
CO4. Assess the separation system for multi component mixtures.	Evaluate
CO5. Design separation system for the effective solution of intended problem.	Create

CO5. Design separation system for the effective solution of intended problem.

WITH PROGRAMME OUTCOMES AND **PROGRAMME** MAPPING SPECIFIC **OUTCOMES**

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2	PSO3
CO1	S	M	S	S	-	-	-	-	-	-	-	L	L	L	-
CO2	S	M	S	S	-	-	-	-	-	-	-	L	L	L	-
CO3	M	L	M	Μ	-	-	-	-	-	-	-	-	-	-	-
CO4	L	L	L	L	-	-	-	-	-	-	-	-	L	М	-
CO5	S	М	L	L	-	-	-	-	-	-	-	S	S	М	-

S- Strong; M-Medium; L-Low

SYLLABUS

CHEMICAL KINETICS

Introduction to chemical kinetics, rate equation, concentration dependent term of a rate equation: single and multiple reaction. Elementary and non- elementary reactions. Molecularity and order, theories of reaction rate and temperature dependency.

IDEALREACTORS

Batch Reactor-Constant Volume, Variablevolumebatch reactor-Batch Reactor data for typical reactions-integral and differential method of analysis. Performance Equations for Single Batch reactor, Ideal CSTR, Ideal PFR.

SINGLEANDMULTIPLEREACTIONS

Design for single reaction: size comparison of single reactors, multiple reactor system, pfrin series/parallel, equal size mfrin series, Recycle reactor, introduction to multiple reactions, qualitative analysis of product distribution.

NON-IDEALREACTORS

Residence time distribution as a factor performance, residence time function and relationship between them in reactor, basic models for non ideal reactor like dispersion model, tanks in series model.

HETEROGENEOUSREACTIONS

Fluid particle reactions: selection of a model, unreacted core models for spherical particles, determination of the rate controlling step. Catalyst preparation, surface area and pore volume measurements: promoters, poisons.

TEXTBOOKS

- 1. Octave Levenspiel, Chemical Reaction Engineering, John Wiley and sons. 3rd Edition, 1999.
- 2. Gavhane K.A., Chemical Reaction Engineering I, Nirali Prakashan Publishers, 2009.

REFERENCES

- 1. Foggler H.S., Elements of chemical reaction engineering, Prentice Hall Publishing Co. 4th Edition, 2006.
- 2. Smith J.M., Chemical Engineering Kinetics, McGraw-Hill Inc 2003.
- 3. Narayanan, K.V., 2001. A Text Book of Chemical Engineering Thermodynamics, Prentice Hall India.
- 4. Smith, J.M., Van Ness, H.C. and Abbot, M.M., 2001. Chemical Engineering Thermodynamics. 6th Edn., McGraw- Hill.
- 5. Irving J. Dunn and Zurich, 2003. Biological Reaction Engineering. John Wiley and Sons.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms. R. Durga Shree	Assistant Professor	Pharmaceutical Engineering	durgashree@vmkvec.edu.in
2	Dr. P. David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.ed u.in

				IM	MUN	OTEC	HNO	LOGY			Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREA	MBLI	E													
Knowl	edge o	n the	fundar	nental	s of in	muno	logy fo	orms th	e basis	of the co	ourse imr	nunotecł	nology	which de	eals wit
the pra	ctical	aspect	s such	as the	produ	ction a	and en	gineeri	ng of aı	ntibodies	, the app	lication	of antige	ns, the c	lesign o
(recom	binant) vacc	ines, s	trategi	es for	immur	ne inte	rventio	n, etc.						
PRER	EQUI	SITE	- NIL												
COUR	SE O	BJEC	TIVE	S											
1	To ur	ndersta	and the	e struct	ure, fu	inction	s and	integrat	tion of i	mmune	system				
2	To ex	plain	the and	tigen-a	intibod	ly inter	raction	is that o	offers de	efense m	echanism	1			
3	To de	emonst	trate al	bout re	gulati	ons of	immu	ne syste	em						
4	To re	To relate the therapeutic techniques in immunotechnology													
5	To pr	actice	immu	ne tecl	nnique	s.									
COUR	SE O	UTCC	OMES												
On the	succes	ssful c	omple	tion of	the co	ourse, s	studen	ts will ł	be able	to					
CO1. U	Unders	tand tł	ne imp	ortanc	e of in	nmune	syster	n.					Und	erstand	
CO2. I	Describ	e aboi	ut type	es of in	nmuni	ty and	immu	noglobi	ulins				Und	erstand	
CO3. I	llustrat	te how	[,] immu	ine reg	gulation	n is ma	aintain	ed					App	ly	
CO4. F	Relate	the var	rious te	echniq	ues of	therap	eutica	lly sign	ificant	monoclo	nal and e	ngineere	d App	ly	
antiboo															
CO5. A													Ana	•	
											1E SPEC				
COS	PO1		PO3			PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	M	L	-	-	-	-	-	-	L	M	М	М
CO2	М	М	М	M	М	-	-	-	-	-	-	L	М	М	М
CO3	S	М	М	M	L	-	-	-	-	-	-	L	М	М	М
CO4	S	М	М	М	S	-	-	М	-	-	-	S	М	М	S
CO5	М	М	М	М	М	-	-	М	-	-	-	М	М	М	М
S- Stro	ng; M	-Medi	um; L-	Low											
SYLL	ABUS														
								IDODI		D IMM			-		

Cells and organs of the immune system and their development – Primary and secondary lymphoid organs – Antigen, Antibody – Structure, Production of antibodies – Polyclonal, monoclonal – Hybridoma technology. Antibody – Isolation, identification, Validation and their use. Engineered antibodies – Catalytic antibodies, idiotypic antibodies, plantibodies – Combinatorial libraries for antibody isolation. Humoral immune response – Cell mediated immune responses- Homeostasis in immune system – Complement.

IMMUNITY AND ITS TYPES

Types of immunity, Active and Passive Immunity, Humoral Immunity - B – Lymphocytes and their activation. Structure and function of immunoglobulins, idiotypes and anti idiotypic antibodies. Cell mediated Immunity -Thymus derived lymphocytes (T cells) – their ontogeny and types, MHC complex, antigen presenting cells (APC), mechanisms of T cell activation, macrophages, dendritic cells, langerhans cells, and mechanism of phagocytosis.

IMMUNE REGULATION AND TOLERANCE

Complement activation and types and their biological functions, cytokines and their role in immune response, Antigen processing and presentation. Primary and Secondary Immune response; Generation of Humoral Immune Response; Generation of cell mediated Immune response (T cell activation, co-stimulatory signals); Killing mechanisms by CTL and NK cells, Hypersensitivity Types I-IV, Hypersensitivity reactions and treatment.

IMMUNOLOGICAL TECHNIQUES

Affinity and Avidity; Principles of Precipitation, Agglutination reactions, Immunodiffusion, Immunoelectrophoresis, principles and application of ELISA, ELISPOT, Western Blotting, Immunofluorescence, Flow cytometry and Immunoelectron Microscopy, complement fixation, Widal test, VDRL test, immunoblot analysis. Immunohistochemistry, Radio Immuno Assay, chemiluminescence assay.

IMMUNOTHERAPY

Cancer immunotheraphy and Immunosupressive therapy – Cytokine therapy – Immunoglobulin therapy: Replacement and immunomodulators – Gene transfer techniques for immunological diseases- Gene therapy for childhood immunological diseases.

TEXT BOOKS

- Lydyard, P. M., Whelan, A. and Fanger, M. W., 2003. Instant Notes in Immunology. Viva Books Private Limited, 2nd Edition.
 - 2. Talwar, G. P., and Gupta, S. K., 1992. A Handbook of Practical and Clinical Immunology. CBS Publications, Volume I and II.
 - 3. Weir, D. M., 1990. Practical Immunology. Blackwell Scientific Publications, Oxford.

REFERENCES

- Judith A. Owen, Jenni Punt and Sharon Stranford, "Kuby Immunology", W.H. Freeman and Company, 7th Edition, 2013.
- Gerd-Rudiger Burmester, Antonio Pezzutto and Jurgen Wirth, "Color Atlas of Immunology", Thieme Medical Publishers, 1st Edition, 2003.
- Emily P. Wen, Ronald Ellis and Narahari S. Pujar, "Vaccine Development and Manufacturing" Wiley, 1st Edition, 2014.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical	sowmiya@vmkvec.edu.in
			Engineering	

CO M M M L L M L M L L L L S S CO M M M M L L M L L L L S S CO M M M L L M L M L L L S CO S S S S L L M L M L L L S CO S S S S L L M L M L L L S CO M M M M S S S M S S M			МО	LECI		2 рн.	ARM	ACFI	TIC	Ca	ategory	L	Т	P	Credit	
This course is designed to promote high quality research advancing the understanding of pharmaceuties the molecular level while providing a forum for research among the fields of physical and pharmaceuties chemistry, biochemistry, molecular and cell biology and materials science focused on drug delivery. PRERQUISITE- NIL COURSE OBJECTIVES 1 To recognize various approaches for development of novel drug delivery systems 2 To discuss the criteria for selection of drugs and polymers for novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to COL. Coose various approaches for development of novel drug delivery systems. Understand COURSE OUTCOMES After the successful completion of the course, learner will be able to COL . Choose various approaches for development of novel drug delivery systems. Understand COURSE OUTCOMES COURSE OUTCOMES Understand COURSE out Understand COURSE out Understand COURSE OUTCOMES Colspan="2"Courterial for selection 			MO	LEC	ULAI	N I II /		ACEU			C-PS	3	0	0	3	
the molecular level while providing a forum for research among the fields of physical and pharmaceutic chemistry, biochemistry, molecular and cell biology and materials science focused on drug delivery. PRERQUISITE- NIL COURSE OBJECTIVES 1 To recognize various approaches for development of novel drug delivery systems 2 To discuss the criteria for selection of drugs and polymers for novel drug delivery 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for novel drug delivery Analyze CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze <td co<="" td=""><td>PREAMBL</td><td>E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>PREAMBL</td> <td>E</td> <td></td>	PREAMBL	E													
chemistry, biochemistry, molecular and cell biology and materials science focused on drug delivery. PRERQUISITE- NIL COURSE OBJECTIVES 1 To recognize various approaches for development of novel drug delivery systems 2 To discuss the criteria for selection of drugs and polymers for novel drug delivery 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze CO PO PO1 PO1	This course i	s desi	igned	to pro	note h	igh qu	ality 1	researcl	h adva	ncing t	he unde	rstandi	ng of pl	narmac	eutics at	
PRERQUISITE- NIL COURSE OBJECTIVES 1 To recognize various approaches for development of novel drug delivery systems 2 To discuss the criteria for selection of drugs and polymers for novel drug delivery systems. 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development of NTDS Apply CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze COVES MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COM M M M M M L L M L M L M L L S S - - CO M M M M M M M M M M S - S - S - S M S S N	the molecula	r leve	el whil	e prov	iding	a foru	m for	researc	h amo	ng the	fields of	physic	cal and j	pharma	ceutical	
COURSE OBJECTIVES 1 To recognize various approaches for development of novel drug delivery systems 2 To discuss the criteria for selection of drugs and polymers for novel drug delivery 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS Analyze Analyze CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO M M M L M L M L L S -	chemistry, bi	locher	mistry	, mole	cular a	and ce	ll biol	ogy and	d mate	rials sc	ience fo	cused	on drug	delive	ry.	
1 To recognize various approaches for development of novel drug delivery systems 2 To discuss the criteria for selection of drugs and polymers for novel drug delivery 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Of NTDS CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze COVTCOMES MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PS	PRERQUIS	ITE-	NIL													
2 To discuss the criteria for selection of drugs and polymers for novel drug delivery 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS CO4.Appraise the different formulation techniques for novel drug delivery Analyze CO4.Appraise the formulation and evaluation of novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze COVENES CO PO PO1 PO1	COURSE O	BJE	CTIV	ES												
2 To discuss the criteria for selection of drugs and polymers for novel drug delivery 3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS CO4.Appraise the different formulation techniques for novel drug delivery Analyze CO4.Appraise the formulation and evaluation of novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze COVENES CO PO PO1 PO1	1 To reco	gnize	vario	us apr	roach	es for	develo	opment	ofnov	vel drug	g deliver	v svste	ems			
3 To outline the formulation and evaluation of novel drug delivery systems. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development of NTDS Apply CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze COM M M M M M L L M L M L L L S S CO PO PO PO PO PO PO PO PS PS PS CO PO PS PS <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_														
OURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze CO PO PO PO PO PO PO PO PO PO PO1 PO1 PO1							-	-	-			-	/Cly			
After the successful completion of the course, learner will be able to Understand CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS Analyze CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO M M M L M L M L L S - - CO M M M L L M L L S - -						evalua		or nover	arug	denver	y system	15.				
CO1. Discuss the mechanism of drug actions at cellular and molecular level. Understand CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development Apply of NTDS CO4.Appraise the different formulation techniques for novel drug delivery systems. Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze CO PO PO PO PO PO PO PO PO PSO PSO CO M M M L L M L L S - - CO S S S L M L M L L S - -																
CO2. Choose various approaches for development of novel drug delivery systems. Understand CO3.Generalize the criteria for selection of drugs and polymers for the development of NTDS Apply CO4.Appraise the different formulation techniques for novel drug delivery Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze CO PO				-										1		
CO3.Generalize the criteria for selection of drugs and polymers for the development Apply Apply CO3.Generalize the criteria for selection of drugs and polymers for the development Apply Apply CO3.Generalize the criteria for selection of drugs and polymers for the development Apply CO4.Appraise the different formulation techniques for novel drug delivery Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PO PO PO PO PO PO PSO PSO PSO CO M M M L L M L L L S S - - CO M M M L L M L L L S - - - CO PO PO PO PO PO PO PO PO PO - - - - - - -	CO1. Discus	s the	mecha	anism	of dru	g actio	ons at o	cellular	and n	nolecul	ar level.			Unde	rstand	
OF NTDS OF NTDS CO4.Appraise the different formulation techniques for novel drug delivery Analyze CO4.Appraise the different formulation techniques for novel drug delivery systems. CO5.Examine the formulation and evaluation of novel drug delivery systems. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO CO <td c<="" td=""><td>CO2. Choose</td><td>e vari</td><td>ous ap</td><td>proac</td><td>hes for</td><td>r devel</td><td>lopme</td><td>nt of no</td><td>ovel di</td><td>rug deli</td><td>very sys</td><td>stems.</td><td></td><td>Unde</td><td>rstand</td></td>	<td>CO2. Choose</td> <td>e vari</td> <td>ous ap</td> <td>proac</td> <td>hes for</td> <td>r devel</td> <td>lopme</td> <td>nt of no</td> <td>ovel di</td> <td>rug deli</td> <td>very sys</td> <td>stems.</td> <td></td> <td>Unde</td> <td>rstand</td>	CO2. Choose	e vari	ous ap	proac	hes for	r devel	lopme	nt of no	ovel di	rug deli	very sys	stems.		Unde	rstand
CO4.Appraise the different formulation techniques for novel drug delivery Analyze Analyze CO5.Examine the formulation and evaluation of novel drug delivery systems. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PSO PSO PS CO M M M L L M L M L L L S S - - - CO M M M L L M L M L L S S - - - CO M M M L L M L L L S -	CO3.General	lize tł	ne crite	eria fo	r selec	tion o	f drug	s and p	olyme	ers for t	he devel	opmen	ıt	Apply	Y	
COSExamine the formulation and evaluation of novel drug delivery systems. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO	of NTDS															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOPOPOPOPOPOPOPO1PO1PO1PSOPSOPSCOMMMLLMLMLLLSS-COMMMLLMLMLLLSCOMMMMLLMLMLLSCOSSSSLLMLMLLLSCOMMMMMS-S-SMSSN	CO4.Apprais	se the	differ	ent for	rmulat	ion teo	chniqu	ues for 1	novel	drug de	livery			Analy	/ze	
COPOPOPOPOPOPOPOPOPOPO1PO1PO1PO1PSOPSOPSOPSOCOMMMMLLMLMLLLLSS-COMMMMLLMLMLLLSCOSSSSLLMLMLLLSCOMMMMMS-S-SMSSM	CO5.Examin	e the	formu	lation	and e	valuat	ion of	novel a	drug d	elivery	systems	5.		Analy	/ze	
COPOPOPOPOPOPOPOPOPOPO1PO1PO1PO1PSOPSOPSOPSOCOMMMMLLMLMLLLLSS-COMMMMLLMLMLLLSCOSSSSLLMLMLLLSCOMMMMMS-S-SMSSM																
CO M M M L L M L M L L L S S - CO M M M M L L M L L L S S - - CO M M M L L M L M L L L S S - - CO M M M L L M L M L L L S - - - CO S S S S L L M L M L L L S - - - CO M M M M S - S - S M S S M CO M M M M S - S - S M S S M	MAPPING	WIT	H PRO	OGRA				AES AI	ND PI				IFIC O			
CO M M M L L M L M L M L M L L L S CO S S S S L L M L M L L L S CO S S S S L L M L M L L L S CO M M M M S S S M S S N	CO PO	PO	PO	PO	РО	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	
CO S S S L L M L M L L L S - - CO M M M M M S - S - S - <td>CO M</td> <td>М</td> <td>М</td> <td>Μ</td> <td>L</td> <td></td> <td>М</td> <td></td> <td>М</td> <td></td> <td>L</td> <td></td> <td>S</td> <td>S</td> <td>-</td>	CO M	М	М	Μ	L		М		М		L		S	S	-	
CO M M M M S - S - S M S S M	CO M	M	М	М	L	L	М	L	М	L	L	L	S	-	-	
	CO S	S	S	S	L	L	М	L	М	L	L	L	S	-	-	
CO M M M M S - S M S S N	CO M	М	М	М	М	М	S	-	S	-	S	М	S	S	M	
	CO M	М	М	M	М	Μ	S	-	S	-	S	М	S	S	M	

SYLLABUS

TARGETED DRUG DELIVERY SYSTEMS

Concepts, Events and biological process involved in drug targeting. Tumor targeting and Brain specific delivery.

TARGETING METHODS

Introduction preparation and evaluation. Nano Particles & Liposomes: Types, preparation and evaluation.

MICRO CAPSULES / MICRO SPHERES

Types, preparation and evaluation, Monoclonal Antibodies; preparation and application, preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes.

PULMONARY DRUG DELIVERY SYSTEMS

Aerosols, propellents, Containers types, preparation and evaluation, Intra Nasal Route Delivery systems; Types, preparation and evaluation.

NUCLEIC ACID BASED THERAPEUTIC DELIVERY SYSTEM

Gene therapy, introduction (ex-vivo & in-vivo gene therapy). Potential target diseases for gene therapy (inherited disorder and cancer). Gene expression systems (viral and non-viral gene transfer). Liposomal gene delivery systems. Biodistribution and Pharmacokinetics. Knowledge of therapeutic antisense molecules and aptamers as drugs of future.

TEXT BOOKS

- Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. S.P.Vyas and R.K.Khar, Controlled Drug Delivery concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002.
- N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997, (reprint in 2001).

REFERENCES

- 1. Schreier H., Drug Targeting Technology Physical, Chemical and Biological Methods, Marcel Dekker, New York.
- 2. Roland A., Particulate Carriers: Therapeutic Applications, Marcel Dekker, New York.

S.	Name of the Faculty	Designation	Department	Mail ID					
No.									
1	Ms. R. Jaishri	Assistant professor	Pharmaceutical	jaishri@vmkvec.edu.in					
			Engineering						

										Categ	gory	L	Т	P	Credit
				EN	ZYM	OLO	GY			EC-	PS	3	0	0	3
PRE	AMB	LE													
Enzy	me E	ngine	ering	is the	e pro	cess o	of des	signing	g and	modif	ying e	nzyme	s struc	tures	by altering
															unctions of
															structure of
					nt use	eful ro	les in	cludir	ıg enh	anced	catalyt	tic activ	vity, dr	ug dis	covery and
diagn	nostic	applic	cation	s.											
PRE	REQ	UISIT	ГЕ												
NIL															
COU	IRSE	OBJI	ECTI	VES											
	To des	scribe	diffe	rent c	lasses	of en	zyme	s and t	heir c	haracte	ristics				
2 -	To gei	nerali	ze enz	zyme i	inhibi	tion w	vith ex	kample	es						
3 '	To illı	istrate	e mecl	hanisr	n and	kineti	ics of	enzyn	ne acti	on					
4										n cells					
-			-			-				enzym	les.				
	RSE									j					
After	the su	uccess	sful co	omple	tion o	f the	course	e, leari	ner wi	ll be at	ole to				
CO1.	Class	sify er	nzyme	es and	elabo	orate t	he cha	aracter	ristics	of enzy	mes.			Unde	erstand
$\overline{CO2}$	Dem	onstra	ate the	mecl	nanisr	nofe	nzvm	e inhił	oition	and en	zvme			Unde	erstand
	biliza			, 111001	iwiiioi			•						Chae	
CO3.	Exen	nplify	funda	ament	al kno	wled	ge abo	out en	zyme	kinetic	s and r	nechan	ism	Unde	erstand
			e actio				0		5						
CO4.	Illust	rate a	bout t	the reg	gulatio	on and	l mec	hanisn	n of ei	nzymes	in cel	ls.		Appl	у
CO5	Conc	lude i	the an	nlicat	ions c	fvari		nzume	e in ir	dustrie	s & its	e clinic	<u>a</u> 1	Anal	
005.	use.	luue	ine ap	pnear		vi vali	ous ci	IIZyIIIC	,5 III II.	luusuik	.5 cc 113	s chine	ai	Allal	yzc
			/ITH	PR	OGR	AMN	IE (OUTC	COME	ES A	ND]	PROG	RAMN	ИЕ	SPECIFIC
			DO2	DO4	DOS	DOC	DO7	DOQ	DOO	DO10	DO11	DO12	DCO1	DEOD	DEO2
COS CO1	PO1 S	PO2 L	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
$\frac{CO1}{CO2}$	S	L M	- L	-	-	-	-	-	-	-	-	-	-	-	-
CO2 CO3	S	S	M	-	_	-	-	-	-	-	-	-	-	-	-
CO4	S	-	-	-	M	-	-	-	-	-	-	L	S	M	-
CO5	S	S	-	-	L	-	-	-	-	-	-	-	S	M	-
			edium	. T T										1	

SYLLABUS

INTRODUCTION

General introduction and historic background- General Terminology, Nomenclature and Classification of Enzymes. Criteria of purity of enzymes- Specific activity. Enzyme units-Katal and IU. Enzyme activity- chemical nature of enzymes. Protein nature of enzymes and Non protein enzymes- Ribozymes and DNAzymes. Metalloenzymes and metal activated enzymes. Coenzymes and Cofactors- Prosthetic group, coenzymes involved in different metabolic pathways. Classification of coenzymes. Isozymes, Abzymes, Synzyme.

ENZYME CATALYSIS AND INHIBITION

Lock and key, Induced fit and Transition state Hypotheses. Mechanism of enzyme catalysis- Acidbase catalysis, covalent catalysis, Metal ion catalysis, Proximity and orientation effects etc. Mechanism of Serine proteases. Reversible Inhibition- Competitive, Non Competitive, Uncompetitive, Mixed, Substrate, Allosteric and Product Inhibition. Irreversible Inhibition- Suicide inhibition. Examples and Mechanism of various Inhibitions like Penicillin, Iodoacetamide and DIPF.

ENZYME KINETICS

Factors affecting the enzyme activity- Concentration, pH and temperature. Kinetics of a singlesubstrate enzyme catalyzed reaction, Michealis-Menten Equation, Km, Vmax, L.B Plot, Turnover number, Kcat. Kinetics of Enzyme Inhibition. Kinetics Allosteric enzymes.

ENZYME REGULATION

Feedback Regulation, Allosteric Regulation, Reversible Covalent Modification and Proteolytic Activation. Organization of enzymes in the cell. Enzymes in the cell, localization, compartmentation of metabolic pathways, enzymes in membranes, concentrations. Mechanisms of enzyme degradation, lysosomal and nonlysosomal pathways, examples.

INDUSTRIAL AND CLINICAL USES OF ENZYMES (APPLIED ENZYMOLOGY)

Industrial Enzymes- Thermophilic enzymes, amylases, lipases, proteolytic enzymes in meat and leather industry, enzymes used in various fermentation processes, cellulose degrading enzymes, Metal degrading enzymes. Clinical enzymes- Enzymes as thrombolytic agents, Anti-inflammatory agents, streptokinase, asparaginase, Isoenzymes like CK and LDH, Transaminases (AST, ALT), Amylases, Cholinesterases, Phosphatases. Immobilization of enzymes, ELIZA. Biosensors. Enzyme Engineering and site directed mutagenesis, Designer enzymes

TEXT BOOKS:

- 1. Bhatt S.M, 2014.Enzymology and Enzyme Technology. S Chand & Company, Bengaluru, Karnataka.
- 2. T. Devasena, 2010. Enzymology, Oxford University Press, Oxford, United Kingdom.
- 3. Trevor Palmer, 2008. Enzymes: Biochemistry, biotechnology and clinical chemistry. East West Press, Horwood.
- 4. Zubay, G. L., 1998. Biochemistry, McGraw-Hill Companies, Dubuque, 4thEdn.
- Bailey and Ollis, D.F..2017. Biochemical Engineering Fundamentals. McGraw Hill. New York. 2nd Edn.

REFERENCES:

- 1. M. Y. Khan & Farha Khan, 2015. Principles of Enzyme Technology. PHI Learning.
- 2. Butterworth, 1995. Technological Applications of Biocatalysts. BIOTOL Series.
- 3. Cornish-Bowden, A., 1996. Analysis of Enzyme Kinetic Data. Oxford University Press.
- 4. Wiseman, A., Blakeborough, N. and Dunnill, P., 1981. Enzymatic and Nonenzymatic catalysis. Vol. 5, Ellis and Harwood, UK
- 5. Wiseman, A. Topics in Enzyme and Fermentation Biotechnology. Vol.5 Ellis and Harwood, UK.
- 6. Kolot, F.B. 1998 Immobilized Microbial Systems, Principles, Techniques and Industrial applications. R.R Krieger Publications.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. A. Arunagiri	Assistant professor	Pharmaceutical Engineering	Arunagiri@vmkvec.edu.in
2	Dr.S.Anusuya	Associate Professor	Pharmaceutical Engineering	dr.s.anusuya@vmkvec.edu .in

INDUSTRY DESIGNED/ INDUSTRY SUPPORTED/ INDUSTRY OFFERED/ INDUSTRY SPONSORED COURSES CREDITS (6)

				-	יחסונ	TADA			76		Catego	ory 🛛	L 1	P		Credit
				I	SIOPI	IAKN	ИАСН		20		EC-I	E	3 (0 0		3
PRE	AMB	LE														
This	course	will e	enable	the st	udent	s to kr	now al	bout b	oth th	e pharn	nacokin	etic and	l dyna	imic p	rin	ciples o
drug	action	. It als	o elab	orates	diffe	ent do	osage	forms	and d	rug del	ivery sy	stems.				
PRE	REQU	USIT	E - NI	L												
1	-				routes	s of ad	lminis	tratior	n, drug	g absorp	otion an	d distri	bution	1		
2									-	excretio						
2		lemon		-		-										
										41	- 1	f lintai	1	- f 1		
4		ompai an boo		pharm	Iacoki	netic I	nodel	s and		er ule v	olume o	n uistri	oution	101 0	rug	111
5				ne rela	tionsh	in het	ween	biolo	oics a	nd bios	imilars					
-								01010	5105 u		mmars					
					on of	the co	urse. l	learne	r will	be able	to					
				-							n and d	istribut	ion	Ur	nde	rstand
								,	8	r						
CO2	: Unde	rstand	the p	rocess	of dr	ıg me	tabolis	sm an	d excr	etion				Ur	nder	rstand
CO3	: Use N	Michae	elis-M	enton	kineti	cs in c	drug n	netabo	olism					Ar	ply	7
	: Com													Ar		
															-	
CO5:	: Com	pare bi	loavai	labilit	y of a	drug v	when 1	it is fo	rmula	ted in d	lifferent	dosage	e form	Ar	naly	rse
	PPING		ITH	PR	OGRA	MM	E C	DUTC	OME	S Al	ND P	ROGR	AMN	ÍE	SP	ECIFIC
	COM			Do t	205	- Port	205			DOIO	Datt	DQ 1 Q	- BROA			Daga
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	52	PSO3
CO1 CO2	L M	L M	L L	- M	-	- L	- L	- L	L	L	L	L L	L	 I	-	L
CO3	L		_ L _	S	- L	L		L	-	-	-		-			-
CO4	-	-	-	-	-	L	-	L	-	-	-	-	-	-		-
CO5	-	-	-	-	L	S	L	S	-	-	-	-	-	-	-	-
S- St	rong; l	M-Me	dium;	L-Lo	W											
	LARI															

SYLLABUS

Introduction to biopharmaceuticals

Introduction to biotechnology and biopharmaceuticals, historical perspective of pharmaceutical biotechnology, process of transforming new molecular entities into drugs, current trends in drug development, biotechnology industry perspective on drug development.

Drug Development process

Drug discovery approaches, modulatory effects, binding strength, effective and inhibitory concentration, side effects, ADME, Lipinski rule, action of drugs on humans, pharmacokinetics,

pharmacodynamics, routes of drug administrations, patenting, phases of clinical studies, design and conduct of clinical trials, case studies of drug discovery.

Biopharmaceutical technologies

Role of manufacturing process, process evaluation, drug substance manufacturing, drug product manufacturing, cell banking, expression systems, batch and continuous processes, sterility and sterile technology, raw material and processing aids, purification of product, formulation and filling, labelling and packaging, product analytics, quality criteria of analytical methods, process analytics, validation of analytical methods.

Quality assurance and quality control

Fundamental of quality assurance, benefits, structure of quality management, documentation, audits, quality assurance in manufacturing, measures to cross contamination and product confusion, equipment qualification, process validation, product release, product recall.

Regulatory bodies

Field of pharmaceutical laws, authorities, institutions and their regulation, drug approval steps and processes, FDA, EMEA, German, Japanese and Indian regulatory bodies.

TEXT BOOKS

- 1. Rosenbaum, S. E. "Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations", 2nd Edition, John Wiley & Sons, 2016.
- 2. Brahmankar, D.M. and Jaiswal, S.B. "Biopharmaceutics and Pharmacokinetics: a Treatise", 3rd Edition, Vallabh Prakashan, 2015.
- 3. Chatwal, G.R. "Biopharmaceutics and Pharmacokinetics", 2ndEdition, Himalaya Publishing House, 2014.

REFERENCES

- 1. Biopharmaceuticals: Biochemistry and Biotechnology by Gary Walsh, Publisher: Wiley-Blackwell, ISBN10: 0470843276
- Manufacturing of Pharmaceutical Proteins (from technology to Economy) by Dr.-Ing. Stefan Behme, Wiley-VCH Verlag GmbH & Co. ISBN 978-3-527-32444-6
- 3. Biochemistry by Lubert Stryer, W.H.Freemanand Company. ISBN 13:978-1-4292-7635-1

COURSE DESIGNERS

000				
S.	Name of the	Designation	Organization	Mail ID
No.	Faculty			
1	Mr. P. Jeyaprakash	Managing Director	Konovonat	jpknovonat15@gmail.com

		CLINICAL RESEARCH	CLINICAL RESEARCH Category L								
			EC-IE	3	0	0	3				
PRI	EAMBLE		1	1							
Clin	nical research	is a study which deals with new drugs which	are tested in	huma	ın vo	luntee	rs after i				
succ	cessfully pass	es in vivo and in vitro evaluations. This cour	se also elabo	rates 1	the d	ocum	ents to be				
mai	ntained durin	g the study which are essential for evaluating	g the quality	of rese	earch	whic	h is to be				
subi	mitted for the	regulatory bodies for approval. The students	will acquire	knowl	edge	in all	aspect of				
clin	ical trials, ma	nagement and ethical standards required to co	nduct clinical	trials	•						
PRI	EREQUISIT	E - NIL									
CO	URSE OBJE	CCTIVES									
1	To learn th	ne different types and designs of clinical trials,	, requirement	s for c	ondu	cting	clinical				
	trials, an o	pportunity to conceptualize, conduct, manage	and report cl	inical	trials						
2	To get fan	niliarize with the conceptualizing, designing, c	onducting, m	anagi	ng an	d doc	umenting				
	the clinica	l trials									
3	To learn t	he clinical trial management and to gain know	owledge with	ethic	al pr	incipl	es for the				
	new insigh	nts in the field of clinical research									
4	To develo	p drug safety data in pre-clinical and the basi	s of informed	l cons	ent a	nd ma	aintaining				
	the quality	v control standards in clinical research									
5	To focus o	on the global scenario of pharmacovigilance i	n different m	ethods	s that	can b	e used to				
	generate s	afety data and maintenance of reporting in cl	inical trials								
CO	URSE OUT	COMES									
Afte	er the success	ful completion of the course, learner will be al	ble to								
CO	1. Outline the	e regulatory requirements for conducting clinic	cal trials and			Un	derstand				
dem	onstrate the t	ypes of clinical trial designs									
		e responsibilities of key players involved in cl	linical trials a	nd		1	Apply				
	cute safety 3. Apply the	Project Management and ethical principles for	conducting a	clinica	.1						
	arch		· ····································		-	1	Apply				
		details about Informed Consent and validate	the regulatio	ns and	1		noluzo				
safe	tv and their a	ssessment				А	nalyze				

safety and their assessment

CO5. Explain the principles of pharmacovigilance and Examine new adverse drug reactions

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

								_							
COS	PO1	PO2	PO3	PO4	Р	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	L	-	-	L	L	-	-	L	L	L	-	-	-
CO2	L	L	M	Μ	L	М	S	-	-	-	L	L	-	-	-
CO3	L	L	L	-	-	-	M	M	M	-	-	L	-	L	-
CO4	L	-	L	-	S	L	S	-	-	M	-	M	-	M	-
CO5	L	L	-		M	-	-	-	М	-	L	S	-	M	-
C Ct		A N A .	1	тт.											

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO CLINICAL TRIALS - TYPES, DESIGN AND PRACTICES

Fundamentals of clinical trials; Clinical trials in practice; Experimental Study - Randomized Control Trial and Non Randomized Control Trial, Single blinded and double blinded studies, Observation Study: Cohort, Case Control, Cross sectional Clinical Trial Studies. Reporting and reviewing clinical trials; Legislation and good clinical practice; Origin and Principles of the International Committee on Harmonisation (ICH)-GCP and guidelines – Good Clinical Practice - Ethical Committee: Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant - Schedule Y.

REGULATIONS AND DOCUMENTATION OF CLINICAL TRIALS

Drug development and trial planning - pre-study requirements for clinical trials; Regulatory approvals for clinical trials - WHO, FDA, EMEA, CDSCO, ICMR and their regulatory terminologies; Consort statement; Trial responsibilities and protocols - roles and responsibilities of investigators, sponsors and others; Requirements of clinical trials protocols; Guidelines to the preparation of documents and protocol, Investigator Brochure, Case Report Forms, Clinical Study Report, Clinical Trial Monitoring - Safety Monitoring in CT.

MANAGEMENT AND ETHICS OF CLINICAL TRIALS

Project management in clinical trials - principles of project management; Application in clinical trial management; Risk assessment; Research ethics and Bioethics - Principles of research ethics; Ethical issues in clinical trials; Ethical committee system including a historical overview; Introduction to ethical codes and conduct; Introduction to animal ethics; Animal rights and use of animals in the advancement of medical technology; Introduction to laws and regulation regarding use of animals in

research.

INFORMED CONSENT & QUALITY CONTROL IN CLINICAL TRIALS

Informed Consent and data protection- the principles of informed consent; Consent processes; Data protection; Legislation and its application; Data management – Introduction to trial master files and essential documents; Data management. Quality assurance and governance - quality control in clinical trials; Monitoring and audit; Inspections; Research governance; Trial closure and pitfalls-trial closure; Reporting and legal requirements; Common pitfalls in clinical trial management.

PHARMACOVIGILANCE AND ADR REPORTING

Roles & responsibilities and Guidelines in Pharmacovigilance, Significance of safety monitoring, Establishing pharmacovigilance centres, National programmes related to pharmacovigilance. Adverse Drug Reactions: Types, Regulatory terminologies, Detection and reporting methods, Severity and seriousness assessment, Predictability and preventability assessment. Spontaneous reporting system and Reporting to regulatory authorities & ADR Management.

TEXT BOOKS

- Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.
- A textbook of Clinical Pharmacy Practice: Essential Concepts and Skills. Second Edition, 2012, University Press
- Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health; 2001.
- International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice. E6; May 1996.230
- Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi.
- Textbook of Pharmacovigilance: Concept and Practice. G. P. Mohanta and P. K. Manna. 2016, Pharma Med Press.

REFERENCE

- Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 2. Handbook of clinical Research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone.

- 3. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes.
- Blaisdell, Peter, "Twenty First Century Pharmaceutical Development", Interpharm Press, 2001.
- 5. Gad, Shayne C. "Drug Safety Evaluation", John Wiley & Sons, 2002.
- Lee, Chi-Jen; etal., "Clinical Trials or Drugs and Biopharmaceuticals." CRC / Taylor & Francis, 2011.
- Matoren, Gary M. "The Clinical Research Process in the Pharmaceutical Industry." Marcel Dekker, 1984.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Organization	Mail ID
1.	Mr.P.Jeyaprakash	Managing Director	Knovonat	jpknovonat15@gmail.com

				PHA	RMA	COK	INET	FICS	AND		Catego	ory 🛛	LT	P	Credit
				PI	HARN	IACC	DYN	AMI	CS		EC-I	E	3 0	0	3
PRE	AMB	LE													
This	course	will e	enable	the st	udent	s to kr	now ał	bout b	oth th	e pharn	nacokin	etic and	l dyna	mic pri	nciples of
drug	action	. It als	o elab	orates	diffe	ent de	osage	forms	and d	rug del	ivery sy	vstems.			
PRE	REQU	JISIT	E - NI	L											
	JRSE (
1	То о	utline	the va	arious	routes	s of ad	lminis	tration	n, drug	g absorp	otion an	d distri	bution		
2	Tou	nderst	tand th	ne pro	cess of	f drug	metal	oolism	n and e	excretio	n				
3	_	emon		-		-									
4	Тос	ompai	re the	pharm	acoki	netic 1	nodel	s and	to inf	er the v	olume o	of distri	bution	of dru	g in
		an boo		1		_			_		-				ب
5	To u	nderst	tand th	ne rela	tionsh	ip bet	ween	biolo	gics a	nd bios	imilars				
τοι	JRSE (OUTO	COMI	ES											
After	the su	iccess	ful coi	npleti	on of	the co	urse, l	learne	r will	be able	to				
CO1	: Outl	ine the	e vario	ous rou	ites of	admi	nistrat	tion, d	rug ab	osorptio	n and d	istribut	ion	Unde	erstand
<u> </u>	TT 1	4 1	41		<u> </u>		<u>, 1 1'</u>		1					TT 1	· 1
	: Unde														erstand
CO3	: Appl	y Micł	naelis-	Mente	on kin	etics i	n drug	g meta	bolisr	n				Appl	У
CO4	: Comj	pare di	ifferer	it phar	macol	kinetio	e mod	els						Anal	yse
CO5	: Com	pare bi	ioavai	labilit	y of a	drug	when i	it is fo	rmula	ted in d	lifferent	dosage	e form	Anal	yse
MAI	PPING	w	ITH	PRO	DGR/	MM	E C	DUTC	OME	S AN	ND P	ROGR	AMM	E SI	PECIFIC
	СОМ						_		-						_
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	-	-	-	-	-	L	L	L	L	L	-	L
CO2	M	M	L	M	-	L	L	L	-	-	-	L	-	L	
CO3 CO4	L	-	-	S	L	L L	-	L L	-	-	-	-	-	L	-
CO4 CO5	-	-	-	-	- L	L S	- L	L S	-	-	-	-	-	-	-
	rong; l	M-Me	dium:	L-Lov				5							
			,												

SYLLABUS

FUNDAMENTALS ON DRUG ABSORPTION AND DISTRIBUTION

Definitions, various routes of administration with advantages/disadvantages, bioavailability concepts in drug absorption and distribution, theories of drug dissolution, drug partition hypothesis, permeability and distribution of drugs, perfusion rate and volume of distribution, protein binding of drugs, kinetics of drug binding, various factors that affect drug absorption and distribution, drug interactions in the level of drug absorption and distribution.

FUNDAMENTALS ON DRUG METABOLISM AND EXCRETION

Biotransformation of drugs, pathways and enzymes of drug metabolism, Phase I and Phase II, drugs excretion – renal and non-renal routes, various factors that affect drug metabolism and excretion, prodrugs, drug interactions in the level of drug metabolism and excretion, bioavailability concepts in drug metabolism and excretion.

PHARMACOKINETIC INVESTIGATION AND EVALUATION

Concept of therapeutic concentration, time-profile, rates and various order of reactions (first, zero, mixed), Michaelis-Menton kinetics, differential equations for a simple pharmacokinetic models, compartment models (one, two, multi, open models), definition and calculation of parameters such as drug half-life, of Drugs, Volume of Distribution, and bioavailability (AUC) and their application to compartment models and kinetics of IV Bolus administration, comparison between bioavailability and bioequivalence.

PHARMACODYNAMIC FUNDAMENTALS

Definitions – agonist/antagonist, antagonism as a mechanism of drug action, classification of antagonists, drug-receptor interactions, factors affecting drug-target interactions, law of mass action applied to drugs, quantifying drug-target interactions: dose-response relationships - graded dose and quantal dose-responses; molecular mechanisms mediating drug action, receptor coupling and transduction mechanisms, intracellular transduction mechanisms, second messenger systems, amplification of drug responses, factors modifying drug responses.

APPLICATION OF PD/PK PRINCIPLES IN DOSAGE FORM DEVELOPMENT

Regimens for dosage form design, concentration response relationships, individualization therapeutics, classification of controlled release formulations and novel drug delivery (oral, parenteral, trans-dermal, ophthalmic and intrauterine) systems, bioavailability testing of novel release formulations.

TEXT BOOKS

- 1. Rosenbaum, S. E. "Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations", 2nd Edition, John Wiley & Sons, 2016.
- 2. Brahmankar, D.M. and Jaiswal, S.B. "Biopharmaceutics and Pharmacokinetics: a Treatise", 3rd Edition, Vallabh Prakashan, 2015.
- 3. Chatwal, G.R. "Biopharmaceutics and Pharmacokinetics", 2ndEdition, Himalaya Publishing House, 2014.
- 4. Brahmankar, D.M., "Biopharmaceutical and Pharmacokinetics: A Treatise", VallabhPrakashan, 1995.
- 5. Notari, R.E., "Biopharmaceutics and Clinical Pharmacokinetics: An Introduction", 4thEdition, MarcellDeckker, 2005

REFERENCES

1. Shargel, L and Andrew, B.C. Yu. "Applied Biopharmaceutics & Pharmacokinetics", 7th

Edition, The McGraw-Hill Companies, Inc, 2016.

- 2. Gibaldi, M. "Biopharmaceutics & Clinical Pharmacokinetics", 4th Edition, Pharma Book Syndicate, 2016.
- 3. Jambhekar, S.S. and Philip, J. B. "Basic Pharmacokinetics" 2nd Edition, Pharmaceutical Press, 2012.
- 4. Schoenwald, R.D., "Pharmacokinetics in Drug Discovery and Development", CRC Press, 2002.
- 5. Oliver Kayser, Rainer H. Müller, "Pharmaceutical Biotechnology: Drug Discovery and Clinical Applications", Wiley-VCH publications

COU	RSE DESIGNERS													
S.	Name of the													
No.	Faculty													
1	Mr. P. Jeyaprakash	Managing Director	Konovonat	jpknovonat15@gmail.com										

			LEAF	RNING	G IT E	SSEN	TIAL	S BY I	DOIN	3	Categ y EC-I	L	T 0	P C	redit 3
PREAME The propo includes p tools and t	osed e program	mmin	g , Da	tabase	and we	b Tech	nology	among	gst othe	er related	ials. The l topics.	e core me This cou	odules o rse refe	of this E rs to th	lective e basic
PREREQ	-														
COURSE	OBJ	ECT	IVES												
								chnolog	gy						
2	U			t the sc	1 0	U	0								
3 T	o get a	an ide	a abou	t the ir	iternet j	protoco	ols								
COURSE	COUT	ΓCON	AES												
On the suc	ccessf	ul con	npletio	n of the	e cours	e, stude	ents wil	l be ab	le to						
CO1 Und	lersta	nd th	e netw	vorking	g conce	ept inte	ernet p	rotoco	ls, netv	work rou	uting	Understa	nd		
CO2. Und	lerstan	nd the	fundar	nentals	of web	o applic	ations	and its	modeli	ng		Understa	nd		
CO3. Und applicatio		nd an	nd lear	n the s	criptin	g lang	uages	with de	esign c	of web		Understa	nd		
CO4. Ana	lyze tl	he pro	ocess o	f mobil	e com	nunicat	tion and	l netwo	ork tech	nologies		Analyze			
CO5. Bui application		nple i	nteract	ive app	olication	ns, dat	abase a	pplicat	ions ar	nd multi	media	Analyze			
MAPPIN	G WI	TH P	PROG	RAMM	IE OU	ГСОМ	IES AN	ND PR	OGRA	MME S	PECIFI	C OUTC	OMES		
COS PO	D1 I	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	-	-	-	-	-	-	-	М	S	М	М
CO2	S	М	М	М	-	-	-	-	-	-	-	М	S	-	М
CO3	s	М	М	М	-	-	-	-	-	-	-	М	S	M	М
CO4 N	M	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO5 N	M	М	М	М	S	-	-	-	-	-	-	М	-	M	M
S- Strong;	M-M	[ediun	n; L-Lo	ow			I						1	_1	

SYLLABUS

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

 $Data \ processing-the \ database \ technology-data \ models-ER \ modeling \ concept \ -notations-Extended \ ER \ features \ -Logical \ database \ design \ -normalization \ -SQL-DDL \ statements \ -DML \ statements \ -DCL \ statements$

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

MOBILE APPLICATION DEVELOPMENT	Categor y	L	Т	Р	Credit	
	EC-IE	3	0	0	3	

PREAMBLE

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

PRE REQUISITE – NIL

T NL T	PRE REQUISITE - NIL														
COUF	COURSE OBJECTIVES 1 Understand system requirements for mobile applications														
1.	Unde	rstand s	system	require	ments	for mol	oile app	olication	ns						
2.	Gene	rate sui	table de	esign u	sing spo	ecific n	nobile o	develop	ment f	ramewoi	ks				
3.	Gener	rate mo	bile ap	plicatio	on desig	<u>g</u> n									
4.	Imple	ement tl	he desig	gn usin	g speci	fic mot	oile dev	elopme	ent fran	neworks					
5.	Deplo	by the r	nobile a	applicat	tions in	marke	tplace	for dist	ribution	1					
COUF	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1 .	CO1. Expose to technology and business trends impacting mobile applications Understand														
CO2.U	CO2.Understand enterprise scale requirements of mobile applications Understand														
CO3.	Familia	rize in	the Gra	phics u	ised for	Andro	oid appl	ication	develo	pment		Apply			
CO4.	Compet	ent wit	h the c	haracte	rizatior	and an	chitect	ure of 1	nobile	applicati	ons	Apply			
	Compe ation de					evelopi	ng mo	bile ap	plicatio	ons usin	g one	Analyze			
MAPF	PING V	VITH	PROG	RAMN	IE OU	ТСОМ	IES AN	ND PR	OGRA	MME S	PECIF	IC OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	М	M	-	-	М	-	-	-	M	S	М	М
CO2	S	М	М	М	М	-	-	М	-	-	-	М	S	М	М
CO3	S	M	L	M	L	-	-	M	-	-	-	L	S	М	M
CO4	S	М	M	М	М	-	-	М	-	-	-	М	S	М	М
CO5	S	М	М	М	L	-	-	М	-	-	-	L	S	М	М
S- Stro	ong; M-	Mediu	n; L-Lo	ow											

SYLLABUS UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications – Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Course	e Designers:			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mrs. S. Leelavathy	Assistant Professor (G-II)	CSE	leelavathy@avit.edu.in

OPEN ELECTIVE INNOVATION ENTREPRENEURSHIP, SKILL DEVELOPMENT ETC. CREDITS (6-9)

					· ·	DUCT	I	Cat	egory	L	Т	Р	Credit
					MENT IALIZA			0	E-IE	3	0	0	3
PREA	MBLE												
						1	s in fast	-paced, 1	high-tech r	narkets and	match	ing	
		al innov			opport	unities.							
PRER	EQUIS	ITE - N	lot Requ	uired									
COUR	SE OB	JECTI	VES										
1	and c		to dev	velop s						anization to latile, Uncer			
2	Inculc	ate a di	sruptive	though					concurrent commercia	and futurist alization	tic prol	olems	s of
3		ved und ssful pro				itional b	est prac	ctices to	transform	exciting tech	nnolog	y into)
4		ally asse al and le					licies a	nd practi	ces in orga	inizations es	pecial	ly fro	om a
5	Explai	in why i	innovati	on ises	sential t	o organ	izationa	al strateg	y – especia	ally in a glol	oal env	vironi	nent
COUR	SE OU	тсом	ES										
On the	success	ful com	pletion	of the c	course, s	students	will be	able to					
CO1: U	Underst	and the	role of	innovat	tion in g	aining a	and mai	ntaining	competitiv	ve advantage	;	Un	derstand
CO2: In	ntegrate	the inn	ovation	basis a	nd its ro	ole in de	ecision	making e	especially	under uncert	ainty	Ap	ply
CO3: A	nalyze	busines	s challe	nges in	volving	, innova	tion ma	nagemer	nt			Ap	ply
CO4: H	laving p	oroblem	solving	g ability	– solvi	ng socia	al issues	s and bus	siness prob	lems		Ap	ply
CO5: C	Compreh	nend the	e differe	nt sour	ces of ir	nnovatio	on					Ap	ply
MAPP	ING W	ITH P	ROGR	AMME	OUTC	COMES	SAND]	PROGR	AMME S	PECIFIC O	OUTC	OME	ES
COs	Р	Р	Р	Р	Р	Р	Р	PO	PO9	PO10	PO	11	P012
	01	02	03	04	05	O6	07	8					
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	S	S	М	М	М	-	-	-	-	-		-
CO4	S	S	S	М	М	М	-	-	-	-	-		-
CO5	S	S	S	М	М	М	-	-	-	-	-		-
S- Stroi	ng· M-N	Medium	· L-Lov	v									

S- Strong; M-Medium; L-Low

Pre-launch, during launch and Post launch

preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation - Exploiting Open Innovation and

Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

		NEV	V VEN	TURE	PLAN	NING AN	ND	Cat	egory	L	Т	Р	Credit
			Μ	ANAG	EMEN	T		0	E-IE	3	0	0	3
PREA	MBLE												1
						for the er	ntrepre	neur to	plan, launc	ch, and operation	ate a n	ew	
		creation			plan								
PRER	EQUIS	ITE - N	ot Requ	uired									
COUR	SE OB	JECTI	VES										
1	An op	portunit	y for se	lf-analy	ysis, an	d how this	s relat	es to suc	cess in an	entrepreneu	rial en	viron	ment.
2		-	-							preneurial v			
3									rial ventur				
4	An en succee		ur mus	t unders	stand th	e diversit	y, emo	otional in	nvolvemen	t, and work	load ne	ecess	ary to
5			ty to de	evelop a	u busine	ess plan.							
COUR		ТСОМ		-		-							
				0.1			•11 1	11 /					
			•		^	students v						_	
	-	the conc	ept of 1	new ver	ture pla	anning, ol	bjectiv	es and f	unctions a	nd its		Un	derstand
$\frac{\text{component}}{CO2}$		tha husi	noss nl	on iccu	os and	romunara	tion n	nations	in startups	huginaga		An	nly
									elligently a			Ap Ap	
		for it" of		iui iuci		point with	21 0 you		emgenny			1 P	P19
				ne diffe	rent for	ms entrep	oreneu	rial envi	ronment in	terms of th	eir	Ap	ply
		s and sir											
CO5: E	xplore	the busing	ness pla	an and b	ousiness	s model c	anvas	for your	idea.			Ap	ply
MAPP	ING W	ITH PF	ROGR	AMME	OUTO	COMES A	AND I	PROGR	AMME S	PECIFIC (DUTC	OMI	ES
COs	Р	Р	Р	Р	Р	P	Р	PO	PO9	PO10	PC)11	P012
	01	02	03	04	05		07	8					ļ
CO1	М	-	-	-	-	M	S	S	-	М	·	-	-
CO2	S	S	S	М	М	M	-	-	-	-	ļ .	-	-
CO3	S	S	S	М	М	M	-	-	-	-	· ·	-	-
CO4	S	S	S	М	М	M	-	-	-	-	ļ .	-	-
CO5	S	S	S	М	М	M	-	-	-	-	-	-	-
S- Strop	ng; M-N	Medium ;	; L-Lov	V									

SYLLABUS:

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for

evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing -Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations -Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

		SO	CIAL I	ENTRE	PREN	EURSH	(P	Cat	tegory	L	Т	Р	Cred it
								0	E-IE	3	0	0	3
PREAMB Social en entrepres	ntrepr		hip inv	olves th	ie creat	ivity, ima	iginati	on and i	nnovation	often associ	ated w	ith	
PREREQ	UISIT	Г Е - N	ot Requ	uired									
COURSE	OBJ	ECTI	VES										
			udents eneursh		workir	ng knowl	edge (of the co	oncepts, oj	oportunities	and c	halle	nges of
										tive respons	es to c	ritica	l social
3 To	o enga	age in	a colla	oorative	e learni				arming, etc a better un) derstanding	of the	cont	ext and
4 To	o help	prepa	re you p	epreneu persona preneurs	lly and	professio	onally	for mear	ningful emp	ployment by	reflec	ting	on the
						al entrep	reneur	5					
COURSE						1							
On the suc				of the c	course,	students	will be	able to					
CO1: Expl continuum traditional	ofor	ganiza								from across erprises to	a	Un d	derstan
	yze tł	ne oper				-		on using	social entr	repreneurial		Ap	ply
CO3: Appl developing	ly the	Social	Busine	ess Mod	lel Can	vas and le	ean sta	-	-	lanning,		Ap	ply
CO4: Com								, •110011 •				Ap	ply
CO5: The	outco	mes of	social	entrepr	eneursh	ip are for	cused		essing persi	stent social		Ap	
problems p		~ ~			Ŭ		-						
	G Wľ			AMME	Ουτα	COMES .	AND		1	PECIFIC (
		P O2	P O2	P O4	P O5	P Of	P O7	PO	PO9	PO10	PO	11	P012
	01 М	02	03	- 04	- 05	06 M	07 S	<u>8</u> S	-	M	-	•	-
	S	S	S	M	М	M	-	-	-	-	-		-
	s	S	S	M	М	M	-	-	-	-	-		-
CO4	s	S	S	М	М	M	-	-	-	-	-	•	-
	S	S	S	М	М	M	-	-	-	-	-		-
S- Strong;		edium	; L-Lov	V									
SYLLAB		_			-			••					
Social ent	repre	neursl	hip – di	mensio	ns of so	ocial entr	eprene	urship –	- social cha	nge theories	s – equ	ılıbri	um and

complexity - theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	
			-	

				ENG	INEE	RING	STAI	RTUPS	S	Categ	gory	L	Т	P	Credit
				AND			RENEU MEN	URIAL T		OE	-IE	3	0	0	3
PREAM	BLE:								I			-I I			
A startu	p mea	ins coi	npany	initia	ted by	indiv	vidual	innova	tor or	entrep	reneurs	to sea	rch for	a repo	eatable an
scalable	busir	ness me	odel. N	More s	pecific	ally, a	ı startu	ip is a i	newly	emerge	ed busir	ness ver	nture the	at aims	to develo
a viable	busin	ess mo	odel to	meet	a mark	cetplac	e need	ls or wa	ants in	n an opt	imum r	nanner.			
PRERE	QUIS	ITE: N	ot Req	uired											
COURS	E OB	JECTI	VES:												
1	I. To	under	stand	the bas	sics of	Startu	ıps Ma	nagem	ent an	d comp	onents.				
2	2. To	analy	ze the	startup	os fune	d mana	agemei	nt pract	tices						
3	3. To	practi	ce the	variou	ıs kinc	ls of st	tocks a	ind emp	ploym	ent con	siderati	ions in s	startups		
2	4. To	apply	the in	nporta	nce of	intelle	ectual p	propert	y righ	ts and i	ts proce	edures.			
4	5. To	explo	re the	entrep	reneur	rial mi	ndset a	and cul	ture.						
COURS	E OU	тсом	IES:												
After su	ccessf	ul com	pletior	n of the	cours	e, stud	ents w	ill be a	ble to						
CO1: E	xplair	n the c	oncept	t of eng	gineeri	ing sta	rtups,	objecti	ves an	d funct	tions an	d its co	mponer	nts.	Understand
CO2: A	nalyz	the s	tartup	s fundi	ing iss	ues an	d remi	uneratio	on pra	ctices i	n startu	ps busi	ness.		Analyse
CO3: A	nalyz	the v	various	s kinds	of sto	cks an	d emp	loymei	nt opp	ortuniti	es and	conside	ration i	n .	Analyse
startups	busin	ess.													
CO4:	Comp	are an	d cont	rast th	e vario	ous for	ms of	intellec	ctual p	roperty	protec	tion and	d practio	ce.	Analyse
CO5: E	xplor	e the e	ntrepr	eneuria	al min	dset ar	nd cult	ure that	t has t	been de	velopin	g in			Evaluates
С	ompa	nies of	all siz	zes and	l indus	stries.									
MA	PPIN	G WI	TH PI	ROGR	AMM	IE OU	TCO	MES A	ND P	ROGF	RAMM	E SPE	CIFIC	OUTC	OMES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	_	-	-	M	M	S	_	M	-	M	-	L	L
CO2	S	S	M	M	M	L	-	-	_	-	-	M	L	L	-
	S	S	S	M	М	М	-	-	-	-	-	M	L	-	М
CO3		S	S	M	M	М	-	-	_	-	-	М	-	M	L
CO3 CO4	S	5	~			1						M	M	-	M

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

COURSE DESIGNERS:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

			INTE	LLEC	CTUA	L		Cate	gory	L		T	P C	Credit	
		P	ROPE	RTY	RIGI	HTS		OE-I	E	3		0	0	3	
PREAM To intro major r	oduce f			-			-						are go	oing to	play a
PRE-R															
COUR															
	o disse			•	-	,	-	•					•		pects
	<u>o disser</u>									-	d regis	tratior	aspec	ets	
	o dissen			-				-		-	(22)				-
	o dissei esign Pi			-		-			cal Ind	lication	(GI),	Plant	Varie	ty and	Layou
	o aware								s in fos	stering	IPR				
COUR								<u></u>							
Onthesi				nofthe	ecours	se, stud	lentsw	rill beal	ole to						
CO1.Th						-				shall	get an	adeau	iate U	ndersta	nd
knowle				•	-			-			-				
CO2.Co	-	•										Prope	erty A	pply	
within t	-						-					-			
CO3. I	Knowle	dge a	ind co	mpete	ence	related	ł expo	osure 1	to the	variou	s Leg	al iss	ues A	nalyze	
pertaini	ing to Ir	ntellec	tual P	ropert	y Rigl	nts wit	th the u	utility i	n engir	neering	perspe	ectives	5.		
CO4. E	Enable t	he stu	idents	to ha	ve a	direct	experi	ience c	of vent	ure cre	ation 1	throug	h a A	nalyze	
facilitat	ted lear	ning e	nviron	ment											
CO5. I								atest m	ethodo	ology, f	ramew	vorks a	and A	pply	
tools th	at entre	prene	urs use	e to su	cceed	in rea	l life.								
MAPP	INGW	THP	ROG	RAMI	MEO	UTCC	DMES	ANDP	ROGI	RAMM	ESPE	CIFI	COUI	COM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11				PSO3
CO1	M	S	M	-	S	S	L	-	-	-	-	М	S	S	S
CO2	L	L	S	-	S	S	L	-	-	-	-	M	S	M	L
$\frac{CO3}{CO4}$	L	M	M	-	S	M	M	-	-	-	-	M	S	L	M
CO4	L	S	M	-	M M	M M	M	-	-	-	-	M	S	S M	M
CO5	L	M	S	M	//		-	- 1	-	- 1	-	Μ	S		M

SYLLABUS

Introduction:

Introduction - Invention and Creativity - Intellectual Property (IP) - Importance - Protection of IPR -Basic types of property (i. Movable Property ii. Immovable Property and iii. Intellectual Property)

Trade Marks:

IP – Patents – Copyrights and related rights – Trade Marks and rights arising from Trademark registration – Definitions – Industrial Designs and Integrated circuits – Protection of Geographical Indications at national and International levels – Application Procedures.

Industrial Design, Copy Right&Intellectual property and cyberspace:

International convention relating to Intellectual Property – Establishment of WIPO – Mission and Activities – History – General Agreement on Trade and Tariff (GATT).

Trademarks:

Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks – Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties registry Trademarks appellate and board

IPR Legislations and Case Studies:

Indian Position Vs WTO and Strategies – Indian IPR legislations – commitments to WTO-Patent Ordinance and the Bill – Draft of a national Intellectual Property Policy – Present against unfair competition.

Case Studies on – Patents (Basumatirice, turmeric, Neem, etc.) – Copyright and related rights – Trade Marks – Industrial design and Integrated circuits – Geographic indications – Protection against unfair competition.

TEXTBOOK

1. Subbaram N.R. "Handbook of Indian Patent Law and Practice", S. Viswanathan (Printers and Publishers) Pvt. Ltd., 1998.

REFERENCES

1. Eli Whitney, United States Patent Number: 72X, Cotton Gin, March 14, 1794.

2. Intellectual Property Today: Volume 8, No. 5, May 2001, [www.iptoday.com].

COURS	SEDESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail Id
1.	Mr. J. Vijay	Asst. Professor Gr. II	ECE	vijay.ece@avit.a
2	Dr.T.Sheela	Asso.Professor	ECE	<u>c.1n</u> sheela@vmkvec
2.	DI.I.Sheena	1350.110105501	LeL	.edu.in

OPEN ELECTIVE EMERGING AREAS CREDITS (6-9)

]	PRINC	CIPLE	S OF I	BIOMI	EDICA	L		Categor	ry L	Т	P (Credit
				Π	NSTRI	UMEN	TATI	ON		-	OE-EA	. 3	0	0	3
	MBLE	students	s to dev	elop kn	owledg	ge of pri	nciples	, desigr	n and ap	plication	ns of the E	Biomedi	cal Ins	truments	
PRER	EQUIS	ITE – I	NIL												
COUR	RSE OB	JECTI	VES												
1	To kn	ow abo	ut bioel	ectric s	ignals,	electro	des and	its type	es.						
2	To kn	ow the	various	Biopot	ential r	ecordin	g meth	ods.							
3	To stu	ıdy abo	ut patie	nt mon	itoring	concept	and va	rious P	hysiolo	gical me	asuremen	ts metho	ods.		
4	To stu	idy the	princip	le of op	eration	blood f	low me	eter, blo	od cells	s counter	•				
5	To stu	ıdy abo	ut bio c	hemica	l measu	irement	s and d	etails th	e conce	ept of bic	otelemetry	and pa	tient sa	ıfety.	
COUR	RSE OU	тсом	IES												
	success				,			be able	to						
CO1.	Explai	n the di	ifferent	Bio sig	nal or b	piopoter	ntial.						Und	erstand	
CO2.	Discus	ss the w	orking	princip	les of d	iagnost	ic and t	herapeı	itic equ	ipments.			Und	erstand	
CO3.	Exami	ne the v	various	instrun	nents lik	ke as EC	CG, EM	IG, EEO	G, X-ray	y machin	e.		App	ly	
CO4.	Illustr	ate med	lical ins	strumen	ts base	d on pri	inciples	and ap	plicatio	n used ir	n hospital.		Ana	lyze	
CO5.	Analyz	ze and o	calibrat	e funda	mental	biomed	ical ins	trumen	tation u	sed in ho	ospital.		Ana	lyze	
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	S	М	М	М	L			L	S	L		S	М	S	S
CO5	S	S	М	М	L	М		L	S	L		S	М	S	S
<u> </u>	na: M N	ـــــــــــــــــــــــــــــــــــــ		I		I	I		I	1				_	1

S- Strong; M-Medium; L-Low

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.

2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in

			I	BIOSE	NSOR	5 AND	TRAN	SDUC	ERS		Categor	y L	T	P C	Credit	
											OE-EA	. 3	0	0	3	
compor	ourse is nents u	sed for	the de	etection	of an	analyte	. The	relation	betwe	en senso	ge of the or concept cal side a	ts and l	biologi			
PRERI	EQUIS	ITE –	Nil													
COUR	SE OB	JECT	IVES													
1	To use	e the ba	isic cor	cepts o	of transc	lucers,	electro	des and	its clas	ssificatio	n.					
2	To discuss the various types of electrodes.															
3	To determine the recording of biological components.															
4	To employ the knowledge in electrochemical and optical biosensors.															
5	To ou	tline th	e vario	us biolo	ogical c	ompon	ents us	ing bios	sensors.							
COUR	SE OU	TCON	1ES													
On the	success	ful cor	npletio	n of the	course	e, stude	nts will	be abl	e to							
CO1.	Descri	be the	workin	g princ	iples of	transd	ucers.						Understand			
CO2.	Explai	n the v	arious	types of	felectro	odes.							Und	erstand		
CO3.	Utilize	e variou	ıs FET	sensors	s for rec	cording	of biol	ogical	compor	nents.			App	ly		
CO4.	Distin	guish v	arious	biosens	ors like	e electro	ochemi	cal and	optical	biosens	ors.		Ana	lyze		
CO5.	Analy	ze the b	piologie	cal com	ponent	s using	biosen	sors in	various	applicat	ions.		Ana	lyze		
MAPP	ING W	ITH P	ROGI	RAMM	E OUI	гсом	ES AN	D PRC	GRAN	AME SF	PECIFIC	OUTC	OMES	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	L		М		М			L			М		М		
CO2	М	L		М		М			L			М		M		
CO3	S	М	L	S		S	М	М	М			М	M	М	M	
CO4	S	S	L	S		S	М	М	S			М	M	M	S	
CO5	S	S	L	S	-	S	М	М	S			S	М	M	S	
S- Stroi	ng: M-l	Mediun	n; L-Lo	W												

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical

electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
 - 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
 - 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "**Principles of Measurement Systems**", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).

Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.e

		Category	L	Т	Р	Credit
1	NTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3

PREAMBLE

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feed stocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE-NIL		
COURSEOBJECTIVES		
1 To understand the different types and differences between existing energy resources.		
2 To understand the improcurement, utilization and their impacts on society and environment		
3 To gain knowledge about the existing different biofuels and the methods of production fro sources	m different	
4 To introduce the techonologies involved in the production, characterization of biofuels		
5 To impact the knowledge and applications of biofuel in various sectors and their beneficial as society.	pects to the	
COURSEOUTCOMES		
Afterthesuccessfulcompletionofthecourse,learnerwillbeableto		
CO1.Understandtheexistingandemergingbiomasstoenergytechnologies Remer	mber	
CO2.Understandtheconceptof1 st generation,2 nd generationandadvancebiofuels Under	Understand	
CO3.Appraisethetechno-economicanalysesofbiofuelconversiontechnologies Under	stand	
CO4.Toarticulate the concept of a biorefinery system and be able to develop major unit Apply Operations of an integrated biorefinery		
CO5.Illustrate the environmental implications Apply	,	
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES		
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03	3	
CO1 S - L - M - S L S - L		
CO2 - S S - M - L S L		
CO3 S M - M - M - L L S - L		
CO4 - S M - M L L S M		
CO5 S M L		
S-Strong;M-Medium;L-Low		
SYLLABUS		

OVERVIEWOFBIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economicsustainabilityofbiofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feed stocks priorto production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock –Environmental aspects of ethanol as a biofuel.

BIOMETHANEANDBIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy–Advantages and limitations.

OTHERBIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol–Productionofbio-oilsviacatalyticpyrolysis–Life-CycleenvironmentalimpactsofbiofuelsandCo-products.

TEXTBOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited20112.Gupta,V,K.andTuohy, M,G.BiofuelTechnologies, Springer,20133.Moheimani, N.R.,Boer,M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015

REFERENCES:

1. Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 20162. Bernardes, M, A, D, S. Biofuel production-recent developments and prospects, In Tech, 2011

S.No	Name of the Faculty	Designation	Department	MailID
1	Dr.A.Balachandar	AssistantProfessor– Gr-II	Biotechnology	Balachandar.biotech@avit.ac.in
2	Dr.M.Sridevi	Professor&Head	Biotechnology	sridevi@vmkvec.edu.in

COURSEDESIGNERS

]	FOOI) AN	D NU	TRIT	TION		Cat	egory	L	T	Р	Credit	
				Т	ECH	NOL	OGY			OE-EA		3	0	0	3	
PREAN	MBL	Æ												I I		
The cou	ırse a	aims t	o ena	ble th	e stud	lents t	o und	erstan	d the	ohysico	ochemi	cal, nu	itritiona	l, micro	biological and	
sensory	aspe	ects, T	'o fam	iliariz	the the	stude	nts ab	out th	e proc	essing	and pre	eservat	ion tech	niques.	To emphasize	
									-						ulations, food	
enginee	ring	and pa	ackag	ing in	food	indus	try.	-	-					-		
PRERE	EQU	ISITE	E–NIL				-									
COUR	SEO	BJEC	TIVI	ES												
1 Un	dorst	and th	na trad	lition	food	arocas	sing t	achni		nd tha l	basics	Concer	ot of foo	dbiach	mistry	
					-		e		1			1			ciiiisti y	
2 Der	mons	strate	the pr	oduct	devel	opme	nt tecl	hnique	e, qual	ity and	contar	ninant	check			
3 To	artic	ulate 1	their t	echnie	cal kn	owled	lge fo	r indu	strial p	urpose	,					
4 Des	To articulate their technical knowledge for industrial purpose Describe national food laws and standards															
5 Lav	ws ar	nd qua	lities	of sta	ndard	for fc	od pr	oducts	5							
COUR	SEO	UTC	OME	S												
After th	e c110	reest	ul con	nnleti	on of	the co	lirce	learne	r will 1	he ahle	to					
							-									
CO1:Re	ecall	the pr	ocess	ing tee	chniq	ues pr	actice	d in o	lden da	ays and	the bi	ologic	al proce	ss F	Remember	
CO2.Ill	ustra	te the	meth	ods fo	r anir	nal pr	oduct	devel	opmen	ıt, qual	ity con	trol an	d also s	creen U	Jnderstand	
the cont CO3.Tr			techni	iques	in sca	ling 11	n for	indust	rial ne	eds					Apply	
CO4.Int	terpr	et and	Trou	blesho	oot ins	strume	ents to	main	tain ac	curacy	7				Apply	
CO5.De										-					Apply	
MAPPI		-						AES A	NDDE			FSDE	TEICO			
	mu	VVIII	II KU	GNA				ILSA		UGK		291 EV				
COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	
CO1	$\frac{1}{S}$	_	_	-	_	_	_	_	-	0	1	2	-	-	-	
$\frac{CO1}{CO2}$	-	М	-	-	-	-	-	-	-	-	-	-	-	-	-	
	L	М	S	М	L	-	-	-	-	-	-	-	М	L	-	
001	М	S	S	М	L	-	-	-	-	-	-	-	S	S	-	
CO5	-	S	S	M	М	-	-	-	-	-	-	М	L	S	-	
V Vtman	g;M-	Medi	um;L-	Low												
s-stron																
S-Stron	BUS	S														
S-Stron	BUS	S														

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meatspecies identification, Quality control, Screening products for contaminants

BIOTECHNOLOGYMETHODSIN FOODPROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLETECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOODSAFETY&SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of foodbiotechnology in India.

TEXTBOOKS:

1. Potter, Norman. M. FoodScience, 5thEd. SpringerUS

2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4thEd. New Age Publishers.

3. B.Srilakshmi., (2002)Food Science, New Age Publishers..

REFERENCES:

- 1. Meyer,(2004).FoodChemistry.NewAge
- 2. Deman J M.(1990) Principles of FoodChemistry.2nd Ed. Van Nostrand Reinhold, NY
- 3. RamaswamyHandMarcottM.FoodProcessingPrinciplesandApplications.CRCPress

COURSE DESIGNERS

S.No.	Nameofthe Faculty	Designation	Department	MailID
1	Dr.A.Nirmala	AssistantProfessorGII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associateprofessor	Biotechnology	nirmala@vmkvec.edu.in

OVERVIEWOFBIOFUELS

Generationofbiofuels-Development

ofbiologicalconversiontechnologies-Integrationofbiofuelsintobiorefineries - Energy security and supply - Environmental sustainability of biofuels - Economicsustainability of biofuels.

BIODIESEL

Biodiesel - Microorganisms and raw materials used for microbial Oil production - Treatment of thefeedstockspriorto

production of the Biodiesel-Current technologies of biodiesel production-Purification of biodiesel; Industrial production of biodiesel-Biodiesel production from single cell.

BIOETHANOL

Bioethanol-Properties-

Feed stocks-Process technology-Pilot plant for ethanol production from lignocellulosic feed stock-Environmental a spects of ethanol as a biofuel.

BIOMETHANEANDBIOHYDROGEN

Biomethanol-Principles,

materialsandfeedstocks–Processtechnologiesandtechniques–Advantagesandlimitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogeneconomy–Advantagesandlimitations.

OTHERBIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol–Productionofbio-oilsviacatalyticpyrolysis–Life-CycleenvironmentalimpactsofbiofuelsandCo-products.

TEXTBOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited20112.Gupta,V,K.andTuohy, M,G.BiofuelTechnologies, Springer,20133.Moheimani, N.R.,Boer,M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015**REFERENCES**:

- $1. \ Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, \\$
 - 20162.Bernardes, M, A, D, S. Biofuelproduction-recentdevelopments and prospects, In Tech, 2011

S.No	Name of the	Designation	Department	MailID
	Faculty			
1	Dr.A.Balachandar	AssistantProfessor-	Biotechnology	Balachandar.biotech@avit.ac.in
		Gr-II		
2	Dr.M.Sridevi	Professor&Head	Biotechnology	sridevi@vmkvec.edu.in

COURSEDESIGNERS

			Die	saster	Mitio	ation «	nd M	anagem	nent	Cate	egory	L	Т	Р	Credit
			DI	Jastei	Times			anagen	iciit	OE	-EA	3	0	0	3
Preamb	ole														
	res, and	Haza	rd Asse	essment	procedu	ure in Ir	ndia. Th	se the stu is course							
Prerequ	uisite														
			NIL												
Course	Outco	mes													
1 T	Го Und	erstar	nd basic	c conce	pts in D	isaster	Manag	ement							
2 T	Го Und	erstar	nd Defi	nitions	and Ter	rm in o	logies u	used in Di	isaste	r Manag	ement				
3 Т	Го Und	erstar	nd the C	Challen	ges pos	ed by D	oisaster	s							
4 T	Го Und	erstar	nd Impa	acts of l	Disaster	S									
COURS															
			1					will be ab ological,			f				
				21			2	0					Underst	and	
		-		isters, G	eologic	ai, Mas	s Move	ment and	Land	Disaster	s, wind	and	Ondersu	unu	
Water I CO2.Ide				deficie	ncies of	existin	g build	lings for I	Eartho	uake di	saster ar	d	Underst	and	
Suggest	•	-					8	8		1					
						nary m	easures	and rehat	nilitati	on meas	ures for		A 1		
Earthqua					recautic	mary m	cusures		Jintati	on meas			Apply		
CO4. D	erive t	he pro	otection	measu	res aga	inst floo	ods, cya	clone, lan	dslid	es			Apply		
COLL	1 4	1.1		6.1		. 1 14		· • •					Underst	and	
								res in Ind							
								PROGR			1	1		DCO2	DCO2
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M S	M M	L S	L	-	M	-	- -	-	-	-	-	L	- T	-
CO3 CO4	S	M	S	M -	- L	L -	-	M -	-		-	-	M	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-
S-Stron	g; M-N	/lediu	m; L-L	ow				•			•		•	•	

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and for warning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards.

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ;

Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXTBOOKS:

1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2.

2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10:1259007367, ISBN-13: 978-1259007361]

- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES:

- 1. AbarquezI. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S.C. Remote Sensing Application in North East India, PurbanchalPrakesh, Guwahati, 1997.
- 4. Manualon Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act.(2005), Ministry of Home Affairs, Government of India, NewDelhi, 2005.

Course	Designers
--------	-----------

	8			
S. No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil/AVIT	isparaxavier.civil@avit.ac.in

MANAGEMENT OE-EA 3 0 0 3	MUNICIPAL SOLID WASTE	Category	L	Т	Р	Credit
	MANAGEMENT	OE-EA	3	0	0	3

PREAMBLE

Structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals.

PREREQUISITE

Nil

COURSE OBJECTIVES

000		ODUL													
1.]	The or	n-site/o	off-site	e proce	essing	of the	same a	and the	e dispo	sal met	hods.				
	The st vaste.		is expe	ected t	o knov	v abou	t the v	arious	effect	s and di	sposal	options	for the	municip	al solid
3. 1	The co	ollectio	on and	supply	y of wa	ater									
4. 1	The of	ffsite p	rocess	ing in	volved	in site	e								
COUF	RSE (OUTC	OMES	S											
On t	the su	ccessf	ul com	pletio	n of th	e cour	se, stu	dents v	will be	able to					
Col	. To k	now a	bout t	he type	es of w	aste &	z Sour	ces					Unders	stand	
Co2	. To	Study	the on	site S	torage	& Pro	cessin	g					Apply		
Co3	. To s	tudy a	bout tl	ne coll	ection	& trar	nsfer tl	ne was	te				Apply		
Co4	. To S	Study t	he pro	cess o	f off si	te pro	cessing	g					Apply		
COS	5. To 1	know a	about t	the sol	id was	te disp	osal						Apply		
Mappi	ing w	ith Pr	ogran	nme O	utcom	es and	d Prog	gramn	ie Spe	cific O	utcome	S			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	COs	PO1
CO1	S	М	L	-	-	L	S	-	-	-	-	-	-	-	L
CO2	S	М	L	S	-	-	М	-	-	-	-	-	-	М	S
CO3	S	М	М	S	-	-	М	-	-	-	-	-	-	М	S
CO4	S	М	M	М	-	-	Μ	-	-	-	-	-	-	М	S
CO5	S	M	M	-	-	М	М	-	-	-	-	L	-	-	S
S- Str	ong;	M-Me	dium;	L-Lov	V										

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– Requirement of Solid Waste Management - public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs - Legislation.

ON-SITE STORAGE & PROCESSING

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options – Case Studies Under Indian Condition

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Thermal processing options - Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

TEXT BOOKS

George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

REFERENCE BOOKS

- 1. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997. Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.
- Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002). Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development,
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	subathra@avit.ac.in
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.co m

FUNDAMENTALS OF ARTIFICI INTELLIGENCE	AL Categor y	L	Т	Р	Credit
	OE-EA	3	0	0	3

PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Game playing. Thus, this syllabus focuses on to know about AI and its concepts.

IKEN	REQUI	SITE	:NIL												
COUI	RSE O	BJECT	IVES												
1.	To int	roduce	the basi	ic princi	ples, te	chniqu	es, and	applicat	tions of	Artific	ial Intellig	gence.			
2.	To hav	ve know	vledge o	of gener	ic prob	lem-sol	ving m	ethods i	n Artif	icial Int	elligence.				
3.	To des	sign sof	tware a	gents to	solve	a proble	em.								
4.	Apply	the kno	owledge	e of algo	orithms	to solv	e arithn	netic pr	oblems.						
5.	Assem	ble an	efficien	t code f	or engi	neering	proble	ms.							
COU	RSE O	UTCO	MES												
On the	e succes	ssful co	mpletio	on of the	course	, studer	nts will	be able	to						
CO1: .]	Identify	the dif	ferent a	igent an	d its ty	pes to s	olve the	e proble	ms			Understa	and		
CO2: k	now ab	out the	problei	m solvir	ng tech	nique ir	Artific	ial Inte	lligence	e.		Apply			
CO3: (Constru	ct the n	ormal f	orm and	repres	ent the	knowle	dge.				Apply			
CO4: to environ		about e	extensio	on of con	ndition	probab	ility and	d how to	o apply	in the r	eal time	Apply			
<i>СО5:</i> Т		about Ir	nformat	ion Ret	rieval a	nd Spee	ech Rec	ognitio	n			Understa	and		
MAP	PING V	VITH I	PROGI	RAMM	E OUT	[COM]	ES ANI	D PRO	GRAM	ME SF	ECIFIC	OUTCO	MES		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO 1	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
1 CO 2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO	М		S	М	М	-	-	-	-	-	-	М	S	-	М
3 CO	S	М	М	М	М	-	-	-	-	-	-	М	S	М	М
4 CO 5	S	М	М	М	М	-	-	-	-	-	-	М	S	М	-
-	ong; M·	-Mediu	m; L-Lo	DW								<u> </u>			. <u> </u>

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system - Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching

GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1.David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

		COURSE DESIGNER	RS	
S. No.	Name of the Faculty	Designation	Department	Mail
				ID
1.	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in
2.	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in

			INTI	RODU		TO IN	TERN	ET OF	7		Catego ry	L	Т	Р	Crea
											OE- EA	3	0	0	3
	AMBLE														
Introd	duction	to loT i	for stati	stical d	ata ma	nipulati	on and	analys	is. It w	as inspir	ed by a	nd is mos	st com	patibl	e with t
statisti	cal lang	lage.													
PRE	REQUI	SITE													
NIL															
COU	RSE O	BJECT	IVES												
1	To le	arn Intr	oductio	on to Io	Т										
2	To St	tudy me	ethodolo	ogy of I	оТ										
3	To D	evelop	IoT app	olication	ns using	g Arduir	no and]	Intel Ed	lition						
COU	RSE O	UTCO	MES												
0. 4			1				· · · · 11	1	4 -						
	e succes		-												
				ics in I	ntroduc	tion to	IoT in	terms of	of const	ructs, co	ntrol	Unders	tand		
	nents, str To Und			of Intr	aduatia	n to Io'	T fund	omonto	10			Unders	tand 8	. 1 nn	1.7
CO2.		erstand	the use	or mu	ouuciio		i iunu	amema	15.			Unders	tanu o	t App	19
<u>cor</u> .	T	1	T. 4 1		L.T.		• • •			1 D				• •	•
		· · ·							quentia	l Proces	5	Unders		• •	•
	Able to	· · ·							quentia		S		tand &	z App	ly
CO4: perspe	Able to	apprec	iate and	apply	the Intro	oduction			quentia		S	Unders	tand &	z App z App	ly ly
CO4: perspe	Able to ective To learn	apprec.	iate and	apply	the Intro Challen	oduction	n to Io'	T from	quentia a statis	otical		Unders Unders	tand & tand & tand &	z App z App	ly ly
CO4: perspe	Able to ective To learn PING V PO	apprec Introdu VITH PO	iate and action to PROGI PO	apply to IoT (RAMM PO	the Intro Challen E OUT PO	ges COMI PO	n to Io' ES ANI PO	T from D PRO PO	quentia a statis GRAM PO	itical	ECIFIC PO	Unders Unders Unders OUTCC PO1	tand & tand & tand & DMES PS	z App z App z App z App	ly ly ly S Pi
CO4: perspective CO5 T MAP COs	Able to ective To learn PING V	apprec Introdu	iate and action to PROGI	apply to IoT (the Intro Challen E OUT	oduction ges	n to Io' E S ANI	T from	quentia a statis GRAM	itical	ECIFIC	Unders Unders Unders OUTCC	tand & tand & tand & DMES PS O1	z App z App z App z App Q	ly ly ly S PS 2 O
CO4: perspe CO5 7 MAP	Able to ective To learn PING V PO	apprec Introdu VITH PO	iate and action to PROGI PO	apply to IoT (RAMM PO	the Intro Challen E OUT PO	ges COMI PO	n to Io' ES ANI PO	T from D PRO PO	quentia a statis GRAM PO	itical	ECIFIC PO	Unders Unders Unders OUTCC PO1	tand & tand & tand & DMES PS	z App z App z App z App	ly ly ly S PS 2 O
CO4: perspective CO5 T MAP COs CO 1	Able to ective To learn PING V PO 1	apprect Introdu VITH PO 2	iate and action to PROGI PO 3	apply for a lot of RAMM PO 4	the Intro Challen E OUT PO 5	ges FCOMI PO 6	n to Io ES ANI PO 7	T from D PRO PO 8	equentia a statis GRAM PO 9	IME SP PO1 0	ECIFIC PO 11	Unders Unders OUTCO PO1 2 -	tand & tand & tand & DMES PS O1 S	z App z App z App z App P O N	Iy ly ly ly S PS O A
CO4: perspe CO5 7 MAP COs CO	Able to ective To learn PING V PO 1	apprect Introdu VITH PO 2	iate and action to PROGI PO 3	apply for a lot of RAMM PO 4	the Intro Challen E OUT PO 5	ges FCOMI PO 6	n to Io ES ANI PO 7	T from D PRO PO 8	equentia a statis GRAM PO 9	IME SP PO1 0	ECIFIC PO 11	Unders Unders Unders OUTCC PO1	tand & tand & tand & DMES PS O1	z App z App z App z App Q	Iy ly ly ly S PS O A
CO4: perspective CO5 MAP COs CO 1 CO 2	Able to ective To learn PING V PO 1	apprect Introdu VITH PO 2	iate and action to PROGI PO 3	apply for a lot of RAMM PO 4	the Intro Challen E OUT PO 5	ges FCOMI PO 6	n to Io ES ANI PO 7	T from D PRO PO 8	equentia a statis GRAM PO 9	IME SP PO1 0	ECIFIC PO 11	Unders Unders OUTCO PO1 2 - M	tand & tand & tand & DMES PS O1 S M	z App z App z App z App P O N	Iy ly ly ly ly S PS O A
CO4: perspective CO5 MAP COs CO 1 CO 2 CO	Able to ective To learn PING V PO 1 S	apprec Introdu VITH 1 PO 2 S	iate and action to PROGI PO 3 M	apply for a lot of a	the Intro Challen E OUI PO 5 L	ges TCOMI PO 6 S	n to Io ES ANI PO 7 S	T from D PRO PO 8 M	GRAM PO 9 S	IME SP PO1 0 L	ECIFIC PO 11 S	Unders Unders OUTCO PO1 2 -	tand & tand & tand & DMES PS O1 S	z App z App z App z App P O N	Iy ly ly ly S PS O A
CO4: perspective CO5 MAP COs CO 1 CO 2	Able to ective To learn PING V PO 1	apprect Introdu VITH PO 2	iate and action to PROGI PO 3	apply for a lot of RAMM PO 4	the Intro Challen E OUT PO 5	ges FCOMI PO 6	n to Io ES ANI PO 7	T from D PRO PO 8	equentia a statis GRAM PO 9	IME SP PO1 0	ECIFIC PO 11	Unders Unders OUTCO PO1 2 - M	tand & tand & tand & DMES PS O1 S M	z App z App z App z App P O N	Iy ly ly ly ly S PS O A
CO4: perspective CO5 T MAP COs CO 1 CO 2 CO 3 CO	Able to ective To learn PING V PO 1 S	apprec Introdu VITH 1 PO 2 S	iate and action to PROGI PO 3 M	apply for a lot of a	the Intro Challen E OUI PO 5 L	ges TCOMI PO 6 S	n to Io ES ANI PO 7 S	T from D PRO PO 8 M	GRAM PO 9 S	IME SP PO1 0 L	ECIFIC PO 11 S	Unders Unders OUTCO PO1 2 - M	tand & tand & tand & DMES PS O1 S M	z App z App z App z App P O N	$ \frac{1}{1y} $ $ \frac{1}{1y} $ $ \frac{1}{1y} $ $ \frac{1}{2} $ $ \frac{0}{4} $ $ \frac{1}{5} $ $ \frac{1}{5} $
CO4: perspective CO5 T MAP COs CO 1 CO 2 CO 3	Able to ective To learn PING V PO 1 S	apprec Introdu VITH 1 PO 2 S	iate and action to PROGI PO 3 M	apply for a lot of a	the Intro Challen E OUI PO 5 L	ges TCOMI PO 6 S	n to Io ES ANI PO 7 S	T from D PRO PO 8 M	GRAM PO 9 S	IME SP PO1 0 L	ECIFIC PO 11 S	Unders Unders OUTCC PO1 2 - M	tand & tand & tand & DMES PS O1 S M	z App z App z App v App v App	
CO4: perspective CO5 T MAP COs CO 1 CO 2 CO 3 CO	Able to ective To learn PING V PO 1 S	apprec Introdu VITH 1 PO 2 S	iate and action to PROGI PO 3 M	apply for a lot of a	the Intro Challen E OUI PO 5 L	ges TCOMI PO 6 S	n to Io ES ANI PO 7 S	T from D PRO PO 8 M	GRAM PO 9 S	IME SP PO1 0 L	ECIFIC PO 11 S	Unders Unders OUTCC PO1 2 - M	tand & tand & tand & DMES PS O1 S M	z App z App z App v App v App	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ $

SYLLABUS UNIT I –INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"

REFERENCES

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COU	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in									
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in									

DESIGN OF ELECTRONIC	Category	L	Т	Р	Credit
EQUIPMENT	OE-EA	3	0	0	3

PREAMBLE

The objective of this course is to sensitise a registrant to various aspects of an electronics product. Specifically on non-Electrical aspects like mechanical design and detailing. Starting from a need translated into specifications, leading to design and prototyping and ending up in a manufacturable physical prototype.

PREREQUISITE - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES

	1	To understand the various Concept of Industrial Design process.
--	---	---

2	To apply the basic Concept of electronic Product designs methodology.
---	---

3 To classify the Concept of Ergonomics & aesthetics in product design.

4 To understand the Knowledge regarding the design of product packaging and working environment.

5 To understand the Knowledge of different industrial standard and value analysis.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Visualize the concept for product design with respect to ergonomics and aesthetics. Remember

CO2. Analyze, design and implement control panels of electronic equipment

CO3. Apply creativity in the design of system by formulating architecture with proper placement of
components.ApplyCO4. Apply the concept of visual communication techniques in product design.Apply

Apply

Apply

CO5. Apply the process of value analysis in existing product.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

1															
COS	P01	P02	<i>P03</i>	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	М	L	-	-	S	-	-	L	M	L	-	-	S	-	-
<i>CO2</i>	M	L	-	M	S	-	-	L	M	L	-	-	S	-	-
СОЗ	M	L	-	M	S	-	-	L	M	L	-	L	S	-	М
<i>CO</i> 4	S	M	L	-	S	-	-	L	М	L	-	L	S	М	М
<i>C05</i>	S	M	L	-	S	-	-	М	L	L	-	L	S	М	М
C Ctre	ona. M	Modiu	m. I. I.o												

S- Strong; M-Medium; L-Low

SYLLABUS

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation.

Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial

Design and Engineering Design ", Council, London and Springer Verlag, 1983

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

INTRODUCTION TO INDUSTRY 4.0 AND	Category	L	Т	Р	Credit
INDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

Basic knowledge of computer and internet

COURSE OBJECTIVES

- 1 Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- 3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- ⁴ *Hot links the automation system with enterprise, planning and product lifecycle.*
- ⁵ Real case studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

<i>CO1. Apply & Analyzing the transformation of industrial process by various techniques.</i>	Analyze
<i>CO2. Evaluate the transformation technologies are considered to be the different drivers.</i>	Apply
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
<i>CO4. Intensive contributions over automation system with enterprise, planning and product life cycle</i>	Analyze
CO5. Analyze of various Real time case studies.	Analyze

COS	PO	P02	<i>P03</i>	PO	PSO1	PSO	P								
	1			4	5	6	7	8	9	10	11	12		2	0
															3
CO1	S	S	М	-	M	-	-	-	-	-	-	М	S	М	-
<i>CO2</i>	S	S	S	М	М	-	-	-	-	-	-	М	S	М	N
СОЗ	S	S	S	М	М	-	-	-	-	-	-	М	S	М	Λ
<i>CO</i> 4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	Λ
<i>C05</i>	S	S	S	S	М	-	-	-	-	-	-	М	S	М	Λ

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIOT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, and Industrial IoT-Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. L.K.Hema	Professor &Head	ECE	hodece@avit.ac.in		
2	Dr.T.Muthumanickam	Professor& Head	ECE	hodece@vmkvec.edu.in		

			GREE	N POV	VER G	ENEI	RATIO	DN SYS	TEMS	0	Category	L	T P		edit
										(DE-EA	3	0 0		3
The co energy these 1 of the	and inv	vestigate s will b	es the co e presen	ontribut	ion the	y can i	nake to	the ene	rgy prof	ile of the	lar, and e nation. and socia	The tee	chnology	v used to	harnes
	RSE OB														
				etween	energy	, enviro	onment,	and sust	ainable	developr	nent				
2 .	Apprecia	ite ener	gy ecosy	ystems	and its	impact	on env	ironmen	t						
3	Learn ba	sics of	various	types o	f renew	able ar	nd clear	n energy	technolo	gies					
4	Serve as	bridge	to advar	nced co	urses ir	n renew	able en	ergy							
	RSE OU														
On the successful completion of the course, students will be able to												1	Indonato	nd	
CO1: Explain renewable energy sources & systems. CO2: Apply engineering techniques to build solar, wind, tidal, geothermal, biofuel, fuel cell,												Jndersta	na		
	Apply e gen, and	e	e	•	to bu	ild sol	ar, wir	id, tidal,	geother	mal, bic	ofuel, fue	el cell,		Apply	
	•							e energy. energy sy	•	ots in sol	ving nur	nerical		Analyz	e
CO4:]	Demonst	rate sel	f -learni	ng capa	bility t	o desig	n & est	tablish re	newable	energy	systems.			Analyz	e
CO5: system		experi	ments t	o asses	s the p	berform	ance o	f solar I	PV, sola	r therma	l and bi	odiesel		Apply	
MAPI	PING W	ITH P	ROGRA	AMME	OUT	COME	S AND	PROG	RAMMI	E SPEC	IFIC OU	TCON	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	M	-	-
CO2	S	M	S	L	М	-	L	M	-	M	-	-	-	-	-
CO3	S	-	-	-	М	-	-	M	M	-	-	-	L	-	-
CO4	S	-	-	-	М	-	L	-	-	-	-	М	-	-	-
CO5	S	Μ	S	L	М	-	L	M	-	M	М	-	М	L	

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.
- **3.** Figueiredo, 'Green Power: Perspectives On Sustainable Electricity Generation', Taylor & Francis Exclusive(Cbs), 2014

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

3.

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

			истр		יאסר	FS AN		том	ATIO	N		Catego	ry 1	L T	P	0
			USIR	IAL I	JKIVI	ls an	ID AU	IUM	AHO	IN		OE-E	A	3 0	0	3
Preambl To introc		undatio	on on t	he prir	nciples	of dri	ves &	autom	ation a	and the	ir elen	nents wit	h the ir	nplem	entati	on.
PRERE	QUISI	ГЕ : N	IL													
COURS	E OBJ	ЕСТГ	VES													
1		To e	xplore	the va	arious	AC,D	C & S _l	pecial	Machi	ne Driv	ves for	industri	al Appl	icatior		
2		To s	tudy a	bout tł	ne vari	ous Oj	pen loo	op and	closed	l loop o	control	scheme	s for dr	ives		
3		To k	now a	bout h	ardwa	re imp	lemen	tation	of the	contro	llers us	ing PLC				
4		To s	To study the concepts of Distributed Control System													
5		To u	To understand the implementation of SCADA and DCS													
COURS	E OUT	COM	ES													
On succ	essful c	omple	tion o	f the c	ourse	, the st	tudent	ts will	be abl	le to						
СО	1				orking selecti	•	•	of vari	ous ty	pes of	motor	s, differ	ences,	Un	dersta	ınd
СО	2		· · ·		wledge s indus				iotors,	heating	g effect	s and b	raking	1	Apply	7
СО	3	To e	xplain	control	metho	ds of sj	pecial o	lrives						Un	dersta	nd
СО	4			it prog indust		ng usir	ng PLC	and u	ise of	various	PLCs	to Auton	nation	Un	dersta	nd
CO	5			•	isory con area		and da	ta acqu	isition	metho	d and u	se the sa	me in	Un	dersta	ınd
Mapping	with P	rogran	nme ou	itcome	es and	Progra	imme	Specif	ic Out	comes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO1	PSO	2	PSO3
CO1	S	S	L	-		S	S	-		L	-	-	-	-		L
CO2	M	-	М	-	S	L	M	-	M	L	-	-	L	-		-
CO3	М	-	М	-	S	L	М	-		L	-	-	-	N	[-
CO4	S	-	S	-	S	М	М	L	-	L	М	-	-	-		L
CO5	S	М	S	S	S	М	S	-	M	L	L	M	_	L		М

INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD. petruzella programmable logic controls third edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008.
- 4. Fundamentals Of Industrial Drives by B. N. Sarkar, PHI Learning, 2011

REFERENCES

- 1. Pradheep kumar srivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.Srinivasan Special electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

COURSE DESIGNERS

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

		31) PR	INTI	NG A	AND IT	S	Cate	gory	L		T	Р	Cr	edit	
					CATI		-	OE-	EA	3		0	0		3	
Pream The cou opplicat	irse is o	design	ed to i	impar	t knov	vledge a	nd sk	tills rela	ated to	3D pri	nting to	echnol	ogies its	type		
	uisite															
	e Obj o			rtance	of 3E) printin	g in I	Manufa	cturing	<u></u>						
1			•			merizat	<u> </u>									
					-					-	· .					
						materia							•.•			
						or pow			on &	direct	energy	/ depc	osition.			
5	l'o kno	w abo	ut the	applic	cation	s of 3D	Printi	ing.								
Cour	se Ou	tcome	es: O	n the	succ	essful o	comp	oletion	of th	e cour	se, stı	ıdent	s will b	e able	to	
CO1.	Impor	rtance	of 3D	printi	ng in	Manufa	cturir	ng					Remem	ıber		
CO2.	Vat P	hoto P	olyme	erizati	on & 1	Material	l Jetti	ng.					Unders	tand		
CO3.	Binde	er jetti	ng m	ateria	l extr	rusion &	& she	et lam	inatio	n			Unders	tand		
CO4.	Powc	ler bed	l fusi	on &	direc	t energ	y dep	osition	1.				Unders	tand		
CO5.	Appli	cations	s of 31	O Prin	ting.								Unders	tand		
Mapp	oing w	vith P	rogra	mme	e Out	comes	and	Progr	amm	e Spec	ific O	utcor	nes			
	РО	РО	PO	РО	PO	PO	PO	РО	РО	PO1	PO1	PO1	PSO			
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	PSO2	PSO3	
CO1	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	М	L	Μ	-	S	М	М	-	-	-	-	-	М	M-	М	
CO3	М	L	М	-	S	М	М	-	-	-	-	-	М	M-	М	
CO4	М	L	М	-	S	М	М	-	-	-	-	-	- M M- M			
CO5	М	L	L	-	-	-	-	-	-	-	-	-				
5- Stro	ong; N	A-Me	dium	; L-I	JOW	. <u> </u>										

INTRODUCTION

Need - Development of AM systems – AM process chain -Classification of AM processes- Applications-Advantages of AM and Types of materials for AM.Introduction to STL format, Pre & Post-processing of STL files, Various slicing methods, Part orientation and support generation, Support structure design, Tool path generation

VAT PHOTO POLYMERIZATION & MATERIAL JETTING

Vat Photo polymerization - Stereo lithography process, working principle, advantages and disadvantages, Material Jetting - process, working principle, advantages and disadvantages.

BINDER JETTING-MATERIAL EXTRUSION & SHEET LAMINATION

Binder Jetting- process, working principle, advantages and disadvantages. Material Extrusion –Fused Deposition Modeling process, working principle, advantages and disadvantages. Sheet Lamination – Laminated Object Manufacturing process, working principle, advantages and disadvantages.

POWDER BED FUSION & DIRECT ENERGY DEPOSITION

Powder Bed Fusion – Selective Laser Sintering process, working principle, advantages and disadvantages, Direct Energy Deposition- process, working principle, advantages and disadvantages.

APPLICATIONS OF 3D PRINTING

Applications for 3D Printing - Use of 3D Printing-Limitations of 3D Printing and Further Development of Medical 3D Printing Applications. Use of Multiple Materials in 3D Printing-Embedded Component 3D Printing, Commercial Applications Using Multiple Materials, Future Directions, Business Opportunities and Future Directions.

Text B	ooks											
	Ian Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, NY, 2015.											
2	Venuvinod, Patri K., and Weiyin Ma. Rapid prototyping: laser-based and other technologies. Springer Science & Business Media, 2013.											
Refer	ence Books											
1	Chua Chee Kai, Leong	g Kah Fai, "Rapid Prototy	ping: Principles & Applicat	ions", World Scientific, 2003.								
2	Ali K. Kamrani, Emar	nd Abouel Nasr,"Rapid Pr	ototyping: Theory & Practio	ce", Springer, 2006.								
	Kumar, L. Jyothish, P technologies. Singapo		rid Ian Wimpenny, eds. 3D	printing and additive manufacturing								
Cours	se Designers											
SI.No	No Faculty Name Designation Department/ Na me of the college Email id											
1	1 S.Kalyanakumar Assistant Professor Gr II Mech / AVIT kalyanakumar@avit.ac.in											

			NDIIS	STRL		OROT		C	ategoi	y	L	Т	Р	C	credit	
		11		5 I KI	AL N	OBO	iics	0	E-EA		3	0	0		3	
Preaml The obje design. Prereq NIL	ctive o	-	cour	se is t	o imp	oart kr	nowle	dge a	bout ii	ndusti	rial rol	bots for	their c	ontrol (and	
Course	Ohie	ctive														
1			sic coi	ncepts,	, parts	of rob	ots an	d type:	s of rol	oots						
	learn a	bout I	Robot	kinem	atics a	nd dyr	namics	5								
То	3 To learn different types of sensors used in robots and its control															
	4 To understand the different types of actuation systems used in robots															
5	unders				iypes (system	is used	111 1000	515					
То	unders	tand t	he rob	ot con	trol Sy	stems	, prog	rammi	ng of r	obots a	ind its A	Applicati	ions.			
Course	Outc	omes	: On 1	the su	ccess	ful co	mple	tion o	f the c	ourse	, stude	ents wil	l be ab	le to		
CO1.	Under	stand	the b	oasic c	onfig	uratio	ns and	d kine	matic	systen	ns of ro	obots	Unde	rstand		
CO2.	Solve	probl	ems o	of robc	ot kine	ematic	s and	dynaı	mics				Apply	1		
CO3.									d in ro ol syst				Unde	rstand		
CO4				applic	ations	s of the	e diffe	erent t	ypes o	of actu	ators u	sed in		rstand		
CO5.	Indon	atord	tha D	Dahat	A	action		o mi o la la	s fields				Unda	rstand		
Mapping											Outco	omes	Unde	rstand		
CO	PO1	PO2		PO4		PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	L	-	_	L	_	_	-	_	-	_	S	_	L	
					_			_	_	-	-					
CO2	S	S	M	M	-	M	-	-	-	-	-	-	S	-	L	
CO3	S	Μ	M	M	-	M	-	-	-	-	-	-	S	-	L	
CO4	S	S	M	M	_	L	_	-	-	-	-	-	S	_	L	
CO5	S	S	L	S	_	s	-	_	-	_	-	-				
S- Stron			1	1												

INTRODUCTION TO ROBOTICS

Introduction to Automation and Robotics- Basic concepts, Need, Law, History, Anatomy, specifications classification, present and future applications. Components of the Industrial Robotics: common types of arms. Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

ROBOT ARM KINEMATICS

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

ROBOT ACTUATION SYSTEMS

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

ROBOT APPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading- Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. Applications in Medical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

Text Books

- 1 Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014.
- 2 Mikell P Groover, Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, "Industrial Robotics, Technology programming and Applications", McGraw Hill, 2012.
- 3 Mittal R.K. and Nagrath I.J., "Robotics and Control", Tata McGraw Hill.

Reference Books

- 1 Ghosal, A., "Robotics", Oxford, New Delhi, 2006.
- 2 Niku Saeed B., "Introduction to Robotics: Analysis, Systems, Applications", PHI, New Delhi.
- ³ Steve Heath, "Embedded System Design", 2nd Edition, Newnes, Burlington, 2003
- Merzouki R., Samantaray A.K., Phathak P.M. and Bouamama B. Ould, "Intelligent Mechatronic System:
- 4 Modeling, Control and Diagnosis", Springer.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	P.KUMARAN	AP-II	MECH/AVIT	kumaranp@avit.ac.in

				C	VDED	SECUI	DITV				Category		Т	P C	redit
				C	IDEN	SECUI					OE-EA		0	0	3
PREA	MBLE	I								I			U	•	v
				yber Se	curity i	n real t	ime and	l to stud	ly techr	niques in	volved in	it.			
	EQUIS														
	SE OB														
	To und					•	•	and issu	ies						
2.	To stud	ly vario	us cybe	r crime	s and le	egal rem	nedies								
3.	To app	ly vario	us priva	acy and	securit	у									
4.	To stud	ly E-Cor	nmerce	e and di	gital pa	yments	5								
5.	To stud	ly the ba	asic sec	curity as	spects r	elated 1	to Com	puter ar	nd Mobi	iles					
	SE OU														
On the	success	sful con	npletion	of the	course,	student	ts will b	be able 1	to						
CO1: al	ole to ur	ndersta	nd the c	concept	of Cyb	er secu	rity and	issues	and ch	allenges	associate	Idndersta	nd		
with it.															
CO2: a	ble to u	ndersta	nd the	cyber c	rimes, t	heir nat	ture, leo	al rem	edies a	nd as to	how	Apply			
report th															
	and the	reportir	ng proce	edure of	f inappr	opriate				Social me gal aspe		Apply			
							to E-Co	ommerc	e and o	digital pa	yments.	Apply			
<i>C05</i> : al	ble to u	ndersta	nd the t	basic se	ecurity a	spects	related	to Con	nputer a	and Mobi	les.	Apply			
-	1	1		1							CIFIC O	1			_
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	O3 M
CO2	М	М	М	М	М	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	М	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М		-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
S- Stro	ng; M-l	Medium	n; L-Lov	W	I	I	I	1	I	1	1	I	1		
	<i>, , ,</i>		, -												

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y , TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra , Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson , 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

9 hours

9 hours

9 hours

9 hours

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by E. Maiwald, McGraw Hill

COUR	COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in							
2.	Mr. B. Sundharamurthy	Associate Professor	CSE	sundharamurthy@vmkvec.edu.in							

D. COURSES FOR PRESENTATION OF TECHNICAL SKILLS

				MIN		MECT		Cate	egory		Ĺ	Т	Р	Cre	edit
				IVIIIN	IPRU)JECT		PI	-M		0	0	6	3	3
a wo	orkin	BLE ' g mo n at te	del /	otain l prote	ands- otype	on expe involvi	erienc ing n	e in co nulti-d	onvertin isciplin	ng a sr ary sl	nall no cills ar	vel ide nd / o	ea / tec r knov	hnique vledge	e into and
PRE	REQ	QUISI	TE –	Nil											
COL	JRSI	E OB.	JECT	IVE	5										
1						dea / te		•					_		
2			-		nowle mpone	edge to ent	carry	out a	capston	ne proj	ect hav	ving su	bstant	ial	
3			-	-	-	ment te	echnic	jues of	fimple	mentir	ig a pro	ject			
4	To t	ake o	n the	challe	enges	of team	work	, prepa					essiona	al man	ner,
COL		E OU					,11 (10)								
On t	he su	ccess	ful co	mplet	tion of	the co	urse,	studen	ts will	be abl	e to				
	-	ply tl or issu		owle	dge a	nd skil	ls aco	quired	in the	ir cou	rses to	a sp	ecific	Ap	ply
	-			-		wledge		carry	out a	capsto	ne proj	ject h	aving	Ap	ply
				•		amwor ts of de	· 1	-	a prese	ntatior	n in a p	profess	ional	Ana	lyze
CO4	. Exp	olain c	lesign	thinl	king p	ractices	and	their a	pplicati	ions				Cre	eate
		IG W MES	ITH	PRO	GRAN	MME (OUTO	COME	ES ANI) PRC	OGRAN	MME	SPEC	IFIC	
C	P	P	Р	Р	РО	PO	PO	PO	PO0	PO	PO1	PO	PS	PS	PS
OS	01	02	03	04	5	06	07	08	9	10	1	12	01	02	03
C 01	S	М	М	М	L	-	-	-	М	М	-	М	М	М	М
C O2	S	L	L	М	М	-	-	-	М	М	-	М	М	М	-
C O3	М	М	М	М	L	-	-	-	М	L	-	М	М	М	М
C O4	S	S	М	М	-	-	-	L	-	L	S	М	S	М	-
S- St	trong	; M-N	1ediu	m; L-	Low										

Norms

- > Each student must register to the project course related to his or her program
- > Mini Project course consists of one semester and would be allowed to register only during the final year of study.
- > Minor design project identification, the objective and methodology and expected outcome of the proposed work.
- > Presentation of the proposed work design, implementation and partial result
- > Presentation of complete project work with results and discussion Demonstration of project work
- Minor Project Report

	COURSE DESIGNERS										
S. No	Name of the Faculty	Designation	Dept	Mail ID							
1	Dr.S.Anusuya	Associate Professor	Pharmaceut ical Engineerin g	dr.s.anusuya@vmkvec.ed u.in							
2	Dr.P.David Annaraj	Assistant professor	Pharmaceut ical Engineerin g	davidannaraj@vmkvec.ed u.in							

PROJECT WORK	Categor y	L	Т	Р	Credit
	PI-P	0	0	16	8

PREAMBLE

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE – Nil

COURSE OBJECTIVES

NE ODJECTIVES							
To provide learners with the opportunity to apply the knowledge and skill	lls acquired in						
their courses to a specific problem or issue.							
To allow learners to extend their academic experience into areas of per- working with new ideas, issues, organizations, and individuals.	sonal interest,						
	-						
1 4	dership skills						
necessary to address and help solve these issues.							
1 11	nonstrate their						
proficiency in written & oral communication skills.							
To take on the challenges of teamwork, prepare a presentation in a	n professional						
manner, and document all aspects of design work.							
RSE OUTCOMES							
On the successful completion of the course, students will be able to							
Apply the knowledge and skills acquired in their courses to a specific							
problem or issue. Apply							
	To allow learners to extend their academic experience into areas of per- working with new ideas, issues, organizations, and individuals. To encourage learners to think critically and creatively about academic, or social issues and to further develop their analytical and ethical lea- necessary to address and help solve these issues. To provide learners with the opportunity to refine research skills and den proficiency in written & oral communication skills. To take on the challenges of teamwork, prepare a presentation in a manner, and document all aspects of design work. RSE OUTCOMES successful completion of the course, students will be able to Apply the knowledge and skills acquired in their courses to a specific						

CO2. Extend their academic experience into areas of personal interest, working	Analyze
with new ideas, issues, organizations, and individuals.	
CO3. Think critically and creatively about academic, professional, or social	
issues and to further develop their analytical and ethical leadership skills	Create

CO4. Refine research skills and demonstrate their proficiency in written & oral Evaluate

necessary to address and help solve these issues.

communication skills.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO'S	PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	S	L	L	M	M	-	-	-	М	Μ	-	M	M	M	-
CO2	Μ	M	M	M	L	-	-	-	М	L	-	M	M	M	М
CO3	S	S	M	M	-	-	-	L	-	L	S	M	S	S	-
CO4	S	Μ	Μ	M	-	-	-	L	-	L	М	М	S	S	-
C Ctu	C. Change M. M. Harry I. Land														

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;

- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of the report.
- 17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID					
•									
1 I	Dr.S.Anusuya	Associate	Pharmaceutical	dr.s.anusuya@vmkvec.e					
	DI.S.Allusuya	Professor	Engineering	du.in					
2	Dr.P.David Annaraj	Assistant	Pharmaceutical	davidannaraj@vmkvec.e					
-		professor	Engineering	du.in					

COURSE DESIGNERS

E. MANDATORY COURSES INDUCTION TRAINING, INDIAN CONSTITUTION, ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE, EMPLOYABILITY ENHANCEMENT, NSS, RRC, YRC, SPORTS AND GAMES, STUDENT CLUBS, UNNAT BHARAT ABHIYAN, SWACHH BHARAT ETC.

Course Code	Course Title	Category	L	Т	Р	С
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES :

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, Sundra Yoga Therapy, Asana Publications, 2009

REFERENCES:

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, *A Primer of Yoga Theory*, Dhivyananda Creations, 2008.

- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

Condex Favity and Law	Categor y	L	Т	Р	Credit
Gender Equity and Law	AC	0	0	2 x	0

Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between ,Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males.Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To sensitize the students regarding the issues of gender and thegender inequalities prevalent in society.								
2	To raise and develop social consciousness about gender equity among thestudents.								
3	To build a dialogueand bring a fresh perspective on transgender and gender non-conforming individuals.								
4	To create awareness among the students and to help them face gender stereotype issues.								
5	To help the studentsunderstand the various legal provisions that are avail	able in our society.							
COUR	SE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1.U	nderstand the importance of gender equity	Understand							
CO2.In gender	itiate the awareness and recognize the social responsibility with regards to equity.	Apply							
	develop a sense of inclusiveness and tolerance towards various genders any discrimination.	Apply							
	o evaluate the social issues and apply suitable gender-related regulations usive living.	Evaluate							

CO5.To identify and analyze the existing gender inequality problems faced in Analyse various institutions.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	M	M	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	M	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-
C Ct.		N/	тт.												

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT –I INTRODUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT -- II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS 6 hrs

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti

6 hrs

6hrs

6 hrs

6hrs

BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, andExploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURS	COURSE DESIGNERS										
S.No.	Name of the Faculty	Mail ID									
1.	Gnana Sanga Mithra.S	sangamithra@avil.edu.in									
2.	Aarthy.G	aarthy@avil.edu.in									

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

UNIT II – Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III – Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

1. <u>https://www.constitution.org/cons/india/const.html</u>

2. http://www.legislative.gov.in/constitution-of-india

3. <u>https://www.sci.gov.in/constitution</u>

4. <u>https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of</u> india/ Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND ADJUDICATORY	SCHOOL OF INDIA
		PROCESS	UNIVERSITY

COURSI	COURSE DESIGNER											
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID								
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.co m								

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	МС	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and tomake them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and applyit to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge:The need for protecting traditional knowledgeSignificance of TK Protection, value of TK in global economy, Role of Government to harnessTK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of

environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.

2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2. Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

SPECIALIZATION INDUSTRIAL PHARMACY CREDITS - 12

				COS	METI	С ТЕ(CHNC	DLOGY	Y		Categor	y L	Т	Р	Credi
												3	0	0	3
PREA	AMBL	E													
The c	ourse g	ives an	extens	sive kn	owled	ge and	l traini	ng in tl	he form	ulation c	of cosme	tic pro	ducts		
PREI	RQUIS	ITE - 1	NIL												
COU	RSE O	BJEC	FIVES	•											
1	To de	efine th	e signi	ficanc	e of co	smetio	c prod	ucts.							
2	To di	iscuss a	ıbout tl	ne buil	ding b	locks	of cosi	netic fo	ormulat	tions.					
3	To de	emonst	rate the	e prepa	aration	of ski	n and	hair ca	re form	ulations					
4	То от	utline tl	he role	of her	bs in c	osmet	ic form	nulatio	ns.						
5	To er	nphasiz	ze the	import	ance o	f pack	aging	technic	jues of	cosmetic	produc	s.			
COU	RSE O	UTCO	MES												
On th	e succe	ssful co	omplet	ion of	the co	urse, s	tudent	s will b	e able 1	to					
CO1.	Recall	the sign	nifican	ce of c	osmet	ics.						Re	member		
CO2.	Summa	arize th	e impo	ortance	of sus	pensic	ons & o	emulsio	ons			Ur	derstand	l	
CO3.	Using	the prin	nciples	of sus	spensio	on and	emuls	ion in o	cosmeti	ic formul	ations	Ap	ply		
CO4.	Examin	ne the s	uitabil	ity of l	nerbal	consti	tuents	in cosr	netic fo	ormulatio	ns.	Ar	alyze		
CO5.	Evalua	te the p	ackagi	ing me	thods	which	will er	nhance	the sale	es		Ev	aluate		
MAP	PING	WITH	PROC	GRAM	IME (OUTC	OMES	S AND	PROC	GRAMM	E SPE	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	L	L	L	-	L	-	-	-	-	L	L	-	-
CO2	S	L	M	S	L	L	-	-	-	-	-	L	L	-	L
CO3	M	L	M	L	L	-	-	L	-	-	-	М	M	L	-
CO4	L	L	L	L	M	-	_	_	_	-	_	L	L	-	-

CO5	М	М	L	L	М	-	-	-	-	-	-	М	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

COSMETICS – INTRODUCTION, EXCIPIENTS AND BUILDING BLOCKS

Introduction, Classification of cosmetic products.

Cosmetic excipients: Surfactants, rheology modifiers, humectants, emollients, preservatives, hydrocolloids, diluents, vehicles.

Building Blocks of Cosmetic formulations: Bulk powders, Emulsions, Suspensions, Ointments, Paste, Creams, Jellies, Sticks,

SKIN CARE PRODUCTS

Skin Care Products: Moisturizing cream, cold cream, vanishing cream, skin tonning creams, soaps, face wash, face packs and masks, perfumes, antiperspants, deodorants, humectants, astringents and skin tonics, skin cleansers, skin lighteners or bleaches, sebum absorbers, sunscreen lotions, anti-sunburn preparations. Lipstick, Lip Balm, Lip Gloss, Lip liner

Nail Care Products: Nail polish, Enamel removers, Nail creams, Nail bleaches, Cuticle softeners and removers

HAIR CARE & ORAL CARE PRODUCTS

Hair Care Products: Shampoos, anti-dandruff shampoo, Hair Tonics & conditioner, Hair oils, hair dyes, Hair colorants, Hair setting lotions & sprays, Hair strengtheners

Oral Care Products: Toothpaste - for bleeding gums, sensitive teeth, teeth whitening. Mouthwashes and gargles

HERBS IN COSMETIC FORMULATION

Study the following herbs with reference to their sources, chemical constituents and cosmetic uses and formulations: Aloe, Babool, Brahmi, Bawachhi, Chandan, Cucumber, Haldi, Ambahaldi, Jashtamadh, Jatamansi, Lodra, Mehndi, Neem, Nagarmotha, Ritha, Raktachandan, Shikakai, Tulsi, Arnica, Manjishtha

PACKAGING AND DISPENSING

Importance of different materials for containers and closures. Packaging of cosmetic product and labeling. Environmental aspects of packaging materials, appropriate recycling and disposal

TEXT BOOKS

- 1. Harry's Cosmeticology, Wilkinson, Moore, Seventh Edition, George Godwin.
- 2. Cosmetics Formulations, Manufacturing and Quality Control, P.P. Sharma, 4th edition, Vandana Publications Pvt. Ltd., Delhi.

3. Text book of cosmeticology by Sanju Nanda & Roop K. Khar, Tata Publishers.
COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.ed u.in

									Cate	egory	L	Т	Р	Cre	edit
			VAC	CINE	TEC	HNO	LOG	Y	EC	C-SE	3	0	0		3
PRI	EAMB	BLE													
This	cours	se will	enric	h the	stude	ents ab	out th	ne bas	sic pri	nciples	in imn	nunology	, vaccin	nes, its	types
proc	luction	, quali	ity co	ntrol r	neasu	res and	d com	merci	ializat	ion.					
PRI	EREQ	UISIT	TE - N	IIL											
CO	URSE	OBJI	ECTI	VES											
1	To de	monst	rate tl	ne imr	nunol	ogical	conce	epts b	ehind	vaccine	es				
2	To ill	ustrate	e the p	orepara	ation a	and typ	pes of	vacc	ines.						
3	To de	evelop	a des	ign an	d dem	onstra	te the	actio	n of v	accine.					
4	To in	ference	e of a	nimal	testing	g and c	comm	ercia	lizatio	n of va	ccine.				
5	To di	scover	a vac	cine b	y new	v techn	nologi	es an	d scale	e up wit	h the he	elp of mo	lecular	and	
5	bioph	armin	g.												
CO	URSE	OUT	COM	ES											
Afte	er the s	uccess	sful co	omplet	tion of	f the co	ourse,	learn	er wil	l be abl	e to				
COI	l. Dem	onstra	te the	immı	inolog	gical co	oncep	ts in v	vaccin	ology			U	ndersta	nd
CO2	2.Illust	rate th	e prep	oaratic	n and	types	of va	ccine	s.				U	ndersta	nd
										vaccine	.		A	pply	
			-							of vacci				nalyze	
										up with		n of		J	
	ecular			-			105105	una	seure	ap withi	the heij	5.01	A	nalyze	
	PPIN					AMM	E C)UTC	COMI	ES AI	ND P	ROGRA		SPEC	CIFIC
OU	ГСОМ	1ES													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	M	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO1	1	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO1 CO2	M		C C		S	-	-	-	-	-	-	L	М	-	-
CO2 CO3	S	M	S		~			-	-	-	-	-	I -	M	
CO2		M L L	S S L	- L	S M	- S	L	L		-	-	-	_	M	- M

SYLLABUS

IMMUNOLOGICAL CONCEPTS IN VACCINOLOGY

Antigen, Antibody, APC, MHC, Epitopes- Paratopes, Active and passive immunization, Monoclonal antibodies, engineering of antibodies, antibodies: structure and functions; antibodies: genes and generation of diversity; antigen-antibody reactions Short history of vaccination.

CLASSIFICATION OF VACCINES

Classification- Live, killed, attenuated, sub unit vaccines; Viral/bacterial/parasite vaccine differences, recombinant DNA and protein-based vaccines, plant-based vaccines, edible vaccines, reverse vaccinology, combination vaccines, therapeutic vaccines; Peptide vaccines, conjugate vaccines; Cell based vaccines.

VACCINE PRODUCTION

Vaccine technology-methods of vaccine preparation –Live, killed, attenuated, sub unit vaccines, a rational approach for Vaccine development, Cellular basis of T- Cell memory, Rational design of new vectors, Transcutaneous immunisation, Vaccination studies and recent advances in Malaria, Rabies, Tuberculosis, HIV.

ANIMAL TESTING, COMMERCIALISATION, QUALITY CONTROL

Quality control and regulations in vaccine research, In-vitro experimental validations for predictions of vaccines by software, Animal testing, Rational design to clinical trials, Large scale production, Commercialisation, ethics.

RECENT TRENDS IN VACCINE TECHNOLOGY

Fundamental research to rational vaccine design, Antigen identification and delivery, T-Cell expression cloning for identification of vaccine targets for intracellular pathogens, Vaccine from molecular pharming technology and biopharming technology. requirements,Scope of future vaccine strategies.

TEXTBOOKS

1. Male, David et al., "Immunology", VIIEdition, Mosby Publication, 2007.

- 2. Kindt, T.J. etal., "Immunology", VIEdition, W.H. Freeman, 2007.
- 3. Janeway, C.A. etal., "Immunology: The Immune Systems in Health andDiseases", VIEdition, Garland Science, 2005
- 4. Lydyard, P.M. "Instant Notes in Immunology", Viva Books Pvt. Ltd., 2000.

REFERENCES

- S. Hockfield, S. Carlson, C. Evans, P. Levitt, J. Pintar, L. Silberstein, Selected methods for Antibody and Nucleic Acid probes, Volume1, Cold Spring Harbor Ed Harlow, David Lane, Antibodies Laboratory Manual, Cold Spring Harbor, Laboratory Press, 1993.
- 2. Coico, R. etal., "Immunology: A Short Course", Vth Edition, Wiley Liss, 2003.
- 3. Parham, Peter "The Immune System", II Edition, Garland Science, 2005.
- Abbas, A.K. etal., "The Cellular and Molecular Immunology", VI Edition, Sanders / Elsevier,2007.
- 5. Weir, D.M. and Stewart, John "Immunology", VIII Edition, Churchill Pvt. Ltd., 2000.

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical Engineering	sowmiya@vmkvec.edu.i <u>n</u>									

VALIDATION IN	Category	L	Т	Р	С
PHARMACEUTICAL INDUSTRIES		3	0	0	3

PREAMBLE

This course provides a basic understanding of the validation process as required by the Food and Drug Administration of the United States for drugs manufactured in the United States and all imported drugs. The main purpose of the subject is to understand about validation and how it can be applied to industry and thus to improve the quality of the products. The subject covers the complete information about validation, types, Methodology and application.

PREREQUISITE - NIL															
COU	RSE OI	BJECT	FIVES	5											
1	To de	fine ca	librati	on, qu	alifica	tion a	nd val	idation	1.						
2	To dis	cuss th	ne vali	dation	of ste	erilizat	ion, ly	ophili	sation	and so	lid dosag	es form	S.		
3	To de	monstr	ate the	e proc	ess of	pharm	aceuti	ical pa	ckagir	ng and o	quality co	ontrol.			
4	To ou	tline th	ne anal	ytical	metho	ods for	estim	ation	of drug	gs.					
5	To validation of equipment's employed in the manufacture of pharmaceuticals.														
COU	COURSE OUTCOMES														
After	the succ	essful	comp	letion	of the	course	e, lear	ner wi	ll be a	ble to					
CO1.	Describ	e the r	egulat	ory ba	sics fo	or proc	ess va	lidatio	on and	outline	the pros	pective		Unders	stand
	validati	on.													
CO2. Explain the GMP regulation regarding the utilities Pharmaceutical manufacturing. Understand															
CO3.	CO3. Illustrate the importance of impurity and the procedure for determination of expiry date. Apply														
CO4.E	Examine	e the p	rocess	of val	idatio	n and o	quality	y assur	ance.					Analys	se
CO5.	Assess 1	the env	vironm	nental	impac	t of an	indus	trial p	rocess	•				Evalua	ite
MAP	PING V	VITH	PRO	GRAN	1ME	OUTC	COME	ES AN	D PR	OGRA	MME S	PECIF	IC OUT	COME	5
COS	PO1	PO	PO	PO	РО	PO	PO	PO	РО	PO1	PO11	PO1	PSO	PSO	PSO3
CO1	M	М	М	М	L	L	М	L	М	L	L	L	-	-	-
CO2	М	М	М	M	L	L	М	-	М	L	L	L	-	-	-
CO3	М	М	S	М	L	L	М	-	М	L	L	L	-	-	-
CO4	М	М	М	М	М	M	S	-	S	-	-	М	-	М	-
CO5	L	L	L	L	М	S	М	-	М	-	-	М	-	-	-
S- Stro	ong; M-	Mediu	ım; L-	Low	I	1	I	1	<u> </u>		I	ı			
SYLI	ABUS														

DRUGS AND COSMETICS ACT AND GMP FOR API

Drugs and cosmetics act-1948–Organization and personnel –Buildings and facilities –Equipment – URS, FAT, DQ, SAT, IQ, OQ, PQ of machines and equipment - Documentation and records–Material management– Production and in process control– Packaging and labelling–Storage Distribution.

IMPURITIES IN DRUG SUBSTANCES AND DRUG PRODUCTS

Definition of impurities–Validation and impurity issue related to manufacturing – Processing of drug substances – Enantiomers as impurities –Polymorphs as unwanted components.

CLEANING PROCEDURE INAPI MANUFACTURING FACILITIES

Regulatory requirements–Multiple vs dedicated equipment– Unique nature of API–Multiple level approach to cleaning–Nature of contaminants–Selection of a worst case–Cleaning techniques – Sampling – Analytical methods – Limits and acceptance criteria, documentation.

STABILITY TESTING

Reasons for stability testing–Modes of degradation –Shelf lives and expiration dates– Possible strategies to improve shelf lives–Stability testing of new drug substances and products (Q1A) – Photostability testing of new substances and products (Q1B)–Validation on analytical Procedures (Q2A).

PROCESS VALIDATION

Process validation as a quality assurance tool-General QA tools, purpose of process validation, Qualification activities, Process validation activities. Prospective process validation-Organization, Part 11, Electronic Records; Electronic Signatures - Scope and Application - product development, development of manufacturing capability, full scale production development, defining experimental programs, experimental design and analysis.

TEXT BOOKS:

- R.A. Nash, A.H. Wachter, "Pharmaceutical Process Validation", 3rd ed., CRC Press, Taylor & Francis Group, 2003.
- 2. Y. Anjaneyulu, R.Maraya, "Quality Assurance and Quality Management in Pharmaceutical Industry", Pharma Book Syndicate, 2005.
- J. P. Agalloco, F.J. Carleton, "Validation of Pharmaceutical Processes", 3rd ed., Informa Healthcare, NY, USA, 2007.

REFERENCES:

- 1. Willig, S.H., "Good Manufacturing Practice for Pharmaceuticals", 5th Edition, Marcel Dekker, 2005.
- A.A. Signore, T. Jacobs, "Good Design Practices for GMP Pharmaceutical Facilities" 1st ed., CBS Publishers & Distributors Pvt. Ltd., 2009.
- 3. S.C. Chow, "Statistical Design and Analysis of Stability Studies" Chapman and Hall/CRC, 2007.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Ms. R. Jaishri	Assistant professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in

PHARMACEUTICAL	Category	L	Т	Р	С
PACKAGING TECHNOLOGY	EC-SE	3	0	0	3

PREAMBLE

Pharmaceutical packaging course covers all important aspects of the packing process and their associated Good Manufacturing Practice (GMP) and pharmaceutical quality system (PQS) challenges. This includes selection of suitable components, pack design, pack security and design/control of packing processes.

PREREQUISITE NIL

COURSE OBJECTIVES

- 1 To list on different packaging materials and their selection, uses control and impact on product stability.
- ² To explain the concept, Formulation, evaluation and packaging of various semisolid dosage forms
- 3 To perform the collection, processing and storage of biological products like blood and plasma substitutes.
- ⁴ To categories the regulatory aspects of tablet, vial and bottle packaging.
- 5 To check Packaging operations and their risks and control.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Relate the concepts of quality control and quality assurance during entire manufacturing practices.	Remember
CO2. Explain the pharmacopoeia testing, defects and stability of blister and strip packaging materials.	Understand
CO3. Demonstrate sterilization of packaging materials used in parenteral, ophthalmic and aerosols as per their legal requirement.	Apply
CO4. Develop new concepts in pharmaceutical packaging and their control.	Analyse
CO5.Estimate the different samplings methods.	Evaluate
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPEC	IFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-

CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5	S	-	L	L	-	М	-	-	-	-	-	S	S	М	-
~~~															

S- Strong; M-Medium; L-Low

## SYLLABUS

## PHARMACEUTICAL PACKAGING

Introduction of packaging - classification of packaging - packaging essential requirements functions of packaging - importance / significance of pharma packaging - main packaging materials - ideal package material properties. Environmental considerations for packing materials

## PRIMARY PACKAGING MATERIAL

Glass containers- introduction - selection of glass as packaging materials for the pharmaceutical products - properties of glass - production of glass - types of glass - test for glass containers advantages and disadvantages of glass containers. Metals containers- aluminium - aluminium foil - collapsible tubes and stainless steel. Polymers - and plastics- introduction to plastics - raw materials of plastics - types of plastics - resin identification code - plastics and packaging and testing of plastic containers.

## SOLID DOSAGE FORM PACKAGING

Blister package- introduction to blister package - types of blisters - advantages and disadvantages of blister packaging - types of problems/ defects. Strip package- strip Packaging Process – packaging materials - child-resistant and multi-dose strip packaging ; and package machinery

## LIQUID FORMULATION AND STERILE PRODUCT PACKAGING

Liquid Formulation - Factors influencing selection of liquid filling machinery - balanced and unbalanced constant level filling – volumetric – gravimetric - level sensing - time fill - peristaltic and overflow liquid filling machinery. Sterile product packaging- various types of containers used for sterile products like ampoules – vials - bottles for I.V. fluid, etc. Types of closures used for the sterile products. Sterile product filling and sealing machinery i.e. ampoule filling and sealing machine.

## **QUALITY CONTROL AND REGULATIONS OF PACKAGING MATERIALS**

Specifications-quality control tests-methods and evaluation of packaging of materials- stability of packaging materials-law and regulations governing packaging. Labels and symbols

## **TEXT BOOKS**

- 1. D.A. Deak, E.R. Evans, I.H. Hall, "Pharmaceutical Packaging Technology", Taylor and Francis, 2000.
- 2. Edward J. Bauer, Pharmaceutical Packaging Handbook. CRC Press, 2009.
- 3. S. Natarajan, M. Govindarajan, B. Kumar, "Fundamental of Packing Technology", PHI Learning

Pvt ltd., New Delhi, 2009

## REFERENCES

- 1. Anonymous, "Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related Materials", 2nd Edition, World Health Organization, 2004.
- 2. U.K. Jain, D.C. Goupale, S. Nayak, "Pharmaceutical Packaging Technology", 2ndEd.,Pharma Med Press, Hyderabad, 2008.
- 3. Remington: The Science and Practice of Pharmacy. 21st Ed., 2005.
- 4. James Swarbrick, "Encyclopedia of Pharmaceutical Science and Technology",4th ed., CRC Press, 2013.

S.No ·	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.DavidAn naraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
2	Ms.R.Jaisri	Assistant professor	Pharmaceutical Engineering	jaishri.vmkvec@vmrf.edu.in

				DOW	NSTR	EAM	PRO	CESSI	NG		Cate	gory	L	Т	P	Credit
				DOW			INCO				EC·	-SE	3	0	0	3
PRE	AMBI	Æ										Ι.				
Dow	nstrean	n proc	essing	refers	to th	ne reco	overy	and p	ourifica	ation of	f biosy	nthetic	e pro	duct	s, par	ticularly
pharr	naceut	icals, t	from n	atural	source	es such	n as ai	nimal o	or plar	nt tissue	e or fer	mentat	ion b	roth,	inclu	ding the
recyc	ling of	salvag	geable	compo	nents a	and the	prope	r treati	nent ai	nd dispo	osal of v	vaste.				
PRE	REQU	ISITE	2 - NIL													
COU	RSE (	<b>)BJE</b>	CTIVE	2S												
1 Т	o impl	ement	the ba	sic kno	owledg	e of do	wnstre	eam pr	ocessir	ng						
2 T	o outli	ne the	physic	al met	hods o	f separ	ation.									
3 Т	o diffe	erentiat	te the	isolatio	on of p	roducts	5									
4 T	o disti	nguish	purifi	cation	metho	ls										
5 Т	o justi	fy the	import	ance o	f form	ulation	and fi	nishing	g opera	tion						
COU	RSE (	DUTC	OMES	5												
On th	ne succ	essful	comple	etion o	f the co	ourse, s	studen	ts will	be able	e to						
CO1.	Gener	alize t	he vari	ous ba	sic pro	cesses	in dov	vn stre	aming.				Ap	ply		
CO2.	Distin	guish	the var	ious m	ethods	of sep	aratio	1.					Ar	alys	e	
CO3.	Appra	ise the	isolat	ion of	produc	ts.							Ar	alys	e	
CO4.	Categ	orizes	the var	ious p	urifica	tion me	ethods						Ar	alys	e	
CO5.	Asses	s the k	nowled	lge of	formul	ation a	nd fin	ishing	operati	ons			Ev	aluat	te	
MAF	PING	WITI	H PRC	GRA	MME	OUTC	COME	S ANI	) PRO	GRAN	IME SI	PECIE	TIC C	UT	COME	2S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	D1 F	PSO2	PSO3
CO1	S	S	-	-	-	L	М	L	М	-	-	L	L		L	L
CO2	М	М	М	М	М	М	S	М	S	М	-	L	M		L	L
CO3	M	M	M	M	M	M	S S	M	S S	M	-	L	M		L	L
CO4 CO5	M L	M L	M L	M L	M M	M S	S M	M S	S M	M S	-	L M	M S		L M	L M
			ium; L		111	5	141		141	6		141	6		141	141

## SYLLABUS

## **OVERVIEW OF DOWNSTREAM PROCESSING**

Introduction to downstream processing – principles, properties of biomolecules – Size, Molecular weight, Diffusivity, Sedimentation coefficient, Osmotic pressure, Electrostatic charge, Solubility. Cell disruption process- bead mill, rotor-stator mill, ultrasonic vibrations, detergents, enzymes, organic solvents, osmotic

## shock

## SEPARATION AND ISOLATION OF PRODUCTS

Introduction to centrifugation, Laboratory centrifuge, Preparative centrifuge, Ultracentrifugation. Theory of filtration, Filter medium, Driving force, Improvement of filtration efficiency, Membrane separation - Microfiltration, Ultrafiltration, Dialysis, Extraction, Precipitation of proteins.

## CHROMATOGRAPHY

Chromatography – principles, instruments and practice, adsorption, reverse phase, ion exchange, size exclusion, hydrophobic interaction, Membrane, HPLC, affinity and pseudo affinity chromatographic techniques.

## FINAL POLISHING AND CASE STUDIES

Lyophilization, Freeze drying, spray drying and crystallization. Case studies on purification of: cephalosporin, aspartic acid, Recombinant Streptokinase.

## ADVANCED BIOSEPARATIONS AND CASE STUDIES

Recent trends in bioseparations, perevaporation, reverse miceller extraction, super critical fluid extraction spin base, magnetic separation and their application, case studies of product purification and recovery.

## **TEXT BOOKS:**

- Belter, P.A., Clussler, E.L. "Bioseparation Downstream Processing & Biotechnology". John Wiley Interscience, 1998.
- 2. Asenjo, Juan A. "Separation Processes in Biotechnology". Taylor & Francis / CRC, 1990.
- 3. Scopes, R.K. "Protein Purification: Principles and Practice". Narosa Publication,
- Downstream Process Technology: A New Horizon in Biotechnology Paperback– 2010 by Prasad, Krishna

## **REFERENCES:**

- 1. Ghosh, Raja "Principles of Bioseparations Engineering". World Scientific, 2006.
- "Product Recovery in Bioprocess Technology". (BIOTOL Biotechnology by Open Learning Series). Butterworth – Heinmann / Elsevier.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr. A. Arunagiri	Assistant professor	Pharmaceutical	arunagiri@vmkvec.edu.i
		rissistant professor	engineering	n

QUALITY CONTROL AND	Category	L	Т	Р	Credit	
QUALITY ASSURANCE	EC-SE	3	0	0	3	

#### PREAMBLE

The course the working of the quality control and quality assurance section in a pharma industry. It gives brief understanding about the various parameters followed for ensuring the quality of a medicinal product. The course emphasizes on methods used by pharmacists for a safe and quality medicinal product.

	To state the importance of quality and different quality management systems. To discuss the tools for quality improvement and analyse the issues in quality production											ems.			
2	To discu	uss the	tools f	or qua	lity in	nprove	ment a	and an	alyse tl	ne issue	es in qu	ality pr	oduction	1	
3	To describe the stability and testing of various drug substances.														
4	To understand the statistical approaches for quality														
5	To comp career				••		•	•	n pharn	nacopo	eia and	using	that kno	wledge	for futur
COUI	RSE OU	тсом	IES												
After t	the succe	essful co	omplet	tion of	the co	ourse,	learne	r will	be able	to					
CO1. ]	Define th	ne impo	ortance	ofqu	ality v	with re	espect	to diff	erent q	uality n	nanagei	ment sy	stems	Reme	ember
CO2. ]	O2. Discuss the tools for quality improvement and analyse issues. Understand														
CO3. ]	Illustrate	the sta	bility a	and tes	sting o	f drug	s effec	ctively						Appl	у
CO4. ]	Practice	the stat	tistics	behind	l quali	ty con	trol							Appl	y
CO5. ]	Develop	the abi	lity to	sugge	st imp	rovem	ents to	o drug	quality					Analy	yse
MAPI	PING W	ITH P	ROGI	RAMN	AE O	UTCC	OMES	AND	PROG	GRAM	ME SP	ECIFI	C OUT	COMES	5
CO	PO1	PO2	PO	РО	PO	PO	PO	PO	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
CO	L	L	L	L	-	-	-	-	-	L	-	-	L	-	-
CO	М	M	M	М	-	-	-	L	-	-	-	-	L	-	-
CO	S	S	S	S	-	-	-	-	-	-	-	-	L	-	-
CO	М	M	M	Μ	M	-	-	-	-	-	-	-	M	-	-
CO	L ong; M-N	L	L	L	S	-	-	-	-	М	-	-	М	М	-

## INTRODUCTION AND GOOD LABORATORY PRACTICES

Concept and evolution and scopes of Quality Control and Quality Assurance, Good Laboratory Practice, GMP,

Overview of ICH Guidelines – QSEM. Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non clinical testing, control on animal house, report preparation and documentation. CPCSEA guidelines.

## cGMP GUIDELINES FOLLOWED IN DIFFERENT COUNTRIES

cGMP guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention(PIC), WHO and EMEA covering: Organization and personnel responsibilities, training, hygiene and personal records, drug industry location, design, construction and plant lay out, maintenance, sanitation, environmental control.

## **RULES & REGULATIONS OF DIFFERENT PHARMACOPOEIAS**

Analysis of raw materials, finished products, packaging materials, in process quality control (IPQC), Developing specification (ICH Q6 and Q3), purchase specifications and maintenance of stores for raw materials. In process quality control and finished products quality control for following dosage forms in Pharma industry according to Indian, US and British pharmacopoeias: tablets, capsules, ointments, suppositories, creams, parenterals, ophthalmic and surgical products (How to refer pharmacopoeias).

## DOCUMENTATION IN PHARMACEUTICAL INDUSTRY

Three tier documentation, Policy, Procedures and Work instructions, and records (Formats), Basic principles-How to maintain, retention and retrieval etc. Standard operating procedures (How to write), Master Batch Record, Batch Manufacturing. Record, Quality audit plan and reports. Specification and test procedures, Protocols and reports. Distribution records. Electronic data handling. Concepts of controlled and uncontrolled documents.

## MANUFACTURING OPERATIONS AND CONTROLS

Sanitation of manufacturing premises, mix-ups and cross contamination, processing of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, packaging, reprocessing, salvaging.

## TEXT BOOKS

- Quality Assurance Guide by organization of Pharmaceutical Procedures of India, 3rd revised edition, Volume I & II, Mumbai, 1996.
- Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69, Marcel Dekker Series, 1995.

- Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. How to Practice GMP's P P Sharma, Vandana Publications, Agra, 1991.

#### REFERENCES

COUDSE DESIGNEDS

- The International Pharmacopoeia vol I, II, III, IV & V General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.
- 2. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 3. ICH guidelines ISO 9000 and total quality management
- 4. The drugs and cosmetics act 1940 Deshpande, Nilesh Gandhi, 4th edition, Susmit Publishers, 2006.

	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Ms.R.Jaishri	Assistant professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in								
2	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in								

ADVANCED INDUSTRIAL PHARMACY	Category	L	Т	Р	Credit
	EC-SE	3	0	0	3

#### PREAMBLE

Advanced industrial pharmacy includes manufacturing, development, marketing and distribution of drug products including quality assurance of these activities. This course relates to different functions in pharmaceutical industry and having contact areas with engineering and economics. Industrial pharmacy which involves developing the professional roles of pharmacists. Disease-state management, Clinical interventions, recommendation to change and/or add a drug to a patient's pharmacotherapy, dosage adjustments, Professional development, Pharmaceutical care, Extemporaneous pharmaceutical compounding, Patient care, Drug abuse prevention, Incompatibility, Drug discovery and evaluation, Community Pharmacy etc.,

PREF	PRERQUISITE - NIL														
COU	COURSE OBJECTIVES														
1	To de	fine the	e comp	onents	of drug	g to be	develo	ped by P	re-form	ulation s	studies.				
2	To pr	To prepare report of materials require to produce specific drug.													
3	To de	monstr	ate pro	duction	n of dru	ig and j	perforn	n Scale-ı	up proce	ess.					
4	To ou	tline fo	ormulat	ions of	pharm	aceutic	al proc	lucts.							
5	Desig	n and c	levelop	Produ	ction p	lanning	g and c	ontrol sy	vstem.						
COU	RSE O	UTCO	MES												
On the	e succe	ssful co	ompleti	ion of t	he cou	rse, stu	dents v	vill be at	ole to						
CO1.	CO1. Choose the components needed to produce various drugs. Understand														
CO2.	CO2. Summarize the materials require to produce specific drug. Understand														
CO3.	Emplo	yee kno	owledg	e to pe	rform S	Scale-uj	p opera	tions.						Apply	
CO4.I	Develo	p to kn	ow hov	v on pr	oduct f	ormula	tions ir	n pharma	iceutica	ls.				Analyse	
CO5.	Apprai	se the o	design	of Prod	luction	plannii	ng and	control s	system.					Evaluate	
MAP	PING	WITH	PROC	GRAM	ME O	UTCO	MES A	AND PR	OGRA	MME S	PECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	L	L	М	L	М	L	L	L	М	М	М
CO2	М	М	М	М	L	L	М	L	M	L	L	L	М	M	-
CO3	М	М	М	М	М	М	S	М	S	M	S	М	М	-	-
CO4	М	М	М	М	М	М	S	M	S	M	S	M	M	-	-
CO5	L	L	L	L	М	S	М	М	M	M	М	M	М	-	-
S- Str	S- Strong; M-Medium; L-Low														

## SYLLABUS

#### **PREFORMULATION STUDIES**

Introduction, organoleptic properties, purity, particle size, shape and surface area. Solubility, Methods to improve

solubility of Drugs: Surfactants & its importance, co-solvency. Techniques for the study of Crystal properties and polymorphism. Preformulation stability studies.

#### INVENTORY AND MATERIAL MANAGEMENT

Costs in inventory, inventory categories - special considerations, selective inventory control, reorder quantity methods and EOQ, inventory models, safety stock - stock out, lead time - reorder time methods. Materials - quality and quantity, value analysis, purchasing - centralized and decentralized stores management.

#### PILOT PLANT SCALE UP TECHNIQUES

significance, pilot study of some important dosage forms such as tablets, capsules and liquid orals, discussion on important parameters such as formula, equipments, product uniformity and stability, raw material process and physical layouts, personnel requirements and reporting responsibilities.

#### EXCIPIENTS IN PHARMACEUTICAL FORMULATIONS

Introduction to excipients and their importance in pharmaceutical industry; requirement of excipients, classification and properties of excipients, specialized type of excipients used in tablets such as directly compressible excipients and super- disintegrants; surfactants and hydrocolloids in disperse systems, taste masking excipients, colors, flavours, sweetening agents, gel and film forming agents, solubilizers etc. and their quality control.

#### **PRODUCTION PLANNING & CONTROL AND DOCUMENTATION**

Production scheduling, forecasting, vendor development, capacity assessment (plant, machines, human resources), production management, production organization, objectives and policies. Productivity, management and cost controls. Entrepreneurship and project management: Creativity, innovation entrepreneurship & project management.

## **TEXT BOOKS**

- 1. C.V.S. Subrahmanyam," Pharmaceutical Production and management", Published by Vallabh Prakashan, 1 st edition, 2005.
- D.A.Savant "The Pharmaceutical Sciences Pharma Pathway Pure Applied Pharmacy", Published by Nirali Publication; 1st edition, 2016.
- Yoshoika.S. Stella V.J., "Stability of Drugs and Dosage Forms", Published by Kluwer Academic/Plenum Publishers, 1 st edition 2005.

#### REFERENCES

 Shayne Cox Gad, "Pharmaceutical Manufacturing Handbook: Production and Processes", Published by John Wiley & Sons, 1st Edition, 2008.

S.	Name of the	Designation	Department	Mail ID
No.	Faculty			
1	Ms. R. Jaishri	Assistant professor	Pharmaceutical	jaishri@vmkvec.edu.i
1.	1v15. IX. Jaisiii 1	Assistant professor	Engineering	n

		F	FUNC	TION	AL F	OOD	S ANI	)	(	Catego	Т	P	Credit		
			N	U <b>TRA</b>	CEUI	<b>FICA</b>	LS			EC-SI	E	3	0	0	3
PREAN	ABLE	E													
This co	urse 1	lead t	o the	new e	era of	medi	cine a	nd he	alth i	n whic	h the	food ir	ndustry	has b	ecome a
research	n oriei	nted s	ector.	It play	ys a si	gnifica	ant ro	le in n	nodify	ving an	d main	taining	norma	al phys	iologica
functior	ns of h	nealth	y hum	an bei	ngs.										
PRERF	QUI	SITE	- NII	,											
COUR															
1	To di	scuss	the ba	asic co	oncepts	s of nı	itracei	uticals	and f	unction	nal foo	ds, the	r chen	nical na	ture.
2	To de	escrib	e the j	orobio	tics, p	rebioti	ics and	d sym	biotics	5.					
3	Το οι	utline	the m	echan	isms o	f phyt	ochen	nicals	as nut	traceuti	cals				
4	To outline the role of nutraceuticals in health and diseases.														
5	To er	nphas	size th	e com	mercia	al aspe	ects of	nutra	ceutic	als					
COURS	SE O	UTC	OME	5											
After th	e suco	cessfu	l com	pletio	n of th	e cour	se, lea	arner v	vill be	e able to	5				
CO1. D				•			,						U	ndersta	ind
CO2. III														ndersta	
CO3. D					-			-		as nutr	aceutio	cals	A	pply	
CO4. Ex					-	-								nalyse	
CO5. D	evelo	ning r	eutra	centic	al form	mlatic	m							reate	
CO3. D		ping i	icuita	ccuite	11 10111	iuiaii	/11							icate	
MAPPI	NG	WI	ГН	PRO	GRAN	<b>IME</b>	OU	TCO	MES	ANI	) PR	OGR	AMMI	E SP	ECIFIC
OUTCO	OME	S													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	М	-	-	-	-	-	-	-	-	-	-	-
CO2 CO3	M	- M	_	- M	-	-	-	-	-	-	-	-	-	-	-
CO3	M S	M M	- L	M	-	-	S	-	- M	-	-	-	-	-	-
C04 C05	S	M	M	L	-	-	-	<u> </u>			-	L	-	-	-
CO5	M	M	L	L	-	- L	L	S		-	-	L	-	-	-
									1					1	I
S- Stron		-Medi	um; I	L-Low											
SYLLA	BU2														

# INTRODUCTION AND SIGNIFICANCE

Introduction to Functional Foods and Nutraceuticals : Definition, History and Classification, Perceived Effects of Functional Foods, Phytochemicals, Zoochemicals and Microbes In Food, Plants, Animals.

## **PROBIOTICS, PREBIOTICS AND SYNBIOTICS**

Introduction Prebiotics **Synbiotics** to Probiotics. and Probiotics: Taxonomy and Important Features of Probiotic Microorganisms Health Effects of Probiotic Microorganisms, Probiotics in Various Foods, Quality Assurance of Probiotics and Safety, Prebiotics: Non Digestible Carbohydrates/ Oligosaccharides, Dietary Fiber, Resistant Starch, Gums.

## PHYTOCHEMICALS AS NUTRACEUTICALS

Polyphenols: Flavonoids, Catechins, Isoflavones, Tannins, Phytoestrogens, Phytosterols, Glucosinolates, Pigments: Carotenoids, Lycopene, Curcumin, Organosulphur Compounds, Introduction to Anti-nutritional Factors, Phytates, Enzymes, Protease inhibitors, Amylase inhibitors, Saponins, Haemagglutinin.

## ROLE IN HEALTH AND DISEASE

Active Biodynamic Principles in Spices, Condiments and Plant extracts, Resveratrol, Kaempferol, Quercetin, Cinnamaldehyde, Crocin, Lutoline, Capsaicin, Piperine, Gingerol, Eugenol, Rosemarinic acid, Apigenine, Thymoquinone Fenugreek and Diosgenin.

# NON NUTRIENT EFFECT OF SPECIFIC NUTRIENTS & NUTRACEUTICAL

## FORMULATIONS

Conjugated Linoleic Acid, Omega 3 Fatty acids, Proteins and Peptides and Nucleotides, Vitamins, Minerals. Formulation of functional foods containing nutraceuticals – stability, analytical and labelling issues.

## TEXT BOOKS

- Bisset, Normal Grainger and Max WichH "Herbal Drugs and Phytopharmaceuticals", 2nd Edition, CRC, 2001.
- 2. Handbook of Nutraceuticals and Functional Foods: Robert Wildman, CRC, Publications.2006
- 3. WEBB, PP, Dietary Supplements and Functional Foods Blackwell Publishing Ltd (United Kingdom), 2006
- Ikan, Raphael "Natural Products: A Laboratory Guide", 2nd Edition, Academic Press /Elsevier, 2005.

## REFERENCES

- Asian Functional Foods (Nutraceutical Science and Technology) by John Shi(Editor), Fereidoon Shahidi (Editor), Chi-Tang Ho (Editor), CRC Publications, Taylor & Francis,2007
- Functional Foods and Nutraceuticals in Cancer Prevention by Ronald Ross Watson(Author), Blackwell Publishing, 2007

- 3. Marketing Nutrition: Soy, Functional Foods, Biotechnology, and Obesity by Brian Wansink.
- 4. Functional foods: Concept to Product: Edited by G R Gibson and C M Williams, Woodhead Publ., 2000
- Hanson, James R. "Natural Products: The Secondary Metabolites", Royal Society of Chemistry, 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mr. A. Arunagiri	Assistant	Pharmaceutical arunagiri@vmkvec.ed			
1		professor	engineering	arunagin az vink vec.edu.in		

			JOVE	יו חי	MC I	DEI I	VFD	V SV	STEM		ategory		T	P	Credit
						ULLI	V LK	1 51	51 12111		EC-SE	3	0	0	3
PRE	AMB	LE													
			-		-			-	-		a of no mal, ta		-	-	•
	somes	-		-	-				,		,	-8		)	
PRE	RQU	ISITI	E- NII												
τοι	JRSE	OBJI	ECTI	VES											
1	To dis	cuss	variou	s app	roach	es for	devel	opme	nt of n	ovel d	rug deli	very s	ystems	1	
									ugs an		mers for tion	r the d	levelop	ment	of
4		-							ation r very sy		to oral,	paren	teral, tr	ansde	rmal,
	JRSE	OUT	COM	ES											
After	r the s	uccess	sful co	omple	tion o	f the	course	e, lear	ner wi	ll be al	ole to				
	. Recc													Rem	ember
CO2	. Unde	erstan	d the	conce	pts an	d app	licatio	ons of	Novel	Drug	Deliver	y Syst	tems.	Und	erstand
	.Apply		wledg	e in d	eveloj	ping v	variou	s nove	el form	nulation	ns as pe	r		App	у
1			arious	evalu	ation	parar	neters	for o	ral, pa	rentera	l, topica	al etc.	drug	Anal	vze
	ery sy														
				rially	feasil	ole, co	ost eff	ective	e strate	gy for	develop	ment	of	Crea	te
	dosag			PRO	GRA	MM	E O		OMES	ANI	D PRO		MME	SPI	ECIFIC
	ГСОМ			IRO	GIU			erev						511	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	М	L	L	L	L	L	-	-	-	-	-	-	L	-	-
CO2	M	L	L	L	L	L	-	-	-	-	-	-	L	-	-
CO3	S M	M	M	M	S	M	L	-	-	-	-	-	L	-	-
CO4	1 1/1	S	Μ	S	Μ	M	M	-	Μ	-	-	-	L	M	-
CO4 CO5	M	M	S	S	S	Μ	-	-		_	-	L	Μ	- 1	L

Category L

T P Credit

## SYLLABUS

## SUSTAINED RELEASE FORMULATIONS

Introduction, concept, advantages and disadvantages. Physicochemical and biological properties of drugs relevant to sustained release formulations

## GASTRORETENTIVEDRUG DELIVERY SYSTEMS

Floating, high density systems, inflatable and gastroadhesive systems and their applications.

## TRANSDERMAL DRUG DELIVERY SYSTEMS

Permeation through skin, factors affecting permeation, basic components of TDDS, formulationapproaches used in development of TDDS and their evaluation, permeation enhancers.

## PARENTERAL CONTROLLED RELEASE DRUG DELIVERY SYSTEMS

Approaches for injectable controlled release formulations and development of Implantable drug

delivery systems, osmotic pumps

## TARGETED DRUG DELIVERY SYSTEMS

Concept. Advantages and disadvantages, biological processes and events involved in drugtargeting, nanoparticles, liposomes, resealed erythrocytes, microspheres, and monoclonal antibodies.

## FUTURE DIRECTIONS OF DRUG DELIVERY AND TARGETING

Plasmid based Gene therapy, Protein delivery system, Nucleic acids delivery, IntegratingDrug Discovery and delivery and New Generation Technology.

## TEXT BOOKS

- 1. Binghewang, Teruna Siahaan and Richard A Soltero "Drug delivery principles and applications" John wiley and Sons Inc, 2005.
- 2. Junginger H.E, "Drug Targeting and Delivery- concepts in dosage form design", EllisHarwood series in Pharmaceutical Technology.1992
- 3. Vasant Ranade, Mannfred A Hollinger "Drug delivery systems" II ed , CRC Press.2003
- 4. Grietje Molema and Dirk K F Meijer "Drug Targeting organ specific strategies" WILEY-VCH, 2001.
- 5. Anya M Hillery et al "Drug Delivery and Targeting", CRC Press, 2010.

#### REFERENCES

- 1. S.P.Vyas and R.K.Khar, Controlled Drug Delivery -concepts and advances, VallabhPrakashan, New Delhi, First edition 2002. Remington: The science and practice ofpharmacy, 20th edition Pharmaceutical Science (RPS)
- 2. Theory And Practice Of Industrial Pharmacy by Liberman & Lachman, 2014
- 3. Pharmaceutics-the science of dosage form design by M.E.Aulton, Churchill living stone, 2001
- 4. Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea & febiger, Philadelphia, 5thedition, 2005
- 5. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, NewDelhi, First edition 1997 (reprint in 2001).

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.ed u.in
2	Mrs. Pillai Divya U	Assistant Professor	Pharmaceutical Engineering	pillaidivyau@vmkvec.ed u.in

#### REFERENCES

- 1. S.P.Vyas and R.K.Khar, Controlled Drug Delivery -concepts and advances, VallabhPrakashan, New Delhi, First edition 2002. Remington: The science and practice ofpharmacy, 20th edition Pharmaceutical Science (RPS)
- 2. Theory And Practice Of Industrial Pharmacy by Liberman & Lachman, 2014
- 3. Pharmaceutics-the science of dosage form design by M.E.Aulton, Churchill living stone, 2001
- 4. Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea & febiger, Philadelphia, 5thedition, 2005
- 5. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, NewDelhi, First edition 1997 (reprint in 2001).

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.DavidAnnaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.ed u.in
2	Mrs. Pillai Divya U	Assistant Professor	Pharmaceutical Engineering	pillaidivyau@vmkvec.ed u.in