

Faculty of Engineering and Technology

Programme: B.E – Mechanical Engineering – Part Time

Choice Based Credit System (CBCS)

Curriculum & Syllabus (Semester I to VII)

Regulations 2021

VINAYAKA MISSION'S RESEARCH FOUNDATION, DEEMED TO BE UNIVERSITY, SALEM

Board of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

DEC 4	Design, analyze & fabricate, maintain and improve mechanical
PEO.1	engineering systems that are technically sound, economically feasible and
	socially acceptable to enhance quality of life.
	Apply modern computational, analytical, simulation tools and techniques
PEO.2	to address the challenges faced in mechanical and allied engineering
	streams.
DEO 2	Communicate effectively using innovative tools and demonstrate
PEO.3	leadership & entrepreneurial skills.
DEO 4	Exhibit professionalism, ethical attitude, team spirit and pursue lifelong
PEO.4	learning to achieve career and organizational goals.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

D G 0 4	To work independently as well as in team to formulate, design, exec							
PSO.1	solutions for engineering problems and also analyze, synthesize technical							
	data for application to product, process, system design & development							
	To understand & contribute towards social, environmental issues,							
PSO.2	following professional ethics and codes of conduct and embrace lifelong							
	learning for continuous improvement							
PSO.3	To develop expertise towards use of modern engineering tools, careers in							
130.3	industries and research and demonstrate entrepreneurial skill							

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

	Engineering knowledge: Apply the knowledge of methometics, science
PO1	Engineering knowledge : Apply the knowledge of mathematics, science,
roi	engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
	Problem analysis: Identify, formulate, review research literature, and analyze
PO2	
POZ	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
PO3	problems and design system components or processes that meet the specified
	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based
PO4	knowledge and research methods including design of experiments, analysis
	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques,
PO5	resources, and modern engineering and IT tools including prediction and
	modeling to complex engineering activities with an understanding of the
	limitations.
	The engineer and society: Apply reasoning informed by the contextual
PO6	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO7	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
100	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a
10)	member or leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities
PO10	with the engineering community and with society at large, such as, being able
1010	to comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and
PO11	understanding of the engineering and management principles and apply these
ron	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
	Life-long learning: Recognize the need for, and have the preparation and
PO12	ability to engage in independent and life-long learning in the broadest context
	of technological change.

VINAYAKA MISSION'S RESEARCH FOUNDATION DEEMED TO BE UNIVERSITY, SALEM CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories

DEPARTMENT OF MECHANICAL ENGINEERING- (PART TIME)

Sl.	Category of		Suggested Breakup of Credits
No.	Courses	Types of Courses	(min – max)
	A.Foundation Course	es	18-24
	Humanities and	d Social Sciences including	
	Management c	ourses	9-12
	Basic Science	Courses	
1.	(Maths, Physic	s and Chemistry)	9-12
2.	B. Professional Core	Courses	61
3.	C. Elective Courses		18-27
J.	Professional Electi	ves	12-15
		Innovation, Entrepreneurship, Skill	
		Development etc.	3-6
		Emerging Areas like 3D	
		Printing, Artificial	
		Intelligence, Internet of	
	Open Electives	Things etc.	3-6
4.	D. Project work		8
	E. Mandatory/Audit		Zero Credit Course (Minimum 2
	Yoga and Meditation,		courses to be
	Essence of Indian Tra	9 ,	completed other than Yoga and
		NCC/NSS/RRC/YRC/Student Clubs/Unnat	
	•	chh Bharat, Sports and	Meditation)
5.	Games, Gender Equit	y and Law	
	Min	imum Credits to be earned	105

B.E./B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VII

A.Foundation Courses (18-24)

Humanities and Social	Coionaga including	Managament Courses	Credite (0.12)
THIIIIAIIIILES AIIU SOCIAI	i sciences inclinaring	vianagement Com ses	1 . I EULIS 1 7= 1 Z I

Hum	annucs and	Social Sciences including M	anagement Co	urses creur	.ts ()-	14)			
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1		TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL
2		ENGINEERING MANAGEMENT AND ETHICS	MANAG	FC-HS	3	0	0	3	NIL
3		UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL
4		OPERATIONS MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL
5		SOFT SKILLS FOR ENGINEERS	ENG	FC-HS	3	0	0	3	NIL
Basic	Science Co	ourses Credits (9-12)							
		ENGINEERING							
1		MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL
2		SMART MATERIALS	PHY	FC-BS	3	0	0	3	NIL
3		INDUSTRIAL MATERIALS	CHEM	FC-BS	3	0	0	3	NIL
4		MATHEMATICS FOR MECHANICAL SCIENCES	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATIC S
5		NUMERICAL METHODS FOR MECHANICAL SCIENCES	МАТН	FC-BS	2	1	0	3	I.ENGINEERI NG MATHEMATI CS 2.MATHEMATI CS FOR MECHANICAL SCIENCES
6		RESOURCE MANAGEMENT TECHNIQUES	MATH	FC-BS	2	1	0	3	NIL
7		PROBABILITY AND STATISTICS	МАТН	FC-BS	2	1	0	3	NIL
8		ENVIRONMENTAL SCIENCES	СНЕМ	FC-BS	3	0	0	3	NIL

B. Professional Core Courses Credits-(61) COURSE **OFFERING** NO CODE COURSE DEPT. **CATEGORY** L T P C PREREQUISITE MANUFACTURING PROCESSES (THEORY AND PRACTICALS) **MECH** CC 3 0 2 4 NIL FLUID MECHANICS AND MACHINERY (THEORY AND CC2 PRACTICALS) **MECH** 2 2 4 NIL MECHANICS OF MACHINES (THEORYAND PRACTICALS) CCNIL MECH 2 2 4 3 MECHANICAL BEHAVIOUR OF MATERIALS AND METALLURGY (THEORY **MECH** CC 4 AND PRACTICALS) 3 0 NIL STRENGTH OF MATERIALS 5 (THEORY AND PRACTICALS) MECH CC2 2 4 NIL ENGINEERING THERMODYNAMICS (THEORY AND PRACTICALS) MECH CCNIL 2 2 6 1 THERMAL ENGINEERING ENGINEERING 7 (THEORY AND PRACTICALS) CC**MECH** THERMODYNAMICS DESIGN OF MACHINE **ELEMENTS** MECH CC0 8 2 3 NIL ENGINEERING METROLOGY AND MEASUREMENTS (THEORY AND PRACTICALS) MECH CC 9 3 0 2 4 **NIL** AUTOMOBILE ENGINEERING 10 (THEORY AND PRACTICALS) **MECH** CC3 0 2 4 NIL COMPUTER INTEGRATED MANUFACTURING 11 (THEORY AND PRACTICALS) MECH CC3 0 2 NIL DESIGN OF TRANSMISSION DESIGN OF MACHINE SYSTEMS **MECH** CC2 0 3 ELEMENTS 12 HEAT AND MASS TRANSFER (THEORYAND 4 THERMODYNAMICS 2 13 PRACTICALS) MECH CC2 FINITE ELEMENT ANALYSIS (THEORYAND MECH CC 14 PRACTICALS) 2 NIL ENGINEERING GAS DYNAMICS AND JET THERMODYNAMICS 15 CCPROPULSION MECH 3 0 ENGINEERING MECHANICS (STATICS AND DYNAMICS) CCNIL MECH B.E./B.TECH. –MECHANICAL ENGINEERING - SEMESTER I TO VII C. Elective Courses (18-27)

B.E./B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VII

Professional Elective Courses Credits-(12-15)

SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1		RENEWABLE SOURCES OF ENERGY	МЕСН	EC-PS	3	0	0	3	NIL
2		ADVANCED IC ENGINES	MECH	EC-PS	3	0	0	3	NIL
3		INDUSTRIAL TRIBOLOGY	MECH	EC-PS	3	0	0	3	NIL

		LEAN MANUFACTURING							
4		SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
5		INDUSTRIAL ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
		HYDRAULICS AND PNEUMATICS							
6		SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
		FAILURE ANALAYSIS OF							
7		MATERIALS	MECH	EC-PS	3	0	0	3	NIL
		FUNDAMENTALS OF PIPING		20.20				_	
8		ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
9		CONCURRENT ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
		ENGINEERING PRODUCT							
10		DESIGN	MECH	EC-PS	3	0	0	3	NIL
11		DESIGN OF EXPERIMENTS	MECH	EC-PS	3	0	0	3	NIL
12		FLUID POWER SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
12		I Leib i e wek sisiews	WILCH	Le 15		0			THE
13		MEMS AND NEMS	MECH	EC-PS	3	0	0	3	NIL
		PETROLEUM PRODUCTION							
14		ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
Open E	lectives								
open L	Teeti ves								
Elective	es from Inno	ovation, Entrepreneurship	o, Skill Dev	elopment etc	Credi	its (3-	6)		
SL.	COURSE		OFFERING						
NO	CODE	COURSE	DEPT.	CATEGORY	L	T	P	C	PREREQUISITE
		ENGINEERING STARTUPS							
		AND ENTREPRENEURIAL							
1		MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
		INTELLECTUAL PROPERTY							
2		RIGHTS	MANAG	OE-IE	3	0	0	3	NIL
		INNOVATION, PRODUCT DEVELOPMENT AND							
3		COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL
4		SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL
		NEW VENTURE PLANNING AND							
5		MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
		FINANCE AND	1,111,1110	02.12					1,12
		ACCOUNTING	NAME OF	0.7.77				_	
6		FOR ENGINEERS	MANAG	OE-IE	3	0	0	3	NIL
Emergi	ng Areas lik	ce 3D Printing, Artificial I	Intelligence	. Internet of	Thing	s etc	Cred	its (3	3-6)
		BIOSENSORS AND	51.65	0.7.7.					
1		TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL
		PRINCIPLES OF BIOMEDICAL							
2		INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL
3		INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL
4		FOOD AND NUTRITION	BTE	OE EA	2	0	0	3	NIII
4		TECHNOLOGY	DIE	OE-EA	3	U	U	3	NIL
_		DISASTER RISK	CIVII	OE EA	2			2	NIII
5		MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
6		MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
0			CIVIL	OE-EA	J	U	U	ر	INIL
7		FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL
			CSE	OE-EA	3	U	U	٥	INIL
8		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL
0		HATEKINET OF THINOS	CDE	OL-LA	3	<u> </u>	U	,	INIL
i									
9		CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL

ECE

3

OE-EA

0

NIL

DESIGN OF ELECTRONIC

10

	EQ	UIPMENT							
11	INI INI	TRODUCTION TO DUSTRY 4.0 AND DUSTRIAL INTERNET OF INGS	ECE	OE-EA	3	0	0	3	NIL
12	_	EEN POWER GENERATION STEMS	EEE	OE-EA	3	0	0	3	NIL
13		DUSTRIAL DRIVES AND TOMATION	EEE	OE-EA	3	0	0	3	NIL
14		OMOLECULES-STRUCTURE ID FUNCTION	PE	OE-EA	3	0	0	3	NIL
15	PH	ARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL
B.E./B.TE	CH. – MECH	ANICAL ENGINEERIN	G - SEMEST	ER I TO VII					
D. Projec	t Work Cred	lits-(8)							
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1		PROJECT WORK	MECH	PI-P	0	0	16	8	NIL

RF/R	B.E./B.TECH. –MECHANICAL ENGINEERING – SEMESTER I TO VII										
	J.E./D. I ECH. —VIECHANICAL ENGINEEMING — SEMESTER I TO VII										
E. Ma	E. Mandatory/Audit Courses										
	MANDATORY COURSES (ZERO CREDITS)										
			DED FOR CGPA								
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE		
1		YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL		
			ANY TWO C	OURSES							
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE		
1		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL		
2		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL		
3		NCC/NSS/RRC/YRC/STU DENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACTH BHARAT/ROTARACT CLUB	GEN	AC	0	0	2	0	NIL		
4		SPORTS AND GAMES	PHED	AC	0	0	2	0			
5		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL		

HUMANITIES AND SOCIAL SCIENCES COURSES

TOTAL QUALITY	Category	L	T	P	Credit
MANAGEMENT	FC-HS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Total Quality Management concepts.
- 2. To practice the TQM principles.
- 3. To apply the statistical process control.
- 4. To analyze the various TQM tools.
- 5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

r ====================================	
CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyze various TQM parameters with help of statistical tools.	Analyze
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	
Environment.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	-	L	L	L	M	L	M	-	-	_
CO2	M	-	-	-	L	L	-	L	M	M	-	L	-	1	M
CO3	S	S	M	S	S	-	-	L	-	L	-	L	L	M	L
CO4	L	M	S	L	M	-	L	-	L	M	L	M	-	-	-
CO5	L	L	M	-	L	M	S	S	M	L	L	M	-		M

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts- Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting - Strategic Planning.

TOM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement: Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA - Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

ENGINEERING	Category	L	T	P	Credit
MANAGEMENT AND ETHICS	FC-HS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To Understand the principles of planning at various levels of the organisation.
- 2. To analyse and practice the concepts of organizing, staffing to higher productivity.
- 3. To apply the concepts related to directing and controlling.
- 4. To understand and apply the case studies to practice code of ethics in organisation.
- 5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

inter successful completion of the course, students will be use to	
CO1: Understand the importance of planning principles in organization	Understand
CO2: Apply the various strategies of organising and staffing process.	Apply
CO3: Analyze various leadership skills and control techniques for shaping the	Analyze
organization.	
CO4: Understand and apply best ethical practices in organisation	Analyze
CO5: Analyse and Apply relevant ethical practices in engineering.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	L	S	M	M	L	S	S	S	S	-	-	-
CO2	M	L	L	-	M	M	M	L	M	S	M	M		-	-
CO3	M	M	L	_	M	M	M	L	L	S	S	M	-	-	-
CO4	L	M	-	M	-	M	S	S	S	S	-	M	-	-	-
CO5	M	M	-	L	-	M	S	S	S	S	-	M	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational – Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering as Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

- 1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.
- 2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.
- 3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).
- 2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.
- 3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.
- 4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics An Indian Perspective", Biztantra, New Delhi, (2004)
- 5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate Professor	Management Studies	manickam@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

	Category	L	T	P	C
UNIVERSAL HUMAN VALUES –					
UNDERSTANDING HARMONY	FC-HS	3	0	0	3

Course Objectives:

- 1. Development of a holistic perspective based on self-exploration.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and coexistence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours: 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.

COUR	RSE DESIGNERS			
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
		Vice		
1	Dr.S.P.Sangeetha	Principal(Academics)	AVIT	sangeetha@avit.ac.in
	Dr.Jennifer G			
2	Joseph	HoD-H&S	AVIT	Jennifer@avit.ac.in

	Category	L	T	P	Credit
OPERATIONS MANAGEMENT	FC-HS	3	0	0	3

PREAMBLE:

The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost- impressive manner. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics include operations strategy, product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Fundamentals of Operations.
- 2. To Understand the importance of Job Design and their relationship towards Efficiency.
- 3. To understand the importance of Production, Planning and Control.
- 4. To evaluate the material requirement with the techniques.
- 5. To impart the Operation management Techniques to get rid of the Competitive advantage.

COURSE OUTCOMES:

- CO1. Understand the importance of Operations Management.

 Understand
- CO2. Evaluating the various organisation and staffing functions

 Evaluate
- CO3. Understand the Importance of Production Planning and Control.

 Understand

 CO4. Evaluate the Various Operation Management Techniques

 Evaluate
- CO4. Evaluate the Various Operation Management Techniques
 CO5. Analyze and Evaluating the various Inventory Management Techniques to take
- Competitive advantage.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	L	S	L	S	L	L	L	L	L	-	-	-
CO2	S	S	M	M	-	L	L	M	M	L	L	M	-	-	-
CO3	S	S	S	S	S	M	L	S	M	L	L	L	-	-	-
CO4	M	M	S	S	M	L	L	M	M	L	L	L	-	-	-
CO5	S	S	S	S	M	M	S	L	M	M	S	L	_	-	_

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT- I INTRODUCTION TO OPERATIONS MANAGEMENT

Hours

Operations Management- Nature & Scope – Evolution of Operations Management – Types of Production System, Operations Strategy – Product Life Cycle- Value Engineering concepts - Make or Buy Decision-Recent Trends in Operations Management- Plant Capacity - Plant Location & Factors.

UNIT-II JOB DESIGN & MATERIAL HANDLING

Hours

Layout- Principles of Layout- Factory-Basic types of layout product layout, group technology layout, fixed position layout, Retail service layout. Principles of material handling-Material handling equipment. Jobdesign: Effective job design- Combining engineering and behavioral approaches, Work measurement- method analysis- Ergonomics-Case studies.

UNIT- III PRODUCTION, PLANNING & CONTROL

Hours

Basic types of production- Interminent, Batch, continuous-Routing, Scheduling, Activating and Monitoring-Production Planning and Control, Process Planning, Aggregate Production Planning, Capacity Planning: Introduction, Capacity Planning

9

9

Analyze

UNIT IV OPERATION TECHNIQUES

9 Hours

Project Scheduling, Network Diagrams, Critical Path Method (CPM), Critical Path Method: Problems, Critical Path Method. Program Evaluation and Review Technique (PERT), PERT Problems, PERT Problems, Time Cost Trade Off Production Control, Sequencing, Sequencing Problems-I, Sequencing Problems-II, Master Production Scheduling- Concept of Quality, Total Quality Management (TQM), Total Productive Maintenance (TPM), Statistical Quality Control (SQC), Six Sigma.

UNIT- V INVENTROY MANAGEMENT

9 Hours

Materials Management, Inventory Control, Economic Order Quantity (EOQ) Models, Economic Order Quantity (EOQ): Problems, Production Quantity- Just in Time (JIT), Kanban System, Materials Requirement Planning (MRP)-I, Materials Requirement Planning (MRP)-II, Enterprise Resource Planning (ERP).

TEXT BOOKS:

- 1. Operation Management: K. N. Dervitsiotis, McGraw-Hill International Company.
- 2. Operations Management: R.S. Russell, and B.W. Taylor, Pearson Education
- 3. Industrial Engineering and Production Management: M. Telsang, S. Chand & Empany Ltd.

REFERENCES:

- The Encyclopedia of Operations Management: A Field Manual and Glossary of Operations Management ARTHUR V HILL 1st Edition.
- 2. Handbook of Industrial Engineering: Technology and Operations Management, Gavriel Salvendy 3rd Edition.
- 3. Quality and Operations Management: Revised Edition.
- 4. Operations Management: Theory and Practice by Mahadevan
- 5. Production and Operations Management by PANNEERSELVAM. R.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id
1	Dr. B. Rajnarayanan	Associate Professor	Management Studies	rajnarayanan@vmkvec.edu.in
2	Mr. T. Thangaraja	Associate Professor	Management Studies	thangaraja@avit.ac.in

											Catego		Т	P		edit
				SOFT	SKILI	LS FOR	R ENG	INEER	S		FC-H	\mathbf{S} 3	0	0		3
Techni commu The ou compe	unication tcome o	n skills of the co Englisl	in Eng ourse is h langu	glish, es to help	sential the stu	for und	derstand cquire	ding and the lang	d expre guage sl	ssing the	g and Te e ideas o istening, employal	f differe Speakir	nt profe g, Reac	ession ling a	al con	ntext. riting
IKEK	EQUIS		INIL													
COUR	SE OB	JECTI	VES													
1	To en	able stu	dents to	o develo	op LSR	W skill	s in Eng	glish. (I	Listenin	g, Speak	ing, Rea	ding, and	l Writin	g.)		
2	To ma	make them become effective communicators.														
3	To ensure that learners use Electronic media materials for developing language.															
4	To aid	the stu	idents v	vith em	ployabi	lity skil	lls.									
5	To de	velop th	ne stude	ents con	nmunica	ation sk	tills in f	formal a	and info	rmal situ	ations.					
	SE OU	TCOM	IES													
	success			of the	course.	student	ts will t	oe able	to							
	Listen, re		•									Rememb	er			
CO2.	Underst	and an		_						nunciati	on in					
differe	nt situat	ion.										Understa	ınd			
CO3. 7	Γo make	the stu	dents e	xperts i	n profes	ssional	writing					Apply				
	Γo make											Apply				
						e of tec	hnical	writing	in their	careers						
	ss, techr					007.5	G 137	DD 0 1	ND 1 3 5 5			Analyze				
MAPP	ING W	TTH P	KOGR	AMMI	S OUT	COME	S AND	PRO(έΚΑΜΙ	ME SPE	CIFIC (OUTCO	MES	1	I	DCO
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	SO2	PSO 3
CO1						M	M	M		S		S	S	1.0		S

															PSO
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	3
CO1	-	-	-	-	-	M	M	M	-	S	-	S	S	-	S
CO2	-	-	-	-	-	-	L	-	-	S	-	S	-	-	S
CO3	-	-	-	L	-	-	-	-	-	-	-	L	-	M	-
CO4	-	-	-	-	-	M	-	L	M	S	L	S	S	M	S
CO5	M	-	L	S	-	-	-	-	-	-	-	S	M	-	S
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

INTRODUCTION TO SOFT SKILLS

Aspects of Soft Skills, Effective Communication Skills, Classification of Communication, Telephonic Communication Skills, Communicating without Words, Paralanguage.

INTERPERSONAL SKILLS

Group Communication Skills, Leadership Skills, Group Discussion, Meeting Management, Adaptability & Work Ethics, Personality development Positive Thinking, Proxemics, Haptics: The Language of Touch, Metacommunication, Applied Grammar.

LIFE SKILLS

Emotional Intelligence, Critical Thinking, Decision making, Problem solving, Listening Skills, Types of Listening, Negotiation Skills, Culture as Communication, Communication Breakdown, Organizational Communication.

PROFESSIONAL WRITING SKILLS

Advanced Writing Skills, Principles of Business Writing, Business Letters: Format and Style, Types of Business Letter writing, Reports, Types of Report, Strategies for Report Writing, Evaluation and Organization of Data Structure and Style of Report.

CAREER SKILLS

Advanced Speaking Skills, Speeches & Debates, Combating Nervousness, Patterns & Methods of Presentation, Oral Presentation: Planning & Preparation, Making Effective Presentations, Speeches for Various Occasions, Interviews, Planning & Preparing: Effective Résumé, Facing Job Interviews.

TEXTBOOK

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.
- 4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Course Designers:

S.No.	Name of the Faculty	Mail ID
1	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in
2	Dr Bhuvaneswari R/ Assistant Professor - English	bhuvaneswarir@vmkvec.edu.in

BASIC SCIENCE COURSES

ENGINEERING	Category	L	T	P	Credit
MATHEMATICS	FC-BS	2	1	0	3

Preamble

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

to surra	ce ana	tnen i	to voi	ume 1	integr	ais.									
Prerequ	uisite :	NIL													
Course	Objec	ctives													
1 T	To reca	ll the	advar	nced 1	natrix	k know	ledge t	to Eng	gineer	ring pro	oblems	S.			
2 T	To equi	p ther	nselv	es far	niliar	with t	he fund	ctions	of se	veral v	ariable	es.			
			their	abili	ity in	solvi	ng geo	ometr	ical a	applica	tions	of dif	ferent	ial c	alculus
p	roblen	ns.													
4 T	To exar	nine k	cnowl	edge	in mu	ıltiple	integra	ls.							
5 T	To improve their ability in Vector calculus.														
Course	Outco	omes:	On t	he su	ccess	ful co	mpletio	on of	the c	ourse,	stude	nts wil	l be a	ble t	0
CO1.	App	Apply the concept of orthogonal reduction to diagonalise the given Apply													
	mati	matrix.													
CO2.	Finc	the r	adius	of cu	rvatu	re, ciro	cle of c	urvat	ure an	d cent	re of		A	pply	
	curv	ature	for a	given	curv	e.									
CO3.	Clas	sify tl	he ma	xima	and 1	minim	a for a	given	funct	tion wi	th sev	eral	A	pply	
	vari	ables,	throu	igh by	y find	ing sta	tionary	y poin	ts						
CO4.	Fino	doub	ole int	egral	over	genera	al areas	and t	riple	integra	l over	genera	al A	pply	
	volu	ımes													
CO5.	App	ly Ga	uss D	iverg	ence	theore	m for e	valua	ting t	he surf	ace in	tegral.	A	pply	
Mappii	ng witl	h Prog	gram	me O	utco	mes ar	nd Prog	gram	me S	pecific	Outco	omes	•		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	-	-	-	-	L	-	-	-	M	-	-	-
CO2	S	S	M	-	-	-	-	L	-	-	-	M	-	-	-
CO3	S	S	M	-	-	-	-	L	-	-	-	M	-	-	-
CO4	S	S	M	-	-	-	-	L	-	-	-	<u>M</u>	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES

Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES

Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature. Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method.

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration (in both Cartesian and polar coordinates)-Change of order of integration.

VECTOR CALCULUS

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof), Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

Text Books

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delh (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

Reference Books

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

Alternative NPTEL/SWAYAM Course

	001 (0 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics/VMKVEC	selvam@vmkvec.edu.in

									C	ATEGO	RY	L	T	P	C	
				SMA	RT MA	TERL	ALS			FC-BS		3	0	0	3	
PREAM	IBLE								<u> </u>		<u> </u>					
mart M	laterials	gives	an outlo	ok abo	ut vario	ous type	es of m	aterials	having	potential	l applica	tion in I	Engineeri	ng and T	echnology	
n partic	ular, St	udents	learn a	bout Pr	operties	s of Cry	stalline	e Mater	ials, Sr	nart Mate	erials an	d Nanor	naterials,	and thei	r industria	
pplicati	ons, ch	aracteri	stics an	d indus	trial ap _l	plicatio	ns of M	lagnetic	and Su	apercondu	acting m	aterials.				
PRERE Vil	QUISI	TE:														
COURS	E OBJ	ECTIV	ES:													
1	To im	part the	basic p	roperti	es of di	fferent	materia	ls.								
2	To un	derstan	d the str	ructure	of cryst	alline n	naterial	s.								
3																
4																
5	•															
6	To un	derstan	d the co	ncept o	f super	conduct	tivity, p	roperti	es of su	per condu	ictor and	d their in	dustrial a	pplicatio	ns.	
COURS	E OUT	COMI	ES:													
After suc	ccessful	compl	etion of	the cou	ırse, lea	ırner wi	ll be ab	ole to								
CO1. Uı														Understa	nd	
CO2. Le			•	•										Apply		
							oplicati	ons of S	Smart N	/Iaterials				Apply		
						•	•							Apply		
CO4. Get an exposure about the properties of Nano materials Apply CO5. Gain the knowledge about the properties of magnetic materials and familiarize their									terials	and fami	liarize f	heir		12002		
°O5 G:										una rumi	manze t			Apply		
	ons.		CO6. Gain the knowledge about Superconducting materials											Apply	• • •	
applicati		knowle	dge abo	ut Supe	ercondu	cung m							•			
applicati CO6. Ga	ain the							PROG	FRAM	ME SPE	CIFIC (OUTCO	MES			
applicati CO6. Ga	ain the							PROG PO	FRAMI PO	ME SPEC	CIFIC (PO1	PO1	MES POS	POS		
COS	in the ling W	TTH P	ROGR	AMMI	E OUT	COME	S AND PO 7							POS 2	POS3	
applicati CO6. Ga MAPP COS CO1	ING W PO 1 S	PO 2	ROGR PO 3	AMMI PO 4	PO 5	PO 6	S AND PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	POS			
applicati CO6. Ga MAPP COS	in the ling W	PO 2	ROGR PO 3	AMMI PO 4	PO 5	PO 6	S AND PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	POS 1	2		

S

S

CO5

CO6

S

M

S – strong, M- Medium, L – Low

S

S

M

S

M

SYLLABUS

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures – determination of interplanar distance (d).

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application – SMA in Actuators and Blood clot filters, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and industrial applications (Core of the Transformer).

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).

SUPER CONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Industrial Applications of superconductors (SQUID, Cryotrons and Maglev Trains).

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. A.K. Katiyar and C.K. Pandey, Engineering Physics Theory and Practical, Wiley Publisher, 2015.

REFERENCES

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Suresh	Associate Professor	Physics	suresh.physics@avit.ac.in
2	Dr. R. N. Viswanath	Professor	Physics	rnvishwanath@avit.ac.in
3	Dr. B. Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phy@avit.ac.in

		Catagory	ī	т	D	Credit
		Category	L	1	Г	Creuit
INDU	JSTRIAL MATERIALS	FC-BS	3	0	0	3

Preamble:

Industrial Material is a part of the long chain in the design and manufacturing process. It deals with the ideas, the design, the testing, and prototyping of new industrial products. To solve the major problems of the world and their essential skills are, in-depth knowledge and application of chemistry and creativity with chemicals.

Prerequisite : NIL

Course Objectives

- 1 To Describe the various metallic materials.
- 2 To Apply the various smart materials for industries.
- 3 To Distinguish the lubricants in the industries.
- 4 To Categorize various types of paints using in the industries.
- 5 To Distinguish the various petroleum products.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Discuss the various metallic materials using in industries.	Understand
CO2.	Interpret the various smart materials and its applications.	Apply
CO3.	Compare the different lubricants with their properties.	Analyze
CO4.	Relate the various surface coatings.	Apply
CO5.	Categorize the different petroleum products.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	M	S	-	-	-	-	-	M	M	M
CO2	S	M	-	-	1	S	S	ı	-	-	-	-	M	M	M
CO3	S	M	-	-	ı	S	M	1	-	-	-	-	M	M	M
CO4	S	S	-	-	ı	M	S	1	-	-	-	-	M	M	M
CO5	S	S	-	-	1	S	M	•	-	-	-	-	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

METALS AND ALLOYS

Engineering materials: Ferrous materials, Aluminium, Copper, Nickel, Magnesium, Titanium alloys for engineering applications. Phase diagrams, properties and typical alloys with reference to their applications.

SMART MATERIALS

Shape Memory Alloys, Varistors and Intelligent materials for bio-medical applications, Polymers and Plastics from industry. Development, important properties and smart applications of polymeric materials.

LUBRICANTS

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pour point) and their determination.

PAINTS

surface Coatings: Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings- Paints, pigments, Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents.

Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing, Water and Oil paints, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

PETROLEUM AND PETROCHEMICAL INDUSTRY

Composition of crude petroleum- Refining and different types of petroleum products and their applications - Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass) - synthetic fuels (gases and liquids).

Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Text Books

- 1. Industrial chemistry by B.K.Sharma. Goel publishing home.
- 2. Engineering Material Technology, 5th edition, by James A.Jacobs & Thomas F. Kilduff.

Reference Books

- 1. An Introduction to Industrial chemistry by C,A.Heaton. Springer publications.
- 2. Engineering materials1: An introduction to properties, applications and design by Michael F Ashby and David R H Jones, Elsevier Butterworth Heinmann Publishers, 2007

Course Designers

			Department/Name of	
S.No	Faculty Name	Designation	the College	Email id
	Mr.A.Gilbert			gilbertsunderraj@vmkvec.
1	sunderraj	Associate Professor	Chemistry/VMKVEC	edu.in
				nagalakshmi.chemistry@a
2	Dr.R.Nagalakshmi	Professor	Chemistry/AVIT	vit.ac.in

MATHEMATICS FOR	Category	L	T	P	Credit
MECHANICAL SCIENCES	FC-BS	2	1	0	3
Preamble					
This course provides a solid undergraduat	e foundati	on in na	rtial (differential	equations

This course provides a solid undergraduate foundation in partial differential equations, probability theory and mathematical statistics and at the same time provides an indication of the relevance and importance of the theory in solving practical problems in the real world. Partial differential equations are derived from physics and instruct the methods for solving boundary value problems, that is, methods of obtaining solutions which satisfy the conditions required by the physical situations such as Heat flow equations of one dimension and two dimensions. Fourier analysis is to represent complicated functions in terms of simple periodic functions, namely cosines and sines. Statistics is permeated by probability. Statistics has been responsible for accelerating progress in all applied sciences by defining the correct methods of planning, collecting, analyzing and interpreting data for establishing cause and effect relationship.

Course Objectives	Course	Obj	jectives
-------------------	--------	-----	----------

- 1 To formulate and solve partial differential equations.
- 2 To represent a periodic function as a Fourier series.
- 3 To be familiar with applications of partial differential equations.
- To provide an understanding for the graduate on statistical concepts to include measures of central tendency, curve fitting, correlation and regression.
- 5 To be familiar with discrete and continuous random variables.

Course Outcomes: On the successful completion of the course, students will be able to

0002200	successive of the successive completion of the course, successive will se	
CO1.	Explain the methodology of forming and solving partial differential equations.	Apply
	Demonstrate periodic functions arising in the study of engineering problems as Fourier series of sine and cosines and compute the	
CO2.	Fourier coefficients numerically.	Apply
	Solve partial differential equations arising in engineering problems like	
CO3.	wave equations and heat flow equation by Fourier series	Apply
	Apply least square method to fit a curve for the given data and evaluate	
CO4.	the correlation coefficient and regression lines for the data	Apply
	Apply concepts of probability, discrete and continuous random	
CO5.	variables.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L					M				M			-
CO2	S	M	M	L				M				M			•
CO3	S	M	M	L				M				M			
CO4	S	M	L					M				M			
CO5	S	S	M	L				M				M			-

S- Strong; M-Medium; L-Low

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0, f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half -range Sine and Cosine series – Parseval's identity – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations – Solutions of one – dimensional wave equation, one – dimensional heat equation – Steady state solution of two – dimensional heat equation – Fourier series solutions in Cartesian coordinates.

STATISTICS

Measures of central tendency, Curve fitting – Straight line and Parabola by least square method, Correlation, Rank correlation and Regression.

VECTOR CALCULUS

Probability Concepts – Random Variables - Discrete and Continuous Random Variables-Probability mass function – Probability density functions - Moment Generating Functions and their properties.

Text Books

- 1. S.C. Gupta, V.K. Kapoor, "Fundamentals of mathematical statistics", Sultan Chand & Sons (2017).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. T. Veerarajan, "Probability, Statistics and Random processes" 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi (2006).

Reference Books

- 1. Dr.A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 2. Dr.A. Singaravelu, "Probability and Statistics", Meenakshi Agencies, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

			Department/Name of	
S.No	Faculty Name	Designation	the College	Email id
1	Dr. S. Punitha	Associate Professor	Mathematics/VMKVEC	punitha@vmkvec.edu.in
2	Ms. S. Sarala	Associate Professor	Mathematics/AVIT	sarala@avit.ac.in

NUMERICAL METHODS					
FOR MECHANICAL	Category	${f L}$	T	P	Credit
SCIENCES	FC-BS	2	1	0	3

Preamble

This course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration, interpolations and applications to computer science and engineering, and science areas and develops problem solving skills with both theoretical and computational oriented problems.

Prerequisite: 1. Engineering Mathematics

2. Mathematics for Mechanical Sciences

Course Objectives

- 1 To familiar with numerical solution of linear equations
- 2 To familiar with numerical solution of Non-linear equations
- To be get exposed to finite differences and interpolation and the numerical Differentiation and integration
- 4 To find numerical solutions of ordinary differential equations
- 5 To find numerical solutions of partial differential equations

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Solve the system of linear algebraic equations and single non linear equations arising in the field of Mechanical Engineering.	Apply
	Apply methods to find intermediate numerical value & polynomial	11 3
CO2.	of numerical data.	Apply
	Apply methods to find integration, derivatives of one and two variable	
CO3.	functions.	Apply
	Solve the initial value problems using single step and multistep	
CO4.	methods.	Apply
CO5.	Solve the boundary value problems using finite difference methods.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

11								0							
			PO					PO	PO	PO1					
COs	PO1	PO2	3	PO4	PO5	PO6	PO7	8	9	0	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L			1		L				M			1
CO2	S	M	L					L				M			
CO3	S	S	L					L				M		-	
CO4	S	S	L	L				L				M			
CO5	S	S	L	M				L				M			

S- Strong; M-Medium; L-Low

SYLLABUS

SOLUTION OF LINEAR EQUATIONS

Solution of linear system – Gaussian elimination and Gauss-Jordan methods – LUdecomposition methods – Jacobi and Gauss-Seidel iterative methods – sufficient conditions for convergence – Power method to find the dominant eigenvalue and eigenvector.

SOLUTION OF NONLINEAR EQUATIONS

Solution of nonlinear System – Bisection method – Secant method – Regula falsi method – Newton-Raphson method for f(x) = 0 – Order of convergence – Horner's method.

METHODS OF INTERPOLATION, NUMERICAL DIFFERENTIATION AND

INTEGRATION

Newton's forward, backward and divided difference interpolation —Lagrange's interpolation — Numerical Differentiation and Integration —Trapezoidal rule —Simpson's 1/3 and 3/8 rules -Curve fitting -Method of least squares and group averages.

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Euler's method – Euler's modified method – Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations -Multistep methods – Milne's and Adams' methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EOUATIONS

Numerical solution of Laplace equation and Poisson equation by Liebmann's method – s lution of one dimensional heat flow equation – Bender-Schmidt recurrence relation – Crank -Nicolson method – Solution of one dimensional wave equation.

Text Books

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- 2. S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

Reference Books

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department / Name of the College	Email id
			Mathematics/	vijayarakavan@vmkvec.edu
1	Dr. M.Vijayarakavan	Associate Professor	VMKVEC	.in
2	Dr. S. Gayathri	Assistant Professor	Mathematics/AVIT	gayathri@avit.ac.in

	RESOURCE MANAGEMENT	Category	L	T	P	Credit					
		FC-BS	2	1	0	3					
PREAMBLE											
Operations Research is the study of optimization techniques and its helps in solving problems in different environments that need decisions like, Inventory control problems, Maintenance											

and Replacement problems, Sequencing and Scheduling problems, Assignment of Jobs to applicants, Transportation problems, Network problems and Decision models. Entire subject

is usefu	ıl for a	all res	ource	man	agers	of var	ious fie	elds.							a Jee
Prereq															
Course	e Obje	ective	S												
			_			progra ig mod	mming lel.	prob	lem a	nd for	mulate	a real	world	d prob	olem as
	To Study and acquire knowledge on engineering and Managerial solutions in Assignment and scheduling problems.														
							niques (alterna			CPM aı	nd sequ	iencin	g moo	del to	
4	To be	get ex	kpose	d to tl	he co	ncepts	of Inve	entory	ont cont	rol.					
5	To stu	ıdv de	cisior	ı theo	ry an	d gam	e theor	v tech	nique	es to ar	nalyze	the rea	al wor	ld sv	stems.
							omplet								
CO1.	regio	n. Sol	ve th	e LPF	-		ng pro variable			-			by	apply	
CO2.		-			-	ogram	nming p	proble	ems li	ke the	Trans	portati		apply	
CO3.			ork p	oroble	ems u	sing C	CPM, P	ERT	techn	iques	and se	quenci	9	pply	
CO4.	Desig	gn a c	ontinu	ious (or per	iodic 1	eview	inven	tory c	control	systen	1	Α	apply	
CO5.	techn	ical	know	ledge	. Pa	•	o solvo a pro	•	- 1				and	apply	
Mappi	ng wi	th Pr	ogran	nme (Outco	omes a	and Pr	ograi	nme (Specif	ic Out	comes			
COs		PO2				PO6	PO7	PO 8	PO 9	PO1 0	PO1 1			PSO2	PSO3
CO1	S	S	M	M	L	l		S		l		S			

wapp	rapping with Frogramme Outcomes and Frogramme Specific Outcomes														
			PO					PO	PO	PO1	PO1				
COs	PO1	PO2	3	PO4	PO5	PO6	PO7	8	9	0	1	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	L		-	S	-			S			
CO2	S	S	M	L	L		-	S	-			S			
CO3	S	S	M	L	S			S				S			
CO4	S	S	S	M				S				S			
CO5	S	S	S	M	M			S				S			

S- Strong; M-Medium; L-Low SYLLABUS

LINEAR MODELS: Linear Programming Techniques: Formulation of linear programming problem, applications and limitations, Graphical method, Simplex Method – The Big –M

method –Duality principle

TRANSPORTATION AND ASSIGNMENT MODELS: Transportations problem: North West Corner Method, Least Cost Method, Vogel's Approximation Method, Modified Distribution Method, Unbalance and Degeneracy in Transportation Model, Assignment problem: Hungarian algorithm, Unbalanced Assignment problems - Maximization case in Assignment problems, traveling salesman problem.

NETWORK MODELS: Basic terminologies, constructing a project network, network computations in CPM and PERT, Sequencing Models: Scheduling – processing n jobs through two machines, processing n jobs through three machines, processing n jobs through m machines.

INVENTORY MODELS: Variables in inventory problems – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units). Inventory models with quantity discount, safety stock, multi-item deterministic model.

DECISION MODELS: Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions, Matrix Oddment method for nxn games (Arithmetic Method) – Replacement Models: Replacement of Items due to deterioration with and without time value of Money, Group replacement policy.

TEXTBOOKS:

- 1. H.A.Taha, "Operations Research: An Introduction", 10th Edition, Prentice Hall of India (2019).
- 2. F.S Hillier and G.J. Lieberman, "Introduction to Operations Research: Concept and Cases", McGraw-Hill International (2012).

REFERENCES:

- 1. Kanti Swarup, P.K.Gupta, Man Mohan, "Operations Research", S.Chand & Sons, New Delhi (2014).
- 2. Sundarasen.V, Ganapathy Subramaniyam, K.S, Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai (2013).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi (2014).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL/SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Punitha	Associate Professor	Mathematics	punitha@vmkvec.edu.in
2	Dr.M.Thamizhsudar	Associate Professor	Mathematics	thamizhsudar@avit.ac.in

		PR	OBAE	BILIT	YA	ND		Catego	ry	L	T		P	(Credit
		STA	ATIST	FICS			F	C-BS		2	1		0		3
Pream	ble														
Probab	ilistic a	and st	atistic	al an	alysis	s is m	ostly u	ised in	vari	ied app	olication	ns in	Engin	eerin	g and
Science	e. Stati	stical	metho	od int	roduc	ces stu	dents	to cogn	iitive	e learni	ing in	statisti	ics an	d dev	velops
skills o	on analy	yzing	the da	ata by	usin	g diffe	erent te	ests and	des	igning	the ex	perime	ents w	ith s	everal
factors	. Statis	tical	Qualit	ty co	ntrol	is a 1	nethod	l of qu	ality	contr	ol whi	ch en	ploys	stat	istical
method	ls to m	onitor	and c	contro	l a pı	ocess	and en	sure th	e pro	ocess o	perates	effici	ently,	prod	lucing
more s	re specification-conforming product. Based on this, the course aims at giving adequate														
exposu	osure in random variables, probability distributions, regression and correlation, test of														
hypoth	ypothesis and statistical quality control.														
Prereg	Prerequisite: Nil														
	e Objec														
ŗ	To get	the k	nowle	dge c	n coi	ncepts	of ran	dom v	ariat	oles an	d distri	bution	s wit	h res	pect to
II	how the			_		-									-
ľ	To acq	uire s	kills	in ha	ndlin	g situa	ations	involvi	ng r	nore th	nan on	e rand	lom v	ariab	le and
	To acquire skills in handling situations involving more than one random variable and functions of random variables														
r	Γο acquire knowledge of Testing of Hypothesis useful in making decision and test them by														
1															
r	To be exposed to statistical methods designed to contribute to the process of making														
r	To understand the concept of Quality control and the use of operating characteristic (OC)														
	curves i						•				-				
Course	e Outco	mes:	On th	ie suc	ccessf	ul con	npletio	n of th	e co	urse, s	tudent	s will l	be abl	le to	
								ution to	det	ermine	probab	oility			
CO1.							proble						A	pply	
			e marg	ginal a	and co	onditio	nal dis	tributio	ns o	f bivar	iate ran	dom			
CO2.		ables.											A	pply	
CO3.		•		-				le tests			_			pply	
								nce (Al							
CO4.								wo inde			•			pply	
								e in-co			-	_			
					ot is a	ccepta	ble or ı	unaccep	otabl	e basec	d on acc	ceptan			
CO5.			plans.						~				A	pply	
Mappi	ng witl	n Prog	gramı	ne O	utcon	nes an	d Prog				Jutcon	nes	1	1	
COs	PO1	DO1	DO3	DO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO11	DO14	PSO1	DSO2	PSO3
CO1	S	S PO2	PO3 M	PO4 L	PO5	PO6	PO/	L PO8	<u>9</u>		PO11	M PO12	r3U1	502	<u>rsus</u>
CO2	S	S	M	L				L				M			
CO3	S	S	M	L				L				M			
CO4	S	S	M	L				L				M			
CO5	S	S	M	M				L				M			
	ong; M	-Medi	um; I	L-Lov	W										
SYLL	ABUS														

STANDARD DISTRIBUTION

Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions.

TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Regression Analysis

TESTING OF HYPOTHESIS

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attributes.

DESIGN OF EXPERIMENTS

Analysis of Variance – One Way Classification – Two Way Classification – Completely Randomized Design – Randomized Block Design – Latin Square Design.

STATISTICAL QUALITY CONTROL

Introduction – Process control – Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling – single sampling, double sampling, multiple sampling and sequential sampling.

Text Books

- 1. S.P. Gupta, "Statistical Methods", 45th Edition, Sultan Chand & Sons Publishers (2017).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).

Reference Books

- S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", 12th Edition, Sultan Chand & Sons, New Delhi (2020).
- Miller, "Probability and Statistics for Engineers", 9th Edition, Freund-Hall, Prentice India Ltd. (2017).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL/SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department / Name of the College	Email id
	V	Associate	<u> </u>	vijayarakavan@vmkvec.edu
1	Dr.M.Vijayarakavan	Professor	Mathematics/VMKVEC	<u>.in</u>
		Associate		
2	Dr. A.K.Bhuvaneswari	Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in

C	ategor				
ENVIRONMENTAL SCIENCES y		L	T	P	Credit
(_	_	3
nmental studies deals with the human relations to the environment for the future. Environmental engineering focuses of	onment n the va	and s	societ issue:	al pro	oblems and
E					
CCTIVES					
culcate the knowledge of significance of environmental studies a rces.	nd cons	ervati	on of	the na	atural
quire knowledge of ecosystem, biodiversity, it's threats and the r	need for	conse	ervatio	on	
in knowledge about environmental pollution, it's sources, effects	and co	ntrol 1	measu	ires	
miliarize the legal provisions and the national and international comment	oncern	for the	e prote	ection	of
aware of the population on human health and environment, role and environment.	of tech	nology	y in m	onito	ring human
COMES					
l completion of the course, students will be able to					
I the importance of environment and alternate energy resources	Uno	dersta	nd		
e awareness and recognize the social responsibility in ecosystem conservation					
technologies to analyse the air, water and soil pollution and sol		ply			
	Apj	ply			
e the social issues and apply suitable environmental regulations development	Eve	duata			
	d Lva	mault			
	ENVIRONMENTAL SCIENCES (Common to All Branches) science is an interdisciplinary field that integrates physical, che mental studies deals with the human relations to the environmental studies deals with the human relations to the environment for the future. Environmental engineering focuses of ent for sustainable development by improving the environmental E CCTIVES culcate the knowledge of significance of environmental studies are ces. quire knowledge of ecosystem, biodiversity, it's threats and the relation knowledge about environmental pollution, it's sources, effects militarize the legal provisions and the national and international comment aware of the population on human health and environment, role and environment. COMES completion of the course, students will be able to the importance of environment and alternate energy resources awareness and recognize the social responsibility in ecosystem conservation technologies to analyse the air, water and soil pollution and solve the social issues and apply suitable environmental regulations	ENVIRONMENTAL SCIENCES (Common to All Branches) Science is an interdisciplinary field that integrates physical, chemical, the environmental and consciplinary focuses on the value of the environmental studies and consciplinary field that integrates physical, chemical, the environmental quality focuses on the value and consciplinary field that integrates physical, chemical, the environmental quality focuses on the value and consciplinary field that integrates physical, chemical, the environmental quality focuses on the value physical p	ENVIRONMENTAL SCIENCES (Common to All Branches) Science is an interdisciplinary field that integrates physical, chemical, biolog mental studies deals with the human relations to the environment and environment for the future. Environmental engineering focuses on the various ent for sustainable development by improving the environmental quality in ever the success. CCTIVES CULICATE CULICATE CULICATE COTIVES CULICATE the knowledge of significance of environmental studies and conservations. Completion of ecosystem, biodiversity, it's threats and the need for conservations and the national and international concern for the summent aware of the population on human health and environment, role of technology and environment. COMES Completion of the course, students will be able to the importance of environment and alternate energy resources awareness and recognize the social responsibility in ecosystem conservation Apply Etchnologies to analyse the air, water and soil pollution and solve Apply Apply	ENVIRONMENTAL SCIENCES (Common to All Branches) science is an interdisciplinary field that integrates physical, chemical, biological, mental studies deals with the human relations to the environment and society intervention of the future. Environmental engineering focuses on the various issues and the relations to the environment and society in the formal studies development by improving the environmental quality in every as the social technologies of significance of environmental studies and conservation of a second conservation of the second conservati	ENVIRONMENTAL SCIENCES (Common to All Branches) Science is an interdisciplinary field that integrates physical, chemical, biological, and a mental studies deals with the human relations to the environment and societal provironment for the future. Environmental engineering focuses on the various issues of eart for sustainable development by improving the environmental quality in every aspect. ECTIVES CULICIAN CULICIAN CULICIAN CULICIAN CULICIAN CULICIAN COMMENTAL SCIENCES CULICIAN CULICIAN CULICIAN CULICIAN CULICIAN COMMENTAL SCIENCES COMMENTAL SCIENCES COMMENTAL SCIENCES CULICIAN COMMENTAL SCIENCES COMMENTAL SCIENCES CULICIAN COMMENTAL SCIENCES CULICIAN COMMENTAL SCIENCES COMMENTAL SCIENCES CULICIAN COMMENTAL SCIENCES CULICIAN COMMENTAL SCIENCES COMMENTAL SCIENCES COMMENTAL SCIENCES COMMENTAL SCIENCES CULICIAN COMMENTAL SCIENCES COMMENTAL

PO2

M

 \cos

CO1

PO1

S

PO3

L

PO4

PO5

PO6

S

PO7

S

PO8

S

PO9

PO11

PO10

PO12

S

PSO1

PSO2 PSO3

CO2	S	M	M	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	M	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

9 hrs

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems -Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies - Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

ECOSYSTEMS AND BIO – DIVERSITY

9 hrs

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

9 hrs

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste-solid waste Management-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style

SOCIAL ISSUES AND ENVIRONMENT

9 hrs

Sustainable Development- Water conservation – rain water harvesting, watershed management -Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

HUMAN POPULATION AND ENVIRONMENT

9 hrs

Population – Population growth & Population Explosion – Family welfare programme - Environment & human health - Human rights – Value education – AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw- Hill, New Delhi

REFERENCES:

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II,

Enviromedia.

- 4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.
- 5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.
- 6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE DESIGNERS											
S.No.	Name of the Faculty	ame of the Faculty Mail ID									
1	Dr. R.Nagalakshmi	nagalakshmi.chemistry@avit.ac.in									
2	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in									

PROGRAM CORE COURSES

MANUFACTURING	Category	L	Т	P	Credit
PROCESSES (Theory and Practicals)	CC	3	0	2	4

This course provides an introduction to Basic Manufacturing Process with a focus casting, welding, forming process, Sheet metal working and plastic Engineering and also provides knowledge on the working, advantages, limitations and applications of various machining processes. Machine tools are power driven machine for making products of a given shape, size and accuracy by removing metal from the metal block

Prerequisite : NIL															
Course Objectives															
1	To ider	ntify an	d expl	lain ma	anufac	turing	concept	s.							
	To und	erstand	the m	nanufa	cturing	g proce	ss of co	nventi	onal a	nd spec	ial casti	ng proc	ess of f	oundry	
2	technol	ogy.													
3	To imp	art the	know	ledge (of vari	ous typ	es weld	ing pro	ocess i	n metal	joining	g proces	ses.		
4	To app	To apply fundamentals of metal cutting processes and cutting tools.													
	To apply the knowledge of different operations on special machines and various types of work holding														
5	devices.														
6	To impart the knowledge of various metal forming processes.														
_	To know the working principles of the various unconventional, conventional machining operations and														
7	also me						T								
Cours	se Outc													to	
G0.1	_			- .	-		ous met		- .			-			,
CO1							produc					S		Underst	and
							ous met						,		
CO2		-			ed and	Select	the suit	able jo	oining	method	s for fa	bricatio		Underst	and
CO2	. assem	bly of	proau	cts.										Undersi	anu
CO3	Unde	rstand	the chi	in forn	nation	for diff	ferent cu	ıtting t	forces	and cut	ting too	ol life	1	Underst	and
- 03							operati							Chacist	una
CO4		g Mach		8	PTITT	p10 u110	орегии	0110 01	z mp c	.,	6, 2.11			Underst	and
				rking	princi	ple of v	arious r	netal f	ormin	g proce	sses and	d basics	of		
CO5	. additi	ve mar	nufactu	ıring t	echnol	logy							l	Underst	and
Mapp	ing wit	h Pro	gram	me O	utcon	nes an	d Prog	ramn	ne Sp	ecific (Outcon	nes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	-	-	-	-	-	•	-	-	-	M	-	-
CO2	S	M	S				-	-			-	-	M	-	-
CO3	S	M	S	-	-	-	-	-	-	-	-	-	M	-	-
CO4	S	L	S	L	-	-	-	-	-	-	-	M	M	-	-
CO5	S	L	S	L	-	-	-	-	-	-	-	M	M	-	-
5- Stron	g; M-Mo	edium;	L-Lov	V											

SYLLABUS

INTRODUCTION TO MANUFACTURING & CASTING

Introduction-Role of Manufacturing in the development of a country - classification of manufacturing processes-Fundamentals of metal casting – Types of patterns – sand mold making –different casting techniques – types of furnaces – Defects in castings – Testing and inspection of castings.

JOINING PROCESSES

Classification of welding processes - Principles of Oxy-acetylene gas welding-A.C metal arc welding- Resistance welding- Submerged arc welding- tungsten inert gas welding- metal inert gas welding- plasma arc welding- thermit welding- electron beam welding- laser beam welding, and identify defects in welding process - Soldering and brazing.

FUNDAMENTALS OF METAL CUTTING & CUTTING TOOLS

Basics of metal cutting: Mechanism of chip formation (orthogonal and oblique cutting)-Chip thickness ratio-Velocity ratio-Merchant circle diagram- Types of chips- Basics of cutting tools: Characteristics, Cutting tool materials, properties and applications -Tool life: Taylor's equation-Variables affecting tool life and Tool wear. Tool wear and Causes.

MACHINING PROCESSES

Introduction, Classification, working principle, operations performed: Lathe, Shaper, Planner, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. Super finishing processes: Lapping, Honing, Super finishing, Polishing & Buffing.

METAL FORMING PROCESSES & ADVANCED MANUFACTURING TECHNOLOGY

Cold and hot working of metals — Bulk metal forming- Sheet metal forming- High Energy Rate Forming processes: Explosive forming- Electro hydraulic forming — Electromagnetic forming. Need and Classification of Additive Manufacturing Technology - Product development and Materials for Additive Manufacturing Technology — Tooling - Applications.

LIST OF EXPERIMENTS

- 1. Greens and moulding process using split pattern.
- 2. Joining of two metal pieces by electric arc welding.
- 3. Make an external thread cutting operation by using centre lathe.
- 4. Make a square end from a given round bar by using shaping machine.
- 5. Make a hexagonal block from a given round stock by using plain milling machine.
- 6. Make a spur gear from the given blank by using universal milling machine.
- 7. Make an external keyway on a given round rod by using vertical milling machine.
- 8. Make an internal keyway on a given hallow specimen by using slotting machine.
- 9. Make a grinding process on a machined surface as given surface finish by using cylindrical grinding machine.
- 10. Make an internal thread cutting on a given specimen as per given dimensions by the sequence drilling, boring, reaming and tapping by using respective tools and machines.

Text Books

- 1. Fundamental of Modern Manufacturing: Mikell P.Groover
- 2. A Text Book of Production Technology (Manufacturing Processes): S. Chand.

Reference Books

- 1. SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.
- 2. Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001
- 3. E.PaulDegarmo, J.T.Black, and Ronald A. Konser, "Materials and Processes in Manufacturing", 5th Edition, Prentice Hall India Ltd., 1997.
- 4. P. N. Rao, Manufacturing Technology (Volume 1) Foundry, Forging and Welding, 4th Edition, Tata McGraw Hill Education, New Delhi, 2013.
- 5. Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes and Systems, Publishers: Wiley India, 2012.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Manufacturing Process Technology	Prof. Shantanu		
1	I & II	Bhattacharya	IIT Kanpur	12 weeks

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
1	R.Jayaraman	Associate Professor	MECH/VMKVEC	jayaramanr@vmkvec.edu.in

2	C.Thangavel	Associate Professor	MECH/VMKVEC	thangavel@vmkvec.edu.in
		Assistant Professor-		
3	P.Kumaran	II	MECH/AVIT	kumaranp@avit.ac.in

	FLUID MECHANICS AND MACHINERY (Theory and	Category	L	Т		P	Cre	edit
	Practicals)	CC	2	1		2	4	
Prean	nble	•	•		•		•	
	im of the subject is to provide a fundamen	ntal knowle	dge in flu	id mech	nanics	and ma	achiner	y.
	equisite							
NIL								
	se Objectives							
	To introduce the students about propertie	s of the flu	ids, behav	iour of	fluids	under	static	
	conditions.		1 11	1 1				
	To impart basic knowledge of the kinema			undary	ayer c	oncept	•	
	To understand the importance of dimension							
	To understand the importance of various			•				
	To understand the importance of various				•11 1	1.1 .	4.	
Cours	se Outcomes: On the successful comple						e to	
CO1.	Apply mathematical knowledge to pred of a fluid.	lict the prop	perties and	d charac	teristi	cs	Apply	y
	To understand the conservation laws ap					on		
	through fluid kinematics and also to un-		e concept	of bour	ıdary			
CO2.	layer and its thickness on the flat solid						Jnderst	and
	Formulate the relationship among the p	arameters i	nvolved i	n the gi	ven flu	ıid		
CO3.	phenomenon and to predict the perform	nances of pr	ototype b	y mode	l studi	es.	Apply	y
	Explain the working principles of centr	ifugal pum	ps and rec	ciprocat	ing			
CO4.	pumps.					J	J nderst	and
	Explain the working principles of vario	us turbines	and desig	gn the v	arious			
CO5.	types of turbines.					J	J nderst	and
Mappi	ng with Programme Outcomes and Pro	ogramme S	pecific O	utcome	es			
COc	not not not not not not not	7 DOS D	00 0010	DO11	DO12	DCO1	DCO2	DCO2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	•	•	M	M	L
CO2	S	S	M	L	-	-	-	-	-	-	-	٠	M	M	L
CO3	S	S	M	L	-	-	-	-	-	-	-	٠	M	M	L
CO4	S	S	S	S	-	-	-	-	-	-	-		M	M	L
CO5	S	S	S	S	-	-	-			-	-	-	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CONCEPTS AND PROPERTIES

Definition of fluid-mechanics-Properties of fluids-mass density, specific weight, specific volume, specific gravity-Viscosity-Newton's law of viscosity-Compressibility and Buk modulus, Surface tension and Capillarity-Vapor pressure-Continuity equation (one and three dimensional differential forms)-Bernoulli's equation and its assumptions.

KINEMATICS AND BOUNDARY LAYER OF FLUID FLOW

Types of fluid flow - Velocity and acceleration — Velocity Potential Function -Stream Function-Types of motion —Vortex flow-Euler's equation of motion-Flow of viscous fluid through circular pipe-Major and Minor losses-Darcy Weisbach's equation-Boundary layer concepts-Types of boundary layer thickness-Separation of Boundary Layer.

DIMENSIONAL ANALYSIS

Fundamental dimensions -Dimensional homogeneity-Methods of dimensional analysis-Model analysis -Similitude –Types of similitude-Dimensionless Numbers-Types of dimensionless numbers-Model laws-Classification of models.

HYDRAULIC PUMPS

Classification of pumps-Centrifugal pumps-Working principles-Work done by the impeller-Velocity Triangles-Heads and efficiencies of centrifugal pumps-Characteristic curves of centrifugal pumps-Cavitations in centrifugal pumps-Net Positive Suction Head (NPSH)- Reciprocating pumps-

Working principles-Slip and negative slip of reciprocating pump-Classification of reciprocating pumps-Indicator diagram and it's variations - Work saved by fitting air vessels.

HYDRAULIC TURBINES

Classification of turbines-Heads and efficiencies- Pelton wheel -Velocity triangles- Radial flow reaction turbines- -Francis turbine-Axial flow reaction turbines-Working principles – Draft-Tube-Specific speed-Unit quantities-Performance curves for turbines –Governing of turbines.

LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge given Orifice Meter
- 2. Determination of the Coefficient of discharge given Venturi Meter
- 3. Determination of friction factor for a given set of pipes.
- 4. Conducting experiments and drawing the characteristic curves of Centrifugal Pump/Submersible Pump
- 5. Conducting experiments and drawing the characteristic curves of Reciprocating Pump
- 6. Conducting experiments and drawing the characteristic curves of Gear Pump
- 7. Conducting experiments and drawing the characteristic curves of Jet Pump
- 8. Conducting experiments and drawing the characteristic curves of Kaplan Turbine
- 9. Study about the performance characteristics curves of Pelton wheel & Francis Turbine

Text Books

- 1. Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd edition 2019.
- 2. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.
- 3. Bansal- R.K. "Fluid Mechanics and Hydraulics Machines" (9th edition)—Laxmi Publications (P) Ltd- New Delhi 2010.

Reference Books

- 1. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.
- 2. Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw Hill Education Pvt. Ltd., 2014.
- 3. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 4. Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co., 2010.

Alterna	Alternative NPTEL/SWAYAM Course													
S.No	NPTEL/SWAY	AM Course Name	Instructor	Host Institution	Duration									
Course Designers														
			Department/Name	ıme										
S.No	Faculty Name	Designation	of the College	Email id										
		Associate												
1	Dr.S.Arunkumar	Professor	MECH / VMKVEC	arunkumar@vmkvec.edu.i										
2	B.Selva Babu	Assistant Professor	MECH/ AVIT	selvababu@avit.a	nc.in									

MECHANICS OF	Category	L	Т	P	Credit
MACHINES (Theory and Practicals)	CC	3	0	2	4

The students completing this course are expected to understand the role of mechanisms and its applications.

Prerequisite

NIL

Course Objectives

- 1 To demonstrate the various types of kinematics of mechanisms.
- 2 To study the gear nomenclature and illustrate the various types of gears and gear trains.
- 3 To study and construct the cam profile.
- 4 To categorize the knowledge of static force analysis.
- 5 To analyze the balancing of masses and vibrations.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the principles involved in mechanics of machines.	Understand
CO2.	Solve much lama related to good tooth for you on lighting	Amaly
CO2.	Solve problems related to gear tooth for various applications	Apply
CO3.	Construct cams and followers for specified motion profiles.	Apply
CO4.	Analyze about the various static and dynamic forces.	Analyze
CO5.	Analyze balancing problems in rotating and reciprocating parts of machinery.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

CO-															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	•	٠	M	M	L
CO2	S	S	M	L	-	-	-	-	-	-	•	٠	M	M	L
CO3	S	S	M	L	-	-	-	-	-	-	•	٠	M	M	L
CO4	S	S	S	S	-	-	-	-	-	-	-		M	M	L
CO5	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

KINEMATIC OF MECHANICS

Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain – kinematics analysis in simple mechanisms – velocity and acceleration polygons – Analytical methods.

GEARS AND GEAR TRAINS

Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains – automotive transmission gear trains

KINEMATICS OF CAM

Classifications - Displacement diagrams-parabolic- Simple, harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion

FORCE ANALYSIS

Applied and Constrained Forces – Free body diagrams – static Equilibrium conditions – Two, Three and four members – Static Force analysis in simple machine members – Dynamic Force Analysis – Inertia Forces and Inertia Torque – D'Alembert's principle – superposition principle – dynamic Force Analysis in simple machine members.

BALANCING AND VIBRATION

Static and Dynamic balancing – Balancing of revolving and reciprocating masses – Balancing machines-Direct and reverse crank method

Free vibrations – Equations of motion – natural Frequency – Damped Vibration –critical speed of simple shaft – Torsional vibration – Forced vibration

LIST OF EXPERIMENTS

- 1. To perform an experiment on Watt and Porter Governor to prepare performance characteristic curves and to find stability and sensitivity
- 2. To determine the position of sleeve against controlling force and speed of a Hartnell governor and to plot the characteristic curve of radius of rotation
- 3. To analyse the motion of a motorized gyroscope when the couple is applied along its spin axis and determine gyroscopic couple
- 4. Determine the Moment of Inertia by compound pendulum and tri-filar suspension.
- 5. To determine the frequency of undamped free vibration and damped forced vibration of an equivalent spring mass system.
- 6. To determine whirling speed of shaft theoretically and experimentally.

Text Books

- 1. Ambekar A.G., —Mechanism and Machine Theory Prentice Hall of India, New Delhi, 2007
- 2. Shigley J.E., Pennock G.R and Uicker J.J., —Theory of Machines and Mechanisms||, Oxford University Press, 2003
- 3. Khurmi.R.S. and Gupta, Theory of Machines, S.Chand @ Co., 2005.

Reference Books

- 1. Thomas Bevan, —Theory of Machines, CBS Publishers and Distributors, 1984.
- 2. Ghosh.A, and A.K.Mallick, —Theory and Machinell, Affiliated East-West Pvt. Ltd., New Delhi,
- 3. Rao.J.S. and Dukkipatti R.V. —Mechanisms and Machines, Wiley-Eastern Ltd., New Delhi, 1992.
- 4. Ramamurthi. V., "Mechanisms of Machine", Narosa Publishing House, 2002
- 5. Robert L.Norton, "Design of Machinery", McGraw-Hill, 2004.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Kinematics of Mechanisms and			
1	Machines	Prof. A. Dasgupta	IIT Kharagpur	12 Weeks
Course	Designers			

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	Dr.S.Venkatesan	Professor	MECH/ VMKVEC	venkatesan@vmkvec.edu.in		
2	Mr.S.Sathiyaraj	Assistant Professor-II	MECH/AVIT	Sathiyaraj@avit.ac.in		

MECHANICAL BEHAVIOUR					
OF MATERIALS AND	Category	L	T	P	Credit
METALLURGY					
(Theory and Practicals)	CC	3	0	2	4

This course to imparts through knowledge on the metallic and nonmetallic materials, mechanical testing methods and deformation mechanisms in crystalline solid materials, also the mechanical treatment process, corrosion and advanced materials pertaining to Mechanical Engineers.

Prerequisite

NIL

Course Objectives

- To develop the broad knowledge of the classification, properties and application of various 1 Engineering Materials.
 - To provide an understanding to students on the mechanical properties and performance of materials.
- Identify the suitable mechanical treatment methods for selecting ferrous and non ferrous materials.
- Develop the knowledge of the various forms of corrosion and powder metallurgy fabrication methods.
- To give insight to advanced materials such as polymers, ceramics and composite and their applications.

Course Outcomes: On the successful completion of the course, students will be able to

	1 /	
CO1.	Understand the concepts of structure properties, performance and processing related to metallurgy and materials.	Understand
CO2.	Evaulate the mechanical behaviour of materials and the effect of mechanical properties.	Apply
CO3.	Correlate the structure-property relationship in metal/alloys in as- received and heat-treated conditions.	Apply
CO4.	Predict the formation of corrosion, mechanism and to prevent corrosion and powder metallurgy fabrication methods.	Apply
CO5.	Apply advanced materials such as polymers, ceramics and composites in product design.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	•			M	M	-	-
CO2	S	M	-	-	-	-	-	-	-	•	M	S	M	-	M
CO3	S	S	M	-	-	-	-	-	-	•	-	S	M	-	M
CO4	S	S	-	-	-	S	-	S	-	-	-	S	M	-	M
CO5	S	S	-	-	S	-	-	-	-	-	-	S	M	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

FERROUS & NON-FERROUS MATERIALS

Classification of cast iron and steels – properties, microstructures and uses of cast irons, plain carbon, alloy steels, HSLA, stainless, tool and die steels & maraging steels. Properties, microstructures and uses of non – ferrous alloys – copper, aluminium and nickel alloys. Phase diagrams - Iron – Iron carbide equilibrium diagram.

MECHANICAL BEHAVIOR OF MATERIALS

Introduction to plastic deformation - Slip and twinning - Types of fracture - ductile fracture, brittle fracture, - Fatigue - Fatigue test, S-N curves, Creep and stress rupture fatigue - mechanism of creep. Testing of materials under tension, compression and shear loads - Hardness tests (Brinell, Vickers & Rockwell), Impact test Izod and charpy.

MATERIAL TREATMENT

Heat treatment - Overview- objectives - Annealing and types, Normalizing - Hardening and

Tempering, Austempering and martempering. Case hardening process- Carburizing- nitriding - cyniding and carbonitriding, flame and induction hardening. Hardenability - Jominy end quench test. Time Temperature Transformation (TTT) and Cooling Curve Transformation (CCT) curve.

POWDER METALLURGY AND CORROSION

Powder metallurgy—powder production, blending, compaction, sintering-applications, Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods - PVD, CVD.

INTRODUCTION TO ADVANCED MATERIALS

Polymers – types of polymer, Properties and applications of various Engineering polymers (PP,PS, PVC, PMMA, PET,PC, PA, ABS, PI,PAI,PPO,PPS,PEEK, PTEF, Urea and phenol formaldhydes. Composites – Types- Metal Matrix Composites (MMC), Polymer Matrix Composites (PMC), Ceramic Matrix Composites (CMC) – properties,processing and applications. Ceramics – properties and applications of SiC, Al2O3, Si3N4, PSZ and SIALON

LIST OF EXPERIMENTS

- 1. Introduction to Metallographic
- 2. Preparation metallographic specimen
- 3. Identification of Ferrous specimens (Minimum 5)
- 4. Identification of Non-Ferrous specimen (Minimum 2)
- 5. Heat treatment Annealing comparation between annealed and unheat treated specimen.
- 6. Heat treatment Normalizing comparation between annealed and unheat treated specimen.

Text Books

- 1. William D Callister "Material Science and Engineering", John Wiley and Sons 2010–8thEdition.
- 2. Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company Prentice Hall 2014- 8th Edition.
- 3. V. Raghavan, "Materials Science and Engineering", PHI, Sixth Edition

Reference Books

- 1. George E. Dieter, "Mechanical Metallurgy" TATA McGraw Hill 2013 3rd Edition
- 2. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India
- 3. Upadhyay. G.S. and AnishUpadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Mechanical Behaviour of Materials	Prof. S. Shankar	IIT Madras	12 Weeks
2	Materials Science and Engineering	Dr. Vivek Pancholi	IIT Roorkee	12 Weeks

			Department/Name of	
S.No	Faculty Name	Designation	the College	Email id
				arunkumar@vmkvec.ed
1	Dr.S.Arunkumar	Assoc. Professor	MECH/VMKVEC	u.in
2	Dr.M.Thiruchirambalam	Professor	MECH/AVIT	thiru.mech@avit.ac.in

STRENGTH OF	Category	L	Т	P	Credit
MATERIALS (Theory and Practicals)	CC	2	1	2	4

The students completing this course are expected to understand the role of mechanisms and its applications.

Prerequisite

NIL

Course Objectives

- To know the behavior of material at various loading conditions in compression and
- 2 Understand and analyze shear force and bending moment in various loading conditions.
 - To know the phenomenon of bending of different sections and its analysis and recognize principle stresses.
- 4 To understands various columns sections and geometrical analysis.
- 5 Concepts of strain energy, torsion and numerical analysis.

Course Outcomes: On the successful completion of the course, students will be able to

	Explain the behavior of material at various loading conditions in	
CO1.	compression and tension.	Understand
CO2.	Analyze shear force and bending moment in various loading conditions.	Apply
	Analyze the phenomenon of bending of different sections and recognize	
CO3.	principle stresses.	Analyze
CO4.	Analyze about the various columns sections and geometrical.	Analyze
CO5.	Analyze of strain energy, torsion and numerical analysis.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	•	-	-	-	-	-	•	M	M	L
CO2	S	S	M	L	-	•	-	-	-	-	•	٠	M	M	L
CO3	S	S	S	S	-	•	-	-	-	-	•	٠	M	M	L
CO4	S	S	S	S	-	-	-	-	-	-	-		M	M	L
CO5	S	S	S	S	-	-	-	-	-	-	-	-	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

STRESSES AND STRAINS

Stress and strain due to axial force – Strain energy due to axial force –sudden load and impact load. Poisson's ratio—volumetric strain—shear stress—shear strain. Thin cylindrical and spherical shells under internal pressure. Thermal stresses. Principal stresses and planes – Mohr's circle for plane stress and plane strain. Strain gauges and rosettes.

BENDING MOMENT AND SHEAR FORCE IN BEAMS

Shear force and bending moment diagrams for cantilever, simply supported and overhanging beams under concentrated loads, uniformly distributed loads, uniformly varying loads, concentrated moments — maximum bending moment and point of contra flexure.

FLEXURE & TORSION IN BEAMS

Theory of simple bending and assumptions – flexure equation. Theory of torsion and assumptions – torsion equation – power transmitted by a shaft.

DEFLECTION OF DETERMINATE BEAMS

Governing differential equation – Macaulay's method – moment area method – application to simple problems (cantilever beams and simply supported beams only).

COLUMNS AND STRUTS

Columns – behaviour of axially loaded short and long column members – buckling load – Euler's theory – different end conditions – Rankine's formula.

LIST OF EXPERIMENTS

- 1. Direct Shear Test on Mild Steel Rod and Mild Steel Plate
- 2. Brinell Hardness Test
- 3. Izod Impact Test
- 4. Bending Test on Mild Steel
- 5. Rockwell Hardness Test
- 6. Tensile Test on Mild Steel
- 7. Compression test& Torsion test on Mild Steel

Text Books

- 1. Bedi D.S., "Strength of Materials", Khanna Publishing House, 2017.
- 2. Jindal U C, "Strength of Materials", Asian Books Pvt Ltd, New Delhi, 2007.
- 3. Rajput.R K, "Strength of Materials", S.Chand& Co Ltd, New Delhi, 1996.

Reference Books

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 1997.
- 2. Subramanian R, "Strength of Materials", Oxford University Press, Oxford Higher Education Series, Oxford, 2007.
- 3. Hibbeler R.C, "Mechanics of Materials", Pearson Education, New Jersey, 2007.
- 4. Bansal R.K, "Strength of Materials", Lakshmi Publications(P)Ltd, New Delhi, 2010.
- 5. Ferdinand P Been, Russell Johnson, J.R. and John J Dewole, "Mechanics of Materials", Tata Mcgraw Hill Publishing Co Ltd, New Delhi, 2006.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
		PROF. SRIMAN KUMAR		
1	STRENGTH OF MATERIALS	BHATTACHARYYA	IIT KGP	12 Weeks

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Sangeetha	Associate Professor	MECH/AVIT	sangeethas@avit.ac.in
		Assistant		
2	R.Chandrasekar	Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in

ENGINEERING	Category	L	Т	P	Credit
THERMODYNAMICS					
(Theory and Practicals)	CC	2	1	2	4

This course provides an introduction to the basic concepts in thermodynamics, first law of thermodynamics and energy, second law, entropy, enthalpy and internal energy, ideal and real gases and non-reactive ideal gas mixtures and general thermodynamic property relations. It develops the problem solving skills in engineering problems in basic thermodynamics.

Prerequisite

Nil

Course Objectives

- 1 To learn about work and heat interactions, and balance of energy between system and its surroundings.
 - 2 To learn about application of I law to various energy conversion devices.
- 3 To evaluate the changes in properties of substances in various processes.
 - To understand the difference between high grade and low grade energies.
- 5 To understand the II law limitations on energy conversion.

Course Outcomes: On the successful completion of the course, students will be able to

	To assess the basic elements & various modes of heat transfer Used in	
CO1.	Engineering applications.	Understand
	To solve the engineering problems using various methods of Transient	
CO2.	heat conduction technologies	Apply
	To apply the concepts of convection systems in an engineering problem using	
CO3.	standard values	Apply
	To choose the various concepts of radiation based on the requirements for the	
CO4.	given problems	Apply
	To solve the engineering problems using Boiling, Condensation and heat	
CO5.	transfer rate of heat exchangers using LMTD and NTU method	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L			-	S	S	S		1	S	M	-
CO2	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO3	S	M	L	L	-	•	-	S	S	S	-	•	S	M	-
CO4	S	M	L	L	-	-	-	S	S	S	-	•	S	M	-
CO5	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

FUNDAMENTALS OF THERMODYNAMIC

Fundamentals - System & Control volume; Property, State & Process; Exact & Inexact differentials; Work - Thermodynamic definition of work; examples; Displacement work; Path dependence of displacement work and illustrations for simple processes; electrical, magnetic, gravitational, spring and shaft work. Temperature, Definition of thermal equilibrium and Zeroth law; Temperature scales; Various Thermometers- Definition of heat; examples of heat/work interaction in systems- First Law for Cyclic & Non-cyclic processes; Concept of total energy E; Demonstration that E is a property; Various modes of energy, Internal energy and Enthalpy.

FIRST AND SECOND LAW OF THERMODYNAMICS

First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume. Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale

CLAUSIUS INEQUALITY, IRREVERSIBILITY AND AVAILABILITY

Clausius inequality; Definition of entropy S; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in T-s coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for systems and Control volumes undergoing different processes, Lost work. Second law analysis for a control volume. Energy balance equation and Exergy analysis.

PURE SUBSTANCE AND GAS MIXTURES

Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart

THERMODYNAMIC CYCLES AND RELATIONS

Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle. Thermodynamic relations: Thermodynamic potentials, thermodynamic gradients, general thermodynamics relations, entropy (Tds) equations, equations for internal energy and enthalpy, equation of state, coefficient of expansion and compressibility, specific heats, Joule Thomson coefficient, Clausius—Claperyon equation, Maxwell's relations.

LIST OF EXPERIMENTS

IC Engine Valve Timing diagrams.

IC Engine Port Timing diagrams.

Determination of Flash Point and Fire Point of Various fuels / Lubricant

Determination of Viscosity of Various fuels / Lubricant

Actual P-V diagrams of IC engines.

Determination of Calorific value of liquid fuel

Text Books

- 1. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 2. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

Alternative NPTEL/SWAYAM Course

=======				
	NPTEL /SWAYAM Course			
S.No	Name	Instructor	Host Institution	Duration
1	Basic Thermodynamics	Prof. Suman Chakraborty	IIT Kharagpur	12 weeks
Course	Designers			

			Department/	
S.No	Faculty Name	Designation	Nameof the College	Email id
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

	Category	L	Т	P	Credit
THERMAL ENGINEERING					
((Theory and Practicals)	CC	2	1	2	4

This course imparts understanding about the power generation using heat energy conversion and makes an attempt to be conversant with the equipment's used in the process. It helps in understanding the thermodynamic concepts, the construction and the working principles of various engineering devices

Prerequisite

Engineering Thermodynamics

Course Objectives

- 1 To learn about of reacting systems and heating value of fuels.
- 2 To learn about gas and vapor cycles and their first law and second law efficiencies.
- 3 To understand about the properties of dry and wet air and the principles of psychrometry
- 4 To learn about gas dynamics of air flow and steam through nozzles.
 - To learn the about reciprocating compressors with and without intercooling and performance of steam turbines.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To assess the basic of reacting systems and heating value of fuels	Understand
CO2.	Apply the gas and vapor cycles and their first law and second law efficiencies	Apply
CO3.	Apply the properties of dry and wet air and the principles of psychrometry	Apply
CO4.	Apply the concept of gas dynamics of air flow and steam through nozzles	Apply
	Analyze the reciprocating compressors with and without intercooling and	
CO5.	performance of steam turbines	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L			-	S	S	S			S	M	-
CO2	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO3	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO4	S	M	L	L		-	-	S	S	S	-	-	S	M	-
CO5	S	M	L	L		-	-	S	S	S	-	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO SOLID, LIQUID AND GASEOUS FUELS

Introduction to solid, liquid and gaseous fuels—Stoichiometry, exhaust gas analysis- First law analysis of combustion reactions- Heat calculations using enthalpy tables- Adiabatic flame temperature-Chemical equilibrium and equilibrium composition calculations using free energy.

GAS AND VAPOR CYCLES

Vapor power cycles Rankine cycle with superheat, reheat and regeneration, exergy analysis. Super-critical and ultra super-critical Rankine cycle- Gas power cycles, Air standard Otto, Diesel and Dual cycles-Air standard Brayton cycle, effect of reheat, regeneration and intercooling- Combined gas and vapor power cycles- Vapor compression refrigeration cycles, refrigerants and their properties.

PROPERTIES OF DRY AND WET AIR

Properties of dry and wet air, use of pschyrometric chart, processes involving heating/cooling and humidification/dehumidification, dew point.

COMPRESSIBLE FLOW

Basics of compressible flow. Stagnation properties, Isentropic flow of a perfect gas through a nozzle, choked flow, subsonic and supersonic flows- normal shocks- use of ideal gas tables for isentropic flow and normal shock flow- Flow of steam and refrigerant through nozzle, supersaturation-compressible flow in diffusers, efficiency of nozzle and diffuser.

RECIPROCATING COMPRESSORS AND STEAM TURBINE

Reciprocating compressors, staging of reciprocating compressors, optimal stage pressure ratio, effect of intercooling, minimum work for multistage reciprocating compressors.

Analysis of steam turbines, velocity and pressure compounding of steam turbines

LIST OF EXPERIMENTS

- 1. Load Test on a four stroke Single cylinder diesel engine.
- 2. Load Test on a four stroke twin cylinder diesel engine.
- 3. Performance and Emission test of a four stroke multi-cylinder Petrol engine.
- 4. Performance and Emission test of a four stroke multi-cylinder Diesel engine.
- 5. Morse Test on a multi-cylinder petrol engine.
- 6. Performance test of a bio-fuel on a variable compression ratio engine.

Text Books

- 1. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 2. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

Alternative NPTEL/SWAYAM Course - Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

DESIGN OF MACHINE	Category	L	T	P	Credit
ELEMENTS	CC	2	1	0	3

Students will be able to demonstrate the fundamentals of stress analysis, theories of failure and material science in the design of machine components. Students will be able to make proper assumptions with respect to material, factor of safety, static and dynamic loads for various machine components. Enable the students to have high ethical standards in terms of team work to be a good design engineer

Prerequisite

NIL

Course Objectives

- 1 Develop an ability to apply knowledge of mechanics and materials.
 - 2 Develop an ability to design various machine elements with practical constraints by applying standard design procedures.
 - 3 Utilize the codes and standard design principles.
 - 4 Apply Design principles and validation for critical safety analysis.
- 5 Understand the background in material failure through the study of theories of failure.

Course Outcomes: On the successful completion of the course, students will be able to

	Explain the influence of steady and variable stresses in machine component	
CO1.	design.	Understand
CO2.	Apply the design principles in shafts and couplings for defined constraints.	Apply
CO3.	Apply the design principles in bolted and welded joints for defined constraints.	Apply
CO3.		Арргу
CO4.	Apply the design principles in mechanical springs for steady and varying load conditions	Apply
COF	Annhadha darian minainlar in bassina and Glambad for defined assessment	A
CO5.	Apply the design principles in bearing and flywheel for defined constraints	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	L	-		-	M	L	L			S	-	-
CO2	S	S	S	M	-	-	-	M	L	L	-	-	S	-	-
CO3	S	S	S	M	-	-	-	M	L	L	-	-	S	-	-
CO4	S	S	S	M	-	•	-	M	L	L	-	·	S	•	-
CO5	S	S	S	М	-	-	-	М	L	L	-	-	S	-	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO DESIGN PROCESS WITH VARIOUS STRESS COMBINATIONS

Introduction to the design process - factor influencing machine design - Direct - Bending and torsional stress equations -Impact and shock loading-Calculation of principal stresses for various load combinations - Factor of safety-theories of failure-stress concentration -design for variable loading - Soderberg - Goodman and Gerber relations

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength – rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF BOLTED AND WELDED JOINTS

Threaded fasteners – Design of bolted joints – Design of welded Joints for pressure vessels and structures. Theory of Bolted joints

DESIGN OF SPRINGS

Design of helical, leaf and torsional springs under constant loads and varying loads.

DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types – Design of journal bearings calculation of bearing dimensions – Design of flywheels involving stresses in rim and arm.

Text Books

- 1. Design of Machine Elements-V.B.Bhandari
- 2. Mechanical Engineering Design: Joseph E Shigley and Charles R. Mischke

Reference Books

- 1. Machine Design: Robert L. Norton, Pearson Education, 2001
- 2. Design of Machine Elements-M.F. Spotts, T.E. Shoup, pearson Edn, 2006.
- 3. Fundamentals of Machine component Design-Robert C. Juvinall, Wiley India Pvt.Ltd,3rdEdn,2007.
- 4. Design Data PSG College of Technology, DPV Printers, Coimbatore, 2012.
- 5. P.C. Sharma &D.K. Aggarwal, A Text Book of Machine Design, S.K. Kataria & Sons, New Delhi, 12th edition, 2012.

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

S.No	Faculty Name	Designation	Department/Name of the College	Email id		
1	R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in		
2	J. Senthil	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in		

ENGINEERING	Category	L	Т	P	Credit
METROLOGY AND MEASUREMENTS					
(Theory and Practicals)	CC	3	0	2	4

The aim of the subject is to provide basic knowledge in instrumentation and measurements. Familiarization with basic concepts and different instrumentation and measurement strategies being used in practice.

Prerequisite

NIL

Course Objectives

- 1 To apply the fundamentals of basic engineering measurement system.
 - To understand the various instruments used for linear, angular measurement, form
 - 2 measurement and surface finish.
 - To apply the knowledge of different measuring instruments like linear, angular
 - 3 measurement, form measurement and surface finish.
 - To understand the principle, concepts, applications and advancements of temperature, pressure
 - 4 and flow measurements.
 - To use information to classifications, working and processes of optical measuring
 - 5 instruments, also to acquire the data and store in computer.

Course Outcomes: On the successful completion of the course, students will be able to

	Explain the sensitivity of the instruments by evaluating the error in	
CO	1. measurements	Understand
СО	Discuss the working principle and usage of various instruments used for linear, angular measurement, form measurement and surface finish	Understand
	Demonstrate the various setups used for measuring linear,	
CO	3. angular measurement, form measurement and surface finish	Apply
	Determine the appropriate instruments for temperature, pressure and	
CO	4. flow measurements	Apply
	Explain the application oriented knowledge in the use of	
CO	5. optical measuring instruments	Understand

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	-	-	-	-	-	-	-	٠	L	•	-
CO2	S	S	M	L	-	-	-	-	-	-	-	-	L	-	-
CO3	S	L	M	L	-	-	-	-	-	-	-	-	L	-	-
CO4	S	S	M	L	-	-	-	-	-	-	-	•	L	•	-
CO5	S	М	S	L	-	-	-	-	-	-	-	-	L	-	_

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC PRINCIPLES & LINEAR / ANGULAR MEASUREMENT

Basic principles of measurement - Generalized measuring system - Characteristics of measuring instruments, Static and Dynamic characteristics - Precision, Accuracy, Sensitivity, Repeatability, Reproducibility, Linearity, Errors —sources of error, classification and elimination of error-Calibration. Linear and angular Measurements: Vernier — Micrometer - Slip gauges and classification - Optical flats - Limit gauges - Comparators: Mechanical - Pneumatic and Electrical types — applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker — Taper measurements.

DISPLACEMENT, SPEED & ACCELERATION / VIBRATIONMEASUREMENT

Measurement of displacement: Theory and construction of various transducers to measure displacement - LVDT, piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration procedures.

Measurement of speed: Mechanical tachometers, electrical tachometers, strobe Objective, noncontact type of tachometer.

Measurement of acceleration and vibration: Piezoelectric Accelerometer, Seismic Accelerometer, Vibrometer.

TEMPERATURE, PRESSURE AND FLOW MEASUREMENT

Measurement of Temperature: Classification, ranges, various principles of measurement, expansion, electrical resitance, Thermistor, Thermo couples, Pyrometers, temperature Indicators.

Measurement of pressure: Units, classification, different principles used, piston Digital pressure gauges, Manometers, bourdon, pressure gauges, bellows diaphragm gauges. Low pressure measurement, thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge, Knudsen gauge. Calibration of pressure gauges. Measurement of level: Direct method – indirect methods– capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators Measurement of flow: Orifice meter, Venturi meter, Rotameter, magnetic, ultrasonic, turbine flow meter, Anemometers - hotwire anemometer, Laser Doppler anemometer (LDA).

FORCE, TORQUE, & STRAIN MEASUREMENTS

Measurement of force& torque: Load cells, Dynamometers: Eddy current dynamometer, Cantilever beams, proving rings, differential transformers.

Measurement of torque: Torsion bar dynamometer, servo controlled dynamometer, absorption dynamometers. Power Measurements.

Strain Measurements: types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, Strain gauge calibration.

FORM MEASUREMENTS AND OPTICAL MEASUREMENTS

Form measurements: Measurement of screw threads - thread gauges - Floating carriage micrometer-measurement of gears-tooth thickness-constant chord and base tangent method- Gleason gear testing machine – radius measurements-surface finish - Straightness - Flatness and roundness measurements. Optical measurements: Optical Micro Objective, interference micro Objective, tool makers micro Objective, profile projector, vision Systems, laser interferometer – linear and angular measurements.

LIST OF EXPERIMENTS

- 1. Angular Measurements using Bevel Protector and Sine Bar
- 2. Measurement of linear parameters using precision measuring instruments like micrometer, Vernier caliper and Vernier height gauge.
- 3. Flow Measurement using a Rotameter.
- 4. Fundamental dimension measurement of a gear using a contour projector.
- 5. Measurement of Displacement using Linear Variable Differential Transducer
- 6. Measurement of speed of Motor using Stroboscope
- 7. Measurement of cutting forces using Lathe Tool Dynamometer

Text Books

- 1. Kumar D.S., Mechanical Measurements and Control, Tata McGraw Hill.
- 2. Jain R.K., Engineering Metrology, Khanna Publishers, 1994.
- 3. GuptaS.C.- "Engineering Metrology"- Dhanpatrai Publications- 2018.
- 4. Metrology and Measurements lab Manual

Reference Books

- 1. Alan S. Morris- "The Essence of Measurement"- Prentice Hall of India- 1997
- 2. Jayal A.K- "Instrumentation and Mechanical Measurements"- Galgotia Publications 2000
- 3. Beckwith T.G- and N. Lewis Buck- "Mechanical Measurements"- Addison Wesley- 1999.
- 4. Donald D Eckman-"Industrial Instrumentation"- Wiley Eastern-1985.

Alterna	Alternative NPTEL/SWAYAM Course										
S.No	NPTEL /SWAYAM	Course Name		Instructor	Host Institution	Duration					
			Pro	f. J. Ramkumar,							
1	Engineering Metrolog	y	Pro	f. Amandeep Singh	IIT Kanpur	12 Weeks					
Course Designers											
				Department/Nam	e						
S.No	Faculty Name	Designation		of the College	Email id						
1	S.Duraithilagar	Associate Profes	sor	MECH/VMKVEC	duraithilagar@vi	nkvec.edu.in					
2	R.Mahesh	Assistant Profess	sor	MECH/AVIT	mahesh@avit.ac.	in					

AUTOMOBILE	Category	L	Т	P	Credit
ENGINEERING (Theory and					
Practicals)	CC	3	0	2	4

Automobile Engineering is a blend of both practical and theories, course the students will be able to learn the layout and arrangement of principal parts of an automobile, Engine Management and Emission Control System, working of Transmission, Suspension, Steering and brake systems along with the Advance in Automobile Engineering.

Prerequisite

NIL

Course Objectives

- To impart knowledge on the constructional details and principle of operation of various Automobile components.
 - To analyzing the various types Engine Auxiliary and Engine management systems.
- 3 To analyzing the various types of transmission systems for a vehicle.
- 4 To analyzing the working parameters of various braking and suspension system in a Vehicle.
- 5 To Analyzing the Various advance in automotive Engineering.

Course Outcomes: On the successful completion of the course, students will be able to

	Recognize the various parts of the automobile and their functions and	
CO1.	materials.	Apply
	Analyzing the various types Engine Auxiliary and Engine	
CO2.	managementsystems.	Analyze
CO3.	Analyzing the various types of transmission systems for a vehicle	Analyze
	Analyzing the working parameters of various braking and suspension	
	system in a	
CO4.	vehicle	Analyze
CO5.	Analyzing the Various advance in automotive Engineering.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-		-	-	-	-			S	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-		S	-	-
CO3	S	M	M	M	-	-	-	-	-	-	-		S	-	-
CO4	S	M	M	M	-	-	-	-	-	-	-		S	-	-
CO5	S	M	M	M	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

VEHICLE STRUCTURE AND ENGINES

Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics, IC engines —components-functions and materials, variable valve timing (VVT).

ENGINE MANAGEMENT & EMISSION CONTROL SYSTEMS

Engine auxiliary systems, electronic injection for SI and CI engines, unit injector system, rotary distributor type and common rail direct injection system, transistor based coil ignition & capacitive discharge ignition systems, turbo chargers (WGT, VGT), Engine emission control by 3-way catalytic converter system, Emission norms (Euro & BS).

TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, overdrive, transfer box, fluid flywheel – propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive

STEERING, BRAKING AND SUSPENSION SYSTEMS

Steering Geometry, Types of steering Gearbox – Power Steering, Front Axle, Stub Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, ABS and Traction Control.

ADVANCES IN AUTOMOBILE ENGINEERING

Passenger comfort - Safety and security - HVAC - Seat belts - Air bags - Automotive Electronics - Electronic Control Unit (ECU). Active Suspension System (ASS) - Electronic Brake Distribution (EBD) - Electronic Stability Program (ESP) Traction Control System (TCS) - Global Positioning System (GPS) - Electric - Hybrid vehicle.

LIST OF EXPERIMENTS

- 1. Construction Mechanism of Petrol and Diesel engine (Four stroke and Two Stoke)
- 2. Construction Mechanism of Clutch Assembly
- 3. Construction Mechanism of Sliding mesh, Constant mesh and Synchromesh gear boxes
- 4. Construction Mechanism of Differential and Rear axles assembly
- 5. Construction Mechanism of Hydraulic brake, Disc brake and Air brake systems
- 6. Construction Mechanism of Suspension and Steering systems
- 7. Construction Mechanism of Hybrid and Electric vehicles

Text Books

- 1. Kirpal Singh, "Automobile Engineering Vol 1 & 2", Standard Publishers, Seventh Edition, New Delhi R.B. Gupta- "Automobile Engineering"- Satya Prakashan.
- 2. Jain K.K. and Asthana R.B., Automobile Engineering, Tata McGraw Hill, New Delhi.
- 3. Gill P.S., "A Textbook of Automobile Engineering Vol. I, II and III", S.K.Kataria and Sons, 2ndEdition.

Reference Books

- 1. William Crouse- "Automobile Engineering Series "- McGraw-Hill
- 2. Newton and Steeds- "Motor Vehicles"- ELBS
- 3. Duffy Smith- "Auto Fuel Systems"- The Good Heat Willcox Company Inc.
- 4. "Hybrid and Electric Vehicles"-CRC Press Taylor and Francis Group.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Fundamentals of Automotive Systems	Prof C.S. Shankar Ram	IIT Madras	12 Weeks

			Department/Name of	
S.No	Faculty Name	Designation	the College	Email id
1	Т. Raja	Associate Professor	MECH/VMKVEC	rajat@vmkvec.edu.in
2	N. Shivakumar	Assistant Professor	MECH/AVIT	shivakumar@avit.ac.in

	OMPUTER	Category	L	Т	P	Credit
l '	TEGRATED ANUFACTURING					
(T.	heory and Practicals)	CC	3	0	2	4

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, fundamentals of CNC machines, programming of CNC machines, group technology, computer aided process planning techniques, shop floor control and flexible manufacturing systems. It exposes the students to various current trends followed in the industries

Prerequisite

NIL

- 1 Demonstrate basics of CAD/CAM/CIM concepts.
 - 2 To apply geometric modelling techniques and various graphics standards in CAD.
 - 3 Illustrate with tooling and fixtures in CNC programming and machining.
 - 4 Demonstrate part programs and group technology techniques.
 - 5 Discuss latest advances in the manufacturing perspectives.

Course Outcomes: On the successful completion of the course, students will be able to

CO1	Understand basic concept of CAD/CAM/CIM	Understand
CO2	Utilize CAD standards for geometrical modelling. Demonstrate Solid modelling techniques.	Apply
CO3	Interpret and demonstrate complex programs for CNC machining centers	Apply
CO4	Apply group technology concept in manufacturing product. Make use of FEA concept for analysis.	Apply
CO5	Explain FMS and CIM wheel for manufacturing industry, discuss the latest advances in the manufacturing perspectives.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

11	0		0					,							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-	-	•	-	•	-	-	L	M	-	-
CO2	S	M	M	M	-	-	•	-	•	-	-	L	M	•	-
CO3	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO4	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO5	S	M	M	M		-	-	-	-	-	-	L	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Definition and scope of CAD/CAM- Computers in industrial manufacturing, design process-Computer Aided Design (CAD)-Computer Aided Manufacturing (CAM)-Computer Integrated Manufacturing (CIM) - Introduction to Computer graphics -Raster scan graphics-Co-ordinate systems.

GRAPHICS AND COMPUTING STANDARDS

Data base for graphic modeling-transformation geometry-3D transformations—Clipping-hidden line removal-Colour-shading-Standardization in graphics- Open GL Data Exchange standards—IGES, STEP - Graphic Kernal system (GKS). Geometric construction methods-Constraint based modeling- Wireframe, Surface and Solid—Parametric representation of curves, solids & surfaces.

CNC MACHINE TOOLS

Introduction to NC, CNC, DNC - Manual part Programming – Computer Assisted Part Programming – Examples using NC codes- Adaptive Control – Canned cycles and subroutines – CAD/ CAM approach to NC part programming – APT language, machining from 3D models.

GROUP TECHNOLOGY & FEA CONCEPTS

Group technology-coding-Production flow analysis-computer part- programming-CAPP implementation techniques. Nodes -Meshing – Pre and Post processing – Modal analysis – Stress analysis – Steady state and Transient analysis.

AUTOMATED MANUFACTURING SYSTEMS

Flexible Manufacturing systems (FMS) – the FMS concepts – transfer systems – head changing FMS – Introduction to Rapid prototyping, Knowledge Based Engineering, Virtual Reality, Augmented Reality –automated guided vehicle-Robots-automated storage and retrieval systems - computer aided quality control-CMM-Non contact inspection methods.

LIST OF EXPERIMENTS

- 1. 2D Geometry Splines
- 2. Surface Modelling –NURBS
- 3. Solid Modelling-CSG, Brep.
- 4. Preparing solid models for analysis-Neutral files
- 5. Real time component analysis-STRESS, STRAIN Analysis.
- 6. Model analysis of different structures.
- 7. Tolerance analysis of any mechanical component.
- 8. CNC Milling program involving linear motion and circular interpolation
- 9. CNC Milling program involving contour motion and canned cycles
- 10. CNC Milling program involving Pocket milling.
- 11. CNC Turning program involving turning and facing
- 12. CNC Turning program involving Step turning, Taper turning and Grooving
- 13. CNC Turning program involving Fixed/Canned cycles& Thread cutting cycles
- 14. Diagnosis and trouble shooting in CNC machine
- 15. Route sheet generation using CAM software.
- 16. Generation of CNC programming and machining using Master Cam/Edge Cam.

Text Books

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated
- 2. Radhakrishnan P, Subramanyan.S. andRaju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.
- 3. P.N.Rao, CAD/CAM: Principles and Applications-3rd Edition, Tata McGraw Hill, India, 2010.

Reference Books

- 1. Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill.
- 2. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International
- 3. David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.
- 4. Roger Hanman "Computer Integrated Manufacturing", Addison Wesley
- 5. Viswanathan.N, Narahari.Y "Performance Modeling& Automated Manufacturing systems" Prentice hall of indiapvt. Ltd.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
		Prof. J. Ramkumar,		
1	Computer Integrated Manufacturing	Prof. Amandeep Singh	IIT Kanpur	12 weeks

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.L.Prabhu	Associate Professor	MECH/ AVIT	prabhu@avit.ac.in
		Assistant Professor-		
2	S.Prakash	II	MECH/ AVIT	prakash@avit.ac.in
3	M.Saravanan	Associate Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in

DESIGN OF TRANSMISSION	Category	L	T	P	Credit
SYSTEMS	CC	2	1	0	3

Design of Transmission System course is concerned with design of mechanical transmission elements for engineering applications. In industries motors and turbines use energy to produce rotational mechanical motion. In order to harness this motion to perform useful work, there must be a way to transmit it to other components and machines. Three common methods of accomplishing this include gears, chain drives, and belt drives. The Mechanical Transmission Systems subject area covers these types of transmission systems, including specific applications, how each works.

Prerequisite

DESIGN OF MACHINE ELEMENTS

Course	O	biec	tives
COGIDE	$\overline{}$	~., ⊂ ⊂	

- 1 To interpret the procedure for power transmission by belt, ropes and chain drives.
- 2 To design the spur and helical gears.
- 3 To design the bevel and worm gears.
- 4 To explore the importance of gear box and design of gear box.
- 5 To assess the design procedure for clutches and brakes.

Course Outcomes: On the successful completion of the course, students will be able to

	Design a suitable flat belt, V-belt, ropes and chain drive for specified loading	
CO1.	condition by using pre-defined set of values and procedures.	Apply
	Determine the number of teeth, bending strength and wear strength for given spur	
	gear, helical, bevel gear and worm gear pair by using pre-defined set of values and	
CO2.	procedures.	Apply
	Determine the number of teeth, bending strength and wear strength for given bevel	
CO3.	gear and worm gear pair by using pre-defined set of values and procedures.	Analyze
	Design the gearbox and gear shaft dimensions for given speed conditions byusing	
CO4.	pre-defined set of values and procedures.	Apply
	Design of brakes by using pre-defined set of values and procedures and single plate	
CO5.	clutch and multiple plate clutch for given specified loading conditions.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	M	-	-	-	-	-	-	-		S	-	-
CO2	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-
CO3	M	S	S	M	-	-	-	-	-	-	-	-	S	-	-
CO4	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-
CO5	S	M	S	M	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

DESIGN OF FLEXIBLE DRIVES

Types and configuration of belt drive-slip-initial tension-centrifugal tension-selection of flat belt drive, Selection of V-belt drives- problems-based on basic equations. Types of chain-factor of safety-selection of chain drives. Design of Sprockets

DESIGN OF SPUR GEAR AND HELICAL GEARS

Gear nomenclature - Spur gears - Stresses induced in gears - gear tooth failure - Lewis bending equations, Calculation of appropriate safety factors and power rating - force analysis, Design of spur gears -helical

DESIGN OF BEVEL AND WORM GEARS

Gear nomenclature - Stresses induced in gears - gear tooth failure - Lewis bending equations - Calculation of appropriate safety factors and power rating - force analysis - Design of bevel and worm gears

DESIGN OF GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - peed reducer unit

DESIGN OF CLUTCHES AND BRAKES

Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes – external shoe brakes – Internal expanding shoe brake.

Text Books

- 1. Joseoh Edward Shigley, Charles R Misucke, Mechanical Engineering Design, Tata Mc Graw Hill.
- 2. Prabhu. T.J. -Design of Transmission Elements- Mani Offset- Chennai.
- 3. V.B. Bhandari, -Design of Machine Elements, Tata McGraw Hill.

Reference Books

- 1. Md.Jalaludeen- Machine Design- Anuradha Publicatiions, Chennai
- 2. Maitra G.M. Prasad L.V. - Hand book of Mechanical Design- II Edition- Tata McGraw
- 3. Sundarajamoorthy T.V. and Shanmugam. N, -Machine Design, Anuradha Publications
- 4. Design Data, PSG College of Technology, Coimbatore.

Alternative NPTEL/SWAYAM Course

1 11001 110		TIMI Course			
S.No	NPTEL /SWAY	AM Course Name	Instructor	Host Institution	Duration
Course	Designers				
			Department/Name		
S.No	Faculty Name	Designation	of the College	Email id	
1	S.Kalyanakumar	Assistant Professor	MECH/AVIT	kalyanakumar @	avit.ac.in
2	J Satheesbabu	Associate Professor	MECH/VMKVEC	satheesbabu@vm	kvec.edu.in

HEAT AND MASS	Category	L	Т	P	Credit
TRANSFER					
(Theory and					
Practicals)	CC	2	1	2	4

The purpose of this subject is to been able students understood different principles of heat transfer and its Extensive Engineering applications.

Prerequisite

ENGINEERING THERMODYNAMICS

Cour	se Objectives						
	To enable students understand their conduction mechanism in steady state empha	sizing on					
1	application in engineering.						
	To enable students understand their conduction mechanism in unsteady state emp	hasizing on					
2	application in engineering.						
3	To categorize various types of convection and its application.						
4	To assess various concepts of radiation and its applications.						
5	5 To enable students to understand Boiling, Condensation and Various types of Heat Exchangers.						
Course Outcomes: On the successful completion of the course, students will be able to							
COI	To assess the basic elements & various modes of heat transfer Used in	Understand					

	<u> </u>	
CO1.	To assess the basic elements & various modes of heat transfer Used in Engineering applications.	Understand
CO2.	To solve the engineering problems using various methods of Transient heat conduction technologies	Apply
CO3.	To apply the concepts of convection systems in an engineering problem using standard values	Apply
CO4.	To choose the various concepts of radiation based on the requirements for the given problems	Apply
CO5.	To solve the engineering problems using Boiling, Condensation and heat transfer rate of heat exchangers using LMTD and NTU method	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L	-	-	-	S	S	S			S	M	-
CO2	S	M	L	L	-	-	-	S	S	S	•	•	S	M	-
CO3	S	M	L	L	-	-	-	S	S	S		•	S	M	-
CO4	S	M	L	L	-	-	-	S	S	S	•	•	S	M	-
CO5	S	M	L	L	-	-	-	S	S	S			S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO HEAT TRANSFER AND STEADY STATE CONDUCTION

Heat transfer fundamentals; Basic heat transfer mechanisms (conduction, convection and radiation), Conduction -Introduction -Fourier law of conduction- General equation in Cartesian coordinates - One dimensional steady state conduction across Large plane wall, Long cylinder and Sphere- Composite wall – Composite cylinder – Composite sphere, Overall heat transfer coefficients, Critical Radius of insulation, Variable thermal conductivity, conduction with Heat generation, - Fins or extended

surfaces- Pin fins, annular fins, longitudinal fins, fins efficiency and fins effectiveness- Problems.

TRANSIENT HEAT CONDUCTION

Introduction – Lumped system analysis, semi – infinite solids. Transient Heat Conduction in Large Plane Walls, Long cylinders and Spheres. Significance of Biot and Fourier numbers, Transient heat transfer analysis of an infinite slab with specified temperature and connective boundary conditions. - Refrigeration and Freezing of Foods- Problems.

Use of Grover & Heisler charts for solving problems of infinite slabs, cylinders, spheres.

CONVECTION

Introduction – Physical Mechanism on Convection, Classification of Fluid Flows, Significance of non-dimensional numbers, Velocity Boundary Layer, Thermal Boundary Layer, Laminar and Turbulent Flows. External Forced convection – Flow over a Flat plate, cylinder, sphere and Tube Banks. Internal Forced Convection - Flow through pipes – annular spaces and noncircular conducts. Natural convection from vertical, inclined and horizontal surfaces.

RADIATION

Introduction – Thermal Radiation – Black body Radiation – Radiation Intensity- Radioactive Properties – Atmospheric and Solar Radiation – View Factor- Simple Problems- Black surfaces and Grey Surfaces – Net Radiation – Heat Transfer in Two and Three Surface Enclosures- Radiation Shield – Problems – Radiation Exchange with Emitting and Absorbing Gases.

BOILING, CONDENSATION AND HEAT EXCHANGERS

Boiling – Types of Boiling- Problems. Condensation – Types of Condensation- Problems. Heat Exchangers- Types- Overall heat transfer co-efficient- Analysis of Heat Exchangers – LMTD method – Effectiveness - NTU Method – Selection of Heat Exchangers – Problems.

LIST OF EXPERIMENTS

- 1. Determination of Thermal conductivity (Insulating Powder)
- 2. Determination of Emissivity
- 3. Determination of Heat transfer co-efficient through Forced Convection
- 4. Determination of Heat transfer co-efficient through Natural Convection
- 5. Determination of Heat transfer co-efficient of Pin-Fin Apparatus.
- 6.Determination of Stefan Boltzmann's Constant
- 7. Determination of Thermal conductivity (Two Slabs Guarded Hot Plate Method)
- 8. Determination of Effectiveness of a Heat Exchanger by Parallel & Counter Flow
- 9. Determination of Thermal conductivity of the Composite wall.

Text Books

- 1. YUNUS A CENGEL "Heat Transfer"-Tata Mc Graw Hill–New Delhi.
- 2. KOTHANDARAMAN C.P "Fundamentals of Heat and Mass Transfer" New Age International.
- 3. SACHDEV R C "Fundamentals of Engineering Heat and Mass Transfer" New Age International.

Reference Books

- 1. OZISIKM.N- "Heat Transfer"-Tata Mc Graw-Hill Book Co.
- 2. NAGP.K-"Heat Transfer"-Tata Mc Graw-Hill-New Delhi.
- 3. HOLMAN J.P "Heat and Mass Transfer" Tata Mc Graw-Hill.
- 4. INCROPRA and DEWITE, Heat Transfer-John Wiley.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course	Instructor	Host Institution	Duration
	Name			

1 Course	Heat Transfer Designers		Prof. Sur	nando DasGupta	IIT F	Kharagpur	12 weeks
S.No	Faculty Name	Designati	on	Department/Na of the College	ame	Email id	
1	R.Anandan	Associate F	Professor	MECH/VMKVEC		anandan@vm	kvec.edu.in
2	C.Thiagarajan	Associate F	Professor	MECH/AVIT		cthiagarajan@	avit.ac.in

FINITE ELEMENT	Category	L	Т	P	Credit
ANALYSIS (Theory and Practicals)	CC	2	1	2	4

This course provides to learn the basic concepts of finite element analysis (FEA) of solids, structures, fluids and its application in engineering.

Prerequisite

NIL

Course Objectives

- 1 Understand finite element analysis fundamentals and formulations.
 - 2 Study the basics of element properties natural, Triangular & rectangular.
 - 3 Formulation of finite element methods for Two and three-dimensional solids.
 - 4 Formulate the truss, beam and frame problems.
 - 5 Formulation of finite element methods for the analysis of heat transfer in solids.

Course Outcomes: On the successful completion of the course, students will be able to

	<u> </u>	
	To understand the basic concepts of finite element analysis, node and node	
CO1.	numbering methods.	Understand
	Derive the finite element equations for different mechanical elements.	
CO2.	Natural, Triangular & rectangular elements	Apply
	Formulate and solve problems in 2-D& 3-D structural systems of solids	
CO3.	and their structures.	Apply
	Identify the application and characteristics of FEA elements such as bars,	
CO4.	beams, plane and isoparametric elements	Apply
	To be able to conduct engineering analysis of basic heat conduction,	
CO5.	structural mechanics problems use finite element methods.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-	-	-	-	-	-		L	M	-	-
CO2	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO3	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO4	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO5	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO FINITE ELEMENT ANALYSIS

Introduction, Basic Concepts of Finite Element Analysis, Introduction to Elasticity, Steps in Finite Element Analysis. Finite Element Formulation Techniques, Virtual Work and Variational Principle, Galerkin Method, Finite Element Method: Displacement Approach, Stiffness Matrix and Boundary Conditions.

ELEMENT PROPERTIES

Natural Coordinates, Triangular Elements, Rectangular Elements, Lagrange and Serendipity Elements. Solid Elements, Isoparametric Formulation, Stiffness Matrix of Isoparametric Elements, Numerical Integration – one dimensional, Numerical Integration: Two and Three Dimensional, Worked out Examples

FEM FOR TWO- AND THREE-DIMENSIONAL SOLIDS

Constant Strain Triangle, Linear Strain Triangle, Rectangular Elements, Numerical Evaluation of Element Stiffness, Computation of Stresses, Geometric Nonlinearity and Static Condensation, Axisymmetric Element, Finite Element Formulation of Axisymmetric Element, Finite Element Formulation for 3 Dimensional Elements, Worked out Examples

ANALYSIS OF FRAME STRUCTURES

Stiffness of Truss Members, Analysis of Truss, Stiffness of Beam Members, Finite Element Analysis of Continuous Beam, Plane Frame Analysis, Analysis of Grid and Space Frame.

STEADY STATE HEAT TRANSFER ANALYSIS

Basic equations of heat transfer, Axially loaded bar- Heat flow in a bar, Structure of FEA software package. Rate equation: conduction, convection, radiation, energy generated in solid

LIST OF EXPERIMENTS

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axis-symmetry vessels
- 7. Static analysis of two-dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam
- 12. Harmonic analysis of a cantilever beam

Text Books

- 1. Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2. Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

- 1. Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice HallofIndia, 2002.
- 2. Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
- 3. Cook R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., "Concepts and Applications of Finite Element Analysis", 4thEdition, John Wiley & Sons, 2001.
- 4. H. C. Martin and G. F. Carey, Introduction to Finite Element Analysis Theory and Application New York, McGraw-Hill

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Introduction to Finite Element			
1	Analysis	Prof.Nachiketa Tiwari,	IIT Karagpur	12 weeks

S.No	Faculty Name	Designation	Department/Name of the College	Email id
		Assistant Professor		
1	Dr.S.Prakash	Gr II	MECH/ AVIT	prakash@avit.ac.in
2	J.Santhos	Assistant Professor	MECH/VMKVEC	santhos@vmkvec.edu.in

		G	SAS DY	YNAN	IICS .	AND		Cate	gory	L		T	P	Cro	edit
		J	ET PR	OPU	LSIO	N		C	C.	3		1	0	4	1
	Preamble														
	This subject is providing knowledge of insight into the applications of compressible flows and the														
	fundamentals of jet propulsion system. Formulate and solve problems in one -dimensional steady														
	compressible flow including isentropic nozzle flow, constant area flow with friction (Fanno flow) and constant area flow with heat transfer (Rayliegh flow). To enhance the knowledge of determining the														
													ristic me		
		two-dir						•							
Prere	equisit	e													
ENGI	NEER	ING TI	HERM	ODY	NAM	ICS									
Cour	se Ob	ectives													
1	To ur	derstan	d the co	ompre	ssible	flow fu	undan	nentals	S.						
	1 To understand the compressible flow fundamentals.														
2	To an	alyze th	e flow	throug	gh var	iable aı	rea du	icts.							
3	To st	ıdy the	compre	essible	flow	with fri	iction	and he	eat trai	nsfer.					
4	To kr	ow the	applica	ition o	f norn	nal sho	ck in	compr	essible	e flow.					
5	To str	ıdy the a	aircraft	propu	ılsion	system	s and	rocket	t propu	ılsion a	nd its a	pplica	ations.		
Cour	se Ou	tcomes:	On th	e succ	essful	comp	letion	of the	e cour	se, stud	lents w	ill be	able to		
CO1.	Un	derstand	d the ba	asic of	comp	ressibl	e flov	٧.					Understa	and	
CO2.	Kn	ow to so	olve flo	ow thro	ough v	ariable	e area	ducts.					Analyze		
CO3.	Kn	ow the	differer	nces be	etweer	n comp	ressit	ole and	lincon	npressil	ole flow	vs.	Analyze		
CO4.		ve prob											Analyze		
CO5.		derstand pellants		nowled	dge ab	out the	rock	et prop	oulsion	and va	rious		Understa	and	
		ith Pro		ne Ou	tcome	es and l	Progr	amme	e Spec	ific Ou	tcomes	' }			
1,140	<u> </u>	PO	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3

L

L

L

L

C	Ctuomas	M-Medium:	T T ATT
7 -	onons:	wi-wiedium:	L-LOW

CO1

CO2

CO3

CO4

CO5

M

M

S

S

S

L

M

M

S

S

M

L

L

M

S

M

M

M

S

S

M

L

M

M

M

L

L

L

L

L

COMPRESSIBLE FLOW –FUNDAMENTALS

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types ofwaves, Mach cone, Mach angle, effect of Mach number on compressibility.

FLOW THROUGH VARIABLE AREA DUCTS

Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.

FLOW THROUGH CONSTANT AREA DUCTS

Flow in constant area ducts with friction (Fanno flow) -Fanno curves and Fanno flow equation, variation of flow properties, variation of Mach number with duct length.

Flow in constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equation, variation of flow properties, maximum heat transfer.

NORMAL AND OBLIQUE SHOCK

Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock, Prandtl –Meyer equation, impossibility of shock in subsonic flows, flow in convergent and divergent nozzle with shock. Flow with Oblique Shock Fundamental relations, Prandtl's equation, Variation of flow parameters

PROPULSION

Aircraft propulsion –types of jet engines –study of turbojet engine components –diffuser, compressor, combustion chamber, turbine and exhaust systems, performance of turbo jet engines—thrust, thrust power, propulsive and overall efficiencies, thrust augmentation in turbo jet engine, ram jet and pulse jet engines. Rocket propulsion –rocket engines thrust equation –effective jet velocity specific impulse–rocket engine performance, solid and liquid propellants.

Text Books

- Yahya. S.M., Fundamental of compressible flow with Aircraft and Rocket propulsion", New Age International (p) Ltd., New Delhi, 2005.
 - 2 Ganesan. V., "Gas Turbines", Tata McGraw-Hill, New Delhi, 1999.

Reference Books

- 1 Rathakrishnan. E., "Gas Dynamics", Prentice Hall of India, New Delhi, 2001.
- 2 Patrich.H. Oosthvizen, William E. Carscallen, "Compressible fluid flow", McGraw-Hill, 1997.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	P.Sellamuthu	Associate Professor	MECH / VMKVEC	selsrikanth29@gmail.com
2	R.Chandrasekar	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in
3	R. Mahesh	Assistant Professor	MECH / AVIT	mahesh@avit.ac.in

To explain the basic laws of mechanics and forces. To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium CO1. Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions CO2. Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia Apply			EN	GINE	EERI	NG							_			
Preamble This course provides the basic knowledge about the behavior of the bodies which are under static and dynamic conditions. Prerequisite VIL Course Objectives 1 To explain the basic laws of mechanics and forces. To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium. CO1. Identify the engineering problems using the concept of static equilibrium. CO2. and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia. CO3. Solve problems involving frictional phenomena. CO4. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO3. Po1. Po2. Po3. Po4. Po5. Po6. Po7. Po8. Po9. Po9. Po9. Po9. Po91. Po92. PS01. PS02. PS03. CO4. S. M. M. M. M. C. L. C.									Ca							
This course provides the basic knowledge about the behavior of the bodies which are under static and dynamic conditions. Prerequisite **To explain the basic laws of mechanics and forces.** To explain the basic laws of mechanics and forces. To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. **Course** Outcomes:** On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium CO2. and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of Apply CO3. inertia CO4. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Apply **CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L L L L L L L L L L L L L			(Sta	atics a	andDy	ynam	ics)			CC		2	1	0	3	3
Prerequisite Situation To explain the basic laws of mechanics and forces. To esplain the basic laws of mechanics and forces. To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions CO2. Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems involving frictional phenomena. Apply CO4. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Apaping with Programme Outcomes and Programme Specific Outcomes CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L - L L		-		41a a 1a	a a i a 1 u	1 .	. d	la 0.114	41aa 1aa	م المحمدات	of 41s	ما الما الما			da a4a4	:_
To explain the basic laws of mechanics and forces.		-			asic k	nowie	eage a	ibout	ine be	enavio	r or un	e boaie	es which	are un	der stat	10
Course Objectives 1 To explain the basic laws of mechanics and forces. 2 To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. 3 To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. 4 To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics of particles. 5 To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium CO1. Identify the engineering problems using the concept of static equilibrium in two dimension and apply various conditions CO2. and apply various conditions CO3. Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems involving frictional phenomena. CO4. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO7 S S S S S S S S S S S S S S S S S S S			marti	ons.												
To explain the basic laws of mechanics and forces. To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium CO1. Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems involving frictional phenomena. Apply CO4. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Apply CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L L L L L L L L L L L L L	NIL															
To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems involving frictional phenomena. Apply Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Analyze Analyze CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L L L L L L L L L L L L L	Course	Object	tives													
To relate the basic concepts and application of rigid bodies under equilibrium in two dimension. To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To raclculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Apply Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO3 S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L L - L - D D D PO10 PO11 PO12 PS01 PS02 PS03 CO2 S L L M J L L - D D D D D D D D D D D D D D D D D	1 T	o expla	ain the	e basi	c laws	of m	echan	ics an	d for	ces.						
To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections. To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems involving frictional phenomena. Apply Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Apply Apply Apply Mapping with Programme Outcomes and Programme Specific Outcomes CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L L L L L L L L L L L L L											igid b	odies	under e	equilibr	ium in	two
To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to	2 d	imensi	on.													
To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics. To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to Identify the engineering problems using the concept of static equilibrium CO2. Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. Solve problems involving frictional phenomena. Apply Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO3. Po1 Po2 Po3 Po4 Po5 Po6 Po7 Po8 Po9 Po10 Po11 Po12 Ps01 Ps02 Ps03 CO1 M L L L L L L L L L L L L L L L L L L										aces a	nd to	find th	ne Centr	oid and	d mome	ent of
To calculate and categorize of problems in the area of dynamics of particles. Course Outcomes: On the successful completion of the course, students will be able to CO1. Identify the engineering problems using the concept of static equilibrium CO2. Identify the engineering problems using the concept of static equilibrium Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. inertia CO4. Solve problems in volving frictional phenomena. Apply CO5. equilibrium and analyze the numerical results Analyze Apping with Programme Outcomes and Programme Specific Outcomes CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 M L L L L L L L - L L L L										nd Ri	gid bo	dy dyn	amics b	y unde	rstandir	ng the
CO1. Identify the engineering problems using the concept of static equilibrium CO2. Identify the engineering problems using the concept of static equilibrium CO3. Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions CO3. Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO4. Solve problems involving frictional phenomena. CO5. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L - L L	4 b	asic co	ncept	s of F	riction	n and	Rigid	body	dynai	mics.						
CO1. Identify the engineering problems using the concept of static equilibrium CO2. Identify the engineering problems using the concept of static equilibrium CO3. Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions CO3. Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO4. Solve problems involving frictional phenomena. CO5. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L L L - L L	$\begin{bmatrix} 5 \end{bmatrix}_{T}$	o calcu	ılate a	ınd ca	tegori	ze of	proble	ems ir	n the a	area of	f dynai	nics of	f particle	es.		
Identify the engineering problems using the concept of static equilibrium Understand	,														4.0	
CO1. equilibrium Understand CO2. Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Apply CO2. Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia Apply CO3. Solve problems involving frictional phenomena. Apply CO4. Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO3 PO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L - - - - L - - CO3 S M M M - L - <t< td=""><td>Course</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>its will</td><td>be able</td><td>το</td><td></td></t<>	Course	1											its will	be able	το	
Solve problems of rigid bodies under equilibrium in two dimension and apply various conditions Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia CO3. inertia CO4. Solve problems involving frictional phenomena. Apply Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L L - L L L	CO1				neem	ig pro	onems	usin	ig the	conce	ept of s	tatic		Unde	rstand	
Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia Apply	201.													Chac	Bulla	
Determine the Centroid of a line, areas, and volumes, center of mass of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of body and moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of body and moment of inertia of composite areas, mass moment of inertia of composite areas, mass moment of apply and anticepts and anticepts areas, mass moment of apply anticepts areas, mass moment of apply and apply anticepts areas, mass moment of apply and anticepts areas, mass moment of apply anticepts areas, mass areas, mas	G 0.2		-		_			ider e	quilib	rium i	in two	dimen	sion			
CO3. Of body and moment of inertia of composite areas, mass moment of inertia Apply	CO2.	and a	pply v	variou	s con	dition	S							Apply	<i>I</i>	
CO3. inertia Apply CO4. Solve problems in volving frictional phenomena. Apply Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO8 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 P801 P802 P803 CO1 M L L L L - - - - L - - CO2 S L L M - L - - - - - M - - CO3 S M M M - L - - - - - - M - - - - - - - - - - - - - - -		Deter	mine	the C	entroi	d of a	line,	areas,	, and v	volum	es, cer	nter of	mass			
Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results			•	d mor	nent c	of iner	tia of	comp	osite	areas,	mass	momei	nt of			
Solve problems in engineering systems using the concept of dynamic equilibrium and analyze the numerical results	CO3.	inerti	a											Apply	I	
CO5. equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes COs P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 P801 P802 P803 CO1 M L L L L - - - - - L - - - - - L - - - - - L -	CO4.	Solve	prob	lems i	involv	ing fr	riction	al phe	enome	ena.				Apply	I	
CO5. equilibrium and analyze the numerical results Analyze Mapping with Programme Outcomes and Programme Specific Outcomes COs P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 P801 P802 P803 CO1 M L L L L - - - - - L - - - - - L - - - - - L -																
Mapping with Programme Outcomes and Programme Specific Outcomes COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L - - - - - - L - - - - - L - - - - - L -	~~~										oncept	of dyı	namic			
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M L L L - L - - - - - L L - - CO2 S L L M - L - - - - - L - - CO3 S M M M - L - - - - - M - - - CO4 S M M M - L - - - - - - M - - - CO5 S S S S - L - - - - - - - - - - - - <td< td=""><td>CO5.</td><td>equili</td><td>ibriun</td><td>n and</td><td>analyz</td><td>ze the</td><td>nume</td><td>erical</td><td>result</td><td>S</td><td></td><td></td><td></td><td>Analy</td><td>ze</td><td></td></td<>	CO5.	equili	ibriun	n and	analyz	ze the	nume	erical	result	S				Analy	ze	
CO1 M L L L - L - - - - - L - - - - L -	Mappin	g with	Prog	ramn	ne Ou	tcom	es an	d Pro	gram	me S	pecific	Outco	omes	ı	· 1	
CO2 S L L M - L - - - - - L - - - - L - - - - L -	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO2 S L L M - L - - - - - L - - - - L - - - - - L -	GC1		_	,	_		_							,		
CO3 S M M M - L -	COI	M	L	L	L	-	L	-	-	-	-	-	•	L	-	-
CO4 S M M M - L M CO5 S S S S - L S	CO2	S L L M - L											L			
CO4 S M M M - L M CO5 S S S S - L S	CO3	S	M	M	M	-	L	-	-	-	_	-	-	M	-	
CO5 S S S S - L S									_	_	_	-	_		_	_
<u> </u>									I	<u> </u>			<u> </u>	<u> </u>		

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium - Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area the Centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

bodies	8.
Text l	Books
	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II
1	Dynamics, McGraw Hill International Edition, 1995.
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.
Refer	ence Books
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.
2	Irving H. Sharma, Engineering Mechanics - Statics & Dynamics, III Edition, Prentice Hall of India Pvt. Ltd., 1993.
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998

Cours	Course Designers												
S.No	Faculty Name	Designation	Department/Name of the College	Email id									
1	J.Sathees Babu	Associate Professor	MECHVMKVEC	satheesbabu@vmkvec.edu.in									
2	Dr.S.Arunkumar	Associate Professor	MECH/VMKVEC	arunkumar@vmkvec.edu.in									
3	Dr.S.Sangeetha	Associate Professor	MECH/AVIT	sangeethas@avit.ac.in									

PROGRAM ELECTIVE COURSES

								Cate	gory	L		$_{f T}$	P	Cre	dit
				VABL ERGY		URCE	ES	EC-		3		0	0	3	
ncreasi lack ac increase appropr	able so ingly ab cess to es that	ole to n energ are thi ergy to	neet they today reatening day. T	ne need ay. In ng to This is	ls for a additi revers why s	availab ion, lo e the p ustaina	ole, ag cal er progre ible er	reeable nergy ess in nergy,	e, and resour provid the co	affordaces are ing end	ble ene not hi ergy to ion of re	rgy, t by the p	their co also for the the high boor peoplable energ	ne peopl energy le that l	le that price lack
Prereq	uisite														
NIL															
	Object														
	To und							7.							
2	To lear	n the ii	nporta	ince of	wind	energy	<i>/</i> .								
	To kno														
	To know various renewable energy power plants. To learn the necessity of latest and modern energy sources.														
1	Outco			•							ents wil	l be a	ıble to		
CO1.	therr	nal col	lector	S							and so		Apply		
CO2.	To a		wind (data, e	nergy	estima	ation :	and w	ind er	nergy c	onversi	on	Apply		
CO3.	plant	i									and Bio		Apply		
CO4.		pply tl o plant			ergy, C)pen a	nd clo	sed O	TEC (Cycles	and Sn	nall	Apply		
CO5.	_	apply nologie		powe	er gen	eration	, tran	sport,	Fuel	cells a	nd its		Apply		
Mapp	ing wit		1			1			-		1		1 PGO	PGO	TDG.
COs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3
CO1	M	M	M	-	-	-	-	-	-	-	-	-	M	-	_
CO2	S	M	M	-	-	-	-	-	-	-	-	-	M	-	-
CO3	S	M	M	-	-	-	-	-	-	-	-	-	М	-	_
CO4	S	M	M	M	-	-	-	-	-	-	-	-	M	-	-
CO5	S	M	M	M	-	-	-	-	-	-	-	-	M	-	-
S- Stro	ng; M-	Mediu	ım; L-	Low											

SOLAR ENERGY

Solar Radiation – Measurements of solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – solar Cells – PV Systems – PV applications.

WIND ENERGY

Wind Data and Energy Estimation – wind Energy Conversion Systems – Wind Energy-Generators and its performance – Wind Energy Storage – Applications – Hybrid systems.

BIO – ENERGY

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct Combustion – Biomass gasifier – Biogas plant – Digesters – Ethanol production – BioDiesel production and economics.

OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY

Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro plant turbines – Geothermal energy sources- environmental issues.

NEW ENERGY SOURCES

Hydrogen generation, storage, transport and utilization, Applications - power generation- transport – Fuel cells – technologies, types – economics and the power generation.

Text Books

- 1 G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.
- 2 S.P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.

Reference Books

- Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 1996
 - Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986
 - G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002
- 4 L.L. Freris, "Wind Energy Conversion systems", Prentice Hall, UK, 1990.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Raja.s	Assistant Professor	MECH / VMKVEC	rajaslm3@yahoo.co.in
2	R.Mahesh	Assistant Professor -II	MECH / AVIT	mahesh@avit.ac.in

		AD	VAN	CED I	IC.			Cate	egory	L	,	Т	P	Cro	edit	
			GINE					EC-	-PS	3		0	0	3	3	
Pream On con	-	n of tl	his co	urse, t	he stu	dents	woul	d be a	ible to	under	stand t	he op	eration,			
combus	stion, 1	perfor	mance	and e	emissi	ons o	f inter	rnal co	ombus	stion er	ngines.					
Prereq NIL	uisite															
Course	Obje	ctives														
1 '	To study the construction and working of Spark Ignition Engines.															
2	To stu	To study about the Compression Ignition Engines and Turbocharger.														
3	To unc	lerstar	nd the	differ	ent po	ollutai	nts an	d its c	ontro	l techni	ques.					
4	To stu	dy the	differ	ent A	lterna	tive f	uels a	vailab	ole.							
5	To stu	dy the	vario	us rec	ent tr	ends a	dopte	ed in t	he fiel	ld of au	itomob	iles.				
Course	Outc	omes	On t	he su	ccessf	ul co	mplet	ion o	f the o	course,	stude	nts w	ill be ab	le to		
CO1.	Un	dersta	nd the	coml	oustio	n aspo	ects o	f SI E	ngine	S			Underst	and		
CO2.	Un	dersta	nd the	coml	oustio	n aspo	ects o	f CI E	ingine	S			Underst	and		
CO3.		stingui engine		caus	es, eff	ects a	nd co	ntrol	of pol	lutants	from a	ın	Underst	and		
G 0.4						e fuels	s, eng	ine en	nissio	ns, Me	asuring					
CO4.		l Cont				nman	to in 1	Intorn	al Car	mbuatia	on on a		Apply			
CO5.	Inc	lude t	his		ieveic	philei	115 111 1	шисти	ai Coi	mbustio	Jii eligi	nes	Underst	and		
Mappi								l		1		omes		Ī		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3	
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-	
CO2	S	S	M	S	-	-	-	-	-	S	-	-	L	-	-	
CO3	S	L	M		-	-	-	-	-	-	-	-	-			
CO4	S	M	L		-	-	-	-	-	-	-	-	- L -			
CO5	S	S	M	L	-	-	-	-	-	-	-	L	L	-	-	
S- Stro	ng; M-	Mediu	m; L-L	ow												

SPARK IGNITION ENGINES

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection – Stages of combustion – Normal and Abnormal combustion – Knock – Factors affecting knock – Combustion chambers.

COMPRESSION IGNITION ENGINES

Diesel Fuel Injection Systems – Stages of combustion – Knocking – Factors affecting knock – Direct and Indirect injection systems – Combustion chambers – Fuel Spray behaviour – Spray structure and spray penetration – Air motion – Introduction to Turbocharging.

POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission norms and Driving cycles.

ALTERNATIVE FUELS

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel – Properties, Suitability, Merits and Demerits – Engine Modifications.

RECENT TRENDS

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems – Hybrid Electric Vehicles – NOx Adsorbers – Onboard Diagnostics.

Text Books

- Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications, 2002.
 - **2** Ganesan, "Internal Combustion Engines", II Edition, TMH, 2002.

Reference Books

- Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons 2007.
 - Duffy Smith, "Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987. 3. Eric Chowenitz, "Automobile Electronics", SAE Publications, 1995

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
5.110	racuity Name	1	Concge	Eman iu
		Associate		
1	Dr.S.Sangeetha	Professor	MECH/ AVIT	sangeethas@avit.ac.in
		Associate		
2	R.Anandan	Professor	MECH/VMKVEC	anandan@vmkvec.edu.in

	Category	${f L}$	T	P	Credit
INDUSTRIAL TRIBOLOGY	EC-PS	3	0	0	3

Preamble

To present the engineering concepts of friction, its effects and different lubrication theories and types used in industries.

Prerequisite

NIL

Course Objectives

- 1 To understand the concept of tribology.
- 2 To examine the concepts of various types of wear.
- 3 To understand and apply the film lubrication theory.
- 4 To illustrate the various types of lubricants for different applications.
- 5 To demonstrate the various surface engineering concepts and bearing materials.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the concepts of friction, wear and lubrication.	Understand
	Illustrate about the various types of wear, wear mechanism and its	
CO2.	measurements.	Apply
CO3.	Examine the various film lubrication theory.	Apply
CO4.	Illustrate about the various types of lubricants.	Apply
CO5.	Examine various surface modifications and bearing materials.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

T, Lappi	Aupping with 110gramme Outcomes and 110gramme Specific Outcomes														
		PO	PO1	PO1	PO1	PSO	PSO	PSO							
CO	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	M	L	-	-	-	-	-	_	-	_	-	M	1	L
CO2	S	M	L	-	-	L	-	-	-	-	-	_	M	-	L
CO3	S	M	L	-	-	L	_	-	-	-	-	-	M	-	L
CO4	S	S	M	M	-	L	_	-	-	-	-	-	M	-	L
CO5	S	S	S	M	-	L	-	-	-	-	-	-	M	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

SURFACES AND FRICTION

Introduction to the concept of tribology, Tribological problems- Nature of engineering surfaces, Surface topography- Surface profilometer, measurement of surface topography-Contact between surfaces, Sources of sliding Friction- Friction due to ploughing, Friction due to adhesion- Friction characteristics of metals and non-metals -Sources of rolling friction, Stick slip motion -Friction of ceramic materials and polymers- Measurement of friction.

WEAR

Wear and Types of Wear-Simple theory of sliding wear mechanism-Abrasive wear-Adhesive wear-Corrosive wear-Surface fatigue wear situations-Wear of ceramics-Wear of polymers-Wear measurements.

FILM LUBRICATION THEORY

Coefficient of viscosity, Fluid film in simple shear-Viscous flow between very close parallel plates:Tutorials-Lubricant supply, Lubricant flow rate-Cold jacking,Couette flow-Cavitations, Film rupture, oil whirl-Shear stress variation within the film-Lubrication theory by Osborne Reynolds: Tutorials-Pressure fields for full sommerfeld, Half sommerfeld-Reynolds boundary conditions.

LUBRICANTS AND LUBRICATION TYPES

J.Satheesbabu

Types of Lubricants-Properties of Lubricants-Testing methods-Hydrodynamic Lubrication-Elasto-hydrodynamic Lubrication-Hydrostatic lubrication

SURFACE ENGINEERING AND MATERIALS FOR BEARINGS

Classification of Surface modifications and Surface coatings-Surface modifications, Transformation hardening-Surface modifications, surface fusion-Thermo chemical Processes-Surface coatings -Materials for rolling element bearings-Materials for fluid film bearings-Materials for marginally lubricated and dry bearings.

9 0 0 11112	50 1:140011410 101 11414 111111	0000111180 1110000110	is for marginary rectived a	and any sournings.								
Text B	ooks											
1	Bearing Tribology: priniciples and applications.											
2	Williams.J.A, "Engineering Tribology", Oxford University Press.											
	GwidonStachowiak, An-	drew W Batchelo	r., "Engineering tribology",	Elsevier Butterworth –Heinemann,								
3	USA.											
Refere	nce Books											
	Industrial Tribology: Tri	bosystems, Fricti	on, Wear and Surface Engir	neering, Lubrication Hardcover,								
1	by Theo Mang, Kirsten	Bobzin, Thorsten	Bartels									
2	Cameron.A, "Basic Lub	rication Theory",	Longman, U.K.									
		-										
3	Neale.M.J. (Editor), "Tribology Handbook", Newnes Butter worth, Heinemann, U.K.											
Course	rse Designers											
			Department/Name of									
S.No	Faculty Name	Designation	the College	Email id								
1	M.Saravanan	Asst Prof	MECH./ AVIT	sarayanan@ayit.ac.in								

MECH./ VMKVEC

Asso Prof

satheesbabu@vmkvec.edu.in

		T.F	ZAN N	/ANI	FACT	ruru	NG		C	Category	y L	T	P	Cred	it
			STE		TACI	UKI	.10]	EC-PS	3	0	0	3	
Pream l This co		ovides	basic	know	ledge i	n vari	ous to	ols and	d techi	niques in	n lean r	nanufa	cturing	systems.	
Prerequ	uisite														
NIL															
Course	Objec	tives													
1	To gai	n the k	nowle	edge ar	nd und	erstan	ding tl	he basi	ic cond	cepts of	lean m	anufac	turing p	rocess.	
2	To und	lerstan	d the	variou	s quali	ty imp	roven	nent m	ethods	s in lean	manuf	acturir	ıg.		
3	To lear	rn the l	hasic d	concer	nts of I	IT and	1 VSM	ſ							
	To ana								<u> </u>						
· ·				•		•				and sys		•			
						_				se, stud				TT 1	1
CO1.										pts in le			ring.	Unders	
CO2.										quality e impor			ing	Analyz	ze
CO3.	value		ı tiic J.	11 1110	inodon	ogy, 1,	Lamoan	Tuics	and th	c impor	tarice c	or derii	iiig	Apply	
CO4.	Und	erstanc	d and A	Analyz	ze the i	mport	ance o	of Jido	ka and	the imp	olemen	tation		Analyz	ze
CO5			equire	ment o	of emp	loyee	involv	ement	t in the	e implen	nentati	on of l	ean	A 1	
CO5.	cultu		romn	νο Ο υτ	toomo	a and	Drogr	ommo	Speci	ific Out	oomos			Apply	
маррп	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	M	L	S	L	S	L	-	-	-	-	-	-	M	-	-
CO2	M	L	S	L	S	L	_	_	-	-	_	_	M	_	_
CO3	M	L	S	L	S	L	-	-	S	-	-	-	S	-	-
	M	L	S	L	S	L	_	-	S	-	_	_	S	_	_
CO4	141	_													

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Objectives of lean manufacturing-key principles -- traditional Vs lean manufacturing-Origin of lean production system – Necessity – Lean revolution in Toyota – Systems and systems thinking – Basic image of lean production – Customer focus – Muda (waste).

STABILITY OF LEAN SYSTEM

Standards in the lean system–5S system–Total Productive Maintenance—standardized work–Elements of standardized work–Charts to define standardized work–Man power reduction–Overall efficiency–standardized work and Kaizen–Common layouts.

JUST IN TIME

Introduction - JIT system-Principles and elements of JIT – Kanban rules – Expanded role of conveyance

– Produ	ction leveling – Pull	and Push systems -	- Process Mapping ar	nd Value stream mapping							
JIDOK	A (AUTOMATION	WITH A HUMA	N TOUCH)								
Jidoka zone co	concept – Po ntrol – Types and use	oka-Yoke (mistak e of Poka-Yoke sys		ems – Inspection systems and on of Jidoka.							
–	ER INVOLVEME ODOLOGY	NT AND SYSTEM	IATIC PLANNING								
Involve training method		Programmes -	involvement – C Hoshin Planni ean culture	Quality circle activity – Kaizen ng System (systematic planning							
Text Bo	ooks										
1	Pascal Dennis, Lean Production Simplified: A Plain-Language Guide to the World's Most Powerful Production System, (Second edition), Productivity Press, New York.										
2		ohn Shook, Learnin Lean Enterprise In	•	am Mapping to Add Value and							
Referer	nce Books	•									
1	Jeffrey Liker, the Manufacturer, McG	•	en Management Prin	nciples from the World's Greatest							
2	Michael L. George Speed, McGraw H		A: Combining Six S	IGMA Qualities with Lean Production							
Course	Designers										
			Department/ Name of the								
S.No	Faculty Name	Designation	College	Email id							
1	J.Senthil	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in							
2	S.Duraithilagar	Associate Professor	MECH/VMKVEC	duraithilagar@vmkvec.edu.in							

								Cate	egory	L		T	P	Cr	edit
		IND	USTI	RIAL	ENGI	NEEF	RING	EC-	-PS	3		0	0		3
Pream	ble														
											y techi	niques	, work	measui	emen
	tion pl (uisite	amm	g and	conti	or and	ımau	istriai	Legis	iatioi	l.					
NIL															
Course	e Obje	ctives	S												
				impo	rtance	e of w	ork st	udv n	nethod	ds and	its imp	ortano	e in var	ious fi	elds
							f a pla	ant and	d also	mater	ial han	dling e	equipme	ent requ	ııred.
	To lear														
4	To lear	rn the	skills	of pu	rchasi	ing m	ateria	ls and	their	manag	ement	•			
5	To lear	n the	aware	eness	on va	rious	labou	racts	and m	anage	ment p	rincip	es.		
ماريد ^ح	e Out	come	.c. ()	n the	SHCC	eccfii	l con	nnleti	ion of	f the c	Allrea	etud	ents w	ill he s	shle 1
															ibic t
<u>CO1.</u>	Eva	<u>luate</u>	the w	ork r	netho	ds th	rougl	h wor	k me	asurer	nent	1	Unders	tand	
CO2.		blish											Apply		
CO3.		ntify t lication		itable	fore	castir	ng tec	hniqu	ies fo	or give	n		Apply		
CO4.								roduc					Apply		
CO5.		cribe licatio		neory	in in	dustr	ial en	iginee	ering	and th	eir		Apply		
				me O	ntcoi	nes a	nd Pr	norai	nme !	Specif	ic Ont				
·iuppi		11110	51 4111		utcol	iics u				респ	Cour	comes			
		PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	_	_	_	_	_	_	_	_	_	_	_	_	_	_
CO2	S	_	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	M	M	L	S								M		S
COS	٥	1V1	1V1	L	۵	-	-	-	-	-	-	-	1V1	-	<u>ა</u>
CO4	S	M	M	L	1	1	-	-	-	ı	ı	ı	M	-	M
		C	S	S	S	_			S	M	_	_	S	_	S
CO5	S	S	S	S	N)	_	_		N	141	_	_	D	_	

WORK MEASUREMENT AND WORK STUDY

Evolution and importance of industrial engineering—Production-Classification-Productivity-Factors influencing productivity-quality route to productivity- Introduction to Work measurement and its Techniques-Work study-Definition-Procedure and benefits of work study-Charting techniques-Time study-Stop watch time study-Motion study-Work sampling procedure-collection of data-Method study.

PLANT LAYOUT AND MATERIAL HANDLING

Plant location and site location-factors influencing the location-Plant layout-Types, needs, factors influencing the plant layout-Plant layout procedure-Material handling-scope and principles of material handling-Types of Material Handling equipment-Factors influencing material handling-Methods of material handling.

PRODUCTION PLANNING AND CONTROL

Introduction-Objectives and Functions of PPC-Forecasting-Sales Forecasting Techniques-Types of Forecasting-Routing-Objectives and procedure of routing-Scheduling-Master Production Schedule- purpose and preparation of schedules-Scheduling techniques like CPM and PERT-Dispatching-Dispatch Procedure-Centralized and Decentralized dispatching-Tool dispatching

MATERIAL MANAGEMENT

Procurement of materials-codification of materials-Inventory control-Objectives of inventory control-EBQ & EOQ values-Inventory models-ABC analysis-Material requirements planning(MRP)-Enterprise resource planning(ERP)-supply chain management(SCM)-Inspection and quality control-SQC-control charts-Sampling procedures-Benchmarking

INDUSTRIAL LEGISLATION AND MANAGEMENT CONCEPTS9 Hours

Importance and necessity of labour acts-principles of labour legislation-various acts-Industrial Ownership and various types-Functions of management-Manpower Planning-Recruitment and Selection-Break EvenAnalysis-Managerial applications of breakeven point-Decision making - Techniques of decision making.

Text Books:

- 1 Khan, M.I, "Industrial Engineering", New Age International, 2nd Edition, 2009.

 Kapoor N.D, "Handbook of Industrial Law", sultan Chand & sons, 14th revised edition
- Kapoor N.D, "Handbook of Industrial Law", sultan Chand & sons, 14th revised edition 2013.

Reference Books:

- Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai and Sons, 2008.
 Samuel Eilon, "Elements of Production Planning and Control", Universal Publishing
 Corporation, Bombay, 1994.
- 3 Panneerselvam R, "**Production and Operations Management**", PHI, New Delhi, 2006.

			Department/Name	
Sl.No	Faculty Name	Designation	of the College	Email id
		Assistant		
1	B.Selva Babu	Professor	MECH/AVIT	selvababu@avit.ac.in
		Associate		
2	S.Duraithilagar	Professor	MECH/VMKVEC	duraithilagar@vmkvec.edu.in

	HYDF	PATIT.	ICS A	ND			Ca	tegory	I	,	Т	F	· C	redit
	PNEU				IS		E	C-PS	3	,	0	0)	3
PREAMBLE														
Today, Industriquality, increasion torque are particular torque are particular torque are particular torque are particular to the controls drives contains with wide optimishing efficient preference of the control of	ed proc amount etric dri speed variou ons wh and rel	in rai ves shof a.c. s high	and and a sing pare mare mare mare mare mare mare mare m	reduce product ost of otors a prmand to eng	d costs tivity a industry indu	s. The and questrial nellispensions, possible for se	contro uality nachine sable c ower e electing	lling pand receive controllelectron	arame ducing col appling el	ters lil g energolication ements nverte	ke mogy arons. The single arons aron	otion, Spond equips The varianation d digital	eed, Posit ment cost able speed on system control s	ion and s in all drives s. Such ystems.
NIL	.112													
COURSE OB	ECTIV	VES												
	derstan		ıt basio	es of fl	luid po	wer sy	stems	fundan	nental	S				
2 To ac	quire kı	nowled	dge ab	out co	mpone	nts use	ed in hy	ydrauli	c and	oneum	atic s	systems		
3 To fa														
5 To de	sign pn	eumat	ic circ	uits fo	r differ	ent ap	plicatio	ons						
Course Outco						•	•		udent	s will	be ab	ole to		
CO1. Underst	and the	differ	ent dri	ve sys	tems a	nd idei	ntify w	hich is	suitab	le for	speci	fic	** 1	
application.													Unders	tand
CO2. Underst	and the	worki	ng of o	differe	nt com	ponen	ts in fl	uid pov	wer sy	stem.			Unders	tand
CO3. Underst		out the	utiliza	ation o	f cylin	ders, a	ccumu	lators,	valves	and v	ariou	ıs		
control compo													Unders	
CO4. Design	a feasib	le hyd	raulic	circuit	for a g	given a	pplica	tion.					App	y
CO5. Design	a feasib	le pne	umatic	circui	it for a	given	applic	ation.					App	ly
MAPPING W	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
	PO	РО	PO	PO	PO	РО	PO	РО	PO	PO	PO			PSO
COS PO1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	3
CO1 S	M	M	L	M	_	-	-	-	-	-	-	L	-	_
CO2 S	M	M	L	M	-	-	-	-	-	-	-	L	-	-
CO3 S	M	M	L	M	_	-	-	-	-	-	-	L	-	_
CO4 S	S	S	M	L	M	_	_	_	_	_	_	L	_	_

S- Strong; M-Medium; L-Low

FLUID POWER SYSTEMS AND FUNDAMENTALS

Introduction to fluid power, Advantages and Applications of fluid power system. Basic Laws in Fluid power system, Types of fluid power systems, Properties of fluids – General types of fluids – Fluid power symbols. Basic Laws in Fluid power system. Low cost automation.

HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps – Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler

VALVES AND ACTUATORS

Construction of Control Components: Director control valve – 3/2 way valve ,4/2 way valve, Shuttle valve ,check valve – pressure control valve –pressure reducing valve, sequence valve-Flow control valve.. Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits -Press – Planer.

DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

Text Books:

- 1. Anthony Esposito "Fluid Power with Applications" Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls" TMH 2011.
- 3. Andrew Parr "Hydraulics and Pneumatics" Jaico Publishing House

Reference Books:

- 1. Thomson, "Introduction to Fluid power"- Prentice Hall 2004.
- 2. Majumdar S.R. "Oil Hydraulics Principles and maintenance" Tata McGraw-Hill.
- 3. Majumdar S.R. "Pneumatic systems Principles and maintenance" Tata McGraw Hill.

S.No	Name of the Faculty Designation		Department / Name of the College	Mail ID
1	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajanshree@gmail.com
2	Dr.D.Bubesh Kumar	Asso.Prof	MECH/ VMKVEC	bubeshkumar@avit.ac.in

		FA	ILURI	E ANA	LYSI	S OF		Cat	egory	L	,	T	P	Cro	edit
		MA	ATERI	ALS				EC	C-PS	3		0	0	3	3
Preamb		vers fail	ures of	materia	ale and	Leane	es of fa	ilure	tonice	include	tunes (of failure	in com	onente	and
equipme					ars arre	Cause	25 01 10	murc,	topics	include	types	or rantare	in com	Jonenia	ana
Prerequ NIL	isite														
	01: 4	•													
Course (Object	ives													
1 T	o stud	y the fu	ndamei	ntals of	failure	e anal	ysis.								
2 T	o stud	y introd	uction	to failu	re ana	lysis.									
3 T	o stud	y the ca	uses of	failure	in cor	npone	ents.								
4 T	o stud	y the ty	pes of	failure	in con	npone	nts.								
5 T	o stud	y the m	ethods	and equ	iipmer	nts for	failure	e analy	sis.						
								-							
Course						_						e able to			
CO1.		tne im minatio				naiysi	s for a	utomo	tive co	mpone	nts and			Apply	
CO2.	Identi	fy the f	ailure n	node id	entific	ation	metho	ds and	Corro	sion fai	lures.			Apply	
CO3.	Evnlo	in the c	011000 0	f foilur	o in co	mnon	onto						11	nderstaı	nd
CO4.	Sumn	narize tl	ne type:	s of fail	ures 11	n com	ponent	S.					U	ndersta	10
CO5.	Identi	fy the r	nethods	and ec	uipme	ents fo	r failu	re ana	lysis.					Apply	
Mappin	a with	Duague	mmo (Dutaan	og on	d Dno	аноми	no Sn	ooifia (Jutaan	200				
viaррш	PO				PO	PO	PO	PO	PO	PO1	PO1		PSO	PSO	PSC
COs	1	PO2	PO3	PO4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	M	M	-	-	M	-	-	-	-	-	-	L	-	-
CO2	S	M	M	-	-	L	_	_	_	_	-	_	L	-	_
CO3	S	M	M	-	-	M	-	-	-	-	-	-	L	-	-
CO4	S	L	L	-	-	L	-	-	-	-	-	-	L	-	-
CO5	S	M	M	_	-	L	_	_	_	_	_	_	L	_	_
	. ~											l			

FUNDAMENTALS OF FAILURE ANALYSIS

Importance of failure analysis for automotive components, Steps in typical failure analysis: Collection of background data (review documentation and speak with appropriate individuals), Selection of failed and un failed samples for examination, Preliminary examination of the failed part, Non-destructive evaluation, Mechanical testing, Macroscopic examination and analysis, Microscopic examination and analysis, Determination of failure mode, Chemical analysis, Fracture mechanics considerations, Full scale testing under service conditions, Analysis of the evidence, Formulation of conclusions, Recommendations to prevent reoccurrence, Sample preparation methods for failure analysis, Selection of locations/samples For failure analysis.

INTRODUCTION TO FAILURE ANALYSIS

Failure mode identification methods, Failure mechanisms: Fatigue failures, fractography, effect of variables: part shape, type of loading, stress concentration, metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear. Corrosion failures, types of corrosion: uniform, pitting, selective leaching, intergranular, crevice, etc. Elevated temperature failures, creep, thermal fatigue, micro structural instability, and oxidation.

CAUSES OF FAILURE IN COMPONENTS

Misuse or Abuse, Assembly errors, Manufacturing defects, Improper maintenance, Fastener failure, Design errors, Improper material, Improper heat treatments, Unforeseen operating conditions, Inadequate quality assurance, Inadequate environmental protection/control, Casting discontinuities. Data compilation and identification of root cause.

TYPES OF FAILURES IN COMPONENTS

Fatigue failures, Corrosion failures, Stress corrosion cracking, Ductile and brittle fractures, Hydrogen embrittlement, Liquid metal embrittlement, Creep and stress rupture.

METHODS AND EQUIPMENTS FOR FAILURE ANALYSIS

Selection of suitable testing methods for failure analysis, Selection of metallurgical equipments for Failure Analysis, SEM-EDAX.

Text Books

- 1 "Understanding How Components Fail" by Donald J. Wulpi; ASM International Publication.
 - 2 "Analysis of Metallurgical Failures: by Vito J. Colangelo; Francis A. Heiser Wiley Publication
 - 3 ASM Handbook Vol.11 Failure Analysis and Prevention, ASM International Publication, 1995.

Reference Books

- 1 "Metallurgy of Failure Analysis" by A K. Das; by McGraw-Hill Professional Publication.
- 2 Metallurgical Failure Analysis by Charlie R. Brooks; Ashok Choudury; McGraw-Hill Publication.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.Thiagarajan	Assistant Professor (G-II)	MECH/AVIT	cthiagarajan@avit.ac.in
2	Dr.S.Venkatesan	Professor	MECH/VMKVEC	venkatesan@vmkvec.edu.in

						OF P	IPING	}		ategor		L	T P		redit	
Pres	mble:	EN(SINE	ERI	NG				<u> </u>	EC-PS	5 3	3	0 0		3	
The	students c	•	_				-	_		ledge	on fu	nda	menta	ls of p	oipin	g
	neering, p	ipe h	ydrau	lics,	piping	g suppo	rts and	d desig	ŗn.							
Prer NIL	requisite															
	rse Objec	tives	,													
1	To unde	erstai	nd the	imp	ortanc	e of pi	ping e	ngine	ering.							
2	To enab	Γο understand the importance of piping engineering. Γο enable student to learn the application of flanges and valves.														
3	To unde	To understand about process mechanical equipments.														
4		To gain knowledge about various pipe supports.														
5		To enable students to learn about various types of stress analysis.														
								**				ts v	vill he	ahle 1	ło.	
	O1. Discuss the basic concepts of piping engineering. Understand															
CO	1.	DIS	cuss t	ne o	asic co	ncepts	or pip	nng er	igmeen	ng.			Unde	rstand	<u> </u>	
СО	2.	Dis	cuss t	he a	plica	tion of	flange	s and	valves.				Understand			
CO	3.		ply the		ncept o	of vario	us pro	cess n	nechani	cal			Apply	V		
СО		То	gain k	znou.	ledge	ahout v	zarious	nine	supports	1			Apply			
CO						nt types			supports	1.			Analy			
Ma	pping wit	h Pr	ograr	nme	Outc	omes a	nd Pr	ogran	nme Sp	ecific	Outc	ome	es			
	COs	P 0 1	PO 2	P O 3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	P O 1 1	PC 12		P S O 2	PSO 3
					104			107								3
	CO1	M	L	-	-	-	-	-	-	-	-	-	-	-	-	-
	CO2	S	M	L	-	-	-	-	-	-	-	-	-	L	-	-
	CO3	S	M	L	-	-	-	-	-	-	-	-	-	M	-	-
	CO4	S	S	M	L	-	-	-	-	-	M	-	-	M	_	-
	CO5	S	S	S	M	S	-	-	_	-	S	_	_	L	_	_

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction to Piping Responsibilities of Piping Engineer and Designer - Scope of PipingInput and Outputs - General: Process Diagrams (PFD, UFD, P&ID, Line List etc) - Piping Fundamentals Definition, Application Codes and Standards.

FLANGES AND VALVES

Introduction to Flanges and Valves – Application and advantages of Flanges - Pipe Fittings - Pipe Flanges – Valves - Piping Special Items

PROCESS MECHANICAL EQUIPMENTS

Process Mechanical Equipments – Static equipments & Rotary equipments
Layouts - Preparation of Plot Plan - Preparation of Equipment Layouts - Preparation of
Piping General Arrangement Drawings - Preparation of Cross Sectional Drawings - Piping
Isometric Drawings & Material Take off

PIPE SUPPORTS

Pipe Supports: Support Types - Support Selection, Support Location, Support Span Calculation - Typical Unit Conversion - Materials: Preparation of Piping Material Specification - Valve Material Specification - Familiarity with ASME B31.3 Pipe Wall thickness Calculations.

STRESS ANALYSIS

Preparation of Special Items Datasheets: Pressure Design of Miter Bends – Single & Multiple Miters - Pressure Design of Blanks - Branch reinforcement calculations - Overview of Technical Queries and Technical Bid Evaluations

Stress Analysis: Types of stresses, Significance of forces and moments - Introduction to Stress Analysis - Expansion Loop types, Bellows Types

	_	-
Text	KΛ	nks

	G.K.Sahu, Fundamentals of piping design, New Age International
1	Publishers

Reference Books

- 1 Peter Smith, R.W.Zappe, Valve Selection Hand Book, Elsevier Science
- 2 Peter Smith, The fundamentals of piping design, Elsevier Science

S.No	Faculty Name	Designation	Department/ College	Email id
1		Assistant Professor	MECH/AVIT	saravanan@avit.ac.in
2	J.Rabi	Assoc.Professor	MECH/VMKVEC	jrabi@vmkvec.edu.in

		CO	NCU	RRE	NT			Cate	gory	L		T	P	Cre	edit
			GINE					EC.		3		0	0		3
Pream	ble									•	·	ı			
													ct desig		
													er bas	ed appr	oach,
					produ	ct de	sign,	reliab	ility, 1	maintai	nabilit	y and			
econon Prereq		produ	ict des	agn.											
NIL	uisite														
Course															
	•						_	_	•	cle des	ign of	the pro	oducts,	structur	e and
	organiz									tomanı		manta	and ala	o undo	atond
				_		-		•			•		and als ents lik		
	design									e diffe	ciii ac	partin	onto na	c mark	cumg,
													ng, dif	ferent 1	DFM
										ed appr					
					ance	of qu	ality	during	g the	produc	et desi	gn and	d meth	ods use	d to
	evalua														
5]	Learn	about	the de	esign o	of the	produ	ict for	relial	oility,	mainta	inabili	ty and	econon	nics.	
Course	Outc	omes:	On t	he su	ccessf	ul co	mplet	ion of	the c	course,	stude	nts wil	l be ab	le to	
	l l			<u> </u>	3					concu					
CO1										tructure	e and		T.T.	1	1
CO1.		nizatio					-				ousto	mon	Un	derstan	a
										er the lon/ co					
	_									narketir					
CO2.	and	the lat	est so	ftwar	es ava	ilable	so fa	r.					Un	derstan	d
						_				g in co					
002								creativ	ve des	ign me	thods	and	T.T.	1	1
CO3.		puter bo						ing th	o pro	duct d	ocian	and	Un	derstan	a
CO4.		nods u						mg m	e pro	auct a	esign	and	Un	derstan	d
		erstan			esign	of	the	proc	duct	for	reliabil	lity,			
CO5.	maiı	ntainal	oility	and e	conon	nics.							Un	derstan	d
Mapp	ing w	ith Pr	ogran	nme (Outco	mes a	and P	rogra	mme	Specif	ic Out	comes	T	ı	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	L	L		_	-	-	-	-	-	L	-	-
CO2	S	M	S	S	S	M	_	-	-	-	-	-	S	-	-
CO3	S	M	S	L	M	M	-	-	-	-	-	-	M	-	-
CO4	S	M	S	S	M	M	-	-	-	-	-	-	M	-	-
007	a			3.6											
CO5	S	L	S	M	L				-	-	-	-	M	-	-

S- Strong; M-Medium; L-Low

INTRODUCTION:

Sequential engineering process, Concurrent engineering definition and requirement, meaning of concurrent objectives of CE, benefits of CE, Life cycle design of products, life cycle costs. SUPPORT FOR CE: Classes of support for CE activity, CE organizational, structure CE, team composition and duties, Computer based Support, CE Implementation Process.

DESIGN PRODUCT FOR CUSTOMER

Industrial Design, Quality Function Deployment, house of quality, Translation process of quality function deployment (QFD). Modeling of Concurrent engineering design- Compatibility approach, Compatibility index, implementation of the Compatibility model, integrating the compatibility Concerns.

DESIGN FOR MANUFACTURE (DFM)

Introduction, role of DFM in CE, DFM methods, e.g. value engineering, DFM guidelines, design for assembly, creative design methods, product family themes, design axioms, Taguchi design methods, Computer based approach to DFM. Evaluation of manufacturability and assembliability.

QUALITY BY DESIGN

Quality engineering & methodology for robust product design, parameter and Tolerance design, Quality loss function and signal to noise ratio for designing the quality, experimental approach.

DESIGN FOR X-ABILITY

Design for reliability, life cycle serviceability design, design for maintainability, design for economics, decomposition in concurrent design, concurrent design case studies.

Text Books

- 1 Concurrent Engineering- Kusiak John Wiley & Sons
- 2 | Concurrent Engineering- Menon Chapman & Hall

Reference Books

- Integrated Product Development/Anderson MM and Hein, L.Berlin, Springer Verlog, 1987.
 - Design for Concurrent Engineering/ Cleetus, J. Concurrent Engg. Research Centre, Morgantown, WV, 1992.

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
		Assistant		
1	B.Selva Babu	Professor	MECH/AVIT	selvababu@avit.ac.in
2	S.Raja	Assistant Professor	MECH/VMKVEC	raja@vmkvec.edu.in

				EED	nia i			Ca	tegor	v	L	T	P	Cre	edit
			NGIN ESIG		ING I	PROD	UCI		C-PS		3	0	0		3
Prear		I									<u> </u>			I	
	eering P ration a						ıg, re	wardi	ng act	tivity tl	hat req	uires m	ıltifunc	tional	
_	quisite	IG IIIG	21-UISC	лрип	ary sk	1115.									
NIL															
Cours	se Obje	ctives													
1	To unde	rstanc	d the r	node	ls in de	evelopi	ing n	ew en	ginee	ring pr	oducts	•			
2	To learn	how	to ide	ntify	the cu	stomer	nee	ds and	linteg	rate th	e end-	consum	er into j	process	
3	To learn	and a	apply	the c	oncept	s and t	ools	neces	sary f	or con	cept ge	neration	and ev	valuatio	n.
4	To apply	y emb	odime	ent de	esign c	oncept	in tł	ne pro	cess o	f new	produc	et develo	pment.	•	
5	To Unde	erstan	d the	conce	ept of 1	manufa	cturi	ing pro	ocess	and de	sign th	ne produ	ct acco	rdingly	
Cours	se Outco	omes:	On t	he su	ccessf	ul com	ıplet	ion of	the c	ourse,	stude	nts will	be abl	e to	
CO1.			d the c al desi			develop	omen	t tech	nique	s to fin	d solu	tion	Undo	rstand	
CO1.						es to tra	ansla	ite the	conce	entual	ideas t	0	Onde	istanu	
CO2.			g desig	_	тг.					- p coor			Unde	rstand	
CO3.	Apply desig	•		ental,	ethica	al and s	socia	l issue	es dur	ing inn	ovativ	e	Apply	J	
	Desig	n and	deve	•		ive eng	_	ring p	roduc	ts for i	ndustr	ial	търгу	<u>/</u>	
CO4.	needs	usin	g robu	ist de	sign pl	hilosop	hy.						Apply	Į.	
	Apply	y the	conce	pt of	Desig	n for M	Ianuf	facture	e and	to und	erstand	l the			
CO5.	differ	ent m	odes	of Fa	ilure o	f the pr	roduc	et.					Analy	ze	
Марр	oing wit	h Pro	gram		Outcon	nes and	d Pr	ogran	nme S	Specifi	c Outo	comes			
COs	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	L	L	L	-	-	-	-	-	-	-	M	-	-
CO2	M	L	L	L	L	-	-	-	-	-	-	-	M	-	-
CO3	S	S	S	S	S	-	-	-	-	-	-	-	S	-	-
CO4	S	M	M	M	M	-	-	-	-	-	ı	-	M	-	-
CO5															
S- Stron	ıg; M-Me	dium;	L-Lov	v											

INTRODUCTION

Innovations in Design, Engineering Design Process, Prescriptive and integrative models of design, Design Review and societal considerations.

IDENTIFICATION OF CUSTOMER NEED

Evaluating Customer requirements and survey on customer needs, Conversion of customer needsinto technical Specifications, Information sources.

CONCEPT GENERATION AND EVALUATION

Creativity and Problem solving, Brainstorming, Theory of Inventive Problem solving (TRIZ), Functional Decomposition of the problem for innovative concept development, Morphological design, Introduction to Axiomatic Design, Concept evaluation and decision making.

EMBODIMENT DESIGN

Introduction, Product Architecture, Configuration and Parametric design Concepts, Industrial Design.

DESIGN FOR MANUFACTURING

Design for Manufacturing, Design for Assembly, Design for Environment, Design for Reliability and Robustness, Introduction to FMEA.

Text Books

1 Nigel Cross, Engineering Design Methods, John Wiley, 2009.

Reference Books

- 1 George E. Dieter, Engineering Design, McGraw-Hill, 2009.
- 2 Genrich Altshuller, The Innovation Algorithm, Technical Innovation Centre, 20LL.

			Department/Nam	
S.No	Faculty Name	Designation	eof the College	Email id
1	R.Praveen	Asst. Prof – II	MECH/AVIT	praveen@avit.ac.in
		Associate		
2	J.Sathees Babu	Professor	MECH/ VMKVEC	satheesbabu@vmkvec.edu.in

								Ca	tegor	y]	ւ	T	P	Cro	edit
		DE	SIGN	OF I	EXPE	RIME	NTS	E	C-PS		3	0	0		3
Preamb This co experim techniqu Prerequ	urse thents. Tues.							-					_		
Nil															
Course	Object	ives													
1 K	Cnow al	out I	Design	of E	xperir	nent.									
2 U	Indersta	and th	e met	hodol	ogy fo	or Desig	gn of	Exp	erime	nt.					
3 F	amiliar	ize at	out c	oncep	ts of o	confoun	nding	and	ANO'	VA.					
4 E	Expose 1	he co	ncept	s of re	espons	se surfa	ice de	esign.							
5 T	o apply	/ Tagı	uchi n	nethod	1.										
Course	Outcor	nes: (On th	e suc	cessfu	ıl comp	oletio	n of	the co	urse,	studen	ts will	be able	to	
CO1.	Unde	rstanc	l the p	orincip	oles aı	nd theor	ry of	desig	gning	experi	ments.		U	ndersta	nd
CO2.	Apply	/ basi	c prin	ciples	in the	e design	n of s	simpl	e expe	erimen	ts.			Apply	
CO3.	Unde	rstanc	l and	use th	e tern	ninolog	y of e	exper	iment	al desi	gns.		U	ndersta	nd
CO4.	Select resear		_	gn an	appr	opriate	metl	hod (of dat	ta coll	ection	for a		Analyz	e
CO5.	Apply optim			pt top	oroduo	ct desig	gn an	d dev	elopn	nent fo	or obta	in		Apply	
Mappin	g with	Prog	ramn	ne Ou	tcom	es and	Prog	gram	me Sı	pecific	Outco	omes	1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	S	-	-	-	-	-	-	-	-	-	-	-
CO2	S	M	L	S	-	-	-	_	-	-	-	-	S	-	-
CO3	S	S	S	M	S	-	-	-	-	-	-	-	M	-	-
CO4	M	S	M	M	M	L	-	-	-	-	-	-	M	-	-
CO5	M	M	L	M	L	M	-	-	-	_	-	-	L	-	_
S- Strong	; M-Me	dium;	L-Lov	V											

BASICS OF DESIGN OF EXPERIMENTS

Introduction in Design of experiments (DOE) - Fundamental and practical issue in industrial experimentation - Statistical thinking and its role within DOE - Basic principles of DOE and Degrees of freedom - Selection of quality characteristics for industrial experiments - Understanding key interaction in processes - Alternative method for calculating two-order interaction effect - Synergistic interaction versus Antagonistic interaction

METHODOLOGY FOR DESIGN OF EXPERIMENTS

DOE methodology - Barriers in the successful application of DOE - Practical methodology of DOE and Analytical tools for DOE - Confidence interval for the mean response - Introduction of Screening design - Geometric and non-geometric P-B design - Introduction of full factorial design - 2², 2³, 2⁴ full factorial design

CONFOUNDING

Introduction and uses of confounding - 2³ factorial experiment with complete confounding -2³ factorial experiment with partial confounding - Confounding in the 2ⁿ series and examples - Confounding of 3² factorial - Confounding of 3³ factorial and examples - Mixed series and examples - Introduction on ANOVA Analysis

RESPONSE SURFACE DESIGN

Background of response surface design - Creation of response surface design - Central composite design - Box Behnken design - Contour profile of response surface plot - Design table - Analyze the data - Case studies on response surface design - Experiment with random factor

TAGUCHI METHOD

Taguchi design approach - Orthogonal array, S/N ratio - Smaller is better, Nominal is better and larger is better with simple case studies - Analyze the data, factor effect diagram - Levels of parameters - Confirmation test - Augmented design with simple case studies

Text Books

- 1 Jijuantony, "Design of Experiments for Engineers and Scientists", Elsevier.
- 2 Douglas C Montgomery, "Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference Books

- 1. M N Das, N C Giri, "Design and Analysis of Experiments", New Age International (P) Limited, Publishers, 1997.
- Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New Age International Publishers, 2010.
- 3 William G. Cochran, Gertrude M. Cox, "Experimental Design", John Wiley and sons, Inc.
- 4 Cox C.R, "The theory of Design of Experiments", Chapman and Hall, CRC Press.

			Department/Name	
S.No.	Faculty Name	Designation	of the College	Email id
1	K.Vijayakumar	Assistant Professor	MECH/AVIT	vijayakumar@avit.ac.in
2	J.Sathees Babu	Associate Professor	MECH/ VMKVEC	satheesbabu@vmkvec.edu.in

		FI.I	IID I	POW	ER	Ca	itegor	y	L		T		P	Cı	edit
			STEN		LIK		EC-P	S	3		0		0		3
Preamb Fluid Pousing preumate syntheticand can	ower is essurize tics when oils,	zed flu nen the and wa	iids. F fluid ater. P	luid p is a ga neuma	ower i as. Hyd tic sys	s calledraulic tems t	ed hyd c syste use air	lraulic ms us as the	s when e liquic gas m	n the ds suc edium	fluid i h as pe i becau	s a lic etroleu ise air	quid ım o is v	and is o	called
Prerequ NIL	iisite														
Course	Objec	tives													
1 7	Γο stuc	ly abo	ut the	princij	oles of	main	hydra	ulic a	nd pne	eumat	ic con	npone	nts.		
2	Γo desi	ign an	d stud	y abou	t the p	rincip	les of	main	pneum	atic c	ompo	nents.			
3	Γο lear	n the	metho	dolog	y of ci	rcuit o	diagra	m.							
				•					o-pneu						
5	Γο stuc	dy and	analy	ze vari	ous ci	rcuits	applic	ation .	,mainte	enance	and s	afety a	aspe	cts.	
Course	Outco	mes:	On the	e succ	essful	comp	letion	of the	cours	se, stu	dents	will b	e ab	le to	
	Expl	ain th	e prin	ciples	of ma	ain hy	drauli	c and	l pneu	matic	comp	onen	ts.		
CO1.									s desig					Unders	stand
CO2.	_		-	-			•		composition composition			ic an	ıd	App	oly
CO3.	unde	rstand	the	princ	iples	of ci	rcuit	opera	ams nation,	in re	••			App	oly
CO4.									draulic					App	oly
CO5.					•	•	aulic a ety asp	-	eumat	ic circ	uits ap	plied	to	App	oly
Mappin	g with	Prog	ramm	e Out	comes	and	Progra	amme	Speci				Dage	ngo.	ngo
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSC 1	PSO 2	PSO 3
CO1	S	M	M	S	S	-	-	1	-	-	-	1	M	-	-
CO2	M	S	M	M	S	-	-	-	-	-	-	-	L	-	1
CO3	S	M	M	M	L	-	-	-	-	-	-	-	M	_	-
CO4	M	L	S	L	S	-	-	-	-	-	-	-	M	_	-
CO5 S- Strong	S g: M-N	M	L	M	M	-	-	-	-	-	-	-	L	_	-
o- ou on	5, 1 ,1 -1	rcululi	., 1-11	U 11											

HYDRAULIC COMPONENTS

Introduction to fluid power system-Pascal's Law-Hydraulic fluids-Hydraulic pumps-Gear, Vane and Piston pumps-Pump Performance-Characteristics and Selection-actuators-valves-pressure control-flow control and direction control valves-Hydraulic accessories-Hydraulic Accumulator.

PNEUMATIC COMPONENTS

Introduction to Pneumatics-Compressors-types-Air treatment-FRL unit-Air dryer-Control valves-Logic valves-Time delay valve and quick exhaust valve-Pneumatic Sensors-types-characteristics and applications.

FLUID POWER CIRCUITS

Circuit Design Methodology-Sequencing circuits-Overlapping signals-Cascade method-KV Map method-Industrial Hydraulic circuits-Double pump circuits-Speed control Circuits-Regenerative circuits-Safety circuits-Synchronizing circuits-Accumulator circuits.

ELECTRO - PNUEMATICS AND HYDRAULICS

Relay, Switches-Solenoid-Solenoid operated valves-Timer-Counter-Servo and proportional control-Microcontroller and PLC based control-Design of electro-pneumatic and hydraulic circuits.

APPLICATION, MAINTENANCE AND TROUBLE SHOOTING

FESTO, "Fundamentals of Pneumatics", Vol I, II, III.

Development of hydraulic / pneumatic circuits applied to machine tools-Presses-Material handling systems-Automotive systems-Packaging industries-Manufacturing automation- Maintenance and trouble shooting of Fluid Power circuits-Safety aspects involved.

Text Bo	ooks
1	Anthony "Esposito, Fluid Power with applications", Prentice Hall international—1997.
2	Majumdar.S.R, "Oil Hydraulics", Tata McGraw Hill, 2002.
	Majumdar S.R, "Pneumatic systems-principles and maintenance", Tata McGraw Hill
3	1995.
Referer	nce Books
	John Pippenger, Tyler "Hicks, Industrial Hydraulics", McGraw Hill International
1	Edition, 1980.
2	Andrew Parr, "Hydraulics and pneumatics", Jaico Publishing House, 2003.

S.No	Faculty Name	Designation	Department	Email id
1	S.Ashok Kumar	Assistant Professor	MECH/ AVIT	ashokkumar@avit.ac.in
2	Dr.S.Natarajan		MECH/ VMKVEC	natarajans@vmkvec.edu.in

									C	ategor	y	L	7	Γ	P	С
			ME	EMS A	ND NI	EMS			E	C-PS		3	0)	0	3
PREA	MBI	LE											-			
The co	ourse	reviev	vs the	variou	ıs appl	icatio	ns of	MEN	IS AN	ND NE	EMS ar	nd its a	pplic	cat	ions ir	1
sensor	s and	actua	tors.													
PREI	REQU	JISIT	E: N	IL												
COU	RSE (OBJE	ECTI	VES												
1 T	o stuc	dy the	fund	amenta	ls of N	MEMS	and	NEM	S.							
2 T	o gaiı	n kno	wledg	ge on fa	bricat	ion of	MEN	AS.								
3 T	o stuc	dy on	Micro	Senso	ors.											
				o actua												
				systen		Quan	tum I	Mecha	anics.							
				n the s						e cour	se. stu	dents	will	be	able 1	
				unders											Inders	
				1 under								ild IVIL	21110		Inders	
				l learn											nalyz	3
				l know											pply	
				l under						•		hanics		U	Inders	tand
маррі	ng wit	II FIO	grann	ne Out	comes	anu Fi	PO	PO	PO	PO1	PO1	PO1	PS	O	PSO	PSO
COs	PO1	PO2	PO3	PO4	PO5	PO6	7	8	9	0	1	2	1		2	3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	M		-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	M		-	-
CO3	S	S	S	L	L	-	-	-	-	_	-	-	S		-	-
CO4	S	S	S	L	L	-	-	-	-	_	-	-	M		-	-
CO5	S	M	M	M	S	_	_	_	_	_	_	_	M		_	_
				L- Lov						1						
SYLL																
				rRODU			o and	Nano	scale	cuctor	is Intro	duction	to Γ)ec	ion of	
		·								•					•	
MEM	and I	NEMS	, Ove	rview o	i inano	ana N	ncro (electro	mecn	amcai	system	s, Appl	icatio	JIIS	OI	

Micro and Nano electro mechanical systems, Micro electromechanical systems, devices and

structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals

MEMS FABRICATION TECHNOLOGIES

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems

packaging, Essential packaging technologies, Selection of packaging materials MICRO SENSORS

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these

Micro sensors. Case study: Piezo-resistive pressure sensor

MICRO ACTUATORS

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators

NANOSYSTEMS AND QUANTUM MECHANICS

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Shrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

Text Books:

- 1. Marc Madou, "Fundamentals of Micro fabrication", CRC press.
- 2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers.

Reference:

- 1. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill.
- 2. Chang Liu, "Foundations of MEMS", Pearson education India limited.

Cours	e Designers			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
		Associate		
1	Dr.D.Bubesh Kumar	Professor	MECH/ AVIT	bubeshkumar@avit.ac.in
2	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajans@vmkvec.edu.in

	рел	ROLE	rin <i>i</i> n	DOD.	пст	ON				Catego	ory	L	Т	P	Cre	dit
		HOLE			UCII	ON				EC-P	S	3	0	0	3	
Pream	ble:											L				
		ts compl													ineerin	g
•		ons and	Tunga	ımenta	us equ	auons	and C	aicuiai	ions	usea in	Griiiii	ig eng	meern	ng.		
Prerec																
Course	e Ob	jectives	3													
1	Τοι	understa	nd oil	well	drilling	g engii	neerin	g and o	opera	tions.						
2	То я	get fami	liarize	ed with	n field	equip	ment p	ractic	es, d	ifficultie	es and	action	ns to b	e take	n.	
3	Tol	earn fur	ndame	ntal e	quatio	ns and	calcu	lations	use	d in dril	ling er	nginee	ring.			
4	Tos	gain kno	wleds	e abo	ut casi	ing and	d ceme	entatio	n.							
5	•	enable s	,													
Course		tcomes									tuden	ts will	be al	le to		
CO1.		scuss the										US 1122		Inder	stand	
	Δn	ply the o	20000	nt of fi	undom	ontol /	aguati.	one on	d col	gulation	NG 1160/	din				
CO2.	•	lling eng			unuam	iciitai v	cquatr	ons an	u cai	cuiatioi	18 4800	J 111		Apply		
CO3.	То	gain kn	owled	lge abo	out Ca	sing a	nd cen	nentati	on				1	Apply		
CO4.	Ap	ply the o	conce	pt of u	sing o	f drilli	ng flu	ids					1	Apply		
CO6	An	alyze th	e diffe	erent d	rilling	fluids	S							Analyz	ze	
Mappi	ing v	vith Pro	gram	me O	utcom	es an	d Prog	ramn	ne Sı	ecific (Outco	mes		-		
	- 0								P							
			P	PO	PO	PO	PO	PO	О		PO	PO	PO	PS	PS	PS
COs		PO1	02	3	4	5	6	7	8	PO9	10	11	12	01	02	03
СО	1	M	L	_	_	_	_	_	_	_	_	_	_	_	_	_
CO	2	S	M	L	-	-	-	-	-	-	-	-	-	M	-	M
СО	3	S	S	M	L	-	-	-	-	_	M	-	-	M	-	M
СО	4	S	S	S	M	_	_	_	-	_	M	_	_	L	_	L
СО	5	S	S	S	М	S	_		_	_	S	_	_	L	_	L
		M-Med				L D		_			_ 5	1	_	1 1	_	

DRILLING RIG

Rotary / top drive drilling for oil and natural gas, introduction to hardware system, power generation system, Hoisting, Rotary and drilling fluid circulation system, Rig selection, onshore offshore rigs, onshore and offshore drilling operations, Horse power calculations for draw-works and rotary advantages and disadvantages of top drive system.

DRILLING OPERATIONS AND DIFFICULTIES

Down hole drilling problems and solutions, factors affecting rate of penetration, drill off test, bit section, IADC classification of bit, dull bit gradation, circulation system, mud pumps, numerical related to mud pumps of circulation system, problems concerned with drilling fluid and drill pipe stuck up, geometry of a stuck pipe. Hole problems (lost circulation, kick etc) well control equipment ROP

DRILLING TECHNIQUES AND FISHING

Introduction to directional, horizontal multilateral drilling techniques. Types of well, coring operations, Fishing tools and operations. Terminology used in directional wells and basic mathematics used in directional wells (DMS to Dec. Deg, co-ordinate system).

CASING AND CEMENTATION

Casing and Cementation, Functions, types, API grades properties of casing, Threads and couplings, Functions, classification of cement, Strength retrogenion, Cement additives, Methods of cementation, Equipment accessories, Field problems pertaining to cementation job, Cement slurry calculations.

DRILLING FLUIDS

Drilling fluid, Functions, Types, compositions, Properties of mud, Field test, Rheology, Additives and contamination, Selection of drilling fluids and mud, Conditioning equipments, Mud calculations, Hydrostatic pressure, Volume, Weight related calculations during drilling.

Text Books

1 Gatlin C.; Petroleum Engineering, Drilling and Well Completions, Prentice Hall.

Reference Books

- 1 Rabia H.; Oil Well Drilling Engineering, Graham Trotman Ltd., London.
- 2 Azar, J. J., G. Robello Samuel; Drilling Engineering, Penn Well.

		Designatio	Department /	
S.No	Faculty Name	n	College	Email id
		Assistant	Mech /	
1	V.K.Krishnan	Professor	VMKVEC	vkkrishnanme@yahoo.com
2	P.Kumaran	Assistant professor	MECH/AVIT	kumaranp@avit.ac.in

OPEN ELECTIVEINNOVATION, ENTREPRENEURSHIP, SKILL DEVELOPMENT COURSES

ENGINEERING STARTUPS	Category	L	T	P	Credit
AND ENTREPRENEURIAL					
MANAGEMENT	OE-IE	3	0	0	3

PREAMBLE:

A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the basics of Startups Management and components.
- 2. To analyze the startups fund management practices
- 3. To practice the various kinds of stocks and employment considerations in startups.
- 4. To apply the importance of intellectual property rights and its procedures.
- 5. To explore the entrepreneurial mindset and culture.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Explain the concept of engineering startups, objectives and functions and its components.	Understand				
CO2: Analyze the startups funding issues and remuneration practices in startups business.	Analyze				
CO3: Analyze the various kinds of stocks and employment opportunities and consideration in	Analyze				
startups business.					
CO4: Compare and contrast the various forms of intellectual property protection and practice.	Analyze				
CO5: Explore the entrepreneurial mindset and culture that has been developing in					
companies of all sizes and industries.					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	M	M	S	-	M	-	M	-	L	L
CO2	S	S	M	M	M	L	-	-	-	-	-	M	L	L	-
CO3	S	S	S	M	M	M	-	-	-	-	-	M	L	-	M
CO4	S	S	S	M	M	M	-	-	-	-	-	M	-	M	L
CO5	S	S	-	M	M	M	-	-	-	-	-	M	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Startup: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up: Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations: Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents—Trade secrets — Trademarks - The Legal Form of your Startup: Corporation — Partnership — Limited Liability Company — Sole Proprietorship - — Making the startup decision: commitment — Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures.

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COURSE DESIGNERS:

	Name of the				
S.No	Faculty	Designation	Department	Mail ID	
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in	
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in	

NAME A POSTALA A DO ODEDITA	Category	L	T	P	Credit
INTELLECTUAL PROPERTY RIGHTS	OE-IE	3	0	0	3

The course is designed to introduce fundamental aspects of Intellectual property Rights to students who are going to play a major role in development and management of innovative projects in industries.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To introduce fundamental aspects of Intellectual property Rights.
- 2. To disseminate knowledge on patents and copyrights.
- 3. To disseminate knowledge on trademarks, Design and Geographical Indication (GI).
- 4. To disseminate knowledge on Plant Varieties, Layout Design Protection and create awareness about current trends in IPR.
- 5. To disseminate knowledge on Legislation of IPRs and Alternate Dispute Resolution.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the important of intellectual property rights	Understand
CO2: Apply for the patents	Apply
CO3: Understand and apply for the copyrights	Understand
CO4: Understand the important of trademarks	Apply
CO5: Appreciate the importance of IPR and its related issues	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	M	-
CO2	L	S	S	M	M	L	-	-	-	-	-	L	M	L	-
CO3	L	S	L	M	M	L	-	-	-	-	-	L	M	L	-
CO4	L	S	S	S	M	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	M	-	L	-	-	-	-	-	L	M	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Unit 1 - Overview of Intellectual Property

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India: Genesis and development – IPR in abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention,

1967, the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application - Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and license, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and license of copyright - Infringement, Remedies & Penalties - Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intellectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intellectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT – V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

Text Books:

- 1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.
- 2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

S.No	Name of the Faculty	Mail ID		
1	P. S. Balaganapathy	Associate Professor	Management	dydirectormanagementstudies@avit.ac.in
2	A. Mani	Associate Professor	Management	mani@vmkvec.edu.in

INNOVATION, PRODUCT	Category	L	Т	P	Credit
DEVELOPMENT AND COMMERCIALIZATION	OE-IE	3	0	0	3

3

commercialization of innovation and new products in fast-paced, high-tech markets and matchingtechnological innovation to market opportunities.

PREREQUISITE - Not Required

COURSE OBJECTIVES

ı		To make students understand multiple-perspective approach in organization to capture knowledge
		and creativity to develop successful products and services for Volatile, Uncertain, Complex and
	1	Ambiguous (VUCA) world.
ĺ		Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of
	2	society in general and markets in particular which focus on commercialization.
ŀ		

- Improved understanding of organizational best practices to transform exciting technology into successful products and services.
- Critically assess and evaluate innovation policies and practices in organizations especially from a cultural and leadership point of view.
- 5 Explain why innovation is essential to organizational strategy especially in a global environment.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Understand the role of innovation in gaining and maintaining competitive advantage	Understand					
CO2: Integrate the innovation basis and its role in decision making especially under uncertainty						
CO3: Analyze business challenges involving innovation management	Apply					
CO4: Having problem solving ability – solving social issues and business problems	Apply					
CO5: Comprehend the different sources of innovation	Apply					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	P	P	P	P	P	P	P	PO				
COs	01	O2	O3	O4	O5	O6	O7	8	PO9	PO10	PO11	P012
CO1	M	-	-	-	1	M	S	S	-	M	-	-
CO2	S	S	S	M	M	M	-	-	-	-	-	-
CO3	S	S	S	M	M	M	-	-	-	-	-	-
CO4	S	S	S	M	M	M	-	-	-	-	-	-
CO5	S	S	S	M	M	M	_	-	_	-	_	_

S- Strong; M-Medium; L-Low

Pre-launch, during launch and Post launch preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation — What it is? Why it Matters? - Innovation as a Core Business Process — system thinking for innovation — Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture — Benefits of Innovation, and Learning from Innovation — Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

- 1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.
- 2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.
- 3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.
- 4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.
- 5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

								Cat	tegory	L	T	P	Credit
		SO	CIAL 1	ENTRE	EPREN	EURSI	HIP	Ol	E-IE	3	0	0	3
PREAM													
			involv	es the c	reativity	y, imagi	nation a	nd innov	vation ofter	n associated	with		
entreprei	-												
PRERE	QUISI	FE - No	ot Requi	ired									
COURS	E OBJ	ECTIV	ES										
	To pro	ovide s	tudents	with a	worki	ng knov	wledge	of the c	oncepts, o	pportunities	and o	challe	enges of
1		entrepr		•									
										tive respons	es to o	critica	al social
2									arming, etc		C .1		1
3				boratıv. eprenet		ng proc	cess to c	levelop a	a better un	derstanding	of the	cont	ext and
						profess	ionally	for mean	ingful emr	oloyment by	reflect	ting o	n the
4				preneur		profess	ionany .	or mean	ingrai cin	oroyment by	101100	umg	in the
5						al entre	preneur	S.					
COURS													
On the		ful com	سواهدام	of 41. o		. 4 d 4 .	:11 1	ahla 4a					
							will be		alamanta	from across	0		
									social ent		a		
traditio			itional s	ii actai	25 110111	raarro	nar non	5101165 60	Social cit	erprises to		Une	derstand
CO2: A	nalyze	the ope	rations	of a hui	nan ser	vice org	ganizatio	on using	social entr	epreneurial			
			•			gnostic t						Ap	ply
									hods for pl	lanning,			
								ventures	S.			Ap	
						ange ve						Ap	ply
							ocused (l or poor		ssing persi	stent social		Λ 101	nlv
problem	is parti	cularry	to those	wiio ai	e marg	manzed	or poor	•				Ap	91 y
MAPPI						1	1		MME SP	ECIFIC OU	UTCO	MES	3
Q 5	P	P	P	P	P	P	P	PO	.	2010			D 045
COs	01	O2	03	O4	O5	06	O7	8	PO9	PO10	PO	11	P012
CO1	M	-	-	-	-	M	S	S	-	M	-		-

S- Strong; M-Medium; L-Low

S

S

S

S

S

S

S

S

S

 \mathbf{M}

M

M

M

M

M

M

M

M

M

M

M

SYLLABUS:

CO2

CO₃

CO₄

CO5

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and

complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

- 1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.
- 2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

- 1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.
- 2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.
- 3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.
- 4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.
- 5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

Name of the faculty	Designation	Department	E-Mail Id
		Management Studies	
		Management Studies	
	Name of the faculty	Name of the faculty Designation	

	Category	L	T	P	Credit
NEW VENTURE PLANNING AND MANAGEMENT	OE-IE	3	0	0	3

Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a newventure and creation of a business plan

PREREQUISITE - Not Required

COURSE OBJECTIVES

- 1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.
 - 2 Information and understanding necessary to launch and grow an entrepreneurial venture.
- 3 A realistic preview of owning and operating an entrepreneurial venture.
- An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.
- 5 The opportunity to develop a business plan.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Explain the concept of new venture planning, objectives and functions and its	
components.	Understand
CO2: Analyze the business plan issues and remuneration practices in startups business.	Apply
CO3: Explore an entrepreneurial idea to the point where you can intelligently and decide	
whether to "go for it" or not.	Apply
CO4: Compare and contrast the different forms entrepreneurial environment in terms of their	
key differences and similarities.	Apply
CO5: Explore the business plan and business model canvas for your idea.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	P	P	P	P	P	P	P	PO					
COs	01	O2	O3	O4	O5	O6	O7	8	PO9	PO10	PO11	P012	
CO1	M	-	-	-	-	M	S	S	-	M	-	-	
CO2	S	S	S	M	M	M	-	-	-	-	-	-	
CO3	S	S	S	M	M	M	-	-	-	-	-	-	
CO4	S	S	S	M	M	M	-	-	-	-	-	-	
CO5	S	S	S	M	M	M	-	-	-	-	-	-	

S- Strong; M-Medium; L-Low

SYLLABUS:

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising -

How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

- 1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House
- 2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

- 1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.
- 2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.
- 3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- 4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

FINANCE AND ACCOUNTING	Category	L	T	P	Credit
FOR ENGINEERS	OE-IE	3	0	0	3

Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.
- 2. To apply the various methods to claim depreciation.
- 3. To practice fundamental investment decision through capital budgeting techniques.
- 4. To analyze cost-volume profit analysis for decision making and analyze standard costing techniques.
- 5. To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of recording, book keeping and reporting of the business	
transaction.	Understand
CO2: Identify and Apply suitable method for charging depreciation on fixed assets.	Apply
CO3: Analyze the various methods of capital budgeting techniques for investment decision.	Analyze
CO4: Justify the scope of cost-volume-profit analysis, standard costing, and marginal	
costing techniques for decision making.	Analyze
CO5: Estimation of working capital requirements of the organization.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	_	_	M	L	S	M	_	S	_	M	M	L	M	L	M
CO2	L	-	-	L	M	-	L	L	-	-	L	M	L	L	-
CO3	-	M	-	M	L	-	-	L	S	M	-	L	-	L	M
CO4	L	L	-	S	-	-	L	-	-	L	M	L	M	L	M
CO5	L	-	L	S	L	-	-	M	M	L	-	L	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction: Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions – Double entry system - Preparation of journal, ledger and Trial balance – Final Accounts.

Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Financial statement analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

Marginal Costing: Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

	Name of the			
S.No	Faculty	Designation	Department	Mail ID
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2	Dr. Rajeshkumar	Assistant Professor	Management Studies	rajesh.mba@avit.ac.in

OPEN ELECTIVE-EMERGING AREA COURSES

	Category	L	Т	P	Credit
BIOSENSORS AND TRANSDUCERS	OE-EA	3	0	0	3

The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.

PREREQUISITE – Nil

COURSE OBJECTIVES

- 1 To use the basic concepts of transducers, electrodes and its classification.
- 2 To discuss the various types of electrodes.
- 3 To determine the recording of biological components.
- 4 To employ the knowledge in electrochemical and optical biosensors.
- 5 To outline the various biological components using biosensors.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the working principles of transducers.	Understand
CO2. Explain the various types of electrodes.	Understand
CO3. Utilize various FET sensors for recording of biological components.	Apply
CO4. Distinguish various biosensors like electrochemical and optical biosensors.	Analyze
CO5. Analyze the biological components using biosensors in various applications.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L		M		M			L			M		M	
CO2	M	L		M		M			L			M		M	
CO3	S	M	L	S		S	M	M	M			M	M	M	M
CO4	S	S	L	S		S	M	M	S			M	M	M	S
CO5	S	S	L	S		S	M	M	S			S	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in			
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in			
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in			
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in			

	Category	L	Т	P	Credit
PRINCIPLES OF BIOMEDICAL					
INSTRUMENTATION	OE-EA	3	0	0	3

To enable the students to develop knowledge of principles, design and applications of the Biomedical Instruments.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To know about bioelectric signals, electrodes and its types.
- 2 To know the various Biopotential recording methods.
- To study about patient monitoring concept and various Physiological measurements methods.
- 4 To study the principle of operation blood flow meter, blood cells counter.
- 5 To study about bio chemical measurements and details the concept of biotelemetry and patient safety.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the different Bio signal or biopotential.	Understand
CO2. Discuss the working principles of diagnostic and therapeutic equipments.	Understand
CO3. Examine the various instruments like as ECG, EMG, EEG, X-ray machine.	Apply
CO4. Illustrate medical instruments based on principles and application used in hospital.	Analyze
CO5. Analyze and calibrate fundamental biomedical instrumentation used in hospital.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M			-			1		1			L	M	1	
CO2	M								L			L	M		
CO3	S	S	M	S	M				M			M	M	M	S
CO4	S	M	M	M	L			L	S	L		S	M	S	S
CO5	S	S	M	M	L	M		L	S	L		S	M	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in

											Cate	egory	L	Т	P	Credit
				TRO OFU	DUC' ELS	TION	ТО				OE-EA	\	3	0	0	3
PRI	EAN	IBL	E							•			•	•	•	
This	s cou	ırse	will t	orovid	le an	overvi	iew o	f exist	ting e	nergy	utilizat	ion, pr	oducti	on and	infra	structure. We will
			-						_			-				d will include the
chei	mistr	y o	f bio	fuels,	the	biolo	gy of	imp	ortant	feeds	stocks,	the b	oiocher	nical, g	geneti	ic and molecular
appı	roacl	hes	being	deve	loped	to a	dvanc	e the	next	genera	ation o	f biofu	iels an	d the	econo	omical and global
					uction	١.										
				E - N												
CO	URS	SE O	BJE	CTIV	ES											
1	To u	nder	stand	the di	ifferer	nt type	s and	differ	ences	betwe	en exis	sting er	nergy r	esource	s.	
, ,	Γο 111	nder	stand	the ir	nproci	ureme	nt uti	ilizatio	on and	l their	impact	s on so	ciety a	nd envi	ronm	ent
	To understand the improcurement, utilization and their impacts on society and environment.															
	To gain knowledge about the existing different biofuels and the methods of production from different															
3	sourc	ces.														
4	To in	itrod	uce th	ne tec	honol	ogies	involv	ed in	the pi	roducti	on, cha	aracteri	zation	of biof	uels.	
-	Го ir	npac	ert the	knov	vledge	e and	applic	ations	of bi	ofuel i	n vario	ous sec	tors an	d their	benet	ficial aspects to the
5	socie	ety.														_
CO	URS	SE O	UTC	OME	ES											
Afte	er the	e suc	cessf	ul cor	npleti	on of	the co	urse.	learne	r will l	be able	to				
					p			,								
CO	1. Ur	nders	stand	the ex	kisting	and e	emerg	ing bi	omass	s to ene	ergy tec	chnolo	gies			Remember
														fuele		
											ion and					Understand
		_						•			nversio				•,	Understand
					oncep ted bi			inery	syste	m and	be able	to dev	elop n	najor un	1t	Apply
							•	4								Apply
	CO5. Illustrate the environmental implications Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS		PO1	PO2		PO4						PO10		PO12		PSO	
CO1	5	S	-	L	-	M	-	S	L	-	-	-	-	S	-	L
CO2		-	S	S	-	M	-	L	-	-	-	-	-	-	S	L
CO3		S	M	-	M	-	M	-	L	L	-	-	-	S	-	L
CO4			S	M	-	M	L	L	-	-	-	-	-	-	S	M
CO5	-	-	-	-	-	-	-	-	S	M	-	-	-	-	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1. Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

	Name of the			
S.No	Faculty	Designation	Department	Mail ID
		Assistant Professor –		
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

EOOD AND NIJEDIEVON	Category	L	Т	P	Credit
FOOD AND NUTRITION					
TECHNOLOGY	OE-EA	3	0	0	3
DDE A MY E	<u> </u>				<u> </u>

The course aims to enable the students to understand the physicochemical, nutritional, microbiological and sensory aspects, To familiarize the students about the processing and preservation techniques. To emphasize the importance of food safety, food quality, food plant sanitation, food laws and regulations, food engineering and packaging in food industry.

PREREQUISITE – NIL

COURSE OBJECTIVES

- Understand the tradition food processing techniques and the basics concept of food biochemistry.
- Demonstrate the product development technique, quality and contaminant check.
- 3 To articulate their technical knowledge for industrial purpose.
- 4 Describe national food laws and standards.
- 5 Laws and qualities of standard for food products.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1: Recall the processing techniques practiced in olden days and the biological process	Remember
CO2. Illustrate the methods for animal product development, quality control and also screen	
the contaminant	Understand
CO3. Transfer the techniques in scaling up for industrial needs	Apply
CO4. Interpret and Troubleshoot instruments to maintain accuracy	Apply
CO5. Develop standards for food additives	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO1	S	1	-	ı	1	ı	-	ı	1	1	1	1	1	1	-
CO2	-	M	-	ı	1	ı	-	ı	1		1		1	1	-
CO3	L	M	S	M	L	-	-	ı	-	-	-		M	L	-
CO4	M	S	S	M	L	ı	-	ı	1	1	1	1	S	S	-
CO5	-	S	S	M	M	-	-	-	-	-		M	L	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO FOOD BIOTECHNOLOGY

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY
- 3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

COURS	E DESIGNERS		

	Name of the			
S. No.	Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

									C	ategory		L	T	P	Credit
			DIS	SASTE	R RISI	MAN	AGEN	1ENT		DE-EA		3	0	0	3
Preaml	ble														
structur		Hazar	d Asses	sment p	orocedu	re in In	dia. Th	is cours					ct against mitigatin		;
Prerequ	uisite														
NIL															
Course	Objecti	ives													
1	To Und	erstan	d basic	concep	ots in D	isaster l	Manage	ement.							
2	To Und	erstan	ıd Defii	nitions a	and Ter	minolog	gies use	ed in Di	saster N	/Ianagem	ent.				
3	To Und	erstan	d the C	halleng	ges pose	d by D	isasters								
4	To unde	erstan	d Impa	cts of D	isasters										
	SE OU						_								
	he succe									l and Ma	rina				
				• •			•			l and Ma		1			
		•			Jeologi	cai, Ma	ISS MOV	vement	and Lai	nd Disast	ers, win				
and W	ater Dri	ven D	1sasters	5.									Understar	<u>nd</u>	
CO2. I	Identify	the po	otential	deficie	ncies of	existin	g build	ings for	Earthq	uake disa	aster and				
	st suitabl												Understar	nd	
	Derive th Juake dis		de lines	for the	precaut	tionary	measur	es and	rehabili	tation me	easures f		Apply		
Larting	uake uis	asici.											дрргу		
CO4. I	Derive th	ne pro	tection	measur	es agai	nst floo	ds, cyc	lone, la	nd slide	S			Apply		
CO5. I	Understa	nd th	e effect	s of dis	asters o	n built	structui	res in In	dia				Understa	nd	
MAPI	PING W	TTH	PROG	RAMN	1E OU	ТСОМ	ES AN	D PRC	GRAN	IME SP	ECIFIC	OUTC	OMES		
COG	DO 1	DO2	DC2	DC 4	DO.	DO.	DO5	DC0	DO0	DO10	DO11	DO12	DCO1	DCC2	DGG2
COS CO1	PO 1 M	PO2	PO3	PO4 L	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO2	M	M	L	L	-	M	-	-	-	-	-	-	L	-	-
CO3	S	M	S	M	ı	L	ı	M	-	1	-	-	M	L	-
CO4	S	M	S	-	L	-	-	-	-	-	-	-	M	L	-

L

CO5

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management; Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXT BOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES:

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

Course	Designers			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in

										Catego	ory	L	T	P	Credit
		MU	NICIP	AL SO	LID W	ASTE	MANA	GEMI	ENT	OE-E	4	3	0	0	3
Pream	ble										<u> </u>				
Structu	re is ar	n arrang	gement	and or	ganizat	on of i	nterrela	ated ele	ments i	n a mate	erial obje	ect or sy	stem, or	the object	ct or
system	so orga	anized.	Materi	al struc	tures in	clude n	nan-ma	de obje	cts sucl	n as build	dings and	d machi	nes and n	atural ob	jects
such as	biolog	ical org	anisms	, miner	als and	chemic	als.								
Prereq	uisite														
	Nil														
Course	Objec	etives													
1.	The	on-site/	off-site	process	sing of	the sam	e and t	he dispo	sal me	thods.					
2.	The s	student	is expe	cted to	know a	bout the	e variou	ıs effect	ts and d	lisposal c	ptions fo	or the m	unicipal s	solid wast	e.
3.	The o	collecti	on and	supply	of wate	r.									
4.	The	offsite p	processi	ing invo	olved in	site.									
Course			1	C .1		. 1	. '11 1	1.1							
								be able	to						
CO1.	To kn	ow abo	ut the t	ypes of	waste	& Sour	ces						Analyze		
CO2.	To St	udy the	on site	Storage	e & Pro	cessing							Apply		
CO3.	To stu	ıdy abo	ut the c	ollectio	on & tra	ansfer t	he was	te					Apply		
CO4.	To St	udy the	proces	s of off	site pro	cessing	<u>, </u>						Apply		
CO5.	To kno	ow abou	it the so	olid was	ste disp	osal							Apply		
							gramm	e Speci	fic Out	comes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M M	L L	S	-	-	-	-	-	-	-	-	-	<u>-</u> М	S S
CO ₂	S	M	M	S	-	-	-	-	-	-	-	-	-	M	S
CO4	S	M	M	M	-	-	-	-	-	-	-	-	-	M	S
CO5	S	M	M	-	-	-	-	-	-	-	-	L	-	-	S
S- Str	ong; N	1-Medi	um; L-	Low											

SYLLABUS

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization—public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITE STORAGE & PROCESSING

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

Text Books

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.
- 3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

Reference Books

- R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis
 Publishers, 1997, Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries",
 INSDOC, 1993.
- 2. Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002). Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development.
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

Cours	e Designers			
S.No	Name of the Faculty	Designation	Department	Mail ID
				subathra@avit.ac.in
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com

								_			Category	\mathbf{L}	\mathbf{T}	P	redit
			JNDAN TELLI			ARTI	FICIA	L			OE-EA	3	0	0	3
PREAM	BLE	ш	וטטטו	GENC	·L						OE-EA		U	U	<u> </u>
												ificial Int			
	_	_	ent, Kno	owledge	Repre	sentatio	n and	Game 1	playing	. Thus,	this sylla	bus focus	es on to	know a	bout Al
and its co			T												
COURS															
				•		•	•				l Intellige	nce.			
2.	Γο have	knowl	edge of	generio	e proble	m-solv	ing met	hods in	Artific	ial Intel	ligence.				
3.	Γο desi	gn softv	ware ag	ents to s	solve a	problen	n.								
4.	Apply t	he knov	wledge (of algor	rithms to	o solve	arithme	etic prol	blems.						
5.	Assemb	ole an et	fficient	code fo	r engin	eering p	oroblem	ıs.							
~ ~ ~ ~ ~			- ~												
COURS	E OUT	COMI	£S												
On the	success	ful com	pletion	of the	course,	student	s will b	e able t	0						
CO1: . Id	lentify t	he diffe	erent ag	ent and	its type	es to sol	ve the 1	problen	าร			Understa	nd		
CO2: kn												Apply	110		
									igence.						
CO4: 43					-				1	41	.1 4:	Apply			
CO4 : to environm		bout ex	tension	or cone	шиоп р	rodadii	ny and	now to	appiy ii	n the rea	u ume	Apply			
			r .·	D (1	1.0	1 D	•,•					1		
CO5: To										E CDE	TIEIO O	Understa			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	UTCOMI PO12	PSO1	PSO2	PSO3
						100	10/	100	10)	1 010	1 011				1505
CO1	M	M	M	M	M	-	-	-	-	-	-	M	S	M	-
CO2	M	M	L	M	L	-	-	-	-	-	M	M	S	M	M
CO3	M		S	M	M	-	-	-	-	-	-	M	S	-	M
CO4	S	M	M	M	M	-	-	-	-	-	-	M	S	M	M
CO5	S	M	M	M	M	-	-	-	-	-		M	S	M	-
S- Stron	g; M-N	Iedium	; L-Lo	\mathbf{w}											

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system - Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching

GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

- 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE	DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in
2.	Dr.R.Jayachandran	Professor	CSE	rjaichandran@avit.ac.in

												1			1
		IN	TROD	UCTIO	ON TO	INTEI	RNET (OF		(Category	y L	T	P C	redit
			HINGS	00110	,,,,,	11 (1121					OE-EA	3	0	0	3
PREAN															
			statisti	cal data	a manij	oulation	n and a	nalysis.	It was	inspired	l by and	is most	compat	ible witl	n the
statistica PRERE															
PKEKE NIL	QUISI	IL													
COURS	SE OBJ	ECTIV	ES												
1	To lea	rn Intro	duction	to IoT											
2	To Stu	ıdy met	hodolo	gy of Io	Т.										
3	To De	evelop I	oT anni	ications	z iicino	Δrduin.	o and Ir	ntel Edi							
3	10 DC	velop i	στ αρρι	ications	using	Ardum	o and n	itei Eui	11011.						
COURS	SE OUT	COMI	ES												
On the	success	sful con	nnletion	of the	course.	student	s will h	e able t	0						
										ucts, con	trol				
stateme	nts, stri	ng func	tions									Understa	and		
CO2: T	o Unde	rstand t	he use	of Intro	duction	to IoT	funda	mentals	s.			Understa	and & A	apply	
CO3: I	Learn to	apply I	ntroduc	tion to	IoT for	Comm	nunicati	ng Seqi	uential l	Process		Understa	and & A	apply	
										ical persp	no ativo	Understa			
							10 101	110111 8	i statisti	icai persi	becuve				
CO5 To	o learn l	Introduc	ction to	IoT Ch	nallenge	es						Understa	and & A	pply	
												UTCOM		1	ı
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	S	S	M	M	L	S	S	M	S	L	S	- N/	S	M	S
CO2	M	S	M	M	M	S	S	M	S	M	M	M	M M	M	S
CO3	IVI	S	IVI	IVI	IVI	S	<u>ა</u>	1VI	S	IVI	M	M	M	S	M
CO5	S	S	S	S	M	S	S	S	S	M	S	S	M	M	M
	ng; M-			~	141	b	ט	D.	D D	141		ט	141	171	141
2 2310	7			- "											

SYLLABUS

UNIT I -INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network

UNIT III – Network & Communication aspects

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**
- 1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

						- ~					egory	L	T	P	Cre dit
PREAM	ADI I	-		CYB	ER SI	ECUR	ITY			OE-	EA	3	0	0	3
			need for	Cyber	Securi	ity in r	eal tim	e and t	o study	technic	mes invo	olved in i	t		
PRERE				Cyber	Becar	ity III I	car tim	c and t	o stady	teemme	lacs III ve	71100 111 1			
COURS															
1.	Τοι	ınders	tand th	e funda	menta	ls of C	yber S	ecurity	and iss	sues.					
2.	Tos	study '	various	cyber (crimes	and leg	gal ren	nedies.							
3.	Тоа	apply	various	privac	y and s	ecurity	7.								
4.	Tos	study l	E-Com	nerce a	and dig	ital pa	yments	·							
5.				c secur	ity asp	ects re	lated to	o Comp	outer ar	nd Mobi	les.				
COURS															
On the s	ucces	sful c	ompleti	on of t	he cou	rse, stu	idents v	will be	able to)					
CO1: A associate			rstand t	he con	cept of	Cyber	securi	ty and	issues	and chal	llenges	Unders	tand		
CO2: A how rep										edies and	d as to	Apply			
CO3: A media ar underlyi	ble to nd un ing leg ble to	appre dersta gal asp	eciate v nd the r pects an	arious j reportinad best	privacy ng proc practic	and secure of the secure of th	ecurity of inap the use	conce propria of Soc	rns on onte contains the contai	tent, dia platf	orms.	Apply Apply			
CO5: A Mobiles	Able to	o unde	erstand	the bas	ic secu	rity as	pects re	elated t	o Com	puter ar	ıd	Apply			
MAPPI	NG V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND I	PROGI	RAMM	E SPEC	IFIC O	UTCO	MES	
COs	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO1 1	PO1 2	PS O1	PS O2	P S O 3
CO1	M	M	М	M	-	-	-	-	-	-	-	-	M	M	M
CO2	M	M	М	M	M	-	-	-	-	-	-	-	M	M	M
CO3	M	M	S	M	M	-	-	-	-	-	-	-	M	M	M
CO4	S	M	М	M		-	-	-	-	-	-	-	M	M	S
CO5	S	М	М	M	S	-	-	-	-	-	-	-	M	M	S
S- Stror	0/	l-Med	ium; L	-Low											
SILLA	DUS														

INTRODUCTION TO CYBER SECURITY

9 hours

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

9 hours

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

9 hours

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

9 hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y , TOOLS AND TECHNOLOGIES FOR CYBER SECURITY hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

- 1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.
- 2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)
- 3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)
- 4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.
- 5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.
- 6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by E. Maiwald, McGraw Hill

COUI	RSE DESIGNERS			
S.	Name of the			
No.	Faculty	Designation	Department	Mail ID
		Assistant professor G-		
1.	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in

								Cate	egory		L	T	P	Cr	edit
			IGN O IPME		CTRO	ONIC			-EA		3	0	0		3
PREA	MBL	_								1				ı	
												ectronics			
			-				_			_	_	rom a e physic			d into
PRER	REQUI	SITE	–Nil												
COUI	RSE O	BJEC'	TIVES	5											
1	To ur	dersta	nd the	various	Conce	ept of I	ndustri	al Desi	ign pro	cess.					
2	То ар	ply the	basic	Conce	pt of el	ectroni	c Prod	uct des	igns m	ethodol	ogy.				
3	To cla	assify t	he Cor	cept o	f Ergor	nomics	& aest	hetics	in prod	luct desi	gn.				
4	To ur	dersta	nd the	Knowl	edge re	gardin	g the d	esign o	of produ	uct pack	aging a	nd worki	ing envi	ronmer	ıt.
5	To ur	dersta	nd the	Knowl	edge of	differ	ent ind	ustrial	standa	rd and v	alue ana	lysis.			
COUI	RSE O	UTCC	MES												
On the	e succe	ssful c	omplet	ion of	the cou	rse, stu	idents	will be	able to)					
CO1.	Visuali	ize the	concep	t for p	roduct	design	with re	espect 1	to ergo	nomics	and aest	hetics.		Reme	mber
										quipme				Apply	
CO3.	Apply	creativ	ity in t	he desi	ign of s	system	by for	mulatir	ng arch	itecture	with pro	oper pla	cement	Apply	
	nponen														
<u>CO4</u>	Apply	the cor	icept o	f visua	l comn	nunicat	ion tec	hnique	s in pro	oduct de	sign.			Apply	
CO5.	Apply	the pro	cess of	value	analys	is in ex	isting	produc	t.					Apply	
MAP	PING	WITH	PRO	GRAM	ME O	UTCC	MES	AND I	PROG	RAMM	E SPE	CIFIC C	OUTCO	MES	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
<u>S</u>	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	M	L	-	-	S	-	-	L	M	L	-	-	S	-	-
CO2	M	L	-	M	S	-	-	L	M	L	-	-	S	-	 -
CO3	M	L	-	M	S	-	-	L	M	L	-	L	S	-	M
CO4 CO5	S	M M	L	-	S	-	-	L	M	L L	-	L L	S	M	M
	1 2	IVI	L	_	2	-	-	M	L	L	-	1 L	S	M	M

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation. Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

- 1. Ernest J Mccormick, "Human factors in Engineering and Design" -, McGraw-Hill Co.
- 2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.
- 3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", & Hall. London. Flurschiem C H, "Industrial Design and Engineering Design", Council, London and Springer Verlag, 1983

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

	INTRODUCTION TO INDUSTRY 4.0 AND	Category	L	T	P	Credit				
	INDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3				
PRE	AMBLE	02 2.1		Ū	Ū					
Indus	try 4.0 and Industrial Internet of Things is the pioneer	of today's m	odern	techn	ology	To match the				
	eering skills with the industry skills this subject will in	nduce and im	ıpart tl	he kno	wledg	ge among the				
	g professionals.									
PRE	REQUISITE									
Basic	knowledge of computer and internet									
	RSE OBJECTIVES									
	Industry 4.0 concerns the transformation of industri	ial processes	throu	gh the	integ	ration of modern				
1	technologies such as sensors, communication, and co	-		_						
	Technologies such as Cyber Physical Systems (CPS				oT), C	Cloud Computing.				
	Machine Learning, and Data Analytics are consider			_						
2	transformation.									
	Industrial Internet of Things (IIoT) is an applicati	on of IoT in	n indu	stries	to m	odify the various				
3	existing industrial systems.					J				
4	HoT links the automation system with enterprise, pla	nning and pr	oduct	lifecy	ele.					
5	Real case studies.									
COU	RSE OUTCOMES									
On th	e successful completion of the course, students will be	e able to								
	. Apply & Analyzing the transformation of industrial									
	ous techniques.	process of	A	nalyz	e					
	2. Evaluate the transformation technologies are considerable.	ered to be the								
	erent drivers.			pply						
	3. Existing industrial systems will adopt the application	ns of HoT		pply						
	4. Intensive contributions over automation system with		1	-rrij						
	ning and product life cycle	i ontorpriso,	Δ	nalyz	e					
CO:	CO5. Analyze of various Real time case studies. Analyze									

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	S	S	M	ı	M	-	-	-	ı	-	1	M	S	M	ı
CO2	S	S	S	M	M	_	_	_	1	-	-	M	S	M	M
CO3	S	S	S	M	M	-	_	_	-	-	-	M	S	M	M
CO4	S	S	S	M	M	-	-	_	-	_	-	M	S	M	M
CO5	S	S	S	S	M	-	-	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGS

Introduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIoT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

HOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor	ECE	hodece@vmkvec.edu.in

			CDEE	יא פאי	WED (TENIEL	ATIO	N SYST	EMC		Category OE-EA	y L 3	$\begin{array}{c c} T & F \\ \hline 0 & 0 \end{array}$		redit 3
PREAMB	LE		GKEE	MPU	WER	JUNER	KATIO	N 5151.	LIVIS		OE-EA	3	<u> </u>	<i>'</i>	3
The course and investing resources wo of the cour PREREQ	igates will be se. UISIT	the co preser	ntribution nted. Dis	on they	can n	nake to	the en	ergy pro	file of the	he natio	n. The to	echnolo	gy used	to harn	ess these
COURSE															
1 Uno	dersta	nd the 1	nexus be	tween	energy.	, enviro	nment,	and sust	ainable o	developn	nent.				
2 App	precia	te energ	gy ecosy	stems	and its	impact	on env	ironment							
3 Lea	ırn bas	sics of	various t	ypes of	f renew	able an	d clear	n energy t	echnolo	gies.					
			to advan	iced co	urses ir	renew	able en	ergy.							
COURSE				f the co	urce ct	udents	will be	able to							
	On the successful completion of the course, students will be able to CO1: Explain renewable energy sources & systems. Understand														
								.4 44.1	aa ath an	mal his	fual fu	al aall	'	Understa	iiu
CO2: Ap			•	•	s to bu	iid soi	ar, wii	ia, tidai,	geomer	mai, bic	muei, iud	er cen,		A1	
Hydrogen					1:4:	- C	1. 1		C	4 - 1 1				Apply	
CO3: Ana	•			_					_	ts in soi	ving nur	nericai		A 1	
problems														Analyz	
CO4: Der														Analyz	e
CO5: Co	nduct	experi	ments to	o asses	s the p	erform	ance o	f solar P	'V, solar	therma	l and bi	odiesel			
systems MAPPIN	IC WI	ти рі	POCD A	MMF	OUTO	OME	S A NID	PRACE	AMME	COFCI	FIC OL	TCOM	IFC	Apply	
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	M	-	L	L	-	-	-	_	М	-	-
CO2	S	M	S	L	M	-	L	M	-	M	-	_	-	-	-
CO3	S	-	_	-	M	-	_	M	M	-	-	_	L	-	-
CO4	S	-	_	-	M	-	L	-	-	-	-	M	-	-	-
CO5	S	M	S	L	M	-	L	M	-	M	M	_	M	L	-
CO6	S	-	_	-	M	-	L	L	-	-	-	_	-	-	-
S- Strong		Iedium	; L-Low			1		. –	1	ı	ı		ı	1	

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

												Catego	ory	L	T	P	C
		IND	USTR	RIAL I	DRIVI	ES AN	D AU	TOM	ATIO	N		OE-E	4	3	0	0	3
Preamble																	
To introdu	ce four	datior	on th	e princ	ciples o	of driv	es & a	utoma	tion an	d their	eleme	nts with	the in	mple	ement	ation	
PREREQ	UISIT	E:NI	L														
COURS	E OBJ I	ECTI	VES														
1		Тое	xplore	the va	arious .	AC,D0	C & S _I	ecial l	Machii	ne Driv	es for	industria	al Ap	plica	ation.		
2		To s	tudy a	bout th	ne vario	ous Op	oen loc	p and	closed	l loop c	control	scheme	s for o	drive	es.		
3		To k	now a	bout h	ardwai	re imp	lemen	tation (of the	control	lers us	ing PLC					
4		To s	tudy tł	ne con	cepts o	f Dist	ributed	l Conti	ol Sys	stem.							
5		To u	nderst	and th	e impl	ement	ation c	f SCA	DA ar	nd DCS	S.						
COURS	5 To understand the implementation of SCADA and DCS. COURSE OUTCOMES																
On succe	essful c	omple	tion o	f the c	ourse,	the st	udent	s will	be abl	e to							
CO	1				_	•		vario	us typ	es of	motors	, differe	nces,		I I.a.d.		. J
СО	1				selecti wledge			of mo	otors l	neating	effects	and bra	aking		Unde	erstai	ıa
CO	2				s indust				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			una ore	5		A	pply	
СО	3	To e	xplain o	control	metho	ds of sp	pecial c	lrives							Unde	erstar	ıd
CO	4		-			ng usin	ng PLC	and u	se of v	various	PLCs 1	to Auton	nation		TT., 1	4	1
СО	4	_	lems in			ontrol	and dat	a acqu	isition	method	l and u	se the sa	me in		Unde	erstar	ıa
CO	5			_	on areas										Unde	erstar	ıd
GO						_						ine Interf	facing		TT 1		1
CO Mapping		1								of Aut		1			Und	erstar	ıa
	<u></u>	PO2	PO3	PO4								DO12	DCO1	.	DCO2	DC	103
COs	PO1	PU2	PUS	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO		PSO2	PS	503
CO1	S	S	L	-		S	S	-		L	-	-	-		-		L
CO2	M	_	M	_	S	L	M	_	M	L	_	-	L		_		_
	M	_	M	_	S	L	M	_		L	_	_	_		M		_
CO3	141		141		b	L	141		1	L		_			141		_

CO4	S	-	S	ı	S	M	M	L	ı	L	M	_	_	-	L
CO5	S	M	S	S	S	M	S	-	M	L	L	M	_	L	M

INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS - Functional elements of DCS - Elements of local control unit -Interfaces-Types of information displays - Architecture of anyone commercial DCS - Advantages of DCS -Selection of DCS - List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008

REFERENCES

- 1. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devaraian	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

		DION		OTIT T	70				Categ	gory	L	T]	P	Credit
		BIOM STRU				INCT	TON	01	7 T7 A		,			n	2
PREAN			CIUI	AI AI	ID I C		1011	U	E-EA		3	0		0	3
Biomol			arbohy	vdrate:	s, prot	eins, f	fat are	vital co	ompor	ents of	anv liv	ing syst	tem. Ba	sic kno	wledge
about th									-		•	•			_
PRER				VIL S	<u>'</u>			,							<i>50</i>
COUF				S											
1	To gi	ive an	overv	iew of	impo	rtance	of bio	omolec	ules.						
2	To give an overview of importance of biomolecules. To elaborate the structure of proteins and nucleic acids and its role in disease.														
3										lar func			logy an	d patho	ology.
4						•						<u>* </u>		-	
5	To enumerate the role of lipids and their cellular function in physiology and pathology. To briefly cholesterol and its role in diseases.														
COUF					ana no	S TOIC	III UISC	ascs.							
After t	he suc	cessfu	l com	pletion	n of th	e cour	se, lea	arner w	ill be a	able to					
CO1. I	Relate	the ba	sics of	f biom	olecul	les in	and ar	ound hi	m				Und	erstand	
CO2. 1	Unders	stand t	he stru	icture	of bio	molec	ules s	uch as j	proteii	ns and n	ucleic	acids	Und	erstand	
CO3. I	Discov	er the	role o	f carb	ohydra	ates in	healt	hy and	diseas	ed cond	itions		App	ly	
CO4. I	Relate	disfun	ctioni	ng of	lipids	with d	lisease	2					Ana	lyse	
CO5. 0													Eval	nate	
									ND PF	ROGRA	MME	SPEC			MES
COS	PO1	PO2	PO3	PO4		PO6		PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	M	S	-	-	M	-	-	-	-	-	-	-	L	-
CO3	M	L	M	M	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	M	L	M	M
CO5	S	- 	L	L	-	M	-	-	-	-	-	S	S	M	-
S- Str	ong; N	1-MIC	num;	L-L0	W										

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

- 1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P.R., W.H. Freeman and Company, 1980.
- 2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.
- 3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.
- 4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

S.No	Name of the			
	Faculty	Designation	Department	Mail ID

	Dr.P.David		Pharmaceutical	
1	Annaraj	Assistant professor	Engineering	davidannaraj@vmkvec.edu.in
			Pharmaceutical	
2	Ms.S.Sowmiya	Assistant Professor	Engineering	sowmiya.vmkvec@vmrf.edu.in

			Category	L	T	P	Credit					
		PHARMACOGENOMICS	OE-EA	3	0	0	3					
PRE	AMBLE		•		1							
Phari	Pharmacogenomics involves the study of the relationship between an individual's genetic makeup and his											
or he	or her response to a drug. Pharmacogenetics, a component of pharmacogenomics, is the study of the											
relati	relationship between a single gene and its response to a drug.											
	PREREQUISITE - NIL											
COU	RSE OBJEC	CTIVES										
1	Discuss about the basic knowledge about pharmacogenomics and drug design using genomic applications for drug action and toxicity.											
2	Perform how individualization of drug therapy can be achieved based on a person's genetic makeup while reducing unwanted drug effects.											
3	Outline the Pharmacogenomics studies on how genetic differences between individuals can affect											
4	Formulate or	n medicine skills acquired by the student a	nd his action in	differen	ıt patho	logie	es.					
	Develop acq	uire knowledge about the influence of gene	etic alterations of	on the th	erapeut	ic ef	fect and					
5	adverse react	tions of the drugs, from a perspective of inc	dividualized the	erapy.								
	URSE OUTC											
Afte	er the successf	ul completion of the course, learner will be	able to									
CO	1.Recognize th	ne effect of genetic differences between ind	lividuals in the	outcome	of 1	Reme	ember					
CO2	2. Describe the	e role of single nucleotide polymorphism as	s a biomarker fo	or the	1	Unde	rstand					
CO	CO3. Utilize and manage the new genomics based tools as they become available as Understand											
CO4	CO4. Examine the applications of genomics principles in drug action and toxicology Analyze											

Analyze

CO5. Validation of case studies related to pharmacogenomics

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L	
CO2	M	M	M	M	L	-	-	-	M	-	L	L	L	L	-
CO3	S	S	S	S	L	-	ı	-	M	-	L	L	L	L	-
CO4	M	M	M	M	M	-	ı	-	S	-	L	L	M	L	-
CO5	L	L	L	L	S	ı	ı	ı	M	-	M	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in

the ligand binding pocket.

PHARMACOGENOMICS - CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- 1. Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- 2. Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- 2. Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- 3. Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

S.No.	Name of the Faculty	Designation	Department	Mail ID		
			Pharmaceutical			
1	Ms. R. Jaishri	Assistant Professor	Engineering	jaishri@vmkvec.edu.in		

MANDATORY COURSES

Course Code	Course Title	Category	L	Т	P	C
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar,Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES:

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, Sundra Yoga Therapy, Asana Publications, 2009

REFERENCES:

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr. Ananda Balayogi Bhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy *Yoga for Beginners*, Tara yoga Publications, 2008.
- 4. Dr. Asana Andiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Navagam, MudumaikkuMutrupulliVaikkumMuthiraigal, SaaruPrabha Publications, 2010.

Course Code	Course Title	category	L	Т	P	С
	INDIAN CONSTITUTION					
		AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

- 1 To understand the nature and the Philosophy of the Constitution.
- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.
- 3 To Analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To Understand and analyse the three wings of the state in the contemporary scenario.
- 5 To Analyse Role of Adjudicatory Process.
- 5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution – Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President -Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III –Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayat, Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

- 1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008
- 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india
- 3. https://www.sci.gov.in/constitution
- 4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW SCHOOL OF
		ADMINISTRATIVE AND ADJUDICATORY	INDIA UNIVERSITY
		PROCESS	

COURSE DESIGNER												
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID								
1	Dr.Sudheer	Professor	AV School of Law	Sudheersurya18@gmail.com								

Course Code	Course Title	Category	L	Т	P	С
	ESSENCE OF INDIAN TRADITIONAL					
	KNOWLEDGE	AC	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.

 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- Explain the need and importance of protecting traditional knowledge.
 Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-avis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation

and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

Subject Code		Catagory	т	T	D	Credit
		Category	L	1	r	Crean
	Gender Equity and Law					
	(Common to all Branches)	AC	0	0	2	0

Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and no binary people as "weaker" or less important than males. Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions that address issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

	To sensitize the students regarding the issues of gender and the gender inequalities prevalent in society.
1	
	To raise and develop social consciousness about gender equity among the students.
2	
	To build a dialogue and bring a fresh perspective on transgender and gender non-conforming individuals.
3	
	To create awareness among the students and to help them face gender stereotype issues.
4	
	To help the students understand the various legal provisions that are available in our society.
5	

COURSE OUTCOMES

On the successful completion of the course, students will be able to

COI. Understand the importance of gender equity	
	Understand
CO2.Initiate the awareness and recognize the social responsibility with regards to	
gender equity.	Apply
CO3.To develop a sense of inclusiveness and tolerance towards various genders	
without any discrimination.	
	Apply
CO4. To evaluate the social issues and apply suitable gender-related regulations	
for inclusive living.	
	Evaluate
CO5.To identify and analyze the existing gender inequality problems faced in	
various institutions.	Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	S	S	S	-	-	-	S	-	1	-
CO2	S	M	M	-	-	S	S	S	-	-	-	S	-	-	-

CO3	S	L	M	-	-	S	S	S	-	-	-	S	-	ı	ı
CO4	S	S	S	L	1	S	S	S	-	-	-	S	-	1	1
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT -I INTRODUCTION TO GENDER AND SEX

6hrs

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – Gender Stereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT -II - GENDER BIAS

6 hrs

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT -III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

6 hrs

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace — Gender Sensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

6 hrs

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The Immoral Traffic Prevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

6hrs

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

- 1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).
- 2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).
- 3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).
- 4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).
- 5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.
- 7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COUNCE DEDIGITERS						
S.No.	Name of the Faculty	Mail ID				
	Gnana Sanga Mithra.S					
1.	_	sangamithra@avil.edu.in				
	Aarthy.G					
2.		aarthy@avil.edu.in				