AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

Faculty of Engineering and Technology

Department of Mechanical Engineering

Programme : B.E – Mechanical Engineering

Choice Based Credit System (CBCS)

Curriculum & Syllabus (Semester I to VIII)

Regulations 2021

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO.1	Design, analyze & fabricate, maintain and improve mechanical										
110.1	engineering systems that are technically sound, economically feasible and										
	socially acceptable to enhance quality of life.										
	Apply modern computational, analytical, simulation tools and techniques										
PEO.2	to address the challenges faced in mechanical and allied engineering										
	streams.										
	Communicate effectively using innovative tools and demonstrate										
PEO.3	leadership & entrepreneurial skills.										
	Exhibit professionalism, ethical attitude, team spirit and pursue lifelong										
PEO.4	learning to achieve career and organizational goals.										

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

PSO.1	To work independently as well as in team to formulate, design, execute solutions for engineering problems and also analyze, synthesize technical data for application to product, process, system design & development									
PSO.2	To understand & contribute towards social, environmental issues, following professional ethics and codes of conduct and embrace lifelong learning for continuous improvement									
PSO.3	To develop expertise towards use of modern engineering tools, careers in industries and research and demonstrate entrepreneurial skill									

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

	Engineering knowledge: Apply the knowledge of mathematics, science,
PO1	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems
	Problem analysis: Identify, formulate, review research literature, and analyze
PO2	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
PO3	problems and design system components or processes that meet the specified
105	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based
PO4	knowledge and research methods including design of experiments, analysis
104	and interpretation of data, and synthesis of the information to provide valid
	conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques,
PO5	resources, and modern engineering and IT tools including prediction and
105	modeling to complex engineering activities with an understanding of the
	limitations.
	The engineer and society: Apply reasoning informed by the contextual
PO6	knowledge to assess societal, health, safety, legal and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional
PO7	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a
	member or leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities
PO10	with the engineering community and with society at large, such as, being able
	to comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and
PO11	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
DO12	Life-long learning : Recognize the need for, and have the preparation and
PO12	ability to engage in independent and life-long learning in the broadest context
	of technological change.

DEPARTMENT OF MECHANICAL ENGINEERING

Credit Requirement for Course Categories <u>STRUCTURE OF UNDERGRADUATE ENGINEERING PROGRAM – REGULAR STUDENTS</u>

SI. Category of No. Courses	Types of Cours	ies	Suggested Breakup of Credits (min – max)
	Humanities and	Social Sciences	
1.	including Mana	gement courses	9-12
2.	Basic Science co	ourses	18 - 25
Α.	Engineering Scie	ence courses including	
Foundation	workshop, drawi	0	
3. Courses	electrical/mecha	nical/computer etc.	18-24
B.	~		
4. Professional	Core courses		48-54
	Professional Ele		12
	• •	ed/ Industry Supported/	
	•	d/ Industry Sponsored	
	courses	[6
		Innovation,	
		Entrepreneurship, Skill	
		Development etc.	6-9
		Emerging Areas like 3D	
		Printing, Artificial	
\mathbf{C}		Intelligence, Internet of	6.0
5. Elective Courses	Open Electives	Things etc.	6-9
	Project work		8
D.	Mini Project		3
Courses for	Seminar		1
Presentation	Internship		
of technical	1		
Skills related			
to the			
6. specialization			3
			Zero Credit
			Course
	Yoga and Medit	ation, Indian Constitution,	(Minimum 2
**E.		n Traditional Knowledge,	Courses to be
Mandatory		/YRC/Student Clubs/	completed other
Courses		phiyan/Swachh Bharat,	than Yoga and
7.		es, Gender Equity and Law	Meditation)
		num Credits to be earned	160
	category 'E' Cours	ses will not be counted in (CGPA calculation for
awarding of the degree.			

B.E./B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII

A.Foundation Courses Humanities and Social Sciences including Management Courses – Credits (9-12) SL. COURSE OFFERING CATEGO CODE PREREQUISITE NO COURSE DEPT. Т Р С RY L TECHNICAL ENGLISH ENG FC-HS 3 3 NIL 0 0 1 ENGLISH LANGUAGE LAB ENG NIL FC-HS 0 0 4 2 2 BUSINESS ENGLISH ENG FC-HS 3 0 3 NIL 0 3 TOTAL QUALITY MANAG NIL MANAGEMENT FC-HS 3 0 0 3 4 ENGINEERING MANAGEMENT AND MANAG 3 FC-HS 0 0 3 NIL ETHICS 5 UNIVERSAL HUMAN VALUES-UNDERSTANDING HARMONY ENG FC-HS 3 NIL 0 0 3 6 MANAG 7 OPERATIONS MANAGEMENT FC-HS 3 0 0 3 NIL SOFT SKILLS FOR ENGINEERS ENG FC-HS 3 0 0 3 NIL 8 **Basic Science Courses – Credits (18-25)** ENGINEERING 1 MATHEMATICS MATH FC-BS 2 1 0 3 NIL FC-BS PHY &CHEM NIL PHYSICAL SCIENCES 4 0 0 4 2 SMART MATERIALS PHY FC-BS 3 NIL 3 0 0 3 4 PHYSICAL SCIENCES LAB PHY &CHEM FC-BS 0 0 4 2 NIL INDUSTRIAL MATERIALS CHEM FC-BS NIL 5 3 0 0 3 ENGINEERING MATHEMATICS FOR MATHEMAT MECHANICAL SCIENCES MATH FC-BS 2 1 0 3 ICS 6 1.ENGINEE RING MATHEMA TICS

7	NUMERICAL METHODS FOR MECHANICAL SCIENCES	MATH	FC-BS	2	1	0	3	2.MATHEMA TICSFOR MECHANICA L SCIENCES
							-	
8	RESOURCE MANAGEMENT TECHNIQUES	MATH	FC-BS	2	1	0	3	NIL
9	PROBABILITY AND STATISTICS	MATH	FC-BS	2	1	0	3	NIL
10	ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL

<u> </u>	Engineering Science courses including Workshop, Drawing, Basics of Electrical/Mechanical/Computer etc-Credits (18-24)										
	FOUNDATIONS OF COMPUTING AND	· · · ·									
	PROGRAMMING (THEORY										
1	AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
2	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC-ES	4	0	0	4	NIL			
3	PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
3	BASICS OF ELECTRICAL	CSE	гс-ез	2	0	2	3	INIL			
	AND ELECTRONICS										
4	ENGINEERING	EEE &ECE	FC-ES	4	0	0	4	NIL			
5	WORKSHOP PRACTICES	MECH	FC-ES	0	0	4	2	NIL			
6	PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL			
7	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE &ECE	FC-ES	0	0	4	2	NIL			
8	ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	0	0	6	3	NIL			
9	ENGINEERING MECHANICS	MECH	FC-ES	2	1	0	3	NIL			

B.E./B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII											
B.Pr	ofession	al Courses									
Core	Course	es – Credits (48-54)				1	1				
SL. NO	COURS E CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE		
1		MANUFACTURING PROCESSES (THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL		
2		FLUID MECHANICS AND MACHINERY(THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	NIL		
3		MECHANICS OF MACHINES (THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	NIL		
4		MECHANICAL BEHAVIOUR OF MATERIALS AND METALLURGY (THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL		
5		STRENGTH OF MATERIALS (THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	NIL		
6		ENGINEERING THERMODYNAMICS(THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	NIL		
7		THERMAL ENGINEERING (THEORY AND PRACTICALS)	MECH	CC	2	1	2	4	ENGINEERING THERMODYNA MICS		
8		DESIGN OF MACHINE ELEMENTS	MECH	CC	2	1	0	3	NIL		
9		ENGINEERING METROLOGY AND MEASUREMENTS (THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL		
10		AUTOMOBILE ENGINEERING (THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL		
11		COMPUTER INTEGRATED MANUFACTURING (THEORY AND PRACTICALS)	MECH	CC	3	0	2	4	NIL		
12		DESIGN OF TRANSMISSION SYSTEMS	MECH	CC	2	1	0	3	DESIGN OF MACHINE ELEMENTS		
12		HEAT AND MASS TRANSFER (THEORY	MECH	СС		1	2	4	THERMAL ENGINEERING		
13		AND PRACTICALS) FINITE ELEMENT ANALYSIS (THEORY	MECH		2	1	2	4			
14		AND PRACTICALS)	MECH	CC	2	1	2	4	NIL		

B.E./B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII

C.Elective Courses

Professional Electives Credits-(12)

SL. NO	COURSE CODE	COURSE	OFFERIN G DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE
1		RENEWABLE SOURCES OF ENERGY	MECH	EC-PS	3	0	0	3	NIL
2		ADVANCED IC ENGINES	MECH	EC-PS	3	0	0	3	NIL
3		INDUSTRIAL TRIBOLOGY	MECH	EC-PS	3	0	0	3	NIL
4		LEAN MANUAFCTURING SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
5		INDUSTRIAL ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
6		HYDRAULICS AND PNEUMATICS SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
7		FAILURE ANALAYSIS OF MATERIALS	MECH	EC-PS	3	0	0	3	NIL
8		FUNDAMENTALS OF PIPING ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
9		CONCURRENT ENGINEERING	MECH	EC-PS	3	0	0	3	NIL
10		ENGINEERING PRODUCT DESIGN	MECH	EC-PS	3	0	0	3	NIL
11		DESIGN OF EXPERIMENTS	MECH	EC-PS	3	0	0	3	NIL
12		FLUID POWER SYSTEMS	MECH	EC-PS	3	0	0	3	NIL
13		MEMS AND NEMS	MECH	EC-PS	3	0	0	3	NIL
14		PETROLEUM PRODUCTION ENGINEERING	MECH	EC-PS	3	0	0	3	NIL

Industry Designed/ Industry Supported/ Industry Offered/ Industry Sponsored courses – Credits-(6)

			OFFERIN G						
SL.	COURSE		G INDUSTR	CATEG					
NO	CODE	COURSE	Y	ORY	L	Т	Р	С	PREREQUISITE
1		INTRODUCTION TO AIRCRAFT INDUSTRY AND AIRCRAFT SYSTEMS	INFOSYS	EC-IE	3	0	0	3	NIL
		DESIGN OF AIRCRAFT STRUCTURES							
2			INFOSYS	EC-IE	3	0	0	3	NIL
3		BASIC COMPONENT MODELING	MATHW ORKS	EC-IE	3	0	0	3	NIL
4		VEHICLE DYNAMICS	MATHW ORKS	EC-IE	3	0	0	3	NIL
5		MATLAB FOR MECHANICAL ENGINEERS	MATHW ORKS	EC-IE	3	0	0	3	NIL
6		NEW PRODUCT DEVELOPMENT	KRIATEC	EC-IE	3	0	0	3	NIL
7		QUALITY CONTROL – TOOLS AND PROBLEM SOLVING METHODOLOGIES	KRIATEC	EC-IE	3	0	0	3	NIL
8		SOFT SKILLS	INFOSYS	EC-IE	3	0	0	3	NIL

-	ctives – Electives from Innovation	, Entrepre	eneurship	p, Sk	xill I)eve	lopm	ent etc.
C <mark>redits</mark> –(-			
	ENGINEERING							
	STARTUPS AND							
	ENTREPRENEURIAL			-			-	
1	MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
		MANAG	0. T. I. T.					
2	INTELLECTUAL PROPERTY RIGHTS	MANAG	OE-IE	3	0	0	3	NIL
	INNOVATION, PRODUCT							
2	DEVELOPMENT AND	MANAC		2	0	0	2	NIII
3	COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL
4	SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL
4	NEW VENTURE	MANAO	OE-IE	3	0	0	3	MIL
	PLANNING AND							
5	MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
5	FINANCE AND			-				
	ACCOUNTING FOR							
6	ENGINEERS	MANAG	OE-IE	3	0	0	3	NIL
Open El	ectives – Electives from other Em	erging Ar	eas Cred	its-(6-9)			
1	BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL
2	PRINCIPLES OF BIOMEDICAL	DME		2	0	0	2	NII
2	INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL
2	INTRODUCTION TO DIOFUEL S	DTE		2	0	0	3	NIL
3	INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	MIL
	FOOD AND NUTRITION	DEE	05.54		0		-	
4	TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL
~	DIGASTED DISK MANACEMENT	CIVIL	OF FA	3	0	0	2	NII
5	DISASTER RISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
	MUNICIPAL SOLID WASTE			-			-	
6	MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
	FUNDAMENTALS OF ARTIFICIAL							
7	INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL
	INTRODUCTION TO INTERNET OF							
8	THINGS	CSE	OE-EA	3	0	0	3	NIL
0		CDL	OL LIN	5	0	0	5	INL
9	CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
-	DESIGN OF ELECRONIC		-		-			
10	EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL
10	INTRODUCTION TO INDUSTRY 4.0	Let	OL LIT	5	0	0	5	INL
	AND							
11	INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL
	GREEN POWER GENERATION							
12	SYSTEMS	EEE	OE-EA	3	0	0	3	NIL
	INDUSTRIAL DRIVES AND			5			5	
12		EEE		3	0	0	2	NII
13	AUTOMATION BIOMOLECULES-STRUCTURE AND	EEE	OE-EA	3	0	0	3	NIL
14	FUNCTION	PE	OE-EA	3	0	0	2	NIL
14		ΓE	OE-EA	3	0	0	3	INIL
15	PHARMACOGENOMICS	PE	OF EA	3	0	0	3	NIL
15	I HANMACOOLNOMICS	ГĽ	OE-EA	5	0	U	3	INIL

D. Course	3.E./B.TECH. – MECHANICAL ENGINEERING – SEMESTER I TO VIII D. Courses for Presentation of technical Skills related to the specialization Project Work, Seminar and Internship in Industry or elsewhere Credits-(15)											
SL. NO	COURSE CODE	COURSE	OFFERIN G DEPT	CATEG ORY	L	Т	Р	С	PREREQUISITE			
1		PROJECT WORK	MECH	PI-P	0	0	16	8	NIL			
2		MINI PROJECT	MECH	PI-M	0	0	6	3	NIL			
3		INTERNSHIP	MECH	PI-I	3 WEEKS		KS	3	NIL			
4		SEMINAR	MECH	PI-S	0	0	2	1	NIL			

	3.E./B.TECH. –MECHANICAL ENGINEERING – SEMESTER I TO VIII												
E. Ma	E. Mandatory Courses												
			RY COURSES (2										
(NOT INCLUDED FOR CGPA CALCULATIONS)													
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE				
1		YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL				
ANY TWO COURSES													
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE				
1		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL				
2		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL				
_		NCC/NSS/RRC/YRC/STU DENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACTH BHARAT/ROTTARACT					_						
3		CLUB	GEN	AC	0	0	2	0	NIL				
4		SPORTS AND GAMES	PHED	AC	0	0	2	0					
5		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL				

		SPECIALIZAT	TION – 3D PRIN	NTING AND I	DESIG	N	T	T	
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
		CAD FOR ADDITIVE							
1		MANUFACTURING	MECH	EC-SE	3	0	0	3	NIL
			1.000			-	_		
2		POWDER METALLURGY ADDITIVE	MECH	EC-SE	3	0	0	3	NIL
		MANUFACTURING IN							
2		MEDICAL APPLICATIONS	MEGH		2	0	0		NII
3		RAPID TOOLING	MECH	EC-SE	3	0	0	3	NIL
		AND INDUSTRIAL							
4		APPLICATIONS	MECH	EC-SE	3	0	0	3	NIL
5		POLYMER ENGINEERING	MECH	EC-SE	3	0	0	3	NIL
6		3D PRINTING AND DESIGN	MECH	EC-SE	3	0	0	3	NIL
7		ADVANCED 3D PRINTING LAB	MECH	EC-SE	0	0	4	2	NIL
		ADDITIVE MANUFACTURING							
		MACHINES AND							
8		SYSTEMS	MECH	EC-SE	3	0	0	3	NIL
9		PROTOTYPING METHODS	MECH	EC-SE	3	0	0	3	NIL
10		THEORY OF 3D PRINTING	MECH	EC-SE	3	0	0	3	NIL
a r		ALIZATION – AUTOMATI		D MANUFA(TURI	NG EN	IGINE	ERI	NG
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
		ADDITIVE MANUFACTURING							
		PROCESSES AND							
1		APPLICATIONS	MECH	EC-SE	3	0	0	3	NIL
2		MECHANICAL DESIGN	MECH	EC-SE	3	0	0	3	NIL
		INTEGRATED							
		PRODUCT DESIGN AND							
3		DEVELOPMENT	MECH	EC-SE	3	0	0	3	NIL
		MANUFACTURI							
		NG CONTROL AND							
4		AUTOMATION	MECH	EC-SE	3	0	0	3	NIL
_		ADVANCED MACHINING	MEGU		~	C C			NU
5		PROCESSES ROBOTICS	MECH	EC-SE	3	0	0	3	NIL
		BASED							
6		INDUSTRIAL AUTOMATION	MECH	EC-SE	3	0	0	3	NIL
U			MECH	EC-BE	3	0	0	3	
7		AUTOMATION IN MANUFACTURING	MECH	EC-SE	3	0	0	3	NIL
,									
8		ADVANCED CIM LAB PRODUCT DESIGN FOR	MECH	EC-SE	0	0	4	2	NIL
		MANUFACTURINGAND							
9		ASSEMBLY	MECH	EC-SE	3	0	0	3	NIL
		REVERSE ENGINEERING AND COMPUTER							
10		AIDED INSPECTION	MECH	EC-SE	3	0	0	3	NIL
11		AUTOMATION LAB	MECH	EC-SE	0	0	4	2	NIL
		SPECIALIZATI	ON -AUTOMO		EERI	NG			
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE

·							1		
1		AUTOMOTIVE CHASSIS LAB	MECH	EC-SE	0	0	4	2	NIL
2		AUTOMOTIVE CHASSIS	MECH	EC-SE	3	0	0	3	NIL
3		AUTOMOTIVE ELECTRICAL AND ELECTRONICS LAB	MECH	EC-SE	0	0	4	2	NIL
4		AUTOMOTIVE ELECTRICAL AND ELECTRONICS SYSTEMS	MECH	EC-SE	3	0	0	3	NIL
5		AUTOMOTIVE POLLUTION CONTROL	MECH	EC-SE	3	0	0	3	NIL
6		ENGINE AND VEHICLE MANAGEMENT SYSTEM	MECH	EC-SE	3	0	0	3	NIL
7		SPECIAL TYPES OF VEHICLES TWO AND THREE WHEELER	MECH	EC-SE	3	0	0	3	NIL
8		LAB	MECH	EC-SE	0	0	4	2	NIL
9		TWO AND THREE WHEELER TECHNOLOGY	MECH	EC-SE	3	0	0	3	NIL
10		VEHICLE MAINTENANCE AND SERVICING LAB	MECH	EC-SE	0	0	4	2	NIL
11		VEHICLE MAINTENANCE	MECH	EC-SE	3	0	0	3	NIL
12		VEHICLE TRANSPORT MANAGEMENT	MECH	EC-SE	3	0	0	3	NIL
13		INTRODUCTION TO ELECTRIC MOBILITY	MECH	EC-SE	3	0	0	3	NIL
		SPECIALIZA	TION – ENER	CV ENCINE	RING				
		SI ECIALIZA	11011 - EI1EK	GI ENGINEI					
SL. NO	COURSE CODE		OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
			OFFERING				Р 4	<u>с</u> 2	PREREQUISITE NIL
NO		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY	OFFERING DEPT.	CATEGORY	L	Т			
NO		COURSE ALTERNATE FUEL TESTING LAB	OFFERING DEPT. MECH	CATEGORY EC-SE	L 0	Т 0	4	2	NIL
NO 1 2		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN	OFFERING DEPT. MECH MECH	CATEGORY EC-SE EC-SE	L 0 3	т 0 0	4	2 3	NIL
NO 1 2 3		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS	OFFERING DEPT. MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE	L 0 3 3	T 0 0	4 0 0	2 3 3	NIL NIL NIL
NO 1 2 3 4 5		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL	OFFERING DEPT. MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE	L 0 3 0 3	T 0 0 0 0 0	4 0 0 4 0	2 3 3 2 3	NIL NIL NIL NIL
NO 1 2 3 4 5 6		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION	OFFERING DEPT. MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE	L 0 3 0 3 3	T 0 0 0 0 0	4 0 0 4 0 0	2 3 3 2 3 3	NIL NIL NIL NIL NIL
NO 1 2 3 4 5 6 7		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION TECHNOLOGIES ENERGY CONSERVATION	OFFERING DEPT. MECH MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE	L 0 3 3 0 3 3 3	T 0 0 0 0 0 0 0	4 0 0 4 0 0 0	2 3 2 3 3 3	NIL NIL NIL NIL NIL NIL
NO 1 2 3 4 5 6		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION TECHNOLOGIES ENERGY CONSERVATION AND MANAGEMENT	OFFERING DEPT. MECH MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE	L 0 3 3 0 3 3 3 3	T 0 0 0 0 0 0 0 0	4 0 0 4 0 0	2 3 3 2 3 3	NIL NIL NIL NIL NIL
NO 1 2 3 4 5 6 7		COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION TECHNOLOGIES ENERGY CONSERVATION AND MANAGEMENT SPECIALIZAT	OFFERING DEPT. MECH MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE	L 0 3 3 0 3 3 3 3	T 0 0 0 0 0 0 0 0	4 0 0 4 0 0 0	2 3 2 3 3 3	NIL NIL NIL NIL NIL NIL
NO 1 2 3 4 5 6 7 8 SL.	COURSE	COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION TECHNOLOGIES ENERGY CONSERVATION AND MANAGEMENT SPECIALIZAT	OFFERING DEPT. MECH MECH MECH MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE AL ENGINE	L 0 3 0 3 3 3 3 ERIN(T 0 0 0 0 0 0 0 0	4 0 4 0 0 0 0 0	2 3 3 2 3 3 3 3	NIL NIL NIL NIL NIL
NO 1 1 2 3 4 5 6 7 8 SL. NO	COURSE	COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION TECHNOLOGIES ENERGY CONSERVATION AND MANAGEMENT SPECIALIZAT COURSE COMBUSTION	OFFERING DEPT. MECH MECH MECH MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE AL ENGINE CATEGORY	L 0 3 0 3 3 3 3 ERINC L	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 0 0 0 0 0 0 P	2 3 3 2 3 3 3 3 C	NIL NIL NIL NIL NIL NIL NIL PREREQUISITE
NO 1 2 3 4 5 6 7 8 SL. NO 1	COURSE	COURSE ALTERNATE FUEL TESTING LAB BIO ENERGY TECHNOLOGY ENERGY CONSERVATION IN THERMALSYSTEMS ENERGY LAB ENERGY LAB ENERGY STORAGE SYSTEMS HYDROGEN AND FUEL CELL TECHNOLOGY WASTE ENERGY CONVERSION TECHNOLOGIES ENERGY CONSERVATION AND MANAGEMENT SPECIALIZAT COURSE COMBUSTION ENGINEERING COMPUTATIONAL FLUID	OFFERING DEPT. MECH MECH MECH MECH MECH MECH MECH MECH	CATEGORY EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE EC-SE AL ENGINE CATEGORY EC-SE	L 0 3 0 3 3 3 3 5 ERINC L 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0	2 3 3 2 3 3 3 3 3 5 6 6 3	NIL

		POWER EQUIPMENTS							
		HEAT EXCHANGERS – FUNDAMENTALS AND							
5		DESIGN ANALYSIS	MECH	EC-SE	3	0	0	3	NIL
6		POWER PLANT ENGINEERING	MECH	EC-SE	3	0	0	3	NIL
		REFRIGERATION AND AIR-							
7		CONDITIONING	MECH	EC-SE	3	0	0	3	NIL
8		TURBOMACHINERY	MECH	EC-SE	3	0	0	3	NIL
		SPECIALIZATIO	N – AERONAU	TICAL ENG	INEER	RING			
SL.	COURSE		OFFERING		_	_	_	_	
NO	CODE	COURSE	DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1		AIRCRAFT STRUCTURES	MECH	EC-SE	3	0	0	3	NIL
2		AERO ENGINE LAB	MECH	EC-SE	0	0	4	2	NIL
3		AERODYNAMICS LAB	MECH	EC-SE	0	0	4	2	NIL
4		AERODYNAMICS	MECH	EC-SE	3	0	0	3	NIL
		AEROSPACE PROPULSION							
5		LAB	MECH	EC-SE	0	0	4	2	NIL
6		AEROSPACE PROPULSION	MECH	EC-SE	3	0	0	3	NIL
~		AIRCRAFT GENERAL	-						
		ENGINEERING AND MAINTENANCE							
7		PRACTICES	MECH	EC-SE	3	0	0	3	NIL
		AIRCRAFT MATERIALS AND							
8		PROCESSES	MECH	EC-SE	3	0	0	3	NIL
		AIRCRAFT PERFORMANCE							
		STABILITY AND							
9		CONTROL	MECH	EC-SE	3	0	0	3	NIL
		AIRCRAFT STRUCTURES							
10		LAB	MECH	EC-SE	0	0	4	2	NIL

HUMANITIES AND SOCIAL SCIENCES COURSES

Category L T P Credit TECHNICAL ENGLISH FC-HS 3 0 0 3 Preamble Fcchnical English is a life skill course necessary for all students of Engineering and Technology. It ain t developing communication skills in English, essential for understanding and expressing the ideas of lifterent professional context. The outcome of the course is to help the students acquire the languag kills of Listening, Speaking, Reading and Writing competency in English language and thereby making he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives I To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 1 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
Preamble Fechnical English is a life skill course necessary for all students of Engineering and Technology. It ain at developing communication skills in English, essential for understanding and expressing the ideas of lifferent professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students communication skills in formal and informal situations. 5 To develop the students communication skills in formal and informal situations. COURSE OUTCOMES: OUTCOMES 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students communication skills in formal and informal situations. COURSE OUTCOMES: OUTCOMES: 5 To develop the students communication skills in formal and informal situations. COURSE OUTCOMES: OUTCOMES: 6 CO1. Listen, remember and respond to others in different scenario
Fechnical English is a life skill course necessary for all students of Engineering and Technology. It ain at developing communication skills in English, essential for understanding and expressing the ideas of liferent professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario
at developing communication skills in English, essential for understanding and expressing the ideas of lifferent professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario
lifferent professional context. The outcome of the course is to help the students acquire the language is the students of Listening, Speaking, Reading and Writing competency in English language and thereby making he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario
kills of Listening, Speaking, Reading and Writing competency in English language and thereby making he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario
he students competent and employable in the globalised scenario. Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
Prerequisite : NIL Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario
Course Objectives 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario
1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
2 To make them become effective communicators. 3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
3 To ensure that learners use Electronic media materials for developing language. 4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
4 To aid the students with employability skills. 5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
5 To develop the students communication skills in formal and informal situations. Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
Course Outcomes: On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember
CO1. Listen, remember and respond to others in different scenario Remember
CO2. different situation. Understand
CO3.To make the students experts in professional writing.Apply
CO4. To make the students in proficient technical communicator. Apply
To make the students recognize the role of technical writing in their careers in
CO5.business, technical and scientific fieldAnalyzeMapping with Programme Outcomes and Programme Specific Outcomes
COs P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS02 CO1 - - - L L M M - S - S S - S
CO1 - - L L M M - S - S S - S CO2 - - - - - L - - S - S S - - S CO2 - - - - L - - S - S M - S
CO2 I
CO4 L M - L M S L S S M S
CO5 M - L S S M - S
S- Strong; M-Medium; L-Low
SYLLABUS
INTRODUCTION TO COMMUNICATION
Self introduction –understanding SWOT and SOAR, Simulations using E Materials - Whatsapp, Face bo
Hiker, Twitter- Effective Communication with Minimum Words - Listening Skills- Passive and Act
istaning Listaning to Native Speakers. Characteristics of a good listaner
istening, Listening to Native Speakers - Characteristics of a good listener.
GRAMMAR AND VOCABULARY
GRAMMAR AND VOCABULARY Identify the different Parts of Speech- Word formation with prefixes and suffixes -Common Errors in Englis
GRAMMAR AND VOCABULARY
GRAMMAR AND VOCABULARY Identify the different Parts of Speech- Word formation with prefixes and suffixes -Common Errors in Englis Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms Sentence Patt SVOCA) ,Tense forms , Conditional Sentences, Impersonal Passive Voice, Articles - Phonetics (Vow Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different region
GRAMMAR AND VOCABULARY Identify the different Parts of Speech- Word formation with prefixes and suffixes -Common Errors in Englis Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms Sentence Patt (SVOCA) ,Tense forms , Conditional Sentences, Impersonal Passive Voice, Articles - Phonetics (Vow Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different region ntrusion of mother tongue - Homophones – Homonyms - Note taking and Note making
GRAMMAR AND VOCABULARY Identify the different Parts of Speech- Word formation with prefixes and suffixes -Common Errors in Englis Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms Sentence Patt SVOCA) ,Tense forms , Conditional Sentences, Impersonal Passive Voice, Articles - Phonetics (Vow Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different region

and Films Speaking Practice - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

Reading for information- Technical articles, News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed – Technical Jargons

TECHNICAL WRITING

Types of paragraphs -- Technical and Non technical Report Writing/ Proposal (Attend a technical seminar and submit a report) Transcoding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae, Digital resume Techniques, Statement of Purpose (SOP), Proof reading

Text Books

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

Reference Books

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.
- 4. Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

Course Designers Department/Name S No Department/Name

S.No	Faculty Name	Designation	of the College	Email id
1	Dr. Jennifer G Joseph	Professor & Head	English /AVIT	jennifer@avit.ac.in
2	Dr. P.Saradha	Associate Professor	English /VMKVEC	saradhap@vmkvec.edu.in

								Catego	rv	L	Т		P	Cre	edit
		EN	GLIS	H LA	NGU	AGE			-5				-		
		LA	B]	FC-H	S	0	0	4	1	2	2
Preamb	le														
English															
learning			and p	roduc	ing la	inguag	e skills	s throu	igh in	teractiv	ve lesso	ons and	l com	nunica	tive
mode of		0													
Prerequ															
Course															
										te secto					
				ole of	moth	er tong	gue in s	second	langı	lage lea	arning	and to	avoid	interfer	ence
	f mothe				6.1	. 1			• .	<u> </u>	1 .1		• 66		• . •
	-								icate	effectiv	ely thr	ough d	ifferen	t activi	ities.
	o unde														
										unicatio			-1-1-4		
Course							•			,	aents	will be			
CO1.															
CO2.	CO2. Best performance in the art of conversation and public speaking. Apply														
CO3.	Give	bette	r job (oppor	tunitie	es in co	orporate	e com	oanies	5.				Appl	y
	Bette	er und	erstar	nding	of nua	ances o				e throug	gh audi	io-visu	al	• •	2
CO4.	expe	rience	and	group	activ	ities.	01.1							Appl	y
CO5.	Spea	king s	skills lity sl	with C	larity	and co	onfiden	ce wh	ich in	turn er	hances	s their		Analy	70
Mappi					utcor	nes an	d Prog	ramn	e Sne	eific (Dutcom	nes		Anary	ZC
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 CO2	- M	S	M	S	-	L	•	-	S M	S S	M	- M	- M	-	M M
CO3	M	-	-	-	-	-	-	-	-	S	-	M	-	-	M
CO4	Μ	-	-	-	-	-	-	-	-	Μ	-	-	М	-	Μ
CO5	Μ	-	-	-	-	-	-	-	-	М	-	-	Μ	-	S
S- Strong		dium;	L-Low	V											
SYLLA MODU															
Ice Break		uning	Listo	ning	Ugari	ngand	listonin	$(\alpha) \Lambda \alpha$	tivo Li	stoping	Deceiv	o Listor	ing 1	istonin	a to
songs, vi												e Listei	iiig – i		gio
MODU								-pnom	0011	•154410					
Influence		her to	ngue,	videos	, unde	erstandi	ng nuar	nces of	Englis	sh langu	age (vi	deo) pu	zzle to	solve,	
Activity.															of a
research		Refer	rencing	5											
MODU															
Why is I															
0.0000	study,	ingrea	dients	of su	CCASS	Activ	itv_ch	ort cr	naak ti	ne decid	m tee	dhack (n nroo	Tress C	iroun
- a case wise, In	•	-					ny - cn	iart, sp		ie desig	311, 100	uback (m prog	51035, C	noup

MODULE IV

Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette. MODULE V

Case study of Etiquette in different scenario

|--|

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. Jennifer G Joseph	Professor & Head	English /AVIT	jennifer@avit.ac.in
2	Dr. P.Saradha	Associate Professor	English /VMKVEC	saradhap@vmkvec.edu.in

								Catego	ry	L	Т		Р	Cre	dit
			BUS	INESS	5 ENG	GLISH		FC-H	S	3	0		0	3	
Preamb	le						I								
Language															other
anguage												he adva	incemei	nt of	
knowledg	-		fields	and a	s a tele	escope	to view	the dr	eam of	f the fut	ure.				
Prerequ															
Course (Objec	tives													
1 T	o impai	rt and e	enhanc	e corp	orate	commu	nicatio	n.							
2 T	o enabl	e learn	ers to	develo	op pres	sentatio	n skills	5.							
3 T	o build	confid	lence i	n learr	ners to	use En	iglish ir	n Busin	ess co	ntext.					
4 T	o make	them	expert	s in pr	ofessi	onal wr	iting.								
5 T	o equip	stude	nts wit	th emp	loyabi	ility and	d job se	arching	g skills	5.					
Course	Outco	mes: (On th	e suce	cessfu	l com	pletior	n of th	e coui	rse, stu	dents	will be	able t	0	
CO1.	Com	munic	ate wi	th a ra	nge of	formal	and in	formal	contex	xt			1	Underst	and
					0					n comm	unicati	on is			
CO2.	adjus	sted in	diffe	rent s	cenari	0.								Appl	у
CO3.	Use	strengt	hened	orala	nd wri	tten ski	lls in th	ne husii	ness co	ontext				Appl	
CO4.	Crea	te inter	rest in	a topi	c by ex	ploring	g thoug	hts and	ideas	•				Appl	у
CO5.	Have	e bette	r perfo	ormane	ce in tl	ne art o	f comm	nunicati	ion					Appl	у
Mappin	g with	Prog	ramn	1e Ou	tcom	es and	Prog	amme	e Spec	<mark>cific O</mark> u	itcome	s			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	L	-	L	S	S	-	М	S	-	S	S		-
CO2	-	М	S	Μ	-	М	М	-	L	S	-	S	Μ	-	-
CO3	L	Μ	-	-	-	М	<u> </u>	L	-	S	L	М	-	М	-
CO4	-	L	Μ	M	-	•	L	M	Μ	S	L	M	M	•	M
CO5 S- Strong	- • M M-	L	• I I o···	M	-	L	L	-	-	S	-	S	М	Μ	S
SYLLA		ululli;	L-LOW	Y											
		NCU	ACF		і істі	ENING	SKII	15							

BASICS OF LANGUAGE AND LISTENING SKILLS

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

SPEAKING SKILLS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business, Listening to TED Talks and discussion on the topic heard

READING SKILLS

Extempore, Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Skimming, Scanning, Understanding Ideas and making Inferences-- FAQs –,Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions, reading for pleasure (motivational, short novels, classical etc) **CORPORATE COMMUNICATION** What is Corporate Communication? Types of Office communications -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers, Technical Articles – Written communication Project Proposals- E - Mail Netiquette - Sample E – mails Making Presentations on given Topics -Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters)

Text Books

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

Reference Books

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. Jennifer G Joseph	Professor & Head	English /AVIT	jennifer@avit.ac.in
2	Dr. P.Saradha	Associate Professor	English /VMKVEC	saradhap@vmkvec.edu.in

TOTAL QUALITY	Category	L	Т	Р	Credit
MANAGEMENT	FC-HS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control.

4. To analyze the various TQM tools.

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5. Describes the Overlies Management Systems in a different enconingtion	

CO5: Practice the Quality Management Systems in a different organization Environment.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М
S- Stron	g; M-	Mediu	ım; L·	Low											

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts-Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting - Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement: Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

ENGINEERING	Category	L	Т	Р	Credit
MANAGEMENT AND ETHICS	FC-HS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To Understand the principles of planning at various levels of the organisation.

2. To analyse and practice the concepts of organizing, staffing to higher productivity.

3. To apply the concepts related to directing and controlling.

4. To understand and apply the case studies to practice code of ethics in organisation.

5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of planning principles in organizationUnderstandCO2: Apply the various strategies of organising and staffing process.ApplyCO3: Analyse various leadership skills and control techniques for shaping the organization.Analyse

CO4: Understand and apply best ethical practices in organisation

CO5: Analyse and Apply relevant ethical practices in engineering.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Analyse

Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	L	S	М	М	L	S	S	S	S	-	-	-
CO2	М	L	L	-	М	М	М	L	М	S	М	М	-	-	-
CO3	М	М	L	-	М	М	М	L	L	S	S	М	-	-	-
CO4	L	М	-	М	-	М	S	S	S	S	-	М	-	-	-
CO5	М	М	-	L	-	М	S	S	S	S	-	М	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational - Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS:

00010				
S.No	Name of the Faculty	Designation	Department	mail id
		Associate	Management	
1	M. Manickam	Professor	Studies	manickam@vmkvec.edu.in
		Assistant	Management	
2	Mr. T. Thangaraja	Professor	Studies	thangaraja@avit.ac.in

	Category	L	Т	Р	С
UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC-HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours: 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

- 2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.

COUR	RSE DESIGNERS			
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
		Vice		
1	Dr.S.P.Sangeetha	Principal(Academics)	AVIT	sangeetha@avit.ac.in
	Dr. Jennifer G			
2	Joseph	HoD-H&S	AVIT	Jennifer@avit.ac.in

	Category	L	Т	Р	Credit
OPERATIONS MANAGEMENT	FC-HS	3	0	0	3

PREAMBLE:

The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost- impressive manner. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics include operations strategy, product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Fundamentals of Operations.

2. To Understand the importance of Job Design and their relationship towards Efficiency.

3. To understand the importance of Production, Planning and Control.

4. To evaluate the material requirement with the techniques.

5. To impart the Operation management Techniques to get rid of the Competitive advantage.

COURSE OUTCOMES:

CO1. Understand the importance of Operations Management.

CO2. Evaluating the various organisation and staffing functions CO3. Understand the Importance of Production Planning and Control.

CO4. Evaluate the Various Operation Management Techniques

Evaluate CO5. Analyze and Evaluating the various Inventory Management Techniques to take Competitive advantage. Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

1		10 11						OTTL			Jun			1000	1000	
ſ	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	S	S	L	L	S	L	S	L	L	L	L	L	-	-	-
	CO2	S	S	М	М	-	L	L	М	М	L	L	М	-	-	-
	CO3	S	S	S	S	S	М	L	S	М	L	L	L	-	-	-
	CO4	М	М	S	S	М	L	L	М	М	L	L	L	-	-	-
	CO5	S	S	S	S	М	М	S	L	М	М	S	L	-	-	-
	n n.	3.6	N / 1º	т	т											

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT- I INTRODUCTION TO OPERATIONS MANAGEMENT

Hours

Operations Management- Nature & Scope – Evolution of Operations Management – Types of Production System, Operations Strategy – Product Life Cycle- Value Engineering concepts - Make or Buy Decision-Recent Trends in Operations Management- Plant Capacity - Plant Location & Factors.

UNIT-II JOB DESIGN & MATERIAL HANDLING

Hours

Layout- Principles of Layout- Factory-Basic types of layout product layout, group technology layout, fixed position layout, Retail service layout. Principles of material handling-Material handling equipment. Jobdesign: Effective job design- Combining engineering and behavioral approaches, Work measurement- method analysis- Ergonomics-Case studies.

UNIT-III PRODUCTION, PLANNING & CONTROL

Hours

Basic types of production- Interminent, Batch, continuous-Routing, Scheduling, Activating and Monitoring-Production Planning and Control, Process Planning, Aggregate Production Planning, Capacity Planning: Introduction, Capacity Planning

9

9

Understand

Understand

Evaluate

UNIT IV OPERATION TECHNIQUES

9 Hours

Project Scheduling, Network Diagrams, Critical Path Method (CPM), Critical Path Method: Problems, Critical Path Method. Program Evaluation and Review Technique (PERT), PERT Problems, PERT Problems, Time Cost Trade Off Production Control, Sequencing, Sequencing Problems-I, Sequencing Problems- II, Master Production Scheduling- Concept of Quality, Total Quality Management (TQM), Total Productive Maintenance (TPM), Statistical Quality Control (SQC), Six Sigma.

UNIT- V INVENTROY MANAGEMENT

9 Hours

Materials Management, Inventory Control, Economic Order Quantity (EOQ) Models, Economic Order Quantity (EOQ): Problems, Production Quantity- Just in Time (JIT), Kanban System, Materials Requirement Planning (MRP)-I, Materials Requirement Planning (MRP)-II, Enterprise Resource Planning (ERP).

TEXT BOOKS:

1. Operation Management: K. N. Dervitsiotis, McGraw-Hill International Company.

2. Operations Management: R.S. Russell, and B.W. Taylor, Pearson Education

3. Industrial Engineering and Production Management: M. Telsang, S. Chand & amp; Company Ltd.

REFERENCES:

 The Encyclopedia of Operations Management: A Field Manual and Glossary of Operations Management ARTHUR V HILL 1st Edition.

2. Handbook of Industrial Engineering: Technology and Operations Management, Gavriel Salvendy 3rd Edition.

- 3. Quality and Operations Management: Revised Edition.
- 4. Operations Management: Theory and Practice by Mahadevan
- 5. Production and Operations Management by PANNEERSELVAM. R.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id
0.110	Tunie of the Tucuity	Designation	Department	
1	Dr. B. Rajnarayanan	Associate Professor	Management Studies	rajnarayanan@vmkvec.edu.in
2		Associate Professor	Management Studies	thangaraja@avit.ac.in

	Category	L	Т	Р	Credit
SOFT SKILLS FOR ENGINEERS	FC-HS	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PREREQUISITE: NIL															
COURSE OBJECTIVES	P	XX 7	`												
1 To enable students to develop LSRW skills in English. (Listening, Speaking, Re	eading, and	Writing	.)												
2 To make them become effective communicators.															
3 To ensure that learners use Electronic media materials for developing language															
4 To aid the students with employability skills.															
5 To develop the students communication skills in formal and informal situations	To develop the students communication skills in formal and informal situations.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Listen, remember and respond to others in different scenario Remember															
CO2. Understand and speak fluently and correctly with correct pronunciation in different situation.															
CO3. To make the students experts in professional writing	Apply														
CO4. To make the students in proficient technical communicator	Apply														
CO5 To make the students recognize the role of technical writing in their careers in															
business, technical and scientific field	Analyze														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC	COUTCON	MES													
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11	1 PO12	PSO1	PSO2	PSO3											
CO1 M M M - S -	S	S	-	S											
CO2 L S -	S	-	-	S											
CO3 L	L	-	Μ	-											
CO4 - - M - L M S L	S	S	Μ	S											
CO5 M - L S	S	Μ	-	S											
S- Strong; M-Medium; L-Low															

SYLLABUS

INTRODUCTION TO SOFT SKILLS

Aspects of Soft Skills, Effective Communication Skills, Classification of Communication, Telephonic Communication Skills, Communicating without Words, Paralanguage.

INTERPERSONAL SKILLS

Group Communication Skills, Leadership Skills, Group Discussion, Meeting Management, Adaptability & Work Ethics, Personality development Positive Thinking, Proxemics, Haptics: The Language of Touch, Meta-communication, Applied Grammar.

LIFE SKILLS

Emotional Intelligence, Critical Thinking, Decision making, Problem solving, Listening Skills, Types of Listening, Negotiation Skills, Culture as Communication, Communication Breakdown, Organizational Communication.

PROFESSIONAL WRITING SKILLS

Advanced Writing Skills, Principles of Business Writing, Business Letters: Format and Style, Types of Business Letter writing, Reports, Types of Report, Strategies for Report Writing, Evaluation and Organization of Data Structure and Style of Report.

CAREER SKILLS

Advanced Speaking Skills, Speeches & Debates, Combating Nervousness, Patterns & Methods of Presentation, Oral Presentation: Planning & Preparation, Making Effective Presentations, Speeches for Various Occasions, Interviews, Planning & Preparing: Effective Résumé, Facing Job Interviews.

TEXT BOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Course	e Designers:								
S.No.	Name of the Faculty	Mail ID							
1	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in							
2	Dr Bhuvaneswari R/ Assistant Professor - English	bhuvaneswarir@vmkvec.edu.in							

BASIC SCIENCE COURSES

	Category	L	Т	Р	Credit
ENGINEERING					
MATHEMATICS	FC-BS	2	1	0	3

Preamble

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

Prerec	quis	ite :	NIL													
Cours	e O	bjec	tives													
1	Тот	recal	ll the	advar	nced r	natrix	know	ledge t	o Eng	gineer	ing pro	oblems	5.			
2	То	equi	p ther	nselv	es far	niliar	with t	he func	ctions	of se	veral v	ariable	es.			
	To	impı	rove t	heir a	bility	in so	olving	geome	trical	appli	cations	s of dif	ferenti	ial ca	lculus	
3	pro	blem	ns.													
4	То	exan	nine k	nowl	edge	in mu	ltiple	integra	ls.							
5	To	impr	ove t	heir a	bility	in Ve	ector c	alculus	•							
Cours	e O	utco	mes:	On t	he su	ccess	ful co	mpletio	on of	the co	ourse,	studer	nts wil	l be a	able to)
								reduct								
CO1. matrix. Apply																
Find the radius of curvature, circle of curvature and centre of																
CO2. curvature for a given curve. Apply																
Classify the maxima and minima for a given function with several Approximation																
CO3. variables, through by finding stationary points Apply																
		Find	doub	le int	egral	over	genera	l areas	and t	riple	integra	l over	genera	l		
CO4.		volu	mes		C		0			•	U		0	A	Apply	
CO5.		App	ly Ga	uss D	iverg	ence	theore	m for e	valua	ting t	he surf	ace int	egral.	A	Apply	
Mapp	ing	with	n Prog	gram	me O	utco	nes ar	nd Prog	gram	me S	pecific	Outco	omes			
COs		PO1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		S	S	Μ	-	-	-	-	L	-	-	-	Μ	-	-	-
CO2		S	S	M	-	-	-	-	L	-	-	-	M	-	-	-
CO3 CO4		S S	S S	M M	-	-	-	-	L L	-	-	-	M M	•	-	-
C04 C05		S S	<u>s</u>	M	-	-	-	-	L	-	-		M	-	-	-
S- Stro			\sim		W				Ľ				171			
SYLL	AB	US														
MATE	RICI	ES														
Charac	cteri	stic	equat	ion –	Eige	n val	ues an	d eigen	vecto	ors of	a real	matrix	– Pro	pertie	es of	
eigenv	alue	es an	d eig	envec	ctors (With	out pro	oof) - (Cayle	y-Har	nilton	theorem	m (exc	ludin	g pro	of).
DIFFE	ERE	NTL	AL C	ALCU	JLUS	&PA	RTIAL	DERI	VAT	VES						
Curvat	ture	- C	artesi	an an	d Par	ameti	ic Co-	-ordina	tes –	Centr	e and	radius	of cur	vatur	e – Ci	rcle of
curvat	ure.	Part	tial D	erivat	ives -	– Tot	al Diff	erentia	tion -	- Max	kima ar	nd Mir	nima - (Const	rainec	1
								plier M	letho	d.						
ORDI	NAF	RY D	IFFE	REN	ГIAL	EQU	ATIO	NS								

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration (in both Cartesian and polar coordinates)-Change of order of integration.

VECTOR CALCULUS

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof), Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gaussdivergence and Stoke's theorems (Statements only)

Text Books

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delh (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

Reference Books

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics/VMKVEC	selvam@vmkvec.edu.in

										Catego	ory	L	Т	Р	Credit
						SCIE									
			ART A	A - EN	GINE	ERIN	G PH	YSIC	S	FC-I	BS	2	0	0	2
PREAD															
															various
														of las	
														tion and	
		of ultra	asonics	s will l	help ai	n engir	neer to	analy	ze, des	sign and	d to fat	oricate v	various o	concepti	ual based
devices															
PRERI	-														
COUR															
1	To recall the properties of laser and to explain principles of laser.														
2	To assess the applications of laser.														
3	To detail the principles of fiber optics.														
4	To study the applications of fiber optics.														
5	To explain various techniques used in Non-destructive testing.														
COUR															
										able to			1		
						ser, fib							Under	stand	
CO2				constru	uction	of lase	er, fibe	er opti	c and	ultraso	nic				
	-	pment											Under	stand	
CO3						laser,	fiber	optic a	and ul	trasonio	c based	l			
		•	ts and										Apply		
CO4				ential	applica	ations	of lase	er, fibe	er optio	es and u	ıltrasor	ics in			
		ous fie											Apply		
CO5					ng mo	odes of	vario	us typ	es of l	aser, fil	per opt	ic and			
			device		0.05	01170							Analy		
MAPP														JTCOM	IES
GOG	P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	DGOO
COS	01	02	03	04	05	06	07	08	09	10	11	12	01	02	PSO3
CO1	S	-	M	-	-	-	-	-	-	-	-	M	M	-	М
CO2	S	-	L	-	-	-	-	-	-	-	-	M	M	-	-
CO3	S	-	-	M	-	-	M	-	-	-	-	M	M	-	-
CO4	S	M	-	Μ	Μ	S	М	-	-	-	-	M	S	-	М
CO5	S	M	M	-	-	-	-	-	-	-	-	Μ	М	-	-
5- Str	ong; N	vi-ivie	aium;	L-L0	W										

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd: YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOK

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COUR	SE DESIGNERS			
S.No				
	Name of the Faculty	Designation	Department	Mail ID
	Dr. C. SENTHIL			senthilkumarc@vmkvec.edu.i
1	KUMAR	PROFESSOR	PHYSICS	n
		ASSOCIATE		
2	Dr. R. SETHUPATHI	PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

		D	uvsi	CAL	SCIEN	ICES										
					GINE		C		(Categor	v	L	Т	Р	(Credit
				ISTR			U			utegor	3		-	-		Jieun
					all Br	anaha	a)		1	FC-BS		2	0	0		2
Pream	hle	(Comm	1011 10	all DI	anche	8)			г С-D 5		4	U	U		4
		e of th	is cou	rse is	to hette	er unde	erstand	l the l	nasic c	concept	s of ch	emisti	rv a	nd it	ts annli	cations
										the pro-						
										les of f						
also pr																
applica									0	υ						
Prerec																
Cours	e Obje	ectives	5													
1	To Pr	ovide	the kr	nowlea	lge on	water	treatm	ent								
1		To Provide the knowledge on water treatment. To explain about the importance of electrochemistry, mechanism of different corrosion and														
2	rinciple and working of batteries.															
3																
Cour										ourse, s			be	able	e to	
	rstand						•			,						
					_											
			e hard	ness c	of wate	r Appl	y and	Identi	fy suit	table wa	ater tre	atmen	t			
CO1	meth	ods.													App	oly
	-															
								•		ol meth	ods of					
CO2	1				of ener										Anal	yze
~ ~ ~			the q	uality	of fuel	s from	its pro	opertie	es and	the imp	portant	featu	res			
CO3	of fue						1.D		n	• 6• - 4					Anal	yze
Map										ecific (
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	2 P	SO1	PSO2	PSO3
CO1	S	М	М	L	_	М	S	М	_	-	-	М		М	М	М
	~						~					1,1	+			
CO2	S	S	L	L	-	S	S	S	-	-	-	S		Μ	L	М
CO3	S	М	М	L	L	L	М	М	-	-	-	S		-	М	М
S- Stroi	ng; M-N	Aediun	n; L-Lo)W								-				
SYLL	ABUS															

SYLLABUS

WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolit process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) Galvanic cell- Electrochemical cell representation - EMF series and its significance. Corrosion -Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factor influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries. Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific valuestheoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

Text Books

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

Reference Books

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007 Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. A.R. Sasieekhumar	Assistant Professor		sasieekhumar@vmkvec. edu.in
2	Dr. R. Nagalakshmi	Professor	CHEM/ AVIT	nagalakshmi.chemistry @avit.ac.in

									C	CATEGO	RY	L	Т	Р	С
				SMA	RT MA	ATERL	ALS		F	C-BS		3	0	0	3
PREAM	BLE												L		
mart M	aterials	gives a	an outle	ook abo	ut vario	ous type	es of m	aterials	having	potential	applica	tion in H	Engineeri	ng and T	echnology
-					-	-							naterials,	and their	r industria
			stics an	d indus	trial ap	plicatio	ns of M	lagnetic	and Su	ıpercondu	cting m	aterials.			
PRERE	QUISI	ГЕ:													
Nil															
COURS	E OBJ	ECTIV	ES:												
1	To un	derstan	d the st	ructure	of cryst	alline n	naterial	s.							
2	To un	derstan	d the pr	operties	s of sma	art mate	rials an	nd realiz	e its inc	dustrial ap	plicatio	ns.			
3	To lea	rn the s	ynthesi	s of Na	no mate	erials ar	nd carbo	on nano	tubes.						
4	To lea	rn the p	oroperti	es, class	sificatio	on and r	elevant	applica	tions of	f magnetic	e materi	als.			
5	To un	derstan	d the co	ncept o	f super	conduct	ivity, p	ropertie	es of su	per condu	ctor and	l their in	dustrial a	pplicatio	ns.
COURS	E OUT	COMI	ES:												
After	succes	sful cor	nnletio	n of the	course	learner	· will be	e able to)						
			•	Crysta			will by		,					Apply	7
							onnlia	otions	of Smor	t Material	0			Apply	
				<u> </u>	Ŭ	s of Nar			n Sillai		5				
		· ·		•	•				• 1	1.6 '1'	• .1 •			Apply	/
CO4.	applica		ledge a	bout th	e prope	rties of	magne	tic mate	erials ar	nd familia	ize the	r		Apply	7
COS			uladaa a	bout S	inorcor	ducting	motori	10							
														Apply	,
VIAPPI	NG WI P	<u>ТН РК</u> Р	OGRA P	MME P	<u>OUTC</u> P	OMES P	AND I P	PROGI P	KAMM P	E SPECI PO	<u>FIC O</u> PO	PO	IES PO	РО	
COS	P 01	P 02	P 03	Р 04	Р 05	P 06	Р 07	P 08	Р 09	PO 10	PO 11	PO 12	PO S1	PO S2	POS3
CO1	S	S	S	S.	M	-	-	-	-	-	-	S	-	-	-
CO2	S	M	S	S	-	-	-	-	-	-	-	S	-	-	-
CO3	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO4	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO5	S	М	М	S	М	-	-	I	-	-	-	S	-	-	-
S-stro	ong, M-	• Mediu	1m, L –	Low											

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures – determination of interplanar distance (d).

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application – SMA in Actuators and Blood clot filters, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and industrial applications (Core of the Transformer).

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).

SUPER CONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Industrial Applications of superconductors (SQUID, Cryotrons and Maglev Trains).

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. A.K. Katiyar and C.K. Pandey, Engineering Physics Theory and Practical, Wiley Publisher, 2015.

REFERENCES

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Suresh	Associate Professor	Physics	suresh.physics@avit.ac.in
2	Dr. R. N. Viswanath	Professor	Physics	rnvishwanath@avit.ac.in
3	Dr. B. Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phys@avit.ac.in

			SICAL		NCES I	LAB				Ca	tegory	L	Т	Р	Credit
			T A – I VIRT		AB IN	PHYSI	ICS			F	C-BS	0	0	2	1
PREAN	ABLE														
															y modulus,
															nvolve the
	experim										kness of	a thin v	vire. In ad	adition to	the above
	EQUISI		uuunto	guill lia		enperie		vii totui .	uoorui	<i></i>					
NIL	C														
COURS	SE OBJ	ECTIV	/ES												
1	Toim	part bas	sic skill	s in tak	ing read	ling wit	h preci	sion of	physics	experim	ents.				
2	To inc	ulcate	the habi	it of har	ndling e	quipme	ents app	propriat	ely.						
3	To gai	in the k	nowled	ge of pi	acticin	g exper	iments	through	n virtual	laborato	ry.				
4	To kn	ow the	importa	nce of	units.										
5	To ob	tain res	ults wit	h accur	acy.										
COURS	SE OUT	COM	ES												
On tl	he succe	ssful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to				-		
CO1.	. Recog	nize the	e impoi	tance of	of units	while	perform	ning the	e exper	iments, c	alculating	g the			
	physic	al parai	meters a	and obta	aining r	esults							Underst	and	
CO2.	. Operat	e the ed	quipme	nts with	precisi	ion							Apply		
CO3.	. Practic	e to ha	ndle the	equipr	nents in	ı a syste	ematic r	nanner					Apply		
CO4.	. Demor	nstrate t	the expe	eriment	s throug	gh virtu	al labor	atory					Apply		
	. Calcul					2		2					Apply		
						COME	S AND	PROG	GRAM	ME SPE	CIFIC O	UTCO			
												PO			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	12	PSO1	PSO2	PSO3
CO1	S	S													
CO2	S	S	Μ	М	S				Μ			М	M		М
CO3	S	~			~							~			
CO4	S	S	М	М	S							S	M		M
CO5	S	S Mediu	m·T T	AW											<u> </u>
SYLL	0.	IVICUIU.	, L/-L	011											
51LL 1.		s mod	ulus of	a bar - l	Non-un	iform b	ending								
2.	Rigidi	ty modu	ulus of	a wire -	Torsio	nal Pen	•								
3.			liquid				, .	T . A							
4. 5.			trasoni letermi			ids - Ul	trasonio	c Interf	eromete	er					
5. 6.						ng – Sp	ectrom	eter							
7.			a wire -												

- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A - Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka

Mission's Research Foundation (Deemed to be University), Salem.

COURSE DESIGNERS

		-		-
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

		PI	HYSI	CAL S	SCIEN	CES		Categ	ory	L	Г	,	Р	C	redit
						ERIN	G	0							
					Y LAB										
		(Comm	ion to	all Br	anches	s)	FC-E	BS	0	0		2		1
Pream		~										. –		~	
										and esse					
										Engine					
										nted kr				ctroche	emistry
										disadva					
			i and i	landin	ig of e	quipine	ents af	e neet	led Io	or our fa	st grov	ving in	e style	•	
Prereq NIL	luisite	•													
Course	e Obje	ectives	5												
1	To im	nart h	asic sl	rills in	Chem	istry so	h that	the str	ident	will und	lerstan	d the e	nginee	ring co	ncent
		•									<u>icistan</u>		inginiee		neept.
2	To inc	culcate	e the k	nowle	dge of	water	and el	ectroc	hemis	stry.					
3	To lay	v found	dation	for pr	actical	applic	ations	s of ch	emist	ry in en	gineeri	ng asp	ects.		
Course	e Outo	comes	: On t	he su	ccessfu	il com	pletio	n of tl	ne cou	urse, sti	udents	will b	e able	to	
CO1	Under	stand	the ba	sic ski	ills for	his/her	r futur	re stud	ies.				U	ndersta	ind
CO2	Analy	ze the	water	comp	rehens	ively.							А	pply	
CO3	Apply	the p	ractica	l knov	vledge	in eng	ineeri	ing asp	bects.				А	pply	
Mappi	ing wi	th Pro	ogram	me O	utcom	es and	Prog	ramm	ie Spe	ecific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	М	М	-	L	М	М	S	-	-	-	М	-	-	-
CO2	S	М	Μ	-	L	М	М	L	-	-	-	М	-	-	-
CO3	S	S	М	_	L	М	М	М	_	_	_	М	-	_	_
003			171		Ľ	141	141	141		1	I	141	I		

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. Estimation of Iron by Spectrophotometer

Text Books

1. Engineering Chemistry Lab Manual by VMU. Delhi.

Course Designe	rs
----------------	----

Cours	e Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr. D. Nagalakahmi	Professor		nagalakshmi.chemistry @avit.ac.in
I	Dr. R. Nagalakshmi	Professor	CHEM/ AVIT	@avit.ac.in
				gilbertsunderraj@vmkvec
2	A. Gilbert Sunderraj	Assistant Professor	CHEM/ VMKVEC	. edu.in

							Cat	egory	L	T		Р	Cre	dit
		IN	DUST	[RIA]	L MA	TERIAL	S FC-	BS	3	0		0	3	3
Preaml														
			-			ng chain i		-						
						ototyping								oblems
of the ward and created					l SK111S	are, in-d	epth kn	owledg	e and a	oplicati	on of c	chemisi	ry	
Prereq	-													
Course														
1 To	n Desci	ribe t	he va	rious 1	netall	ic materia	ale							
						terials for		ies						
						the indu		105.						
		-				paints us		e indu	stries.					
5 To	o Disti	nguis	h the	variou	is peti	oleum pr	oducts.							
Course	Outco	mes	: On t	the su	ccess	ful comp	letion o	f the co	ourse, s	tudent	s will k	oe able	to	
CO1.	Discu	uss th	e vari	ous m	netallio	c material	ls using	in indu	stries.			Unc	lerstand	1
CO2.						materials						App		
CO3.	Com	pare t	the dif	fferen	t lubri	cants wit	h their p	roperti	es.			Ana	ılyze	
CO4.	Relat	te the	vario	us sur	face c	oatings.						App	oly	
CO5.	Categ	gorize	e the c	liffere	ent pet	roleum p	roducts.					Ana	lyze	
Марріі	ng witl	h Pro	gram	ıme O	utcor	nes and I	Program	nme Sp	oecific (Dutcon	nes			
COs	PO1	PO2	PO3	PO4	PO5	PO6 PO	07 PO	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	M S	S -	-	-	-	-	М	М	М
CO2	S	М	-	-	-	S S	S -	-	-	-	-	М	М	М
CO3	S	М	-	-	-		- 1	-	-	-	-	М	М	М
CO4	S	S	-	-	-		<u>s</u> -	-	-	-	-	M	M	M
CO5 S- Strong	S g: M-M	S	-	-	-	S N	A -	-	-	-	-	Μ	М	M
SYLLA	Ċ,	culuii	I, L-L	<i>J</i> w										
META		ND A	LLO	YS										
Enginee	ering n	nateri	als: F	errous	s mate	rials, Alu	minium	, Copp	er, Nick	el, Ma	gnesiu	m, Tita	nium a	lloys
for engi	ineerin	g app	olicati	ons.	Phase	diagram	ns, pro	perties	and t	ypical	alloys	with	refere	ence
to their	r applic	cation	ns.											
SMAR	Т МА	TER	IALS	3										
					tors a	nd Intell	igent n	aterial	s for b	io-med	ical ap	plicatio	ons,	
-		•	•			ry. Deve	0					-		ons of
polyme	ric ma	terial	s.					-	-			-		
LUBRI	[CAN]	ГS												

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pour point) and their determination.

PAINTS

surface Coatings: Objectives of coatings surfaces, preliminary treatment of surface, classification

of surface coatings- Paints, pigments, Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents.

Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing,

Water and Oil paints, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

PETROLEUM AND PETROCHEMICAL INDUSTRY

Composition of crude petroleum- Refining and different types of petroleum products and their applications - Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass) - synthetic fuels (gases and liquids).

Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Text Books

- 1. Industrial chemistry by B.K.Sharma. Goel publishing home.
- 2. Engineering Material Technology, 5th edition, by James A.Jacobs & Thomas F. Kilduff.

Reference Books

- 1. An Introduction to Industrial chemistry by C,A.Heaton. Springer publications.
- 2. Engineering materials1: An introduction to properties, applications and design by Michael F Ashby and David R H Jones, Elsevier Butterworth Heinmann Publishers, 2007

S.No	Faculty Name	Designation	Department/Name of the College	Email id
	Mr.A.Gilbert			gilbertsunderraj@vmkvec.
1	sunderraj	Associate Professor	Chemistry/VMKVEC	edu.in
				nagalakshmi.chemistry@a
2	Dr.R.Nagalakshmi	Professor	Chemistry/AVIT	vit.ac.in

MATHEMATICS FOR	Category	L	Т	Р	Credit
MECHANICAL					
SCIENCES	FC-BS	2	1	0	3

Preamble

This course provides a solid undergraduate foundation in partial differential equations, probability theory and mathematical statistics and at the same time provides an indication of the relevance and importance of the theory in solving practical problems in the real world. Partial differential equations are derived from physics and instruct the methods for solving boundary value problems, that is, methods of obtaining solutions which satisfy the conditions required by the physical situations such as Heat flow equations of one dimension and two dimensions. Fourier analysis is to represent complicated functions in terms of simple periodic functions, namely cosines and sines. Statistics is permeated by probability. Statistics has been responsible for accelerating progress in all applied sciences by defining the correct methods of planning, collecting, analyzing and interpreting data for establishing cause and effect relationship.

Prerequisite : Engineering Mathematics

Prereq	uisite :	: Engi	neerii	ng Ma	them	atics									
Course	e Objec	ctives													
1 7	Го forn	nulate	and s	solve	partia	l diffe	rential	equat	ions.						
2	Го repr	esent	a peri	odic	functi	on as a	a Fouri	er ser	ies.						
3	Го be f	amilia	ır witl	h appl	licatio	ons of	partial	differ	ential	equati	ons.				
	To provide an understanding for the graduate on statistical concepts to include measures of central tendency, curve fitting, correlation and regression.														
5	Го be f	amilia	ır witl	n disc	rete a	nd cor	ntinuou	is rand	dom v	ariable	es.				
Course	Outco	mes:	On t	he su	ccess	ful co	mpleti	on of	the co	ourse,	stude	nts wil	l be a	ble t	0
CO1.	Exp		ne me				ning ar							Apply	
CO2.	prot	Demonstrate periodic functions arising in the study of engineering problems as Fourier series of sine and cosines and compute the Fourier coefficients numerically. Apply													
CO3.	Solv	ve part	tial di	fferer	ntial e	quatio	ns arisi quation					ems lil	ĸe	Apply	
CO4.	the	correl	ation	coeff	icient	and re	a curv egressi	on lin	es for	the da	ita		ite	Apply	
CO5.		oly cor ables.	ncepts	s of pi	obabi	ility, d	iscrete	and c	contin	uous ra	andom	_	A	Apply	
Mappi	ng witl	h Prog	gram	me O	utcor	nes ar	nd Pro	gram	me Sj	pecific	Outco	omes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	Μ	L					M				Μ			
CO2	S	Μ	Μ	L				Μ				Μ			
CO3	S	Μ	Μ	L				М				Μ			
CO4	S	M	L					M				M			
CO5	S	S	M					Μ				Μ			
	ong; N ABUS		lium	; L-L	ow										

PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0,f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions – General Fourier series – Half -range Sine and Cosine series – Parseval's identity – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations – Solutions of one – dimensional wave equation, one – dimensional heat equation – Steady state solution of two – dimensional heat equation – Fourier series solutions in Cartesian coordinates.

STATISTICS

Measures of central tendency, Curve fitting – Straight line and Parabola by least square method, Correlation, Rank correlation and Regression.

VECTOR CALCULUS

Probability Concepts – Random Variables - Discrete and Continuous Random Variables-Probability mass function – Probability density functions - Moment Generating Functions and their properties.

Text Books

- 1. S.C. Gupta, V.K. Kapoor, "Fundamentals of mathematical statistics", Sultan Chand & Sons (2017).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. T. Veerarajan, "Probability, Statistics and Random processes" 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi (2006).

Reference Books

- 1. Dr.A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 2. Dr.A. Singaravelu, "Probability and Statistics", Meenakshi Agencies, Chennai (2016).

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			
Course	Designers			•

Course	Designers			
			Department/Name of	
S.No	Faculty Name	Designation	the College	Email id
1	Dr. S. Punitha	Associate Professor	Mathematics/VMKVEC	punitha@vmkvec.edu.in
2	Ms. S. Sarala	Associate Professor	Mathematics/AVIT	sarala@avit.ac.in

			MET		ТЛЛТ	THAT]
				ECHA		THOI		Catao		L	Т		Р		Cradit
			K MI ENC		INIC	AL	-	Categ FC-l	, .	2	1		r 0		Credit 3
Preaml		SCI		~E3				гс-J	00	<u>_</u>			U		3
		ovida	a an i	ntrad	natio	n ta tha	haria	00000	onta a	nd tool	miana	ofn	110000		lution
This co	-								-		-				
of alge integrat												uon o	or an	rerem	lation,
enginee												th hot	h tha	oratio	al and
comput						ueven	ops pi	obien	1 501	ing sk	liis wi	ui uu		orene	ai allu
Prereq			1			emotics	,								
rereq	uisite.		0	0		lechani		ences							
Course	Ohio			ancs				ences	•						
-	0		vith n	umari	cal se	olution	ofline	or oa	untion	10					
						olution		-							
						ifferenc						umorio		fforor	tiotion
	nd int			10 111	nie u	merenc	les and	1 mie	pola	1011 all	u uie ii	ument		nerer	manon
		<u> </u>		soluti	onso	of ordin	arv dif	feren	tial e	mation	ne in				
						of partia	2			1					
Course												nts wil	l be a	ble to)
CO1.						algebra								Apply	
001.						eld of N						neur	1	- PP1 J	
CO2.						ermedi						nial		Apply	
		umeri									5			rr J	
CO3.	Apr	oly me	thods	s to fir	nd int	egratio	n, deri	vative	es of o	one and	d two v	ariable	e A	Apply	
		ctions.				U	,							11.2	
CO4.	Solv	ve the	initia	l valu	e pro	blems u	using s	ingle	step	and mu	ıltistep		A	Apply	
	met	hods.			-		-	-	-		-				
CO5.	Sol	ve the	boun	dary v	alue	problei	ms usi	ng fin	ite di	fferenc	e meth	ods.	A	Apply	
Mappiı	ng wit	h Prog	gram	me O	utco	mes an	d Prog	gram	me Sj	pecific	Outco	mes			
~~~			PO			201		PO	PO	PO1		-		-	-
COs		PO2		PO4	PO5	PO6	PO7	8	9	0	PO11		PSO1	PSO2	PSO3
C01	S	M	L					L				M			
CO2	S	M	L					L				M			
CO3 CO4	S S	S S	L L	 L				L L				M			
C04	S S	S	L	M				L				M M			
S- Stro								L				IVI			
SYLLA	U,		,												
SOLU		OF L	INEA	AR EQ	DUA'	TIONS	5								
Solution					-			and (	Gauss	s-Jorda	n meth	ods –	LU-		
decomp														onditi	ons for
converg															
SOLU											0				
Solution									Seca	int me	thod –	Regu	la fal	si me	thod –
Newton			•									0			
METH														)	
r															

#### INTEGRATION

Newton's forward, backward and divided difference interpolation – Lagrange's interpolation – Numerical Differentiation and Integration – Trapezoidal rule – Simpson's 1/3 and 3/8 rules - Curve fitting - Method of least squares and group averages.

# INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Euler's method – Euler's modified method – Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations -Multistep methods – Milne's and Adams' methods.

# BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Numerical solution of Laplace equation and Poisson equation by Liebmann's method – s lution of one dimensional heat flow equation – Bender-Schmidt recurrence relation – Crank -Nicolson method – Solution of one dimensional wave equation.

#### Text Books

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- 2. S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

# **Reference Books**

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).
- Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	<b>Host Institution</b>	Duration
	Nil			

S.No	Faculty Name	Designation	Departm ent / Name of the College	Email id
			Mathematics/	vijayarakavan@vmkvec.edu
1	Dr. M.Vijayarakavan	Associate Professor	VMKVEC	.in
			Mathematics/AV	
2	Dr. S. Gayathri	Assistant Professor	IT	gayathri@avit.ac.in

							(	Catego	ry	L	Т		Р		Credit
				RCE N QUE		GEME		C- S		2	1		0		3
PREA	MBLE			-											
Operati	ons Re	eseard	ch is	the st	udy o	f optin	nizatio	n tech	nniqu	es and	its hel	ps in s	solvin	g pro	blems
						d decis									
nd Re	placen	nent	probl	ems,	Sequ	encing	and	Sched	uling	proble	ems, 7	Assign	ment	of J	obs to
						ns, Net			ems a	nd De	cision	mode	ls. En	tire s	ubject
				mana	agers	of vario	ous fie	elds.							
	uisite														
Course	e Obje	ctives	5												
,	To be t	horo	ugh v	vith li	near r	orogran	nming	probl	em a	nd forn	nulate	a real	world	l prob	olem a
			-		-	g mode	-	1						1	
,	To Str	dv a	nd av	ouire	, kno	wledge		nging	oring	and N	Ianaa	orial a	olutio	na ir	<b>`</b>
						proble		ngme	ering	and N	lanag	cital s	oiutic	nis ii	1
	Ŭ				U	1									
	-					g techni	-		RΤ, C	CPM an	d sequ	iencin	g moc	lel to	
3	perform	n ope		n amo	ong va	arious a	lterna	tives.							
4 ′	To be g	get ex	pose	d to t	he coi	ncepts o	of Inve	entory	cont	rol.					
5	To stu	lv de	cisior	theo	rv and	l game	theory	v techi	nique	s to an	alvze	the rea	l wor	ld svs	tems.
						ssful c									
							-				<i>.</i>				
						rammir two va				-					
CO1	simple				with		arraute	s usm	ig gi <i>t</i>	ipincai	meth	ju aliu	-	pply	
<u>coi</u> .														ppiy	
~ ~ •						ogramı	ning p	oroble	ms li	ke the	Trans	portati			
CO2.	and A	ssign	ment	prob	lems.								A	pply	
	Solve	netw	ork p	oroble	ems u	sing Cl	PM, P	ERT 1	techn	iques a	ind se	quenci	ng		
CO3.	model	•											A	pply	
CO4.	Desig	n a co	ontini	ious (	or peri	iodic re	eview	invent	orv c	ontrol	svsten	1	A	pply	
														II J	
						ally to		0	· •						
CO5	compl			0		tition	a pro	olem	into	sman	er ta	isks a		nnly	
						mes a	nd Pro	oran	ıme S	Specifi	c Out	romes		pply	
Tappi			PO		June	/iiics ai		PO	PO	PO1	PO1	comes			
COs	PO1	PO2	3	PO4	PO5	PO6	<b>PO7</b>	8	9	0	1	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	L			S				S			
CO2	S	S	M	L	L			S				S			
CO3 CO4	S S	S S	M S	L M	S 			S S				S S			
CO5	S	S	S	M	М			S				S			
S- Stro	U,	-Mec	lium	; <b>L-L</b>	ow										
SYLL															
						gramm	0						-	0	
11	n ann	licati	ons :	and li	imitat	ions, C	franhi	cal m	etho	d Sim	nlow N	Actho	I I	1 D	ia N

method –Duality principle

**TRANSPORTATION AND ASSIGNMENT MODELS:** Transportations problem: North West Corner Method, Least Cost Method, Vogel's Approximation Method, Modified Distribution Method, Unbalance and Degeneracy in Transportation Model, Assignment problem: Hungarian algorithm, Unbalanced Assignment problems - Maximization case in Assignment problems, traveling salesman problem.

**NETWORK MODELS:** Basic terminologies, constructing a project network, network computations in CPM and PERT, Sequencing Models: Scheduling – processing n jobs through two machines, processing n jobs through three machines, processing n jobs through m machines.

**INVENTORY MODELS:** Variables in inventory problems – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units). Inventory models with quantity discount, safety stock, multi-item deterministic model.

**DECISION MODELS:** Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions, Matrix Oddment method for nxn games (Arithmetic Method) – Replacement Models: Replacement of Items due to deterioration with and without time value of Money, Group replacement policy.

# **TEXTBOOKS:**

- 1. H.A.Taha, "Operations Research: An Introduction", 10th Edition, Prentice Hall of India (2019).
- 2. F.S Hillier and G.J. Lieberman, "Introduction to Operations Research: Concept and Cases", McGraw-Hill International (2012).

#### **REFERENCES:**

- 1. Kanti Swarup, P.K.Gupta, Man Mohan, "Operations Research", S.Chand & Sons, New Delhi (2014).
- 2. Sundarasen.V, Ganapathy Subramaniyam, K.S, Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai (2013).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi (2014).

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	<b>Host Institution</b>	Duration
	Nil			

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Punitha	Associate Professor	Mathematics	punitha@vmkvec.edu.in
2	Dr. M.Thamizhsudar	Associate Professor	Mathematics	thamizhsudar@avit.ac.in

	Category	L	Т	Р	Credit
PROBABILITY AND					
STATISTICS	FC-BS	2	1	0	3

#### Preamble

Probabilistic and statistical analysis is mostly used in varied applications in Engineering and Science. Statistical method introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests and designing the experiments with several factors. Statistical Quality control is a method of quality control which employs statistical methods to monitor and control a process and ensure the process operates efficiently, producing more specification-conforming product. Based on this, the course aims at giving adequate exposure in random variables, probability distributions, regression and correlation, test of hypothesis and statistical quality control.

Prere	Prerequisite : Nil														
Cours	Course Objectives														
1	To get the knowledge on concepts of random variables and distributions with respect to how they are applied to statistical data.														
2	To acquire skills in handling situations involving more than one random variable and functions of random variables														
3							Hypot the sa		ıseful	in ma	king de	ecision	and	test th	em by
4							desigr				o the pr	ocess (	of ma	aking	
5		derstar			-	-	ty con	trol an	d the	use of	f operat	ting ch	aract	teristic	: (OC)
Cour	rse Ou	tcomes	s: On	the su	iccess	sful co	mpleti	on of	the co	ourse,	studen	ts will	be a	ble to	
	Se	lect an	approj	priate	prob	ability	distrib	ution t	o dete	ermine	probał	oility			
CO1	. fu	nction f	for sol	ving e	engine	eering	proble	m.					A	Apply	
CO2	. va	riables.									iate ran			Apply	
CO3.	-			-	-		-				e probl			Apply	
CO4		-				•					echniq pulatio			Apply	
		1									of the j	L			
					ot is a	ccepta	ble or ı	inacce	ptabl	e basec	d on aco	ceptand			
CO5		npling							~	10			A	Apply	
Mapp	ing wi	th Pro	gramı	ne O	utcon	nes an	d Prog	ramm			Dutcon	nes	1		
CO	DO	1 001		DO4	DOF	DOC	D07	DOP	PO	PO1	DO11	DO14	DGO1		DGO2
COs CO1		1 PO2 S	PO3 M	L L	PO5	PO6	PO7	PO8 L	9 	0	PO11	M		1 PSO2	
CO1 CO2															
CO3															
CO4	S S M L L M														
CO5															
	S- Strong; M-Medium; L-Low														
SYLL	LABUS	5													

# STANDARD DISTRIBUTION

Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions.

#### TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and **Regression Analysis** 

#### **TESTING OF HYPOTHESIS**

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit independence of attributes.

#### **DESIGN OF EXPERIMENTS**

Analysis of Variance – One Way Classification – Two Way Classification – Completely Randomized Design – Randomized Block Design – Latin Square Design.

#### STATISTICAL QUALITY CONTROL

Introduction – Process control – Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) - Tolerance limits - Acceptance sampling - single sampling, double sampling, multiple sampling and sequential sampling.

#### **Text Books**

- 1. S.P. Gupta, "Statistical Methods", 45th Edition, Sultan Chand & Sons Publishers (2017).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).

#### **Reference Books**

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", 12th Edition, Sultan Chand & Sons, New Delhi (2020).
- 2. Miller, "Probability and Statistics for Engineers", 9th Edition, Freund-Hall, Prentice India Ltd. (2017).
- Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	Nil			
Course	Designers			

S.No	Faculty Name	Designation	Department / Name of the College	Email id
		Associate		vijayarakavan@vmkvec.edu
1	Dr.M.Vijayarakavan	Professor	Mathematics/VMKVEC	.in
		Associate		
2	Dr. A.K.Bhuvaneswari	Professor	Mathematics/AVIT	bhuvaneswari@avit.ac.in

	Categor				
ENVIRONMENTAL SCIENCES	У	L	Т	P	Credit
(Common to All Branches)	FC-BS	3	0	0	3

**Environmental science** is an interdisciplinary field that integrates physical, chemical, biological, _and atmospheric sciences. Environmental studies deals with the human relations to the environment and societal problems and conserving the environment for the future. Environmental engineering focuses on the various issues of environment and its management for sustainable development by improving the environmental quality in every aspect.

# PREREQUISITE NIL

# **COURSE OBJECTIVES**

	To inculcate the knowledge of significance of environmental studies and conservation of the natural resources.
1	
2	To acquire knowledge of ecosystem, biodiversity, it's threats and the need for conservation
3	To gain knowledge about environmental pollution, it's sources, effects and control measures
	To familiarize the legal provisions and the national and international concern for the protection of environment
4	
	To be aware of the population on human health and environment, role of technology in monitoring human health and environment.
5	
COURS	E OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the importance of environment and alternate energy resources	
	Understand
CO2. Initiate the awareness and recognize the social responsibility in ecosystem	
and biodiversity conservation	
	Apply
CO3. To develop technologies to analyse the air, water and soil pollution and solve	
the problems	
	Analyse
CO4. To evaluate the social issues and apply suitable environmental regulations	
for a sustainable development	
-	Evaluate
CO5. To identify and analyse the urban problems, population on human health and	
environment	
	Analyse

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-

CO5	S	S	S	М	_	S	S	S	-	-	-	S	-	-	_
S- Stro	S- Strong; M-Medium; L-Low														

# ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

# **ECOSYSTEMS AND BIO – DIVERSITY**

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

# **ENVIRONMENTAL POLLUTION**

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management–Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style

# SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation – rain water harvesting, watershed management -Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

# HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in environment and human health.

# **TEXT BOOK**

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

# **REFERENCES:**

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-

#### 9 hrs

9 hrs

#### 9 hrs lemen

# 9 hrs

# 9 hrs

# 01

0,2004.

- 5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE DESIGNERS								
S.No.	Name of the Faculty	Mail ID						
1	Dr. R.Nagalakshmi	nagalakshmi.chemistry@avit.ac.in						
2	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in						

# ENGINEERING SCIENCES COURSES

						COM				Categ	ory	LI	<b>P</b>	Cr	edit
					NS OF ' NG (Th			G AND cticals)		FC-E	S	2 0			3
emphasi basics.	irse aim zing pri	nciples	progra										tware insommands		
PRERQ COUR	-														
1				wledge	of harc	lware c	ompone	ents of a	comput	ers and c	lassificat	ions.			
2	To introduce and demonstrate various Operating System functions and software. Software application packages.														
3	To study Principles of programming and applications of programming.														
4	To learn about various Database Management Systems languages and commands used.														
5	To learn basics of Internet and Web services.														
COU	RSE O	UTCO	MES												
On the	e succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to	)					
					<u> </u>					functions		Und	erstand		
CO2. 7 wares.	Го get k	nowled	ge of F	undame	entals of	f variou	is Opera	ating Sy	vstem fu	inctions a	and soft	Und	erstand		
CO3.T langua		erstand	the prin	nciples	of prog	grammi	ng and	categor	ies of p	programm	ning	App	1.,		
	0	onstrate	es Data	base N	Ianage	ment S	ystem	s langu	ages ar	nd their		App	ny		
classif	ication	S.										App	ly		
CO5.7	To unde	rstands	s and d	emons	trates th	he Inter	rnet Ba	asics.				App	ly		
MAPI													UTCO		<u> </u>
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	S	M	-
CO2	S	М	Μ	-	М	-	-	-	-	-	-	М	S	M	М
CO3	S	S	S	-	М	-	-	-	-	-	-	-	S	-	М
CO4	S	S	S	-	S	-	-	-	-	-	-	-	S	M	М
CO5	S	М	Μ	-	М	-	-	-	-	-	-	S	S	Μ	М
S- Stro	ng; M-	Mediu	<b>m; L-</b>	Low											

# **Introduction to computers:**

Characteristics of computers, Classification of Digital Computer Systems: Microcomputers, Minicomputers, Mainframes, Supercomputers. Anatomy of Computer: Introduction, Functions & Components of a Computer, Central Processing Unit, Microprocessor, Storage units, Input and output Devices. How CPU and memory works. Program execution with illustrative examples.

Lab Component- PC Assembly,

# **Operating System Fundamentals:**

Operating Systems: Introduction, Functions of an operating System, Classification of Operating Systems, System programs, Application programs, Utilities, The Unix Operating System, Basic Unix commands, Booting, Lab Component-, Basic unix commands

#### Introduction to Principles of programming

Introduction to Programming, Programming Domain: Scientific Application, Business Applications, Artificial Intelligence, Systems Programming, Web Software

Categories of Programming Languages: Machine Level Languages, Assembly Level Languages, High Level Languages, Problem solving using Algorithms and Flowcharts

#### Introduction to Database Management Systems

Database, DBMS, Why Database -File system vs DBMS, Database applications, Database users, Introduction to SQL, Data types, Classification of SQL-DDL with constraints, DML, DCL, TCL Lab Component

Create: Table and column level constraints- Primary key, Foreign key, Null/ Not null, Unique, Default. Check, Alter, Drop, Insert, Update, Delete, Truncate, Select: using WHERE, AND, OR, IN, NOT IN

# **Internet Basics**

Introduction, Features of Internet, Internet application, Services of Internet, Internet Service Providers, and Domain Name System.

Web Basics Introduction to web, web browsers, http/https, URL, HTML, CSS

Lab Component -HTML & CSS, web Browsing, Emails, Searching

#### TEXT BOOKS:

1. J. Glenn Brookshear, "Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014REFERENCES:

1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta.

Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

COURS	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in								
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in								

			OF CIV ERING		D ME	CHANI	ICAL		Categ	gory	L	Т	Р	Credi
			BASIC		TVIL	ENGIN	EERIN	JG						
			n to All						FC-ES		2	0	0	2
REAMBLE			10111	Diunci	iics)							Ū	v	-
	ective o	f this co	ourse is	to prov	vide an	insight	and inc	ulcate t	he essent	ials of Ci	vil Eng	ineering of	liscipline	to the
			iches of			0					0	0	I I	
PREREQUIS	ITE-NI	L												
COURSE OB	JECTI	VES												
1 To un	derstan	d the ba	asic con	cepts o	f surve	ying and	d apply	in prac	tical prol	olems				
2 To stu	ıdy in d	etail di	fferent t	ypes of	f constr	uction r	naterial	s.						
			wledge	• •										
COURSE OU	•				<u></u>	• ompo								
On the success			of the c	course,	student	s will b	e able t	0						
CO1.An abili													Apply	
CO2. Explain	differe	nt types	s of buil	dings, l	building	g compo	onents,	buildin	g materia	als and bu	ilding		Remem	ber
construction. CO3.Expalin	the esse	entials of	of comp	onents	of a bu	ilding a	nd annl	ication	of load c	n it			Unders	and
APPING W			1			0					UTCO	MES	enders	lund
											PO			
COS PO1	PO2	PO3	PO4	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	12	PSO1	PSO2	PSO3
CO1 L	Μ	-	S	L	-	М	Μ	L	L	-	L	M	М	М
CO2 S	M	L	-	M	S	-	-	-	-	-	-	М	-	-
CO3 S	M	L	S	М	S	-	-	М	-	-	-	-	S	-
S-Strong; M- SYLLABUS	-Mealu	m; L-L	20W											
SILLABUS	Ţ													
	-	fication-	-princip	oles-me	asurem	ents of	distance	es–angle	es–levelli	ng-deteri	minatior	n of areas	– illustrat	ive
Objects-types								U		2				
Objects-types examples.														
examples.	NFFD	INC M	ілтер	TATE										
					ix desig	n and C	Juantity	compi	itation_s	teel sectio	ons			

**FOUNDATIONS:** Types, Safe Bearing capacity of Soil –Requirement of good foundations.

SUPERSTRUCTURE: Brick masonry – stone masonry – beams – columns – lintels – roofing – flooring – plastering – Mechanics – Internal and external forces –Load Transformation Mechanism in Structural Elements– stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping– water supply – sources and quality of water — Rain water harvesting — introduction to high way and rail way.

## **TEXTBOOKS:**

- 1. BasicCivil and Mechanical Engineering, VMU, (2017). Company Ltd., New Delhi, 2009.
- 2. Basic Civil and Mechanical Engineering, M.Prabakaran, S.P.Sangeetha, Vemuri Lakshminarayana, Maruthi Publishers, 2017.
- 3. Reinforced Concrete Structures B.C. Punmia, Vol. 1 & 2, Laxmi Publications, Delhi, 2004.

# **REFERENCES:**

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.
- 2. Rangwala S.C and Dalal K.B, Building Construction, Charotar Publishing house, 2022.

# **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Dept/College	Mail ID
1	S. Supriya	Asst.Professor	Civil/ VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst.Professor	Civil/AVIT	suriya@avit.ac.in

			B.BA	SICS C	)F ME	CHANIC	CAL	Categ	ory	L	Т	Р	Cre	dit	
			ENG	INEER	ING			FC -	ES	2	0	0	2		
Pream	ble														
This co	urse p	provides	a preli	minary	knowle	dge of th	ie appl	lication	s of me	chanica	l engin	eering in	n our da	y to day	life.
Prereg															
Course	e Obj	ectives													
1		To demonstrate the principles of casting and metal joining processes in manufacturing.													
2					-										
2		Underst	and the	import	ance an	d uses of	t IC Ei	ngines,	workin	g princ	ples of	IC Eng	ines.		
3		Comprehend the working and use of various power plants.													
~	•		•												
Course						ompletion sting and					will b	e able t	0		
CO1.		manufac	cturing	1		U		5	- 1			Apply			
CO2.		Demons compon		e opera	tion of	automoti	ive eng	gines ar	id impo	ortant		Apply			
CO2.		Underst	anding	the con	structio	n and the	e work	ting prin	nciple o	of		Apply			
CO3.		convent	ional ai	nd non-	convent	tional po	wer ge	eneratio	n			Unders	tand		
Mappin	g with	Program	nme Ou	tcomes a	and Pro	gramme S	Specific	c Outcoi	nes						
	0					5	•								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO 1	PSO2	PSO3
CO1	S	М	S	L	М	-	-	-	-	-	-	-	-	-	-
CO2	S	М	М	L	L	-	-	-	-	_	-	_	-	-	-
CO3	S	М	М	L	L	-	-	-	-	-	-	-	-	-	-
S-Stro	ng; M	-Medium	i; L-Lov	V											

# BASIC MANUFACTURING PROCESSES

Casting process-Introduction, Principle, Advantages, casting defects Forging process-introduction, forging, rolling, drawing, extrusion Welding process- introduction, principle, types-Gas and arc welding

# IC ENGINES

The Importance and uses of Engines-Definition, Classification-I C & E C Engines- two stroke engines - four stroke engines - various parts and functions of I C engines-working of two stroke petrol engine and diesel engine with line sketches - working of four stroke petrol and diesel engines with line sketches - Comparison between two stroke and four stroke engines -S I and C I engines.

# POWER PLANT ENGINEERING

Classification of power plants- Working of power plant with line Sketches-Steam power plant-Hydro- electric power plant - Diesel power plant -Nuclear power plant- merits and demerits. Nonconventional energy power plants – solar- wind-tidal- geo thermal, with line sketches- merits & demerits of various non conventional power plants

Text	Books									
1	Power plant Engineering, by G.R Nagpal									
2	Internal combustion Engines by Ganesan									
3	Workshop technology vol1, by S K Hajra Choudhury									
Refer	ence Books									
1	Production techno	ology, by P.C S	harma							
2	Thermal Engineer	ring, by R.S.Kl	nurumi							
3	Power plant Engi	neering, by R.k	K Bansal							
Course	e Designers									
			Department/Name of the							
Sl.No	Faculty Name	Designation	College	Emailid						
1	R.Mahesh	AP(G-II)	MECH/AVIT	mahesh@avit.ac.in						
2	T.Raja	Asso.Prof	MECH/ VMKVEC	rajat@vmkvec.edu.in						

<b>PYTHON PROGRAMMING</b>	CATEG	ORY	L	Т	Р	CRE	DIT
(Theory and Practicals)	FC-F	S	2	0	2	3	6
PREAMBLE							
The purpose of this course is to introduce Python, a remarkal							rite
code for different operating systems along with application of	domain. Pytł	non has	evolved	on more	e popula	r and	
powerful open source programming tool							
<b>PRERQUISITE</b> NIL							
COURSE OBJECTIVES							
1 To provide basic knowledge on Python programmi	ing concepts.						
2 To introduce different methods in list, string, tuple,	, dictionary a	and sets.					
3 To compute different programs using python control	ol statements	s.					
4 To learn about different functions in python.							
5 To compute the exception handling functions, file of	concepts and	CSV ar	nd JSON	١.			
COURSE OUTCOMES							
On the successful completion of the course, students will be	e able to						
CO1. Learn python statements, comments and indentation,	tokens, inpu	t and ou	tput				
methods using various example programs.	-			Underst	and		
CO2. Apply the different methods involved in List, String,	Tuples and I	Dictiona	ry.	Apply			
CO3. Design solutions for complex programs using decisio	on making an	d loopir	ng				
statements.				Apply			
CO4. Apply the function programs with all the concepts like	e lambda, de	corators					
generators.				Apply			
CO5. Compute the exception handling programs, file conce	ept programs	and		A 1			
understand the concepts of CSV and JSON.				Apply			
MAPPING WITH PROGRAMME OUTCOMES AND P	PROGRAM	ME SPI	ECIFIC	OUTC	OMES	1	
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 P	O8 PO9	PO10	PO11	PO12	PSO1	PS O2	PSO 3
CO1         S         M         M         M         M         -         -		-	-	-	M	M	M
CO1         S         M         M         M         M         -         -           CO2         S         M         M         M         M         -         -		_	_	_	S	M	M
CO2         D         M         M         M         M           CO3         M         S         S         S         M         -         -		_	-	-	M	M	M
CO4         S         S         S         M         -         -		_	_	-	S	S	M
CO4         S         S         S         M           CO5         S         M         M         M         -         -		-	-	-	S	M	M
S- Strong; M-Medium; L-Low	1 1		1	1		1.11	

#### **1 INTRODUCTION**

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

#### **2 DATA STRUCTURES**

Strings-Lists-Tuples-Dictionaries-Sets

#### **3 CONTROL STATEMENTS**

Flow Control-Selection control Structure-if-if-else-if-else-if-else-Nested if iterative control structures-while loop, for loop and range.

#### **4 FUNCTIONS**

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators. **5 EXCEPTION HANDLING** 

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

#### LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

#### **TEXT BOOKS:**

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book "Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

#### **REFERENCES:**

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUR	SE DESIGNERS			
S.No				
	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Dr.V.Amirthalingam	Assistant Professor	CSE	amirthalingam@vmkvec.edu.in

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	Categ	ory L	L T	P (	Credit								
A. BASICS OF ELECTRICAL ENGINEERING	FC-E	S 2	0	0	2								
<b>PREAMBLE</b> It is a preliminary course which highlights the basic concepts and outline of discussed herein are projected to deliver explanation on basic electrical en graduates.		-	-		-								
PREREQUISITE – Nil													
COURSE OBJECTIVES													
1 To explain the basic laws used in Electrical circuits and various t	pes of m	easurin	ng instru	iments.									
	To explain the different components and function of electrical dc and ac machines.												
	To understand the fundamentals of safety procedures, Earthing and Power system.												
COURSE OUTCOMES		5)50011											
On the successful completion of the course, students will be able to													
CO1: Explain the electrical quantities and basic laws of electrical enginee	rino	R	ememb	er									
CO2: Demonstrate Ohm's and Faraday's Law.			pply	•									
CO3: Describe the basic concepts of measuring instruments.			ndersta	nd									
CO4: Explain the operation of electrical machineries and its applications			Indersta										
CO5: Explain the electrical safety and protective devices.	•		Indersta										
CO6: Compare the various types electrical power generation systems by	applicati		nucista										
of conventional and non-conventional sources.		А	nalyze										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMM	IE SPEC	IFIC (	OUTCO	OMES	[								
COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10	PO11	PO12	PSO1	PSO2	PSO3								
CO1 S M M L L	М	L	S	М	L								
CO2 S M M L M S M	М	L	S	L	-								
CO3 S M M M M L	М	L	S	М	L								
CO4 S M L L M L L	М	L	S	L	-								
CO5 S M L - M S L	L	L	-	-	-								
CO6 S M M L S L - L	L	L	М	L	М								
S- Strong; M-Medium; L-Low													

# SYLLABUS ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis -Power and Power factor – Single phase and Three phase balanced circuits -Classification of Instruments-Operating Principles of indicating instruments.

# **ELECTRICAL MACHINES**

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

# ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

# **TEXT BOOKS:**

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- **3.** R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

# **REFERENCE BOOKS:**

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

COUR	KSE DESIGNEKS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu. in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

# COURSE DESIGNERS

			CS OF I NEERI		RICA	L AND	ELEC	TRON	ICS	Ca	tegory	L	Т	P C	Eredit
					CTRO	NICS I	ENGIN	EERIN	IG	FC	-ES	2	0	0	2
engineer	urse ai ring co ors. It er	ncepts. nables	The of the stud	course lent to	begins design	with o small o	classific ligital 1	cation o ogics li	of vario ke mult	ous activ tiplexer,	ve and j	passive	compon	commu ents, dio decoder	des and
PRERQ	QUISIT	<b>E</b> – Nil													
COURS	SE OBJ	ECTIV	VES												
1	To lea	rn and	identify	variou	s active	e and pa	ssive co	ompone	nts and	their wo	rking pri	nciples.			
2	To un	derstan	d the nu	umber c	onversi	ion syst	ems an	d worki	ng Prino	ciples of	logic gat	es.			
3	To lea	rn the c	ligital l	ogic pri	nciples	and rea	lize ado	ders, mi	ultiplex	er, etc.,					
4	To un	derstan	d the ap	plicatio	on-orier	nted cor	ncepts in	n the Va	arious c	ommunic	cation sy	stems.			
COUR	RSE OU	TCON	<b>AES</b>												
On the	success	sful con	npletio	n of the	course,	, studen	ts will	be able	to						
	Interpre									passive nsistors.	1	Understa	nd		
CO2. 0	Constru									explore	their				
operati		numb	er syste	em con	version	is and a	comput	e sever	al dioit	al logic	1	Apply			
operati	ions.		•				•		Ũ	0		Apply			
	Desigr data inp		s, Mult	iplexer	, De-M	lultiple	xer, En	coder,	Decode	r circuit		Apply			
CO5. I	Expose ation-or	the wor								ng mmunica	ation	Understa	nd		
MAPPI	NG WI	TH PF	ROGRA	AMME	OUTO	COMES	SAND	PROG	RAMM	IE SPEC	CIFIC O	UTCON	/IES		1
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	_	-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-	_	-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
CO5	S	M	-	-	-	-	-	-	L	L	-	L	S	-	L
S-Stron SYLLA	U/	lediun	n; L-L(	)W											
	-~														

#### SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper.Bipolar Junction Transistor, JFET, MOSFET & UJT.

#### DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

#### COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM, PCM, DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, SmartPhones – Block diagrams Only.

#### **TEXT BOOKS:**

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P. Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T. Muthumanickam and Dr.T.Sheela,"Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

#### **REFERENCES:**

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

#### **COURSE DESIGNERS**

COURDE DEDI	UT ILLING			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizh	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

									Cate	egory	L	Т	Р	Cre	dit
		WOR	KSHC	)P PR	ACTI	CES			FC-	ES	0	0	4	2	
Prean	ıble												•		
														is cours	
														processe	
	with ma bit of se										ed exe	rcises.	Also, 1t	will ind	uce
	q <b>uisite</b>	Ų	rigni i	001s, p	Iannin	g the j	od and	i its ex	ecution	1.					
	e Obje														
cours	0		he stuc	lents w	vith ha	nds on	exper	ience o	on vari	ous ba	sic eng	zineeri	ng pract	ices in	
1	Engin						· ·						81		
2	-	ve a stu	dy and	hands	-on-ex	ercise	on plu	mbing	g and ca	arpenti	ry com	ponen	ts.		
3	To ha	ve a pra	ctice o	on gas v	weldin	g, fou	ndry oj	peratic	ons and	fitting	<b>z</b> .				
Cours	e Outc	omes: (	On the	succe	ssful c	omple	etion of	f the c	ourse,	stude	nts wi	ll be a	ble to		
		n comp					ourse,	studer	nts will	be abl	le to fa	bricate	e		
CO1.		ponent												Apply	
CO2.		umine th					and di	imensi	onal to	oleranc	es pos	sible v	vith	A	
CO2.		erent m embling						1 bo ob	la to p	roduco	cmol1	dovice	n of	Apply	
CO3.		intere			mpone	mis, ii	iey wii		ne to pi	louuce	sillali	uevice	28 01	Apply	
	ping wi			ne Out	comes	and	Progra	mme	Specif	ic Out	come	2		PP-J	
map	PO PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
COs		2	3	4	5	6	7	8	9	10	11	12	130	2	03
CO1	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3		М	L	L	L	-	-	-	-	-	-	-	L	-	-
	ong; M	-Mediu	ım; L-	Low											
Syllab															
Cours	e Cont	ents													
	lanufac	•		ls - ma	chinin	g and	joining	g metho	ods.						
	itting of		IS												
	arpentr Casting.	у.													
	in Smit	ıv													
	res &														
Manu	facturi	ng Met	hods-	castin	g, for	ming,	mach	ining,	joinin	ıg, adv	vanced	l manı	ufacturi	ng metł	nods
Fitting	g opera	tions &	2 powe	er tool	S										
Carpe	•														
	casting		0		1 10	,									
	ng (arc shop Pi			gas we	lding	)									
	acing, 7			Turnin	o Dril	ling S	Surface	finich	_Mac	hine SI	hon				
	and V	-	-		-	iiiig, c	Juitace	/1111511	-wiac		nop				
	ingle pi	•		•	•	- Four	ndry								
4. H	lalf- Laj	Joint a	and Do	ove Tai	l Joint	- Carp	pentry								
	ap Join														
6. U	pen Sco	oop, Re	ctangle	e Tray	– T 1n j	Smith	у								

Text Bo	oks										
1	WORKSHOP/MANUFACTU	URING PRACTICES, MANUAL									
Referen	ce Books										
1	Technology", Vol. I and Vol. II	houdhury A.K. and Nirjhar Roy S.K., "Elements of Workshop , Media promoters and publishers private limited, Mumbai									
2	Rao P.N., "Manufacturing Tech	Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw Hill House.									
3		nical Engineering, Vikas Publications, Noida.									
4	K.Venugopal, Basic Mechanical	Engineering, Anuradha Publications, Chennai.									
Experin	nents be performed through Vir	tual Labs									
		http://mmcoep. vlabs.ac.in/LaserSpotWelding/Theory.html?domain= Mechanical%20Engineering&lab=Welcome%20to%2									
1	Welding shop	0Microma chining%20laboratory									
2	Casting	http://fabcoep. vlabs.ac.in/exp7/Theory.html?domain=Mechanical%20Eng ineering&lab=Welcome%20to%20FAB%20laboratory									

# **Course Designers**

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	T.Raja	Asso.Prof	MECH/VMKVEC	rajat@vmkvec.edu.in
2	B.Selva Babu	Asst.Prof	MECH/AVIT	selvababu@avit.ac.in

		Category	L	Т	Р	Credit
PROGRAMMING FOR PROBLE	M SOLVING	FC-ES	3	0	0	3
DDFAMRI F						

#### PREAMBLE

The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top- down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

#### PREREQUISITE-NIL

COURS	SE OBJ	ECTIV	<b>VES</b>												
1.	To ga	in basi	c know	ledge a	bout si	mple a	lgorith	ms for a	arithme	etic and	logical	problems.			
2.	To le	arn ho	w to wr	ite a pr	ogram,	syntax	and lo	ogical e	rrors.						
3.	To un	derstar	nd how	to deco	ompose	a prob	olem in	to funct	tions ar	nd synth	nesize a	complete	progran	n.	
OURS	SE OUT									<b>y</b>					
	success			n of the	course.	studen	ts will l	be able	to						
	Formula		•		· · ·					ns.		Understan	d		
	Fest and							<u> </u>				Apply			
	Impleme									1015					
												Apply			
			_				ž		•	e progra		Analze			
CO5: U progra		iys, poi	inters, s	strings	and stru	uctures	to form	nulate a	algorith	nms and		Apply			
		TTH P	ROGR	AMM	E OUT	COME	ES ANI	) PRO	GRAM	IME SP	ECIFI	C OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PS01	PS02	PS03
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	_	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	_	М	М	М
CO4	S	М	М	М	-	-	-	-	_	_	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	_	-	_	М	М	S
	ıg; M-N						1		1	1 1		I	1		2

#### SYLLABUS

#### **UNIT – I: INTRODUCTION**

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

#### UNIT - II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators, bitwise and conditional operators-special operators- operator precedence and associativity- evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

#### **UNIT – III: ARRAYS AND FUNCTIONS**

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arraysinitialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms-Functions: User defined and built-in Functions- Parameter passing in functions-call by value -Passing arrays to functionscall by reference, Recursion-Example programs, such as Finding Factorial, Fibonacci series

#### **UNIT – IV: STRINGS AND POINTERS**

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functionsstring handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of Pointers- functions returning pointers -Dynamic memory allocation

#### **UNIT – V: STRUCTURES AND FILE HANDLING**

Structures and unions: Structure definition- initialization- accessing structures-nested structures arrays of structuresstructures and functions- unions- typedef- enumerations -File handling: command line arguments- File modes- basic file operations read, -write and append

#### TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

#### REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

Course	Course Designers:												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in									
2	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in									

				CTRIC. NG LA		D ELE	CTRO	NICS			Categ	ory L	Т	P (	Credit
		A. BAS	SICS C	)F ELE	CTRI	CAL E	NGINE	ERING	r J		FC-E	S 0	0	2	1
<b>PREAN</b> It is a la types of	borator	•		n famili	arizes t	he basio	c electri	ical wir	ing, me	asureme	nt of ele	ectrical	quantitie	es and va	rious
PRERÇ	QUISIT	E – NI	L												
COURS	SE OBJ	ECTI	VES												
1	To le	arn the	residen	tial wir	ing and	various	s types	of elect	rical wi	ring.					
2	Tom	easure	the vari	ious ele	ctrical o	Juantiti	es.								
3	To kı	now the	e necess	ity and	types o	f earthi	ng and	measur	ement o	of earth r	resistanc	e.			
COURS	SE OU	гсом	ES												
On the	succes	sful cor	npletio	n of the	course	, studer	nts will	be able	to						
				types o								Apply			
				ntal para				-				Analyz	e		
				•				achineri	es			Apply	-		
										ME SPI			OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3
CO1	S	M	L		S							L	M	L	
CO2	S	М	S	S					М			М	М	L	
CO3	L	S	L		S					L		L	М	L	
5- Stror	ng; M-N	Medium	n; L-L	OW			J	J					1		
<ol> <li>R</li> <li>F</li> <li>S</li> <li>S</li> <li>M</li> <li>M</li> <li>M</li> <li>M</li> <li>T</li> <li>REFE</li> <li>La</li> </ol>	luoresc tair case leasure leasure ypes of <b>RENC</b> borator	ial hous ent lam e wiring ment of ment of wiring <b>ES</b> y Refer	se wirin p wirin g. f electri f energy , Joints rence M	g. cal qua y using and Me	ntities - single p	- voltag bhase er	e, curre hergy m	ent, pow	rer & po	energy m ower fact n electric	or in RL		iit.		
COURS	T				1				1	_					
<u>5.No.</u> 1			<u>he Fac</u> aian	ulty	Designation Professor					<mark>rtment</mark> MKVEC	' dev		<b>ail ID</b> vmkvec.	edu in	
2		Dr. R. Devarajan Professor Dr. G. Ramakrishnaprabu Associate Professor								MKVEC	ram	akrishna	prabu@v		
3	Ms. D	. Saran	ya		Assist	ant Pro	fessor (			EEE/	AVIT	2			
4	Mr. S.	Prakas	sh		Assist	ant Pro	fessor (	Gr-II)		EEE/	AVIT	spra	ıkash@a	vit.ac.in	

										Cate	egory	L	T I	<u>P</u> C	redit
				– BASI CERINC	CS OF	ELEC	TRON	ICS		FC-E	5	0	0 2	2	1
PREAN								_				<u> </u>	I		
										neering. 1 and test				on of elec	tronic
	UISIT			<i>i</i> ipinein	.5. It on		e studel		511501 400		<u>simple e</u>	leeuome	projects		
COURS	SE OBJ	ECTIV	VES												
1	To far	niliariz	e the ele	ectronic	compo	onents,	basic el	ectronic	equipr	nents and	d solderin	ng techni	ques.		
2	To stu	dy the	characte	eristics	of Diod	les, BJ7	۲ and Fl	ET.	• •			•	•		
3	To un	derstan	d the pr	inciples	s of vari	ious dig	gital log	ic gates							
4	Toun	derstan	d the co	oncept o	of basic	modula	ntion tec	chnique	s.						
-	SE OUT				1 0 0.510			<u>q</u>							
	successf			of the c	ourse, s	students	s will be	e able to	)						
	Familiar											Un	derstand		
CO2. 0	Constru	ct expe	riments	for PN	and Zer	ner dio	0		cs also	determin	e				
	diode f							1.	1 1			Ap			
	Construe								-		1.	Ap			
	Verify th			-		-	-		-	Zener dio , NOT,	de	Ap	ргу		
]	NAND,	NOR,	XOR).									Ap	ply		
MAPH	PING W	<b>ITH P</b>	ROGR	RAMM	E OUT	COME	ES ANI	) PRO	GRAM	ME SPE	CIFIC (	DUTCO	MES	1	
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	S	М	-	-	-	-		-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-		-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
	S	М		_					L	L		L	S		L
CO5		IVI	-	-	-	-	-	-	L	L	-	ட	3	-	

#### LIST OF EXPERIMENTS

1. Practicing of Soldering and Desoldering.

2. Characteristics of PN junction Diode and find the forward and reverse resistance

3.Construct and Study simple clipper and clamper circuits

4. Characteristics of Zener diode and determine the break down voltage and diode resistance5.Construct and Study simple voltage regulator using zener diode

- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND, NOR, NOT gate

8. Construct and Study simple voltage regulator using zener diode.

#### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

				EERIN	GGI	RAPH	IICS .	AND		ategory		L	Т	P		edit
		DI	ESIG	N					F	C-ES		0	0	6		3
Preamb	ole															
Enginee																
				ough its												
				posing												
•				eals wi	th or	thogra	phic	and p	ictoria	ıl proj	ection	s, sec	tional	vie	WS	and
develop		f surfa	ices.													
<b>Prereqι</b> NIL	iisite															
Course	Objec	tives														
1				orthogr												
2				rthograp						lids an	d true	shape o	of the	secti	ons.	
3	To de	evelop	lateral	l surface	s of th	ne unci	it and	cut sol	ids.							
4	To di	aw the	e picto	rial proje	ection	s (ison	netric	and per	rspecti	ve) of	simple	solids				
5	To di	aw the	e ortho	graphic	views	from	the giv	ven pic	torial	view.						
Course	Outco	mes: (	On the	success	ful co	omplet	ion of	the co	urse,	studen	ts will	be ab	le to			
				orm of c				lograpł	nic pro	jectior	is of p	oints,				
CO1.				ne surfac										App	oly	
				e form c			f the o	rthogra	aphic p	orojecti	ons of	sectio	ned			
CO2.				ape of th										App		
CO3.				urfaces o										App		
CO4.	Draw	raw the pictorial projections (isometric and perspective) of simple solids. Apply														
CO5.	Draw	Draw the orthographic views from the given pictorial view. Apply														
Mappin	g with	Prog	ramm	e Outco	mes a	nd Pr	ogran	ıme Sp	oecific	Outco	mes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO	l PS	<b>502</b>	PSO3
CO1	S	S	L	S	L	-	-	-	-	-	-	-	L		-	-
CO2	S	S	L	S	L	_	-	_	-	-	-	-	L		-	_
		S	L													
CO3	S			S	L	-	-	-	-	-	-	-	L		-	-
CO4	S	Μ	L	S	S	-	-	-	-	-	-	-	L		-	-
CO5	S	S	L	S	L	-	-	-	-	-	-	-	L		-	-
S- Stron	<i>,</i>	ledium	n; L-Lo	W												
SYLLA																
PLANE																
Basic G							-									
ellipse, j																
involute	-		nd circ	le – Dra	wing	of tang	gents a	nd nor	mal to	the ab	ove cu	rves. L	Jimen	sioni	ng.	
Projecti				DC												
PROJE					1	.1.1.1	.1			11			1			
Projectio										is, cyli	nder a	na con	e wne	n the	axi	S1S
inclined	-			<u> </u>	•	-	-			76						
SECTION Section											alinad	to one	000	for	<b>n</b>	Jone
Sectioni and perp										mes m	lined	to any	one re	erere	ncer	nane
Develop										Driam	e nuro	mide	ovlind	lore c	and	
cones.	ment (	n iatel	ai sui i	aces of	smpt	c anu t	runcal	cu soli	us IIKt	/ 1 115111	s, pyra	iinus,	cynne	1018 2	ina	
		рніс	VIEV	VS AND		мгті		IFWC	_ Fire	tanala	nroiac	tion	lavou	tvio	WC	
				imensio						-			-		w 5 –	
Renrece		1 1 1 1	$\mathbf{n} \mathbf{v} \mathbf{v} \mathbf{p}$	monsic	mai U	ojecto	munu		ws 110	m picu	Juar VI	C W S U		<i>-</i> us.		

Principles of isometric View – isometric scale – Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids – Prisms, pyramids, cylinders, cones.

#### INTRODUCTION TO AUTO CAD

Introduction to Auto CAD- Basic introduction and operational instructions of various commands in AutoCAD. Limit System- Tolerance, Limits, Deviation, Actual Deviation, Upper Deviation, Lower

Deviation, Allowance. Preparation of manual parts drawing and assembled sectional views from orthographic part drawings,

ormogra	ipine part drawnigs,										
Text Bo	ooks										
1	Natarajan K V, "Enginee Delhi.	ring Graphics", T	ata McGraw-Hill P	ublishing Company Ltd. New							
2	K.Venugopal and V.Prabl Limited.	u Raja, "Engineer	ring Graphics", Nev	v Age International Private							
3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.										
4	Bhatt-N.D"Machine Dra India- 2003	Bhatt-N.D"Machine Drawing"-Published by R.C.Patel- Chartstar Book Stall- Anand-									
Referen	ce Books										
1	N.D. Bhat and V.M. Panc	hal, Engineering C	Braphics, Charotar P	ublishers 2013							
2	E. Finkelstein, "AutoCA	D 2007 Bible", Wi	iley Publishing Inc.,	2007							
3	R.K. Dhawan, "A text boo	ok of Engineering	Drawing", S. Chand	Publishers, Delhi,2010.							
4	DhananjayA.Jolhe, "Engi Hill Publishing Company		with an Introductior	n to AutoCAD", Tata McGraw							
5	G.S. Phull and H.S.Sandh	u, "Engineering G	raphics", Wiley Pub	lications, 2014.							
Course	Designers	<u> </u>	• • •								
S.No	Faculty Name	Designation	Dept / College	Email id							
1	Dr. S.Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in							
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in							
2		Assistant									

#### Alternative NPTEL/SWAYAM Course:

Mr.A.Imthiyas

3

S. No.	NPTEL Course Name	Instructor	Host Institute	Duriation
	Engineering Graphics and	Prof. Naresh Varma Datla,		
1.	Design	Prof. S. R. Kale	IIT Delhi	12 weeks
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and Computer Graphics	Prof. Rajaram Lakkaraju	IIT Kharagpur	12 weeks

Professor

Mech/AVIT

imthiyas@avit.ac.in

							-	Categ				T	P		edit
Preamb	le	NIE	СНА	NICS	•			FC	C-ES		2	1	0	•	3
This cou	-	vides	the b	asic k	nowle	edge a	bout	the be	havio	r of the	e bodie	s which	are un	der stat	icand
dynamic		ions.													
Prerequ NIL	isite														
Course	Obiect	ives													
	o expla		e basi	c laws	ofm	echan	ics an	d for	ces						
Г	o relate	the the								bodies	under	equilib	rium in	ı two	
	imensio o empl		e con	cents	of pr	operti	es of	surfa	Ces a	nd to	find th	e Centr	oid and	1 mom	ent of
	ertia u								iees u	na to	inita tii	e conti	ora and	. 110111	
										gid bo	dy dyn	amics b	y under	rstandir	ig the
	asic coi														
5 T	o calcu	late a	ind ca	tegori	ze of	proble	ems ii	n the a	area of	f dynai	nics of	particle	es.		
Course	Outcor	noce	On th	0 6110	eocefu	ul com	nloti	on of	tha a	nireo	studor	te will	ha ahla	to	
Course							-			pt of s					
CO1.	equili				01			0		I · · ·			Unde	rstand	
CO2.	Solve and a	-		0			der e	quilib	rium i	n two	dimens	sion	Apply	y	
	Deter	mine	the C	entroi	d of a	line,	areas.	, and v	volum	es, cer	nter of	mass			
~~~		•	d mor	nent o	of iner	tia of	comp	osite	areas,	mass	momei	nt of			
CO3.	inertia												Apply		
CO4.	Solve	prob	lems i	nvolv	ring fr	riction	al phe	enome	ena.				Apply	y	
CO5.	Solve equili	1		0		0.		C	·	oncept	of dyr	amic	Analy	/ze	
Маррі	ng witł	n Pro	gram	me O	utcon	nes ar	nd Pr	ograr	nme S	Specifi	c Outo	comes			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	- PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	_	L	_	-	-	-	-	-	L	-	-
CO2	S	L	L	М	-	L	_	-	-	-	-	-	L	-	-
CO3	S	M	M	M	_	L	_	_	_	_	-	-	M	_	_
CO4	s	M	M	M	_	L	_	_	_	_		_	M	_	_
					_		_	_		_	-	_		-	-
CO5	S	S	S	S	-	L	-	-	-	-	-	-	S	-	-
S- Stron	g; M-M	edium	ı; L-Lo	W											

SYLLABUS

BASICS & STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lame's theorem. Parallelogram and triangular law of forces – Coplanar Forces – Resolution and Composition of forces – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes – First moment of area the Centroid of sections – Rectangle, circle, triangle from integration – T section, I section, Angle section, Hollow section by using standard formula – second and product moments of plane area – Rectangle, triangle, circle from integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principle moments of inertia of plane areas – Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force – Laws of Coloumb friction – simple contact friction – Rolling resistance – Belt friction. Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion – Newton's law – Work Energy equation of particles – Impulse and Momentum – Impact of elastic bodies.

Text Books

1	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II Dynamics, McGraw Hill International Edition, 1995.
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.
Refer	ence Books
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.
2	Irving H. Sharma, Engineering Mechanics – Statics & Dynamics, III Edition, Prentice Hall of India Pvt. Ltd., 1993.
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
		Associate		
1	J.Sathees Babu	Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in
		Associate		
2	Dr.S.Arunkumar	Professor	Mech / VMKVEC	arunkumar@vmkvec.edu.in
		Associate		
3	Dr.S.Sangeetha	Professor	Mech/AVIT	sangeethas@avit.ac.in

PROGRAM CORE COURSES

			NUF. DCES		URIN	ſG	(Categoi	ŗy	L	Т		P	Cre	dit
ĺ					racti	cals)		CC		3	0		2	4	
Preamb	ole						•				•				
This cou															
forming															
working															
power d				maki	ng pro	oducts o	of a giv	en sha	ipe, si	ize and	accura	acy by	removi	ing met	al
from the															
Prerequ															
Course				6			6		1	1			6	- 1	
1	technolo	ogy				g proces				-				toundry	
						ous type						g proces	sses.		
						cutting	•			<u> </u>					
		y the k	nowle	edge o	f diffe	rent ope	erations	on spe	ecial n	nachine	s and v	arious t	ypes of	work h	olding
	devices	rt tha 1	2now]	adra c	f vari	ous meta	alunco	nvontie	nal c	onventi	onal m	achinin	a onera	tions an	d also
	netal for					ous mete		nvenuo	Jilai, C	Jonvenu	ionai m	aciiiiii	g opera	anons an	iu aiso
Course					cessfi	ıl comp	oletion	of the	e cou	rse. stu	idents	will be	e able 1	to	
	-					of vario				,					
CO1.	-			•	-	es in the			•			•		Underst	tand
						of vario									
~~~					ed and	l Select (	the suit	able jo	ining	method	s for fa	bricatio			
CO2.	asseml	oly of	produ	cts.										Underst	tand
CO3.	Under	stand t	he ch	ip forn	nation	for diffe	erent cu	utting f	orces	and cut	ting too	ol life.	1	Underst	tand
004				orking	princi	ple and o	operati	ons of	Shape	er, Milli	ng, Dri	lling an			
CO4.	0			.1			•					11		Underst	tand
i i						ple of va	arious i	netal lo	ormin	g proces	sses an	u basics		Underst	tand
CO5	uuuiti						Progr	amme	e Spe	cific O	utcom	es		e naers	lund
CO5. Mappir	ng with	Prog	ганн				8-		- PP-					1	
Mappir					<b>D</b> 05	DOC	D05	DOG	DOG	<b>DO10</b>	<b>DO11</b>	DO10	DCOI	DCOA	DCOA
Mappir COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Mappir COs CO1	PO1 S	PO2 M	<u>РОЗ</u> S		PO5 -	PO6	PO7 -	-	-	PO10 -	PO11 -	PO12	М	PSO2	PSO3 -
Mappir COs CO1 CO2	P01 S S	PO2	PO3 S S		PO5 - -	PO6 - - -	P07 - -	PO8 - -	PO9 - -	PO10	PO11 - -	PO12 - -		PSO2 - -	PSO3 - - -
Mappir COs CO1	PO1 S	PO2 M M	<u>РОЗ</u> S		PO5 - - -	PO6	-	-	-	PO10 - - -	P011	PO12 M	M M	PSO2 - - - -	PSO3 - - -
Mappir COs CO1 CO2 CO3 CO4 CO5	P01 S S S S S S S	PO2 M M L L	PO3 S S S S S S	PO4 - - L L	-	- - -	-		-	PO10	-		M M M		PSO3
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons	PO1 S S S S S s s g; M-Me	PO2 M M L L	PO3 S S S S S S	PO4 - - L L	-	- - -	- - -		-	PO10	-	- - M	M M M M	- - -	- - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium;	PO3 S S S S L-Lov	PO4 - - L L v	- - - -	- - -	- - - -	- - -	-		-	- - M	M M M M	- - -	- - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO	PO1 S S S S S S S S S S S M-Me ABUS DUCT	PO2 M M L L dium;	PO3 S S S L-Lov	PO4 - - L L V	- - - JFAC	- - - - - TURIN	- - - - NG &	- - - - - CAST	- - - - 'ING	-	- - - -	- - - M M	M M M M	- - - -	
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc	PO1 S S S S S S S S S S M-Me ABUS DUCT ction-Ro	PO2 M M L L dium; Dle of	PO3 S S S S L-Low	PO4 - - L L v v	- - - JFAC ring i	- - - - - - - - - - - - - - - - - - -	- - - - NG & evelop	- - - - CAST ment o	- - - - - - - - - - - - - - - - - - -	- - - - ountry	- - - - - class	- - M M ificatio	M M M M n of m	- - - - anufact	- - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons SYLLA INTRO Introduc processo	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; Dle of	PO3 S S S S L-Low Manutals o	PO4 - - L L V V IANU ufactu f met	- - - JFAC ring i al cas	- - - - - - - - - - - - - - - - - - -	- - - - NG & evelop: Types	- - - CAST ment ( of pati	- - - - Of a coterns	- - - - - - - - - - - - - - - - - - -	- - - - class mold	- - M M ificatio making	M M M M n of m g –diffe	- - - - anufact	- - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons SYLLA INTRO Introduc processo techniqu	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; Dele of amen pes of	PO3 S S S L-Low TO M Manu tals o	PO4 - - L L V V IANU ufactu f met	- - - JFAC ring i al cas	- - - - - - - - - - - - - - - - - - -	- - - - NG & evelop: Types	- - - CAST ment ( of pati	- - - - Of a coterns	- - - - - - - - - - - - - - - - - - -	- - - - class mold	- - M M ificatio making	M M M M n of m g –diffe	- - - - anufact	- - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc processo techniqu JOININ	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; dium; dium; De of amen pes of DCES	PO3 S S S L-Low TO M Manu tals o furna SSES	PO4 - - L L v v <b>IANU</b> ufactuu f met aces –	- - - JFAC ring i al cas - Defe	- - - - - - - - - - - - - - - - - - -	- - - NG & evelop: Types astings	- - - - - - - - - - - - - - - - - - -	- - - - of a co terns sting a	- - - - ountry - sand and ins	- - - class mold pection	- - M M ificatio making n of cas	M M M M n of m g –diffe	- - - anufact	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons SYLLA INTRO Introduc processo techniqu JOININ Classifie welding	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; ION ble of amen pes of OCES of we tance	PO3 S S S L-Low TO M Manu tals o furna SSES elding weld	PO4 - L L v IANU aces – g proofing- S	- - - JFAC ring i al cas - Defe cesses Submo	TURIN TURIN The de ting – 7 acts in ca s - Prin erged at	- - - - - - - - - - - - - - - - - - -	$\frac{-}{-}$ $\frac{-}$	- - - - of a co terns sting a Dxy-a tungs	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas	- - M M ificatio making n of cas	M M M M n of m g –diffe stings.	- - - anufact erent ca	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc processo techniqu JOININ Classific welding welding	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; Dele of amen pes of OCES of wo tance na arc	PO3 S S S L-Low TO M Manu tals o furma SES elding weld weld	PO4 - - L L v IANU ufactu ufactu ufactu ufactu g proo ing- S ding-	- - - JFAC ring i al cas - Defe cesses Submo therm	TURIN TURIN n the de ting – T cts in ca s - Prin erged at nit welc	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas	- - M M ificatio making n of cas	M M M M n of m g –diffe stings.	- - - anufact erent ca	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strong SYLLA INTRO Introduc processo techniqu JOININ Classific welding welding identify	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; dium; dium; dium; dium; ole of amen pes of OCES of we tance a arco in we	PO3 S S S L-Low TO M Manu tals o furma SES elding weld weld weld	PO4 - - L L v v IANU ufactu f met aces – g proc ding- g proc	JFAC JFAC ring i al cas Defe cesses Submo therm ess - S	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - of a co terns sting a Dxy-a tungs n bea ng.	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas	- - M M ificatio making n of cas	M M M M n of m g –diffe stings.	- - - anufact erent ca	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons SYLLA INTRO Introduc processo techniqu JOININ Classifie welding welding welding fUNDA	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; Dele of amen pes of OCES of we tance na arce in we ALS C	PO3 S S S S L-Low Manu tals o furma SSES elding weld weld weld c weld	PO4 - - L L v IANU afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afactu afac	JFAC - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas ert gas	- M M ificatio making n of cas	M M M M m of m g –diffe stings. ng-A.( ng- me beam v	- - - anufact erent ca C meta tal iner velding	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons SYLLA INTRO Introduc processo techniqu JOININ Classifie welding welding identify FUNDA Basics o	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; ION Dele of amen pes of OCES of we tance na arco in we ALS ( cutting	PO3 S S S S L-Low TO M Manu tals o furna SSES elding weld weld weld c weld elding DF MI g: Med	PO4 - - L L v IANU ufactu ufactu ufactu ufactu ufactu of met aces – g proo ing- S ding- g proc ETAL chanis	JFAC - - - - - - - - - - - - -	TURIN - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas ert gas lding-	- - M M ificatio making n of cas weldin laser b utting)-	M M M M n of m g –diffe stings. ng-A.( ng- me beam v	- - - - anufact erent ca C meta tal iner velding	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S-Strong SYLLA INTRO Introduc processo techniqu JOININ Classific welding welding identify FUNDA Basics o Velocity	PO1 S S S S S S S S S S S S S S S S S S S	PO2 M M L L dium; Dele of amen pes of OCES of we tance na arce in we ALS C cutting ferchat	PO3 S S S S L-Low TO M Manu tals o furna SES elding weld c weld c weld c weld c weld c weld c elding g: Meen nt circo	PO4 - - L L v IANU ufactu f met aces – g proc ing- S ding- g proc ETAL chanis ele dia	JFAC - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas ert gas lding- lique c tools:	- M M ificatio making n of cas weldin laser b utting) Charact	M M M M M m of m g –diffe stings. ng-A.C ng- me beam v Chip th eristics	- - - - anufact erent ca C meta tal iner velding	- - - - - - - - - - - - - - - - - - -
Mappir COs CO1 CO2 CO3 CO4 CO5 S- Strons SYLLA INTRO Introduc processo techniqu JOININ Classifie welding welding identify FUNDA Basics o	PO1         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         DUCT         ction-Res         ces-Fund         ues – ty         NG PR(         cation         cation         cation         cation         defects         MENTA         f metal         ratio-M         s, proper         ar and C	PO2 M M L L dium; dium; dium; dium; dium; Dle of amen pes of DCES of wo tance a arc in wo ALS ( cutting (ercha: ties ar auses.	PO3 S S S S L-Low TO M Manu tals o furna SSES elding weld c weld c weld c weld c weld c weld c weld c weld c elding	PO4 - - L L v IANU ufactu f met aces – g proc ing- S ding- g proc ETAL chanis ele dia olicatio	JFAC - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- class mold pection ne gas ert gas lding- lique c tools:	- M M ificatio making n of cas weldin laser b utting) Charact	M M M M M m of m g –diffe stings. ng-A.C ng- me beam v Chip th eristics	- - - - anufact erent ca C meta tal iner velding	- - - - - - - - - - - - - - - - - - -

Introduction, Classification, working principle, operations performed: Lathe, Shaper, Planner, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. Super finishing processes: Lapping, Honing, Super finishing, Polishing & Buffing.

#### METAL FORMING PROCESSES & ADVANCED MANUFACTURING TECHNOLOGY

Cold and hot working of metals – Bulk metal forming- Sheet metal forming- High Energy Rate Forming processes: Explosive forming- Electro hydraulic forming – Electromagnetic forming. Need and Classification of Additive Manufacturing Technology - Product development and Materials for Additive Manufacturing Technology – Tooling - Applications.

#### LIST OF EXPERIMENTS

- 1. Greens and moulding process using split pattern.
- 2. Joining of two metal pieces by electric arc welding.
- 3. Make an external thread cutting operation by using centre lathe.
- 4. Make a square end from a given round bar by using shaping machine.
- 5. Make a hexagonal block from a given round stock by using plain milling machine.
- 6. Make a spur gear from the given blank by using universal milling machine.
- 7. Make an external keyway on a given round rod by using vertical milling machine.
- 8. Make an internal keyway on a given hallow specimen by using slotting machine.
- 9. Make a grinding process on a machined surface as given surface finish by using cylindrical grinding machine.
- 10. Make an internal thread cutting on a given specimen as per given dimensions by the sequence drilling, boring, reaming and tapping by using respective tools and machines.

#### Text Books

- 1. Fundamental of Modern Manufacturing: Mikell P.Groover
- 2. A Text Book of Production Technology (Manufacturing Processes) : S. Chand.

#### **Reference Books**

- 1. SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.
- 2. Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001
- 3. E.Paul Degarmo, J.T.Black, and Ronald A. Konser, 'Materials and Processes in Manufacturing', 5th Edition, Prentice Hall India Ltd., 1997.
- 4. P. N. Rao, Manufacturing Technology (Volume 1) Foundry, Forging and Welding, 4th Edition, Tata McGraw Hill Education, New Delhi, 2013.
- 5. Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes and Systems, Publishers: Wiley India, 2012.

Alterna	ative NPTEL/SWAYAN	1 Course					
S.No	NPTEL /SWAYAM (	Course Name		Instructor	Host	Institution	Duration
1	Manufacturing Process I & II	0.	7 Prof. Shantanu II Bhattacharya			T Kanpur	12 weeks
Course	Designers						
				Department/Na	me		
S.No	Faculty Name	Designation		of the College		Email id	
1	R.Jayaraman	Associate Prof	essor	MECH/VMKVE	С	jayaramanr@	vmkvec.edu.in
2	C.Thangavel	Associate Prof	essor	MECH/VMKVEO		thangavel@vi	nkvec.edu.in
		Assistant Profe	essor-				
3	P.Kumaran	II		MECH/AVIT		kumaranp@a	vit.ac.in

		БТТ		IFCII		S AND									
			CHIN		ANIC	5 AND	•	Catego	ry	L	Т		Р	Cre	dit
			eory a					~~~		-			_	_	
		Pra	cticals	5)				CC		2	1		2	4	
<b>Preamb</b>		auluia	at : a t		. de e	frandam	1 [.]	1	adaa	:				- <b>1</b> - :	
The aim <b>Prerequ</b>		subje	ct is to	o prov	/ide a	rundan	nental	knowi	eage	in fluid	mecha	anics a	na mao	chinery.	•
Prerequ NIL	lisite														
Course	Obiect	tives													
	•		the stu	udents	s abou	t prope	rties o	f the f	luids.	behavi	our of	fluids	under	static	
	onditio					·			,						
2 T	'o impa	rt bas	ic kno	owled	ge of	the kine	ematic	s of fl	uids a	and bou	ndary	layer c	oncept	•	
						of dime						-			
										in pum	os.				
										in turbi					
Course	Outco	mes: (	On th	e suc	cessfu	l comp	oletion	of the	e cou	rse, stu	dents	will be	able t	<b>:0</b>	
	Apply	math	emati	cal kr	nowled	dge to p	oredict	the pr	opert	ies and	charac	teristic	cs		
CO1.	of a fl	uid.						-	-					Apply	ý
										ids and			n		
	throug	gh flui	d kine	ematio	cs and	also to	under	stand	the co	oncept	of bour	ndary			
CO2.	layer a	and its	s thick	cness	on the	flat so	lid sur	face.					J	Jnderst	and
										olved in					
CO3.	-			-		•			•	type by			es.	Apply	ý
	Explai	in the	work	ing pr	incipl	es of ce	entrifu	gal pu	mps a	and reci	iprocat	ing			
CO4.	pumps	5.											J	Jnderst	and
	Explai	in the	work	ing pr	incipl	es of va	arious	turbin	es and	d desig	n the v	arious			
	types												J	Jnderst	and
Mappin	oping with Programme Outcomes and Programme Specific Outcomes											es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	-	-	-	-	-	-	-	-	Μ	Μ	L
CO2	S	S	M	L	-	-	-	-	-	-	-	-	<u>M</u>	M	L
CO3 CO4	S S	S S	M S	L S	-	-	-	-	-	-	-	-	<u>M</u> M	M M	L L
C04 C05	S	<u>s</u>	S S	S S	-	-	<u>.</u>	-		-	-	-	M	M	L L
S- Strong					-	-	•	-	-	-	-	-	IVI	IVI	

SYLLABUS

#### BASIC CONCEPTS AND PROPERTIES

Definition of fluid-mechanics-Properties of fluids-mass density, specific weight, specific volume, specific gravity-Viscosity-Newton's law of viscosity-Compressibility and Buk modulus, Surface tension and Capillarity-Vapor pressure-Continuity equation (one and three dimensional differential forms)-Bernoulli's equation and its assumptions.

#### KINEMATICS AND BOUNDARY LAYER OF FLUID FLOW

Types of fluid flow - Velocity and acceleration – Velocity Potential Function -Stream Function-Types of motion –Vortex flow-Euler's equation of motion-Flow of viscous fluid through circular pipe-Major and Minor losses-Darcy Weisbach's equation-Boundary layer concepts-Types of boundary layer thickness-Separation of Boundary Layer

#### DIMENSIONAL ANALYSIS

Fundamental dimensions -Dimensional homogeneity-Methods of dimensional analysis-Model analysis -Similitude –Types of similitude-Dimensionless Numbers-Types of dimensionless numbers-Model laws–Classification of models.

#### HYDRAULIC PUMPS

Classification of pumps-Centrifugal pumps-Working principles-Work done by the impeller-Velocity Triangles-Heads and efficiencies of centrifugal pumps-Characteristic curves of centrifugal pumps-Cavitations in centrifugal pumps-Net Positive Suction Head (NPSH)- Reciprocating pumps-

	• • • •		reciprocating pump-Cl		iprocating
		ind it's variations - W	ork saved by fitting air	vessels	
	AULIC TURBINES	<b>T</b> 1 1 00 1 1	<b>NI</b> 1 1 1 1 1		
			- Pelton wheel -Veloci		
			action turbines-Workin		ft-Tube-
Specific I IST (	c speed-Unit quanti <b>FEXPERIMENT</b>	ties-Performance curv	ves for turbines –Gover	rning of turbines.	
			arge given Orifice Me	ar	
			arge given Venturi Me		
		iction factor for a give			
	• 1	-	e characteristic curves of	of Centrifugal	
	Pump/Submersible	1			
	• •	•	characteristic curves of		ımp
6.	Conducting experim	nents and drawing the	characteristic curves of	of Gear Pump	
7.	Conducting experim	nents and drawing the	characteristic curves of	of Jet Pump	
8.	Conducting experim	nents and drawing the	characteristic curves of	of Kaplan Turbine	
		formance characterist	ics curves of Pelton wl	neel & Francis Tur	bine
Text B	ooks				
		h, S.M. Hydraulics and	d Fluid Mechanics, Sta	ndard Book House	, New Delh
	22nd edition 2019.				
		echanics including Hy	draulic Machines, Kha	unna Publishers, Ne	ew Delhi,
	2014.	. 1		<b></b>	
		-	draulics Machines"- (9	th edition)–Laxmi	Publications
	(P) Ltd- New Delhi nce Books	2010.			
		chanics: A Concise In	troduction, Prentice H	all of India Private	I td 2016
			chanics, McGraw Hill		
	-		porty, Introduction to F		
		Graw Hill Education	•	iuru meenumes un	4 1 1414
			chanics, McGraw Hill	Publishing Co., 20	)10.
	ative NPTEL/SWA		, <u> </u>	<u> </u>	
S.No	NPTEL /SWAY	AM Course Name	Instructor	<b>Host Institution</b>	Duration
Course	Designers			·	
			Department/		
			Name of the		
S.No	Faculty Name	Designation	College	Email id	
1		Associate		arunkumar@vml	waa adu in
1	Dr.S.Arunkumar	Professor	MECH/VMKVEC	arunkumar@vmk	vec.euu.m

MECH/AVIT

Assistant Professor

2

B.Selva Babu

selvababu@avit.ac.in

			CHAN CHIN		OF			Catego	ry	L	Т		Р	Cre	dit
		(Th	eory a cticals	nd				СС		2	1		2	4	
Pream	ole	rra	cucais	9				u		4			4	4	
The stud		omple	ting th	nis co	urse a	re expe	cted to	under	stand	the rol	le of m	echani	sms an	d its	
applicat Prerequ		IL													
Course															
			rate th	e vari	ous ty	pes of	kinema	atics o	f mec	hanisn	ıs.				
	To stud	ly the	gear	nome	enclat	ure and	l illusti	ate the	e vari	ous typ	bes of g	gears an	nd gear	trains.	
						n profil									
						of static									
		~			/	asses ar					•				
Course											idents	will be			
CO1.	Expl	ain th	e prin	ciples	invo.	lved in	mecha	nics of	f mac	hines.				Underst	and
CO2.	Solv	e proł	olems	relate	d to g	ear too	th for v	variou	s appl	ication	.S			Appl	у
CO3.	Cons	truct	cams	and fo	ollowe	ers for s	pecifie	ed mot	ion pi	ofiles.				Appl	
CO4.	Ana	yze a	bout t	he var	rious s	static ar	nd dyna	amic f	orces.					Analy	
		•				s in rot					arts of				
CO5.	mac	ninery	<i>.</i>	• •			-		-	• •				Analy	ze
Mappii	ng with	Prog	ramn	ne Ou	tcom	es and	Progr	amme	e Spec	cific O	utcom	es			1
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	M	L	•	-	-	-	-	-	-	-	-	M	М	L
CO2 CO3	S S	<u>S</u>	M M	L L	-	-	<u>.</u>	-	-	-	-	-	M M	M M	L L
CO4	S	S	S	S	-	-		-	-	-	-	-	M	M	L
CO5	S	S	S	S	-	-	-	-	-	-	-	-	М	М	L
5- Strong SYLLA	g; M-Me	dium;	L-Lov	V											
	IATIC	<b>DF M</b>	ECHA	NICS											
Mechar						nitions	– kineı	matics	inve	sions o	of 4 ba	r and sl	ide cra	nk cha	in –
kinemat															
GEARS								•			1 10				
Spur ge				-	-		-	-		-	-	-			
						tandard		– gear	train	s – par	allel a	xis gea	rs trair	ıs – epi	cycli
				ansm	ISSION	gear tr	ains								
KINEM				mont	1:0000		abalia	Cime	la ha	maani	and (	Tralaid	al mat	iona I	
Classifi of plate															
cams - S	-					1 1 0110		ouion	1115	ii speet	a cumb	ene	and un	e una ti	
FORCE				-											
Applied	l and C	onstra	ained	Force	s – Fi	ee bod	y diagi	rams –	- stati	c Equi	libriun	n condi	tions -	Two,	Thre
and fou	r meml	oers –	Stati	c For	ce ana	alysis ir	n simp	le mac	chine	memb	ers – I	Dynami	ic Forc	e Anal	ysis -
				-		'Alemb	pert's p	orincip	le – s	uperpo	sition	princip	le – dy	namic	Forc
Analysi		-													
	ICING .														
Static a	•			-		ncing o	of revo	lving a	and re	eciproc	ating r	nasses	– Bala	ncing	
	D.	. 1				-	_	-		-	-				
						ethod-I		bratio	ns –	Equation	ons of		n – na		
	ncy – D					ethod-H tical sp		bratio	ns –	Equation	ons of		n – na		

#### LIST OF EXPERIMENTS

- To perform an experiment on Watt and Porter Governor to prepare performance characteristic curves 1. and to find stability and sensitivity
- To determine the position of sleeve against controlling force and speed of a Hartnell governor and to 2. plot the characteristic curve of radius of rotation
- 3. To analyse the motion of a motorized gyroscope when the couple is applied along its spin axis and determine gyroscopic couple
- 4. Determine the Moment of Inertia by compound pendulum and tri-filar suspension.
- 5. To determine the frequency of undamped free vibration and damped forced vibration of an equivalent spring mass system.
- 6. To determine whirling speed of shaft theoretically and experimentally.

#### **Text Books**

- Ambekar A.G., -Mechanism and Machine Theory Prentice Hall of India, New Delhi, 2007 1.
- Shigley J.E., Pennock G.R and Uicker J.J., —Theory of Machines and Mechanisms, Oxford University 2. Press, 2003

3. Khurmi.R.S. and Gupta, Theory of Machines, S.Chand @ Co., 2005.

#### **Reference Books**

- Thomas Bevan, Theory of Machines, CBS Publishers and Distributors, 1984. 1.
- 2. Ghosh.A, and A.K.Mallick, -Theory and Machine, Affiliated East-West Pvt. Ltd., New Delhi,
- 3. Rao.J.S. and Dukkipatti R.V. Mechanisms and Machines, Wiley-Eastern Ltd., New Delhi, 1992.
- 4. Ramamurthi. V., "Mechanisms of Machine", Narosa Publishing House, 2002
- 5. Robert L.Norton, "Design of Machinery", McGraw-Hill, 2004.

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	<b>Host Institution</b>	Duration
	Kinematics of Mechanisms and Machines	Prof. A. Dasgupta	IIT Kharagpur	12 Weeks
Course	Designers			

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.S.Venkatesan	Professor	MECH/ VMKVEC	venkatesan@vmkvec.edu.in
2	S.Sathiyaraj	Assistant Professor-II	MECH/AVIT	sathiyaraj@avit.ac.in

					AL B ALS	EHAV AND	IOUR		egory	L	Т		Р	Cre	edit
		ME	ETAL	LUR	GY					2			•		
Preamb	ام	(Th	leory	and	Practi	icals)		C	C	3	0		2	4	•
This cour methods a corrosion <b>Prerequ</b>	se to im and defo and adv	rmati	on me	chani	sms in	crystall	line soli	id mate	rials,	also the					s,
NIL	15110														
Course	Objecti	ves													
	o devel ngineer				owled	ge of th	e class	sificati	on, p	ropertie	es and a	applica	tion of	variou	S
Т		de an			ling to	o studei	nts on 1	the me	echan	ical pro	perties	and p	erform	ance of	f
Id		he su	iitable	e mecl	hanica	al treatn	nent m	ethod	s for s	selectin	g ferro	us and	non fe	errous	
D		the k			of the	various	s forms	s of co	rrosio	on and p	powder	r metal	lurgy		
T		nsigh			ed m	aterials	such a	s poly	mers	, cerami	ics and	comp	osite ar	nd their	•
Course			On t	he su	ccess	ful com	pletio	n of tl	ne coi	urse, st	udents	s will h	e able	to	
CO1.	Unders	stand	the c	oncep	ots of s		e prop	erties,		ormance				Unders	stand
CO2.	<b>^</b>	te th	e mec	hanic	al beł	01			and t	he effe	ct of			App	oly
CO3.						erty reland		ip in 1	netal	/alloys i	in as-			App	
CO4.						rosion, 1 lurgy fa				preven s.	ıt			App	
CO5.	Apply in proc				ials sı	ich as p	olyme	ers, cer	amic	s and co	omposi	tes		App	
Mappin					tcom	es and	Progra	amme	Spe	cific Oı	itcome	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	-	-	-	-	-	-	-	-	-	М	М	-	-
CO2	S	Μ	-	-	-	-	-	-	-	-	М	S	М	-	Μ
CO3	S	S	Μ	-	-	-	•	-	-	-	-	S	М	-	M
CO4	S	S	-	-	-	S	-	S	-	-	-	S	M	-	M
CO5 S- Strong	S : M-Med	S lium:	- L-Lov	- v	S	-	-	-	-	-	-	S	Μ	-	Μ
SYLLA															
FERROU		ON-F	ERR	OUS I	MATE	ERIALS	5								
Classific								nicros	tructu	ires and	l uses o	of cast	irons.	plain ca	arbon.
alloy ste															
uses of a															
carbide e	quilibr	ium c	liagra	m.						5			-		
MECHA															
Introduc		-				-		-							
fracture,															
Testing of							sion an	nd she	ar loa	ds – Ha	ardness	s tests	(Brinel	l, Vick	ers &
Rockwel	· •				charp	py.									
MATER						•								<u> </u>	
Heat tre	atment	- C	Vervi	ew-	object	tives –	Anne	aling	and	types,	Norm	alizing	; - Ha	rdening	g and

Tempering, Austempering and martempering. Case hardening process- Carburizing- nitriding - cyniding and carbonitriding, flame and induction hardening. Hardenability - Jominy end quench test. Time Temperature Transformation (TTT) and Cooling Curve Transformation (CCT) curve. **POWDER METALLURGY AND CORROSION** 

## Powder metallurgy–powder production, blending, compaction, sintering-applications, Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods - PVD, CVD.

#### INTRODUCTION TO ADVANCED MATERIALS

Polymers – types of polymer, Properties and applications of various Engineering polymers (PP, PS, PVC, PMMA, PET,PC, PA, ABS, PI,PAI,PPO,PPS,PEEK, PTEF, Urea and phenol formaldhydes. Composites Types- Metal Matrix Composites (MMC), Polymer Matrix Composites (PMC), Ceramic Matrix Composites (CMC) – properties, processing and applications. Ceramics – properties and applications of SiC, Al2O3, Si3N4, PSZ and SIALON

#### LIST OF EXPERIMENTS

- 1. Introduction to Metallographic
- 2. Preparation metallographic specimen
- 3. Identification of Ferrous specimens (Minimum 5)
- 4. Identification of Non-Ferrous specimen (Minimum 2)
- 5. Heat treatment Annealing comparation between annealed and unheat treated specimen.
- 6. Heat treatment Normalizing comparation between annealed and unheat treated specimen.

#### **Text Books**

- 1. William D Callister "Material Science and Engineering", John Wiley and Sons 2010–8thEdition.
- Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company Prentice Hall2014- 8th Edition.
- 3. V. Raghavan, "Materials Science and Engineering", PHI, Sixth Edition

#### **Reference Books**

- 1. George E. Dieter, "Mechanical Metallurgy" TATA McGraw Hill 2013 3rd Edition
- 2. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India
- 3. Upadhyay. G.S. and AnishUpadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	<b>Host Institution</b>	Duration
1	Mechanical Behaviour of Materials	Prof. S. Shankar	IIT Madras	12 Weeks
2	Materials Science and Engineering	Dr. Vivek Pancholi	IIT Roorkee	12 Weeks

#### **Course Designers**

S.No	Faculty Name	Designation	Department/Name of the College	Email id
				arunkumar@vmkvec.ed
1	Dr.S. Arunkumar	Assoc. Professor	MECH/VMKVEC	u.in
2	Dr.M.Thiruchirambalam	Professor	MECH/AVIT	thiru.mech@avit.ac.in

		STE	RENG	GTH (	OF			0-4		Ţ	T			G	1.4
				IALS			_	Catego	ry	L	Т		Р	Cre	alt
		(Th	eory a	and											
		Pra	ctical	<b>s</b> )				CC		2	1		2	4	
Preaml															
The stud		npletir	ng this	cours	e are e	xpected	to und	erstand	the ro	ole of m	nechanis	sms and	l its app	olication	s.
Prereq	uisite														
NIL	011														
Course			-												
	Fo knov		behav	ior of	mater	rial at v	arious	loadin	g cor	nditions	s in cor	npress	on and	1	
	tension		1	1	1	6	11	1.			• 1	1.	1.		
	Underst														
	Fo knov	-		meno	n of b	ending	of diff	erent s	sectio	ons and	its ana	lysis a	nd reco	ognize	
	orincipl				1			1		1 1	•				
	Γo unde										ysis.				
	Concept												h l .	4 -	
Cours	e Outco											s will b	e able	10	
COL	-					erial at v	variou	s loadi	ng co	nditior	is in			Undona	tand
CO1.	comp					1.		•	. 1	1.	1.	•		Unders	
CO2.						ding m				-				Appl	y
000					ion of	bendin	ig of di	ifferen	t sect	ions an	d recog	gnize		. 1	
CO3.	princi	iple st	resses	•										Analy	ze
CO4.	Analy	ze ab	out th	e vari	ous co	olumns	section	ns and	geon	netrical	•			Analy	ze
CO5.						sion an								Analy	vze
Mappii											utcome	S		7 mary	LU
														-	-
COs CO1	PO1 S	PO2 M	PO3 L	PO4	PO5	PO6 -	PO7 -	PO8	PO9	PO10 -	PO11 -	PO12	PSO1 M	PSO2 M	PSO3 L
CO2	S	S	M	L	-	-	-	-	-	-	-		M	M	L
CO3	S	S	S	S	-	-	-	-	-	-	-	•	М	М	L
CO4	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	L
CO5	S	S	S	S	-	-	-	-	-	-	-	•	М	Μ	L
S- Strong	<u>,</u>	dium;	L-Lov	V											
SYLLA				a											
STRES						~ •		1		C					
Stress a							0.							-	
Poisson															
under in	-	-					incipai	stress	es and	u plane	s - 100	nr s ci	icie ioi	prane s	stress
and plat BENDI	NG MO	II. SUZ	nn ga T AN	nges a		Selles.	IN RF	AMS							
Shear fo									simr	ly sum	orted	and ov	erhano	ing bea	ms
under c															
	num be				-					ij vaij	ing iou	us, coi	leentru	ieu moi	mento
FLEXU					-		/1111 u 11	entar et							
Theory						tions _	flexu	re equi	ation	Theor	v of tor	sion ar	d assu	motion	s
torsion								ic equi	uion.	Theor.	y 01 t01	51011 ai	iu ussu	mption	3
DEFLE															
Govern								thod -	- moi	ment a	rea me	- thod	- annli	cation	to
simple												, inou	appi	cuti011	
COLUN	-				241110	and on		~~~~~			,, <u>,</u>				
						lad ab -	nt and	lon~		nn m	nhare	hual	lingla	ad E	lor's
Colum				-				-		ini mel	nuers	- DUCK	ung IC	au – El	lier S
theory	– unier	ente	nu co	nun	<u> </u>	RAIIKIN	ie s 101	muia.							

LIS	ST O	<b>FEXPERIMENTS</b>	3								
	1. ]	Direct Shear Test on	Mild Steel Rod and	Mild Steel Plate							
	2. 1	Brinell Hardness Tes	st								
	3. 1	Izod Impact Test									
	4. ]	Bending Test on Mil	d Steel								
	5. 1	Rockwell Hardness	Test								
	6. 7	Tensile Test on Mild	l Steel								
	7. (	Compression test& 7	Forsion test on Mild	Steel							
Гез	xt Bo	ooks									
				na Publishing House, 2							
				n Books Pvt Ltd, New							
	3. 1	Rajput.R K, "Streng	th of Materials", S.C	hand& Co Ltd, New De	elhi, 1996.						
Ref		nce Books									
1.	<u> </u>	1 0	0	Solids", Prentice Hall of							
2.		· · ·	gth of Materials", Ox	ford University Press,	Oxford Higher Ed	ucation					
		ies, Oxford, 2007									
3.				arson Education, New.	•						
4.		, U	· · · · · · · · · · · · · · · · · · ·	mi Publications(P)Ltd, 1	,						
5.		,	,	l John J Dewole, "Mech	anics of Materials	", Tata					
		0	g Co Ltd, New Delhi	i, 2006							
		tive NPTEL/SWA									
S.	No	NPTEL /SWAYA		Instructor	<b>Host Institution</b>	Duration					
				PROF. SRIMAN KUMAR		10 111 1					
		STRENGTH OF MAT	ERIALS	BHATTACHARYYA	IIT KGP	12 Weeks					
Co	urse	Designers			1						
<b>S.</b>	No	Faculty Name	Designation	Department/Name of the College	Email id						
	1	Dr.S.Sangeetha	Associate Professor	r MECH/AVIT	sangeethas@avit	.ac.in					
			Assistant								
	2 R.Chandrasekar Professor MECH / VMKVEC chandrasekar@vmkvec.edu.in										

			GINE					Catego	ry	L	Т		Р	C	redit
					AMI( actica			CC		2	1		2	4	ļ
Preamb	le	E :	•			-								•	
This co															
						aw, entro									
						eneral th				operty	relation	ns. It de	evelop	s the pr	oblem
-		ı engir	neerin	g prob	lems i	in basic	therm	odynam	nics.						
Prerequ Nil	iisite														
Course	Objec	tives													
Т	'o learr	1 abou	it wor	k and	heat i	nteraction	ons, a	nd bala	ince	of ener	gy betv	veen sy	/stem a	and	
	its surr											-			
2 T	'o learr	n abou	it appl	icatio	n of I	law to v	variou	s energ	y co	nversio	n devi	ces.			
						perties of									
4 T	'o unde	erstand	d the c	liffere	ence b	etween	high g	grade ai	nd lo	w grad	e energ	gies.			
						ations or	<u> </u>	/		<u> </u>		2			
						il comp					idents	will be	able	to	
	1					& vario				,					
CO1.		ineerir												Under	stand
CON						blems u	sing v	arious	meth	ods of [	Fransie	nt		<b>A</b>	.1
CO2.		condu			<u> </u>							•		App	biy
CO3.	stan	dard v	alues	•		vection	•		U				Ũ	App	oly
CO4.		hoose n prob		rious	conce	pts of ra	diatio	n based	on t	he requ	iremen	ts for th	ne	App	oly
CO5.						blems u ers using						l heat		App	oly
Mappin	g with	Prog	ramn	ne Ou	itcom	es and l	Progr	amme	Spee	cific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L	-	-	-	S	S	S	-	-	S	М	-
CO2	S	М	L	L	-	-	-	S	S	S	-		S	М	<b>_</b> -
<u>CO3</u>	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO4	S	M	L	L	-	-	-	S	S S	S	-	-	S	M	-
CO5 5- Strong	S • M M	M		L	-	-	-	S	S	S	•	-	S	Μ	-
SYLLA		.uiuili;	L-L0V	Y											
		TALS	<b>5 OF</b> '	ГНЕЈ	RMO	DYNAN	MIC								
						olume; l		rtv. Sta	te &	Proce	ss: Exa	nct & I	nexact	differe	ntials
		•				of wor	-	•							
		•				for sim		-		-				-	
-						tion of t					-				
			-			f heat; e		-					-		
						Concept									
-			•	-		erav and			01	.,_•				- r-0	1

Various modes of energy, Internal energy and Enthalpy. FIRST AND SECOND LAW OF THERMODYNAMICS First Law for Flow Processes - Derivation of general energy equation for a control volume; Steady state steady flow processes including throttling; Examples of steady flow devices; Unsteady processes; examples of steady and unsteady I law applications for system and control volume. Second law - Definitions of direct and reverse heat engines; Definitions of thermal efficiency and COP; Kelvin-Planck and Clausius statements; Definition of reversible process; Internal and external irreversibility; Carnot cycle; Absolute temperature scale

#### CLAUSIUS INEQUALITY, IRREVERSIBILITY AND AVAILABILITY

Clausius inequality; Definition of entropy S; Demonstration that entropy S is a property; Evaluation of S for solids, liquids, ideal gases and ideal gas mixtures undergoing various processes; Determination of s from steam tables- Principle of increase of entropy; Illustration of processes in T-s coordinates; Definition of Isentropic efficiency for compressors, turbines and nozzles- Irreversibility and Availability, Availability function for systems and Control volumes undergoing different processes, Lost work. Second law analysis for a control volume. Energy balance equation and Exergy analysis.

#### PURE SUBSTANCE AND GAS MIXTURES

Definition of Pure substance, Ideal Gases and ideal gas mixtures, Real gases and real gas mixtures, Compressibility charts- Properties of two phase systems - Const. temperature and Const. pressure heating of water; Definitions of saturated states; P-v-T surface; Use of steam tables and R134a tables; Saturation tables; Superheated tables; Identification of states & determination of properties, Mollier's chart

#### THERMODYNAMIC CYCLES AND RELATIONS

Thermodynamic cycles - Basic Rankine cycle; Basic Brayton cycle; Basic vapor compression cycle and comparison with Carnot cycle. Thermodynamic relations: Thermodynamic potentials, thermodynamic gradients, general thermodynamics relations, entropy (Tds) equations, equations for internal energy and enthalpy, equation of state, coefficient of expansion and compressibility, specific heats, Joule Thomson coefficient, Clausius –Claperyon equation, Maxwell's relations.

#### LIST OF EXPERIMENTS

IC Engine Valve Timing diagrams.

IC Engine Port Timing diagrams.

Determination of Flash Point and Fire Point of Various fuels / Lubricant

Determination of Viscosity of Various fuels / Lubricant

Actual P-V diagrams of IC engines.

Determination of Calorific value of liquid fuel

#### Text Books

Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
 Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

#### **Reference Books**

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wiley and Sons.

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
1	Basic Thermodynamics	Prof. Suman Chakraborty	IIT Kharagpur	12 weeks
Course	Designers			

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

							Ca	tegory		L	Т		Р	C	Credit
		тне	ERMA	<b>A</b> L											
				ERINO				~~		•			•		-
	1.	(The	eory a	nd Pr	actical	s)		CC		2	1		2	4	
Preamb		norta	ındar	atandi	nach	out the	nouvo		rotion	using	noot on	orou o	onvorei	ion and	
This cou makes ai		-			-		-	-		-					
the thern															
devices	nouyne		once	<i>Jus</i> , 11	e cons	ucii	Jii and		JIKIIIE	, princi		variou	is engi	leering	
Prerequ	isite														
Enginee		herm	odyn	amics	5										
Course	Object	tives													
1 T	o learn	abou	t of re	eacting	g syste	ems an	d heati	ng val	lue of	fuels.					
2 T	o learn	about	t gas	and va	apor cv	ycles a	and thei	ir first	law a	ind seco	ond lav	v effici	encies.		
3 T	o unde	rstand	l aboi	it the	proper	ties of	f dry an	d wet	air ar	nd the p	rincip	les of p	sychro	metry.	
4 T	o learn	abou	t gas	dynan	nics of	f air fl	ow and	stean	n throu	ugh noz	zles.	<b>*</b>		•	
Т	o learn	the a	bout	recipro	ocating	g com	pressor	s with	and v	without	interc	ooling	and pe	rforma	nce of
	eam tu														
Course	Outcor	mes: (	On th	e suce	cessfu	l com	pletion	of th	e cou	rse, stu	dents	will be	able t	0	
CO1.	To as	ssess t	he bas	sic of 1	reactir	ng syst	ems an	d hea	ting v	alue of	fuels			Understand	
CO2.	CO2. Apply the gas and vapor cycles and their first law and second law efficiencies Apply									oly					
CO3.	Appl	y the p	orope	rties o	f dry a	and we	et air ai	nd the	princ	iples of	psych	rometr	y	Арг	oly
CO4.	Appl	y the c	conce	pt of g	as dyr	namics	s of air	flow a	and st	eam thr	ough r	nozzles		App	oly
										thout in					-
CO5.					turbir							U		Anal	yze
Mappin	g with	Prog	ramn	ne Ou	tcome	es and	Progr	amm	e Spec	cific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L	-	-	-	S	S	S	-	-	S	Μ	-
CO2	S	М	L	L	-	-	-	S	S	S	-	-	S	Μ	-
CO3	S	M		L	-	-	-	S	S	S	-	-	S	M	-
CO4 CO5	S S	M	L	L	-	-	-	S S	S S	S S	-	-	S	M	-
S- Strong		M dium:	L L-Lov	L v	-	-	-	3	3	3	-	•	S	M	-
SYLLA		,													
INTRO	DUCT	'ION '	TO S	OLID	), LIQ	UID	AND C	GASE	OUS	FUELS	5				
Introduc	tion to	solid,	liqui	d and	gaseo	us fue	ls-Sto	ichior	netry,	exhaus	t gas a	nalysis	s- First	law an	alysis
of comb							0	-					emper	ature-	
Chemica					brium	comp	osition	l calcu	lation	is using	free e	nergy.			
GAS AN															
Vapor po															
critical a															
cycles-A															and
vapor po							rigerati	on cy	cles, r	etrigera	ants an	d their	proper	ties.	
PROPE								-le o ::+				- <b>h</b> a - 4'			
Propertie and hum		•			-	•		enart,	proce	sses inv	oiving	g neatir	ig/cool	ing	
anu num	numea		CHUIL	nume	auon,	uew p	onit.								

#### **COMPRESSIBLE FLOW**

Basics of compressible flow. Stagnation properties, Isentropic flow of a perfect gas through a nozzle, choked flow, subsonic and supersonic flows- normal shocks- use of ideal gas tables for isentropic flow and normal shock flow- Flow of steam and refrigerant through nozzle, supersaturationcompressible flow in diffusers, efficiency of nozzle and diffuser.

#### RECIPROCATING COMPRESSORS AND STEAM TURBINE

Reciprocating compressors, staging of reciprocating compressors, optimal stage pressure ratio, effect of intercooling, minimum work for multistage reciprocating compressors.

Analysis of steam turbines, velocity and pressure compounding of steam turbines

#### LIST OF EXPERIMENTS

- 1. Load Test on a four stroke Single cylinder diesel engine.
- 2. Load Test on a four stroke twin cylinder diesel engine.
- 3. Performance and Emission test of a four stroke multi-cylinder Petrol engine.
- 4. Performance and Emission test of a four stroke multi-cylinder Diesel engine.
- 5. Morse Test on a multi-cylinder petrol engine.
- 6. Performance test of a bio-fuel on a variable compression ratio engine.

#### Text Books

- 1. Jones, J. B. and Duggan, R. E., 1996, Engineering Thermodynamics, Prentice-Hall of India
- 2. Nag, P.K, 1995, Engineering Thermodynamics, Tata McGraw-Hill Publishing Co. Ltd.

#### Reference Books

- 1. Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., 2003, 6th Edition, Fundamentals of Thermodynamics, John Wiley and Sons.
- 2. Moran, M. J. and Shapiro, H. N., 1999, Fundamentals of Engineering Thermodynamics, John Wilev and Sons.

#### Alternative NPTEL/SWAYAM Course - Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration					
1	Nil								
Course	Course Designers								

#### **Course Designers**

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in
3	C.Thiagarajan	Associate Professor	MECH/AVIT	cthiagarajan@avit.ac.in

		DES	IGN	OF N	<b>ACE</b>	HINE	(	Catego	ry	L	Т	]	P	Cre	dit
		ELE	MEN	NTS				CC		2	1		)	3	
Preamb	le														
Students										•					
science i															
respect t															ble
the stude		have high	gh eth	nical s	tanda	rds in t	erms of	team	work	to be a	good d	esign er	igineer		
Prerequ NIL	iisite														
Course	Object	ives													
1 D	evelop	an abil	lity to	apply	y knov	vledge	of mec	hanics	and n	naterial	s.				
D	evelop	an abil	lity to	o desig	gn vari	ious ma	achine e	elemer	ts wit	h pract	ical cor	nstraints	by ap	plying	
2 st	andard	design	proc	edure	s.										
3 U	tilize th	ne code	es and	l stand	lard d	esign p	rinciple	es.							
4 A	pply D	esign p	rincij	ples ar	nd val	idation	for crit	tical sa	fety a	nalysis	•				
5 U	Indersta	and the	back	groun	d in n	naterial	failure	throug	gh the	study o	of theor	ies of fa	ailure.		
Course													able t	0	
	-		influ	ence of	of stea	dy and	variabl	e stres	ses in	machi	ne com	ponent			
CO1.	desig	gn.											1	Underst	tand
CO2.	Appl	y the de	esign	princ	iples i	n shaft	s and c	ouplin	gs for	defined	d const	raints.		Appl	у
			esign	princ	iples i	n bolte	ed and v	velded	joints	s for de	fined				
CO3.		traints.	•					•	6			· .	1	Appl	у
CO4.		y the de itions	esign	princ	iples 1	n mech	nanical	spring	s for s	steady a	ind var	ying loa	ıd	Appl	V
CO5.							ing and							Appl	У
Mappin	g with	Progra	amn	ie Ou	tcom	es and	Progr	amme	Spec	cific O	utcome	es			1
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	L	-	-	-	М	L	L	-	-	S	-	-
CO2	S	S	S	Μ	-	•	-	М	L	L	-	-	S	-	-
CO3	S	S	S	M	-	-	-	M		L	-	-	S	-	-
CO4	S	S	S	M	-	•	-	M	L	L	-	-	S	-	-
CO5 S- Stron	S a· M-M	S	S L-Lo	M	-	•	•	Μ	L	L	-	-	S	•	-
SYLLA		eululli;	L-L0	W											
INTRO		ION T	TO D	ESIG	N PR	ROCE	SS WI	гн у	ARIC	DUS ST	RESS	COM	BINA'	TIONS	5
Introduct															
equations															
of safety															
	lations							-			-		-		

#### DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength – rigidity and critical speed – Design of rigid and flexible couplings.

#### DESIGN OF BOLTED AND WELDED JOINTS

Threaded fasteners – Design of bolted joints – Design of welded Joints for pressure vessels and structures-Theory of Bolted joints

#### **DESIGN OF SPRINGS**

Design of helical, leaf and torsional springs under constant loads and varying loads.

#### DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types – Design of journal bearings calculation of bearing dimensions- Design of flywheels involving stresses in rim and arm.

#### **Text Books**

- 1. Design of Machine Elements-V.B.Bhandari
- 2. Mechanical Engineering Design: Joseph E Shigley and Charles R. Mischke

#### **Reference Books**

- 1. Machine Design: Robert L.Norton, Pearson Education, 2001
- 2. Design of Machine Elements-M.F.SPotts, T.E.Shoup, pearsonEdn, 2006.
- 3. Fundamentals of Machine component Design–Robert C.Juvinall, Wiley India Pvt.Ltd, 3rdEdn, 2007.
- 4. Design Data PSG College of Technology, DPV Printers, Coimbatore, 2012.
- 5. P.C.Sharma&D.K.Aggarwal, A Text Book of Machine Design, S.K.Kataria& Sons, New Delhi, 12th edition, 2012.

#### Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	<b>Host Institution</b>	Duration
	-	-	-	-

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in
2	J. Senthil	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in

ENGINEERING METROLOGY AND	Category	L	Т	Р	Credit
MEASUREMENTS (Theory and Practicals)	CC	3	0	2	4

Preamble

The aim of the subject is to provide basic knowledge in instrumentation and measurements. Familiarization with basic concepts and different instrumentation and measurement strategies being used in practice.

### Prerequisite

NIL

#### **Course Objectives**

Course Objectives									
1 To apply the fundamentals of basic engineering measurement system.									
To understand the various instruments used for linear, angular measurement, form									
2 measurement and surface finish									
To apply the knowledge of different measuring instruments like linear, angular									
3 measurement, form measurement and surface finish	neasurement, form measurement and surface finish								
To understand the principle, concepts, applications and advancements of temperature, pressure	e								
4 and flow measurements									
To use information to classifications, working and processes of optical measuring									
5 instruments, also to acquire the data and store in computer									
Course Outcomes: On the successful completion of the course, students will be able to									
Explain the sensitivity of the instruments by evaluating the error in									
CO1. measurements Understand	1								
Discuss the working principle and usage of various instruments used for									
CO2. linear, angular measurement, form measurement and surface finish Understand	1								
Demonstrate the various setups used for measuring linear,									
CO3.angular measurement, form measurement and surface finishApply									
Determine the appropriate instruments for temperature, pressure and									
CO4.     flow measurements     Apply									
Explain the application oriented knowledge in the use of									
CO5. optical measuring instruments Understand	1								
Mapping with Programme Outcomes and Programme Specific Outcomes									
Mapping with Programme Outcomes and Programme Specific Outcomes									
Mapping with Programme Outcomes and Programme Specific OutcomesCOsP01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS	03								
	03								

#### S- Strong; M-Medium; L-Low

L

S

Μ

S

S

S

М

Μ

S

L

L

L

**SYLLABUS** 

**CO3** 

**CO4** 

**CO5** 

BASIC PRINCIPLES & LINEAR / ANGULAR MEASUREMENT

-

Basic principles of measurement - Generalized measuring system - Characteristics of measuring instruments, Static and Dynamic characteristics - Precision, Accuracy, Sensitivity, Repeatability, Reproducibility, Linearity, Errors –sources of error, classification and elimination of error-Calibration. Linear and angular Measurements: Vernier – Micrometer - Slip gauges and classification - Optical flats - Limit gauges - Comparators: Mechanical - Pneumatic and Electrical types – applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker – Taper measurements.

-

-

-

L

L

L

_

#### DISPLACEMENT, SPEED & ACCELERATION / VIBRATIONMEASUREMENT

Measurement of displacement: Theory and construction of various transducers to measure displacement - LVDT, piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration procedures.

Measurement of speed: Mechanical tachometers, electrical tachometers, strobe Objective, noncontact type of tachometer.

Measurement of acceleration and vibration: Piezoelectric Accelerometer, Seismic Accelerometer, Vibrometer.

#### TEMPERATURE, PRESSURE AND FLOW MEASUREMENT

**Measurement of Temperature:** Classification, ranges, various principles of measurement, expansion, electrical resitance, Thermistor, Thermo couples, Pyrometers, temperature Indicators. Measurement of pressure: Units, classification, different principles used, piston Digital pressure gauges,

Manometers, bourdon, pressure gauges, bellows diaphragm gauges. Low pressure measurement, thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge, Knudsen gauge. Calibration of pressure gauges. Measurement of level: Direct method – indirect methods– capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators

Measurement of flow: Orifice meter, Venturi meter, Rotameter, magnetic, ultrasonic, turbine flow meter, Anemometers - hotwire anemometer, Laser Doppler anemometer (LDA).

#### FORCE, TORQUE, & STRAIN MEASUREMENTS

Measurement of force& torque: Load cells, Dynamometers: Eddy current dynamometer, Cantilever beams, proving rings, differential transformers.

Measurement of torque: Torsion bar dynamometer, servo controlled dynamometer, absorption dynamometers. Power Measurements.

Strain Measurements: types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, Strain gauge calibration.

#### FORM MEASUREMENTS AND OPTICAL MEASUREMENTS

Form measurements: Measurement of screw threads - thread gauges - Floating carriage micrometermeasurement of gears-tooth thickness-constant chord and base tangent method- Gleason gear testing machine – radius measurements-surface finish - Straightness - Flatness and roundness measurements. Optical measurements: Optical Micro Objective, interference micro Objective, tool makers micro Objective, profile projector, vision Systems, laser interferometer – linear and angular measurements.

#### LIST OF EXPERIMENTS

- 1. Angular Measurements using Bevel Protector and Sine Bar
- 2. Measurement of linear parameters using precision measuring instruments like micrometer, Vernier caliper and Vernier height gauge.
- 3. Flow Measurement using a Rotameter.
- 4. Fundamental dimension measurement of a gear using a contour projector.
- 5. Measurement of Displacement using Linear Variable Differential Transducer
- 6. Measurement of speed of Motor using Stroboscope
- 7. Measurement of cutting forces using Lathe Tool Dynamometer

#### **Text Books**

- 1. Kumar D.S., Mechanical Measurements and Control, Tata McGraw Hill.
- 2. Jain R.K., Engineering Metrology, Khanna Publishers, 1994.
- 3. GuptaS.C.- "Engineering Metrology"- Dhanpatrai Publications- 2018.
- 4. Metrology and Measurements lab Manual

#### **Reference Books**

- 1. Alan S. Morris- "The Essence of Measurement"- Prentice Hall of India- 1997
- 2. Jayal A.K- "Instrumentation and Mechanical Measurements"- Galgotia Publications 2000
- 3. Beckwith T.G- and N. Lewis Buck- "Mechanical Measurements"- Addison Wesley- 1999.
- 4. Donald D Eckman- "Industrial Instrumentation"- Wiley Eastern-1985.

Alternative NPTEL/SWAYAM Course								
S.No	NPTEL /SWAYAM	I Course Name	Instructor	<b>Host Institution</b>	Duration			
		]	Prof. J. Ramkumar,					
1	Engineering Metrolog	y l	Prof. Amandeep Singh	IIT Kanpur	12 Weeks			
Course Designers								
			Department/Name	e				
S.No	Faculty Name	Designation	of the College	Email id				
1	S.Duraithilagar	Associate Profess	sor MECH/VMKVEC	duraithilagar@vi	nkvec.edu.in			
2	R.Mahesh	Assistant Profess	or MECH/AVIT	mahesh@avit.ac.	in			

AUTOMOBILE	Category	L	Т	Р	Credit
ENGINEERING (Theory and Practicals)	CC	3	0	2	4

#### Preamble

Automobile Engineering is a blend of both practical and theories, course the students will be able to learn the layout and arrangement of principal parts of an automobile, Engine Management and Emission Control System, working of Transmission, Suspension, Steering and brake systems along with the Advance in AutomobileEngineering.

#### Prerequisite

#### NIL

#### Course Objectives

Cours							
1	To impart knowledge on the constructional details and principle of operation of various Automobile components.						
2	•	To analyzing the various types Engine Auxiliary and Engine management systems.					
3	To analyzing the various types of transmission systems for a vehicle						
4	To analyzing the working parameters of various braking and suspension system in a Vehicle						
5	5 To Analyzing the Various advance in automobile Engineering						
Cour	Course Outcomes: On the successful completion of the course, students will be able to						
CO1.	Recognize the various parts of the automobile and their functions and materials.	Apply					
CO2.	Analyzing the various types Engine Auxiliary and Engine management systems.	Analyze					
CO3.	Analyzing the various types of transmission systems for a vehicle	Analyze					
CO4.	Analyzing the working parameters of various braking and suspension system in a vehicle	Analyze					
CO5.	Analyzing the Various advance in automotive Engineering.	Analyze					

#### Mapping with Programme Outcomes and Programme Specific Outcomes

	0		0				0								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	S	-	-
CO2	S	L	L	L	-	•	-	-	•	-	-	-	S	-	-
CO3	S	Μ	Μ	Μ	-	•	-	-	•	-	-	-	S	-	-
<b>CO4</b>	S	М	М	М	-	1	-	-	•	-	-	-	S	-	-
CO5	S	Μ	Μ	Μ	-	I	-	-	•	-	-	-	S	•	-
S- Strong	; M-Me	edium;	L-Lov	V											

SYLLABUS

#### VEHICLE STRUCTURE AND ENGINES

Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics, IC engines –components-functions and materials, variable valve timing (VVT).

#### ENGINE MANAGEMENT & EMISSION CONTROL SYSTEMS

Engine auxiliary systems, electronic injection for SI and CI engines, unit injector system, rotary distributor type and common rail direct injection system, transistor based coil ignition & capacitive discharge ignition systems, turbo chargers (WGT, VGT), Engine emission control by 3-way catalytic converter system, Emission norms (Euro & BS).

#### TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, overdrive, transfer box, fluid flywheel – propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive

#### STEERING, BRAKING AND SUSPENSION SYSTEMS

Steering Geometry, Types of steering Gearbox – Power Steering, Front Axle, Stub Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, ABS and Traction Control.

#### ADVANCES IN AUTOMOBILE ENGINEERING

Passenger comfort - Safety and security - HVAC - Seat belts - Air bags - Automotive Electronics - Electronic Control Unit (ECU). Active Suspension System (ASS) - Electronic Brake Distribution (EBD) – Electronic Stability Program (ESP) Traction Control System (TCS) - Global Positioning System (GPS) - Electric - Hybrid vehicle.

#### LIST OF EXPERIMENTS

- 1. Construction Mechanism of Petrol and Diesel engine (Four stroke and Two Stoke)
- 2. Construction Mechanism of Clutch Assembly
- 3. Construction Mechanism of Sliding mesh, Constant mesh and Synchromesh gear boxes
- 4. Construction Mechanism of Differential and Rear axles assembly
- 5. Construction Mechanism of Hydraulic brake, Disc brake and Air brake systems
- 6. Construction Mechanism of Suspension and Steering systems
- 7. Construction Mechanism of Hybrid and Electric vehicles

#### Text Books

- 1. Kirpal Singh, "Automobile Engineering Vol 1 & 2 ", Standard Publishers, Seventh Edition, New Delhi R.B. Gupta- "Automobile Engineering "- SatyaPrakashan.
- 2. Jain K.K. and Asthana R.B., Automobile Engineering, Tata McGraw Hill, New Delhi.
- 3. Gill P.S., "A Textbook of Automobile Engineering Vol. I, II and III", S.K.Kataria and Sons, 2ndEdition.

#### **Reference Books**

- 1. William Crouse- "Automobile Engineering Series "- McGraw-Hill
- 2. Newton and Steeds- "Motor Vehicles "- ELBS
- 3. Duffy Smith- "Auto Fuel Systems "- The Good Heat Willcox Company Inc.
- 4. "Hybrid and Electric Vehicles"-CRC Press Taylor and Francis Group.

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM (	Course Name		Instructor	Host I	nstitution	Duration			
1	Fundamentals of Autom	otive Systems	Prof (	C.S. Shankar Ram	IIT	Madras	12 Weeks			
Course Designers										
			Department/Na							
S.No	Faculty Name	Designation		the College		Email id				
1	T. Raja	Associate Prof	essor	MECH/VMKVEC		rajat@vml	cvec.edu.in			
2	N. Shivakumar	Assistant Profe	essor	MECH/AVIT		shivakuma	r@avit.ac.in			

COMPUTER	Category	L	Т	Р	Credit
INTEGRATED MANUFACTURI	ING				
(Theory and Prac	ticals) CC	3	0	2	4

#### Preamble

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, fundamentals of CNC machines, programming of CNC machines, group technology, computer aided process planning techniques, shop floor control and flexible manufacturing systems. It exposes the students to various current trends followed in the industries

#### Prerequisite

NIL

#### **Course Objectives**

1 Demonstrate basics of CAD/CAM/CIM concepts.

2 To apply geometric modelling techniques and various graphics standards in CAD.

3 Illustrate with tooling and fixtures in CNC programming and machining.

4 Demonstrate part programs and group technology techniques.

5 Discuss latest advances in the manufacturing perspectives.

5 D	5 Discuss latest advances in the manufacturing perspectives.															
Course	Course Outcomes: On the successful completion of the course, students will be able to															
CO1	Unde	Understand basic concept of CAD/CAM/CIM											Uno	Understand		
	Utilize CAD standards for geometrical modelling. Demonstrate Solid modelling															
CO2	techn	iques.											App	Apply		
CO3	Interp	Interpret and demonstrate complex programs for CNC machining centers Apply														
CO4	Apply group technology concept in manufacturing product. Make use of															
04	ГEA	FEA concept for analysis.										Ap	Apply			
	Explain FMS and CIM wheel for manufacturing industry, discuss the latest															
CO5	advances in the manufacturing perspectives.									Ap	oly					
Mappi	ng wit	h Pro	gram	me O	utcor	nes an	d Prog	ramn	ne Sp	ecific (	Outcon	ies				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	Μ	Μ	М	-	-	-	-	-	-	-	L	Μ	-	-	
CO2	S	Μ	Μ	Μ	-	-	-	-	-	-	-	L	Μ	-	-	
CO3	S	Μ	Μ	Μ	-	-	-	-	-	-	-	L	Μ	•	-	
CO4	S	М	Μ	Μ	-	-	-	-	-	-	-	L	Μ	-	-	
CO5	S	Μ	Μ	Μ	-	-	-	-	-	-	-	L	Μ	-	-	
S- Strong	; <u>M-M</u> e	edium;	L-Lov	v												

SYLLABUS

#### INTRODUCTION

Definition and scope of CAD/CAM- Computers in industrial manufacturing, design process-Computer Aided Design (CAD)-Computer Aided Manufacturing (CAM)-Computer Integrated Manufacturing (CIM) - Introduction to Computer graphics -Raster scan graphics-Co-ordinate systems.

#### **GRAPHICS AND COMPUTING STANDARDS**

Data base for graphic modeling-transformation geometry-3D transformations –Clipping-hidden line removal-Colour-shading-Standardization in graphics- Open GL Data Exchange standards – IGES, STEP - Graphic Kernal system (GKS). Geometric construction methods-Constraint based modeling- Wireframe, Surface and Solid – Parametric representation of curves, solids & surfaces.

#### **CNC MACHINE TOOLS**

Introduction to NC, CNC, DNC - Manual part Programming – Computer Assisted Part Programming – Examples using NC codes- Adaptive Control – Canned cycles and subroutines – CAD/ CAM approach to NC part programming – APT language, machining from 3D models.

#### **GROUP TECHNOLOGY & FEA CONCEPTS**

Group technology-coding-Production flow analysis-computer part- programming-CAPP implementation techniques. Nodes -Meshing – Pre and Post processing – Modal analysis – Stress analysis – Steady state and Transient analysis.

#### AUTOMATED MANUFACTURING SYSTEMS

Flexible Manufacturing systems (FMS) – the FMS concepts – transfer systems – head changing FMS – Introduction to Rapid prototyping, Knowledge Based Engineering, Virtual Reality, Augmented Reality –automated guided vehicle-Robots-automated storage and retrieval systems - computer aided quality control-CMM-Non contact inspection methods.

#### LIST OF EXPERIMENTS

- 1. 2D Geometry –Splines
- 2. Surface Modelling –NURBS
- 3. Solid Modelling-CSG, Brep.
- 4. Preparing solid models for analysis-Neutral files
- 5. Real time component analysis-STRESS, STRAIN Analysis.
- 6. Model analysis of different structures.
- 7. Tolerance analysis of any mechanical component.
- 8. CNC Milling program involving linear motion and circular interpolation
- 9. CNC Milling program involving contour motion and canned cycles
- 10. CNC Milling program involving Pocket milling.
- 11. CNC Turning program involving turning and facing
- 12. CNC Turning program involving Step turning, Taper turning and Grooving
- 13. CNC Turning program involving Fixed/Canned cycles& Thread cutting cycles
- 14. Diagnosis and trouble shooting in CNC machine
- 15. Route sheet generation using CAM software.
- 16. Generation of CNC programming and machining using Master Cam/Edge Cam.

#### **Text Books**

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated
- 2. Radhakrishnan P, Subramanyan.S. andRaju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.
- 3. P.N.Rao, CAD/CAM: Principles and Applications-3rd Edition, Tata McGraw Hill, India, 2010.

#### **Reference Books**

- 1. Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill.
- 2. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International
- 3. David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.
- 4. Roger Hanman "Computer Integrated Manufacturing", Addison Wesley
- 5. Viswanathan.N, Narahari.Y "Performance Modeling& Automated Manufacturing systems" Prentice hall of indiapvt. Ltd.

#### Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
		Prof. J. Ramkumar,		
1	Computer Integrated Manufacturing	Prof. Amandeep Singh	IIT Kanpur	12 weeks

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.L.Prabhu	Associate Professor	MECH/ AVIT	prabhu@avit.ac.in
		Assistant Professor-		
2	S.Prakash	II	MECH/ AVIT	prakash@avit.ac.in
3	M.Saravanan	Associate Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in

DESIGN OF TRANSMISSION	Category	L	Т	Р	Credit
SYSTEMS	CC	2	1	0	3

#### Preamble

Design of Transmission System course is concerned with design of mechanical transmission elements for engineering applications. In industries motors and turbines use energy to produce rotational mechanical motion. In order to harness this motion to perform useful work, there must be a way to transmit it to other components and machines. Three common methods of accomplishing this include gears, chain drives, and belt drives. The Mechanical Transmission Systems subject area covers these types of transmission systems, including specific applications, how each works.

#### Prerequisite

#### **DESIGN OF MACHINE ELEMENTS**

#### 01.1.4

Course	Objec	tives													
1	To inte	rpret th	ne proc	cedure	for po	ower tra	ansmiss	ion by	belt, r	opes a	nd chaiı	n drives	•		
2	To desi	ign the	spur a	and he	lical g	ears.									
3	To design the bevel and worm gears.														
4	To explore the importance of gear box and design of gear box.														
5 To assess the design procedure for clutches and brakes.															
Course Outcomes: On the successful completion of the course, students will be able to															
	Design a suitable flat belt, V-belt, ropes and chain drive for specified loading														
CO1.							alues an							Appl	у
	Determine the number of teeth, bending strength and wear strength for given spur														
	gear, helical, bevel gear and worm gear pair by using pre-defined set of values and														
CO2.	procedures.												Apply		
	Determine the number of teeth, bending strength and wear strength for given bevel														
CO3.	-		-				defined s			-				Analy	ze
							ensions	for giv	en spee	ed cond	litions b	yusing			
CO4.						ocedure								Appl	У
~~~							set of va					gle plate	e		
CO5.				-			en speci		-					Appl	у
Mappir	ng with	Prog	ramn	ne Ou	tcom	es and	Progr	amm	e Spec	ific O	utcom	es			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	S	Μ	-	-	-	-	-	-	-	-	S	-	-
CO2	S	Μ	S	Μ	-	-	-	-	-	-	-	-	S	-	-
CO3	M	S	S	Μ	-	-	-	-	-	-	-	-	S	-	-
CO4	S	Μ	S	Μ	-	-	-	-	-	-	-	-	S	-	-
CO5	S	Μ	S	Μ	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

DESIGN OF FLEXIBLE DRIVES

Types and configuration of belt drive-slip-initial tension-centrifugal tension-selection of flat belt drive, Selection of V-belt drives- problems-based on basic equations. Types of chain-factor of safetyselection of chain drives. Design of Wire ropes.

DESIGN OF SPUR GEAR AND HELICAL GEARS

Gear nomenclature - Spur gears - Stresses induced in gears - gear tooth failure - Lewis bending equations, Calculation of appropriate safety factors and power rating - force analysis, Design of spur gears - helical

DESIGN OF BEVEL AND WORM GEARS

Gear nomenclature - Stresses induced in gears - gear tooth failure - Lewis bending equations -Calculation of appropriate safety factors and power rating - force analysis - Design of bevel and worm gears

DESIGN OF GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box peed reducer unit

DESIGN OF CLUTCHES AND BRAKES

Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes – external shoe brakes – Internal expanding shoe brake.

Text Books

- 1. Joseoh Edward Shigley, Charles R Misucke, Mechanical Engineering Design, Tata Mc Graw Hill.
- 2. Prabhu. T.J. -Design of Transmission Elements- Mani Offset- Chennai.
- 3. V.B. Bhandari, -Design of Machine Elements, Tata McGraw Hill.

Reference Books

- 1. Md.Jalaludeen- Machine Design- Anuradha Publicatiions, Chennai
- 2. Maitra G.M. Prasad L.V. -Hand book of Mechanical Design- II Edition- Tata McGraw-
- 3. Sundarajamoorthy T.V. and Shanmugam. N, -Machine Design, Anuradha Publications
- 4. Design Data, PSG College of Technology, Coimbatore.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S.Kalyanakumar	Assistant Professor	MECH/AVIT	kalyanakumar @avit.ac.in
2	J Satheesbabu	Associate Professor	MECH/VMKVEC	satheesbabu@vmkvec.edu.in

		HE	ат а	ND N	1455			Catego	ory	L	Т		Р	0	Credit
			ANSF		IAGO										
			eory												
			ctical					C	С	2	1		2	4	L
Preamb	le			~)											
The purp	ose of	this su	bject	is to b	een al	ble stude	nts un	ndersto	od dif	fferent j	principl	es of h	eat tran	sfer and	d its
Extensiv		neering	g appl	icatio	ns.										
Prerequ															
ENGINE			RMO	DYNA	MICS	5									
Course			1 .	1	. 1	.1 •	1		<u> </u>	•	1 .		1 • •		
						their con	duction	on mee	chanis	m in ste	eady sta	ite emp	hasizin	g on	
	Applica		-		-	41	1		1 ! .	··· ···		-4-4-		·	
	applicat					their con	auctio	on med	mants	m m ur	isteady	state er	npnasi	zing on	
	<u> </u>		-			convecti	on and	d its ar	nlica	tion					
-						adiation									
											ious tv	nes of I	Teat Ex	change	rc
5 To enable students to understand Boiling, Condensation and Various types of Heat Exchangers. Course Outcomes: On the successful completion of the course, students will be able to															
course						& vario				,					
CO1.		neering				cc vario	u o 1110	ue 5 01	nout		esea i		τ	Underst	tand
	<u> </u>		<u> </u>			blems us	sing v	arious	meth	ods of					
CO2.						chnologi								Appl	y
					of cor	nvection	syster	ns in a	n eng	ineering	g proble	em			
CO3.	,	g stand												Appl	y
004					conce	pts of rad	diatio	n base	d on tl	he requi	irement	s for			
CO4.	0	iven p				1 1	· •		0	1	1	1 .		Appl	у
CO5.						blems us ers using						heat		Annl	* 7
	•						-							Appl	y
Mappi	ng wit	h Prog	gram	me O	utcor	nes and	Prog	ramn	ie Spo	ecific C	Jutcon	nes			1
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L	-	-	-	S	S	S	-	-	S	М	-
CO2	S	М	L	L	-	-	-	S	S	S	-	-	S	Μ	-
CO3	S	M	L	L	-	-	-	S	S	S	-	-	S	M	-
CO4	S S	M	L	L	-	-	-	S S	<u>S</u>	S	-	-	S	M	-
CO5 S- Strong		M dium: l	L L-Lov	L	•	-	-	3	3	S	-	•	S	Μ	-
SYLLA	,														
		ON TO) HE	AT TI	RANS	FER AN	DST	EADY	STA'	TE CO	NDUC'	ΓΙΟΝ			
						eat trans							tion a	nd radi	ation
						w of con									
						across I				-					
wall – C	Compos	ite cy	linde	r – Co	ompos	site sphe	ere, O	verall	heat	transfe	r coeff	icients,	, Critic	al Rad	ius o

wall – Composite cylinder – Composite sphere, Overall heat transfer coefficients, Critical Radius of insulation, Variable thermal conductivity, conduction with Heat generation, - Fins or extended

surfaces- Pin fins, annular fins, longitudinal fins, fins efficiency and fins effectiveness- Problems. **TRANSIENT HEAT CONDUCTION**

Introduction – Lumped system analysis, semi – infinite solids. Transient Heat Conduction in Large Plane Walls, Long cylinders and Spheres. Significance of Biot and Fourier numbers, Transient heat transfer analysis of an infinite slab with specified temperature and connective boundary conditions. - Refrigeration and Freezing of Foods- Problems.

Use of Grover & Heisler charts for solving problems of infinite slabs, cylinders, spheres.

CONVECTION

Introduction – Physical Mechanism on Convection, Classification of Fluid Flows, Significance of nondimensional numbers, Velocity Boundary Layer, Thermal Boundary Layer, Laminar and Turbulent Flows. External Forced convection – Flow over a Flat plate, cylinder, sphere and Tube Banks. Internal Forced Convection - Flow through pipes – annular spaces and noncircular conducts. Natural convection from vertical, inclined and horizontal surfaces.

RADIATION

Introduction – Thermal Radiation – Black body Radiation – Radiation Intensity- Radioactive Properties – Atmospheric and Solar Radiation – View Factor- Simple Problems- Black surfaces and Grey Surfaces – Net Radiation – Heat Transfer in Two and Three Surface Enclosures- Radiation Shield – Problems – Radiation Exchange with Emitting and Absorbing Gases.

BOILING, CONDENSATION AND HEAT EXCHANGERS

Boiling – Types of Boiling- Problems. Condensation – Types of Condensation- Problems.Heat Exchangers- Types- Overall heat transfer co-efficient- Analysis of Heat Exchangers – LMTD method – Effectiveness - NTU Method – Selection of Heat Exchangers – Problems.

LIST OF EXPERIMENTS

- 1. Determination of Thermal conductivity (Insulating Powder)
- 2.Determination of Emissivity
- 3.Determination of Heat transfer co-efficient through Forced Convection
- 4. Determination of Heat transfer co-efficient through Natural Convection
- 5. Determination of Heat transfer co-efficient of Pin-Fin Apparatus.
- 6.Determination of Stefan Boltzmann's Constant
- 7.Determination of Thermal conductivity (Two Slabs Guarded Hot Plate Method)
- 8. Determination of Effectiveness of a Heat Exchanger By Parallel & Counter Flow
- 9. Determination of Thermal conductivity of the Composite wall.

Text Books

- 1. YUNUS A CENGEL "Heat Transfer"-Tata Mc Graw Hill–New Delhi.
- 2. KOTHANDARAMAN C.P "Fundamentals of Heat and Mass Transfer" New Age International.
- 3. SACHDEV R C "Fundamentals of Engineering Heat and Mass Transfer" New Age International

Reference Books

- 1. OZISIKM.N- "Heat Transfer"-Tata Mc Graw-Hill Book Co.
- 2. NAGP.K-"Heat Transfer"-Tata Mc Graw-Hill-New Delhi.
- 3. HOLMAN J.P"Heat and Mass Transfer" Tata Mc Graw-Hill.
- 4. INCROPRA and DEWITE, Heat Transfer–John Wiley.

Alternative NPTEL/SWAYAM Course

	NPTEL /SWAYAM Course			
S.No	Name	Instructor	Host Institution	Duration

1 Course	Heat Transfer Designers		Prof. Sur	nando DasGupta	IIT I	Kharagpur	12 weeks
S.No	Faculty Name	Designati	on	Department/Na of the College	me	Email id	
1	R.Anandan	Associate I	Professor	MECH/VMKVEC		anandan@vn	nkvec.edu.in
2	C.Thiagarajan	Associate I	Professor	MECH/AVIT		cthiagarajan@	@avit.ac.in

					MENT	Г		Catego	ry	L	Т		Р	Cre	edit
					Practio	oola)		СС		2	1		2	4	
Preamb	le	(11	eorya		Tacin	cais)		cc		4	1		4		
	rse prov	ides to	o learn	the b	asic co	ncents	of finite	eleme	ent ana	lvsis (F	EA) of	solids	structu	res flui	dsand
	cation in					neepts	01 111110	. 0101110	iii uiii	uy515 (1	2.1) 01	501145,	on acta	105, 11ai	asuna
Prerequ		U	Ľ												
NIL Î															
Course	Object	ives													
1	Unders	tand f	inite	eleme	ent ana	alysis f	undam	entals	and f	ormula	tions.				
2	Study th	he bas	sics of	felem	ent pr	opertie	es natur	ral, Tr	iangu	lar & r	ectangu	ılar.			
	Formul												ls.		
4	Formul	ate th	e trus	s, bea	m and	l frame	proble	ems.							
5	Formul	ation	of fin	ite ele	ement	metho	ds for t	the ana	alysis	of heat	transfe	er in sc	olids.		
Cours	e Outco	moor	On t	hoan	00000	ful con	mlatia	n of tl	20.001	1900 0	udonto	will b	o oblo	to	
Cours							-			,	, node a			10	
CO1.			g meth			leepts	or min	e elelli		liarysis	, noue a	inu no		Unders	tand
					ent eo	mation	s for di	ifferen	t mea	hanica	l eleme	nts		enders	una
CO2.	Natu	ral, T	riang	ular 8	z recta	ngular	eleme	nts		municu		1105.		Appl	v
									uctur	al syste	emsof s	olids			2
CO3.	and t	heir s	tructu	res.	-					-				Appl	y
									EA e	lement	s such a	is bars	,		
CO4.							ements							Appl	y
005											nductio	n,			
<u>CO5.</u>							e finite							Appl	y
	ing wit														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO2 CO3	S S	M M	M M	M M	-	-	-	-	•	-	-	L L	M M	-	-
CO3	S S	M	M	M	-	-	-	-	<u>.</u>	-	-	L L	M	<u>.</u>	-
C04	S	M	M	M	-	-	-	-	-	-	-	L	M	-	-
	g; M-Me														
SYLLA		,													
NTRO	DUCT	ION	TO F	INIT	E EL	EMEN	T AN	ALYS	IS						
ntroduc	ction, B	asic (Conce	pts o	f Finit	te Elen	nent A	nalysi	s. Int	roducti	on to E	Elastici	ty, Ste	ps in F	inite
	t Analy														
	n Metho							-							-
Conditio							1								5
ELEMI	ENT PI	ROPE	ERTI	ES											
Vatural	Coordi	nates,	Triar	ngular	Elem	ents, F	Rectang	gular E	leme	nts, La	grange	and Se	rendip	ity	
	ts. Solie			-			-						-	•	ents,
	cal Inte			· •								-			
	out Ex	-							-						
EM F	OR TV	VO- A	ND 1	[] THR]	EE-DI	IMEN	SIONA	L SO	LIDS	5					
Constan	t Strain	n Tria	ngle,	Line	ar Str	ain Tri	iangle,	Recta	ngula	r Elen	nents. I	Numer	ical Ev	aluatic	n of
											,				
	t Stiffne	ess, C	lompu	itatioi	n of S	tresses	, Geon	netric 1							

Axisymmetric Element, Finite Element Formulation of Axisymm Formulation for 3 Dimensional Elements, Worked out Examples

ANALYSIS OF FRAME STRUCTURES

Stiffness of Truss Members, Analysis of Truss, Stiffness of Beam Members, Finite Element Analysis of Continuous Beam, Plane Frame Analysis, Analysis of Grid and Space Frame.

STEADY STATE HEAT TRANSFER ANALYSIS

Basic equations of heat transfer, Axially loaded bar- Heat flow in a bar, Structure of FEA software package.Rate equation: conduction, convection, radiation, energy generated in solid

LIST OF EXPERIMENTS

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axis-symmetry vessels
- 7. Static analysis of two-dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam
- 12. Harmonic analysis of a cantilever beam

Text Books

2

J.Santhosh

- 1. Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2. Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

- 1. Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice HallofIndia, 2002.
- 2. Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
- Cook R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., "Concepts and Applications of Finite Element Analysis", 4thEdition, John Wiley & Sons, 2001.
- 4. H. C. Martin and G. F. Carey, Introduction to Finite Element Analysis Theory and Application New York, McGraw-Hill

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM	Course Name	Instructor	Host Institution	Duration
	Introduction to Finite El	ement			
1	Analysis		Prof.Nachiketa Tiwari,	IIT Kanpur	12 weeks
Course	Designers				
S.No	Faculty Name	Designation	Department/Na of the College	ime Email id	
1	Dr.S.Prakash	Assistant Profes	ssor MECH/ AVIT	prakash@a	vit.ac.in

Assistant Professor | MECH/VMKVEC

santhos@vmkvec.edu.in

PROGRAM ELECTIVE COURSES

RENEWABLE SOURCES	Category	L	Т	Р	Credit
OF ENERGY	EC-PS	3	0	0	3

Preamble

Renewable source of energy are developing fast throughout the world, and their combination is increasingly able to meet the needs for available, agreeable, and affordable energy, also for the people that lack access to energy today. In addition, local energy resources are not hit by the high energy price increases that are threatening to reverse the progress in providing energy to the poor people that lack appropriate energy today. This is why sustainable energy, the combination of renewable energy and energy efficiency, is increasingly become a part of the efforts to reduce poverty.

Prerequisite

NIL

Course Objectives

1	To understand the importance of solar energy.
2	To learn the importance of wind energy.
3	To know the importance of bio energy.
4	To know various renewable energy power plants.
5	To learn the necessity of latest and modern energy sources.

Course Outcomes: On the successful completion of the course, students will be able to

	To apply the solar radiation, measurements of solar radiation and solar	
CO1.	thermal collectors	Apply
	To apply wind data, energy estimation and wind energy conversion	
CO2.	systems	Apply
	To apply the Biomass directs Combustion, Biomass gasifier and Biogas	
CO3.	plant.	Apply
	To apply the Wave energy, Open and closed OTEC Cycles and Small	
CO4.	hydro plant turbines	Apply
	To apply the power generation, transport, Fuel cells and its	
CO5.	technologies	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

	0			1		1	0			1	1	1	1		
COs	PO1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3
CO1	М	М	М	-	-	-	-	-	-	-	-	-	М	-	-
CO2	S	М	М	-	-	-	-	-	-	-	-	-	М	-	-
CO3	S	М	М	-	-	-	-	-	-	-	-	-	М	-	-
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	-	-
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	-	-
S- Stro	S- Strong; M-Medium; L-Low														

SOLAR ENERGY

Solar Radiation – Measurements of solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – solar Cells – PV Systems – PV applications.

WIND ENERGY

Wind Data and Energy Estimation – wind Energy Conversion Systems – Wind Energy-Generators and its performance – Wind Energy Storage – Applications – Hybrid systems.

BIO – ENERGY

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct Combustion – Biomass gasifier – Biogas plant – Digesters – Ethanol production – BioDiesel production and economics.

OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY

Tidal energy – Wave energy –Open and closed OTEC Cycles – Small hydro plant turbines – Geothermal energy sources- environmental issues.

NEW ENERGY SOURCES

Hydrogen generation, storage, transport and utilization, Applications - power generation- transport – Fuel cells – technologies, types – economics and the power generation.

Text Books

I CAL DU	JOIRS											
1	G.D. Rai, "Non-Conven	tional Energy Sc	ources", Khanna Publish	ers, New Delhi, 1999.								
2	S.P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.											
	S.F. Sukilaulie, Solai E	fillergy, Tata Mi		ompany Ltu., New Denn, 1997.								
Refere	ference Books											
	Godfrey Boyle, "Renew	able Energy, Po	ower for a Sustainable F	uture", Oxford University Press,								
1	U.K., 1996	00		· · ·								
2	Twidall IW & Wain	"Donowable I	Enorgy Sources" EEN S	non Ltd UV 1096								
	Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986											
	G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa											
3	Publishing House, New	Delhi, 2002										
4	L.L. Freris, "Wind Ener	av Conversion s	ustems" Prentice Hell I	IK 1990								
	•	gy Conversions	ystems, rrentice mail, e	JK, 1990								
Cours	e Designers											
			Department/Name									
S.No	Faculty Name	Designation	of the College	Email id								
		Assistant										
1	Raja.s	Professor	MECH / VMKVEC	raja_slm3@yahoo.co.in								
		Assistant										
		Professor										
2	R.Mahesh	-II	MECH / AVIT	mahesh@avit.ac.in								
4	K.Ivianesh	-11		manesn@avit.ac.m								

			VAN		IC				gory	L		Т	Р	Cre	
D		EN	GINE	S				EC	PS	3		0	0		}
Pream On con combu	npletic											he op	eration,		
Prereq NIL	luisite														
Course	e Obje	ctives													
1	To stu	dy the	const	ructio	n and	work	ing of	f Spar	k Igni	tion Ei	ngines.				
2	To stu	dv abc	out the	com	pressi	on Ig	nition	Engi	nes an	ld Turb	ochar	er.			
					•	U				l techni		<u> </u>			
	To stu										1				
	5 To study the various recent trends adopted in the field of automobiles.														
		•					•						ill be ab	le to	
CO1.							-				,		Underst		
CO2.	Understand the combustion aspects of SI EnginesUnderstandUnderstand the combustion aspects of CI EnginesUnderstand														
CO3.		stingui engine		e caus	es, eff	ects a	nd co	ontrol	of pol	lutants	from a	ın	Underst	and	
CO4.						e fuels	s, eng	ine en	nissio	ns, Me	asuring	-	Apply		
	Illu	<u>l Cont</u> Istrate	the re	•		pmen	ts in 1	Intern	al Cor	nbusti	on engi		Apply		
CO5.	Inc	lude t	his			•							Underst	and	
Mappi															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	S	М	S	-	-	-	-	-	S	-	-	L	-	-
CO3	S	L	М		-	-	-	-	-	-	-	-	L	-	-
CO4	S	М	L		-	-	-	-	-	-	-	-	L	-	-
CO5	S	S	М	L	-	-	-	-	-	-	-	L	L	-	-
S- Stro	ong; M-	Mediu	m; L-L	JOW											

SPARK IGNITION ENGINES

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection – Stages of combustion – Normal and Abnormal combustion – Knock – Factors affecting knock – Combustion chambers.

COMPRESSION IGNITION ENGINES

Diesel Fuel Injection Systems – Stages of combustion – Knocking – Factors affecting knock – Direct and Indirect injection systems – Combustion chambers – Fuel Spray behaviour – Spray structure and spray penetration – Air motion – Introduction to Turbocharging.

POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission normsand Driving cycles.

ALTERNATIVE FUELS

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel – Properties, Suitability, Merits and Demerits – Engine Modifications.

RECENT TRENDS

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems – Hybrid Electric Vehicles – NOx Adsorbers – Onboard Diagnostics.

Text Books

	Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications,
1	2002.

2 Ganesan, "Internal Combustion Engines", II Edition, TMH, 2002.

Reference Books

- Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons12007.
- Duffy Smith, "Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987. 3.
 2 Eric Chowenitz, "Automobile Electronics", SAE Publications, 1995

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	Dr.S.Sangeetha	Associate Professor	MECH/ AVIT	sangeethas@avit.ac.in
2	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in

								Cate	egory	L	1	Т	Р	Cr	edit
		I	NDUS'	TRIAI	L TRI	BOLOG	GΥ	EC	-PS	3		0	0		3
industri	sent the ies.	engine	ering c	oncept	s of fri	ction, it	s effe	cts and	differ	ent lubri	cation t	heorie	s and type	s used ir	L
Prereq NIL	luisite														
Comme		4:													
	e Objec				C . 11 . 1										
1 7	To unde	erstand	the con	icept o	t tribo	logy.									
2 7	To exar	nine the	e conce	epts of	variou	s types o	of wea	ar.							
3	To unde	erstand	and ap	ply the	filml	ubricatio	on the	ory.							
4	To illus	trate the	e vario	us type	es of lu	bricants	s for d	ifferen	t appli	cations.					
5	To dem	onstrate	e the va	arious s	surface	engine	ering	concep	ots and	bearing	materia	ls.			
Course	Outoo	mage)n tha	61100 00	aful oo	malatia	n of	the eet	1111111111111	tudents	will be	abla t			
COUISE CO1.						, wear a				luuents	will be a		Understa	nd	
	Illust	rate ab	out the			s of wea				and its					
CO2.		uremer			1								Apply		
CO3. CO4.						ation the s of lubr							Apply Apply		
CO4.						cations :			materi	als			Apply		
								-					rippij		
Mappi	ng witł	1 Progr PO	ramme PO	Outco PO	mes a PO	nd Prog PO	gram PO	me Spo PO	ecific (PO	Dutcom PO1	es PO1	PO1	PSO	PSO	PSO
CO	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	М	-	L
CO2	S	М	L	-	-	L	-	-	-	-	-	-	М	-	L
CO3	S	М	L	-	-	L	-	-	-	-	-	-	М	-	L
CO4	S	S	М	М	_	L	_	_	_	_	_	_	М	_	L
CO5	S	S	S	M		L	-	-	-	_	-	_	M	-	L
S- Stro	ong; M-					~		1		1		1	111	1	
SYLLA															
	ACES A											<u> </u>		6	<u> </u>
topogra sliding	aphy- S Frictio -Source	urface n- Fric	profile tion du	ometer ie to p	, meas loughi	suremen ng, Fric	t of tion c	surface lue to	e topo adhesi	graphy-(on- Fric	Contact tion cha	betwo aracter	eering su een surfac istics of r olymers- N	xes, Sou netals ar	rces o nd non

WEAR

Wear and Types of Wear-Simple theory of sliding wear mechanism-Abrasive wear-Adhesive wear-Corrosive wear-Surface fatigue wear situations-Wear of ceramics-Wear of polymers-Wear measurements.

FILM LUBRICATION THEORY

Coefficient of viscosity, Fluid film in simple shear-Viscous flow between very close parallel plates:Tutorials-Lubricant supply, Lubricant flow rate-Cold jacking,Couette flow-Cavitations, Film rupture, oil whirl-Shear stress variation within the film-Lubrication theory by Osborne Reynolds: Tutorials-Pressure fields for full sommerfeld, Half sommerfeld-Reynolds boundary conditions.

LUBRICANTS AND LUBRICATION TYPES

Types of Lubricants-Properties of Lubricants-Testing methods-Hydrodynamic Lubrication-Elasto-hydrodynamic Lubrication-Hydrostatic lubrication

SURFACE ENGINEERING AND MATERIALS FOR BEARINGS

Classification of Surface modifications and Surface coatings-Surface modifications, Transformation hardening-Surface modifications, surface fusion-Thermo chemical Processes-Surface coatings -Materials for rolling element bearings- Materials for fluid film bearings-Materials for marginally lubricated and dry bearings.

Text Books

	1									
1	Tribology: priniciples and	d applications								
-	Theorogy: primerpres un									
2	Williams.J.A, "Engineer	ing Tribology", (Oxford University Press.							
	GwidonStachowiak, An	drew W Batchelo	r., "Engineering tribology",	Elsevier Butterworth –Heinemann,						
3	USA.									
Refere	ence Books									
	Industrial Tribology: Tri	bosystems, Fricti	on, Wear and Surface Engin	neering, Lubrication Hardcover,						
1	by Theo Mang, Kirsten	Bobzin, Thorsten	Bartels	<u> </u>						
2	meron.A, "Basic Lubrication Theory", Longman, U.K.									
3	ale M I (Editor) "Tribol	ogy Handbook"	Newnes Butter worth, Heine	emann ∐K						
	e Designers	Sgy Hundbook , I	te whes Butter worth, Heme							
Course			Department/Name of							
S.No	Faculty Name	Designation	the College	Email id						
1	M.Saravanan	Asst Prof	MECH./ AVIT	saravanan@avit.ac.in						
2	J.Satheesbabu	Asso Prof	MECH./ VMKVEC	satheesbabu@vmkvec.edu.in						

			EAN N		FAC	ΓURI	NG			Categor		Т	P	Cred	it
		SI	YSTEN	MS						EC-PS	3	0	0	3	
Pream t This cou		ovides	s basic	know	ledge i	in vari	ious to	ols and	1 tech	niques i	n lean n	nanuf	acturing	systems.	
Prerequ			5 04510	KHO W	leage	ui vui		ons une		inquest		lunui	ueturing	systems	
-	lisite														
NIL															
Course	Objec	tives													
1 '	To gai	n the k	knowle	dge a	nd und	erstan	ding t	he basi	c con	cepts of	lean ma	anufa	cturing j	process.	
2 '	To und	lerstan	nd the	variou	s quali	ty imp	oroven	nent m	ethod	s in lear	n manufa	acturi	ng.		
3 '	To lear	n the	basic o	concer	ots of J	IT and	d VSM	1.							
	To ana								ý						
												•			
											stematic				
Course CO1.						-								Under	
CO1.							•			•	an man improve			Analyz	
002.						<u> </u>				-	rtance of				
CO3.	value													Apply	
CO4.											plement			Analyz	ze
CO5.	cultu		require	ment	of emp	loyee	Involv	vement	t in the	e implei	nentatio	on of	lean	Apply	
Mappir			gramn	ne Out	tcome	s and	Progr	amme	Spec	ific Out	tcomes				
	PO	РО	РО	PO	РО	PO	PO	PO	PO	PO1	PO1	PO			PSO
COs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	Μ	L	S	L	S	L	-	-	-	-	-	-	М	-	-
CO2	М	L	S	L	S	L	-	-	-	-	-	-	М	-	-
CO3	М	L	S	L	S	L	_	_	S	_	_	_	S		
005	101	Ľ	5		5				5			-			-
CO4	M	L	S	L	S	L	-	-	S	-	-	-	S	-	-
CO5	М	L	S	L	S	L	-	L	S	-	-	-	S	-	-
S- Stro	ng; M-	Medi	um; L	-Low											
SYLLA	BUS														
INTRO	DUCI	TION													
													g-Origin		
producti image o										ystems a	and syst	ems t	hinking	– Basıc	
STABI		-						. (ust	- /•						
Standar	ds	in	the	; 1	lean	sys	stem-5	S	syste	m–Tota	1 P	roduc	ctive	Mainter	nance-
standaro work N			ork–El				standar			ork–Cha		0 Con	define		ardized
JUST I	_		auctio		an ei	ncien	cy–sta	nuarui	zeu w	ork and	Kaizen	- C 01	nmon lay	youis.	
			stem-l	Princir	oles an	d elen	nents (of JIT -	– Kar	ban rule	es – Exr	ande	d role of	conveya	ance
		~5		1							1				

– Produ	ction leveling – Pull	and Push systems -	- Process Mapping a	nd Value stream mapping
JIDOK	A (AUTOMATION	WITH A HUMA	N TOUCH)	
Jidoka	concept – Po	ka-Yoke (mistak	e proofing) syst	tems – Inspection systems and
zone con	ntrol – Types and use	e of Poka-Yoke sys	tems – Implementati	on of Jidoka.
WORK	ER INVOLVEME	NT AND SYSTEM	IATIC PLANNING	J
METH	ODOLOGY			
Involver	ment – Activiti	es to support	involvement –	Quality circle activity – Kaizen
training	- Suggestion	Programmes –	Hoshin Planni	ng System (systematic planning
methodo	ology) – Phases of H	oshin Planning – Le	ean culture	
Text Bo	ooks			
	Pascal Dennis, Lea	n Production Simpl	lified: A Plain-Lang	uage Guide to the
1	World's Most Powe	erful Production Sy	stem, (Second edition	on), Productivity Press, New York.
	Mike Rother and Jo	ohn Shook, Learnin	g to See: Value Stre	am Mapping to Add Value and
2	Eliminate MUDA,	Lean Enterprise In	stitute.	
Referen	ce Books			
	Jeffrey Liker, the 7	Coyota Way: Fourte	en Management Prin	nciples from the World's Greatest
1	Manufacturer, Mc	Graw Hill.		
	Michael L. George	e, Lean Six SIGMA	A: Combining Six S	IGMA Qualities with Lean Production
2	Speed, McGraw H	ill.		
Course	Designers			
			Department/	
			Name of the	
S.No	Faculty Name	Designation	College	Email id
		Associate		
1	J.Senthil	Professor	MECH/AVIT	jsenthil@avit.ac.in
		Associate		
2	S.Duraithilagar	Professor	MECH/VMKVEC	duraithilagar@vmkvec.edu.in

								~ .		-				~	
									egory	L		T	<u>Р</u>		edit
Pream	hlo	IND	DUSTI	RIAL	ENGI	NEERI	NG	EC	-PS	3		0	0		3
This co	ourse d										y techi	niques	, work	measur	ement,
product		annin	g and	contr	ol and	d indust	trial	Legis	latior	1.					
Prereq NIL	uisite														
Course	e Obje	ctives	5												
1 7	To unc	lerstai	nd the	impo	rtance	e of wo	rk st	udy n	netho	ds and	its imp	ortanc	e in var	ious fie	elds.
2 7	To dev	elop t	he ski	ills of	selec	tion of	a pla	ant an	d also	mater	ial han	dling	equipme	ent requ	iired.
3 7	To lear	rn PPO	C and	its fu	nction	ıs.									
4	To lear	rn the	skills	of pu	rchasi	ing mat	eria	ls and	their	manag	ement	•			
5	To lear	rn the	aware	eness	on vai	rious la	bou	r acts	and m	anage	ment p	rincip	les.		
C	0		0	41		6 1		•		e 4 1				•11 1	
Cours	e Out	come	es: O	n the	succ	esstul	con	iplet	ion of	t the c	ourse	, stud	ents w	ill be a	ible to
CO1.	Eva	luate	the w	ork r	netho	ods thro	ougl	n wor	k me	asurer	nent		Unders	tand	
CO2.															
CO3.	Identify the suitable forecasting techniques for given applicationsApply														
CO4.	Pret	oare t	he ch	arts. (diagra	ams an	nd pr	oduc	tion 1	olan.			Apply		
CO5.	Des		the th			dustria					eir				
							d Du			Snooif	ia Out		Apply		
Mappi	ng wn	<u>n pro</u>	gram		utcor	nes and	<u>u Fr</u>	ograi	mne	Specifi		comes			
		PO	РО	РО	РО	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cor	C														
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	М	М	L	S	-	_	-	-	-	-	-	М	-	S
	~				-										~
CO4	S	М	М	L	-	-	-	-	-	-	-	-	М	-	М
CO5	S	S	S	S	S	-	-	-	S	М	-	-	S	-	S
S- Stroi	ng; M-	Mediu	ım; L-	Low											

WORK MEASUREMENT AND WORK STUDY

Evolution and importance of industrial engineering–Production-Classification-Productivity-Factors influencing productivity-quality route to productivity- Introduction to Work measurement and its Techniques-Work study-Definition-Procedure and benefits of work study-Charting techniques-Time study-Stop watch time study-Motion study-Work sampling procedurecollection of data-Method study.

PLANT LAYOUT AND MATERIAL HANDLING

Plant location and site location-factors influencing the location-Plant layout-Types, needs, factors influencing the plant layout-Plant layout procedure-Material handling-scope and principles of material handling-Types of Material Handling equipment-Factors influencing material handling-Methods of material handling.

PRODUCTION PLANNING AND CONTROL

Introduction-Objectives and Functions of PPC-Forecasting-Sales Forecasting Techniques-Types of Forecasting-Routing-Objectives and procedure of routing-Scheduling-Master Production Schedule- purpose and preparation of schedules-Scheduling techniques like CPM and PERT-Dispatching-Dispatch Procedure-Centralized and Decentralized dispatching-Tool dispatching

MATERIAL MANAGEMENT

Procurement of materials-codification of materials-Inventory control-Objectives of inventory control-EBQ & EOQ values-Inventory models-ABC analysis-Material requirements planning(MRP)-Enterprise resource planning(ERP)-supply chain management(SCM)-Inspection and quality control-SQC-control charts-Sampling procedures-Benchmarking

INDUSTRIAL LEGISLATION AND MANAGEMENT CONCEPTS9 Hours

Importance and necessity of labour acts-principles of labour legislation-various acts-Industrial Ownership and various types-Functions of management-Manpower Planning-Recruitment and Selection-Break Even Analysis-Managerial applications of breakeven point-Decision making -Techniques of decision making.

Text Books:

1	Khan, M.I, "Industrial Engineering", New Age International, 2nd Edition, 2009.

2 2012		Kapoor N.D, "Handbook of Industrial Law", sultan Chand & sons, 14th revised edition
2 2015.	2	2013.

Reference Books:

1	Khanna, O.P, " I	ndustrial Engir	neering and Manage	ment", Dhanpat Rai and Sons, 2008.
			duction Planning an	d Control", Universal Publishing
2	Corporation, Bo	mbay, 1994.		
3 Course	Panneerselvam H	R, "Production	and Operations Mar	nagement", PHI, New Delhi, 2006.
Sl.No	Faculty Name	Designation	Department/Name of the College	Email id
1	B.Selva Babu	Assistant Professor	MECH/AVIT	selvababu@avit.ac.in
2	S.Duraithilagar	Associate Professor	MECH/VMKVEC	duraithilagar@vmkvec.edu.in

HYDRAULICS AND	Category	L	Т	Р	Credit
PNEUMATIC SYSTEMS	EC-PS	3	0	0	3

PREAMBLE

Today, Industries are increasingly demanding process automation in all sectors. Automation results into better quality, increased production and reduced costs. The controlling parameters like motion, Speed, Position and torque are paramount in raising productivity and quality and reducing energy and equipment costs in all industries. Electric drives share most of industrial machine control applications. The variable speed drives which controls speed of a.c/d.c motors are indispensable controlling elements in automation systems. Such drives contain various high performance motors, power electronic converters and digital control systems. With wide options which are open to engineers for selecting proper drive system, one can look forward for a highly efficient and reliable drive for every application in industry.

PREREQUISITE

NIL

COUR	SE OBJECTIVES								
1	To understand about basics of fluid power systems fundamentals.								
2	To acquire knowledge about components used in hydraulic and pneumatic systems	5.							
3	To familiarize about the various types of valves and actuators.								
4	To design hydraulic circuits for different applications.								
5	To design pneumatic circuits for different applications.								
Course	Outcomes On the successful completion of the course, students will be able to								
CO1. applica	Understand the different drive systems and identify which is suitable for specific ation.	Understand							
	Understand the working of different components in fluid power system.	Understand							
	Understand about the utilization of cylinders, accumulators, valves and various l components.	Understand							
CO4 .	Design a feasible hydraulic circuit for a given application.	Apply							
	CO5. Design a feasible pneumatic circuit for a given application. Apply								
MAPP	ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OU	JTCOMES							

														0.0	
COS	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
CO1	S	М	М	L	М	-	-	-	-	-	-	-	L	-	-
CO2	S	М	М	L	М	-	_	_	-	_	-	_	L	-	-
CO3	S	М	М	L	М	-	-	-	-	-	-	-	L	-	-
CO4	S	S	S	М	L	М	-	-	-	-	-	-	L	-	-
CO5	S	S	S	М	L	М	-	-	-	-	-	_	L	-	-
S- Stroi	ng; M-N	Aediur	n; L-I	JOW	•	•	•	•	•	•	•	•		•	•

FLUID POWER SYSTEMS AND FUNDAMENTALS

Introduction to fluid power, Advantages and Applications of fluid power system. Basic Laws in Fluid power system, Types of fluid power systems, Properties of fluids – General types of fluids – Fluid power symbols. Basic Laws in Fluid power system. Low cost automation.

HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps– Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler **VALVES AND ACTUATORS**

Construction of Control Components: Director control value -3/2 way value, 4/2 way value,

Shuttle valve, check valve – pressure control valve –pressure reducing valve, sequence valve-Flow control valve.. Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits -Press – Planer.

DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

Text Books:

- 1. Anthony Esposito "Fluid Power with Applications"- Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls"- TMH 2011.
- 3. Andrew Parr "Hydraulics and Pneumatics "- Jaico Publishing House

Reference Books:

- 1. Thomson, "Introduction to Fluid power"- Prentice Hall 2004.
- 2. Majumdar S.R. "Oil Hydraulics Principles and maintenance"- Tata McGraw-Hill.
- 3. Majumdar S.R. "Pneumatic systems Principles and maintenance"- Tata McGraw Hill.

	Name of the Faculty Designation		Department / Name of the College	Mail ID				
1	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajanshree@gmail.com				
2	Dr.D.Bubesh Kumar	Asso.Prof	MECH/ VMKVEC	bubeshkumar@avit.ac.in				

		FA	ILURI	F. ANA	LYSI	SOF		Cat	egory	L		Т	Р	Cr	edit
			ATERI					EC	C-PS	3		0	0		3
quipme	rse cov nts for				als and	l cause	es of fa	ailure,	topics	include	e types o	of failure	in com	ponents	and
rerequ NL	isite														
Course (Object	ives													
1 T	o stud	y the fu	ndamei	ntals of	failure	e analy	ysis.								
2 T	o stud	y introd	luction	to failu	re ana	lysis.									
3 T	o stud	y the ca	uses of	failure	in cor	npone	nts.								
4 T	o stud	y the ty	pes of	failure	in con	nponei	nts.								
5 T	o stud	y the m	ethods	and equ	iipmer	nts for	failur	e analy	/sis.						
^Y OURSO (Outeou	nes: O	n tho si	uccessf	ul con	nletic	on of t	he coi	1 1 50 5	tudonto	will be	e able to			
CO1.	Apply	the im		e of fai	ilure a					ompone				Apply	
CO2.	Identi	fy the f	ailure n	node id	entific	ation	metho	ds and	Corro	sion fai	lures.			Apply	
CO3.	Expla	in the c	auses c	of failur	e in co	ompon	ents.						τ	Jndersta	ind
CO4.	Sumn	narize tl	he type	s of fail	ures in	n comj	ponent	s.					τ	Jndersta	ind
CO5.	Inden	tify the	method	ds and e	equipm	nents f	or fail	ure an	alysis.					Apply	
Aapping	g with PO	Progra	amme (Outcon	ies an PO	d Prog PO	gramr PO	ne Sp PO	ecific PO	Outcon PO1	nes PO1		PSO	PSO	PSC
COs	1	PO2	PO3	PO4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	М	М	-	-	М	-	-	-	-	-	-	L	-	-
CO2	S	М	М	-	-	L	-	-	-	-	-	-	L	-	_
CO3	S	М	М	_	_	М	_	_	_	_	-	-	L	-	_
CO4	S	L	L			L							L		
				-	-		-	-	-	-	-	-		-	-
CO5	S	Μ	Μ	-	-	L	-	-	-	-	-	-	L	-	-

FUNDAMENTALS OF FAILURE ANALYSIS

Importance of failure analysis for automotive components, Steps in typical failure analysis: Collection of background data (review documentation and speak with appropriate individuals), Selection of failed and un failed samples for examination, Preliminary examination of the failed part, Non-destructive evaluation, Mechanical testing, Macroscopic examination and analysis, Microscopic examination and analysis, Determination of failure mode, Chemical analysis, Fracture mechanics considerations, Full scale testing under service conditions, Analysis of the evidence, Formulation of conclusions, Recommendations to prevent reoccurrence, Sample preparation methods for failure analysis, Selection of locations/samples For failure analysis.

INTRODUCTION TO FAILURE ANALYSIS

Failure mode identification methods, Failure mechanisms: Fatigue failures, fractography, effect of variables: part shape, type of loading, stress concentration, metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear. Corrosion failures, types of corrosion: uniform, pitting, selective leaching,

intergranular, crevice, etc. Elevated temperature failures, creep, thermal fatigue, micro structural instability, and oxidation.

CAUSES OF FAILURE IN COMPONENTS

Misuse or Abuse, Assembly errors, Manufacturing defects, Improper maintenance, Fastener failure, Design errors, Improper material, Improper heat treatments, Unforeseen operating conditions, Inadequate quality assurance, Inadequate environmental protection/control, Casting discontinuities. Data compilation and identification of root cause.

TYPES OF FAILURES IN COMPONENTS

Fatigue failures, Corrosion failures, Stress corrosion cracking, Ductile and brittle fractures, Hydrogen embrittlement, Liquid metal embrittlement, Creep and stress rupture.

METHODS AND EQUIPMENTS FOR FAILURE ANALYSIS

Selection of suitable testing methods for failure analysis, Selection of metallurgical equipments for Failure Analysis, SEM-EDAX.

Text Books	
------------	--

1	"Understanding How Components Fail" by Donald J. Wulpi; ASM International Publication.
2	"Analysis of Metallurgical Failures: by Vito J. Colangelo; Francis A. Heiser Wiley Publication
3	ASM Handbook Vol.11 - Failure Analysis and Prevention, ASM International Publication, 1995.

Reference Books

1	"Metallurgy of Failure Analysis" by A K. Das; by McGraw-Hill Professional Publication.
---	--

2 Metallurgical Failure Analysis by Charlie R. Brooks; Ashok Choudury; McGraw-Hill Publication.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.Thiagarajan	Assistant Professor (G-II)	MECH/AVIT	cthiagarajan@avit.ac.in
2	Dr.S.Venkatesan	Professor	MECH/VMKVEC	venkatesan@vmkvec.edu.in

		FUN	JDAN	1EN	TALS	S OF PI	PING	1	С	ategor	y I	Ĺ	TH	c c	redit	
			GINE					-	E	EC-PS	5 3	3	0 (3	
The s	mble: students co seering, pi	-	U				-	0		ledge	e on fu	nda	menta	uls of _l	pipin	g
Prer	equisite															
NIL																
Cour	se Objec	tives	5													
1	To understand the importance of piping engineering.															
2	To enable student to learn the application of flanges and valves.															
3	To understand about process mechanical equipments.															
4	To gain knowledge about various pipe supports.															
5																
Cour	se Outco	mes	: On t	he s	uccess	sful cor	npleti	on of	the cou	rse, s	tuden	ts w	vill be	able	to	
CO	l	Dis	scuss t	he b	asic co	oncepts	of pip	oing er	igineeri	ng.			Unde	erstanc	1	
CO2	2.	Dis	scuss t	he aj	pplica	tion of	flange	s and	valves.				Unde	erstanc	1	
					ncept o	of vario	us pro	cess n	nechani	cal						
CO	3.	equ	ipmer	nts.									Appl	у		
CO4	1.	То	gain k	know	ledge	about v	various	s pipe s	supports	5.			Appl	у		
CO	5.	An	alyze	the d	lifferei	nt types	of stre	ess.					Anal	yze		
Maj	pping wit	<u>h Pr</u>	ograr	nme	Outc	omes a	nd Pr	ogran	nme Sp	ecific	Outc	ome	es			
		Р		Р								P O			P S	
	COs	0	РО 2	Ο	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	1 1	P(12		~	PSO 3
	CO1	M	L	-	-	-	-	-	-	-	-	-	-	-	-	-
	CO2	S	М	L	-	-	-	-	-	-	-	-	-	L	-	-
	CO3	S	М	L	-	-	-	-	-	-	-	-	-	Μ	-	-
	CO4	S	S	М	L	-	-	-	-	-	М	-	-	М	-	-
	CO5	S	S	S	М	S	-	-	-	-	S	-	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction to Piping Responsibilities of Piping Engineer and Designer - Scope of Piping Input and Outputs - General: Process Diagrams (PFD, UFD, P&ID, Line List etc) -Piping Fundamentals Definition, Application Codes and Standards.

FLANGES AND VALVES

Introduction to Flanges and Valves – Application and advantages of Flanges - Pipe Fittings - Pipe Flanges – Valves -Piping Special Items

PROCESS MECHANICAL EQUIPMENTS

Process Mechanical Equipments – Static equipments & Rotary equipments Layouts - Preparation of Plot Plan - Preparation of Equipment Layouts - Preparation of Piping General Arrangement Drawings - Preparation of Cross Sectional Drawings - Piping Isometric Drawings & Material Take off

PIPE SUPPORTS

Pipe Supports: Support Types - Support Selection, Support Location, Support Span Calculation - Typical Unit Conversion - Materials: Preparation of Piping Material Specification - Valve Material Specification - Familiarity with ASME B31.3 Pipe Wall thickness Calculations.

STRESS ANALYSIS

Preparation of Special Items Datasheets: Pressure Design of Miter Bends – Single & Multiple Miters - Pressure Design of Blanks - Branch reinforcement calculations - Overview of Technical Queries and Technical Bid Evaluations

Stress Analysis: Types of stresses, Significance of forces and moments - Introduction to Stress Analysis - Expansion Loop types, Bellows Types

Text Books

1

G.K.Sahu, Fundamentals of piping design, New Age International Publishers

Reference Books

1	Peter Smith, R.W.Zappe, Valve Selection Hand Book, Elsevier Science
2	Peter Smith, The fundamentals of piping design, Elsevier Science

S.No	Faculty Name	Designation	Department/C ollege	Email id
1	M.Saravanan	Assistant Professor	MECH/AVIT	saravanan@avit.ac.in
2	J.Rabi	Assoc.Professor	MECH/VMKVEC	jrabi@vmkvec.edu.in

			NCU						gory	L		Т	Р	Cre	edit
Preambl		EN	GINE	ERI	NG			EC	-PS	3		0	0		3
This cou per custo importan economic Prerequi NIL Course (omer ce of cs of isite	requi f qual produ	iremen ity du	nts, d tring	ifferei	nt ma	nufac	turing	g metł	nods v	vith c	ompu	ter bas		U
										cle des	ign of	the pr	oducts,	structur	e and
Le th	 organization and implementation process of the CE. Learn about the design of the product as per the customer requirements and also understand the co-operation/ coordination required between the different departments like marketing, design and the latest softwares available so far. 														
S	tudy	the ro	ole of	desi	gn fo	r mai	nufact	turing	in co				ing, dif	ferent	DFM
										ed appr					1.
					ance	of qu	ality	during	g the	produc	et desi	gn an	d meth	ods use	d to
 4 evaluate the quality. 5 Learn about the design of the product for reliability, maintainability and economics. 															
Course (Oute	mes.	On f	he sua	rressf	ul cor	nnleti	ion of	[°] the c	ourse	stude	nts wi	ll he ah	le to	
CO1.	engin organ Unde	neerin nizatio erstan	g, life on and d the	e-cycl <u>l impl</u> desi	e desi ementi ign o	ign of tation f the	the <u>proce</u> proc	produ ess of duct	icts, s the Cl as pe	er the	e and		Un	derstan	d
CO2.	requiation required to the req	ired b the lat	etwee est so	n the ftware	differ es ava	ent de ilable	epartn so fai	nents r.	like n	$\frac{1000}{1000}$ contraction $\frac{1000}{10000}$ contraction $\frac{1000}{1000}$ contraction	ng, des	ign	Un	derstan	d
								creativ	ve des	ign me	thods a	and			
CO3.		puter l		••				1		1 1	• .		Un	derstan	d
CO4.		w the lods u						ing th	e pro	duct d	esign a	and	Un	derstan	d
CO5.	Unde	erstan Itainal	d th	e de	esign	of	-	proc	luct	for	reliabil	ity,		derstan	
Mappir							nd P	rogra	mme	Specif	ic Out	come	5		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	L	L		-	-	-	-	-	-	L	-	-
CO2	S	М	S	S	S	М	-	-	-	-	-	-	S	-	-
CO3	S	М	S	L	М	М	-	-	-	-	-	-	М	-	-
CO4	S	М	S	S	М	М	-	-	-	-	-	-	М	-	-
CO5	S	L	S	М	L		-	-	-	-	-	-	М	-	-
S- Strong	g; M-1	Mediur	n; L-L	ow											

INTRODUCTION:

Sequential engineering process, Concurrent engineering definition and requirement, meaning of concurrent objectives of CE, benefits of CE, Life cycle design of products, life cycle costs. SUPPORT FOR CE: Classes of support for CE activity, CE organizational, structure CE, team composition and duties, Computer based Support, CE Implementation Process.

DESIGN PRODUCT FOR CUSTOMER

Industrial Design, Quality Function Deployment, house of quality, Translation process of quality function deployment (QFD). Modeling of Concurrent engineering design- Compatibility approach, Compatibility index, implementation of the Compatibility model, integrating the compatibility Concerns.

DESIGN FOR MANUFACTURE (DFM)

Introduction, role of DFM in CE, DFM methods, e.g. value engineering, DFM guidelines, design for assembly, creative design methods, product family themes, design axioms, Taguchi design methods, Computer based approach to DFM. Evaluation of manufacturability and assembliability.

QUALITY BY DESIGN

Quality engineering & methodology for robust product design, parameter and Tolerance design, Quality loss function and signal to noise ratio for designing the quality, experimental approach.

DESIGN FOR X-ABILITY

Design for reliability, life cycle serviceability design, design for maintainability, design for economics, decomposition in concurrent design, concurrent design case studies.

Text Books

1	Concurrent Engineering- Kusiak - John Wiley & Sons
-	Concurrent Engineering Ruslak John Whey & Sons

2 Concurrent Engineering- Menon - Chapman & Hall

Reference Books

- Integrated Product Development/Anderson MM and Hein, L.Berlin, SpringerVerlog,1987.
- Design for Concurrent Engineering/ Cleetus, J. Concurrent Engg. Research 2 Centre, Morgantown, WV, 1992.

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
		Assistant		
1	B.Selva Babu	Professor	MECH/AVIT	selvababu@avit.ac.in
		Assistant		
2	S.Raja	Professor	MECH/VMKVEC	raja@vmkvec.edu.in

ENCINEERING PRODUCT Category L T P Cred	lit
ENGINEERING PRODUCTCategoryLIPCredDESIGNEC-PS3003	
Preamble	
Engineering Product Design is a challenging, rewarding activity that requires multifunctional	
cooperation and inter-disciplinary skills.	
Prerequisite NIL	
Course Objectives	
1 To understand the models in developing new engineering products.	
2 To learn how to identify the customer needs and integrate the end-consumer into process.	
3 To learn and apply the concepts and tools necessary for concept generation and evaluation.	•
4 To apply embodiment design concept in the process of new product development.	
5 To Understand the concept of manufacturing process and design the product accordingly.	
Course Outcomes: On the successful completion of the course, students will be able to	
Understand the conceptual development techniques to find solution	
CO1. for a critical design issue. Understand Apply embodiment principles to translate the conceptual ideas to Understand	
CO2.engineering design.Understand	
Apply environmental, ethical and social issues during innovativeApplyCO3.design process.Apply	
CO3. design process. Apply Design and develop innovative engineering products for industrial Image: Constraint of the second secon	
CO4. needs using robust design philosophy. Apply	
Apply the concept of Design for Manufacture and to understand the	
CO5. different modes of Failure of the product. Analyze	
Mapping with Programme Outcomes and Programme Specific Outcomes	
COs P01 P02 P03 4 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02	PSO3
CO1 M L L L L M -	_
CO2 M L L L L M -	-
CO3 S S S S S S -	-
CO4 S M M M M M -	-
CO5 S S S S S M -	-
S- Strong; M-Medium; L-Low	

INTRODUCTION

Innovations in Design, Engineering Design Process, Prescriptive and integrative models of design, Design Review and societal considerations.

IDENTIFICATION OF CUSTOMER NEED

Evaluating Customer requirements and survey on customer needs, Conversion of customer needsinto technical Specifications, Information sources.

CONCEPT GENERATION AND EVALUATION

Creativity and Problem solving, Brainstorming, Theory of Inventive Problem solving (TRIZ), Functional Decomposition of the problem for innovative concept development, Morphological design, Introduction to Axiomatic Design, Concept evaluation and decision making.

EMBODIMENT DESIGN

Introduction, Product Architecture, Configuration and Parametric design Concepts, Industrial Design.

DESIGN FOR MANUFACTURING

Design for Manufacturing, Design for Assembly, Design for Environment, Design for Reliability and Robustness, Introduction to FMEA.

Text Books

1 Nigel Cross, Engineering Design Methods, John Wiley, 2009.

Reference Books

- 1 George E. Dieter, Engineering Design, McGraw-Hill, 2009.
- 2 Genrich Altshuller, The Innovation Algorithm, Technical Innovation Centre, 20LL.

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
1	R.Praveen	Asst. Prof – II	MECH/AVIT	praveen@avit.ac.in
		Associate		
2	J.Sathees Babu	Professor	MECH/ VMKVEC	satheesbabu@vmkvec.edu.in

		DE	SICN	OFI	VD E	DIME	NITC		itegor		L	T	P		edit ,
		DE	SIGN	OF I	LAPE	RIME	N12	E	C-PS		3	0	0		3
Preamb		nat de	alc u	vith to	wo of	f the m	nost	imno	rtant	annro	aches	to colle	ecting 1	esearch	n data
experim															
echniqu															
Prerequ NIL	iisite														
Course	Obiect	tives													
	Lnow a		Design	of E	xperir	nent									
					Î			6 F							
						or Desig									
				•		confoun	<u> </u>			VA.					
						se surfa	ce de	esign.							
5 T	o apply	y Tagı	ichi n	nethoo	1.										
Course	Outco	mes:	On th	e suce	cessfu	ll comp	oletio	on of	the co	ourse, s	studen	ts will l	be able	to	
CO1.	Unde	rstand	l the r	rincir	oles ar	nd theor	rv of	desig	oning (experii	nents		U	ndersta	nd
		istanc		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	105 ui		19 01	40012	<u>, iiiig</u>	experii	inents.			ildersta.	liu
CO2.	Appl	y basi	c prin	ciples	in the	e design	n of s	simpl	e expe	erimen	ts.			Apply	
CO3.	Unde	rstand	land	use th	e tern	ninology	vof	exner	iment	al desi	ons		U	ndersta	nd
	Selec	t and	desig			opriate						for a		liuu	
CO4.		rch pr			1			1 1	1		1.			Analyze	9
CO5.		y the		pt top	oroduc	et design	n an	d dev	velopn	nent fo	or obta	in		Apply	
Mappin				ne Ou	tcom	es and	Prog	gram	me Sr	oecific	Outco	omes			
COs	PO1	PO2	PO3	PO4	PO5	PO6 I	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
					100								1501		1505
CO1	S	S	М	S	-	-	-	-	-	-	-	-	-	-	-
CO2	S	М	L	S	-	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	М	S	-	-	-	-	-	-	-	М	-	-
CO4	М	S	М	М	м	L	_	-	-	-	-	-	м	-	_
04	IVI	3	IVI	IVI	М		-	-	-	-	-	-	М	-	-
CO5	М	М	L	М	L	Μ	_	_	-	-	-	_	L	-	-

S- Strong; M-Medium; L-Low

BASICS OF DESIGN OF EXPERIMENTS

Introduction in Design of experiments (DOE) - Fundamental and practical issue in industrial experimentation - Statistical thinking and its role within DOE - Basic principles of DOE and Degrees of freedom - Selection of quality characteristics for industrial experiments - Understanding key interaction in processes - Alternative method for calculating two-order interaction effect - Synergistic interaction versus Antagonistic interaction

METHODOLOGY FOR DESIGN OF EXPERIMENTS

DOE methodology - Barriers in the successful application of DOE - Practical methodology of DOE and Analytical tools for DOE - Confidence interval for the mean response - Introduction of Screening design - Geometric and non-geometric P-B design - Introduction of full factorial design - 2^2 , 2^3 , 2^4 full factorial design

CONFOUNDING

Introduction and uses of confounding - 2^3 factorial experiment with complete confounding - 2^3 factorial experiment with partial confounding - Confounding in the 2^n series and examples - Confounding of 3^2 factorial - Confounding of 3^3 factorial and examples - Mixed series and examples - Introduction on ANOVA Analysis

RESPONSE SURFACE DESIGN

Background of response surface design - Creation of response surface design - Central composite design - Box Behnken design - Contour profile of response surface plot - Design table - Analyze the data - Case studies on response surface design - Experiment with random factor

TAGUCHI METHOD

Taguchi design approach - Orthogonal array, S/N ratio - Smaller is better, Nominal is better and larger is better with simple case studies - Analyze the data, factor effect diagram - Levels of parameters - Confirmation test - Augmented design with simple case studies.

Text Books

- **1** Jijuantony, "Design of Experiments for Engineers and Scientists", Elsevier.
- 2 Douglas C Montgomery, "Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference Books

- 1. M N Das, N C Giri, "Design and Analysis of Experiments", New Age International (P)
 Limited, Publishers, 1997.
- Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New2 Age International Publishers, 2010.
- 3 William G. Cochran, Gertrude M. Cox, "Experimental Design", John Wiley and sons, Inc.
- 4 Cox C.R, "The theory of Design of Experiments", Chapman and Hall, CRC Press.

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
1		Assistant Professor	MECH/AVIT	vijayakumar@avit.ac.in
2	J.Sathees Babu	Associate Professor	MECH/ VMKVEC	satheesbabu@vmkvec.edu.in

						Ca	ategor	y	L		Т		Р	Cr	edit
			UID I STEN		EK		EC-PS	S	3		0		0		3
Preamb Fluid Po using pr pneumat	ower is ressuriz tics wh	zed flu ien the	uids. F e fluid	luid p is a ga	ower i as. Hyd	is calle draulie	ed hyd c syster	raulic ns use	s whe e liqui	n the ds suc	fluid i h as p	s a lic etroleu	quid a ım oil	nd is c s,	alled
synthetio														ery abu	ndant
Prerequ NIL	isite														
Course	Objec	tives													
1 7	Γo stuc	ly abo	ut the	princij	ples of	main	hydra	ulic a	nd pn	eumat	ic con	npone	nts.		
		0		<i>.</i>	-		les of r		pneun	natic c	ompo	nents.			
3 7	Fo lear	n the 1	metho	dolog	y of ci	rcuit o	diagrar	n.							
4	Fo desi	ign an	d stud	y abou	t the p	rincip	les of e	electro	o-pneu	matic	and h	ydraul	ic circ	uits.	
5 7	Γo stuc	ly and	analy	ze vari	ious ci	rcuits	applica	ation ,	mainte	enance	and s	afety	aspect	ts.	
Course	5 To study and analyze various circuits application ,maintenance and safety aspects. Course Outcomes: On the successful completion of the course, students will be able to Explain the principles of main hydraulic and pneumatic components.														
CO1.	-		-	-		•	haracte		•					Unders	tand
							pneum							Unders	lanu
CO2.	-		-	-			ics desi		-			un		Арр	ly
CO3.	unde	rstand	the	princ	iples	of ci	ircuit ircuit iponent	opera	tion,	in re	•••			Арр	ly
CO4.	Expla	ain the	e desig	n of e	lectro-	pneun	natic an	nd hyd	lraulic	circui	ts.			Арр	ly
CO5.					•	•	aulic a ety asp	-		ic circ	uits ap	plied	to	Арр	ly
Mappin	g with	n Prog	ramm	e Out	comes	and	Progra	mme	Speci		itcom	es			-
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	М	М	S	S	-	-	-	-	-	-	-	М	-	-
CO2	М	S	М	М	S	-	-	-	-	-	-	-	L	-	-
CO3	S	М	М	М	L	-	-	-	-	-	-	-	М	-	-
CO4	М	L	S	L	S	-	-	-	-	-	-	-	М	_	-
CO5	S	M Jediun	L n; L-L	M	М	-	-	-	-	-	-	-	L	-	-

HYDRAULIC COMPONENTS

Introduction to fluid power system-Pascal's Law-Hydraulic fluids-Hydraulic pumps-Gear, Vane and Piston pumps-Pump Performance-Characteristics and Selection-actuators-valves-pressure control-flow control and direction control valves-Hydraulic accessories-Hydraulic Accumulator.

PNEUMATIC COMPONENTS

Introduction to Pneumatics-Compressors-types-Air treatment-FRL unit-Air dryer-Control valves-Logic valves-Time delay valve and quick exhaust valve-Pneumatic Sensors-types-characteristics and applications.

FLUID POWER CIRCUITS

Circuit Design Methodology-Sequencing circuits-Overlapping signals-Cascade method-KV Map method-Industrial Hydraulic circuits-Double pump circuits-Speed control Circuits-Regenerative circuits-Safety circuits-Synchronizing circuits-Accumulator circuits.

ELECTRO - PNUEMATICS AND HYDRAULICS

Relay, Switches-Solenoid-Solenoid operated valves-Timer-Counter-Servo and proportional control-Microcontroller and PLC based control-Design of electro-pneumatic and hydraulic circuits.

APPLICATION, MAINTENANCE AND TROUBLE SHOOTING

Development of hydraulic / pneumatic circuits applied to machine tools-Presses-Material handling systems-Automotive systems-Packaging industries-Manufacturing automation- Maintenance and trouble shooting of Fluid Power circuits-Safety aspects involved.

Text Books

I CAL D	UVKS
1	Anthony "Esposito, Fluid Power with applications", Prentice Hall international-1997.
2	Majumdar.S.R, "Oil Hydraulics", Tata McGraw Hill, 2002.
3	Majumdar S.R, "Pneumatic systems-principles and maintenance", Tata McGraw Hill 1995.

Reference Books

2

Dr.S.Natarajan

Neieren	ICE DOOKS			
	John Pippenger, Tyler "	Hicks, Industrial H	Iydraulics", McGrav	w Hill International
1	Edition, 1980.			
2	Andrew Parr, "Hydraulic	es and nneumatics	" Jaico Publishing	House 2003
	7 marcw 1 arr, 11yaradik	es and pheumaties	, Jaco I donshing	10030, 2003.
3	FESTO, "Fundamentals	of Pneumatics", V	ol I, II, III.	
Course	Designers			
S.No	Faculty Name	Designation	Department	Email id
		Assistant		
1				1 11 6 4
1	S.Ashok Kumar	Professor	MECH/ AVIT	ashokkumar@avit.ac.in
			MECH/	

VMKVEC

natarajans@vmkvec.edu.in

Asso.Prof

									С	ategory	y	I	<u>,</u>	Т	Р	С
			ME	EMS A	ND NH	EMS			Ε	C-PS		3		0	0	3
PREA	MBI	LE														
The co	ourse	reviev	vs the	variou	ıs appl	icatio	ns of	MEM	IS AN	ND NE	EMS ar	nd its	app	licat	ions in	i I
sensor	s and	actua	tors.													
PREF	REQU	JISIT	Έ													
	DCE		CTI	VES												
1 T	'o stuc	ly the	fund	amenta	lls of N	AEMS	and	NEM	S.							
2 T	'o gaiı	n knov	wledg	e on fa	abricati	ion of	MEN	1S.								
3 T	'o stuc	ly on	Micro	Senso	ors.											
4 T	'o stuc	ly on	Micro	o actua	tors.											
5 T	'o stuc	ly on	Nano	system	ns and	Quan	tum N	Mecha	anics.							
Cours	se Ou	tcom	es, O	n the s	success	sful co	omple	etion	of the	e cour	se, stu	dents	wil	l be	able t	0
CO1.	The s	tuden	t will	unders	stand tl	he var	ious a	applic	ations	s of Nl	EMS a	nd M	EM	sι	Inderst	tand
CO2.	The	studer	nt wil	l under	stand	the Va	arious	fabri	catio	n of M	EMS			ι	Inderst	tand
CO3.	The	studer	nt wil	l learn	the wo	orking	of va	rious	micr	o senso	ors			A	nalyze	e
				l know		Ŭ						ators			pply	
				l under			·						s		Jnderst	tand
				ne Out			ogran	nme S		c Outco	omes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	РО 8	PO 9	PO1 0	PO1 1	PO1 2	P 1	SO	PSO 2	PSO 3
CO1	S	_	-	_	_	_	-	_	_	_	-	-		М	-	_
CO2	S	_	_	_	_	_	_	_	_	_	_	_		М	-	-
CO3	S	S	S	L	L						_			S	_	
CO3	S		s S			-	-	-	-	-	-	-			-	-
04	<u>ь</u>	S	۵	L	L	-	-	-	-	-	-	-		M	-	
CO5	S	M	M	M	S	-	-	-	-	-	-	-]	М	-	-
S- Stro SYLL	0		lum	L- Low	V											
OVER	VIEV	V ANI		RODU												
		-		ng and S											-	
MEMS	S and N	NEMS	, Ove	rview o	f Nano	and M	licro e	electro	mech	anical S	System	s, App	olica	tions	of	

Micro and Nano electro mechanical systems, Micro electromechanical systems, devices and

structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals

MEMS FABRICATION TECHNOLOGIES

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface

Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

MICRO SENSORS

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these

Micro sensors. Case study: Piezo-resistive pressure sensor

MICRO ACTUATORS

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators

NANOSYSTEMS AND QUANTUM MECHANICS

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Shrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

Text Books:

1. Marc Madou, "Fundamentals of Micro fabrication", CRC press.

2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers.

Reference:

1. Tai Ran Hsu , "MEMS and Microsystems Design and Manufacture" ,Tata McGraw Hill.

2. Chang Liu, "Foundations of MEMS", Pearson education India limited.

Cours	e Designers			
			Department /	
S.	Name of the		Nameof the	
No.	Faculty	Designation	College	Mail ID
		Associate		
1	Dr.D.Bubesh Kumar	Professor	MECH/ AVIT	bubeshkumar@avit.ac.in
			MECH/	
2	Dr.S.Natarajan			natarajans@vmkvec.edu.in

		PETRO			RODU	CTIC	N			Catego	-	L		P	Cre	
	ble: ident	ENGIN s complons and	eting	this co							on oi				3 ineerin	
Prereg NIL			Tunda	unenta	<u>iis equ</u>	ations			.10115	used III	um		meern	<u>1</u> <u>8</u> .		
	e Ob	jectives														
1		understa		well	drilling	g engi	neerin	g and o	opera	ations.						
2		get famil									es and	action	ns to b	e take	n	
3		earn fur				• •								<u>e turre</u>		
												iginee				
4 5		gain kno enable st														
		tcomes:									tuden	ts will	be ab	le to		
CO1.	. 04						•			neering	luuen	US WIII		Jnders	stand	
									U	d calcul	ations	2				
CO2.		used in		-				quation	15 an		anone	,	A	Apply		
CO3.		To gai	n kno	wledo	e aboi	ıt Casi	no an	d ceme	entati	ion			A	Apply		
CO4.		Apply	the c	oncept	t of us	ing of	drillin	g fluic	ls				A	Apply		
CO6		Analy											A	Analyz	ze	
Mappi	ing w	vith Pro	gram	me O	utcom	es an	d Prog	gramn	ne Sj P	pecific (Dutco	mes				
			F	D C	DO	DO	DO	D	0		DO	no		T	D C	Ta
COs		PO1	Р О2	PO 3	РО 4	РО 5	PO 6	РО 7	8	PO9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO	1	М	L	_	-	-	_	-	-	-	-	-	_	_	_	_
					-			-		-			_			
CO	2	S	М	L	-	-	-	-	-	-	-	-	-	M	-	M
CO	3	S	S	М	L	-	-	-	-	-	М	-	-	Μ	-	М
CO	4	S	S	S	М	-	-	-	-	-	М	-	-	L	-	L
CO		S	S	S	М	S	-	-	-	-	S	-	-	L	-	L
S- Stro	ong;	M-Med	ium;	L-Lov	W											

DRILLING RIG

Rotary / top drive drilling for oil and natural gas, introduction to hardware system, power generation system, Hoisting, Rotary and drilling fluid circulation system, Rig selection, onshore offshore rigs, onshore and offshore drilling operations, Horse power calculations for draw-works and rotary advantages and disadvantages of top drive system.

DRILLING OPERATIONS AND DIFFICULTIES

Down hole drilling problems and solutions, factors affecting rate of penetration, drill off test, bit section, IADC classification of bit, dull bit gradation, circulation system, mud pumps, numerical related to mud pumps of circulation system, problems concerned with drilling fluid and drill pipe stuck up, geometry of a stuck pipe. Hole problems (lost circulation, kick etc) well control equipment BOP.

DRILLING TECHNIQUES AND FISHING

Introduction to directional, horizontal multilateral drilling techniques. Types of well, coring operations, Fishing tools and operations. Terminology used in directional wells and basic mathematics used in directional wells (DMS to Dec. Deg, co-ordinate system).

CASING AND CEMENTATION

Casing and Cementation, Functions, types, API grades properties of casing, Threads and couplings, Functions, classification of cement, Strength retrogenion, Cement additives, Methods of cementation, Equipment accessories, Field problems pertaining to cementation job, Cement slurry calculations.

DRILLING FLUIDS

Drilling fluid, Functions, Types, compositions, Properties of mud, Field test, Rheology, Additives and contamination, Selection of drilling fluids and mud, Conditioning equipments, Mud calculations, Hydrostatic pressure, Volume, Weight related calculations during drilling.

Text Books

1 Gatlin C.; Petroleum Engineering, Drilling and Well Completions, Prentice Hall.

Reference Books

- 1 Rabia H.; Oil Well Drilling Engineering, Graham Trotman Ltd., London.
- 2 Azar, J. J., G. Robello Samuel; Drilling Engineering, Penn Well.

		Designatio	Department /	
S.No	Faculty Name	n	College	Email id
		Assistant	Mech /	
1	V.K.Krishnan	Professor	VMKVEC	vkkrishnanme@yahoo.com
		Assistant		
2	P.Kumaran	professor	MECH/AVIT	kumaranp@avit.ac.in

INDUSTRY OFFERED/ INDUSTRY SUPPORTED COURSES

	Category	L	Т	Р	Credit
INTRODUCTION TO AIRCRAFT INDUSTRY AND AIRCRAFT					
SYSTEMS	EC-IE	3	0	0	3

Preamble

To provide knowledge about stakeholders in aviation industries and employment skills required by companies.

Prerequisite

NIL

Course Objectives

1	To provide an understanding of the basics of aircrafts.
2	To provide a deep knowledge of stakeholders in aviation industries.
3	To develop analytical skills for taking decisions.
4	To develop criticizing skills and compare for better and best.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of an aircraft.	Remember
CO2.	Explain working of components of aircraft and its systems.	Understand
CO3.	Employ analytical skills for judgement of best.	Apply
CO4.	Categorise knowledge gained and will be able to apply suitably.	Analyze
CO5.	Evaluate and balanced approach towards employment in industries.	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2		1													
	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3															
	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4															
	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5															
	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
a a.	_														

S- Strong; M-Medium; L-Low

SYLLABUS		
UNIT – I	AIRCRAFT INDUSTRY OVERVIEW	8
Evolution and	History of Flight, Types of Aerospace Industry, Key Players in Aerospace Industry, Aer	ospace
Manufacturing,	Industry Supply Chain, Prime contractors, Tier 1 Suppliers, Key challenges in Industry Supply	Chain,

Manufacturing, Industry Supply Chain, Prime contractors, Tier 1 Suppliers, Key challenges in Industry Supply Chain, OEM Supply Chain Strategies, Mergers and Acquisitions, Aerospace Industry Trends, Advances in Engineering/CAD/CAM/CAE Tools and Materials technology, Global and Indian Aircraft Scenario.

UNIT – II INTRODUCTION TO AIRCRAFTS

Basic components of an Aircraft, Structural members, Aircraft Axis System, Aircraft Motions, Control surfaces and High lift Devices. Types of Aircrafts - Lighter than Air/Heavier than Air Aircrafts Conventional Design Configurations based on Power Plant Location, Wing vertical location, intake location, Tail Unit Arrangements, Landing Gear Arrangements. Unconventional Configurations-Biplane, Variable Sweep, Canard Layout, Twin Boom Layouts, Span loaders, Blended Body Wing Layout, STOL and STOVL Aircraft, Stealth Aircraft. Advantages and disadvantages of these Configurations.

UNIT – III INTRODUCTION TO AIRCRAFT SYSTEMS

Types of Aircraft Systems, Mechanical Systems, Electrical and Electronic Systems, Auxiliary systems, Mechanical Systems: Environmental control systems (ECS), Pneumatic systems, Hydraulic systems, Fuel systems, Landing gear systems, Engine Control Systems, Ice and rain protection systems, Cabin Pressurization and Air Conditioning Systems, Steering and Brakes Systems Auxiliary Power Unit, Electrical systems: Avionics, Flight controls, Autopilot and Flight Management Systems, Navigation Systems, Communication, Information systems, Radar System.

UNIT – IV BASIC PRINCIPLES OF FLIGHT

Significance of speed of Sound, Air speed and Ground Speed, Properties of Atmosphere, Bernoulli's Equation, Forces on the airplane, Airflow over wing section, Pressure Distribution over a wing section, Generation of Lift, Drag, Pitching moments, Types of Drag, Lift curve, Drag Curve, Lift/Drag Ratio Curve, Factors affecting Lift and Drag, Center of Pressure and its effects. Aerofoil Nomenclature, Types of Aerofoil, Wing Section- Aerodynamic Center, Aspect Ratio, Effects of lift, Drag, speed, Air density on drag.

UNIT – V BASICS OF FLIGHT MECHANICS

Mach Waves, Mach Angles, Sonic and Supersonic Flight and its effects

Stability and Control

Degree of Stability- Lateral, Longitudinal and Directional Stability and controls of Aircraft. Effects of Flaps and Slats on Lift Coefficients, Control Tabs, Stalling, Landing, Gliding Turning, Speed of Sound, Mach Numbers, Shock Waves

Aircraft Performance and Maneuvers

Power Curves, Maximum and minimum speeds of horizontal flight, Effects of Changes of Engine Power, Effects of Altitude on Power Curves, Forces acting on an Aeroplane during a Turn, Loads during a Turn, Correct and incorrect Angles of Bank, Aerobatics, Inverted Maneuvers, Maneuverability.

TEXT BOOK:

- 1. Flight without Formulae by A.C Kermode, Pearson Education, 10th Edition.
- 2. Mechanics of Flight by A.C Kermode, Pearson Education, 5th Edition.
- 3. Fundamentals of Flight, Shevell, Pearson Education, 2nd Edition.

REFERENCES:

- 1. Introduction to Flight by Dave Anderson.
- 2. Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration by Ian Moir, Allan Seabridge
- 3. An Introduction to Aircraft Certification; A Guide to Understanding JAA, EASA and FAA by Filippo De Florio, Butterworth-Heinemann.

10

10

9

8

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

	Category	L	Т	Р	Credit
DESIGN OF AIRCRAFT					
STRUCTURES	EC-IE	3	0	0	3

Preamble

To study about load taking capabilities of components of aircraft structures.

Prerequisite

NIL

Course Objectives

1	To understand the basic concepts of strengthening components of aircrafts.
2	To develop an understanding of applications of basic theories of strength of materials.
3	To develop analytical skills for selection of suitable and precise method.
4	To design and suggest modification in existing load carrying members.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of aircraft structures.	Remember
CO2.	Explain working of load carrying members.	Understand
CO3.	Employ analytical skills to calculate stresses at different points.	Apply
CO4.	Categorise the structure and estimate reliable performance.	Analyze
CO5.	Evaluate and modify the system for meeting suitable requirement.	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

	Trupping "This i togi unime o uteomes und i togi unime specific o uteomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	I	I	-	-	I	I	I	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	S	-	-	М	М	М
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	I	I	-	-	I	I	S	-	S	S	S

S- Strong; M-Medium; L-Low

Relations.

SYLLABUS						
	FUNDAMENTALS OF AIRCRAFT DESIGN PROCESS AND STRUCTURAL					
UNIT – I	ANALYSIS	8				
Introduction, Ph	ases of Aircraft Design, Aircraft Conceptual Design Process, Conceptual Stage, Preliminary	Design,				
Detailed Design	Detailed Design, Design Methodologies, Review of Hooke's Law, Principal stresses, Equilibrium and Compatibility,					
Determinate Str	uctures, St. Venant's Principle, Conservation of Energy, Stress Transformation, Stress Strair	1				

Sectional Proper joints, Aerodyna	tural members of Fuselage and wing section Ribs, Spars, Frames, Stringers, Longeron, rties of structural members and their loads, Types of structural joints, Type of Loads on stamic Loads, Inertial Loads, Loads due to engine, Actuator Loads, Maneuver Loads, VN disound Loads, Ground conditions, Miscellaneous Loads.	tructural
UNIT – III	and Louds, Ground conditions, Miscentineous Louds.	agrams,
	AIRCRAFT MATERIALS AND MANUFACTURING PROCESSES	8
Nimonic Alloys Manufacturing of	on criteria, Aluminum Alloys, Titanium Alloys, Steel Alloys, Magnesium Alloys, copper s, Non Metallic Materials, Composite Materials, Use of Advanced materials Smart m of A/C structural members, Overview of Types of manufacturing processes for Composite n,Machining, Welding, Super-plastic Forming And Diffusion Bonding	naterials,
UNIT – IV	STRUCTURAL ANALYSIS OF AIRCRAFT STRUCTURES	12
buckling, Analys Theory of Shells Circumferential Theory of Bean Plastic Bending Bending of Closs Theory of Torsi	ing due to in plane bending moments, Analysis of stiffened panels in buckling, Rectangu sis of Stiffened panels in Post buckling, Post buckling under shear. Sample Exercises . s-Analysis of Shell Panels for Buckling, Compression loading, Shear Loading / Shell Shear Buckling Stress, Sample exercises ns-Symmetric Beams in Pure Bending, Deflection of beams, Unsymmetrical Beams in H of beams, Shear Stresses due to Bending in Thin Walled Beams, Bending of Open Section ed Section Beams, Shear Stresses due to Torsion in Thin Walled Beams. Sample Exercises . ion - Shafts of Non-Circular Sections, Torsion in Closed Section Beams, Torsion in Open ell Sections, Sample Exercises . AIRCRAFT STRUCTURAL REPAIR, AIRWORTHINESS AND AIRCRAFT	r Factor, Bending, Beams,
UNIT – V	CERTIFICATION	8
Related to Airc Requirements, F Types of Structu	vorthiness Regulations, Regulatory Bodies, Type certification, General Requirements, Requ craft Design Covers, Performance and Flight Requirements, Airframe Requirements, Fatigue and Failsafe requirements, Emergency Provisions, Emergency Landing requirements. Iral damage, Nonconformance, Rework, Repair, Allowable damage Limit, Repairable Damag DL Analysis, Types of Repair, Repair Considerations and best practices.	Landing
TEXT BOOK:		
2. Airframe Str	sign-A Conceptual Approach by Daniel P.Raymer, AIAA education series,6 th Edition ructural Design by Michael Niu, Conmilit Press, 1988,2 nd Edition ress Analysis and Sizing by Michael Niu, Conmilit Press, 1999,3 rd Edition.	
REFERENCES		

- Aircraft Structural Maintenance by Dale Hurst, Avotek publishers, 2nd Edition, 2006
 Aircraft Maintenance & Repair by Frank Delp, Michael J. Kroes & William A. Watkins, Glencoe & McGraw-Hill,6th Edition, 1993

Course Designers:

Course D	could be beinghold							
S.No	Name of the Faculty	Mail ID						
1	Senthil kumar M	senthil@vmkvec.edu.in						
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in						
3	Sanjay Singh	sanjay@vmkvec.edu.in						

	Category	L	Т	Р	Credit
NEW PRODUCT DEVELOPMENT	EC-IE	3	0	0	3

Preamble

To equip the students with the latest knowledge of Drawing study, Process Planning, cutting tool selection and fixture designing basics.

Prerequisite NIL

Course Objectives

1	To understand the basic concepts of Drawing study.
2	To understand the operating parameters and the process sequence in process planning.
3	To understand the systems used in NPD.
4	To develop the skills for selection of Cutting tools and fixture design.
5	To understand the advanced computer Integrated Machining process.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Understands the Engineering Drawings and specification	Remember
CO2.	Estimation of process parameters and Planning.	Understand
CO3.	Applying the selection principles for fixtures	Apply
CO4.	Analyze different systems in New product development	Analyze
CO5.	Evaluate different methodologies in Design for Manufacturing	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	M	L	L	L
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	Μ	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4.	S	S	S	S	-	-	-	-	-	-	-	М	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS		
UNIT – I	DRAWING STUDY	9
Types of view	vs and projections -Limits and fits measurement techniques of surface finish-Geon	hetrical
dimensioning a	nd tolerance-Measuring tools and instruments	
	PROCESS PLANNING	9
	machine tool by considering type of machine and operating parameters- Deciding the on the component	process
UNIT – III	CUTTING TOOL SELECTION AND FIXTURE DESIGN	9
	holders for turning-Milling cutters and end mills-Clamping systems-Basic concepts and pri	nciples
	n-Designing a fixture based on component datum	neipies
6		
UNIT – IV	SYSTEMS IN NPD	9
Systems used f	or lean manufacturing-Significance of CAM in costing	
UNIT – V	CURRENT TRENDS IN MANUFACTURING	9
How to make f	irst part right at fastest time-Green button concept-Factors missed out in cost estimation- integration of CAD/CAM in manufacturing	
TEXT BOOP	ζ:	
1. Produc	t Design Techniques in Reverse Engineering and New Product Development, KEVIN OT IN WOOD, Pearson Education (LPE), 2001.	ГТО &
	t Design and Development, KARL T. ULRICH, STEVEN D. EPPINGER, TATA McGraw- tions, 2003.	-HILL-
REFERENC	ES:	
1. Advanc	es In Machining And Manufacturing Technology 2017 Edition by Singh R, Auris Publishing	g

Course Designers:									
S.No	Name of the Faculty	Mail ID							
1	Praveen R, Asst. Prof. / Mech, AVIT	praveen@avit.ac.in							
2									
	Kumaran P, Asst. Prof. / Mech, AVIT	kumaranp@avit.ac.in							

	Category	L	Т	Р	Credit
QUALITY CONTROL-TOOLS AND					
PROBLEM SOLVING					
METHODOLOGIES	EC-IE	3	0	0	3

Preamble

To enlighten the students about the fundamentals of Design of experiment Techniques

Prerequisite NIL

Course Objectives

1	To learn the basic concepts of Quality Management Tools.
2	To understand the usage of New Management Tools.
3	To understand the usage of SPC tools.
4	To understand the usage of Problem solving tools.
5	To understand the implementing Problem solving Methodology.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	To understand the selection of tools for Quality Management	Understand
CO2.	Understand the importance of New Management tools.	Understand
CO3.	To apply the SPC - Quality Control Tools	Apply
CO4.	Analyze various Problem solving tools accordingly	Analyze
CO5.	To evaluate different problem solving methodology	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	_	-	-	-	_	L	L	L
CO2.	L	L	L	L	_	-	-	_	-	-	-	_	L	L	L
CO3.	S	S	S	S	-	-	-	_	-	-	-	_	М	М	М
CO4.	S	S	S	S	-	-	-	_	-	-	-	-	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS		
UNIT – I	QUALITY MANAGEMENT TOOLS	9

Evolution of Quality Management Concepts of Product and Service Quality Dimensions of Quality Deming's, Juran's, Crosby's Quality Philosophy Quality Cost.

UNIT – II NEW MANAGEMENT TOOLS

9

9

9

9

New management tools – Six sigma: Concepts, Methodology, applications to manufacturing, service sector including – Bench marking – Reason to bench mark, Bench marking process – FMEA – Stages, Types.

UNIT – III SPC - QUALITY CONTROL TOOLS

The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma,

UNIT – IV PROBLEM SOLVING TOOLS

Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs.

UNIT – V PROBLEM SOLVING METHODOLOGY

Fishbone diagrams, Fishbone diagrams, Strategy maps, Mental maps, Idea maps, Concept maps, Layered process audit software, Charting software.

TEXT BOOK:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

REFERENCES:

- 1. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 2. Dale H.Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, —Total Quality Management, Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

Course Designers:

S.No	Name of the Faculty	Mail ID	
1	Praveen R, Asst. Prof. / Mech, AVIT	praveen@avit.ac.in	
2			
	Kumaran P, Asst. Prof. / Mech, AVIT	kumaranp@avit.ac.in	

OPEN ELECTIVE-INNOVATION, ENTREPRENEURSHIP, SKILL DEVELOPMENT COURSES

			Eľ	IGINI	EERIN	IG ST	ARTU	UPS		Cate	gory	L	Т	Р	Cred	lit
				ND EN ANAC			EURI	AL		OF	HE	2	0	0	2	
PREAN	IBLE:		IVI	ANAC	TCIVIC	111				OE-	IĽ	3	0	0	3	
A startu	ıp mea	ns con	npany	initiat	ed by	indivi	dual ii	nnovat	or or	entrepre	eneurs	to sear	ch for a	a repe	atable an	ıd
scalable	e busin	ess mo	odel. N	Iore sp	pecific	ally, a	startuj	p is a r	newly	emerge	d busin	ess ven	ture tha	t aims	to devel	lop
a viable	busin	ess mo	odel to	meet a	a mark	etplac	e need	ls or w	ants ir	an opti	imum n	nanner.				
PRERE	QUIS	TE: N	ot Req	uired		_										
COURS	SE OB.	IECTI	VES:													
	1. To	unders	tand t	he basi	ics of S	Startup	os Man	ageme	ent and	l compo	onents.					
2. To analyze the startups fund management practices																
3. To practice the various kinds of stocks and employment considerations in startups.																
4. To apply the importance of intellectual property rights and its procedures.																
5. To explore the entrepreneurial mindset and culture.																
COURS				<u></u>												
After su	iccessfi	ul com	pletion	of the	course	e, stude	ents wi	ill be a	ble to							
CO1: E	Explair	the co	oncept	ofeng	ineeri	ng star	tups, c	objecti	ves an	d functi	ons and	l its co	mponen	its.	Understa	ind
CO2: A	Analyz	e the s	tartups	s fundi	ng issu	ies and	d remu	ineratio	on prae	ctices ir	n startup	os busii	ness.		Analyse	
CO3: A	Analyz	e the v	arious	kinds	of stoc	cks and	d empl	oymer	nt oppo	ortunitie	es and c	onside	ration ir	1	Analyse	
startups	busin	ess.														
CO4:	Comp	are and	d cont	rast the	e vario	us for	ms of i	intelled	ctual p	roperty	protect	ion and	l practic	e.	Analyse	
CO5: E	Explore	e the er	ntrepre	eneuria	l mind	lset an	d cultu	ire tha	t has b	een dev	eloping	g in	_		Evaluate	S
	compai		-								1 0					
MAPPI	-						MEG				ME CD	FOIFI			TS	
				-					-							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		_
CO1	М	-	-	-	-	М	М	S	-	М	-	М	-	L	L	
CO2	S	S	М	М	М	L	-	-	-	-	-	М	L	L	-	
CO3	S	S	S	М	М	М	-	-	-	-	-	М	L	-	M	
CO4	S	S	S	М	М	М	-	-	-	-	-	М	-	M	L	
CO5	S	S	-	М	М	М	-	-	-	-	-	М	М	Μ	М	

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.
- EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COUR	SE DESIGNERS:				
	Name of the				
S.No	Faculty	Designation	Department	Mail ID	
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in	
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in	

COURSE DESIGNERS:

						UAL	PROI	PERTY	Y	Categ	gory	L	Т	Р	Credit
			R	RIGHT	S					OE-	IE	3	0	0	3
PREAN	ABLE:	The co	ourse is	desigr	ned to in	ntrodu	ce fund	amenta	l aspec	ets of Int	ellectua	l proper	ty Right	s to stu	dents
who are	going	to play	a majo	or role i	n devel	lopmer	nt and r	nanage	ment o	f innova	tive pro	jects in	industri	es.	
PRERI	EQUIS	ITE: N	ot Req	uired											
COUR	SE OB.	JECTI	VES:												
1.	To int	roduce	funda	imenta	l aspec	cts of]	Intelle	ctual p	ropert	y Right	8				
2.	To dis	semin	ate kno	owledg	ge on p	atents	and c	opyrig	hts						
3.	To dis	semin	ate kno	owledg	ze on t	radem	arks. I	Design	and G	eograpl	nical In	dication	1 (GI).		
														varene	ss about
ч.	curren				5011	iunit V	unter	.,цу		516111			i cuic di	, ui chic	is about
				owledg	ge on L	Legisla	tion of	f IPRs	and A	lternate	Disput	e Reso	lution		
COUR	SE OU'	TCOM	IES:												
After s	uccessf	ul com	pletior	n of the	cours	e, stud	ents w	ill be a	ble to						
CO1: 1	Underst	and the	e impoi	rtant of	intelle	ctual p	roperty	rights						U	nderstan
CO2: 4	Apply f	or the p	patents											А	pply
CO3: L	Jndersta	and and	l apply	for the	copyri	ghts								U	nderstan
CO4: 1	Underst	and the	e impoi	rtant of	tradem	narks								A	pply
CO5: 1			-				related	issues							nderstan
	••		•												
MAPP	ING V	VITH	PROG	JKAN	IME (JUTC	OME	5 ANL) PRO	GRAN	IME S	PECIF	IC OU	TCON	IES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	M	-
CO2	L	S	S	M	M	L	-	-	-	-	-	L	M	L	-
CO3 CO4	L	S	L	M	M	L	-	-	-	-	-	L	M	L	-
UU4	L	S S	S S	S M	М	L L	-	-	-	-	-	L L	L M	L L	-
CO5	L					1.1.	-		-	-	-	1 1.	I IVI		

Unit 1 - Overview of Intellectual Property

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and license, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and license of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intellectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intellectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT – V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

Text Books:

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

COUR	COURSE DESIGNERS:											
S.No	Name of the Faculty	Designation	Department	Mail ID								
	P. S.	Associate		dydirectormanagementstudies@avit.ac.in								
1	Balaganapathy	Professor	Management									
		Associate										
2	A. Mani	Professor	Management	mani@vmkvec.edu.in								

		INNO	VATIO	N, PR(DUCI			Cat	tegory	L	Т	Р	Credit
		DEVE	LOPM	ENT A	ND							I	
		COMN	AERCI	ALIZA	TION			0	E-IE	3	0	0	3
PREAM		C •		1			C ·				1	1	1 · 1
					new pro	ducts in	fast-pa	ced, high	i-tech marl	kets and mat	chingt	echno	ological
innovati													
PRERE	QUISI	FE - No	ot Requi	red									
COURS													
										nization to			
					uccessfi	ul produ	ucts and	d service	es for Vol	atile, Uncer	tain, C	Comp	lex and
1	Ambiguous (VUCA) world. Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of												
2											ac pro	olems	of
	 society in general and markets in particular which focus on commercialization. Improved understanding of organizational best practices to transform exciting technology into 												
3	successful products and services.												
	Critically assess and evaluate innovation policies and practices in organizations especially from a												
4	cultural and leadership point of view.												
5 Explain why innovation is essential to organizational strategy – especially in a global environment.													
COUR	SE OU	тсом	IES										
								able to				1	
					0	<u> </u>		0		ve advantage			derstand
										inder uncert	ainty	Ap	
				U	Ŭ			nagemer				Ap	oly
CO4: H	laving p	problem	solving	g ability	v – solvi	ng socia	al issues	s and bus	iness prob	lems		Ap	oly
CO5: C	Comprel	nend the	e differe	nt sour	ces of ir	novatio	on					Ap	oly
MAPP	ING W	TTH P	ROGR	AMME	COUTO	COMES	S AND]	PROGR	AMME S	PECIFIC C	DUTC	OME	S
	Р	Р	Р	Р	Р	Р	Р	РО					
COs	01	02	03	O 4	05	06	07	8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	S	S	М	М	М	_	-	-	-	-		-
CO4	S	S	S	М	М	М	_	-	_	-	1 -		_
CO5	S	S	S	M	M	M	_	_	_	-	-		_
000	CO5 S S S M M M												

S- Strong; M-Medium; L-Low

Pre-launch, during launch and Post launch

preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.
 Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

								Ca	togomy	L	Т	Р	Credit
									tegory				
PREAM		SO	CIAL	ENTRE	PREN	EURSH	IIP	0	E-IE	3	0	0	3
		eurship	involv	es the ci	reativity	. imagii	nation a	and innov	vation ofte	n associated	with		
entreprei			11110111		iouti (10)	,	in a circle i		, atton one	ii ussoorutou			
PRERE													
Not Requ	-												
COURS	E OBJ	ECTIV	'ES										
				with a	workir	ng know	vledge	of the c	oncepts, o	pportunities	and o	challe	nges of
1	social	entrepr	eneursh	ip.									
2										tive respons	ses to c	critica	al social
2									arming, etc		oftha	0000	out and
3		gage in n of soc				ng proc	ess to (levelop a	a beller un	derstanding	or the	con	ext and
						professi	onally	for mean	ingful emr	oloyment by	reflect	ing c	on the
4		of socia				-	2		2 1	. ,		0	
5	Engag	ge with a	a divers	e group	of soci	al entrep	oreneur	s.					
COUR	SE OU	тсом	IES										
				6.1			.11.1	11.					
			*			students			1	fuerre e erre e e	-		
									s elements social ent	from across erprises to	а		
traditio		-	uionai s	ti dotai e	, in one	in utilition	iui nonj		soorar one			Un	derstand
								on using	social entr	epreneurial			
						nostic to						Ap	ply
									hods for pl	lanning,		۸	-1
								venture	8.			Ap	
						ange ver		on addrag	ssing parsi	stent social		Ap	bly
						inalized			ssing persi	stent social		Ap	oly
	•								AMME S	PECIFIC (OUTC		
	Р	Р	Р	Р	Р	Р	Р	PO					
COs	01	02	03	04	05	O6	07	8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	_	-		-		_
CO3	S	S	S	М	М	М	-	-	-	-	-		-
CO4	S	S	S	М	М	М	-	-	-	-	-		-
CO5	S	S	S	М	М	М	-	-	-	-	-		-
S- Stron		Iedium	; L-Lo	W									
SYLLA			· 1·	•	C C	-1-1 ·		1.*	1 1	· · · ·		1:1 •	
social ei	utrepre	eneursh	u p – dii	nension	IS OI SOG	cial entro	eprenei	ırsnıp –	social char	nge theories	- equi	iibrit	im and

complexity - theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

NEW VENTURE PLANNING AND MANAGEMENT

Category	L	Т	Р	Credit
OE-IE	3	0	0	3

PREAMBLE

Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a newventure and creation of a business plan

PREREQUISITE - Not Required

COURS	SE OBJECTIVES
1	An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.
2	Information and understanding necessary to launch and grow an entrepreneurial venture.
3	A realistic preview of owning and operating an entrepreneurial venture.
4	An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.
5	The opportunity to develop a business plan.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: E	xplain	the cond	cept of r	new ven	ture pla	nning.	objectiv	res and f	unctions ar	nd its			
compor	1		1		1	U,	5				τ	Inderstand	
CO2: A	nalyze	the bus	iness pl	an issu	es and 1	emuner	ation p	actices i	n startups l	ousiness.	A	pply	
	CO3: Explore an entrepreneurial idea to the point where you can intelligently and decide whether to "go for it" or not.												
	CO4: Compare and contrast the different forms entrepreneurial environment in terms of their key differences and similarities.												
CO5: Explore the business plan and business model canvas for your idea.												Apply	
MAPP	ING W	ITH P	ROGR	AMME	OUTO	COMES	S AND	PROGR	AMME S	PECIFIC O	UTCON	1ES	
	Р	Р	Р	Р	Р	Р	Р	РО					
COs	01	O2	03	O4	05	O6	07	8	PO9	PO10	PO11	P012	
CO1	М	-	-	-	-	Μ	S	S	-	М	-	-	
CO2	S	S	S	М	М	М	-	-	-	-	-	-	
CO3 S S S M M M												-	
CO4	S	S	S	М	М	М	_	_	-	_	-	-	

S- Strong; M-Medium; L-Low SYLLABUS:

S

S

S

Μ

Μ

Μ

CO5

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising -

_

_

_

_

_

_

How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India.

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

FINANCE AND ACCOUNTING	Category	L	Т	Р	Credit
FOR ENGINEERS	OE-IE	3	0	0	3

PREAMBLE:

Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.

2. To apply the various methods to claim depreciation.

3. To practice fundamental investment decision through capital budgeting techniques.

4. To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.

5. To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

COURSE OUTCOMES:

After su	After successful completion of the course, students will be able to													1		
CO1: U	nderst	and th	e imp	ortanc	e of re	cordi	ng, bo	ok kee	eping a	and rep	orting o	of the b	usiness			
transact	transaction. Understand															
CO2: Identify and Apply suitable method for charging depreciation on fixed assets. Apply																
CO3: A	nalyse	the va	rious n	nethod	s of cap	oital bu	ıdgetin	g techi	niques	for inve	stment	decision		Appl	у	
CO4: Ju	stify	the sc	ope o	f cost	-volun	ne-pro	fit an	alysis,	stanc	lard co	sting,	and ma	arginal			
CO4: Justify the scope of cost-volume-profit analysis, standard costing, and marginal costing techniques for decision making.Analyse																
CO5: Es	CO5: Estimation of working capital requirements of the organization.															
MAPP	ING V	VITH	PRO	GRA	MME	OUT	COM	ES AN	ND PR	OGRA	MME	SPEC	IFIC C	DUTCO	DMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	М	L	S	М	-	S	-	М	М	L	М	L	М	
CO2	L	-	-	L	М	-	L	L	-	-	L	М	L	L	-	
CO3	CO3 - M - M L - L S M - L - L M															
CO4 L L - S L L M L M L M																
CO5	L	-	L	S	L	-	-	М	М	L	-	L	М	М	-	
S- Stron	S- Strong; M-Medium; L-Low															
	-															

SYLLABUS:

Introduction: Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions – Double entry system – Preparation of journal, ledger and Trial balance – Final Accounts.

Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Financial statement analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

Marginal Costing: Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi.S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.

 Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

COURSE DESIGNERS:												
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in								
2	Dr. Rajeshkumar	Assistant Professor	Management Studies	Rajesh.mba@avit.ac.in								

COURSE DESIGNERS:

OPEN ELECTIVE – EMERGING AREA COURSES

										Ca	ategory	L	Т	P (Credit
			F	NOSE	ISORS	AND	FRANS	SDUCE	RS	OF	-EA	3	0	0	3
used fo	urse is c or the de	etection	d to ma of an	ke the analyte	student . The re	acquire elation	e conce betwee	ptual ki n sensc	nowledg or conce	ge of the epts and e introduce	transduc biologica	ers and	biologi	cal comp	onents
PREREQUISITE – Nil															
COURSE OBJECTIVES															
1	To use	the ba	sic con	cepts of	transdu	icers, el	lectrode	es and i	ts classi	fication.					
2	To dis	cuss the	e variou	ıs types	of elec	trodes.									
3	To det	ermine	the rec	ording	of biolo	ogical co	ompone	ents.							
4	To em	ploy th	e know	ledge ir	n electro	ochemi	cal and	optical	biosens	ors.					
5 To outline the various biological components using biosensors.															
COURSE OUTCOMES															
	success		•					e able t	0						
	Describ		-				ers.						Und	erstand	
CO2.	Explain	the va	rious ty	pes of e	electrod	es.							Und	erstand	
CO3.	Utilize	various	FET s	ensors f	or reco	rding of	f biolog	ical con	nponen	ts.			App	ly	
CO4.	Disting	uish va	rious bi	osenso	rs like e	electroc	hemica	l and op	otical bi	osensors			Ana	lyze	
CO5.	Analyz	e the bi	ologica	l compo	onents u	using bi	osensor	rs in vai	rious ap	plication	IS.		Ana	lyze	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPE	CIFIC C	OUTCON	MES		1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S	L	S		S	М	М	S			М	М	М	S
CO5	S	S	L	S		S	М	М	S			S	М	М	S
S- Strong; M-Medium; L-Low															

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhanpat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in								
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in								
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in								
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in								

													T	D	
		PRI	NCIPL	ES OF	F BION	AEDIC	CAL			Ca	tegory		Τ	P (Credit
		INST	FRUM	ENTA	TION					0	E-EA	3	0	0	3
PREAI To		studen	ts to de	velop k	nowled	lge of p	rinciple	s. desig	n and a	pplicatio	ons of the	Biomed	ical In	strument	s.
	EQUISI						. 1	.,	,	II ·····					
	COURSE OBJECTIVES														
1	To know about bioelectric signals, electrodes and its types.														
2	To kno	To know the various Biopotential recording methods.													
3	To study about patient monitoring concept and various Physiological measurements methods.														
4	To stu	dy the j	principl	e of ope	eration	blood f	low me	ter, blo	od cells	counter.					
5	To stu	dy abou	ut bio cl	hemical	measu	rements	s and de	etails th	e conce	pt of bio	telemetry	and pat	ient sa	fety.	
COUR	COURSE OUTCOMES														
On the	successf	ful com	pletion	of the o	course,	student	s will b	e able t	0						
CO1.	Explain	the dif	ferent I	Bio sign	al or bi	opotent	tial.						Und	erstand	
CO2.	Discuss	the wo	orking p	orinciple	es of dia	agnostic	c and th	erapeut	ic equip	oments.			Und	erstand	
CO3.	Examin	e the v	arious i	nstrume	ents like	e as EC	G, EMO	G, EEG	, X-ray	machine	•		App	ly	
CO4.	Illustrat	e medi	cal inst	ruments	s based	on prin	ciples a	ind appl	ication	used in h	nospital.		Ana	lyze	
CO5.	Analyze	e and ca	alibrate	fundan	nental b	iomedi	cal inst	rumenta	ation us	ed in hos	pital.		Ana	lyze	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	AE SPE	CIFIC O	UTCON	MES	-	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	S	М	М	М	L			L	S	L		S	М	S	S
CO5	S	S	М	М	L	М		L	S	L		S	М	S	S
S- Stro	ng; M-I	S- Strong; M-Medium; L-Low													

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in							
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in							
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in							
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in							

		Category	L	Т	Р	Credit
INTROD	UCTION TO BIOFUELS	OE-EA	3	0	0	3

PREAMBLE

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To understand the different types and differences between existing energy resources.
2	To understand the improcurement, utilization and their impacts on society and environment
	To gain knowledge about the existing different biofuels and the methods of production from different
3	sources
4	To introduce the techonologies involved in the production, characterization of biofuels
	To impacrt the knowledge and applications of biofuel in various sectors and their beneficial aspects to the
5	society.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Understand the existing and emerging biomass to energy technologies													Remember		
CO2. Understand the concept of 1 st generation, 2 nd generation and advance biofuels												Understand			
CO3. Appraise the techno-economic analyses of biofuel conversion technologies												Understand			
CO4. To articulate the concept of a biorefinery system and be able to develop major unit operations of an integrated biorefinery											Apply				
CO5. Illustrate the environmental implications											Apply				
MAPI	PING	WITI	H PR	OGR.	AMM	IE OU	JTCC	MES	AND	PROC	GRAM	ME SI	PECIFI	IC OU	TCOMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
CO2 - S S - M - L S										S	L				
CO3 S M - M - M - L L S -										-	L				
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	М
CO5	-	-	-	-	-	-	-	S	М	-	-	-	-	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries - Energy security and supply - Environmental sustainability of biofuels - Economic sustainability of biofuels.

BIODIESEL

Biodiesel - Microorganisms and raw materials used for microbial Oil production - Treatment of the feedstocks prior to production of the Biodiesel - Current technologies of biodiesel production - Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations - Biological hydrogen production methods - Fermentative hydrogen production - Hydrogen economy - Advantages and limitations.

OTHER BIOFUELS

Biobutanol production - Principles, materials and feedstocks - Process technologies - Biopropanol -Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1. Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID						
		Assistant Professor –								
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in						
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in						

	Category	L	Т	Р	Credit
FOOD AND NUTRITION TECHNOLOGY	OE-EA	3	0	0	3

PREAMBLE

The course aims to enable the students to understand the physicochemical, nutritional, microbiological and sensory aspects, To familiarize the students about the processing and preservation techniques. To emphasize the importance of food safety, food quality, food plant sanitation, food laws and regulations, food engineering and packaging in food industry.

PREREQUISITE – NIL

1	Understand the tradition food processing techniques and the basics concept of food biochemistry							
2	Demonstrate the product development technique, quality and contaminant check							
3	To articulate their technical knowledge for industrial purpose							
4	Describe national food laws and standards							
5	Laws and qualities of standard for food products							
5	Dund und quanties of standard for 1000 products							
- 1	URSE OUTCOMES							
CO								
CO Afte CO	URSE OUTCOMES er the successful completion of the course, learner will be able to 1: Recall the processing techniques practiced in olden days and the biological process	Remember						
CO Afte CO	URSE OUTCOMES er the successful completion of the course, learner will be able to	Remember Understand						
CO Afte CO CO con	URSE OUTCOMES er the successful completion of the course, learner will be able to 1: Recall the processing techniques practiced in olden days and the biological process 2. Illustrate the methods for animal product development, quality control and also screen the							
CO Afte CO CO CO	URSE OUTCOMES er the successful completion of the course, learner will be able to 1: Recall the processing techniques practiced in olden days and the biological process 2. Illustrate the methods for animal product development, quality control and also screen the taminant	Understand						

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	М	S	М	L	-	-	-	-	-	-	-	М	L	-
CO4	М	S	S	М	L	-	-	-	-	-	-	-	S	S	-
CO5	-	S	S	М	М	-	-	-	-	-	-	М	L	S	-
S-Stroi	ng; M-	Mediu	ım; L-1	Low											

SYLLABUS

INTRODUCTION TO FOOD BIOTECHNOLOGY

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

1. Potter, Norman. M. Food Science, 5th Ed. Springer US

2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.

3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

											-	T		a u
		DIG	LA C'TT	D DICI	7 N.T.A.N	ACEN	TENT		Cates		L 3	<u>Т</u> 0	<u>Р</u> 0	Credit 3
Preamble	1	DIS	DASIL	K KISI	<u>K MAN</u>	AGEN	112191		OE-E		3	U	0	5
This course structures, and hazards such t	d Haza	rd Asse	essment	proced	ure in I	ndia. T	his cou							
Prerequisite														
NIL														
Course Outco	mes													
1 To Uno	derstar	nd basic	concep	ots in D	isaster 1	Manage	ement							
2 To Uno	derstar	nd Defin	nitions a	and Ter	minolo	gies use	ed in Di	isaster N	Managem	ent				
3 To Uno	derstar	nd the C	Challeng	es pose	ed by D	isasters								
4 To und	lerstan	d Impa	cts of D	isasters										
COURSE OU			tion of	the equ	rao atu	danta u	rill bo o	bla to						
On the succ CO1. Underst		-							al and Ma	arine				
Disasters, Atr			• •			•	U U				nd	Understa	nd	
and Water Dr	-			U	,					,		ondersta	iid	
CO2. Identify	the po	otential	deficie	ncies of	existin	g build	ings for	r Earthq	Juake dis	aster an	d	Understa	nd	
suggest suitab	le rem	edial m	neasures	5.										
CO3.Derive the Earthquake di			for the	precau	tionary	measur	res and	rehabili	tation m	easures	for	Apply		
CO4. Derive t			measur	es agai	nst floo	ds. cvc	lone, la	nd slide	es			Apply		
	F					,	,							
CO5. Underst	and th	e effect	s of dis	asters o	n built	structu	res in Ir	ndia				Understa	nd	
					•									
MAPPING V	VITH	PROG	RAMN	IE OU	тсом	ES AN	D PRO	OGRAN	AME SP	ECIFI	C OUT	COMES		
COS PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 M		_	L			-	-	_		-		т		
CO1 M CO2 M	M	L	L	-	M	-	-	-	-	-	-	L L	-	-
CO3 S	М	S	М	-	L	-	М	-	-	-	-	M	L	-
CO4 S	М	S	-	L	-	-	-	-	-	-	-	М	L	-
CO5 L	L	-	L	-	-	-	-	-	-	-	-	L	-	-
S- Strong; M-	Mediu	ım; L-L	OW											

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, Structural- nonstructural measures, Roles and responsibilities of-community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXT BOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES:

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

Course Designers

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in

										Catego	ory	L	Т	Р	Credit
		MU	NICIP	AL SO	LID W	ASTE	MANA	AGEM	ENT	OE-EA		3	0	0	3
Preaml	ble											-	-	•	
	Stru	cture is	an arra	angeme	nt and	organiz	ation c	of interr	elated	elements i	n a ma	terial o	bject or s	ystem, o	r the
object	or sy	stem so	organ	ized. N	Iaterial	structu	res inc	lude m	an-mad	e objects	such a	s buildi	ngs and 1	machines	and
natura	l objec	ts such	as biol	ogical o	organisr	ns, min	erals ar	nd chem	nicals.						
Prereq	uisite				-										
-	Nil														
Course	Objec	ctives													
1.	The	on-site/	off-site	proces	sing of	the sam	e and t	he disp	osal me	thods.		_			
2.	The	student	is expe	cted to	know a	bout th	e variou	us effec	ts and c	lisposal op	tions f	or the m	unicipal s	olid wast	te.
3.	The	collecti	on and	supply	of wate	r									
4.	The of	ffsite p	rocessir	ng invol	ved in s	site									
Course															
On the s	succes	sful cor	npletio	n of the	course	, studen	ts will	be able	to						
CO1.	To kn	low abc	out the t	ypes of	waste	& Sour	ces						Analyze		
CO2 .	To St	udy the	on site	Storag	e & Pro	cessing							Apply		
CO3.	To stu	udy abo	ut the c	ollectio	on & tra	ansfer 1	the was	te					Apply		
CO4.	To St	udy the	proces	s of off	site pro	ocessing	5						Apply		
CO5.	To kn	ow abo	ut the so	olid wa	ste disp	osal							Apply		
							gramm	e Speci	ific Out	comes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	S	М	L	-	-	-	-	-	-	-	-	-		-	S
CO1			L	S	-	-	-	-	-	-	-	-		М	S
	S	Μ													
CO2	S S	M M	M	S	-	-	-	-	-	-	-	-		Μ	S
CO1 CO2 CO3 CO4					-	-	-	-	-	-	-	-		M M	S S

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITE STORAGE & PROCESSING

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management-Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

Text Books

1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.

2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest

publication, (1992).

Reference Books

1. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes - problems and Solutions", Lewis

Publishers, 1997, Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries",

INSDOC, 1993.

- Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002), Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9, Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development.
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

Cours	Course Designers											
S.No	Name of the Faculty	Designation	Department	Mail ID								
				subathra@avit.ac.in								
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT									
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com								

	Category	L	Т	Р	Credit
FUNDAMENTALS OF ARTIFICIAL					
 INTELLIGENCE	OE-EA	3	0	0	3

PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Game playing. Thus, this syllabus focuses on to know about AI and its concepts.

PRERE	QUISI	ГЕ :NI	L												
COURS	E OBJ	ECTIV	ES												
1.	To intro	oduce th	e basic	princip	les, tecl	hniaues	. and ar	oplicatio	ons of A	Artificia	l Intellige	nce.			
							· .	•			ligence.				
	To desi				•			11045 111	1 11 11 10	<u>iui 11101</u>	ingenieer				
		-	Ŭ					etic prol	alems						
	Apply the knowledge of algorithms to solve arithmetic problems. Assemble an efficient code for engineering problems.														
						eering p		15.							
COUR	SE OU	тсом	ES												
On the	success	ful com	pletion	of the o	course,	student	s will b	e able t	0			1			
C O1: . I	dentify t	he diffe	erent ag	ent and	its type	es to sol	ve the p	problem	ns			Understa	nd		
C O2: kı	now abo	out the p	roblem	solving	g techni	que in A	Artificia	al Intelli	igence.			Apply			
C O3: C	onstruct	the nor	rmal for	m and	represei	nt the k	nowled	ge.	•			Apply			
	know a	bout ex	tension	of con	dition p	robabil	ity and	how to	apply ii	n the rea	ll time				
nvironi	nent.											Apply			
	o lean al							0				Understa			<u></u>
	ING W PO1	TTH P PO2	ROGR PO3	AMME PO4	E OUTO PO5	COME: PO6	S AND PO7	PROG PO8	RAMN PO9	AE SPE PO10	CIFIC C PO11	DUTCOM PO12	IES PSO1	PSO2	PSO3
COs						PU0	r0/	PUð	P09	POIU	PUII				P505
<u>CO1</u>	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	-	-	-	-	-	-	М	S	М	М
CO5	S	M	M	М	М	-	-	-	-	-	-	М	S	М	_
5- Stro	ng; M-	viediui	n; L-L	ow											

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system - Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DES	SIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in
2	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

	Category	/ L	Т	P C	redit
INTRODUCTION TO INTERNET OF					
THINGS	OEEA	3	0	0	3
PREAMBLE					
ntroduction to IoT for statistical data manipulation and analysis. It was insp	pired by and	is most	compati	ble with	the
tatistical language.					
PREREQUISITE VIL					
COURSE OBJECTIVES					
1 To learn Introduction to IoT.					
2 To Study methodology of IoT.					
3 To Develop IoT applications using Arduino and Intel Edition.					
COURSE OUTCOMES					
On the successful completion of the course, students will be able to	r				
CO1: To Understand the basics in Introduction to IoT in terms of constructs, o		Understa	and		
statements, string functions		Understa	ana		
CO2: To Understand the use of Introduction to IoT fundamentals.		Understa	and & A	pply	
CO3: Learn to apply Introduction to IoT for Communicating Sequential Proce	ess	Understa	and & A	pply	
CO4: Able to appreciate and apply the Introduction to IoT from a statistical p		Understa	and & A	nnly	
	•				
CO5 To learn Introduction to IoT Challenges		Understa		pply	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SCOsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO	DIO PO11	PO12	PSO1	PSO2	PSO3
	L S	r012	<u>P501</u> S	<u>Р502</u> М	<u>PSU3</u> S
CO1 S S M M L S S M S I CO2		M	M	M	S
	M M	-	M	-	S
CO4		М	М	S	М
		S	М	М	М
CO5 S S S M S S S M S- Strong; M-Medium; L-Low	M S	2	111	111	111

SYLLABUS UNIT I -- INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"

2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"

REFERENCES

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COUR	RSE DESIGNERS			
<i>a</i> .	Name of the		_	
S. No.	Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

CategoryLTPdiCYBER SECURITYOE-EA3003PREAMBLETo understand the need for Cyber Security in real time and to study techniques involved in it.PREREQUISITE : NILCOURSE OBJECTIVES1.To understand the fundamentals of Cyber Security and issues2.To study various cyber crimes and legal remedies3.To apply various privacy and security4.To study E-Commerce and digital payments5.To study the basic security aspects related to Computer and MobilesCOURSE OUTCOMESOn the successful completion of the course, students will be able toCO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and proceduresCO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms.CO4: Able to understand the basic concepts related to E-Commerce and digital
PREAMBLE To understand the need for Cyber Security in real time and to study techniques involved in it. PREREQUISITE : NIL COURSE OBJECTIVES 1. To understand the fundamentals of Cyber Security and issues 2. To study various cyber crimes and legal remedies 3. To apply various privacy and security 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
PREREQUISITE : NIL COURSE OBJECTIVES 1. To understand the fundamentals of Cyber Security and issues 2. To study various cyber crimes and legal remedies 3. To apply various privacy and security 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the concept of Cyber security and issues and challenges associated with it. CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms.
COURSE OBJECTIVES 1. To understand the fundamentals of Cyber Security and issues 2. To study various cyber crimes and legal remedies 3. To apply various privacy and security 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the concept of Cyber security and issues and challenges associated with it. CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
1. To understand the fundamentals of Cyber Security and issues 2. To study various cyber crimes and legal remedies 3. To apply various privacy and security 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the concept of Cyber security and issues and challenges associated with it. CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms.
2. To study various cyber crimes and legal remedies 3. To apply various privacy and security 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the concept of Cyber security and issues and challenges associated with it. CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
3. To apply various privacy and security 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to Colspan="2">Outerstand the concept of Cyber security and issues and challenges associated with it. Understand CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the concept of Cyber security and issues and challenges associated with it. Understand CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
5. To study the basic security aspects related to Computer and Mobiles COURSE OUTCOMES On the successful completion of the course, students will be able to Colspan="2">Colspan="2">Understand Colspan="2">On the successful completion of the course, students will be able to Colspan="2">Colspan="2"Colspan="2
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Able to understand the concept of Cyber security and issues and challenges associated with it. Understand CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
On the successful completion of the course, students will be able toUnderstandCO1: Able to understand the concept of Cyber security and issues and challenges associated with it.UnderstandCO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and proceduresApplyCO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content,
CO1: Able to understand the concept of Cyber security and issues and challenges associated with it.UnderstandCO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and proceduresApplyCO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms.Apply
corr. Able to understand the concept of Cyber security and issues and channeliges associated with it. Apply CO2: Able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures Apply CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
how report the crimes through available platforms and procedures Image: CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. Apply
CO3: Able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms.
media and understand the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms.Apply
underlying legal aspects and best practices for the use of Social media platforms.
CO4 : Able to understand the basic concepts related to E-Commerce and digital Apply
payments.
CO5 : Able to understand the basic security aspects related to Computer and Apply
Mobiles.
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
P P P P P P P Image: P Image: P Image: P Image: P Image: P Image: P
O O O O O O O O PO PO1 PO1 PS PS COs 1 2 3 4 5 6 7 8 9 10 1 2 01 02
CO1 M M M M M M
СО2 м м м м м м м
CO3 M M S M M M M
СО4 в м м м м м
СО5 S M M M S М М
S- Strong; M-Medium; L-Low
SYLLABUS

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

9 hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y , TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7.

Fundamentals of Network Security by E. Maiwald, McGraw Hill

COU	RSE DESIGNERS			
S.	Name of the		_	
No.	Faculty	Designation	Department	Mail ID
		Assistant professor G-		
1	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in

9 hours

9 hours

	Mr. B.			sundharamurthy@vmkvec.edu.i
2	Sundharamurthy	Assistant Professor	CSE	n

								Cata	a a mar	J		Т	Р	Cre	dit
		DESI	GN O	F ELE	CTRO	NIC		Cale	gory			1	Γ		an
			IPME	NT				OE	-EA		3	0	0		3
	MBL														
										spects o					
										ing. Sta					d into
specif	ication	s, leadi	ng to c	lesign a	ind pro	totypin	ig and	ending	up in a	a manufa	acturable	e physic	al proto	type.	
PREF	REQUI	SITE	–Nil												
COU	RSE O	BJEC	TIVES	5											
1	To un	dersta	nd the	various	Conce	pt of I	ndustri	al Desi	gn pro	cess.					
2										ethodolo	ogy.				
3	To cla	assify t	he Cor	cept of	f Ergon	omics	& aest	hetics i	in prod	luct desi	gn.				
4	To un	dersta	nd the 1	Knowle	edge re	garding	g the d	esign o	f produ	uct pack	aging ar	nd worki	ng envi	ronmen	t.
5	To un	dersta	nd the]	Knowle	edge of	differe	ent ind	ustrial	standa	rd and v	alue ana	lysis.			
COU	RSE O	UTCO	MES									-			
On the	e succe	ssful co	omplet	ion of t	he cou	rse, stu	dents	will be	able to)					
CO1.	Visuali	ze the	concep	t for p	oduct	design	with re	espect t	o ergo	nomics a	and aest	hetics.		Remer	nber
										quipme				Apply	
			ity in t	he desi	gn of s	ystem	by for	nulatin	ig arch	itecture	with pro	oper plac	cement	Apply	
	nponen														
			•					•	•	oduct de	sign.			Apply	
CO5.	Apply	the pro	cess of	value	analysi	s in ex	isting	product	t.					Apply	
MAP	PING	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	L	-	_	S	-	-	L	Μ	L	-	-	S	-	-
CO2	Μ	L	-	Μ	S	-	-	L	Μ	L	-	-	S	-	-
CO3	M	L	-	Μ	S	-	-	L	M	L	-	L	S	-	М
CO4	S	M	L	-	S	-	-	L	M	L	-	L	S	M	М
CO5	S	M	L	- T.	S	-	-	М	L	L	-	L	S	М	М
S-Str	ong; N	1-Med	ium; L	-Low											

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation. Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H,

"Industrial Design and Engineering Design", Council, London and Springer Verlag, 1983

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS

Category	L	Т	Р	Credit
OE-EA	3	0	0	3

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

Basic knowledge of computer and internet

COURSE OBJECTIVES

	Industry 4.0 concerns the transformation of industrial processes th	rough the integration of modern									
1	technologies such as sensors, communication, and computational pro-	0 0									
1	Technologies such as Cyber Physical Systems (CPS), Internet of T	2									
2	Machine Learning, and Data Analytics are considered to be the di	inerent drivers necessary for the									
2	transformation.										
	Industrial Internet of Things (IIoT) is an application of IoT in in	ndustries to modify the various									
3	existing industrial systems.										
4	HoT links the automation system with enterprise, planning and produ	act lifecycle.									
5	Real case studies										
CO	URSE OUTCOMES										
On t	the successful completion of the course, students will be able to										
CO	1. Apply & Analyzing the transformation of industrial process by										
vari	ous techniques.	Analyze									
CO2	2. Evaluate the transformation technologies are considered to be the										
diffe	erent drivers.	Apply									
CO3	3. Existing industrial systems will adopt the applications of IIoT.	Apply									
CO ₂	4. Intensive contributions over automation system with enterprise,										
	ning and product life cycle	Analyze									
COS	CO5. Analyze of various Real time case studies. Analyze										

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
	Р	P	P	Р	Р	Р	P	Р	Р	Р	Р	Р	PS	PS	PS
	0	0	0	0	0	0	0	0	0	0	0	0	Ο	0	0
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO5	S	S	S	S	М	_	-	_	_	-	-	М	S	М	М
S-Stro	ong; M	-Medi	um; L	Low	•		•				•	•	•	•	

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II. Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIOT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIoT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

S.No.	. Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor	ECE	hodece@vmkvec.edu.in

										(Category	y L	T F	• C	redit
			GREE	EN PO	WER (GENEF	RATIO	N SYST	EMS	(OE-EA	3	0 0		3
energy these re of the c	urse pres and inve esources course.	stigates will be	the cor presente	ntributi	on they	can m	ake to	the energ	y profil	e of the	nation. 7	The tech	hnology	used to 1	harness
	EQUISIT SE OBJI														
1	Understa	nd the 1	nexus be	tween	energy.	enviro	nment.	and sust	ainable c	levelopn	nent.				
	Apprecia									i					
	Learn ba									gies					
4	Serve as	bridge	to advan	iced co	urses in	renew	able en	ergy.							
	RSE OU			0.1											
	e successi							e able to							1
	Explain r							1 (1 1 1	.1	1 1 '	6 1 6	1 11		Understa	nd
	Apply e	-	-	-	to bu	ila sola	ar, win	a, tidai,	geother	mai, dic	oruei, rue	el cell,		Annly	
	ogen, and Analyze				lication	of ren	owoble	anaray	Concen	te in col	vina nun	norical		Apply	
	ems perta			•					•	11 501	ving nun	licitcai		Analyz	e
	Demonst									energy s	vstems.			Analyz	
	Conduct											odiesel		1 11141 9 2	
systen		F			F				.,					Apply	
	PING W	ITH PI	ROGRA	MME	OUTO	COME	S AND	PROGE	RAMME	E SPECI	FIC OU	TCOM	IES	11 2	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	М	-	_
CO2	S	М	S	L	М	-	L	М	-	M	-	-	-	-	-
CO3	S	-	-	-	М	-	-	М	М	-	-	-	L	-	-
CO4	S	-	-	-	М	-	L	-	-	-	-	Μ	-	-	-
CO5	S	М	S	L	М	-	L	М	-	M	М	-	М	L	-
CO6	S S	- Modi	-	-	М	-	L	L	-	-	-	-	-	-	-
5- Str	ong; M-l	viediui	11; L-L0	W											

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

												Catego	ory	L	Т	Р	Cre dit
		IND	USTR	RIAL I	ORIVI	ES AN	D AU	том	ATIO	N		OE-EA		3	0	0	3
Preamble																-	
To introdu	ce four	ndatior	on th	e princ	iples o	of drive	es & ai	utomat	ion an	d their	eleme	nts with	the in	nple	menta	ation	•
PREREQ	UISIT	E:NI	L														
COURSE	OBJE	CTIV	ES														
1		Тое	xplore	the va	rious .	AC,DO	C & Sp	ecial N	Machir	ne Driv	es for	industria	al Apr	olica	tion.		
2			•									scheme					
3		To k	now a	bout h	ardwa	re imp	lemen	tation	of the o	control	lers us	ing PLC	••				
4		To s	tudy tł	ne cono	cepts o	of Dist	ributed	l Conti	ol Sys	tem.							
5		To u	nderst	and th	e impl	ement	ation o	f SCA	DA an	d D.C	S						
COURS	E OUT	СОМ	ES														
On succe	essful c	omple	tion o	f the c	ourse,	the st	udent	s will	be able	e to							
	1							variou	ıs type	es of r	notors,	differer	nces,		TT 1		
CO	1			ics and e know				motors	s, heati	ng effec	cts and	braking			Unde	erstai	nd
CO	2			various	•					C		U			A	oply	
CO	3		•	control		•									Unde	ersta	nd
CO	4		-	it prog		ng usir	ig PLC	and u	se of v	various	PLCs 1	to Auton	nation		Unde	ersta	nd
		To d	iscuss	supervi	isory c		and dat	ta acqu	isition	method	l and u	se the sa	me in				
CO	5	-		tomatic			elemen	ts and	use of	Human	Machi	ine Interf	facing		Unde	erstai	nd
CO	6					•				of Aut			lueing		Unde	erstai	nd
Mapping	g with I	Progra	mme	outcor	nes ar	nd Pro	gram	ne Sp	ecific (Outcor	nes	1	T			-	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO2	P	SO3
CO1	S	S	L	-		S	S	-		L	-	-	_		_		L
CO2	М	_	М	-	S	L	М	-	М	L	-	-	L		-		-
CO3	М	_	М	_	S	L	М	_		L	_	_	_		М		_

CO4	S	-	S	-	S	М	М	L	-	L	М	-	-	-	L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-	L	М

INTRODUCTION Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 1. 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008

REFERENCES

- 1. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

			1	
Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

									Categ	orv	L	Т	1	P	Credit
		BIOM	OLE	CULE	ES-				Cutte	,01 y					create
					ND FU	JNCT	ION	0	E-EA		3	0		0	3
PREA	MBL	E						0.				Ŭ			
D'	11.	. 1:1	1 1				6-4				£ 1				
				•	· 1	,			-		•	ving sy			
			iem ne	eips in	main	lainin	g a ne	anny n	lestyle	e, free o	I SICKIE	ess and	a genera	ai awai	reness
about l	••		N	TTT											
PRER	EQUI	SILE	Γ	JIL											
COUF	RSE O	BJEC	TIVE	2S											
1	6				. .		61.	1	1						
1	To gi	ive an	overv	iew of	i impo	rtance	ot bi	omolec	ules.						
2	To el	aborat	e the s	tructu	re of p	rotein	s and 1	nucleic	acids a	and its ro	ole in di	isease.			
3	To er	numer	ate the	e role o	of carb	ohyd	rates a	ind thei	r cellu	ılar func	ction in	physio	logy an	d patho	ology.
4	Toe	numer	ate the	role	of linio	ls and	their	cellula	r funct	ion in r	hysiolo	ogy and	patholo	ισν	
	1001	inannen		1010	or npr	und und		centulu	r Tuniet		, ing store	555 und	puillon	·5J·	
5	To b	riefly	choles	sterol	and its	role	in dise	eases.							
COUF	SE U	UTCO	MFS	2											
)											
After t	he suc	cessfu	l com	pletion	n of th	e cour	se, lea	arner w	ill be a	able to					
CO1 1	Relate	the ha	sice of	f biom	olecul	es in	and ar	ound h	im				Und	erstand	1
										1	1 .	• 1			
CO2. (Unders	stand t	ne stru	icture	OI 010	molec	cules s	uch as	protei	ns and r	lucleic	acids	Und	erstand	1
CO3. I	Discov	er the	role o	f carb	ohydra	ates in	healt	hy and	diseas	ed cond	litions		App	ly	
CO4. I	Relate	disfun	ctioni	ng of	lipids	with d	lisease	e					Ana	lyse	
CO5. 0	Criticiz	ze the	role of	f chole	esterol	in dis	seases						Eval	uate	
									ND PH	ROGRA	MME	SPEC			OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5	S	- 	L	L	-	М	-	-	-	-	-	S	S	М	-
5-Str	ong; N	1-Med	num;	L-LO	W										

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

S.No	Name of the			
	Faculty	Designation	Department	Mail ID

1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
-	5	rissistant protessor		
			Pharmaceutical	
2	Ms.S.Sowmiya	Assistant Professor	Engineering	sowmiya.vmkvec@vmrf.edu.in

		Category	L	Т	Р	Credit
	PHARMACOGENOMICS	OE-EA	3	0	0	3
CAMBLE		1				
			L		1	
•			•			-
-		pharmacogeno	mics, is	the stu	dy of	t the
1						
ORSE ORJEO						
Discuss abou	t the basic knowledge about pharmacogeno	mics and drug	design u	ising ge	enom	ic
applications	for drug action and toxicity.					
		1 . 11 1		,		1
		nieved based o	n a pers	on's ge	enetic	с такеир
while reducin	ng unwanted drug effects.					
Outline the P	harmacogenomics studies on how genetic d	ifferences betv	veen ind	lividual	s car	affect
Formulate or	medicine skills acquired by the student an	d his action in	differen	t patho	logie	s
Develop acqu	ire knowledge about the influence of genet	ic alterations o	n the the	erapeut	ic eff	fect and
adverse react	ions of the drugs, from a perspective of ind	ividualized the	rapy.			
URSE OUTC	OMES					
r the successfu	ul completion of the course, learner will be a	able to				
CO1.Recognize the effect of genetic differences between individuals in the outcome of Remember						ember
CO2. Describe the role of single nucleotide polymorphism as a biomarker for the Understand						rstand
				т	Inda	natond
			sy			
	macogenomic er response to ionship betwe CREQUISITE JRSE OBJEC Discuss abou applications : Perform how while reducin Outline the P responses to Formulate or Develop acqu adverse react JRSE OUTC r the successfu .Recognize the . Describe the . Utilize and r	macogenomics involves the study of the relationship betwer response to a drug. Pharmacogenetics, a component of ionship between a single gene and its response to a drug. REQUISITE - NIL JRSE OBJECTIVES Discuss about the basic knowledge about pharmacogeno applications for drug action and toxicity. Perform how individualization of drug therapy can be ac while reducing unwanted drug effects. Outline the Pharmacogenomics studies on how genetic d responses to various drugs. Formulate on medicine skills acquired by the student an Develop acquire knowledge about the influence of genet adverse reactions of the drugs, from a perspective of indi JRSE OUTCOMES r the successful completion of the course, learner will be a Recognize the effect of genetic differences between indiri. Describe the role of single nucleotide polymorphism as .	PHARMACOGENOMICS OE-EA AMBLE macogenomics involves the study of the relationship between an individer response to a drug. Pharmacogenetics, a component of pharmacogeno ionship between a single gene and its response to a drug. REQUISITE - NIL JRSE OBJECTIVES Jinse OBJECTIVES Jinse objectives Discuss about the basic knowledge about pharmacogenomics and drug applications for drug action and toxicity. Perform how individualization of drug therapy can be achieved based of while reducing unwanted drug effects. Outline the Pharmacogenomics studies on how genetic differences betwees to various drugs. Formulate on medicine skills acquired by the student and his action in Develop acquire knowledge about the influence of genetic alterations o adverse reactions of the drugs, from a perspective of individualized the JIRSE OUTCOMES r the successful completion of the course, learner will be able to Recognize the effect of genetic differences between individuals in the or individuals in the or individual polymorphism as a biomarker for . Utilize and manage the new genomics based tools as they become avail . Examine the applications of genomics principles in drug action and toxicolog	PHARMACOGENOMICS OE-EA 3 AMBLE a a macogenomics involves the study of the relationship between an individual's get response to a drug. Pharmacogenetics, a component of pharmacogenomics, is ionship between a single gene and its response to a drug. a REQUISITE - NIL Image: Comparison of the second drug design to a provide the basic knowledge about pharmacogenomics and drug design to applications for drug action and toxicity. Image: Comparison of drug therapy can be achieved based on a person while reducing unwanted drug effects. Outline the Pharmacogenomics studies on how genetic differences between individualized therapy. Image: Comparison of the drugs, from a perspective of individualized therapy. Formulate on medicine skills acquired by the student and his action in different dividualized therapy. Image: Comparison of the drugs, from a perspective of individualized therapy. JRSE OUTCOMES Image: Comparison of the course, learner will be able to Image: Comparison of the course, learner will be able to Recognize the effect of genetic differences between individuals in the outcome actions of the new genomics based tools as they become available as in the applications of genomics principles in drug action and toxicology	PHARMACOGENOMICS OE-EA 3 0 CAMBLE macogenomics involves the study of the relationship between an individual's genetic ner response to a drug. Pharmacogenetics, a component of pharmacogenomics, is the studionship between a single gene and its response to a drug. Its and the study of the relationship between an individual's genetic ner response to a drug. REQUISITE - NIL Its response to a drug. Its and the study of the relationship between an individual's genetic ner response to a drug. IREQUISITE - NIL Its and the study of the relationship between a single gene and its response to a drug. Its and the study of the student and drug design using genetications for drug action and toxicity. Perform how individualization of drug therapy can be achieved based on a person's genetication unwanted drug effects. Its and the studies on how genetic differences between individual responses to various drugs. Formulate on medicine skills acquired by the student and his action in different patho Develop acquire knowledge about the influence of genetic alterations on the therapeut adverse reactions of the drugs, from a perspective of individualized therapy. IRSE OUTCOMES Its and perspective of individuals in the outcome of Its account of the successful completion of the course, learner will be able to Recognize the effect of genetic differences between individuals in the outcome of Its and manage the new genomics based tools as they become available as Its action the applications of genomics principles in drug action and toxicology It	PHARMACOGENOMICS OE-EA 3 0 0 AMBLE macogenomics involves the study of the relationship between an individual's genetic maker response to a drug. Pharmacogenetics, a component of pharmacogenomics, is the study of ionship between a single gene and its response to a drug. response to a drug action and toxicity. response to a drug action and toxicity. response to a drug attent and toxicity. responses to various drug affects. responses to various drugs. Outline the Pharmacogenomics studies on how genetic differences between individuals car responses to various drugs. responses to various drugs. responses to a drug, from a perspective of individualized therapy. response to a drug attent and his action in different pathologie adverse reactions of the drugs, from a perspective of individualized therapy. response to a drug attent and his action in different pathologie adverse reactions of the drugs, from a perspective of individualized therapy. IRSE OUTCOMES r r r r r r r r r r Describe the role of single nucleotide polymorphism as a biomar

MAP	PING V	VITH	PROC	GRAM	IME (OUT	COMI	ES AN	ND PR	ROGR	AMME	SPECI	FIC O	UTCON	1ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L	
CO2	М	Μ	Μ	Μ	L	-	-	-	Μ	-	L	L	L	L	-
CO3	S	S	S	S	L	-	-	-	Μ	-	L	L	L	L	-
CO4	Μ	Μ	Μ	Μ	Μ	-	-	-	S	-	L	L	Μ	L	-
CO5	L	L	L	L	S	-	-	-	Μ	-	Μ	Μ	S	М	-
S-St	S- Strong; M-Medium; L-Low														

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

S.No.	Name of the Faculty	Designation	Department	Mail ID
			Pharmaceutical	
1	Ms. R. Jaishri	Assistant Professor	Engineering	jaishri@vmkvec.edu.in

MANDATORY COURSES

Course Code	Course Title	Category	L	Т	Р	С
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES :

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, Sundra Yoga Therapy, Asana Publications, 2009

REFERENCES:

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution - Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties -Directive Principles State Policy

UNIT II – Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha **UNIT III – Government of the States**

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayat, Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india
- 3. https://www.sci.gov.in/constitution

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW SCHOOL OF
		ADMINISTRATIVE AND ADJUDICATORY	INDIA UNIVERSITY
		PROCESS	

COURSE D	ESIGNER			
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
1	Dr.Sudheer	Professor	AV School of Law	Sudheersurya18@gmail.com

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE					
		AC	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation

and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

Subject Code		Category	L	Т	Р	Credit
	Gender Equity and Law (Common to all Branches)	AC	0	0	2	0

Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males. Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To sensitize the students regarding the issues of gender and thegender inequalities prevalent in society.
2	To raise and develop social consciousness about gender equity among thestudents.
3	To build a dialogueand bring a fresh perspective on transgender and gender non-conforming individuals.
4	To create awareness among the students and to help them face gender stereotype issues.
5	To help the studentsunderstand the various legal provisions that are available in our society.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the importance of gender equity	Understand
CO2.Initiate the awareness and recognize the social responsibility with regards to gender equity.	Apply
CO3.To develop a sense of inclusiveness and tolerance towards various genders without any discrimination.	Apply
CO4. To evaluate the social issues and apply suitable gender-related regulations for inclusive living.	Evaluate
CO5.To identify and analyze the existing gender inequality problems faced in various institutions.	Analyse
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES	
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO	11 PO12 PSO1 PSO2 PSO3

CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	_	S	-	_	_
S-Str	ong. M	[-Mediı	ım• L_I	l ow											

UNIT –I INTRODUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT –II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

6 hrs

6hrs

6hrs

6 hrs

6 hrs

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur,2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURS	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
	Gnana Sanga Mithra.S	
1		sangamithra@avil.edu.in
	Aarthy.G	
2	-	aarthy@avil.edu.in

ELECTIVE COURSES SPECIALIZATION-3D PRINTING AND DESIGN

	CAD	FOR	ADD	ITIV	E			Cat	egory	L		Т	Р	Cro	edit
	MAN	UFA	CTU	RING				EC	-SE	3		0	0		3
				o imp	oart kr	nowle	dge an	d skill	s relat	ed to C	CAD a	nd itsa	pplicati	ions in	additive
•	equisit		0												
Cour	se Ob	iectiv	es												
		0		sic co	ncept	s and	techni	iques re	elated	to CA	D and	its app	olication	n in AN	1.
2	То со	nstruc	t a CA	AD m	odel u	sing	curves	•							
							urface								
	То со	•													
							ange fo	ormats	and C	AD ap	plicati	ons.			
•		ľ					0			•	•				
Cour	se Ou	tcome	es: O	n the	succe	essful	comp	letion	of the	e cours	se, stu	dents	will be	e able t	0
CO1.	Den	nonstr	ate th	e vari	ous d	esign	using	CAD				1	Underst	tand	
CO2.	Dev	elop (CAD	Mode	l usin	g diff	erent f	forms o	of curv	es			Apply		
CO3.	Dev	elop (CAD	Mode	l usin	g diff	erent f	orms o	of surfa	aces			Apply		
-04															
<u>CO4.</u>								olid m					Apply		
CO5.		e to id icatio		the v	ariou	s CA	D exch	ange f	ormat	s and C	CAD		Apply		
				mme	Out	come	s and	Progr	amme	e Spec	ific O				
		РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	-	-	-	-	-	-	-	-	-	_	М	-	-
CO2	М	S	Μ	-	L	-	-	-	-	-	-	-	S	-	-
CO3	S	М	-	-	L	-	-	-	-	-	-	-	М	-	L
CO4	L	S	-	-	L	-	-	-	-	-	-	-	S	-	L
CO5	S	М	L	М	_	L	_	-	_	_	_	_	S	_	М

S- Strong; M-Medium; L-Low SYLLABUS

2D & 3D TRANSFORMATIONS OF GEOMETRY

Translations, Scaling, Reflection, Rotation, Homogeneous representation of transformation, Concatenation of transformations, Perspective, Axonometric projections, Orthographic and

DESIGN OF CURVES

Analytic Curves, PC curve, Ferguson, Composite Ferguson, curve Trimming and Blending, Bezier segments, de Casteljau's algorithm, Bernstein polynomials, Bezier- subdivision, Degree elevation, Composite Bezier, Splines, Polynomial Splines, B-spline basis functions, Properties of basic functions, Knot Vector generation, NURBS.

DESIGN OF SURFACES

Differential geometry, Parametric representation, Curves on surface, Classification of points, Curvatures, Developable surfaces, Surfaces of revolution, Intersection of surfaces, Surface modeling, 16-point form, Coons patch, B-spline surfaces.

DESIGN OF SOLIDS

Solid entities, Boolean operations, B-rep of Solid Modeling, CSG approach of solid modeling, Advanced modeling methods.

DATA EXCHANGE FORMATS AND CAD APPLICATIONS

Data exchange formats, reverse engineering, modeling with point cloud data, Rapid prototyping,3D Scanning and Digitizing Devices, CAD Model Construction from Point Clouds, Data handling & Reduction Methods, Tessellated Models, STL File Problems, STL File Manipulation and Repair Algorithms Part orientation and support generation, Slicing Algorithms, Tool path generation, Multimaterial representation in AM

Text Books

1 Ibrahim Zeid "CAD/CAM Theory and Practice" TMH, 2009.

2 Anupam Saxena, Birendra Sahay, "Computer Aided Engineering Design", Springer, 2005.

Reference Books

1 Michael E. Mortenson, "Geometric Modeling", Wiley Computer publishing, NY, 1997.

Ian Gibson, "Software Solutions for Rapid Prototyping", Professional EngineeringPublishingLimited, UK, 2002.

S.No	Faculty Name	Designation	Department/Na me of the College	Email id
1	Dr.L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

												T			
									(Categor		Т	Р	Crec	lit
			PO	WDE	RM	ETAI	LUR	GY		EC-SE	3	0	0	3	
Pream This co method	ourse									ies in Po	owder	Metal	lurgy. T	The diff	erent
Prerec	luisite	e – Ni	1												
Cours	e Obj	ective	es												
1 0	Classif	fy the	differ	ent p	owder	s and	the p	repara	tion t	echniqu	les.				
		•						powc		t					
3 H	Explai	n the	differ	ent po	owder	shapi	ng teo	chniqu	ies.						
					ocess		0	1							
							red an	plicat	ions						
_										e course	e stud	ents v	vill he a	able to	
							-		<u>or un</u>	c course	., stuu				at a m d
CO1 CO2							nique nique	s for p	owd	er.				Under Under	
	Diffe	erentia	ate be	tweer	conv	entio				action a	nd				
CO3					echnio		• .1		1.	1 .				Under	
CO4							U			chnique				Under	
CO5	• •						•			anical co	•			Apply	
Mappi	ing wi PO	i <u>th Pr</u> PO	ograi PO	nme PO	Outco PO	omes PO	and P PO	rogra PO	amme PO	e Specif PO	ic Out PO	tcome PO	s PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	М	-	М	-	М	-	-	-	-	-	-	М	-	-
CO2	М	S	_	S	_	М	_	_	_	_	_	_	М	_	_
CO3	M	S	_	M	_	L	_	_	_	_	_	_	S	_	_
															т
CO4	L	M	-	M	-		-	-	-	-	-	-	S	-	L
CO5	М	М	-	М	-		-	-	-	-	-	-	S	-	L
S- Stro	_		dium	; L-L	OW										
SYLL	ABUS	5													

INTRODUCTION

General Concepts: Introduction and History of Powder Metallurgy (PM), Present and Future Trends of PM- Powder Production Techniques: Different Mechanical and Chemical methods, Atomization of Powder, other emerging processes, Performance Evaluation of different Processes, Design & Selection of Process.

CHARACTERISATION

Characterisation Techniques: Particle Size & Shape Distribution, Electron Microscopy of Powder, Interparticle Friction, Compressionability, Powder Structure, Chemical Characterization

POWDER SHAPING

Powder Shaping: Particle Packing Modifications, Lubricants & Binders, Powder Compaction & Process Variables, Pressure & Density Distribution during Compaction, Isostatic Pressing, Injection Molding, Powder Extrusion, Slip Casting, Tape Casting, Analysis of Defects of Powder Compact, Laser Engineering Net Shaping (LENS)

SINTERING

Sintering: Theory of Sintering, Sintering of Single & Mixed Phase Powder, Liquid Phase Sintering, Sintering Variables, Modern Sintering Techniques, Physical & Mechanical Properties Evaluation, Structure-Property Correlation Study, Modern Sintering techniques, Defects Analysis of Sintered Components

APPLICATIONS

Application of Powder Metallurgy: Filters, Tungsten Filaments, Self-Lubricating Bearings, Porous Materials, Biomaterials etc.

Text Books

- P. C. Angelo and R. Subramanian: Powder Metallurgy- Science, Technology andApplications, PHI, New Delhi, 2008.
- 2 ASM Hand Book, vol. 7: Powder Metallurgy, ASM International.

Reference Books

	G.S.Upadhyaya Powder Metallurgy Technology, Cambridge International Science
1	Publishing, 2002.

J. S. Hirschhorn: Introduction to Powder Metallurgy, American Powder MetallurgyInstitute, Princeton, NJ, 1976

			Department/ Name of the	
S.No	Faculty Name	Designation	College	Email id
		Associate		
1	Dr.L.Prabhu`	Professor	Mech / AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

	ADD	TIVI	а ма	NUF	лст	HRIN	IC IN	Ca	tegory	7	L	Т	Р	Crea	lit
	ADD				-	-	TIONS	S E	C-SE		3	0	0		3
Pream															-
			0		-		ledge a	nd dis	scuss a	about	the r	ole of			
				III IIIe	uicai	appin	cations								
Prere	equisit	e - N	11												
Cour	se Ob	jectiv	es												
1 '	To un	dersta	nd th	e pro	cedu	re inv	volved	in 3D	data	capt	ure				
2	To dis	cuss r	ole of	f bio 1	nodel	ing ar	nd virtu	al mo	dels ir	n med	licine.				
3	To ide	entify	vario	us bio	omate	erials	and its	s appl	ication	ns.					
4	To dev	velop	the b	io im	olants	and r	nedical	devic	es.						
5	To des	sign a	nd de	evelop	the	medic	cal devi	ces.							
Cour	se Ou	tcome	es: O	n the	succe	essful	compl	etion	of the	e cou	rse, s	tudent	s will b	e able	to
~~ .			-	edure	invo	lved i	n 3D da	ata cap	pture a	ind					
CO1.		cessing		vietuo	Imod	aland	l hia m	adalin	a in			Unc	lerstand		
CO2.		licine	lous	viitua	i mou		l bio m	odenn	g m			App	oly		
CO3.	Kno	w abo	ut the	e vario	ous bi	omate	erials a	nd its	appl	icatio	ons.	Арг	oly		
604	Dav	alanı	amiou	hiai	mmlor		nahian	notori							
CO4.		-					ng bion					Apr			
CO5.							e medic					Арр			
Mapp	oing w	vith P	rogra	imme	Out	come	s and l	Progra	amme	e Spe	cific (Outco	nes PS	PS	PS
		-	-	-	-			-			РО	РО		0	0
COs	PO1	РО 2	PO 3	PO 4	РО 5	РО 6	PO 7	PO 8	PO 9	PO	11	12	1	2	3
CO1	S	L	-		-	-	-	-	-	-	_	_	М	_	_
CO2	S	S	М	_	М	_	_	-	_	_	_	_	S	_	_
											-			-	-
CO3	М	S	L	-	Μ	-	-	-	-	-	-	-	L	-	-
CO4	Μ	L	-	-	L	-	-	-	-	-	-	-	М	-	-
CO5	М	L	M	M	-	-	-	-	-	-	-	-	S	-	-
S- Sti	rong;	M-M	ediun	n; L-	LOW										

3 DIMENSIONAL DATA CAPTURE AND PROCESSING

Introduction to medical imaging, X-Ray technology, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound imaging, 3-D laser scanners, Industrial CT Scanners, 3D reconstruction and Reverse Engineering (RE)

BIO-MODELLING AND VIRTUAL MODELS IN MEDICINE

Surgical applications of virtual models in Cranio-maxillofacial biomodelling, Oral and Maxillofacial surgery, customized cranio- maxillofacial prosthetics, Biomodel-guided stereotaxy, Vascular biomodelling, Skull-base tumour surgery, Spinal surgery and Orthopaedic biomodelling.

BIOMATERIALS

Introduction to biomaterials, metallic biomaterials, ceramic biomaterials, polymeric biomaterials, composite biomaterials, biodegradable polymeric biomaterials, tissue- derived biomaterials

DESIGN AND FABRICATION OF CUSTOMIZED IMPLANTS AND PROSTHESIS

Cranium implants, Hip implants, Knee implants, Inter vertebral spacers, Buccopharyngealstent, Tracheobronchial stents, Obturator prosthesis and Tissue engineering scaffolds.

DESIGN AND PRODUCTION OF MEDICAL DEVICES

Biopsy needle housing, Drug delivery devices, Masks for burnt victims, Functional prototypes help prove design value.

Text Books

1

Ian Gibson, Advanced Manufacturing Technology for Medical Applications, JohnWiley, 2005.

Reference Books

Paulo Bartolo and Bopaya Bidanda, Bio-materials and Prototyping Applicationsin 1 Medicine, Springer, 2008.

Andreas Gebhardt, Understanding Additive Manufacture: Rapid Prototyping, RapidTooling and Rapid Manufacture, Hanser Publishers, 2013. Joseph D. Bronzino, The Biomedical Engineering Hand Book, 3rd Edition, CRC Press, 2006.

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	Dr.L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

	RAPI			IG AN FRIA				Cate	egory	L		Т	Р	Cr	edit
				CATI				EC-S	SE	3		0	0		3
Prea	mble														
		4			cours	e is d	esigne	d to im	npart k	knowle	dge an	d disc	uss abo	out the	rapid tooling
and it	s indus	strial a	pplica	ations											
	requisi														
Cou	rse Ot	ojectiv	ves												
1	To dis	scuss t	he ba	sic co	ncep	ts and	techni	iques in	n rapic	d toolii	ng and	its pro	cess m	odeling	7
2	To de	velon	varic	nus de	liver	v eve	tem in	volved	lin A	M ma	chines	and	system	2	
3						• •							•		~
												•	Bridge '	1001115	2
4						•		ing in a							
5	To dis	scuss a	about	the ra	pid to	oling	equip	ment ir	n medi	ical an	d autor	notive	field		
Cou	rse Ou	tcom	es: O	n the	succ	essful	comp	letion	of the	e cour	se, stu	dents	will be	e able t	0
CO1		lerstai its pr				ncepts	s and t	echniq	ues in	rapid	tooling		Unders	tand	
CO2		oly the [mach	-				n desig	gning a	ı deliv	ery sys	stem in		Apply		
CO3	App . Brid			ect M	ethod	s for l	Rapid '	Tool P	roduct	tion an	d Rapi		Apply		
				vario	us rol	es of	Rapid	Toolin	g in a	dvance	ed cast				
CO4							-					1	Unders	tand	
CO5		e to co omotiv			rapic	l tooli	ng equ	ipmen	t in m	edical	and		Apply		
					Out	come	s and	Progra	amme	e Spec	ific O	•			
	P	PO	PO		PO	I I	PO	PO	PO			PO1		PSO	PSO
со	_	2	3	4	5	6	7	8	9	0	1	2	1	2	3
COI	S	L	_	-	-	_	-	_	_	-	-	-	М	_	_
CO2		М	М	-	М	_	-	_	_	_	_	_	S	_	_
							-			_	_	_		_	
C03	3 S	Μ	-	L	L	-	-	-	-	-	-	-	Μ	-	L
CO	M	S	-	-	L	-	-	-	-	-	-	-	М	-	-
COS		L	М	М	-	-	-	-	-	_	-	_	М	-	L
S- S	trong;	M-M	ediun	n; L-	Low										

INTRODUCTION TO RAPID TOOLING & PROCESS MODELING

Convectional Tooling Vs. Introduction to modeling, Concurrent Rapid Product and Process Development, Finite Element Modeling and Simulation, Injection-molding, Die-casting, Blowmolding, Thermoforming Processes modeling

INDIRECT METHODS FOR RAPID TOOL PRODUCTION AND RAPID BRIDGE TOOLING

Role of Rapid Soft Tooling methods in tool production, Introduction to Bridge tooling, CAFÉ Bridge tooling, Direct AIM Rapid Bridge tooling, Rapid Tool Rapid Bridge tooling, Shrinkage Variation, Random- noise Shrinkage, Metal deposition tools, RTV tools, Epoxy tools, Ceramic tools, Cast Metal tools, Investment-cast Rapid Production tooling, Fusible metallic cores, Rapid Production tooling for Precision Sand Casting, Keltool process.

DIRECT METHOD FOR RAPID TOOL PRODUCTION

Role of direct methods in tool production, Direct ACES Injection moulds, Laminated Object Manufactured (LOM) tools, DTM Rapid Tool, Rapid Steel 1.0, Rapid Steel 2.0, Copper Polymide tools, Sand Form tools, EOS Direct Tool Process, Direct Metal Tooling using 3DP, TopographicShape Formation (TSF) tools.

THE ROLE OF RAPID TOOLING IN INVESTMENT-CASTING & SAND CASTING APPLICATIONS

Introduction, Rapid Tool Making for investment Casting, Rapid Tooling for developing Casting Applications, Sand casting Process, Tool Design and Construction for Sand Casting, Sand Casting Dimensional Control, Tooling Alternative Selection Case Studies

RAPID TOOLING IN THE MEDICAL DEVICE & AUTOMOTIVE INDUSTRY

Introduction, Investment Casting and Conventional Wax Pattern Tooling, Conventional Tooling Manufacture Vs. Rapid Tooling Manufacture, Medical Case studies like Hip Stem and Knee implants. Approaching Niche Vehicle Markets, Accelerating Product Developments, Utilizing Rapid Prototyping and Manufacturing, Machining Laminates, Rapid Prototype Stages, Subsequent Casting Operations, Rapid Tooling Developments, Case Studies.

Text Books

- D.T.Pham and S.S Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping & Rapid Tooling, Springer, 2001.
- Peter Hilton and Paul F Jacobs, Rapid Tooling Technologies and Industrial
 Applications, Marcel Dekker Inc, New York, 2001

Reference Books

Wanlong Wang, Henry W. Stoll and James G. Conley, Rapid Tooling Guidelines forSand 1 Casting, Springer, 2010.

Andreas Gebhardt, Understanding Additive Manufacture: Rapid Prototyping, RapidTooling and Rapid Manufacture, Hanser Publishers, 2013.

Course Designers

2

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	Dr.L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

										Category		Т	P	Cree	lit
			PO	LYM	ER E	NGIN	IEER	ING		EC-SE	3	0	0	3	
This		e provi g doma								risation t sign	techn	iques	and app	lication	in
Prer	equis	i te – N	IL												
Cou	rse Ol	ojectiv	es												
1	Expl	ain the	differ	ent no	olvme	rs and	l their	nrone	erties						
2		ain the						· ·							
3	Expl	ain the	differ	ent m	ethod	s of p	olvme	erizati	on.						
4															
5															
Course Outcomes: On the successful completion of the course, students will be able to															
CO1	Explain the relationship between polymer properties (thermal, rheological,														
CO2	Re	late po	lymer	prope	erties t	thei	ir proc	cessing	g and	uses for	addit	ive		Under	stand
CO3		plain n oolyme		ls for o	detern	nining	g the n	nicros	tructu	ire and n	noleci	ular w	eight	Under	stand
005	-	2		ent typ	bes of	polyn	neriza	tion p	roces	s, polym	er pro	ocessi	ng and	Chuch	stand
CO4	the	signif	icance	for A	M.			•			•		0	Under	stand
CO5		derstai vice ma				s and	desig	n conc	cepts	for use o	f poly	vmer i	n	Under	stand
Map	ping	with P	rogra	mme	Outco	omes	and F	Progra	amme	e Specifi	c Out	tcome	s	1	1
COs	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
C01		M	M	-	M	M	_	-	-	M	М	-	M	_	_
CO2		S	S	-	S	М	-	-	-	M	Μ	-	M	-	-
CO3	<u> </u>	-	M	-	S	-	М	-	-	М	М	-	S	-	-
CO4	M		М	S	М	-	-	М	-	М	М	-	S	-	-
CO5	5 M	М	М	М	М			М	-	М	М	-	S	-	-
S- St	S- Strong; M-Medium; L-Low														
	87			,											

INTRODUCTION

Basic Concepts: Classification of polymers, Concept of functionality, Polydispersity and Molecular weight [MW], Molecular Weight Distribution [MWD], various methods of determination of MWD.

KINETICS AND MECHANISM

Polymerization Kinetics Free radical polymerization, Mechanism of Polycondensation

POLYMERISATION

Techniques of Polymerization and nano composites: Techniques of polymerization, bulk, emulsion, suspension, Polymer composites and nano-composites

POLYMER PROCESSING

Methods of spinning for additive manufacturing: Wet spinning, Dry spinning. Biopolymers, Compatibility issues with polymers. Moulding and casting of polymers, Polymer processing techniques and the effect of these processing techniques on polymer structure,

DESIGN OF PLOYMERIC DEVICES

Designing of polymeric devices and polymers used for Additive: Aspects of designing polymeric devices and polymer additives, Polymers used for additive manufacturing : polyamide, PF resin, polyesters etc

Text Books

1	G Odian Principles of Polymerization, Wiley Inerscience Publisher John Wiley and Sons,
	4 th Edition, 2004.
•	

2 V.R. Gowarikar Polymer Science, New Age International Publication 2019.

Reference Books

Fred.W. Billmeyer Jr Text book of Polymer Science, Wiley Inter science Publisher JohnWiley and Sons, 3rd edition

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	Dr.L.Prabhu`	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

			PRIN		G AN	D			egory			T	P	Cre	edit
Pream	hlo	DE	SIGN					EC	-SE	3		0	0		3
		desi	gned	to im	part l	knowl	edge a	and ski	ills rel	lated to	5 3D p	orinting	5		
Techno	ologies	•													
Prereg															
Course Objectives															
1 To discuss the basic concepts and procedure followed in 3D printing methods.															
2 To construct a CAD model for a required product.															
3 '															
4 '															
	To ide					•									
						essful	comp	letion	of the	e cours	se, stu	dents	will be	able t	0
	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	Dem	onstr	ate th	e vari	ous 3	D Prii	nting r	nethod	S			τ	Jnderst	and	
con			CAD	Mode	ls, Im	port a	und Ex	port C.	AD da	ata and	genera		. 1		
CO2.	.511	file.										A	Apply		
CO3.	Sele	nta ci	pecifi	c mat	erial f	or the	given	applic	ation				Apply		
005.		l u s	Jeenn	c mat				appile	ation.				<u>ippiy</u>		
CO4.	Seleo	ct a 3	D prii	nting	proce	ss for	an app	olicatio	n.			Ā	Apply		
			•				• •						112		
CO5.	Able	to id	entify	the F	Produ	ct defe	ects at	fter pos	st proc	cessing		A	Apply		
Mapp	oing w	ith P	rogra	mme	Out	come		Progra	amme	e Speci	ific Ou	itcom	es		
		PO	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	-	-	-	-	-	-	-	-	_	-	М	-	-
CO2	S	S	М	-	М	-	-	-	-	-	_	-	М	-	-
CO3	М	М	L	L	L	-	-	-	-	-	-	-	М	-	-
CO4	CO4 S M M M														
CO5	М	S	М	М	-	-	-	-	-	_	-	-	L	-	L
S- Sti	rong; I	M-M		n; L-	Low	I			•	·			·		

3D PRINTING & CAD FOR ADDITIVE MANUFACTURING

Introduction, Process, Classification, Advantages, Additive V/s Conventional Manufacturing processes, Applications. CAD Data formats, Data translation, Data loss, STL format.

ADDITIVE MANUFACTURING TECHNIQUES

Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process parameter, Process Selection for various applications. Additive Manufacturing Application Domains: Aerospace, Electronics, HealthCare, Defence, Automotive, Construction, Food Processing, Machine Tools

MATERIALS

Polymers, Metals, Non-Metals, Ceramics. Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties. Support Materials

ADDITIVE MANUFACTURING EQUIPMENT

Process Equipment- Design and process parameters, Governing Bonding Mechanism Common faults and troubleshooting, Process Design

POST PROCESSING & PRODUCT QUALITY

Post Processing Requirement and Techniques, Product Quality Inspection and testing, Defects and their causes

Text Books

	Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies:Rapid
1	Prototyping to Direct Digital Manufacturing", Springer, 2010.

2 Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.

Reference Books

- CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles andApplications", World Scientific, 2017.
- Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid
 Tooling, Rapid Manufacturing", Hanser Publisher, 2011.

J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in 3 Material Science, 2013.

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	Dr.L.Prabhu	Associate Professor	Mech / AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

										Category			Р	C	redit
			DVA	NCED	1 2 N D	DINT	INC								
Pream									EC-S	SE		0 0	4		2
This co				Dasic K	nowie	euge at	Jour 5.	D prin	ung.						
Prerec															
Cours		xplain t		vice of	CAD	model	ling T	achnic	11100						
		•							lucs.						
	 2 To construct the STL file for a given design. 3 Make use of software, to perform the simulation. 														
	Make use of software , to perform the simulation. To demonstrate the orientation ,part slicing, supporting and tool path Generation.														
4	10 0	emonst	trate th	e oriei	11.21101	i,part	shcing	<u>z, supp</u>	orting	and tool p	bath Gel	neration	1.		
5	To d	evelop	a worl	king m	odel u	using 3	D prii	nter.							
Cour	se Ou	tcome	s: On	the su	ccessf	ul con	npleti	on of t	the cou	ırse, stud	ents wil	ll be ab	le to		
Course Outcomes: On the successful completion of the course, students will be able toCO1.To demonstrate the working of 3D printerU													Und	lerstand	
CO2.	C	onstruc	et a ST	L file	for a g	iven d	esign						App	oly	
CO3.	A	pply th	e softv	vare fo	or perf	orming	g the s	imulat	ion				App	oly	
				epts of	f orier	itation	, part s	licing,	suppo	orting and t	toolpath	ı			
CO4.	ge	eneratio	on										App	oly	
CO5		noluzo	tha ta	al nath	cimul	otion	and a	noroti	on of u	vorking m	odole		Ano	lyze	
							Ŭ						Alla	ilyze	
мар	PING V	PO	PO	PO	PO	nes an PO	a Pro PO	gram PO	ne Sp PO	ecific Out	PO1	PO1	PSO	PSO	PSO
Cos			3	4	5		7	8	9	PO10	1	2	1	2	3
CO1	S	L	L	-	-	-	-	-	-	-	-	L	М	-	S
CO2	М	М	М	-	-	-	-	-	М	-	-	М	L	-	М
CO3	S	М	М	-	-	-	-	-	S	-	-	М	М	-	S
CO4	L	М	L	_	_	_	-	_	М	-	-	М	S	-	S
CO5	L	S	L	-	S	-	-	-	М	-	-	S	S	-	М
S- Strong; M-Medium; L-Low															

SYLLABUS: LIST OF EXPERIMENTS:

- 1. Review of CAD Modeling Techniques and Introduction to RP
- 2. Forming Groups & Assigning Creative Idea
- 3. Generating STL files from the CAD Models & Working on STL files
- 4. Modeling Creative Designs in CAD Software
- 5. Assembling Creative Designs in CAD Software
- 6. Processing the CAD data in Catalyst software (Selection of Orientation, Supports generation, Slicing, Tool path generation)
- 7. Simulation in Catalyst Software
- 8. Sending the tool path data to 3D Printer
- 9. Fabricating the physical part on 3D Printer
- 10. Removing the supports & post processing (cleaning the surfaces)
- 11. Demonstrating Creative Working Models
- 12. Converting CT/MRI scan data into STL file using MIMICS software (Demo)

Text Books

ICA DU	5115			
1	3D Printing Lab ma	nual		
Course]	Designers			
		D I I	Department/	
S.No	Faculty Name	Designation	College	Email id
			Mech/	
1	Dr.L.Prabhu	Assoc.Professor	AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

	ADDI				АСТІ	URIN	G	Cat	egory	L		Т	Р	Cre	dit
	MAC SYST		LS AN	D				EC	-SE	3		0	0		3
		s des	igned	to ir	npart	knov	vledge	and d	liscuss	about	t the a	dditiv	eManu	facturin	g machines
Prerec	quisite	– Ni	1												
Cours	e Obj	ective	S												
1	To dis	cuss t	he ba	sic co	oncept	s and	techni	ques in	n Add	itive M	Ianufa	cturing	g machi	ines & S	ystems.
2	To dev	velop	vario	ous de	eliver	v svst	em in	volved	lin A	M ma	chines	and s	systems	5.	
													ztion Pr		
4	To ide	ntify	vario	us co	ontroll	ers u	sed in	AM	machi	nes an	id syst	ems.			
5	To dis	cuss a	bout	the ra	pid to	oling	equip	ment s	ystem	IS.					
Cour	se Out	tcome	es: O	n the	succe	essful	comp	letion	of the	e cours	se, stu	dents	will be	e able to)
CO1.			ate th	e vari	ous a	dditiv	e mani	ufactur	ing m	achine	s and	τ	Unders	tand	
CO2.	AM	mach	ines a	and sy	stem					ery sys		1	Apply		
CO3.			ical aı	nd op	toelec	tronic	comp	onents	in Al	M mac	hines a		Apply		
CO4.		•		ous co	ntroll	ers in	additi	ve mar	nufacti	uring n	nachin		Unders	tand	
CO5.	Able	e to co	onstru	ct the	rapid	l tooli	ng equ	ipmen	t				Apply		
Mapp										e Speci	ific O	itcom	es		
		PO	РО	РО	PO	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	Μ	-	-
CO2	М	S	Μ	-	ML	-	-	-	-	-	-	-	L	-	-
CO3	М	М	-	-	L	-	-	-	-	-	-	-	М	-	-
CO4	L	М	-	-	L	-	-	_	-	-	-	_	М	-	-
CO5	М	S	М	L	-	_	-	-	-	-	-	-	М	-	
S- Sti	rong;	M-M	ediun	n; L-	Low										

CONSTRUCTION OF BASIC AM MACHINES

Construction of CNC Machine - Axes, Linear motion guide ways, Ball screws, Motors, Bearings, Encoders/ Glass scales, Process Chamber, Safety interlocks, Sensors

ENERGY DELIVERY, MATERIAL DELIVERY, NOZZLE AND HEATING SYSTEMS

Lasers & electron beam, Laser scanning system and Fibre Delivery Systems, Powder feeding and Wire feeding systems, Multi-material processing, Co-axial & Lateral Nozzles.

OPTICAL, OPTOELECTRONIC COMPONENTS

Laser, basic laser optics, collimators, beam expanders, optic fibres, metal optics etc.

CNC CONTROLLER & PROCESS CONTROLLER IN AM

CNC Controller, Process Controller – Process parameters, Scanning strategies – Raster scan, Patterned Vector Scanning and Hatching Patterns.

RAPID TOOLING EQUIPMENT & ENVIRONMENTAL CONTROL SYSTEMS

Introduction, Classification of Rapid Tooling, Direct and Indirect Methods, Applications Environmental controller for temperature, oxygen level, humidity etc.

Text Books

Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles

1 and Applications: 4th Edition of Rapid Prototyping.

Andreas Gebhardt, Understanding Additive Manufacturing: Rapid Prototyping, RapidTooling,
2 Rapid Manufacturing, Hanser Publishers, Munich, Hanser Publications, Cincinnati.

Reference Books

Tooling: Technologies And Industrial Applications by Jacobs, Paul F.Jacobs, Kindle Edition

1

D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of

2 Rapid Prototyping and Rapid Tooling.

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1	Dr.L.Prabhu	Assoc.Professor	Mech/ AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

								Ca	ategor	y	L	Т	Р	Cr	edit	
			OTO THO	TYPI DS	NG			E	C-SE		3	0	0		3	
Pream	ble : T	o stud	ly the	Proce	ess inv	volved	l and t	the me	ethodo	ology i	nvolve	d in buil	lding a	Prototy	/pe.	
Prereg	uisite	: NIL														
Cours	e Obje	ctives														
1 T	To Understand the prototyping methodology using 3D Printer.															
2 T	To know the product life cycle of the Prototype.															
3 T	o Understand the Economic aspect of prototype.															
4 T	o Understand the Functional aspect of prototype.															
5 T	o Know the process flow and methods involved in development of prototype.															
Course	Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	To Understand the conversion of a CAD file format to a printable													Understand		
CO2.	To ur upon				cycle	ofap	protot	ype ar	nd dev	elopm	ent ba	sed	Analyze			
CO3.	To de	evelop	an ec	conorr	nic mo	odel o	r a pro	ototyp	e for t	esting	•		Analy	yze		
CO4.	To de or fur	-		oction	al mo	del or	a mir	niature	e base	d on th	e geor	netry	Analyze			
CO5.	To ur	nderst	and th	ie vari	ous n	nethoo	ds foll	owed	in dev	velopii	ng a m	odel	Unde	rstand		
Маррі	ing wit	h Pro	gram	me O	utcor	nes ai	nd Pr	ograr	nme S	Specifi	c Out	comes				
PP	P	Р	Р	Р	Р	Р	Р	P	P	P	Р		PS	PS	PS	
	0	0	0	0	0	0	07	0	0	0	0	DOIL	0	0	0	
COs	1	2	3	4	5	6	7	8	9	10	11	PO12	1	2	3	
CO1	S	L	-	-	-	-	-	-	-	-	-	-	М	-	-	
CO2	М	S	М	L		-	-	-	-	-	-	-	L	-	-L	
CO3	М	L	L	-	М	-	-	_	-	-	-	-	L	-	-	
CO4	М	L	S	М	S	-	-	-	-	-	-	-	М	-	-	
CO5	М	М	М	S	М	_	-	_	-	-	_	-	М	-	L	

SYLLABUS

INTRODUCTION TO PROTOTYPING

Introduction to Prototyping – Product development – Prototyping principles – Data processing functions – Engineering aspects & Tactics in prototyping – Data Dictionaries - Integrated software workbench tools

PROTOTYPE - LIFE CYCLE MANAGEMENT

Prototyping process – Product development - Types of Information system – Approaches to Systems Development – Business model - Technology model – Project management

ECONOMIC ASPECTS OF PROTOTYPE

Rapid manufacturing process optimization – Factors influencing accuracy – Errors in finishing -Training procedures – Tools & Techniques for prototype inspection – Robotic & computer aided simulation system

FUNCTIONAL ASPECTS OF PROTOTYPE

Factors favouring prototype - Assumptions in Prototype - Test plan - Operational documentation and procedures - Data size and operational impact analysis - Risk analysis.

PROTOTYPING METHODOLOGY

Classification of prototypes - Throw-away Prototyping - Evolutionary Prototyping - Low Fidelity Prototyping - High Fidelity Prototyping - Classification of user interface prototypes - Presentation Prototypes - Functional Prototypes - Breadboards - Pilot Systems.

Text Books

1

Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010

Reference Books

1 D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.Praveen	Asst. Prof (GR-II)	Mech / AVIT	praveen@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

			TH	EOD	VOE	20			Ca	ategor	• v	L	Т	Р	Cr	edit
				eor Intii	Y OF NG	5D				C-SE	-	3	0	0		3
Prea To st appli	tudy	the v	ariou	s theo	ries o	f 3D p	orintir	ng and	the t	echno	logies	used d	lependin	g upon	the	
Prer	equ	isite	NIL													
Cour	rse (Objeo	ctives													
1	Un	derst	and th	e fun	damei	ntals c	of vari	ous A	dditiv	ve Ma	nufact	uring 7	Fechnolo	ogies.		
2																
3	То	To know about development of prototypes using solid based 3D printing systems.														
4	To	know about development of prototypes using Powder based 3D printing systems.														
5	To	o understand the recent trends in various industries.														
Course Outcomes: On the successful completion of the course, students will be able to Understand the fundamentals of Additive Manufacturing																
CO1.						neerin								Unde	rstand	
CO2.		Unde and S				-	y to n	nanufa	acture	the pr	roduct	s using	g SLA	Unde	rstand	
CO3.		Unde and F				-	y to n	nanufa	acture	the pr	oducts	s using	LOM	Unde	rstand	
CO4.						dolog ologie	•	nanufa	acture	the pi	roduct	s using	SLS	Unde	rstand	
CO5.		Unde its ap			recent	trend	s in 3	D prir	nting i	n vari	ous in	dustrie	s and	Unde	rstand	
					ma A	uteor	noc oi	nd Dr	oaror	nma S	Spacifi	c Out	pomos			
•		PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО		PSO	PSO	PSO
COs		1	2	3	4	5	6	7	8	9	10	11	PO12	1	2	3
C01	1	S	L	-	S	-	-	-	-	-	-	-	-	L	-	-
CO2	2 M L L L											-	М	-	М	
CO3	3	М	М	L	-	S	-	-	-	-	-	-	-	L	-	L
CO4	1	S	М	L	М	S	-	-	-	-	-	-	_	S	-	-
CO5	5	S	М	S	S	М	-	_	_	_	-	_	_	L	_	_

SYLLABUS

INTRODUCTION TO ADDITIVE MANUFACTURING

Introduction, Prototyping fundamentals, Historical development, Advantages of AMT, Commonly used terms, process chain, 3D modelling, Data Conversion, and transmission, Checking and preparing, Building, Post processing, RP data formats, Classification of AMT process, Applications to various fields

LIQUID BASED SYSTEMS

Stereo lithography apparatus (SLA): Models and specifications, process, working principle, photopolymers, photo polymerization, layering technology, laser and laser scanning, applications, advantages and disadvantages, case studies. Solid ground curing (SGC): Models and specifications, process, working ,principle, applications, advantages and disadvantages, case studies.

SOLID BASED SYSTEMS

Laminated object manufacturing (LOM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies. Fused Deposition Modeling (FDM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies, practical demonstration

POWDER BASED SYSTEMS

Selective laser sintering (SLS): Models and specifications, process, working principle, applications, advantages and disadvantages, case studies. Three dimensional printing (3DP):Models and specification, process, working principle, applications, advantages and disadvantages, case studies.

RECENT TRENDS IN ADDITIVE MANUFACTURING

Scalability form Prototyping to Mass Production –Flexibility in multi jet printing – Multi material printing – Application of 3D Printing in Automotive, Medical, Aero space and Defence industries – Case studies

Text Books

1 Paul F. Jacobs, "Rapid Prototyping and Manufacturing"–, ASME Press, 1996

Reference Books

Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 1 2nd Ed, 2014.

S.No	Faculty Name	Designation	Department/Name of the College	Email id				
1	R.Praveen	Asst. Prof –GR-II	Mech / AVIT	praveen@avit.ac.in				
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in				

ELECTIVE COURSES SPECIALIZATION-AUTOMATED DESIGN AND MANUFACTURING ENGINEERING

		OITIV	E MA	NU	FA CT	TIRT	NG	Cat	egory	L		Т	Р	Cre	edit				
		Р	ROC	ESSI ICAT	ES Al	ND			-SE	3		0	0	3					
Prea	nhla	A	TPL.	ICAI	IUN	3		EU	-9E	3		U	U	3					
11041	The course is designed to impart knowledge and discuss about the additive																		
Manuf	Anufacturing processes and applications.																		
Prere	Prerequisite – Nil																		
Cour	Course Objectives																		
1																			
2																			
3	To identify the guidelines to be followed in AM selection Process																		
4	To identify various Additive manufacturing applications																		
5	To discuss about the post processing procedure in Additive Manufacturing Processes.																		
	_		_				01					_							
Cour	se Ou	tcome	es: O	n the	succ	essful	comp	oletion	of the	e cours	se, stu	dents	will be	e able t	0				
CO1.	Den	nonstr	ate th	e vari	ous a	dditiv	e man	ufactur	ing pr	ocesse	s	1	Unders	tand					
000		•	-			ved in	n desig	ning a	n addi	tive			A 1						
CO2.	man	ufactu	iring	proce	SS							1	Apply						
CO3.	Und	anaton	dand	اممعا	. tha	anida	lineer	ubile co	lastin		1	200	Annly						
005.								vhile se					Apply						
CO4.			id the	vario	us ap	plicat	ion of	additiv	e man	ufactu	ring	1	Unders	tand					
	1																		
CO5.	Able	e to id	entify	the p	ost p	roces	sing pr	ocedur	e in A	M pro	cesses	1	Apply						
Map	ping w	vith P	rogra	mme	Out	come	s and	Progra	amme	Spec	ific O	utcom	es						
		РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO				
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3				
CO1	S	L	-	-	-	-	-	-	-	-	-	-	М	-	М				
CO2	S	S	М	-	М	-	-	-	-	-	-	-	- S - M						
CO3	М	М	-	-	L	L	-	-	-	-	-	-	L	-	L				
CO4	М	S	_	_	L	-	_	-	_	-	-	_	М	-	L				

SYLLABUS

INTRODUCTION TO ADDITIVE MANUFACTURING

Introduction to AM, AM evolution, Distinction between AM & CNC machining, Advantages of AM,AM process chain - Conceptualization, CAD, conversion to STL, Transfer to AM, STL file manipulation, Machine setup, build, removal and clean up, post processing.

DESIGN FOR AM

Motivation, DFMA concepts and objectives, AM unique capabilities, Exploring design freedoms, Design tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of Undercuts and Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part Count in an Assembly, Identification of markings/ numbers etc.

CLASSIFICATION OF AM PROCESSES & GUIDELINES FOR PROCESS SELECTION

Liquid polymer system, discrete particle system, molten material systems, solid sheet system, selection methods for a part, challenges of selection, example system for preliminary selection, production planning and control.

AM APPLICATIONS

Functional models, Pattern for investment and vacuum casting, Medical models, art models, Engineering analysis models, Rapid tooling, new materials development, Bi-metallic parts, Remanufacturing. Application examples for Aerospace, defense, automobile, Bio-medical and

POST PROCESSING OF AM PARTS

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques.

Text Books

	Ian Gibson,	David W	Rosen,	Brent	Stucker.,	"Additive	Manufacturing	
1	Technologies: Rapid P	rototyping to	Direct Dig	gital Man	ufacturing"	, Springer, 2	2010	
	Charles Validation	. Val Eat	6D	- 4 - 4	D.1.1.1.	· · · · · · · · · · · · · · · · · · ·	- + · · · · · · · · · · · · · · · · · ·	1

Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World
 Scientific, 2003.

Reference Books

- Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, **1** 2006.
- D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid
 Prototyping and Rapid Tooling, Springer 2001

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id

1	Dr.L.Prabhu	Assoc.Professor	Mech/AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

								Categ	gory						
			ÆCI	TT A N T		DE		FCS	F			T	P	_	redit
		N	MECI	HAN	ICAI	L DE	SIGN	EC-S	E	3		0	0		3
Prear To i		uce th	e con	cepts	of M	lecha	nical d	lesign p	roces	ss in fi	nding	a solı	ution fo	r an	
	ineeri			-				0 1							
Prere	quisit	e - N	IL												
Cours	se Ob	jectiv	ves												
1 7	Го dis	cuss t	the ba	nsic c	oncep	ots of	mecha	anical d	esign	l					
2	Го арі	oly the	e con	cepts	of en	ginee	ring de	esign							
		To apply the concepts of engineering design To identify the steps involved in product planning and development													
		To make use of the conceptual design concepts in finding solution for a problem													
5	Го ар	To apply embodiment design concepts effectively													
Cours	se Ou	tcom	es: O	n the	e suco	ressfu	ıl com	pletion	of t	he cou	irse, s	tuden	ts will	be abl	e to
								-			,				
CO1.								in Mec gineerin			<u> </u>		Unders	tand	
CO2.	tech	nical	syster	ms		/iitais		,meerm	5 003		u		Apply		
G 02				teps i	nvolv	ved in	ı prodı	uct plar	nning	and					
CO3.		elopm											Apply		
CO4.	Den	nonstr	ate th	ne con	ncept	ual de	esign f	or a eng	gineer	ring pr	oblem		Apply		
CO5.	Illus	strate	the E	mboc	limen	t desi	ign						Apply		
Mapp	oing v	vith P	rogra	amm	e Ou	tcom	es and	l Prog	ramn	ne Spe	cific (Outco	mes		
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS O	PS O	PS O
COs	1	2	3	4	5	6	7	8	9	10 10	PO 11	PO 12	1	2	3
CO1	М	М	Μ	-	-	-	-	-	-	-	-	-	M	-	М
CO2	М	S	S	-	-	-	-	_	-	-	-	_	S	-	L
CO3	L	L	L	L	-	L	-	-	-	-	-	_	L	-	L
CO4	М	М	L	L	_	М	_	_	-	_	_	_	L	_	L

SYLLABUS

ENGINEERING DESIGN

Steps in designing, tasks and activities, varieties of engineering, design process and role of designer, iteration, decision making, resource conversion, systems and devices and variety of needs, need analysis, feasibility study, preliminary design, detail design, revision. Information for need and problems associated with information, variety of information.

FUNDAMENTALS OF TECHNICAL SYSTEMS

System approach fundamentals, assemblies and components, interrelationships, creativity as means to synthesis of alternatives, estimating the order of magnitude, design records.

PRODUCT PLANNING AND DEVELOPMENT

Life cycle from production to consumption and disposal, description of tasks, description of design specification and activities.

CONCEPTUAL DESIGN

Abstraction, modelling of an engineering problem; iconic, analog and symbolic models; determination of dimensions, graphics, visualization and synthesis, characteristics of a good model, value system and criterion function.

EMBODIMENT DESIGN

Steps, rules and principles, mechanical connections, modular products, design for quality and cost. Optimization, optimum vs. optimal. Optimum and robust design. Communication and reporting, preparing and presenting the report, oral vs. written communication, aids.

Text B	ooks												
1	Mechanical Design Process by DJ Ullman; McGraw-Hill Book Co												
	Introduction to Engineering Design by T T Woodson; McGraw-Hill Book Co.,												
2	Kogakusha Co. Ltd.												
Refer	ence Books												
1	Engineering Design by GE Dieter; McGraw-Hill Book Co.												
2	Conceptual Desig	n for Engineers b	y Michael French; S	pringer									
3	The Principles of Design by NP Suh; Oxford												
Cours	rse Designers												
S.No.	Department/Na												

1	Dr.L.Prabhu	Assoc.Professor	Mech/AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

								C	atego	rv	L	Т	Р		Credit				
	INTE						SIGN												
Drog	mblo	AN	ID DI	EVEI	LOM	ENT		ľ	EC-SE		3	0	0		3				
rrea	Preamble The course is designed to impart knowledge about the procedure and design																		
criter	criteria followed while developing a product																		
Prei	Prerequisite – Nil																		
Cou	Course Objectives																		
1																			
2																			
3																			
4																			
5																			
Cou	Course Outcomes: On the successful completion of the course, students will be able to																		
COI							- î	ufactur			,		Unders		.0				
								ning a	<u> </u>		8			tanu					
CO2		nufactu	-			veu n	ii desiz	,iiiig a		uve		1	Apply						
CO3	. Un	lerstar	nd and	l appl	y the	guide	lines v	vhile se	electin	ig a Al	M proc	cess A	Apply						
		lerstar	nd the	vario	ous ap	plicat	ion of	additiv	e man	nufactu	uring								
CO4	. pro	cess										1	Unders	tand					
CO5	. Ab	e to id	entify	the p	oost p	roces	sing pr	ocedui	e in A	M pro	ocesses	S 1	Apply						
Map	oping v	with P	rogra	nme	e Out	come	s and	Progr	amme	e Spec	cific O	utcom	es						
		PO	PO	PO	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO				
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3				
CO 1	М	L	-	-	-	-	-	-	-	-	-	_							
CO	S	s	м		т														
2 CO	3	<u>ь</u>	M	-	L	-	-	-	-	-	-	-	L	-	L				
3	Μ	М	-	-	М	-	-	-	-	-	-	-	L	-	М				

CO	М	Μ	-	-	L	-	-	-	-	-	-	-	L	-	L
4 CO	М	L	M	Μ	-	-	-	-	-	-	-	-	М	-	L
5 S- S1	trong;	M-M	ediun	n; L-	Low										

MODERN PRODUCT DEVELOPMENT, PROCESS TOOLS AND DESIGN THEORIES

Understanding the opportunity, Develop a concept, Implement a concept, Reverse engineering and redesign methodology, Product development teams, Planning Process, Planning and scheduling tools.

UNDERSTANDING CUSTOMER NEEDS & ESTABLISHING PRODUCT FUNCTION

Kano diagram of customer satisfaction, Prioritising Customer needs, Function analysis system technique, Function structure. Product tear down and experimentation: Tear down process, methods, applications, Post teardown reporting. Benchmarking and establishing engineering specifications

PRODUCT PORTFOLIOS AND PORTFOLIO ARCHITECTURE, GENERATING CONCEPTS AND CONCEPT SELECTION

Portfolio architecture types and choice, Product modularity, Clustering, Information gathering, Brainstorming, TRIZ, Morphological Evaluation, Concept selection Process, Numerical Concept scoring.

CONCEPT EMBODIMENT, MODELLING OF PRODUCT METRICS

System modelling and embodiment principles, Modelling approaches and case studies. Design for the environment: DFE methods, Life cycle assessment, Techniques to reduce environmental impact.

ANALYTICAL AND NUMERICAL MODEL SOLUTIONS

Simulation and optimization techniques, Design for robustness: Robust Design model construction, methods

Text Books

1	Kevin N. Otto, Kristin L. Wood, Product Design, Pearson Education, 2004.								
1	W. Ernest Eder, S. Hosendl., Design Engineering, CRC Press, 2008.								
2	w. Ernest	Eder, S. Hosendi.	, Design Engineering	g, CRC Press, 2008.					
Refer	Reference Books								
1	Gahl, W Beitz J Feldhusun, K. G. Grote, Engineering Design, 3rd Edition, Springer 2007.								
	Ali K. Kamrani and Emad Abouel Nasr, "Engineering Design and Rapid								
2	Prototyping", Springer, 2010.								
Cours	se Designers								
	Department/ Name of the								
S.No	Faculty Name	Designation	College	Email id					

1	Dr.L.Prabhu	Assoc.Professor	Mech/AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

	MAN	ANUFACTURING CONTROL						C	atego	ry	L	Т	P		Credit
	AND AUTOMATION						ŀ	EC-SF	E	3	0	0		3	
Prea	Preamble The course is designed to impart skill and knowledge manufacturing control and automation.														
				s desi	gned	to im	part sk	and	know	ledge	manuf	acturin	g conti	ol and	automation.
	requisi														
Cou	rse Ol	-						•							
1	Understand the fundamentals of automation, when and where to apply them.														
2	Identi	fy vari	ious n	nateri	al har	ndling	syster	ns and	auton	nation	system	ıs.			
3	Apply various control systems in manufacturing and evaluate automatic production														
4	Desig	Design an optimal circuit for automation.													
5	Use n	nodelin	ng and	l simı	latio	n for r	nanufa	acturin	g auto	matior	1.				
Cou	rse Ou	itcome	es: O	n the	succe	essful	comp	letion	of th	e cour	se, stu	dents	will be	e able t	0
CO1	app	ly the	m.					nation,					Unders	tand	
CO2	Ide	ntify v	arious	s mate	erial h	andlii	ng syst	tems ai	nd aut	omatio	on syste	ems. A	Apply		
CO3		ply vai omatic				ems i	n man	ufactui	ring ar	nd eval	uate	1	Apply		
CO4	Ap	ply an	optim	al cir	cuit f	or aut	omatic	on.				1	Apply		
CO5	Use modeling and simulation for manufacturing automation. Apply														
Map	Mapping with Programme Outcomes and Programme Specific Outcomes														
		PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	М	М	_	-	-	_	-	_	-	_	_	_	L	_	М
CO															
2	S	L	Μ	-	L	-	-	-	-	-	-	-	М	-	L
CO 3	L	L	-	-	L	L	-	-	-	-	-	-	-	-	L
CO 4	S	М	_	_	L	_	_	_	_	_	_	_	М	_	L

CO	L	S	L	L	-	-	-	-	-	-	-	-	L	-	L
5															
S- S1	trong;	M-M	ediun	n; L-	Low										

INTRODUCTION

Automation in production system principles and strategies of automation, basic Elements of a automated system. Advanced Automation functions. Levels of Automations, introduction to automation productivity.

MATERIAL HANDLING SYSTEM & AUTOMATED MANUFACTURING SYSTEMS

Over view of Handling system-Rotary feeders, oscillating force feeder, vibratory feeder, elevator type and Transport system storage system, Components of automation, line balancing, manufacturing cells & transfer mechanism. Fundamentals and analysis of transfer lines product design for automatic assembly.

CONTROL TECHNOLOGIES IN AUTOMATION

Industrial control system. Process industry vs Discrete manufacturing industries. Continuous vs discrete control. Continuous process and its forms, Sensors and Actuators. Other control system components. Supervisory Production Control and Management Systems, Evaluation of Automatic Production Product manufacturability. Orientation devices- active and passive devices, Parts orientation and Escapement.

PNEUMATIC AND HYDRAULIC COMPONENTS AND CIRCUITS

Pneumatic sensors and amplifiers. Jet destruction devices, Logic devices, Schmit triggeringdevices, developing pneumatic circuits for automatic die casting machine.

MODELING AND SIMULATION FOR MANUFACTURING PLANT AUTOMATION

Introduction. Need for system modeling. Building mathematical model of a manufacturingplant. Modern tools in manufacturing automation, Robots and Application of Robots for

Text Books

	Mikell P Groover, Automation, Production Systems and Computer Integrated
1	Manufacturing, 3rd Edition, Prentice Hall Inc., New Delhi, 2007.
2	Tiess Chiu Chang and Richard A.W., An Introduction to Automated Process Planning Systems, TMH, New Delhi, 2000.
Refer	ence Books
	Nanua Singh, System Approach to Computer Integrated Manufacturing, Wiley &
1	Sons Inc., 1996.
2	Andrew Kusiak, Intelligent Manufacturing System, Prentice Hall Inc., New Jersey, 1992.
Cours	e Designers

S.No	Faculty Name	Designation	Department/Na me of the College	Email id
1	Dr.L.Prabhu	Assoc.Professor	Mech/AVIT	prabhu@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

								Cat	egory	L		т	Р		Credit
	ADVA PROC			CHIN	NING			EC	-SE	3		0	0		3
Prear proces	То								rial ren	noval m	nechani	sm of a	dvance	d machi	ning
Prere	equisit	e – N	il												
	se Ob														
	To lea Techno		out th	e func	lamen	tal as	well as	s advan	ced kn	lowledg	ge of M	licro N	ano ma	chining	
	To exp applica		e basi	c prin	ciples	and r	nechan	ism of	Traditi	ional N	licro N	ano m	achining	g and its	8
													<u>Aachini</u>		
	To den Machi		ate the	basic	e princ	riples	and ap	plicatio	ns of c	lifferen	t Abra	sive ba	sed Mi	ero Nan	0
5	To illustrate the fundaments of MEMS and its techniques.														
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	CO1. Explain the basic need of Micro Nano Machining in different industries Understand														
CON	CO2. Summarize the traditional Micro Nano Machining techniques. Understand														
<u>CO2</u> .								achinin echanisi					ndersta	nd	
CO3.	Nano	Mach	ining.									U	ndersta	nd	
CO4.	Utiliz	e the i	mport	ance	of Ab	rasives	s in Mi	cro Na	no Ma	chining	5.	А	pply		
CO5.	Identi	ify the	need	of Ml	EMS i	n Mic	ro Nan	o Macl	hining			А	pply		
								Progr			ific O	utcom	es		
		РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	L	-	-	-	-	_	-	-	-	-	-	S	-	-
CO3	S	М	L	-	_	_	_	-	-	-	-	-	S	-	-
CO4	S	М	L	-	_	-	-	-	-	-	-	-	S	-	-
CO5															
S- St	rong;	M-M	ediun	n; L-	Low										

SYLLABUS

INTRODUCTION

Types of advanced manufacturing processes; Evolution, need, and classification of advanced machining processes.

MECHANICAL PROCESSES

USM, Rotary Ultra Sonic Machining (RUM), AJM, WJM, AWJM processes - Process principle and mechanism of material removal; Process Parameters; Process Capabilities; Applications; Operational characteristics; Limitations.

ADVANCED FINE FINISHING PROCESSES

Abrasive Flow Machining (AFM), Magnetic Abrasive Finishing (MAF), Magneto Rheological Abrasive Finishing (MRAF) - Process principle; Process equipment; Process Parameters; Process Capabilities; Applications; Limitations.

CHEMICAL & ELECTRO CHEMICAL PROCESSES

Process principle and details of Chemical Machining (CHM), Photo- Chemical Machining (PCM), and Bio-Chemical Machining (BCM) processes. ECM - Process principle; Mechanism of material removal; Process Parameters; Process Capabilities; Applications, Tool Design, Electro Chemical Deburring (ECDE).

THERMAL PROCESSES

EDM, Wire Electro Discharge Machining (WEDM), LBM, EBM, IBM, PAM processes – Process principle and mechanism of material removal; Process parameters and characteristics; Surface finish and accuracy, Process Capabilities; Applications; Limitations.

Text Books

V. K. Jain, Advanced Machining Processes, 1st edition, Allied Publishers Pvt. Ltd, 2007. ISBN:
978-8177642940.

Reference Books

H. Abdel and G. El-Hofy, Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, 1st edition, McGraw-Hill Professional, 2005. ISBN: 978-0071453349.

G.F. Benedict, Nontraditional Machining Processes, 1st edition, Marcel Dekker Inc.,

2 2002.

1

Cour	se Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	B.Selva Babu	Assistant Professor	Mech / AVIT	selvababu@avit.ac.in
2	M.Saravanan	Associate Professor	Mech/VMKVEC	saravanan@vmkvec.edu.in

				FICS I		D IND	USTI	RIAL		Categ		L	T	P	Credit
PREAN	IDI F	Α	UTO	MATI	UN					EC-S	SE	3	0	0	3
To intro		e conc	epts o	f autor	nation	in Va	rious]	Indust	rial ar	plicati	ons				
PRERE				1 460001			10000		<u></u>	<u>p110000</u>					
COURS															
1	To unc	lerstai	nd rob	otics b	ased in	ndustri	ial aut	omati	on						
2	To Ide	ntify t	he va	rious a	utoma	ted ass	sembly	v svste	ems						
3		To develop automated material handling and storage system													
		To identify the various automated inspection and testing methods.													
4															
5 COURS	To build the automated manufacturing systems. E OUTCOMES														
	successful completion of the course, students will be able to														
CO1.	Understand the basics of Industrial Automation Understand														
CO2.				is auto									Ap	ply	
CO3.	Cons	struct	the au	tomate	ed mat	erial ai	nd stor	rage s	ystem	s.			Ap	ply	
CO4 .	Dem	onstra	ate au	tomate	ed insp	ection	and T	Sesting	g meth	nods			Ap	ply	
CO5.	Cons	struct	the au	tomate	ed man	ufactu	ring s	ystem	IS				Ap	ply	
MAPPI	NG WI	TH P	ROG	RAM	ME O	UTCC	MES	AND) PRO	GRA]	MME S	SPECI	FIC OL	J TCOM	ES
		РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	PSO		
COS	PO1	2	3	4	5	6	7	8	9	10	1	12	1	PSO2	PSO3
CO1	М	М	-	-	-	-	_	_	-	-	-	_	М	-	-
CO2	L	S	М	-	М	_	-	-	-	-	-	-	S	-	-
CO3	М	М	М	L	М	-	-	-	-	-	-	-	S	-	-
CO4	S	М	М	L	М	М	-	-	-	-	-	-	S	-	-
CO5	S	S	М	L	М	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION & FIXED AUTOMATION

Definition, automation principles and strategies, scope of automation, low cost automation Production concepts and automation strategies. Automated Flow lines, Methods of Work part Transport, Transfer Mechanism - Continuous transfer, intermittent transfer, and Indexing mechanism, Buffer Storage, Control Functions and Automation for Machining Operations. Analysis of Transfer Lines without Storage, Partial Automation, Automated Flow Lines with Storage Buffers.

AUTOMATED ASSEMBLY SYSTEMS

Design for Automated Assembly, Types of Automated Assembly Systems, Vibratory bowl feeder and Non vibratory bowl feeder, Part Orienting Systems, Feed tracks, Escapements and part placing mechanism, Analysis of Multi-station Assembly Machines, Analysis of a Single Station Assembly Machine.

AUTOMATED MATERIAL HANDLING & STORAGE SYSTEM

The material handling function, Types of Material Handling Equipment, Analysis for Material Handling Systems, Design of the System, Conveyor Systems, Automated Guided Vehicle Systems. Storage System Performance, Automated Storage/Retrieval Systems, Carousel Storage Systems, Work-in-process Storage, Interfacing Handling and Storage with Manufacturing.

AUTOMATED INSPECTION AND TESTING

Inspection and testing, Statistical Quality Control, Automated Inspection Principles and Methods, Sensor Technologies for Automated Inspection, Coordinate Measuring Machines, Other Contact Inspection Methods, Machine Vision, Other optical Inspection Methods.

MODELING OF AUTOMATED MANUFACTURING SYSTEMS

Role of Performance Modeling, Performance Measures, Performance Modeling Tools: Simulation Models, Analytical Models.

TEXT BOOKS:

	books.												
	Mikell P.Grove	r, "Automation, Production	Systems and Computer Int	egrated Manufacturing",									
1	Pearson Educat	tion Asia, 2001.											
2	C.RayAsfahl, "	C.RayAsfahl, "Robots and manufacturing Automation", John Wiley and Sons New York, 1992.											
REFER	RENCES:												
	N.Viswanadha	N.Viswanadham and Y.Narahari, "Performance Modeling of Automated Manufacturing											
1	Systems", Pren	Systems", Prentice Hall India Pvt. Ltd, 1992.											
	Stephen J. Derb	Stephen J. Derby, "Design of Automatic Machinery", Special Indian Edition, Marcel Decker,											
2	New York, Yes	New York, Yesdee publishing Pvt. Ltd, Chennai, 2004.											
COUR	SE DESIGNERS	DESIGNERS											
S.	Name of the	ame of the Department /Name of											
No.	Faculty	Designation	the College	Mail ID									
1	R.Praveen	Assistant Professor G-II	Mech/AVIT	praveen@avit.ac.in									
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in									

		A	UTON	MATI	ON IN	[Categ	gory	L	Т	Р	Credit	
				FACT						EC-S	SE	3	0	0	3	
PREA	AMB	LE :]	Гo inti	roduce	the co	ncepts	of au	tomat	ion in	Vario	us Indus	strial a	oplicatio	ons		
PREF	REQU	UISIT	' E - N	ΊL												
COU																
1	Τoι	inders	tand r	obotic	s based	1 indus	strial a	utom	ation							
2	To I	dentif	y the	various	s autor	nated a	assem	bly sy	stems	1						
3	Тос	levelo	p auto	omated	mater	ial han	dling	and st	torage	e syster	n					
4	To i	To identify the various automated inspection and testing methods.														
5	Tot	To build the automated manufacturing systems.														
COU	OURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to															
CO1.	U	nderst	and th	ne basio	es of Ir	ndustri	al Aut	omati	on				Un	derstand		
CO2.	Co	onstru	ct var	ious au	itomat	ed asse	embly	syster	ms				Ap	ply		
CO3.	Co	onstru	ct the	autom	ated m	aterial	and s	torage	e syste	ems.			Ap	ply		
CO4 .	De	emons	trate	autom	ated in	spection	on and	l Test	ing m	ethods			Ap	ply		
CO5.	Co	onstru	ct the	autom	ated m	anufac	turing	g syste	ems				Ap	ply		
MAP										PROG	GRAM	ME SP	ECIFIC			
OUT	COM	IES														
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	РО	PSO			
S	1	2	3	4	5	6	7	8	9	0	1	12	1	PSO2	PSO3	
CO																
1	S	М	-	-	-	-	-	-	-	-	-	-	М	-	-	
CO 2		6			Ŧ											
2	Μ	S	Μ	-	L	-	-	-	-	-	-	-	L	-	L	

CO 3	М	М	L	L	L	-	-	_	-	-	-	-	М	-	L
CO 4	L	L	М	L	М	S	-	-	_	-	-	-	М	-	-
CO 5	S	М	М	L	L	-	-	-	-	-	-	-	М	_	L

S- Strong; M-Medium; L-Low

SYLLABUS

MECHATRONIC SYSTEMS

Overview of mechatronic systems and devices in manufacturing, automated feeding, transfer, retrieval mechanisms and devices, AGVs, FMS workstations, material handling and storage systems, overview of sensors, transducers and control systems in manufacturing.

HYDRAULIC SYSTEMS

Hydraulic systems: flow, pressure and direction control valves, actuators, supporting and control elements, pumps, servo valves and actuators, electro hydraulic servo- valves, proportional valves and their applications, design of hydraulic circuits for mfg applications and performance analysis.

PNEUMATIC SYSTEMS

Production, distribution and conditioning of compressed air, system components and graphic representations, design of circuits-switching circuits and sequential circuits, cascade methods, step counter method, compound circuit design.

ROBOTICS IN AUTOMATION

Robot classification and anatomy, forward and inverse kinematics, DH matrix transformation, Jacobian and differential motion, Trajectory planning, Static and dynamic analysis, applications in manufacturing.

PLCS AND MICROPROCESSORS

Basic structure - Input / Output processing - Programming - Mnemonics Timers, Internal relays and counters - Data handling - Analog input / output - Selection of PLC, Programming and interfacing of microprocessors in manufacturing applications.

TEXT	BOOKS:
	Mikell P.Grover, "Automation, Production Systems and Computer Integrated Manufacturing",
1	Pearson Education Asia, 2001.
	C.RayAsfahl, "Robots and manufacturing Automation", John Wiley and Sons New York,
2	1992.

REFERENCES:

	N.Viswanadham and Y.Narahari, "Performance Modeling of Automated Manufacturing
1	Systems", Prentice Hall India Pvt. Ltd, 1992.
	Stephen J. Derby, "Design of Automatic Machinery", Special Indian Edition, Marcel Decker,
2	New York, Yesdee publishing Pvt. Ltd, Chennai, 2004.

COU	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	R.Praveen	Assistant Professor G-II	Mech/AVIT	praveen@avit.ac.in
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in

ADVANCED CIM LAB EC-SE 0 0 4 2 Preamble: This course provides the basic knowledge about computer Integrated Manufacturing Prerequisite – NIL Course Objectives 1 To explain the basics of components required for building a CIM. 2 To construct the CNC program for a given profile in milling & Turning. 3 3 Make use of various features and commands in modelling software in designing a product 4 4 Course Outcomes: On the successful completion of the course, students will be able to Apply the knowledge of sensors, transducers and other components in building a CIM system Apply the knowledge of mirroring, canned cycle and subroutine concepts 4											Category			Р		redit
Preamble: This course provides the basic knowledge about computer Integrated Manufacturing Prerequisite – NIL Course Objectives 1 To explain the basics of components required for building a CIM. 2 To construct the CNC program for a given profile in milling & Turning. 3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to CO1. Apply the knowledge of sensors, transducers and other components in building a CIM system Apply the knowledge of mirroring, canned cycle and subroutine concepts											Jategory			1		eun
Prerequisite – NIL Course Objectives 1 To explain the basics of components required for building a CIM. 2 To construct the CNC program for a given profile in milling & Turning. 3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to CO1. Apply the knowledge of sensors, transducers and other components in building a CIM system Apply Apply the knowledge of mirroring, canned cycle and subroutine concepts Apply					AD	VAN	CED (CIM L	AB		EC-SE	(0 0	4		2
Prerequisite – NIL Course Objectives 1 To explain the basics of components required for building a CIM. 2 To construct the CNC program for a given profile in milling & Turning. 3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to CO1. Apply the knowledge of sensors, transducers and other components in building a CIM system Apply Apply the knowledge of mirroring, canned cycle and subroutine concepts Apply	Pream	ble: ′	This	cours	e prov	vides t	he ba	sic kno	owledge	e about	comput	er Inter	grated	Manufa	acturing	Ţ
1 To explain the basics of components required for building a CIM. 2 To construct the CNC program for a given profile in milling & Turning. 3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to CO1. Apply the knowledge of sensors, transducers and other components in building a CIM system Apply the knowledge of mirroring, canned cycle and subroutine concepts					I				0							
2 To construct the CNC program for a given profile in milling & Turning. 3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Apply the knowledge of sensors, transducers and other components in building a CIM system Apply Apply the knowledge of mirroring, canned cycle and subroutine concepts Apply	Cours	e Obj	jectiv	ves												
3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to Apply the knowledge of sensors, transducers and other components in building a CIM system Apply Apply the knowledge of mirroring, canned cycle and subroutine concepts Apply	1 T	To exp	olain	the b	asics o	of con	npone	nts rec	uired f	or buil	ding a C	IM.				
3 Make use of various features and commands in modelling software in designing a product Course Outcomes: On the successful completion of the course, students will be able to Apply the knowledge of sensors, transducers and other components in building a CIM system Apply the knowledge of mirroring, canned cycle and subroutine concepts	2 Т	To cor	nstru	ct the	CNC	progr	am fo	or a giv	en prof	ile in r	nilling &	z Turni	ng.			
Course Outcomes: On the successful completion of the course, students will be able to Apply the knowledge of sensors, transducers and other components in CO1. building a CIM system Apply the knowledge of mirroring, canned cycle and subroutine concepts		3 Make use of various features and commands in modelling software in designing a product														
Apply the knowledge of sensors, transducers and other components in building a CIM systemApplyCO1.Apply the knowledge of mirroring, canned cycle and subroutine conceptsApply																
CO1. building a CIM system Apply Apply the knowledge of mirroring, canned cycle and subroutine concepts Apply	Cours															
Apply the knowledge of mirroring, canned cycle and subroutine concepts																
	CO2.															
	G Q Q															
CO3Develop a part model using various commandsApplyMapping with Programme Outcomes and Programme Specific Outcomes	CO3 Manni										necific (Outcor	nes	Ар	oly	
	mapp	<u></u>							logia							
P P			Р													
PO O PO PO </th <th></th> <th>-</th> <th>0</th> <th>-</th> <th>_</th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		-	0	-	_	-	-	-								
COs 1 2 3 4 5 6 7 PO8 9 PO10 1 12 1 2 3	COs	1	2	3	4	5	6	7	PO8	9	PO10	1	12	1	2	3
CO1 M L L L M - L	CO1	М	L	L	-	-	-	-	-	-	-	-	L	М	-	L
CO2 M S M M - M M - M	CO2	М	S	М	-	-	-	-	-	М	-	-	М	М	-	М
CO3 L L M L M L - L																
S- Strong; M-Medium; L-Low																

SYLLABUS:

CAM LABORATORY

1. Exercise on CNC Lathe: Plain Turning, Step turning, Taper turning, Threading, Grooving & canned cycle

2. Exercise on CNC Milling Machine: Profile Milling, Mirroring, Scaling & canned cycle.

3. Study of Sensors, Transducers & PLC: Hall-effect sensor, Pressure sensors, Strain

gauge, PLC, LVDT, Load cell, Angular potentiometer, Torque, Temperature & Optical Transducers.

4. Mini project on any one of the CIM elements is to be done. This can be either a software or hardware simulating a CIM element. At the end of the semester, the students have to submit a mini report and present his work before a Committee.

CAD LABORATORY

2D modeling and 3D modeling of components such as

- 1. Bearing
- 2. Couplings
- 3. Gears
- 4. Sheet metal components
- 5. Jigs, Fixtures and Die assemblies.

Text Books

1 CIM LAB Manual

C N-	E	Designation	Department/	T
S.No	Faculty Name	Designation	College	Email id
1	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in
			Mech/	
2	R.Praveen	Asst.Professor G-II	AVIT	praveen@avit.ac.in

				U CT D						Categ	ory	L	Т	Р	Credit	
				FACT IBLY	URIN	G AN	D			EC-S	SE	3	0	0	3	
PREA	MRI				the co	ncents	of aut	tomati	ion in				oplicatio			
PRER						licepts	01 au	lomati		v arrou	is maa	striar af	pricatio	115		
COUR	SE (OBJE	ECTI	VES												
1	То	under	stand	roboti	cs bas	ed indu	ustrial	autor	nation	1						
2	To Identify the various automated assembly systems															
3	To develop automated material handling and storage system															
4	To identify the various automated inspection and testing methods.															
5	To build the automated manufacturing systems.															
COUR	SE (OUT	COM	ES												
On the	succ	essfu	l com	pletion	of the	cours	e, stud	dents	will be	e able t	0					
CO1.											e and a	ssembl	y. Un	derstand		
CO2.	А	pply	Booth	royd n	nethod	l of DF	M for	r prod	uct de	sign ar	nd assen	nbly.	Ар	ply		
CO3.	А	pply	the co	ncept	of DFN	A for c	asting	g, wel	ding, f	forming	g and a	ssembl	y. Ap	Apply		
CO4.	Ic	lentif	y the c	lesign	factors	s and p	roces	ses as	per cı	istome	r speci	ficatior	ns. Ap	ply		
CO5.	А	pply	the D	FM me	ethod f	or a gi	ven p	roduc	t.				Ap	ply		
MAPP	ING	WI	TH PH	ROGR	AMM	E OU	TCO	MES	AND	PROG	RAM	ME SP	ECIFI	С		
OUTC	JTCOMES															
	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р	PS			
	0	0	0	0	0	0	0	0	0	0	РО	0	0			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	PSO2	PSO3	
CO1	S	М	_	_	S	-	-	_	_	-	-	-	М	_	_	

CO2	М	S	М	-	М	-	-	-	-	-	-	-	L	-	L
CO3	S	S	М	L	М	-	-	_	-	-	-	-	М	-	М
CO4	М	М	М	L	L	М	-	-	I	-	_	-	М	-	М
CO5	S	М	L	L	L	-	-	-	-	-	-	-	М	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO DFM, DFMA

How Does DFMA Work?, Reasons for Not Implementing DFMA, What Are the Advantages of Applying DFMA During Product Design?, Typical DFMA Case Studies, Overall Impact of DFMA on Industry.

HIGH SPEED AUTOMATIC ASSEMBLY & ROBOT ASSEMBLY

Design of Parts for High-Speed Feeding and Orienting, Additional Feeding Difficulties, High-Speed Automatic Insertion, General Rules for Product Design for Automation, Design of Parts for Feeding and Orienting, Product Design for Robot Assembly.

DESIGN FOR MACHINING AND INJECTION MOLDING

Machining Using Single-Point & Multi point cutting tools, Choice of Work Material, Shape of Work Material, Machining Basic Component Shapes, Cost Estimating for Machined Components, Injection Molding Materials, The Molding Cycle, Injection Molding Systems, Molding Machine Size, Molding Cycle Time, Estimation of the Optimum Number of Cavities, Design Guidelines.

DESIGN FOR SHEET METAL WORKING & DIE CASTING

Dedicated Dies and Press-working, Press Selection, Turret Press working, Press Brake Operations, Design Rules, The Die Casting Cycle, Auxiliary Equipment for Automation, Determination of the Optimum Number of Cavities, Determination of Appropriate Machine Size, Die Casting Cycle Time Estimation, Die Cost Estimation, Design Principles.

DESIGN FOR ASSEMBLY AUTOMATION

Fundamentals of automated assembly systems, System configurations, parts delivery system at workstations, various escapement and placement devices used in automated *assembly* systems, Quantitative analysis of Assembly systems, Multi station assembly systems, single station assembly lines.

TEXT BOOKS:

	books.	
4	Geoffrey Boothroyd, Assembly Automation and Product Design, Marcel Dekker Inc., NY, 3	rd
l	Edition,2010.	
2	Geoffrey Boothroyd, Hand Book of Product Design, Marcel Dekker Inc., NY, 1992.	
REFE	RENCES:	
	GeofferyBoothroyd, Peter Dewhurst and Winston Knight, A, "Product Design	for
1	Manufacture and Assembly", CRC Press, 2011.	

2	2 KarlUlrich, T, Steven Eppinger, D, "Product Design and Development", McGrawHill, 2015.															
COUR	SE I	DESI	GNE	RS												
S. No.	Nar	ne of	the Fa	aculty	De	signatio	0 n	Nar	artmo ne of Colleg	the			Ma	il II	D	
1	R.P	raveer	1		Assistant Professor G-IIMechanical, AVITpraveen@avit						n@avit.a	ac.in	ic.in			
2	Dr.	N.Raj	jan		Profes	ssor		Mech	/ VMI	KVEC	rajan@v	mkvec.	edu.ir	1		
	REVERSE ENGINEERING AND Category L								L	Т		Р	Credit			
	COMPUTER AIDED INSPECTIONEC-SE3MBLE : To introduce the concepts of automation in Various Industrial ap									0 nlice	tio	0	3			
	EQUISITE - NIL															
	RSE OBJECTIVES															
1	То	under	rstand	roboti	cs has	ed indi	ostrial	auton	natior	n						
2																
				e vario					•							
3	10	devel	op au	tomate	d mate	erial ha	indlin	g and	stora	ge syst	em					
4	To	identi	fy the	e variou	is auto	mated	inspe	ection	and to	esting	method	s.				
5	To	build	the au	utomat	ed mai	nufactu	uring s	system	ıs.							
COUR	SE (DUT	COM	ES												
On the																
CO1.	Id gi	lentify ven c	y and compo	explain onent.	n the s	teps in	volve	d in re	everse	e engin	eering (of a	1	Unc	derstand	
	D	evelo	p des	ign cha												
CO2.				iven co ng step		ent byp	bassin	g the i	regula	ar desig	gn and			App	oly	
соз.	ac	curat	e and	reliab	le mea	surem	ents.		•		rtainty f	for		Арр		
CO4 .				estima o minir			ent er	rors ar	nd sug	ggest s	uitable			App	oly	
CO5.																
											<u> </u>	ME SP				
	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
	Р	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO1	РО	PSC			
cos	г О	2	3	4	5	6	7	8	9	10	1	10	1		PSO2	PSO3

	1														
CO1	S	М	-	-	-	-	-	-	-	-	-	-	М	-	-
CO2	S	S	М	-	М	-	-	-	-	I	-	-	S	-	-
CO3	S	S	М	L	М	-	-	-	-	-	-	-	S	-	-
CO4	S	S	S	L	М	М	-	-	-	-	-	-	S	-	-
CO5	S	S	М	L	М	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

METHODOLOGIES AND TECHNIQUES FOR REVERSE ENGINEERING

Introduction to reverse engineering, Reverse Engineering–The Generic Process

The Potential for Automation with 3-D Laser Scanners, What Is Not Reverse Engineering, What is Computer-aided (Forward) Engineering, What Is Computer-aided Reverse Engineering, Computer Vision and Reverse Engineering Reverse Engineering–Hardware and Software: Contact Methods

Noncontact Methods, Destructive Method

SELECTING A REVERSE ENGINEERING SYSTEM

The Selection Process, Some Additional Complexities, Point Capture Devices, Triangulation Approaches, "Time-of-flight" or Ranging Systems, Structured-light and Stereoscopic Imaging Systems, issues with Light-based Approaches, Tracking Systems, Internal Measurement Systems, X-ray Tomography, Destructive Systems, Some Comments on Accuracy, Positioning the Probe, Post processing the Captured Data, Handling Data Points, Curve and Surface Creation, Inspection Applications, Manufacturing Approaches

INTEGRATION BETWEEN REVERSE ENGINEERING AND ADDITIVE MANUFACTURING

Modeling Cloud Data in Reverse Engineering, Data Processing for Rapid Prototyping, Integration of RE and RP for Layer-based Model Generation, he Adaptive Slicing Approach for Cloud Data Modeling, Planar Polygon Curve Construction for a Layer, Determination of Adaptive Layer Thickness

MEASUREMENT TECHNIQUES

Surface Roughness Measurement: Components of surface texture, Need for surface roughness measurement, Measurement of surface roughness, Roughness characterization, Roughness grades Geometric Form Measurement: Importance, Indication, Intrinsic and Extrinsic methods, Roundness, Straightness, Flatness, Cylindricity, Squareness, Parallelism, Run out and concentricity Coordinate Measuring Machine - Types of CMM - Probes used – Applications - dimensional metrology – Non-contact sensors for surface finish measurements. Screw Thread

Measurement: Terminology, Forms of thread, Errors in threads, Measurement of major, minor and effective diameters

OTHER COMPUTER AIDED INSPECTION TECHNIQUES/INSTRUMENTS

In-process Inspection and On- line Sensing, Automated Inspection Techniques, Imageprocessing and its application in Metrology.

TEXT BOOKS:

	K. Otto and K. Wood, Product Design: Techniques in Reverse Engineering and NewProduct
1	Development, Prentice Hall, 2001.
	Reverse Engineering: An Industrial Perspective by Raja and Fernandes, Springer-Verlag 2008.
REFEI	RENCES:

- **1** Thomas. G. G., Engineering Metrology, Butterworth Pub.1974.
- 2 R. K. Jain, Engineering Metrology, Khanna Publishers, 19/e, 2005.

COURSE DESIGNERS

S.	Name of the		Department / Name of the	
No.	Faculty	Designation	College	Mail ID
		Assistant		
1	R.Praveen	Professor G-II	MECH/AVIT	praveen@avit.ac.in
2	Dr. N.Rajan	Professor	MECH/VMKVEC	rajan@vmkvec.edu.in

									gory	L		T	P	Cre	
			AUT	OMA	TION	LAB		EC-S	E	0		0	4	2	2
	mble	studer	te in l	hydra	ulic a	nd nne	umat	ic circ	nit de	sign 11	sing di	fforon	t control	l device	S.
	equisit			liyura		iu pii	Jumai		un uc	sign us	sing ui				28
NIL															
Cou	Course Objectives														
1	1 Design Hydraulic and Pneumatic circuits for low cost automation														
2															
3	To und	lerstar	nd the	opera	tion c	of basi	c elec	etro pr	neuma	tic circ	uits				
4	To des	ign op	en lo	op an	d clos	ed loo	p con	trol c	ircuit	of AC	servo 1	notor			
5	Applic	ation	of PL	C to d	lesign	a syst	tem.								
Cou							-			course dustrial	e, stud	ents v	vill be a	ble to	
CO1		omation		ipics,	strateg	sies an		intage	5 01 110	ustilai			Underst	and	
	Desi	on m	aterial	hand	lling	and r	nateri	ial st	arage	system	is for	an			
CO2		mated							oruge	system			Indersta	nd	
CO3	Devi	ise auto	omated	i shop	floor	contro	ls and	part ic	lentifi	cation n	nethods		Underst	and	
CO4	Outl	ine the	IoT T							plant a		•	Underst	and	
CO4 CO5		in Indu erstan		hasics	e of ve	hicle	collis	ion ar	d ite	effects.			Underst		
		erstan	u ine	Uasics			coms		iu its i	enects.			Underst	anu	
	ping w	ith Pr	ogran	nme (<u> Outco</u>	mes a	and P	rogra	mme	Specif	ic Out	come	8		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L	-	М	-	-	-	-	-	-	L	-	-
CO2	S	S	S	S	М	S	-	-	-	S	-	-	L	-	-
CO3	S	М	L	-	-	L	-	-	-	-	-	-	L	-	-
CO4	S	М	L	-	L	L	-	-	-	-	-	_	L	-	-
CO5	S	S	М	L	-	М	-	-	-	_	-	L	L	-	-
G G 4	ong M	Mad:													
5- Str	ong; M-	wiealui	11; L-L	.0W											

LIST OF EXPERIMENTS:

- 1. To design a Speed control circuits for double acting cylinder.
- 2. To design a Synchronization circuit for two cylinders.
- 3. To design a Continuous reciprocation of double acting cylinder.
- 4. To design a Sequencing of two cylinder circuits.
- 5. To design a Cascading circuit for trapped signals-2 groups
- 6. Implementation of Logic Circuits: AND,OR
- 7. Design of Basic Electro Pneumatic Circuits: Continuous reciprocation of cylinder (with timer and counter)
- 8. Design and testing of Force, Velocity calculations in Hydraulic Linear actuation
- 9. Automatic bottle filling Machine
- 10. Design and simulation of PLC Control Pneumatic/ Hydraulic linear actuator circuits.
- 11. To design a Water Level Controller using PLC.
- 12. To design a PLC Controlled Material Handling System.

Text Books

1 AUTOMATION LAB Manual

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.Saravanan	Asst.Prof	MECH/ AVIT	saravanan@avit.ac.in
2	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajans@vmkvec.edu.in

ELECTIVE COURSES SPECIALIZATION-AUTOMOBILE ENGINEERING

	Categor				Credi
	У	L	Т	Р	t
AUTOMOTIVE CHASSIS LAB	EC-SE	0	0	4	2

To impart knowledge in the assembling and dismantling of different types of systems like steering system, transmission system and braking system.

Prerequisite

Nil

Course Objectives

To employ the knowledge and measurement of light and heavy commercial Vehicle chass	sis					
To demonstrate the knowledge to dismantling, study and Assembling of front and rear axle.						
To demonstrate the knowledge to dismantling, study and Assembling of Clutch, Gearl	box, Steering					
gearbox, Breaking and Differential systems						
Course Outcomes						
On the successful completion of the course, students will be able to						
CO1. Conduct measurement of light and heavy commercial Vehicle chassis Apply						

COT. Conduct measurement of light and neavy commercial vehicle chassis	Арріу
CO2. Develop Thoroughly develop knowledge of dismantling, study and Assembling of front and rear axle.	Apply
CO3. Develop the knowledge in dismantling, study and Assembling of clutch, gearbox, steering gearbox, breaking and differential systems	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	Μ	Μ	Μ	-	-	-	-	Μ	М	-	-
CO2	S	S	S	S	Μ	М	М	-	-	-	-	Μ	М	-	-
CO3	S	S	S	S	Μ	М	М	-	-	-	-	Μ	М	-	-

S-Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Study and measurement of Light commercial vehicle chassis layout
- 2. Study and measurement of Heavy commercial vehicle chassis layout
- 3. Dismantling, study and Assembling of Front Axle Systems.
- 4. Dismantling, study and Assembling of Rear Axle Systems
- 5. Dismantling, study and Assembling of steering systems with different Steering gearboxes
- 6. Dismantling, study and Assembling of Clutch.
- 7. Dismantling, study and Assembling of Gear box with different gear box
- 8. Dismantling, study and Assembling of Differential.
- 9. Dismantling, study and Assembling of Braking system.
- 10. Dismantling, study and Assembling of different types of suspension system.

Text Books

1. 'Automotive Chassis Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

Cours	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

	Category	L	Т	Р	Credi t
AUTOMOTIVE CHASSIS	EC-SE	3	0	0	3

A chassis is the internal framework of an artificial object, which supports the object in its construction and use. An example of a chassis is a vehicle frame, the under part of a motor vehicle, on which the body is mounted; if the running gear such as wheels and transmission, and sometimes even the driver's seat, are included, then the assembly is described as a rolling chassis.

Prerequisite

Nil

Course Objectives

1. To apply the concept of entire process involved in vehicle frame and steering systems.

2. To perform the application of propeller shaft and final drive

3. To employ the concepts of axles and tyres.

4. To perform the application of Suspension System.

5. To apply the concepts of braking system in automotive chassis

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Summarize Automotive chassis and its accessories.	Understand
CO2. Utilize the applications of final drive	Apply
CO3. Apply the knowledge of axles and tyres.	Apply
CO4. Utilize the applications of Suspension System.	Apply
CO5. Develop the concepts of braking System.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

		5					8				*				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	-	-	-	-	-	-	-	Μ	L	-	-
CO2	S	Μ	Μ	М	-	-	-	-	-	-	-	М	L	-	-
CO3	S	Μ	Μ	М	-	-	-	-	-	-	-	Μ	L	-	-
CO4	S	Μ	Μ	М	-	-	-	-	-	-	-	М	L	-	-
CO5	S	Μ	М	М	-	-	-	-	-	-	-	М	L	-	-

S-Strong; M-Medium; L-Low

INTRODUCTION, FRAME, STEERING SYSTEM

Types of Chassis layout, with reference to Power Plant location and drive, various types of frames, Loads acting on vehicle frame, Constructional details and materials for frames, Testing of frames, Types of Front Axles and Stub Axles, Front Wheel Geometry, namely, Castor, Camber, King Pin Inclination and Toe–in, Condition for True Rolling Motion of Wheels during Steering, Ackerman's and Davis Steering Mechanisms, Steering Error Curve, Steering Linkages, Different Types of Steering Gears, Slip Angle, Over–Steer and Under–Steer, Reversible and Irreversible Steering, Power–Assisted Steering.

PROPELLER SHAFT AND FINAL DRIVE

Effect of Driving Thrust, torque reactions and side thrust, Hotchkiss drive, torque tube drive, radius rods and stabilizers, Propeller Shaft, Universal Joints, Constant Velocity Universal Joints, Front Wheel drive, Final drive, different types, Double reduction and twin speed final drives, Multi–axled vehicles, Differential principle and types, Differential housings, Non–Slip differential, Differential locks, Final drive of Crawler Tractors.

AXLES AND TYRES

Construction and Design of Drive Axles, Types of Loads acting on drive axles, Full – Floating, Three– Quarter Floating and Semi–Floating Axles, Axle Housings and Types, Types and Constructional Details of Different Types of Wheels and Rims, Different Types of Tyres and their constructional details.

SUSPENSION SYSTEM

Need for Suspension System, Types of Suspension Springs, Constructional details and characteristics of Single Leaf, Multi–Leaf, Coil, Torsion bar, Rubber, Pneumatic and Hydro – elastic Suspension Spring Systems, Independent Suspension System, Shock Absorbers, Types and Constructional details, Design of Leaf and Coil Springs.

BRAKING SYSTEM

Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Leading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Hydraulic, Mechanical, Pneumatic and Power–Assisted Braking System, Servo Brakes, Retarders, Anti–Lock Braking System.

TEXT BOOK:

- 1. Kripal Singh, Automobile Engineering, Standard Publisher, New Delhi, 2012.
- 2. R.K. Rajput, A Text-Book of Automobile Engineering, Laxmi Publications Private Limited, 2015.
- 3. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007.

REFERENCES:

- 1. Heldt P.M., Automotive Chassis, Chilton Co., New York, 1990
- 2. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.
- 3. Heinz Hezler, Modern Vehicle Technology, Butterworth, London, 2005.

Cours	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in

	Categor				Credi
AUTOMOTIVE ELECTRICAL AND	У	L	Т	Р	t
ELECTRONICS LAB	EC -SE	0	0	4	2

To familiarize and train the students on the constructional arrangements of different electrical system of automobiles and study the automobile electronics components.

Prerequisite

Nil

Course Objectives

1.	To perform in	battery tests,	charging system a	and starting system tro	uble shooting.

- 2. To demonstrate the application knowledge in the operation of alternator and lighting system.
- To describe the temperature and optical sensor. 3.

Course Outcomes

On the successful completion of the course, students will be able to

CO1.]	CO1.Experiment with the battery, charging system and starting system.													Apply		
CO2. Develop thoroughly develop knowledge in application of operation of alternator and lighting system.											Apply					
CO3. Make use of temperature and optical sensor										Apply						
Mappir	ng with	Progra	mme O	utcom	es and	Prog	amme	Speci	fic Ou	tcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	S	S	S	Μ	Μ	Μ	-	-	-	-	Μ	Μ	-	-	
CO2	CO2 S S S S M M M M										М	-	-			
CO3	CO3 S S S S M M M M										М	-	-			
S- Stron	Strong: M-Medium: L-Low															

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Testing, charging and discharging of lead acid battery used in automobiles.
- 2. Testing and troubleshooting of starting system in automobiles.
- 3. Starter motor component test.
- 4. Testing and troubleshooting of charging system in automobiles.
- 5. Alternator component test.
- 6. Testing and troubleshooting of lighting system in automobiles.
- 7. Testing of lighting conventional analog instrumentation, indicator light, warning devices.
- 8. Study of Temperature measurement using thermocouple.
- 9. Study of optical sensor

Text Books

1. 'Automotive Electrical and Electronics Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem

Cours	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

	Categor				Credi
AUTOMOTIVE ELECTRICAL AND	У	L	Т	Р	t
ELECTRONICS SYSTEMS	EC -SE	3	0	0	3
			-	-	

Automotive electrical and electronic systems used in road vehicles, enable study analyze and apply the concepts of various electrical and electronics component such as battery alternator ignition system and other engine management systems.

Prerequisite

Nil

Course Objectives

1. To perform the concepts of battery and charging systems..

2. To compile the knowledge of starting systems in the vehicle.

3. To employ the knowledge in the application of various types of charging system & lighting system.

4. To demonstrate the application and knowledge of fundamental of automotive electronics.

5. To employ the application and knowledge of sensors and actuators.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Outline the concepts of Electrical and Electronics System	Understand
CO2. Summarize the various concept of starting systems.	Understand
CO3. Apply the various types of charging system & lighting system.	Apply
CO4. Identify the application automotive electronics.	Apply
CO5. Compare the sensors and actuators.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

0	L. L.	,				0	-							
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S	Μ	Μ	L	-	-	-	-	-	-	-	L	L	-	-
S	М	Μ	L	-	-	-	-	-	-	-	L	L	-	-
S	S	S	Μ	-	-	-	-	-	-	-	Μ	L	-	-
S	S	S	Μ	-	-	-	-	-	-	-	Μ	L	-	-
S	S	S	М	-	-	-	-	-	-	-	Μ	L	-	-
	PO1 S S S S S	PO1 PO2 S M S M S S S S S S S S	PO1 PO2 PO3 S M M S M M S S S S S S S S S S S S S S S	P01 P02 P03 P04 S M M L S M M L S S S M S S S M S S S M	P01 P02 P03 P04 P05 S M M L - S M M L - S S S M - S S S M - S S S M -	P01 P02 P03 P04 P05 P06 S M M L - S M M L - S M M L - S S S M - S S S M -	P01 P02 P03 P04 P05 P06 P07 S M M L - - - S M M L - - - S M M L - - - S S S M - - - S S S M - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 S M M L - - - - S M M L - - - - S M M L - - - - S S S M - - - - S S S M - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 S M M L - - - - - S M M L - - - - - S M M L - - - - - S S S M - - - - - S S S M - - - - - S S S M - - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 S M M L -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 S M M L - <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - L L S S S M - - - - - M S S S M - - - - - M</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - - L L S S S M - - - - - M L S S S M - - - - - M L</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 S M M L - - - - - L L - S M M L - - - - - - L L - S M M L - - - - - - L L - S M M L - - - - - - L L - S S S M - - - - - M L - S S S M - - - - - M L -</td>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - L L S S S M - - - - - M S S S M - - - - - M	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - L L S M M L - - - - - - L L S S S M - - - - - M L S S S M - - - - - M L	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 S M M L - - - - - L L - S M M L - - - - - - L L - S M M L - - - - - - L L - S M M L - - - - - - L L - S S S M - - - - - M L - S S S M - - - - - M L -

S-Strong; M-Medium; L-Low

BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, capacity and efficiency of batteries. Various tests on battery condition, charging methods. Details of modern storage batteries.

STARTING SYSTEM

Condition of starting Behavior of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Care & maintenance of starter motor, Starter switches.

CHARGING SYSTEM & LIGHTING SYSTEM

Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cutout. Voltage and current regulators, compensatedvoltage regulator, alternators principle and constructional aspects and bridgerectifiers, new developments. Lighting system: insulated and earth return system, details of head light and sidelight, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.

TEXT BOOK:

- 1. Kholi, P.L., Automotive Electrical Equipment, Tata McGraw-Hill Co. Ltd., New Delhi, 2004.
- 2. Judge, A.W., Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 2004.
- 3. Younng A.P & Griffiths L, "Automobile Electrical and Electronic Equipments", English Languages Book Society & New Press.
- 4. Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control system", Prentice Hall Inc., New Jersey.

REFERENCES:

- 1. Vinal, G.W., Storage Batteries, John Wiley & Sons Inc., New York, 1985.
- 2. Crouse, W.H., Automobile Electrical Equipment, McGraw Hill Book Co. Inc., New York, 1980.
- 3. Spreadbury, F.G., Electrical Ignition Equipment, Constable & Co. Ltd., London, 1962.
- 4. Automotive Hand Book, fifth edition, Robert Bosch, Bently Publishers, 2003.

S.No	Name of the Faculty	Designation	Department/College	Mail ID		
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in		
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in		
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in		

AUTOMOTIVE POLLUTION	Category	L	Т	Р	Credit
CONTROL	EC-SE	3	0	0	3

Preamble To study and purpose is to understand automotive pollution control.

Prerequisite

NIL															
Course	Object	tives													
1	To und	erstand	the int	roducti	on of p	ollution	18.								
		lerstand													
3	To und	erstand	the po	llution	formati	on in C	CI engir	nes							
4	To imp	art the	control	of emi	ssion ir	n CI eng	gines.								
5	5 To understand the measurement technique and emission standards.														
Course	Course Outcomes:														
After Su	er Successful completion of this course, the students will be able to:														
CO															
CO2	O2. Apply the formation of Emissions from SI Engines. Apply														
COS	3. App	ly the fo	ormatic	on of Ei	nission	s from	CI Eng	ines.						Aŗ	ply
CO4	4. Exar	nine Er	nission	and co	ntrol T	echniqu	ues in S	SI and C	CI Engi	nes.				Ana	alyze
COS	5. Insp	ect mea	suring	technic	ues of	Emissi	on and	test pro	ocedure					Ana	alyze
Mappin	g with	Progra	amme	Outcor	nes and	d Prog	ramme	Specif	ic Out	comes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S M M M M M											М			
CO2	S	S S S S M M M											М		
CO3	S	S S S S M S M													
CO4	S	S	S	S	М							S	М		
CO5	S	S	S	S	М							S	М		

S- Strong; M-Medium; L-Low

INTRODUCTION

Introduction pollution control act- norms and standards. Vehicle population assessment in metropolitan cities and contribution to pollution, effects on human health and environment, global warming, types of emission, transient operational effects on pollution

POLLUTANT FORMATION IN SI ENGINES

Pollutant formation in SI Engines, mechanism of HC and CO formation in four stroke and two stroke SI engines, NOx formation in SI engines, effects of design and operating variables on emission formation, control of evaporative emission. Two stroke engine pollution

POLLUTANT FORMATION IN CI ENGINES

Pollutant formation in CI engines, smoke and particulate emissions in CI engines, effects of design and operating variables on CI engine emissions. Nox and Sox formation and control. Noise pollution from automobiles, measurement and standards.

CONTROL OF EMISSIONS FROM SI AND CI ENGINES

Design of engine, optimum selection of operating variables for control of emissions, EGR, Thermal reactors, secondary air injection, catalytic converters, catalysts, fuel modifications, fuel cells, Two stroke engine pollution control.

MEASUREMENT TECHNIQUES - EMISSION STANDARDS

NDIR, FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards, driving cycles – USA, Japan, Euro and India. Test procedures – ECE, FTP Tests. SHED Test – chassis dynamometers, dilution tunnels

TEXT BOOK:

1. Paul Degobert – Automobiles and Pollution – SAE International ISBN-1-56091-563-3, 1991.

2. Ganesan, V- "Internal Combustion Engines"- Tata McGraw-Hill Co.- 2013.

3. SAE Transactions- "Vehicle Emission"- 1982 (3 volumes).

REFERENCES:

1. Obert.E.F.- "Internal Combustion Engines"- 1988.

2. Marco Nute- "Emissions from two stroke engines, SAE Publication - 1998

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

ENGINE AND VEHICLE	Category	L	Т	Р	Credit
MANAGEMENT SYSTEM	EC-SE	3	0	0	3

Preamble To study and purpose is to understand engine management system Prerequisite NIL **Course Objectives** To understand the fundamentals of automotive electronics in details. 1 To understand the types sensors 2 To impart knowledge on SI engine management system. 3 To impart knowledge on CI engine management system. 4 5 To understand the vehicle management systems **Course Outcomes:** After Successful completion of this course, the students will be able to: CO1. Summarize the vehicle motion control and stabilization system Explain the fundamentals, operation, function of various sensors in an engine management CO2. system. C C ... C

	Explain the fundamentals, operation, function of various fuel injection system pertain to											tain to a			
CO3	3. SIÊ	ngine			•					Ũ	•	•		Ap	ply
	Expl	lain the	funda	nentals	, opera	tion, fu	nction	of vario	ous fuel	injecti	on syst	em per	tain to a		
CO4. CI Engine										Apply					
CO5. Explain the fundamentals, operation, function in vehicle management system.									Apply						
Mapping with Programme Outcomes and Programme Specific Outcomes										1-2					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М				М				М	М		
CO2	S	М	М	М				М				М	М		
CO3	S	S	S	М				М				М	М		
CO4	S	S	S	М				М				Μ	М		
CO5	S	S	S	М				М				М	М		

Understand

Understand

S- Strong; M-Medium; L-Low

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Microprocessor architecture, open and closed loop control strategies, PID control, Look up tables, Introduction to modern control strategies like Fuzzy logic and adaptive control. Parameters to be controlled in SI and CI engines and in the other parts of the automobile

SENSORS

Inductive, Hall effect, hot wire, thermistor, piezo electric, piezo resistive, based sensors. Throttle position, air mass flow, crank shaft position, cam position, engine and wheel speed, steering position, tire pressure, brake pressure, steering torque, fuel level, crash, exhaust oxygen level (two step and linear lambda), knock, engine temperature, manifold temperature and pressure sensors

SI ENGINE MANAGEMENT

Three-way catalytic converter, conversion efficiency versus lambda. Layout and working of SI engine management systems like Bosch L-Jetronic and LH-Jetronic. Group and sequential injection techniques. Working of the fuel system components. Cold start and warm up phases, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop control of fuel injection and closed loop lambda control. Electronic ignition systems and spark timing control. Closed loop control of knock.

CI ENGINE MANAGEMENT

Fuel injection system parameters affecting combustion, noise and emissions in CI engines. Pilot, main, advanced post injection and retarded post injection. Electronically controlled Unit Injection system. Layout of the common rail fuel injection system. Working of components like fuel injector, fuel pump, rail pressure limiter, flow limiter, EGR valve

VEHICLE MANAGEMENT SYSTEMS

ABS system, its need, layout and working. Electronic control of suspension – Damping control, Electric power steering, Supplementary Restraint System of air bag system – crash sensor, seat belt tightening. Cruise control. Vehicle security systems- alarms, vehicle tracking system. On board diagnostics. Collision avoidance Radar warning system.

TEXT BOOK:

1. William B Ribbens "Understanding Automotive Electronics", SAE Publications, 1998

2. Eric Chowanietz "Automobile Electronics" SAE Publications, 1994

REFERENCES:

1. Robert Bosch "Diesel Engine Management" SAE Publications, 2006

2. Robert Bosch, "Gasoline Engine Management" SAE Publications, 2006.

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

	Category	L	Т	Р	Credit
SPECIAL TYPES OF VEHICLES	EC-SE	3	0	0	3

This course reviews the fundamental concepts of earth moving equipments, power train concepts, sub systems of special types of vehicles, farm equipment, military and combat vehicles and special purpose vehicles for industrial applications.

Prerequisite

Nil

Course Objectives

Course	c Objectives						
1	To detail the working of earth moving and constructional equipments						
2	To describe power train concepts						
3	To explain the sub systems of special types of vehicles						
4	To describe the working of farm equipments, military and combat vehicles						
5	To explain the working of special purpose vehicles for industrial applications						
Course	Course Outcomes:						

After Successful completion of this course, the students will be able to:

CO1.	Des	cribe th	e const	ruction	and wo	orking	of earth	n movin	g and c	onstruc	tional o	equipm	ents	Unde	erstand
CO2.	· · ·	raise or pments	-	wer tra	ins app	olicable	for for	r earth r	noving	and co	nstructi	onal		Aŗ	oply
CO3.		raise or pments		nction (of all th	e sub-s	systems	s for ea	th mov	ing and	l constr	ructiona	al	Apply	
CO4.	App	Appraise on the various farm equipments and military vehicles.											Apply		
CO5.	Appraise on the various specially designed vehicles for industrial applications.									Ap	oply				
Mapping	g with	Progr	amme	Outcor	nes an	d Prog	ramm	e Specif	fic Out	comes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	Μ				-				-	S		
CO2	S	М	М	Μ				-				-	S		
CO3	S	S S S M S													
CO4	S	S	S	М				-				-	S		
CO5	S	S	S	М				-				-	S		

S- Strong; M-Medium; L-Low

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Construction layout, capacity and applications. Power Plants, Chassis and Transmission, Multivalve vehicles.

EARTH MOVING MACHINES

Earthmovers like dumpers, loaders - single bucket, Multi bucket and rotary types- bulldozers, excavators, backhoe loaders, scrappers, drag and self powered types, Bush cutters, stumpers, tree dozer, rippers etc. – Power and capacity of earthmoving machines.

SCRAPPERS, GRADERS, SHOVELS AND DITCHERS

Scrappers, elevating graders, motor graders, self powered scrappers and graders, Power shovel, revolving and stripper shovels – drag lines – ditchers – capacity of shovels.

FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES

Power take off, special implements. Special features and constructional details of tankers, gun carriers and transport vehicles.

VEHICLE SYSTEMS, FEATURES

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro-pneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Design aspects on dumper body, loader bucket and water tank of sprinkler.

TEXT BOOK:

- 1. Off the road wheeled and combined traction devices Ash gate Publishing Co.Lt.
- 2. Satyanarayana. B., Construction planning and equipment, standard publishers and distributors, New Delhi.

REFERENCES:

- 1. Abrosimov.K. Branberg.A and Katayer.K, Road making machinery, MIR Publishers, Moscow, 1971.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Ltd., London.
- 3. Nakra C.P., "Farm machines and equipments" Dhanparai Publishing company Pvt. Ltd.
- 4. Robert L Peurifoy, "Construction, planning, equipment and methods" Tata McGraw Hill Publishing company Ltd.

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in

	Category	L	Т	Р	Credit
TWO AND THREE WHEELER LAB	EC-SE	0	0	4	2

To impart knowledge on clutch, gear box and performance on two and three wheeler

Prerequisite

Nil

Course Objectives

- 1 To understand the performance shock absorber and coil spring
- 2 To understand the two wheeler chain tension
- 3 To study three wheeler chassis frame.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1	CO1. Experiment with shock absorber and coil spring.											Apply			
CO2	CO2. Identify tension in the two wheeler											Apply			
CO3	CO3. Construct Three wheeler chassis frame.												Apply		
Mappin	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	-	-	-	М	-	-	-	М	М	I	-
CO2	CO2 S S S S M M M												-	-	
CO3	S	S	S	S	-	-	-	М	-	-	-	М	М	-	-

S-Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Performance test of a shock absorber.
- 2. Performance test on coil spring.
- 3. Two wheeler chain tension test.
- 4. Brake and Clutch adjustment as per specification.
- 5. Dismantling and assembling of two wheeler gear box and finding gear ratio.
- 6. Dismantling and assembling of three wheeler gear box and finding gear ratios.
- 7. Dismantling and assembling of three wheeler steering system.
- 8. Study of three wheeler chassis frame and power transmission system.

Text Books

1. 'Two and Three Wheeler Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

TWO AND THREE WHEELER	Category	L	Т	Р	Credit
TECHNOLOGY	EC-SE	3	0	0	3

To study and purpose is to understand two and three-wheeler technology

Prerequisite

NIL		
Course	Objectives	
1	Γo understand the power units.	
2	Γo understand the fuel and ignition systems	
3	Γo understand the fuel and ignition systems	
4	Γo understand the brakes and wheels	
5	Γo impart the various types of two and three-wheeler case study	
Course	Outcomes:	
After Su	ccessful completion of this course, the students will be able to:	
COI	The student can understand the various systems of engines of two and three wheelers	Understand
CO2	The student can understand the fuel and ignition system in two wheelers	Understand
CO3	. The student can understand the chassis and sub-systems in two wheelers	Apply
CO4	The student can understand the working of brakes, wheels and tyres in two and three wheelers	Apply
CO5	. The student can understand the case studies in two wheelers	Apply

Manning with Programme Outcomes and Programme Specific Outcomes

1	mappin	apping with i rogramme Outcomes and i rogramme Specific Outcomes														
Ē	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ĺ	CO1	S	М	М	М				М				М	М		
ſ	CO2	S	М	М	М				М				М	М		
	CO3	S	S	S	М				М				М	М		
	CO4	S	S	S	М				М				Μ	Μ		
	CO5	S	S	S	М				М				Μ	М		

S-Strong; M-Medium; L-Low

THE POWER UNIT

Two stroke and four stroke SI engine, merits and demerits, symmetrical and unsymmetrical port timing diagrams. Types of scavenging processes, merits and demerits, scavenging efficiency. scavenging pumps. rotary valve engine.

FUEL AND IGNITION SYSTEMS

Fuel system, Fuel injection system, Lubrication system. Magneto coil and battery coil spark ignition system. Electro ignition system. Starting system. Kick starter system

CHASSIS AND SUB-SYSTEM

Main frame, its types. Chassis and shaft drive. Single, multiple plates and centrifugal clutches. Gear box and gear controls. Front and rear suspension systems. Shock absorbers. Panel meters and controls on handle bar.

BRAKES, WHEELS AND TYRES

Drum brakes, disc brakes, front and rear brake links layouts. spoked wheel, cast wheel. Disc wheel. Disc types. Tyres and Tubes

TWO AND THREE WHEELERS CASE STUDY

Case study of Sports bike, Motor cycles, Scooters and Mopeds - Auto rickshaws, Pick up van, Delivery van and Trailer. Servicing and maintenance. Recent developments

TEXT BOOK:

1. Irving, P.E., Motor cycle Engineering, Temple press Book, Loondon, 1992

2. Bryaut, R.V., Vespa Maintenance and repair series. RAYMOND Broad, Lambretta- A practical guide to maintenance and repair, 1987

REFERENCES:

1. The Cycle Motor Manual, Temple Press Ltd., London, 1990

2. Encyclopedia of Motor cycling, 20 volumes, Marshall Cavensih, New York and London, 1989.

Cours	e Designers.						
S.No	Name of the Faculty	Designation	Department/College	Mail ID			
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in			
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in			
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in			

VEHICLE MAINTENANCE AND
SERVICING LAB

Category	L	Т	Р	Credit
EC-SE	0	0	4	2

To provide in house training in vehicle servicing and maintenance

Prerequisite

Nil

Course Objectives

- 1 To understand the clutch and gear box servicing
- 2 To understand the Differential unit

3 To understand the Ackermann Steering geometry

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1. Experiment with Gear box											Apply	Apply			
CO2	CO2. Identify Differential unit.											Apply	Apply		
CO3	CO3. Make use of steering geometry available in four wheeler.											Apply			
Mappin	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	-	-	-	М	-	-	-	М	М	-	-
CO2	CO2 S S S S M M M												-	-	
CO3	S	S	S	S	-	-	-	М	-	-	-	М	М	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Clutch assembly and servicing
- 2. Gearbox assembly and servicing
- 3. Differential unit assembly and servicing
- 4. Transaxle assembly and servicing
- 5. Different types of rear axle assembly and servicing
- 6. Brake system trouble shooting
- 7. Wheel alignment testing
- 8. Ackermann Steering geometry verification
- 9. Electrical signal and circuits
- 10. Servicing of accessories such as wiper motor, A/C system

Text Books

1. 'Vehicle Maintenance and Servicing Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem

Cours	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	N. Shivakumar	Assistant. Professor GRII	Mech / AVIT	shivakumar@avit.ac.in

	Categor				
	У	L	Т	Р	Credit
VEHICLE MAINTENANCE	EC-SE	3	0	0	3

Preamble To study and purpose is to understand various vehicle maintenance

Prerequisite

Nil								
Course Objectives								
1 7	o understand the maintenance of records and schedules.							
2]	o understand the engine maintenance and repair and overhauling.							
3 1	o understand the chassis maintenance and repair and overhauling							
4]	p impart the various electrical system maintenance service and repairs.							
5 7	Fo understand the various maintenance of cooling, fuel, lubrication and body.							
Course Outcomes:								
After Successful completion of this course, the students will be able to:								
CO1	Summarize vehicle maintenance records and schedule	Understand						
CO2	Understand							
CO3	Apply							
CO4	CO4. Identify maintenance, repair and servicing of electrical systems							
CO5	Apply							
Mapping with Programme Outcomes and Programme Specific Outcomes								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	Μ				М				М	М		
CO2	S	М	М	Μ				М				М	М		
CO3	S	S	S	Μ				М				М	М		
CO4	S	S	S	М				М				М	М		
CO5	S	S	S	М				М				М	М		

S-Strong; M-Medium; L-Low

MAINTENANCE OF RECORDS AND SCHEDULES

Importance of maintenance, preventive (scheduled) and breakdown (unscheduled) maintenance, requirements of maintenance, preparation of check lists. Inspection schedule, maintenance of records, log sheets and other forms, safety precautions in maintenance..

ENGINE MAINTENANCE – REPAIR AND OVERHAULING

Dismantling of engine components and cleaning, cleaning methods, visual and dimensional inspections, minor and major reconditioning of various components, reconditioning methods, engine assembly, special tools used for maintenance overhauling, engine tune up

CHASSIS MAINTENANCE - REPAIR AND OVERHAULING

Mechanical and automobile clutch and gear box, servicing and maintenance, maintenance servicing of propeller shaft and differential system. Maintenance servicing of suspension systems. Brake systems, types and servicing techniques. Steering systems, overhauling and maintenance. Wheel alignment, computerized alignment and wheel balancing.

ELECTRICAL SYSTEM MAINTENANCE - SERVICING AND REPAIRS

Testing methods for checking electrical components, checking battery, starter motor, charging systems, DC generator and alternator, ignitions system, lighting systems. Fault diagnosis and maintenance of modern electronic controls, checking and servicing of dash board instruments.

MAINTENANCE OF FUEL SYSTEM, COOLING SYSTEMS, LUBRICATION SYSTEM AND VECHICLE BODY

Servicing and maintenance of fuel system of different types of vehicles, calibration and tuning of engine for optimum fuel supply. Cooling systems, water pump, radiator, thermostat, anticorrosion and antifreeze additives. Lubrication maintenance, lubricating oil changing, greasing of parts. Vehicle body maintenance, minor and major repairs. Door locks and window glass actuating system maintenance

TEXT BOOK:

1. John Doke "Fleet Management", McGraw-Hill Co. 1984

2. Venk Spicer, "Automotive Maintenance and Trouble Shooting".

REFERENCES:

1. James D Halderman - Advanced Engine Performance Diagnosis – PHI - 1998

2. Judge.A.W., "Maintenance of high speed diesel engines", Chapman Hall Ltd., London.

S.No	Name of the Faculty	Designation	Department/College	Mail ID		
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in		
2	A.Imithyas	Assistant. Professor GRI	Mech / AVIT	imthicyr @avit.ac.in		
3	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in		

	Categor y	L	Т	Р	Credit
VEHICLE TRANSPORT MANAGEMENT	EC-SE	3	0	0	3

Preamble

This course reviews the methods of training and training procedure in the transport management, scheduling and fare structure of various public and private and state government undertaking vehicles, maintenance and motor vehicle act **Prerequisite**

Nil

Course Objectives

Course O	mjeei	1105													
1 T	'o pro	vide an	insight	t on the	differe	nt proc	cedures	of sele	cting pe	ersons f	for job a	and perso	onnel ma	nageme	nt
2 T	o incu	ilcate t	he vario	ous aspe	ects of	incorpo	orating	and ma	naging	a trans	portatic	n systen	n.		
3 T	o eluc	cidate o	on the ca	alculati	on of c	osts of	transpo	ortation,	, fare fi	xation a	and sch	eduling.			
4 T	o pro	vide the	e rules a	and reg	ulation	s of tra	nsport	system	as per r	notor v	ehicle a	act of Ind	dia.		
5 T	'o incı	ilcate t	he aspe	cts of n	nainten	ance of	f auton	notive v	ehicles.						
Course C	Jutco	mes:													
After Suc	cessfu	ıl com	oletion	of this	course,	the stu	idents v	will be a	ble to:						
CO1.	App	raise oi	n the va	rious as	spects of	of perso	onnel n	nanagen	nent of	a trans	port sys	stem.		Unde	rstand
CO2.	Devi	ise a tra	ansport	system	for a ty	ypical t	own w	ith prop	er syste	ems for	effecti	ve opera	tions.	Ap	ply
CO3.	Cons	struct a	fair tal	ble and	prepare	e a sche	edule fo	or a typi	cal tran	sportat	ion sys	tem,		Ap	ply
CO4.	App India		n the va	rious ru	iles and	d regula	ations o	of transp	port sys	tem as	per mo	tor vehic	cle act of	Ap	ply
CO5.	Deve	elop a p	perfectl	y applie	cable m	nainten	ance sc	hedule	for an a	utomot	ive.			Ap	ply
Mapping	, with	Progr	amme	Outcor	nes an	d Prog	ramm	e Specif	fic Out	comes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	Μ	Μ				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	S	S	М				-				-	S		
CO4	S	S	S	М				-				-	S		
CO5	S	S	S	М				-				-	S		
S Strong	· M N	1 dium													

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Personnel management; objectives and functions of personnel management, psychology, sociology and their relevance to organization, personality problems. Selection process: job description, employment tests, interviewing, introduction to training objectives, advantages, methods of training, training procedure, psychological tests.

TRANSPORT SYSTEMS

Introduction to various transport systems. Advantages of motor transport. Principal function of administrative, traffic, secretarial and engineering divisions. Chain of responsibility forms of ownership by state, municipality, public body and private undertakings

SCHEDULING AND FARE STRUCTURE

Principal features of operating costs for transport vehicles with examples of estimating the costs. Fare structure and method of drawing up of a fare table. Various types of fare collecting methods. Basic factors of bus scheduling. Problems on bus scheduling

MOTOR VEHICLE ACT

Traffic signs, fitness certificate, registration requirements, permit insurance, constructional regulations, description of vehicle-tankers, tippers, delivery vans, recovery vans, Power wagons and fire fighting vehicles. Spread over, running time, test for competence to drive.

MAINTENANCE

Preventive maintenance system in transport industry, tyre maintenance procedures. Causes for uneven tyre wear; remedies, maintenance procedure for better fuel economy, Design of bus depot layout.

TEXT BOOK:

1. John Duke, "Fleet Management", McGraw-Hill Co, USA, 1984.

2. Kitchin.L.D., "Bus Operation", III edition, Illiffee and Sons Co., London, 1992

REFERENCES:

1. Government Motor Vehicle Act, Publication on latest act to be used as on date

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Mech / VMKVEC	rajat@vmkvec.edu.in
2	M.Saravana Kumar	Assistant. Professor GRII	Mech / AVIT	saravanakumar@avit.ac.in
3	B. Samuvel Michael	Assistant. Professor GRII	Mech / AVIT	samuvelmichael@avit.ac.in

									Categ	ory	L	Т	Р	C	redit
			NTRC IOBII		TION	TO E	CLEC		EC- SE		3	0	0		3
	sign a		velop i	nnova	tive pr	oduct	s and s	r		ne field	·	tric Vehi		line wit	
Prere Cours		<u>e - NI</u> jective													
	rogran	n is ex	pected												
•						-						nal ICE vo Electric '			
•		n latest					uucts	and se	IVICES	III the		Liecuic	v emere	5 111 1111	5
•				-				-				in EV sp			
•		orove the ctively									dustrie	s towards	Comm	nunicate	e
•	Atta	ain inte	ellectu	al lead	lership						eeds of	power in	dustry,	acader	nia,
	soci	iety, ar	nd env	ironm	ent										
Cours	se Out	tcomes	s: On	the su	ccessf	ul con	npletio	on of t	he cou	urse, st	udents	will be a	ble to		
							•			,					
CO1.	Des	ion an	d deve	alon a	hasic e	lectri	ral vel	nicle c	omnoi	oent &	system		Apply	.7	
				-										y	
CO2.		n, Cha					v like	Datte	ry tech	mology	y, EV p	ower	Apply	y	
							duca	ofmo	daling	& sim	lation	tools in			
CO3.		Proble				ing an	u use	or mod	Jenng	& sinn	Ination		Apply	y	
										Govt B		0			
CO4.		ustries ener m			laborat	ively	& be a	is solu	tion pi	ovider	for clea	aner &	Apply	V	
					£ domo				14			. :			
CO5.		omotiv				e m u	ie area	is on a	nernai	ive pov	ver trai	1111	Apply	y	
Марр	ing w	ith Pr	ogran	nme O	utcon	ies an	d Pro	grami	ne Sp	ecific (Outcom	es			
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1		PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	М	L	М	L	L	-	-	-	-	-		L	-	-
COL	c	м	5	М	м	М							т		
CO2	S	М	S	M	М	М	-	-	-	-	-		L	-	-
CO3	S	Μ	Μ	L	М	L	-	-	-	-	-		L	-	-
CO4	S	М	S	М	S	S	-	-	-	_	_		L	_	-
	-		_		_	-									
CO5	S	М	S	М	S	S	_	-	_	_	-		L	_	_

S- Strong; M-Medium; L-Low

SYLLABUS: Introduction to Electric Vehicles

History of electric vehicles, Types of electric vehicles (Hybrid, Battery Electric Vehicle), Green Mobility Initiative from India, Policy Guidelines

EV trend in India, Challenges in EV growth, Comparison of Conventional Vehicles vs Electric Vehicles in Vehicle performance, power source, Efficiency.

Vehicle Dynamics & EV Subsystems

Introduction to electric components used, Forces acting on Electric vehicle, Aerodynamic drag, Rolling resistance, uphill resistance ,Power & Torque calculations, Introduction to Drive cycle, EV sub systems design (Motors, Controllers, Gears), Range and Energy calculation for 2W, 3W, 4W, Concept of Regeneration

EV Battery

Battery Chemistry, Battery design factors, Cost Vs demand curve, Why Lithium Ion batteries Battery Manufacturing basics, Research in battery chemistry, Cell design (series, Parallel, series + parallel), Battery Management systems, Battery testing, Battery Thermal management system, Battery Life estimation, second life applications; Introduction to battery modeling in Simulink/MATLAB

EV Motors

Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency. Power & torque calculations, Three phase A/c machines.

Charging Systems & EV Economics

EV Charger Introduction Chargers: Slow or Fast charging, On-board Chargers & Public chargers, Importance of standardization in Charging systems. Charging systems in Indian Context, Battery Swapping & Battery leasing, Cost of ownership comparison between Conventional Vehicles vs Electric Vehicles Importance of Data analytics & IoT in Electric vehicles.

Text Books:

- 1. K Wang Hee Nam: AC Motor Control & Electrical Vehicle Application, CR Press, Taylor & Francis Group, 2019.
- 2. Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016.
- **3.** Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

Reference Books

- 1. Chris Mi, M. Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, John Wiley & Sons Ltd. 2011
- 2. Emadi, A. (Ed.), Miller, J., Ehsani, M., "Vehicular Electric Power Systems" Boca Raton, CRC Press, 2003.
- 3. Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012.

- 4. Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013.
- 5. Electric Powertrain, Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles; John G. Hayes, University College Cork, Ireland; G. Abas Goodarzi ; US Hybrid, California, USA
- 6. Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017. (ISBN: 978-1-1193-2185-9)
- 7. Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec Way", Springer, 2018. (ISBN: 978-3-319-70571-2)
- 8. T R Crompton, "Battery Reference Book-3 rd Edition", Newnes- Reed Educational and Professional Publishing Ltd., 2000.
- 9. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 10. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 11. Ramu Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press.
- 12. R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and applications, CRC Press
- 13. Fundamentals of Electric vehicles: Technology & Economics By Prof. Ashok Jhunjhunwala, Prof. Kaushal Jha, Prof. L Kannan, Prof. Prabhjot Kaur | IIT Madras, Course Material

Cours	e Designers			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	T.Raja	Associate Profeesor	Mech/VMKVEC	rajat@vmkvec.edu.in
		Assistant. Professor		saravanakumar@a
2	M.Saravana Kumar	GRII	Mech / AVIT	vit.ac.in

ELECTIVE COURSES SPECIALIZATION-ENERGY ENGINEERING

		AI	TER	NATE FU	JEL I	TESTI	NG		Categ	gory	L	Т	P	C	redit
		LA							EC-	SE	0	0	4		2
Pream		owled	ge on	performa	nce an	d emis	sion cl	haraci	eristic	es on net	rol and	diesel e	ngine		
	equisit		ge on	periorma		u enns		marac	leristie	s on pe	101 and	ulesel e	ingine.		
NIL	•														
<u>Cour</u>	se Ob	jectiv	es												
1	To fan	niliariz	e and	train the s	tudent	ts on th	e how	to ch	eck V	CR eng	ine perf	ormance	e		
2	To fan	niliariz	e and	train the s	tudent	ts how	to chee	ck the	VCR	engine	in diffe	rent me	thods'		
3	To fan	niliariz	e and	train the s	tudent	s how	to mea	asure	the em	nission g	gases of	IC engi	ne		
Cour	se Ou	tcome	es: On	the suc	cessfu	ıl com	pletio	on of	the co	ourse, s	tudent	ts will t	e able	to	
							•			,					
CO1.	-			formance										Appl	у
CO2.		lysis ai CR en		formance	testing	g of Al	ternate	e Fuel	using	by diffe	rent cor	nponent	Į	Appl	V
~ ~ ~ ~	Eval	uate th	0	ction of E	Emmis	ion gas	s testir	ng and	d meas	suremen	ts by G	as			
<u>CO3.</u>	Ana	lyzer												Evalua	ate
							1 10		C	ifi .	0+				
Mapj	ping w	ith P	rogra	mme Ou	tcom	es and	i Prog	gram	me Sp	Decinic	Outcor	nes			-
	PO	РО	PO		РО	РО	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	
COs				mme Ou PO4 -			Ĩ	-	1				PSO 1 S	PSO 2	
<u>COs</u> CO1	PO 1 S	PO 2 S	PO 3 -	PO4 -	PO 5 -	PO 6 -	PO 7	PO 8	PO 9 S	PO1 0 -	PO1	PO1 2 -	1 S		
<u>COs</u> CO1	PO 1 S S	PO 2 S L	PO 3	РО4 - L	РО 5 - М	PO 6 -	PO 7 -	PO 8 -	PO 9 S M	PO1 0 -	PO1	PO1 2 -	1 S S		
<u>COs</u> CO1	PO 1 S	PO 2 S	PO 3 -	PO4 -	PO 5 -	PO 6 -	PO 7	PO 8	PO 9 S	PO1 0 -	PO1	PO1 2 -	1 S		PS0 3
<u>COs</u> CO1 CO2 CO3	PO 1 S S S	PO 2 S L s	PO 3 - S -	РО4 - L	РО 5 - М М	PO 6 -	PO 7 -	PO 8 -	PO 9 S M	PO1 0 -	PO1	PO1 2 -	1 S S		
<u>COs</u> CO1 CO2 CO3 S- Sti	PO 1 S S S rong; 2	PO 2 S L s	PO 3 - S -	РО4 - _ 	РО 5 - М М	PO 6 -	PO 7 -	PO 8 -	PO 9 S M	PO1 0 -	PO1	PO1 2 -	1 S S		
COs CO1 CO2 CO3 S- Sti	PO 1 S S S	PO 2 S L s M-Me S	PO 3 - S -	PO4 - L L :; L-Low	РО 5 - М М	PO 6 -	PO 7 -	PO 8 -	PO 9 S M	PO1 0 -	PO1	PO1 2 -	1 S S		
COs CO1 CO2 CO3 S- Sti SYLI LIST	PO 1 S S rong; 1 LABU COFE	PO 2 S L s M-Me S	PO 3 - S - edium	PO4 - L L :; L-Low	PO 5	PO 6	PO 7 - -	PO 8 - -	PO 9 S M S	PO1 0 -	P01 1	PO1 2 -	1 S S		
COs CO1 CO2 CO3 S- Sti	PO 1 S S rong; 1 LABU COF E Perfo	PO 2 S L s M-Me	PO 3 - S - edium	PO4 - L L ; L-Low CNTS t on VCR	PO 5 M M	PO 6 - -	PO 7 - -	PO 8 - -	PO 9 S M S	PO1 0 - -	PO1 1	PO1 2 -	1 S M		
COs CO1 CO2 CO3 S- Str SYL1 LIST	PO 1 S S rong; 1 LABU COFE Perfo	PO 2 S L s M-Me S S XPEI	PO 3 - S - edium RIME ce Test ce Test	PO4 - L L ; L-Low CNTS con VCR con VCR	PO 5 M M v	PO 6 - - - e using e using	PO 7 - - g altern g altern	PO 8 - - -	PO 9 S M S	PO1 0 - -	PO1 1	PO1 2 -	1 S M		
COs CO1 CO2 CO3 S- Str SYL1 LIST 1. 2.	PO 1 S S S rong; 2 LABU COFE Perfo Perfo	PO 2 S L s M-Me S S XPEI ormane	PO 3 - S - edium RIME ce Test ce Test ce Test	PO4 - L L s; L-Low CNTS con VCR con VCR con VCR	PO 5 M M 7	PO 6 - - - e using e using e using	PO 7 - - - g altern g altern g altern	PO 8 - - - - - - - - - - - - - - - - - -	PO 9 S M S	PO1 0 - -	PO1 1	PO1 2 -	1 S M		
COs CO1 CO2 CO3 S- Str SYLI LIST 1. 2. 3. 4.	PO 1 S S S rong; 1 LABU COFE Perfo Perfo Perfo	PO 2 S L s M-Me S S XPEI ormano ormano	PO 3 - S - edium RIME ce Test ce Test ce Test ce Test	PO4 - L L a; L-Low CNTS con VCR con VCR con VCR con VCR con VCR	PO 5 - M M 7	PO 6 - - - - e using e using e using e using	PO 7 - - - g altern g altern g altern g altern	PO 8 - - - - - - - - - - - - - - - - - -	PO 9 S M S S eel in d ieel in d ieel in E ieel in T	PO1 0 - - - - lifferent lifferent EGR Furbo Cl	PO1 1 loads compar	PO1 2 - -	1 S M		
COs CO1 CO2 CO3 S- Str SYL1 LIST 1. 2. 3. 4. 5.	PO 1 S S S rong; 1 LABU COFE Perfo Perfo Perfo Perfo	PO 2 S L s M-Me S S XPEI ormane ormane ormane	PO 3 - S - edium RIME ce Test ce Test ce Test ce Test ce Test	PO4 - L L s; L-Low CNTS con VCR con VCR con VCR con VCR con VCR con VCR	PO 5 - M M 7 engin engin engin engin engin	PO 6 - - - - e using e using e using e using e using	PO 7 - - - g altern g altern g altern g altern g altern	PO 8 - - - - - - - - - - - - - - - - - -	PO 9 S M S S eel in d uel in d uel in T uel in d	PO1 0 - - - - - - - - - - - - - - - - - -	PO1 1 loads compar	PO1 2 - -	1 S M		
COs CO1 CO2 CO3 S- Str SYLI LIST 1. 2. 3. 4.	PO 1 S S S rong; 1 LABU Perfa Perfa Perfa Perfa Perfa Mea	PO 2 S L s M-Me S S XPEI ormane ormane ormane ormane sureme	PO 3 - S - edium RIME ce Test ce Test ce Test ce Test ce Test ce Test ce Test ce Test	PO4 - L L a; L-Low CNTS con VCR con VCR con VCR con VCR con VCR	PO 5 - M M 7 r	PO 6 - - - - - e using e using e using e using D ₂ usin	PO 7 - - - g altern g altern g altern g altern g altern	PO 8 - - - - - - - - - - - - - - - - - -	PO 9 S M S S eel in d uel in d uel in T uel in d	PO1 0 - - - - - - - - - - - - - - - - - -	PO1 1 loads compar	PO1 2 - -	1 S M		

9.	Study of Chemilumin	escent NOx Analyzer								
Text Books										
1			[amual							
1	ALIEKNAIEFU	EL TESTING LAB N								
Refer	ence Books									
1	R.B. Gupta- "Auto	mobile Engineering	"- SatyaPrakashan							
2	Ganesan, V- "Interna	al Combustion Engines	s"- Tata McGraw-Hill	Co 2003.						
Cours	se Designers									
S.No	Faculty Name	Designation	Department/ College	Email id						
1	B.Samuvel Michael	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in						
2	R.Anandan	Associate Professor	MECH/VMKVEC	anandan@vmkvec.edu.in						

									Ca	tegory	L	Т	Р	C	redit
]	BIO E	NER	GY TI	ECHN	OLO	GY	EC	C-SE	3	0	0		3
Pream To diss conver	semin			•	es for u	ıtilizir	ıg bio-	energ	y and i	ts mani	fold be	nefits cor	npared	to	
Prerec	quisit	e - NI	L												
Course	e Obj	ective	S												
1 7	To pro	ovide t	he stu	dents t	he sou	irces o	of bion	nass.							
2 7	To ma	ike un	dersta	nd the	studer	nts on	differe	ent pro	cesses	of bio	nethana	ation.			
3 7	To stu	dy the	comb	oustion	of bio	o fuels	,								
4	To stu	dy the	gasifi	ication	meth	ods of	bioma	ass.							
5 7	To pro	ovide t	he stu	dents o	on liqu	efied	biofue	els.							
Course	e Out	comes	s: On	the su	ccessf	ul con	npletio	on of t	he cou	ırse, st	udents	will be a	ble to		
CO1.		gain t fuel a		-	ge of t	he bas	sic con	icepts	of Bio	omass p	reparat	ion and	Under	rstand	
CO2.	Тос	obtain	the m	ethods	of bio	ogas pi	oduct	ion an	d biog	as plan	s.		Under	rstand	
CO3.	Тог	pply t	he cor	ncepts	of con	nbusti	on pro	cesses	and f	uel han	dling sy	vstems.	Apply	1	
CO4.	Тοа	pply t	he tec	hnique	es for j	orepar	ation o	of biog	ases a	nd coal	s.		Apply	1	
CO5.	Тоа	upply t	he tec	hnique	es for p	orepar	ation o	of biod	liesels	from v	egetable	es.	Apply	1	
Mappi	~							Ĭ			utcom	es	1	1	1
COs	PO 1	РО 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	L	М	L	L	-	-	-	-	-	-	L	_	_
CO2	S	М	S	М	М	М	-	-	-	-	-	-	L	-	-
CO3	S	М	М	L	М	L	-	-	-	-	-	-	L	-	-
CO4	S	М	S	М	S	S	-	-	-	-	-	-	L	-	-
CO5	S	М	S	М	S	S	_	-	-	-	-	_	L	-	_
S- Stro							1	1	1				1	1	1

SYLLABUS: INTRODUCTION

Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversion mechanisms – fuel assessment studies – densification technologies – Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis – Differential Thermal Analysis – Differential Scanning Calorimetry

BIOMETHANATION

Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yield – possible feed stocks. Biogas plants – types – design – constructional details and comparison – biogas appliances – burner, luminaries and power generation – effect on engine performance

COMBUSTION

Perfect, complete and incomplete combustion - stoichiometric air requirement for biofuels - equivalence ratio - fixed Bed and fluid Bed combustion - fuel and ash handling systems - steam cost comparison with conventional fuels

GASIFICATION, PYROLYSIS AND CORBONISATION

Chemistry of gasification - types - comparison - application - performance evaluation - economics - dual fuelling in IC engines - 100 % Gas Engines - engine characteristics on gas mode - gas cooling and cleaning systems - Pyrolysis - Classification - process governing parameters - Typical yield rates. Carbonization Techniques - merits of carbonized fuels

LIQUID BIOFUELS

History of usage of Straight Vegetable Oil (SVO) as fuel - Biodiesel production from oil seeds, waste oils and algae - Process and chemistry - Biodiesel health effects / emissions / performance. Production of alcoholic fuels (methanol and ethanol) from biomass – engine modifications

TEXT BOOKS

- 1. Tom B Reed, Biomass Gasification Principles and Technology, Noyce Data Corporation, 1981
- 2. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester, 1984.
- 3. Khandelwal KC, Mahdi SS, Biogas Technology A Practical Handbook, Tata McGraw Hill, 1986

Reference Books

- 1. Mahaeswari, R.C. Bio Energy for Rural Energisation, Concepts Publication, 1997
- 2. Best Practises Manual for Biomass Briquetting, I R E D A, 1997.
- 3. Eriksson S. and M. Prior, The briquetting of Agricultural wastes for fuel, FAO Energy and Environment paper, 1990
- 4. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.Mahesh	Assistant Professor (GR-II)	Mechanical/AVIT	mahesh@avit.ac.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu. in

	Category	L	Т	Р	CREDIT
ENERGY CONSERVATION IN					
THERMAL SYSTEMS	EC-SE	3	0	0	3

Preamble

This course is intended to introduce principles of energy auditing and to provide measures for energy conservation in thermal utilities

Prerequisite

NIL

Course Objectives

1	To provide him the present energy scenario and the need for energy conservation.
2	To understand energy monitoring / targeting aspects of Energy
3	To study the different measures for energy conservation and financial implications of various
	thermal utilities.
4	To study the different measures of energy conservation in thermal systems.
5	To provide energy conservation measures of different thermal utilities.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the energy sources and scenario.	Understand
CO2	Understand energy monitoring / targeting aspects of Energy	Analysis
CO3	To apply the measures for energy conservation and financial implications of various thermal utilities.	Apply
CO4	To apply the concepts and performance study of different types of corrosion	Apply
CO5	Performance analysis of thermal utilities	Analysis

Mapping with Programme Outcomes and Programme Specific Outcomes

C Os	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO3
CO1	S	М	L	М	L	L	-	-	-	-	-	-	L	-	-
CO2	S	М	S	М	L	L	L	-	-	-	М	М	S	М	-
CO3	S	М	S	М	L	L	L	_	_	-	М	М	S	М	_
CO4	S	М	S	М	L	L	L	_	_	_	М	М	S	М	_
C05	M		M	L	L		M	_	_		M	M	M	M	

S-Strong; M-Medium; L-Low

INTRODUCTION
Indian Energy Scenario – Types & Forms of Energy - Primary / Secondary Energy Sources – Energy
Conservation - Need - EC Act 2003 : Salient Features - Energy Intensive Industries - Barriers - Roles &
Responsibility of Energy Managers – Energy Auditing : Preliminary & Detailed - Benchmarking.
ENERGY MONITORING & TARGETING
Data & Information Analysis – Cost / Energy Share Diagram – Data Graphing – Break Even Analysis –
Depreciation - Financial Analysis Techniques - CUSUM Technique - ESCO Concept - ESCO
Contracts.
PERFORMANCE STUDY OF THERMAL UTILITIES – 1
Boiler – Stoichiometry – Combustion Principles – Heat Loss Estimation – Steam Traps – Steam Piping &
Distribution – Thermic Fluid Heaters – Furnaces – Insulation & Refractories
PERFORMANCE STUDY OF THERMAL UTILITIES – 2
Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification,
erosion-corrosion, Crevice Corrosion, Fretting-Protection methods-PVD, CVD.
PERFORMANCE STUDY OF THERMAL UTILITIES – 3
Basics of R & A/C – COP / EER / SEC Evaluation – Psychometric Chart Analysis – Types &
Applications of Cooling Towers – Basics – Performance Analysis – DG Set – Performance Prediction–
Cost of Power Generation – Scope for Energy Conservation in all these
Text Books:
1 Smith, CB Energy Management Principles, Pergamon Press, NewYork, 1981
2 Hamies, Energy Auditing and Conservation; Methods Measurements, Management and Case study,
Hemisphere, Washington, 1980
3 Trivedi, PR, Jolka KR, Energy Management, Commonwealth Publication, New Delhi, 1997
Reference:
1. Write, Larry C, Industrial Energy Management and Utilization, Hemisphere Publishers,
Washington, 1988
2. Diamant, RME, Total Energy, Pergamon, Oxford, 1970
3. Handbook on Energy Efficiency, TERI, New Delhi, 2001
4. Guide book for National Certification Examination for Energy Managers and Energy Auditors
(Could be downloaded from www.energymanagertraining.com)

004100200	8	
S.No	Name of the Faculty	Mail ID
1	R.ANANDAN	Rajanand0072000@yahoo.com
2	R.MAHESH	mahesh@avit.ac.in

									Cate	gorv	L	Т	Р		redit
				ENEF	RGY I	LAB			EC-		0	0	4		2
			nents (on various	Energ	gy Eng	ineeri	ng dev	vices to	o study tl	he perfo	ormance	and its	applica	tions.
Cour	se Obje	ectives	5												
1	To imp	oart pra	actice	in solar w	ater h	eater.									
2	То арр	ly the	practio	cal trainin	g by u	sing b	iogas	plant							
3	To app	ly the	practio	cal trainin	g by v	arious	pump	and it	ts char	acteristi	cs				
4	To stu	dy and	apply	for perfo	rmanc	e analy	ysis an	d opti	mizati	on of en	ergy uti	lities			
5	To stud	ly the	Perfor	mance on	vario	us Hea	t Excl	hanger	'S						
Cour	se Outo	comes	: On t	he succes	sful co	omple	tion of	f the c	ourse,	student	ts will t	e able	to		
CO1.	1. Understand the working principle of different renewable energy sources. Apply														
CO2.	Mea	sure th	e prop	erties of a	liffere	nt fuel	s.							Appl	у
CO3.				al training										Appl	У
CO4.	Proc utilit		to be a	dopted fo	r perfo	ormano	ce ana	lysis a	nd opt	imizatio	n of ene	ergy		Appl	У
CO5.	To st	tudy th	ne Perf	ormance	on va	rious H	Ieat E	xchang	gers					Appl	у
Марј	ping wi	th Pro	gram	me Outco	omes a	and Pr	ogran	nme S	pecifi	c Outco	mes				
		РО	РО		РО	РО	РО	РО	РО		PO1	PO1	PSO	PSO	
COs		2	3	PO4	5	6	7	8	9	PO10	1	2	1	2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	L	-	L		
CO2	S	L	S	L	-	-	-	-	-	-	L	-	L		
CO3	S	L	-	L	-	-	-	-	-	-	М	-	L		
CO4	S	M	L	-	-	-	-	-	-	-	М	-	L		
CO5	L	L	L	-	-	-	L	-	-	-	L	-	L		
S- Sti	rong; N	I-Med	lium;	L-Low											

LIST OF EXPERIMENTS

1. Performance study in a solar water heate	er.
---	-----

- 2. Characteristics study of solar photovoltaic devices.
- 3. Performance study of biogas plant.
- 4. Fuel characterization study in different fuels (proximate analysis, calorific value, viscosity, specific gravity etc.,)
- 5. Measurements of direct and diffused solar radiation.
- 6. Performance study on boiler.
- 7. Performance characteristics of motor test rig.
- 8. Computation of pump & pumping system characteristics (pump curve, system curve and BEP)
- 9. Analysis on fans characteristic curves
- 10. Performance study on various Heat Exchangers.
- 11. Performance characteristics of Vapour Compression Refrigeration test rig.
- 12. Study on fuel cell Systems.
- 13. Study on thermal storage systems
- 14. Study on biomass gasifiers.
- 15. Study on various alternate fuels for IC engines

Text Books

1 ENERGY LAB Manual

Reference Books

1	Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986
	G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002

			Department/	
S.No	Faculty Name	Designation	College	Email id
1	A.Senthilkumar	Assistant Professor	Mech / AVIT	senthilkumar@avit.ac.in
2	Dr.P. Sellamuthu	Associate Professor	MECH/VMKV EC	sellamuthu@vmkvec.edu.in

									Cat	egory	L	Т	Р	C	redit
			ENER	RGY ST	FORA (GE SYS	STEMS	5	Е	C-SE	3	0	0		3
Also s	mpletio tudents											ous energ ergy syster		e systei	ms.
Preree NIL	quisite														
Cours	e Objec	tives													
,	v	ble the			ndersta	and the	e need	for en	ergy st	orage,	devices	and tech	nologie	es avail	able
2	To stu	dy det	ails of	variou	ıs ener	gy sto	rage sy	ystems	along	with a	oplicatio	ons.			
3	Enabl	ing to i	identif	y the c	optima	l solut	ions to	a part	icular	energy	storage	applicati	on/utili	ity.	
4	To ace	quire k	nowle	dge or	n vario	us ene	rgy sto	orage s	ystem	s.					
5	To en	able th	e stud	ent to	unders	tand th	ne desi	gn and	l appli	cation of	of vario	us energy	storage	e syste	ms.
Cours	e Outco	omes:O	n the s	uccess	ful com	pletior	ı of the	course	e, stude	ents will	be able	to			
CO1.	Anal stora		e chara	cterist	tics of	energy	/ from	variou	is sour	ces and	need fo	or Under	rstand		
CO2.		sify va urpose		ypes o	f energ	gy stor	age an	d vario	ous dev	vices us	sed for	Apply			
CO3.	Ident	ify var	rious re	eal tim	e appl	icatior	ıs.					Apply			
CO4.	Unde	erstand	need	of ene	rgy sto	rage s	ystems	8.				Under	stand		
CO5.	-	ire kno sis and	-	ge pert	aining	to var	ious w	ays to	store	energy,	its	Under	stand		
Марр	ing witl	h Progi	ramme	Outco	mes an	d Prog	ramme	e Specif	fic Out	comes					
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	M	L	M	L	L	-	0	,	0	1	-	L	2	5
								_	_						-
CO2	S	М	L	M	L	L	-	-	-	-	-	-	L	-	-
CO3	S	М	M	M	L	L	-	-	-	-	-	-	L	-	-
CO4	S	М	М	М	L	М	-	-	-	-	-	-	L	-	-
CO5	S	М	L	М	L	М	-	-	-	-	-	-	L	-	-
S-Stro	ong;M-I	Mediun	n;L-Lo	W											
	ABUS														
	-I: Int			ao 4:4	Forant	tunco	oforce	ratiote	r0.00	nachar	ical at	miss1 s1	ootniaa	1	
ineces	ssity of	energ	y stora	ge, air	ierent	types	or ener	rgy sto	rage, f	nechan	icai, che	emical, el	ectrica	1,	

electrochemical, biological, magnetic, electromagnetic, thermal, comparison of energy storage technologies

UNIT – II: Mechanical Energy Storage:

Thermal Energy storage, sensible and latent heat, phase change materials, Energy and exergy analysis of thermal energy storage, Electrical Energy storage-super-capacitors, Magnetic Energy storage-Superconducting systems, Mechanical-Pumped hydro, flywheels and pressurized air energy storage, Chemical-Hydrogen production and storage

UNIT – III: Electrochemical Energy storage:

Thermodynamics and Kinetics of Electrochemical Reactions. Introduction to Electrochemical Techniques, Electrochemical Energy Storage Systems (a) Advanced Rechargeable Batteries (b) Supercapacitors. Hybrid power systems: Differences/interactions between batteries and supercapacitors.

UNIT – IV: Features of Energy Storage Systems:

Classification of EES systems, Mechanical storage systems, Pumped hydro storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES), Electrochemical storage systems, Secondary batteries, Flow batteries, Chemical energy storage, Hydrogen (H2), Synthetic natural gas (SNG).

UNIT-V: Design and Applications of Energy Storage:

Renewable energy storage-Battery sizing and stand-alone applications, stationary (Power Grid application), Small scale application-Portable storage systems and medical devices, Mobile storage Applications- Electric vehicles (EVs), types of EVs, batteries and fuel cells, future technologies, hybrid systems for energy storage.

TEXTBOOKS

1. Energy Storage - Technologies and Applications by Ahmed Faheem Zobaa, InTech.

2. Fundamentals of Energy Storage by J. Jensen and B. Sorenson, Wiley-Interscience, New York,

3. Handbook of battery materials by C. Daniel, J. O. Besenhard, Wiley VCH Verlag GmbH & Co.

KgaA

ReferenceBooks

1. Fuel cell Fundamentals by R. O'Hayre, S. Cha, W. Colella and F. B. Prinz, Wiley Pub.

Chemical and Electrochemical Energy System by R. Narayan and B. Viswanathan, University Press.
 Battery Systems Engineering by C. D. Rahn and C. Wang, Wiley Pub

4. Electrochemical Energy Storage for Renewable sources and grid balancing by P. T. Moseley and J. Garche, Elsevier Science

5. Compressed air energy storage by F. P. Miller, A. F. Vandome, M. B. John, VDM publishing

000000	Designers			
S.No	FacultyName	Designation	Department/ Name of the College	Emailid
1	A. Senthilkumar	ASSISTANT PROFESSOR(GRADE-II)	Mechanical/AVIT	senthilkumar@avit.ac.in
1	A. Sentinikumai	Associate		Sentimikumai e avit.ac.m
2	Dr.P. Sellamuthu	Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in

				OGEN A		UEL (CELL			Catego EC-SI		L 3	<u>Т</u> 0	<u>Р</u> 0	Credit 3
PREA	MBL			OLUG	r 1					EC-SI		3	U	U	5
			arious	techno	logical	advanc	ement	ts, bene	fits an	id prosj	pects of	utilizi	ng hydrog	gen/fuel	cell for
	-			y requir	ement	8.									
	REQUI	ISITE													
NIL															
	RSE O				n nno di	untion r	nothod			ible one	liantio	na and i			tions
1								<u> </u>					various st thermody	<u> </u>	
2	kinet				0	51							5		
3	To ar	nalyze	the co	ost effec	tivene	ss and e	eco-frie	endline	ss of F	uel Cel	ls.				
4	To m	ake st	udents	s unders	tand th	ne differ	rent fu	el cells	and th	eir app	lication	s.			
5	To er	nable s	tuden	ts to un	derstan	d the e	conom	ics of f	uel cel	ls.					
COU	RSE O	UTC	OME	5											
On the	e succe	ssful c	comple	etion of	the co	urse, st	udents	will be	e able t	0			1		
CO1	Know t	he hv	droger	n produ	ction n	pethodo	logies	and va	rious s	torage	ontions		Underst	and	
													Underst		
C O2 .1	Know t	he wo	orking	of fuel	cell and	d its typ	bes wit	h therm	nodyna	imic pe	rformar	nce.	Underst	and	
CO3.	Under	stand t	the cos	st effect	ivenes	s and e	co-frie	ndlines	s of fu	el cells			Underst	and	
				t types (Underst	and	
CO5.	Unders	tand t	he eco	nomics	of fue	l cells.							Underst	and	
)GRAN	лме (OUTCO	OMES		PROG	RAM	ME SPI	ECIFI	C OUTC	OMES	
MAP	PING	WITF	і ркс												
MAP					ΡΩ		PO		PO	POT	PO1	PO1		PSO	
MAP COS	PING PO 1	WITH PO 2	PO 3	PO4	PO 5	PO6	РО 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
COS	РО	РО	РО			PO6 S		PO8					PSO1 L		PSO3
COS	PO 1	PO 2	PO 3	PO4	5		7	PO8							PSO3
COS CO1 CO2	PO 1 M	PO 2 S	PO 3 S	PO4 S	5 S	S	7 S	PO8					L		PSO3
	PO 1 M S	PO 2 S S	PO 3 S S	PO4 S M	5 S M	S M	7 S L	PO8					L L		PSO3

HYDROGEN – BASICS AND PRODUCTION TECHNIQUES: Hydrogen – physical and chemical properties, salient characteristics. Production of hydrogen – steam reforming – water electrolysis – gasification and woody biomass conversion – biological hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.

HYDROGEN STORAGE AND APPLICATIONS: Hydrogen storage options – compressed gas – liquid hydrogen – Hydride – chemical Storage – comparisons. Safety and management of hydrogen. Applications of Hydrogen.

FUEL CELLS: History – principle - working - thermodynamics and kinetics of fuel cell process – performance evaluation of fuel cell – comparison on battery Vs fuel cell.

FUEL CELL – TYPES: Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – relative merits and demerits.

APPLICATION OF FUEL CELL AND ECONOMICS: Fuel cell usage for domestic power systems, large scale power generation, Automobile, Space. Economic and environmental analysis on usage of Hydrogen and Fuel cell. Future trends in fuel cells.

TEXT BOOKS:

- 1. Viswanathan, B and M Aulice Scibioh, Fuel Cells Principles and Applications, Universities Press (2006)
- 2. Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma (2005
- 3. Bent Sorensen (Sørensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK (2005)

REFERENCES:

- 1. Kordesch, K and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany (1996)
- 2. Hart, A.B and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London (1989)
- 3. Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA (2002).

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID							
1	Shivakumar N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com							
2	V.K.Krishnan	Assistant Professor	Mech / VMKVEC	vkkrishnanme@yahoo.com							

WASTE ENERGY	Category	L	Т	Р	Credit
CONVERSION					
TECHNOLOGIES	EC-SE	3	0	0	3

Preamble

This subject deals with various techniques involved in waste treatment, waste disposal and how to convert energy from that waste. Detailed study extends to the method of thermo chemical and bio chemical conversion techniques. Also deals a case study of environmental and health impact due energy conversion to waste.

to waste.													
Prerequisite - NIL													
Course Objectives													
1 To understand the waste and waste processes.													
2 To understand waste treatment and disposal.													
3 To apply how to convert waste to energy from	To apply how to convert waste to energy from thermo chemical conversion.												
	To apply how to convert waste to energy from bio chemical conversion.												
	To analysis the environmental impact due to waste with case study.												
			-										
Course Outcomes: On the successful completion of the course, students will be able to													
CO1. Explained types of waste and source of wast	Explained types of waste and source of waste understand												
	· · · · · · · · · · · · · · · · · · ·												
CO3.Apply the various techniques to convert was chemical conversion.	ste to energ	gy by th	ermo		apply								
CO4. Apply various methods to convert waste to e	energy fror	n bio cl	nemical		apply								
Analysis the environmental and health impa	acts due to	waste w	vith case	e									
CO5. study.					analysis								
Mapping with Programme Outcomes and Program	mme Spec	ific Ou	tcomes										
PO PO<	PO PO 8 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3						
CO1 M L -		-	-	_	L	_	-						
		_	_	_	L	_	-						
		-	_	_	L	_	-						
CO4 S S M L		-	-	-	L	-	-						
CO5 S S S M		-	-	-	L	-	-						
S- Strong; M-Medium; L-Low													

INTRODUCTION TO WASTE & WASTE PROCESSING

Definitions, sources, types and composition of various types of wastes; Characterisation of Municipal SolidWaste (MSW), Industrial waste and Biomedical Waste (BMW), waste collection and transportation; waste processing-size reduction, separation; waste management hierarchy, waste minimization and recycling of MSW; Life Cycle Analysis (LCA), Material Recovery Facilities (MRF), recycling processes of solid waste.

WASTE TREATMENT AND DISPOSAL

Aerobic composting, incineration, different type of incineration; medical and pharmaceutical waste incinerations- land fill classification, types, methods and sitting consideration, layout and preliminary design of landfills: composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.

ENERGY FROM WASTE-THERMO CHEMICAL CONVERSION

Sources of energy generation, incineration, pyrolysis, gasification of waste using gasifiers, briquetting, utilization and advantages of briquetting,-environmental and health impacts of incineration; strategies for reducing environmental impacts.

ENERGY FROM WASTE- BIO-CHEMICAL CONVERSION

Anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, industrial waste, agro residues, anaerobic digestion- biogas production, land fill gas generation and utilization, present status of technologies for conversion of waste into energy, design of waste to energy plants for cities, small townships and villages.

ENVIRONMENTAL AND HEALTH IMPACTS-CASE STUDIES

Environmental and healthimpacts of waste to energy conversion, case studies of commercial waste to energy plants, waste to energy-potentials and constraints in India, eco-technological alternatives for waste to energy conversions - Rules related to the handling, treatment and disposal of MSW and BMW in India.

Text Books

1	Parker, Colin, & Roberts, "Energy from Waste An Evaluation of Conversion Technologies", Elsevier Applied Science, London, 1985.
2	Shah, Kanti L., "Basics of Solid & Hazardous Waste Management Technology", Prentice Hall, 2000.

Reference Books

1	Robert Green, From Waste to Energy, Cherry Lake Publication, 2009.
	Velma I Grover and Vaneeta Grover, "Recovering Energy from Waste Various Aspects", Science
2	Pub Inc, 2002.

S.No	Faculty Name	Designation	Department/Name of the College	Email id
		Assistant		
1	R.Chandrasekar	Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in
			Mech /	
		Assistant	VMKVEC	
2	V.K.Krishnan	Professor		vkkrishnanme@yahoo.com

ENERGY CONSERVATION	Categ	gory	L	Т	Р	Cree	dit
AND MANAGEMENT	EC-S	SE	3	0	0	3	
Preamble The aim of the subject is to provide basic knowledge of auditing	energy c	consum	nption,	utilization	n and ei	nergy	
Prerequisite NIL							
Course Objectives							
1 To compare the energy consumption details work	dwide.						
2 Analyzing and interpretation of energy data in inc	lustries.						
3 Carrying out energy accounting and balancing.							
4 Conducting energy audit and suggest methodolog	jies for e	nergy s	savings	in variou	ıs equip	ment.	
5 To utilize the available energy resources in optim	al ways.						
Course Outcomes: On the successful completion of t	he cours	se, stuc	lents w	rill be abl	le to		
To gain the knowledge of the basic conceptsCO1.energy managers	of Ener	rgy sce	enario,	energy a	uditing	&role	of
CO2. To obtain the methods of Electric managements	s, Lightii	ngs					
CO3. To apply the concepts of boiler testing, steam d	istributio	on & th	ermal i	insulators	5		
CO4. To apply the techniques for Energy conservation							
	^	•					
CO5. To apply the techniques for payback period, en					te of Re	turn	
Mapping with Programme Outcomes and Programm	ne Speci	fic Ou	tcomes				Р
PO PO PO PO PO PO PO) PO	PO1	PO1		PSO	PSO	S O
Cos PO1 2 3 4 5 6 7 8	9	0	1	PO12	1	2	3
CO1 S M L M L L	_	-	-	-	L	-	-
CO2 S M S M L L L -	-	-	-	-	L	-	_
CO3 S M M L M L M -	-	-	-	-	L	-	_
CO4 S M S M M M L -	_	-	-	-	L	-	-
CO5 S M S M M M L -	_	_	_	_	L	_	_
S- Strong; M-Medium; L-Low					<u></u>		<u>.</u>

SYLLABUS IMPORTANCE OF ENERGY CONSERVATION AND MANAGEMENT

Energy-Power – Past & present scenario of World; National Energy consumption data– environmental aspects – Energy prices, policies – Energy auditing: Need, Types, methodology and analysis. Role of energy managers. Instruments used for auditing.

ELECTRICAL SYSTEMS

AC / DC current systems, Demand control, power factor correction, load management, Motor drives: motor efficiency testing, Variable frequency drives – Lighting: lighting levels, efficient options, day lighting, timers, Energy efficient windows – Advanced fuel cell technology

THERMAL SYSTEMS

Boiler – efficiency testing, excess air control, Steam distribution & use – steam traps, condensate recovery, flash steam utilization, Thermal insulation and refractories. Thermic fluid heaters.

ENERGY CONSERVATION

Energy conservation in Pumps, Fans (flow control) and blowers, Compressed Air Systems, Refrigeration and air conditioning systems – Waste heat recovery recuperators, heat sheets, heat pipes, heat pumps.

ENERGY MANAGEMENT & ECONOMICS

Energy resource management – Energy Management information systems – Computerized energy management – Energy economics – discount rate, payback period, internal rate of Return, life cycle costing – Financing energy conservation Projects.

TEXT BOOKS

- 1. L.C. Witte, P.S. Schmidt, D.R. Brown, Industrial Energy Management and Utilisation, Hemisphere Publications, Washington.
- 2. O. Callaghn, P.W. Design and Management for Energy Conservation, Pergamon Press, Oxford.

Reference Books

- 1. Dryden, I.G.C. The Efficient Use of Energy, Butterworths, London
- 2. Turner, W.C. Energy Management Hand Book, Wiley, New York.
- 3. Murphy, W.R. and Mc KAY, G. Energy Management, Butterworths, London

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.Mahesh	ASSISTANT PROFESSOR (GR-II)	Mechanical/AVIT	mahesh@avit.ac.in
2	V.K.Krishnan	Assistant Professor	Mech / VMKVEC	vkkrishnanme@yahoo.co m

ELECTIVE COURSES SPECIALIZATION-THERMAL ENGINEERING

								Cat	egory	L	,	Т	Р	Cro	edit
			IBUST	ION FI	NCIN	FFDI	NC		C-SE	3		0	0		3
Prea	nble	CON	IDUSI	IUNE	NGIN	EENI	NG	EC	-9E	5		U	U		5
		on of this students									.		tion of fu	el and	
	equisite			le lo ge	t the K	nowied	ige of	CONSE	equenc		lous co	mousu	ons.		
NIL	-														
Cour	se Obje	ectives													
1	1 To Acquire the fundamental knowledge of combustion.														
2	2 To Understand the thermodynamics of combustion.														
3															
4															
5 To Understand the combustion aspects in SI and CI Engines.															
Cour	se Out	comes: (On the	success	ful co	mpleti	ion of	the co	ourse, s	student	ts will l	be able	to		
C01.	Course Outcomes: On the successful completion of the course, students will be able to Formulate combustion equations to determine A/F, adiabatic flame temperature and pollutant concentration. Apply														
		te the the				tinetics	s of co	ombus	tion to	evolve	mather	natical		115	
CO2.		els for c		•										Analyze	2
CO3.		of phys ate of cl		•			•	tion, p	oropaga	ation an	d extin	ction,	T	ndersta	ad
	Iden	tify facto	ors resp	onsible	for la	ninar a	and tu								lu
CO4.		ifferent												Apply	
CO5.		marize e niques	em188101	n associ	lated w	/ith co:	mbust	ion an	d ident	ify the	r contr	ol		Analyze	e
Мар	oing wi	th Prog	ramme	Outco	mes a	nd Pro	ogram	ıme Sj	pecific	Outco	mes				
	РО				РО	РО	РО	РО	РО	PO1	PO1		PSO	PSO	PSO
CO		PO2	PO3	PO4	5	6	7	8	9	0	1	PO12		2	3
COI	S	s	М	М	-	-	L	-	-	_	L	_	L		
CO2		S	M	-	-	-	-	-	-	-	L	-	L		
CO3	S	М	М	М	-	-	-	-	-	-	L	-	L		
CO4	S	S	М	L	-	-	М	-	-	-	М	-	L		
COS	L	М	М	S	-	М	S	-	-	-	М	-	L		
S- St	rong; N	I-Mediu	ım; L-I	Low											
	LABUS														

COMBUSTION OF FUEL

Introduction - Combustion equations - Theoretical air - Excess air - Air fuel ratio - Equivalence ratio - Exhaust gas composition - Air fuel ratio from exhaust gas composition - Heating value of fuels.

COMPRESSION IGNITION ENGINES

Thermo-chemistry, first law analysis of reacting systems - Adiabatic combustion temperature - Second law analysis of reacting systems - Criterion for chemical equilibrium - Equilibrium constant for gaseous mixtures -Evaluation of equilibrium composition - Chemical availability

KINETICS OF COMBUSTION

Rates of reaction - Reaction order and complex reactions - Chain Reactions, Arrhenius rate equation, collection theory - Activated complex theory - Explosive and general oxidative characteristics of fuels.

FLAMES

Laminar and turbulent flames - Premixed and diffusion flames - Burning velocity and its determination -Factors affecting burning velocity - Quenching, flammability and ignition - Flame stabilization in open burners

ENGINE COMBUSTION

Combustion in SI and CI engines - Stages of combustion in SI and CI engines - Normal combustion and abnormal combustion - Emissions from premixed combustion - Emission from non-premixed combustion -Control of emissions

Text Books

1	Ganesan.V, "Internal Combustion Engines", Tata McGraw-Hill, New Delhi.
	Ramalingam.K.K, "Internal Combustion Engines - Theory and practice", SciTech Publications India
2	Pvt. Ltd., Chennai, 2010.
	Stephen.R.Turns, "An Introduction to Combustion concepts and applications", McGraw Hill Book
3	Company, Boston, 3 rd Edition, 2011.
Refere	nce Books

KUUU	ICC DOORS												
1	Thipse.S.S, "Interna	al Combustion Engines", Jaico	Publication House.										
2	Thipse.S.S, "Altern	ate Fuels", Jaico Publication H	louse.										
3	Heywood.J.B, "Inte	ernal Combustion Engine Fund	amentals", McGraw Hill I	nternational, New York.									
4	Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons.												
5 Course													
S.No	Faculty Name	Designation	Department/ Name of the College	Email id									
1	S.Prakash	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in									
2	V K Krishnan	Assistant Professor	Mech / VMKVEC	vkkrishnanme@vahoo.com									

		CO		Г А ТТТ 4	ONAL	TTTT	ID	Cate	egory	L		Т	Р	Cr	edit
			NAMI		JNAL	FLU	IJ	EC		3		0	0		3
Preamb	ole										I			l	
quation nd par	ns that tial difi	arise i ferentia	n fluic al equa	l dyna ations	imics. related	Funda d to flu	mentals	of nui nanics	nerica	l analys	sis, oro	linary	nt type o differen eviewed.	tial equ	ations
rerequ		nsidei	ations	aleul	scusse	u allu	demonst	Taleu.							
NIL															
Cours	e Obje	ctives													
1 '	To und	erstand	l basic	prope	erties o	of com	putationa	al meth	ods						
							viscous f								
	To lear equatio		outatio	onal so	lution	techni	ques for	time in	ntegrat	tion of o	ordinary	y diffe	erential		
4 '	To intro	oduce 1	numer	ical m	odelin	g and	its role ir	1 the fi	eld of	fluid flo	ow and	heat t	ransfer		
	To enal turbule				inderst	tand th	e variou	s discr	etizatio	on meth	nods, so	olution	n procedui	res and	
Cours	e Outc	omes:	On th	e suco	essful	com	oletion of	f the c	ourse.	studen	ts will	be ab	le to		
CO1.							outationa						Understa	und	
CO2.							viscous						Understa	and	
CO3.	of or	dinary	differ	ential	equati	ons	lution teo	•			•		Analyze		
CO4.	and	heat tra	ansfer				ing and i					low	Analyze		
CO5.		rmine ulence			liscreti	ization	method	s, solu	tion pr	ocedure	es and		Apply		
Mapp	ing wit	h Prog	gramn	ne Ou	tcome	s and	Program	nme S	pecific	e Outco	omes				
COs	PO1	PO 2	РО 3	РО 4	РО 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	М	М	L	М	L	-	-	-	-	-	L	L	-	
CO2	S	М	М	L	L	L	-	-	-	-	-	-	L	-	L
CO3	S	М	М	L	L	L	-	-	-	-	-	L	L	-	L
CO4	S	S	S	М	L	L	-	-	-	-	-	-	L	-	L
CO5	М	М	М	L	L	М	-	-	-	-	-	-	L	-	L
a a.	ong• M	[-Medi	um• I	-Low											
S- Stra	UII2. IV														

INTRODUCTION

Computational Fluid Dynamics, Advantages, Applications, Future of CFD. Problem set up-pre-process, Numerical solution – CFD solver

GOVERNING EQUATIONS FOR CFD

Introduction, the continuity equation, the momentum equation, the energy equation, the additional equations for turbulent flows, generic form of the governing equations for CFD, boundary conditions.

CFD TECHNIQUES

Derivation of finite difference equations - Simple Methods - General Methods for first and second order accuracy- Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems

FLOW FIELD ANALYSIS

Dr.P. Sellamuthu

Professor

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid - Momentum equations - Pressure and Velocity corrections - Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation (k-C) models – High and low Reynolds number models - Structured Grid generation - Unstructured Grid generation - Mesh refinement - Adaptive mesh -Software tools.

Text I	Dooleg												
I ext I		d Malalacakara W	"An Introduction to Co	mputational Eluid Dynamics": The									
1	0.	. ,	on Ltd. Third Edition –	mputational Fluid Dynamics": The									
1		,											
•		., "Computer Simula	ation of flow and heat th	cansfer", Tata McGraw Hill Publishing									
2	Company Ltd.,												
Refer	ence Books												
	John D. Anderson	"Computational Flui	d Dynamics - The basic	cs with Applications", McGrawHill									
1	International Edition	ons.											
	Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge University Press,												
2	Reprinted 2010.	1	5										
3	Yogesh Jaluria & F	Kenneth E. Torrance.	"Computational Heat"	Transfer", CRC press, 2nd Edition.									
4	John, F. Wendt, "C	computational Fluid	Dynamics – An Introdu	ction", Springer, Third Edition, 2013.									
Cour	se Designers		2 j										
Cours			Demonstration of /Norma										
		D • 0	Department/Name	T									
S.No	Faculty Name	Designation	of the College	Email id									
		Assistant											
1	S.Prakash	Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in									
		Associate	MECH/VMKVE										

С

sellamuthu@vmkvec.edu.in

		CR	YOGI	ENIC				Ca	ategor	y	L	Т	Р	Cre	edit
			GINE		G			Ε	C-SE		3	0	0		3
Pream						C		<u> </u>							
	ourse pro			knowl	edge o	of cryo	genic	refrige	eration	system	ns, cryo	genic ins	trument	ation ar	nd
Prereq		CACHA	ingers												
NIL															
Course	e Object	ives													
1 7	Fo provi	de the	knowl	ledge o	of evol	ution	of low	^y tempo	erature	e scienc	e				
2 7	lo provi	p provide knowledge on the properties of materials and gas separation systems													
3 7															
		o familiarize with various vacuum techniques systems													
	To provide design aspects of cryogenic storage and transfer lines														
5]	lo provi	de the	know	ledge o	of adv	ances	in cry	ogenic	cs						
Course	Outco	mas. ()n tha	611000	ceful d	omnl	otion	of the	cours	o stud	onte wi	ll be able	a to		
Course			JII the	succe	<u>551ul (</u>	compi		or the	cours	e, stuu	ciits wi				
CO1.	Under	rstand	proper	rties of	f mate	rial at	cryoge	enic te	mpera	tures			Under	stand	
CO2.	To un	dersta	nd the	prope	rties o	f mate	rials a	nd gas	separ	ation s	ystems		Under	stand	
G 02	17	1											. 1		
CO3.	Know	about	t vario	us vac	uum te	echniq	ues sy	stems					Apply		
CO4.	Toun	dersta	nd the	crvog	enic re	efriger	ation s	system	s				Under	stand	
	10 011			<u>•1)°8</u>				<i>.</i>							
CO5.	Under	rstand	the cry	yogeni	c instr	ument	ation	and cr	yogeni	ic heat	exchan	gers	Under	stand	
N		D		0-4		J T			C	e					
mappi	ng with 	Prog	ramm PO	PO	PO	and P PO	rogra PO	PO	PO	PO1	PO1		PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	L	_	М	-	-	L	-	-	-	-	L	L	-	-
001				1.41	_			_						_	_
CO2	S	Μ	-		-	-		-	-	-	L	L	L	-	-
CO3	S	М	-		-	-	М	-	-	-	-	М	L	-	-
CO4	S	Μ	-	М	-	-	L	-	-	-	S	М	L	-	-
CO5	S	М	-	S	-	-	L	-	-	-	S	М	L	-	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO CRYOGENIC SYSTEMS

Properties of materials at low temperature, Properties of Cryogenic Fluids - Air and Gas Liquefaction Systems: Thermodynamically ideal system, Production of low temperatures

Liquefaction systems for gases other than Neon, Hydrogen and Helium, liquefaction systems for Neon, Hydrogen and Helium - Cryogenic Refrigeration System

GAS SEPARATION AND GAS PURIFICATION SYSTEMS

The thermodynamically ideal separation system properties of mixtures, Principles of gas separation, air separation systems, Hydrogen, Argon, Helium air separation systems, Gas purification methods.

VACUUM TECHNIQUES

System for production of high vacuum such as mechanical, diffusion, ion and cryopumps - Cryogenics measurement systems - Temperature pressure, flow rate, liquid level measurement, Introduction to Cryocoolers.

CRYOGENIC FLUID STORAGE SYSTEMS

Introduction, Basic Storage vessels, inner vessel, outer vessel design, piping, access manways, safetydevice. Cryogenic insulations Vacuum insulation, gas filled powders and fibrous materials, solid foam, selection and comparison of insulations. Cryogenic fluid transfer systems. Transfer through uninsulated lines, vacuum insulated lines, porous insulated lines etc.

ADVANCES IN CRYOGENICS

2

V.K.Krishnan

Vortex tube and applications, Pulse tube refrigerator, Cryogenic Engine for space vehicles. Cryogenic Applications in gas industry, cryogenic fluids, space research, Cryobiology, food processing, electronics, nuclear and high energy physics, chemical processing, metal manufacturing, cryogenic power generation, medicine, analytical physics and chemistry.

Text	Books											
1	Cryogenic Systems – R.F. Barron											
2	Cryogenic Engineering – R.B. Scott – D.Van Nostrand Company, 1959											
Refe	rence Books											
1	Cryogenic Process Eng	gineering – K.D.	Timmerhaus and T.M. F	lynn, Plenum Press, New York, 1989								
2	High Vacuum Technol	ogv - A Guthre	e – New Age Internation	al Publication								
_				White – Oxford University Press,								
3	England, 1959		contactor of hybrids of the	white Oxford Oniversity Press,								
Cour	se Designers											
			Department/Name									
S.No	Faculty Name	Designation	of the College	Email id								
1	Dr.M.Prabhahar	Asso Prof	Mech / AVIT	mprabhahar@avit.ac.in								
		Assistant	Mech /									

VMKVEC

Professor

vkkrishnanme@vahoo.com

			SIGN						ategor		L	Т	Р		edit	
		PO	WER	EQUI	PME	NTS		E	C-SE		3	0	0		3	
Preamb This con		ovides	know	ledge (of desi	gn and	l analy	sis of	the he	at exch	angers.					
Prerequ NIL	uisite															
MIL																
Course	Object	ives														
1 T	o provi	de the	know	ledge o	of heat	transf	fer equ	iipmer	nt.							
2 T	o provi	de kno	wledg	ge on d	esign	and an	alysis	of the	e Shell	l and tu	be heat	exchang	er			
3 E	nable to	o carry	out th	e perf	orman	ce of l	neat ex	kchang	ger wit	h the ex	ktended	surfaces	•			
4 T	o provi	de des	ign an	d anal	ysis of	cooli	ng tow	vers.								
C	01) (1				- 4.•	- 6 41		1	•					
Course	Outcol	mes: (Jn the	succe	ssiul	compl	etion	of the	cours	e, stud	ents wi	ll be able				
CO1.	Desig	n and	analys	is of t	he para	allel fl	ow, co	ounter	flow h	leat exc	hangers	S.	Understand			
CO2.	To un	dersta	nd the	multi	-pass a	and cro	oss flo	w heat	excha	ingers.			Understand			
CO3.	To de	velop	the Sh	ell and	l tube	heat e	xchan	ger.					Apply			
CO4.	То ор	timize	the pe	erform	ance o	of heat	excha	inger					Understand			
CO5.	To de	sign a	nd ana	lyze tł	ne coo	ling to	wers						Understand			
Manul				•					C	G. 04						
Mappir		Prog PO	ramm PO	PO	PO	and P PO	rogra PO	PO	PO	PO1	PO1		PSO	PSO	PSO	
COs	PO1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3	
CO1	S	L	-	М	-	-	L	-	-	-	-	-	L	-	-	
CO2	S	М	-	-	-	-		-	-	-	-	-	L	-	-	
CO3	S	М	-	-	-	-	М	-	-	-	-	-	L	-	-	
CO4	S	М	-	М	-	-	L	-	-	-	-	-	L	-	-	
CO5	S	М	-	S	М	-	L	-	-	-	-	-	L	-	S	
S- Stro	ng; M-I	Mediu	ım; L-	Low												

CLASSIFICATION OF HEAT EXCHANGERS

Introduction, Recuperation & Regeneration – Tubular heat exchangers: double pipe, shell & tube heat exchanger, Plate heat exchangers.

BASIC DESIGN METHODS OF HEAT EXCHANGER

Introduction, Basic equations in design, Overall heat transfer coefficient – LMTD method for heat exchanger analysis – parallel flow, counter flow, multi-pass, cross flow heat exchanger design calculations.

SHELL & TUBE HEAT EXCHANGERS

Tube layouts for exchangers, baffle Heat exchangers, calculation of shell and tube heat exchangers – shell side film coefficients, Shell side equivalent diameter, the true temperature difference in a 1-2 heat exchanger, shell side pressure drop, tube side pressure drop, Analysis of performance of 1-2 heat exchanger, and design calculation of shell & tube heat exchangers.

CONDENSATION OF SINGLE VAPORS AND EXTENDED SURFACES

Evaporators and Reboilers, Vaporizing processes, forced circulation vaporizing exchangers, natural circulation vaporizing exchangers, calculations of a reboiler.

Longitudinal fins, calculation of a double pipe fin efficiency curve, calculation of a double pipe finned exchanger.

DIRECT CONTACT HEAT EXCHANGER

Cooling towers, relation between wet bulb & dew point temperatures, classification of cooling towers, cooling tower internals, Heat balance, heat transfer by simultaneous diffusion and convection. Analysis of cooling tower requirements. Calculation of cooling tower performance.

Text Books

- **1** Process Heat Transfer D.Q. Kern, TMH.
- 2 Heat Exchanger Design A.P.Fraas and M.N. Ozisick. John Wiely & sons, New York.

Reference Books

- 1 W.F. Stoecker, Design of Thermal Systems McGraw-Hill
- 2 Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization Wiley
- **3** N.V. Suryanarayana, Design & Simulation of Thermal Systems MGH.

Course	Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.M.Prabhahar	Asso Prof	Mech / AVIT	mprabhahar@avit.ac.in
		Associate		
2	R.Anandan	Professor	MECH/VMKVEC	anandan@vmkvec.edu.in

		AT EX						Cate	egory	L	ſ	[Р		Credit
		IGN				•		EC-S		3	()	0		3
arou pow and prov	t Exch and the er gen heat e vides a	e world eration exchan deep	l for t n. Pov gers a know	transfe wer ar are or ledge	erring nd ene ne of of de	heat ergy a the n sign,	from the the nost is const	one s e signi mport tructio	ource of the source of the sou	of ener elemer tipmer analys	gy in ts of ts ap	to and every oplied	other for day scer everywł	the punario in the received the	er plants rpose of he world s course thorough
Cours	se Obj	jectiv	e												
	To inculcate a thorough knowledge on the fundamentals of heat exchangers and its applications.														
2	To provide thorough procedure for design of shell and tube heat exchangers.														
3	To pro	ovide	thore	ough	desig	n pro	cedu	re of	condei	nsers.					
	To de applic			differ	ent ty	pes o	of co	mpac	t heat o	excha	ngers	s, heat	pipes a	ind its	
	To de during				ods ai	nd m	eans	of an	alysing	g heat	exch	anger	s for str	esses o	curring
Cours	se Out	tcome	s. Oi	n the	SUCC	essfu	ıl con	nnlet	ion of	the co	nirse	stud	lents wi	ill be ab	le to
	Sele	ct a su	iitabl	e typ	e of h	leat e	xcha	nger	for an a			,			
CO1.		ysing gn a s							with re	ferenc	e to a	a	Analy	/ze	
CO2.		cular						0					Apply	/	
CO3.		0							licatio				Apply	/	
CO4.		ropria transf	-		-	pe of	f com	pact	heat ex	kchan	ger f	or an	Analy	/ze	
CO5.		lyse a icatio		gned	heat e	excha	nger	for s	uitabil	ity in a	a pre	ferred	Analy	/ze	
Mapp	oing w	ith Pı	ogra	mm	e Out	com	es an	d Pro	ogram	me Sp	oecifi	ic Ou	tcomes		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	M	M	M	S	S	-	S	S	-	-	-	-	L	-	-
				~											
CO2	М	М	S	S	S	-	S	S	L	-	-	L	L	-	-
CO3	М	М	S	S	S	_	S	S	L			L	L		

CO4	М	М	М	S	S	-	S	S	-	-	I	-	L	-	-
CO5	М	М	М	S	S	-	S	S	-	-	-	L	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

FUNDAMENTALS OF HEAT EXCHANGERS

Review of heat transfer modes and governing laws and equations. Introduction to heat exchangers purpose, usage and applications of heat exchangers. Principles and methods of working of heat exchangers, Classification of heat exchangers – based on process function, flow arrangements, design, and based on applications. Recuperative and Regenerative heat exchangers.

Parameters for basic design of heat exchanger - overall heat transfer coefficient, LMTD method for heat exchanger analysis for parallel, counter, multi-pass and cross-flow heat exchanger, e-NTU method for heat exchanger analysis, TEMA code, J-factors.

DESIGN OF SHELL AND TUBE HEAT EXCHANGERS

Shell and Tube heat exchanger for single phase heat transfer – types, features of shell and tube heat exchanger, thermal design considerations, fouling considerations, selection of fluids for tube and shell side, process design procedure, problems on design of shell and tube heat exchanger.

DESIGN OF CONDENSERS

Shell and tube heat exchanger for two phase heat transfer – physical mechanism of condensation, types of condensers, condenser design, de-superheating and sub-cooling. Reboiler – types and application.

COMPACT HEAT EXCHANGERS & HEAT PIPES

Enhancement of heat transfer compact heat exchangers, extended surface heat transfer, extended surface heat exchangers, performance evaluation of heat transfer enhancement technique, pinch analysis. Finned tube heat exchanger, plate fin heat exchanger, pressure drop and multi stream analysis, phase change heat exchangers.

Heat Pipes, heat pipe heat exchangers. Regenerators, Fixed bed regenerator analysis, design and simulation of regenerator, Problems in fixed bed regenerator. Micro heat exchanger – introduction, Micro scale heat transfer, micro channel, micro heat exchanger.

ANALYSIS OF HEAT EXCHANGERS

Stress in tubes – header sheets and pressure vessels – thermal stresses, shear stresses – types of failure, buckling of tubes, flow induced vibration. Heat exchanger network synthesis, heat exchanger testing.

Refer	ence Books												
	Dutta B.K. "Heat Transfer-Principles and Applications", PHI Pvt. Ltd., New												
1	Delhi, 1st ed. 2006.												
2	D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Company, Int. ed. 1965.												
	John E. Hesselgreaves, "Compact heat exchangers: selection, design, and operation",												
3	Elsevier science Ltd, 2001.												
	Indian Standard (I	S: 4503-1967): Spo	ecification for Shell an	d Tube Type Heat									
4	Exchangers, BIS 2	2007, New Delhi.											
Cours	e Designer												
			Department/Name of										
Faculty	y Name	Designation	the College	Email id									
		ASSOCIATE											
N.Lak	shminarayanan	PROFESSOR	MECH/AVIT	nlakshminarayanan@avit.ac.in									
		Assistant	Mech /										
V.K.K	rishnan	Professor	VMKVEC	vkkrishnanme@yahoo.com									

								Ca	tegory	L		Т	Р	C	redit	
				R PLA					C-SE	3		0	0		3	
machir genera	Plant neries tion of	Engine in the p f electr	eering process	is the s s of po	ubject			ıdy of	applyi	ng the th e the bac	ermal	enginee	ring cor		nd	
Prerec	•															
Cours				e obiec	tives o	f powe	er plan	ts in a	countr	v's elect	rical p	ower rea	wireme	nt		
2	To understand the objectives of power plants in a country's electrical power requirement. To understand the operational methods of power generation using different energy sources.															
3	To understand the operational methods of power generation using different energy sources. To provide the knowledge of instrumentation involved in the operation and control of power plants															
4	To estimate the cost and economics of power generation in different types of power plants.															
5	To ii	nculcat	te the k	knowle	dge of	enviro	nment	al imp	act of	power pl	lants o	n the so	ciety.			
Cours	e Outo	comes	: On tl	he succ	essful	comp	letion	of the	course	e, studer	nts wil	l be able	e to			
CO1	Und sour		the r	nethod	s of p	ower g	generat	tion us	ing di	fferent e	energy		Understand			
CO2	Tos	state th	e instr	umenta	ation a	nd con	trol sy	stems f	for a p	ower pla	nt		ι	Jndersta	ind	
CO3	Тос	alculat	e the c	cost of	power	genera	ation fo	or a typ	oical po	ower pla	nt			Apply	7	
CO4	To i	nfer th	e envi	ronme	ntal in	npacts	of pov	ver pla	ants or	the soc	eiety			Apply	7	
CO5	Prep	are a la	ayout f	for diff	erent p	ower p	olants						Apply			
Mappi	ing wi	th Pro	grami	me Ou	tcome	s and I	Progra	amme	Specif	ic Outco	omes					
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO12	PS O 1	PS O 2	PSO3	
CO1	М	М	S	_	_	-	_	_	_	-	_	-	М	М	M	
	S															
CO2		M	M	M	М	-	-	-	-	-	-	-	M	S	M	
CO3	Μ	S	S	S	-	-	-	-	-	-	-	-	М	М	S	
CO4	М	S	S	S	М	М	S	-	-	-	-	-	М	М	S	
CO5	S	S	S	S	S	S	-	-	-	-	-	-	М	S	S	
S- Stro	ong; N	1-Med	ium; l	L-Low												

INTRODUCTION

Power Generation: Global Scenario, Present status of power generation in India, Role of private and governmental organizations, Load shedding, Carbon credits, Power reforms, concept of cascade efficiency.

General layout of modern power plant with different circuits, working of thermal power plant, coal classification, coal, ash and dust handling, selection of coal for Thermal Power Plant, FBC boilers, high pressure boiler, cogeneration power plant (with numerical)

Steam Condenser: Necessity of steam condenser, Classification, Cooling water requirements, Condenser efficiency, Vacuum efficiency, Cooling towers, air Leakage, Effects of Air Leakage on condenser performance, (Numerical Treatment)

HYDROELECTRIC AND NUCLEAR POWER PLANTS

HEPP: Introduction, Plant Layout, Site Selection, Advantages and Disadvantages of HEPP, Hydrograph, Flow duration curve, Mass Curve, Classification of HEPP with layout.

NPP : Elements of NPP, Nuclear reactor & its types, fuels moderators, coolants, control rod, classification of NPP, N-waste disposal

DIESEL & GAS TURBINE POWER PLANT

DEPP: Plant Layout, Diesel Engine Power Plant Performance Analysis, application, selection of engine size, advantages & disadvantages of diesel power plant.

GTPP : Introduction, fuels, materials selection for GTPP, Brayton Cycle analysis, Thermal Efficiency, Work ratio, maximum & optimum pressure ratio, Actual cycle effect of operating variables on thermal efficiency, inter-cooling reheating, & regeneration cycle, Open, Closed & Semi Closed cycles Gas Turbine Plant, combined cycle plant (Numerical Treatment).

NON-CONVENTIONAL POWER PLANTS

Wind Power plant: Introduction, wind availability measurement, types of wind machines, site selection, and wind power generation.

Solar Power Plant: Introduction, components, Types of Collectors & Solar Ponds, Low & High Temperature Solar Power Plant. Photovoltaic Power System, Heliostat

Tidal, OTEC, geothermal, magneto hydrodynamics, fuel cell, hybrid power plants, Challenges in commercialization of Non-Conventional Power Plants.

INSTRUMENTATION, ECONOMICS AND ENVIRONMENTAL IMPACT

Power Plant Instrumentation Layout of electrical equipment, generator, exciter, short circuits & limiting methods, switch gear, circuit breaker, power transformers, methods of earthing, protective devices & Control system used in power plants, Control Room.

Economics of Power Generation: Introduction, Cost of electric energy, Fixed and operating cost, (with

numerical treatment), Selection and Type of generation, Selection of generation equipment, Performance and operation characteristics of power plants and Tariff methods.

Environmental impact due to power plants. Environmental aspects, introduction, constituents of atmosphere, different pollutants due to thermal power plants and their effects of human health, Environmental control of different pollutant such as particulate matter, Oxides of sulphur, nitrogen, global warming & green house effect, thermal pollution of water & its control. Noise pollution by power plants.

Pom	er plante:											
Text	Books											
1	E.I.Wakil, —Power Plar	t Engineering,	McGraw Hill Publication	ons New Delhi								
2	P.K.Nag, —Power Plant Engineering, McGraw Hill Publications New Delhi											
3	K K Ramalingam , Pow	er Plant Enginee	ring, SCITECH Public	ations Pvt Ltd.								
4	Domkundwar & Arora, —Power Plant Engineering , Dhanpat Rai & Sons, New Delhi											
Refe	rence Books											
1 2 3												
4	G.D.Rai, — Non-Conver S.P.Sukhatme, —Solar I											
Cour	rse Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	N.Lakshminarayanan	Associate Professor	MECH / AVIT	nlakshminarayanan@avit.ac.in								
2	N.LakshminarayananProfessorMECH / AVITnlakshminarayanan@avit.ac.inAssistantMech /V.K.KrishnanProfessorVMKVECvkkrishnanme@yahoo.com											

						AND A	AIR-		ategor		L	Т	Р		edit
Ducous	-1-	CO	NDIT	IONI	NG			E	C-SE		3	0	0		3
Pream This co		vides	the un	derlvi	ng prii	nciples	of op	eratio	n in dit	fferent	Refrige	ration &	Air con	ditionir	g
systems	-			J	8 T	· r · · ·	T				0				0
Prereq	uisite														
NIL															
Course	Object	ives													
1 T	'o impar	t knov	vledge	e on ret	frigera	tion cy	cles a	and me	thods	to imp	rove nei	rformanc	e		
	ompu	t KHO V	rieuge		ingen	uion ey	0105 0		liious	to impi		Tormane			
2 T	o famili	arize	the con	mpone	nts of	refrige	eratior	n syste	ms						
3 T	o Perfo	rm psy	chron	netric o	calcula	ations									
4 T	o introd	uce ai	r cond	litionir	ıg syst	ems									
	o know						n and	air cor	ndition	ing eve	teme				
5 1	0 KIIOW	une ap	pnear		I ICIII2	scration			luition	ing sys	actins				
Course	Outcor	nes: (On the	succe	essful o	comple	etion	of the	cours	e, stud	ents wi	ll be able	e to		
CO1.						tion cy							Under	stand	
CO2.	Under consid			inciple	es refri	geratio	on of a	air-con	dition	ing and	l basic o	lesign	Under	stand	
002.				otria		tions	humi	dity oo	ntrol	nd ono	lysis of	oir	Chuch	stund	
CO3.	condit				Jaicula		nunno		iiuoi a	inu ana	19515-01	a11-	Apply		
CO4.	Apply	the co	oncept	s of in	door e	environ	menta	al com	fort.				Apply		
a a															
CO5.	Know	the va	arious	applic	ations	of Ref	rigera	ation a	nd air	conditi	oning		Under	stand	
Mappi	ng with	Prog	amm	e Outo	comes	and P	rogra	mme	Specif	fic Out	comes				
<u> </u>	DO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	DO1	PSO	PSO	PSO
COs	PO1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	S	L	-	L	-	-	L	-	-	-	-	L	L	-	-
CO2	S	М	_	-	-	_	_	-			-	L	L		
				-		-	-		-	-	-	L		-	-
CO3	S	S	М	Μ	-	-	-	-	-	-	-	-	М	-	-
CO4	S	S	М	М	_	_	_	_	_	_	-	_	М	_	-
001		2	111	171											
CO5	S	Μ	-	Μ	М	-	L	-	-	-	-	М	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

REFRIGERATION CYCLE

Review of thermodynamic principles of refrigeration. Carnot refrigeration cycle – Vapour compression refrigeration cycle – use of P.H. charts – multistage and multiple evaporator Systems – cascade system – COP comparison. Air Refrigeration cycles.

REFRIGERANTS AND SYSTEM COMPONENTS

Compressors – reciprocating and rotary (elementary treatment), Types of condensers, vaporators, cooling towers – Functional aspects. Refrigerants – properties – selection of refrigerants, Alternate Refrigerants, Cycling controls.

PSYCHROMETRY

Psychrometric processes use of psychrometric charts – Grand and Room Sensible Heat Factors – bypass factor – air washers, requirements of comfort air conditioning, summer and Winter Air conditioning.

AIR CONDITIONING SYSTEMS

Cooling load calculation working principles of – Centralized Air conditioning systems, Split, Ductable split, Packaged Air conditioning, VAV & VRV Systems. Duct Design by equal friction method, Indoor Air quality concepts.

UNCONVENTIONAL REFRIGERATION CYCLES

Vapor Absorption system – Ejector jet, Steam jet refrigeration, thermo electric refrigeration. APPLICATIONS – ice plant – food storage plants – milk – chilling plants.

Text Books

- 1 Manohar Prasad, "Refrigeration and Air Conditioning", Wiley Eastern Ltd., 1983.
- 2 Arora C.P., "Refrigeration and Air Conditioning", Tata McGraw Hill, New Delhi, 1988.

Reference Books

1 Roy. J. Dossat, "Principles of Refrigeration", Pearson Education 1997.

Jordon and Priester, "Refrigeration and Air Conditioning", Prentice Hall of India Pvt.Ltd., New Delhi, **2** 1985.

3 Stoecker N.F. and Jones, "Refrigeration and Air Conditioning", TMH, New Delhi, 1981.

Course	Designers			
			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
1	Dr.M.Prabhahar	Assoc Prof	Mech / AVIT	mprabhahar@avit.ac.in
		Associate		
2	Dr.P. Sellamuthu	Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in

								Ca	ategor	y	L	Т	Р	Cre	edit
			TUI	RBOM	IACH	INER	Y	E	C-SE		3	0	0	3	3
Preamb This cou		o expl	ore the	e strate	egies in	n Macl	hinerie	es and	its dyr	namic a	nalysis				
Prerequ	isite														
Nil															
Course	Objecti	ves													
1 To) learn t	he pri	nciple	s of flu	uid ma	chine	ry.								
2 To	o unders	stand	variou	s fans	and bl	owers									
3 To	o unders	stand	the con	ncept o	of com	presso	ors.								
4 To) learn t	he coi	ncept	of axia	l flow	comp	ressor	s.							
	o unders														
								-							
Course													e to		
CO1.	Know transfe						l mech	anics	concep	ots, and	l energy	7	Reme	mber	
CO2.	To unc	lersta	nd the	desigr	n conc	epts ar	nd imp	ortanc	e of d	ynamic	machi	neries	Under	stand	
CO3.	To unc analys				struct	ional c	letails	of cor	npress	ors and	l perfor	mance	Under	stand	
	To kno	ow ab	out be	ench m					ocity d	iagram	s for w	ork			
CO4.	done, e								ocity d	iagram	s for bl	ade	Apply		
CO5.	design					- und t	o utili		senty a	ingruin	5 101 01	uue	Apply		
Mappin	g with]	Progr	amm	e Outo	romes	and P	Progra	mme	Specif	fic Out	comes				
		PO	РО	РО	РО	РО	PO	РО	PO	PO1	PO1		PSO	PSO	PSO 3
COs	PO1	2	3	4	5	6	7	8	9	0	1	PO12	1	2	3
CO1	М	-	-	-	-	-	-	-	М	-	-	-	М	-	-
CO2	М	-	-	L		-	-	-	М	-	-	-	L	-	-
CO3	М	-	-	-	L	-	-	L	М	-	-	-	L	-	-
CO4	М	М	-	L	S	-	-	-	М	-	-	-	М	-	-
CO5	М	-	-	-	-	-	-	-	М	-	-	-	М	-	-
S. Stron	g; M-N	/lediu	m; L-	Low											

SYLLABUS

BASIC PRINCIPLES

Energy transfer between fluid and rotor-classification of fluid machinery,-dimensionless Parameters-specific speed-applications-stage velocity triangles-work and efficiency

CENTRIFUGAL FANS AND BLOWERS

Types- stage and design parameters-flow analysis in impeller blades-volute and Diffusers, losses, characteristic curves and selection, fan drives and fan noise.

CENTRIFUGAL COMPRESSOR

Construction details, impeller flow losses, slip factor, diffuser analysis, losses and Performance curves

AXIAL FLOW COMPRESSOR

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work Done simple stage design problems and performance characteristics.

AXIAL AND RADIAL FLOW TURBINES

Stage velocity diagrams, reaction stages, losses and coefficients, blade design Principles, testing and performance characteristics

Text Books

Yahya, S.M., Turbines, Compressors and Fans, Tata McGraw-Hill Publishing

- **1** Company, 1996.
- 2 Ganesan, V., Gas Turbines, Tata McGraw Hill Pub. Co., 1999.

Reference Books

- **1** Bruneck, Fans, Pergamom Press, 1973.
- 2 Shepherd, D.G., Principles of Turbo machinery, Macmillan, 1969.

			Department/Name	
S.No	Faculty Name	Designation	of the College	Email id
		Asst.Prof		
1	R.Mahesh	Gr-II	Mech / AVIT	Mahesh@avit.ac.in
		Associate		
2	Dr.P. Sellamuthu	Professor	MECH/VMKVEC	sellamuthu@vmkvec.edu.in

ELECTIVE COURSES SPECIALIZATION-AERONAUTICAL ENGINEERING

	Category	L	Т	Р	Credit
AIRCRAFT STRUCTURES	EC-SE	3	0	0	3

This subject provides knowledge on the aircrafts basic structural load and the behaviours of the structure under loading condition. It will also provide the detailed study on the failure theory which provides the student a deep knowledge on designing a safe structure.

Course Objectives

1.	To remember the various methods ofjoints in the structural member.
	To provide the students an understanding on the static analysis of determinate and
2.	indeterminate structure.
3.	To understand the various energy methods.
4.	To apply the knowledge on structural design using different failure theories.
5.	To analyse the various industrial and thermal stresses.
Com	o Outcomes

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Generalize the various bending of different types of member under loading.	Remember
CO2.	Calculate the Shear flow in aircraft members related to open section.	Understand
CO3.	Calculate the columns in aircraft members.	Understand
CO4.	Describe the various types of buckling of plates and the deformation of it.	Apply
CO5.	Relate the various real time problems in industries.	Analyse

Mapping with Programme Outcomes and Programme Specific Outcomes

CO s	P O1	P O2	P 03	P O4	P 05	P O6	P O7	P 08	Р О9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO 1	s	L	S	-	-	М	L	-	-	-	-	S	L	S	L
CO 2	s	S	М	М	-	-	-	-	_	_	_	_	М	L	-
CO 3	S	s	М	L	-	L	-	-	L	_	_	L	L	_	-
CO 4	S	М	М	S	М	-	-	-	-	-	-	-	S	S	S

СО														
5	S	S	S	М	-	-	-	-	-	 -	М	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT – I STATICALLY DETERMINATE& INDETERMINATE STRUCTURES

9

10

10

9

7

Plane truss analysis – method of joints – method of sections – method of shear – 3-D trusses – principle of super position, Clapeyron's 3 moment equation and moment distribution method for indeterminate beams.

UNIT - IISTRESS ANALYSIS OF WING AND FUSELAGE

Loads on an aircraft –V-n diagram – shear force and bending moment distribution over theaircraft wing and fuselage – shear flow in thin-webbed beams with parallel and non-parallel flanges – complete tension field beams – semi-tension field beam theory.

UNIT – III COLUMNS

Euler's column curve – inelastic buckling – effect of initial curvature – the South well plot – columns with eccentricity – use of energy methods – theory of beam columns – beam columns with different end conditions – stresses in beam columns.

UNIT – IV UNSYMMETRICAL BENDING

Bending of symmetric beams subject to skew loads - bending stresses in beams of unsymmetrical sections – generalized 'K' method, neutral axis method, and principal axis method.

UNIT – V INDUCED STRESSES

Thermal stresses - impact loading - Fatigue - Creep - Stress Relaxation.

TEXT BOOK:

1. Timoshenko and Gere, "Mechanics of Materials", Tata McGraw Hill, 1993.

2. Megson T M G, "Aircraft Structures for Engineering students" Elsevier Science and Technology, 2007

3. Peery and Azar, "Aircraft Structures

REFERENCES:

1. Donaldson, B.K., "Analysis of Aircraft Structures - An Introduction", McGraw Hill, 1993.

2. Bruhn E F, "Analysis and Design of Flight Vehicle Structures", Tri-State Off-set Company, USA,1985

3. Peery, D.J. and Azar, J.J., "Aircraft Structures", 2nd Edition, McGraw – Hill, N.Y, 1999.

Cour	se Designers:			
S.No	Name of the Faculty	Designation	Department/ College	Mail ID
0.110	racuity	Designation	Conege	
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

		Category	L	Т	Р	Credit
AERC	ENGINE LAB	EC-SE	0	0	4	2

This course provides sufficient knowledge and creates a base for the students to develop concepts of working independently in aero engines.

Course Objectives

1	To understand the basic concepts of aero engines used in small and large aircrafts.
2	To provide practical knowledge on working of components of aero engines.
3	To develop analytical skills for trouble shooting.
4	To develop confidence in working independently on an aircraft engine.
5	To develop personality and an attitude of team work.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identify components.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills in finding faults and mal-functioning in operation.	Apply
CO4.	Categorise the troubles and pin point the technical malfunction.	Analyze
CO5.	Evaluate and modify the system to meet certain requirement.	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

	inapping with rogramme outcomes and rogramme specific outcomes														
	РО		РО	PO	PO	РО	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	1	PO2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO															
1.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO															
2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO															
3.	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO															
4.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO															
5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low LIST OF EXPERIMENTS

1.	Identification of older and newer versions of piston engines and their components.
2.	Maintenance aspect – Cleaning, Visual Inspection and Dimensional checks.
3.	Crankshaft and its parts – dimensional checks and deformation analysis
4.	Fuel and oil systems - maintenance and trouble shooting.

5.	Reassembly of dismantled components.
6.	Identification of older and newer versions of jet engine and their components.
7.	Maintenance aspect – Cleaning, Visual Inspection and Dimensional checks.
8.	Non Destructive Testing of components.
9.	Study of Ignition System of jet engine.
10.	Jet Engine –Reassembly of dismantled components.
REFERE	
AERO EN	IGINE LAB MANUAL

S.No	Name of the Faculty			Mail ID		
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in		
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in		

	Category	L	Т	Р	Credit
AERODYNAMICS LAB	EC-SE	0	0	4	2

The aim of the subject is to provide knowledge in wind tunnel testing

Course Objectives

1	To study experimentally the aerodynamic forces on different bodies at low speeds
2	To familiarize with the Calibration of a subsonic Wind tunnel
3	To familiarize with Pressure distribution over a smooth circular cylinder
4	To familiarize with the Pressure distribution over a symmetric aerofoil
5	To familiarize with the Flow visualization studies in subsonic flows

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Collect the knowledge of various flow equations.	Remember
CO2.	Implement the working concepts of various wind tunnel.	Understand
CO3.	Utilize the knowledge and compute the results for Pressure distribution over a smooth circular cylinder.	Apply
CO4.	Implement the concept and compute relevant results for Pressure distribution over a symmetric aerofoil	Apply
CO5.	Compute the performance of Flow visualization studies in subsonic flows.	Analyze
Monn	ing with Programma Outgamas and Programma Spacific Outgamas	

Map	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	-	-	-	-	-	-	-	-	-	-	-	L	L	L
CO2.	М	L	М	-	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	М	М	М
CO4.	М	S	-	-	-	-	-	-	-	-	-	-	М	М	М
CO5.	S	S	S	-	-	-	-	-	-		-	S	S	S	S

S-Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Application of Bernoulli's Equation venture meter and orifice meter.
- 2. Frictional loss in laminar flow through pipes.
- 3. Frictional loss in turbulent flow through pipes.
- 4. Calibration of a subsonic Wind tunnel.
- 5. Determination of lift for the given airfoil section.
- 6. Pressure distribution over a smooth circular cylinder.
- 7. Pressure distribution over a rough circular cylinder.
- 8. Pressure distribution over a symmetric aerofoil.
- 9. Pressure distribution over a cambered aerofoil.
- 10. Flow visualization studies in subsonic flows.

Cour	se Designers.			
	Name of the		Department/	
S.No	Faculty	Designation	CoÎlege	Mail ID
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

	Categor y	L	Т	Р	Credi t
AERODYNAMICS	EC-SE	3	0	0	3

This subject provides a detailed description of the methodology and the behaviour of airflow both internal and external in compressible flow regime with particular emphasis on supersonic flows. It will provide students an in-depth knowledge of the compressible flow and also about the shock waves. With this knowledge the students can also apply the experimental techniques for high speed flows.

Course Objectives

1.	To understand the fluid mechanics concepts for advanced applications
2.	To study two dimensional flows in aerodynamics
3.	To study ideal flows over wings
4.	To Study the high speed flows over airfoils, wings and airplane configurations
5.	To Study the boundary layer interaction

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Gather the knowledge of fundamental principles of fluid mechanics.	Remember
CO2.	Use the concepts of two dimensional flows in aerodynamics.	Understand
CO3.	Implement the concept and compute relevant results for ideal flow over wings.	Apply
CO4.	Compute the results for high speed flows over airfoils and wings by applying various methods	Apply
CO5.	Implement the performance of experimental techniques for high speed flows analysis	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

	Р	Р	Р	P	Р	P	Р	Р	Р						
	0	0	0	0	0	0	0	0	0	РО	РО	РО	PS	PS	PS
COs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	L	L	_	_	_	_	_	_	_	_	_	L	L	L	L
CO2	М	М	М	L	-	-	-	-	-	-	-	-	L	L	L
CO3	М	S	S	М	М	_	_	-	_	_	_	_	М	М	S
CO4	S	М	S	S	S	_	-	-	-	-	-	L	S	S	S

CO5	М	S	S	S	S	-	-	-	L	 -	М	S	S	S

S- Strong; M-Medium; L-Low SYLLABUS

UNIT – I	INTRODUCTION TO LOW SPEED FLOW	9
Euler equation,	incompressible Bernoulli's equation. circulation and vorticity, Green's Lemma and Sto	ke's
· ·	opic flow, Kelvin's theorem, Reynolds number, streamline, stream function, irrotational	
potential function	on, Equi-potential lines, elementary flows and their combinations	
UNIT – II	TWO DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW	9
Ideal Flow over	a circular cylinder, D'Alembert's paradox, Magnus effect, Kutta-Joukowski's theorem	1,
	Kutta condition, real flow over smooth and rough cylinder	
UNIT – III		9
X7 (C'1)	SUBSONIC WING THEORY	.1
	t, Biot and Savart law, bound vortex and trailing vortex, horse shoe vortex, lifting line ns, various types of wings and its applications	theory
UNIT – IV	HIGH SPEED FLOW OVER AIRFOILS, WINGS AND AIRPLANE CONFIGURATION	9
Critical Mach	number, Drag divergence Mach number, Shock Stall, Supercritical Airfoil S	ections
Transonic area	rule, Swept wing, Airfoils for supersonic flows, Lift, drag, Pitching moment and Ce	entre o
pressure for sup	personic profiles, Shock-expansion theory, wave drag, supersonic wings, Design	
considerations f	for supersonic aircraft- aerodynamic heating.	
UNIT – V	EXPERIMENTAL TECHNIQUES FOR HIGH SPEED FLOWS	9
Wind tunnels for	br transonic, Supersonic and hypersonic flows, shock tube, Gun tunnels-peculiar probl	ems in
the operation of	f hypersonic tunnels - Supersonic flow visualization methods	
TEXT BOOK:		
	D, Modern Compressible Flow, McGraw-Hill & Co., 2002. n., E, Gas Dynamics, Prentice Hall of India, 2004.	
	, <u>2</u> , <u>3</u> , <u>2</u> , <u>1</u>	
	S:	
REFERENCE	S: H., Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press, 1982.	
REFERENCE 1. Shapiro, A. H		

Cours	Course Designers:												
S.No	Name of the Faculty		Department/ College	Mail ID									
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in									
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in									

	Category	L	Т	Р	Credit
AEROSPACE PROPULSION LAB	EC-SE	0	0	4	2

This course provides and creates a base for the students to develop concepts of working independently in aero engines.

Course Objectives

1	To understand the basic concepts of a propulsion system.							
2	To provide practical knowledge on working of components of propulsion system.							
3	Fo develop analytical skills for fault finding.							
4	To develop confidence in working on an aircraft engine.							
5	To develop an attitude of team work.							

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identify components.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills in finding faults in operation.	Apply
CO4.	Categorise the troubles and pin point the technical malfunction.	Analyze
CO5.	Evaluate and modify the system.	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

	PO				PO			PO							
COs	1	PO2	PO3	PO4	5	PO6	PO7	8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	М	М	М
CO4.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.	Study, dismantling and identification of types of piston engine and their components.						
2.	Piston Engine Components – Cleaning, Visual Inspection and Dimension checks.						
3.	Study of Camshaft operation, firing order and magneto, valve timing.						
4.	Study of various auxillary systems of piston engine.						
5.	Piston Engine –Reassembly of dismantled components.						
6.	Study, dismantling and identification of types of jet engine and their components.						
7.	Jet Engine Components – Cleaning, Visual Inspection and Dimension checks.						
8.	Non Destructive Testing of components.						
9.	Study of various auxillary systems of jet engine.						
10.	Jet Engine –Reassembly of dismantled components.						
REFEREN	REFERENCES:						

AEROSPACE PROPULSION LAB MANUAL

 Court	be Designer 5.					
	Name of the					
S.No	Faculty	Designation	College	Mail ID		
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in		
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in		

	Category	L	Т	Р	Credit
AEROSPACE PROPULSION	EC-SE	3	0	0	3

This course provides knowledge and creates a base for the students to develop a strong concept of propulsive device used in aerospace propulsion.

Course Objectives

1	To understand the basic concepts of propulsion.
2	To provide an in-depth study of propulsion subject.
3	To develop analytical skills for selection of propulsive method.
4	To develop criticizing skills for modification and designing of components.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identification of components of an	Remember
	engine.	
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills for trouble shooting.	Apply
CO4.	Categorise the propulsive devices and estimate reliability.	Analyze
CO5.	Evaluate and modify the system.	Evaluate

Mapping with Programme Outcomes and Programme Specific Outcomes

	Р		Р	Р	Р		Р	Р	Р						
	0		0	0	0	Р	0	0	0	РО	РО	РО	PS	PS	PS
COs	1	PO2	3	4	5	06	7	8	9	10	11	12	01	02	03
CO1	L	L	L	L									L	L	L
	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	_	_	_	_	_	_	_	_	М	М	М
CO4	S	S	S	S	-	-	-	-	-	-	-	_	S	S	S
CO5															
	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS UNIT I FUNDAMENTALS OF ENGINES 7 History and classifications of Aero engines, Working of gas turbine engine - Thrust equation - Efficiency, Specific fuel consumption, Methods of thrust augmentation – Characteristics of propeller, turboprop, turbofan and turbojet engines. UNIT II INLETS AND NOZZLES 7 Subsonic inlets- External and internal flow pattern - inlet performance criterion -Boundary layer separation -Supersonic inlets-Theory of flow in isentropic nozzles - Losses in nozzles -- Interaction of nozzle flow with adjacent surfaces - Thrust reversal **UNIT III** COMPRESSORS, TURBINES AND COMBUSTION CHAMBERS 12 Principle of operation of centrifugal compressor - Work done and pressure rise - Elementary theory of axial flow compressor - Elementary theory of axial flow turbine- blade cooling - Classification of combustion chambers -Important factors affecting combustion chamber design - Combustion process **UNIT IV ROCKETS - SOLID, LIQUID AND HYBRID** 12 Selection criteria of solid propellants - propellant grain design considerations - Progressive, Regressive and neutral burning in solid rockets, Liquid propellant rockets – selection of liquid propellants – various feed systems for liquid rockets - cryogenic techniques - Thrust vector control - Cooling in liquid rockets - advantages of liquid rockets over solid rockets - introduction to hybrid propulsion - advantages and limitations of hybrid propulsion UNIT V ADVANCED PROPULSION TECHNIQUES 7 Electric rocket propulsion - Plasma as a fluid- Diffusion in Partially Ionized gases - Ion propulsion - Nuclear rocket. Solar Sail **TEXT BOOK:** 1. Hill, P.G. & Peterson, C.R, Mechanics & Thermodynamics of Propulsion, Addison -Wesley Longman INC, 1999. 2. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 8th Edition. 2010. **REFERENCES:** 1. Ahmed F. El-Sayed, Aircraft Propulsion and Gas turbine engines, CRS Press, 2008 2. SaeedFarokhi, Aircraft Propulsion, John Wiley & Sons, Inc., 2009 3. J D Mattingly, "Elements of Propulsion - Gas Turbines and Rockets", AIAA Education Series. 2006. 4. Dan M.Goebel, Ira Katz, "Fundamentals of Electric Propulsion", John Wiley & Sons Inc,

New York, 2003.

Cours	se Designers:			
S.No	Name of the Faculty	Designation	Department/ College	Mail ID
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

AIRCRAFT GENERAL	Category	L	Т	Р	Credit
ENGINEERING AND					
MAINTENANCE PRACTICES	EC-SE	3	0	0	3

This course will provide the student a strong knowledge on the Aircrafts basic and regular maintenance to be followed to have a smooth and safety fly.

Course Objectives

1	To remember the various maintenance practices involved in aircraft.
2	To understand the various procedures to be followed during maintenance.
3	To provide an in-depth study of the safety precautions to be followed.
4	To identify the various special problems involved in the aircraft through inspection.
5	To fully equipped with the knowledge of the flight maintenance in all the aspects.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Recall the various maintenance practices involved in aircraft.	Remember
CO2.	Demonstrate the various procedures to be followed during	Understand
	maintenance.	
CO3.	Generalize the various primary safety precautions to be followed.	Apply
CO4.	Calculate the various special problems involved in the aircraft.	Apply
CO5.	Categorize the various flight maintenance procedures in all the	Analyze
	aspects.	

Mapping with Programme Outcomes and Programme Specific Outcomes

	P O	РО	PS	PS	PS										
COs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO															
1	Μ	L	Μ	S	-	-	-	-	-	-	-	-	S	L	L
CO															
2	L	Μ	L	L	-	-	-	-	-	-	-	-	L	М	S
CO															
3	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	М	S
CO															
4	S	М	S	S	-	-	-	-	-	-	-	-	М	S	М
CO															
5	S	S	Μ	Μ	-	-	-	-	-	-	-	-	Μ	S	М

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT – I	AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT	10
Mooring, jacl	king, leveling and towing operations – Preparation – Equipment – precautions – Engine	
Starting proce	edures – Piston engine, turboprops and turbojets – Engine fire extinguishing – Groundpow	ver unit.
UNIT – II	GROUND SERVICING OF VARIOUS SUB SYSTEMS	8
Air condition	ing and pressurization – Oxygen and oil systems – Ground units and their maintenance.	
UNIT – III	MAINTENANCE OF SAFETY	5
Shop safety –	Environmental cleanliness – Precautions	
UNIT – IV	INSPECTION	10
Process – Pur	pose - Types - Inspection intervals - Techniques - Checklist - Special inspection - Public	ications,
bulletins, vari	ous manuals – FAR Air worthiness directives – Type certificate Data sheets	
- ATA Speci	fications	
UNIT – V	AIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES	12
Hand tools -	- Precision instruments - Special tools and equipments in an airplane maintenanc	e shop-
Identifiation	terminology - Specification and correct use of various aircraft hardware (i.e. nuts, bol	ts,rivets,
screws etc) -	American and British systems of specifications - Threads, gears, bearings, etc -Drills, ta	apes and
reamers - Id	entification of all types of fluid line fittings. Materials, metallic and non -metallic Pl	umbing
connectors -	Cables – Swaging procedures, tests, Advantages of swaging oversplicing.	
TEXT BOO	KS:	

1. Kroes Watkins Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1993

REFERENCES:

1. A&P Mechanics, "Aircraft Hand Book", FAA Himalayan Book House, New Delhi, 1996

2. A&P Mechanics," General Hand Book", FAA Himalayan Bok House, New Delhi, 1996

Cour	se Designers.			
	Name of the		Department/	
S.No	Faculty	Designation	College	Mail ID
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

	Category	L	Т	Р	Credit
AIRCRAFT MATERIALS AND					
PROCESSES	EC-SE	3	0	0	3

This course provides basic knowledge in aircraft materials and its process.

Prerequisite

NIL

Course Objectives

J.
1. To understand the structure of solid materials, crystal structures and physical
metallurgy.
2. To understand the various deformation mechanisms, failure modes and phase diagram
3. To learn the various types of heat treatment methodologies and study of corrosion
behaviour of materials.
4. To know the various types of engineering materials, properties and applications.

5. To learn about the exposure to high temperature materials for space applications

Course Outcomes

On the successful completion of the course, students will be able to

CO1. To know the elements of aerospace materials like crystallography.	Understand
CO2. To analyse the behaviour of materials using mechanical testing methods to know the properties of materials.	Apply
CO3. Identify heat treatment methods and surface treatments to improve mechanical properties of materials for applications in engineering industries. To make an analysis of the formation and effects of corrosion on various materials and to make an analysis of the formation and effects of corrosion on various materials.	Apply
CO4. Identify materials for industrial applications based on microstructure and mechanical property relationship	Analyze
CO5. To study and analyze the different types of high temperature materials for space applications	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

	Р	Р	Р			P	Р	Р	Р						
со	0	0	0	Р	Р	0	0	0	0	РО	РО	РО	PS	PS	PS
s	1	2	3	04	05	6	7	8	9	10	11	12	01	02	03
CO1	S	L	-	-	-	-	-	-	-	-	-	-	L	-	-
CO2	М	S	М	L	_	_	_	_	-	-	-	-	L	_	-
CO3	S	М	L	М	_	_	_	_	-	_	-	-	L	-	-
CO4	S	S	L	S	-	-	-	-	-	-	-	-	L	-	-
CO5	L	S	М	S	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

ELEMENTS OF AEROSPACE MATERIALS

Structure of solid materials – Atomic structure of materials – crystal structure – miller indices – density – packing factor – space lattices – x-ray diffraction – imperfection in crystals – physical metallurgy -general requirements of materials for aerospace applications.

MECHANICAL BEHAVIOUR OF MATERIALS

Linear and non linear elastic properties – Yielding, strain hardening, fracture, Bauchinger's effect –Notch effect testing and flaw detection of materials and components – creep and fatigue -comparative study of metals, ceramics plastics and composites.

CORROSION & HEAT TREATMENT OF METALS AND ALLOYS

Types of corrosion – effect of corrosion on mechanical properties – stress corrosion cracking –corrosion resistance materials used for space vehicles heat treatment of carbon steels – aluminium alloys, magnesium alloys and titanium alloys – effect of alloying treatment, heat resistance alloys –tool and die steels, magnetic alloys,

CERAMICS AND COMPOSITES

Introduction – powder metallurgy - modern ceramic materials – cermets - cutting tools – glass ceramic –production of semi fabricated forms - plastics and rubber – carbon/carbon composites, fabrication processes involved in metal matrix composites - shape memory alloys – applications in aerospace vehicle design, open and close mould processes.

HIGH TEMPERATURE MATERIALS CHARACTERIZATION

Classification, production and characteristics – methods and testing – determination of mechanical and thermal properties of materials at elevated temperatures – application of these materials in thermal protection systems of aerospace vehicles – super alloys – high temperature material characterization.

Text Books

1. Tifferton.G., "Aircraft Materials and Processes", V Edition, Pitman Publishing Co., 1995.

Reference Books

1. Martin, J.W., "Engineering Materials, Their properties and Applications", Wykedham Publications

(London) Ltd., 1987.

2. VanVlack.L.H., "Materials Science for Engineers", Addison Wesley, 1985.3.

3. Raghavan.V., "Materials Science and Engineering", Prentice Hall of India, New Delhi, 1993.

Cours	se Designers:			
S.No	Name of the Faculty		Department/ College	Mail ID
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in

	Category	L	Т	Р	Credit
AIRCRAFT PERFORMANCE					
STABILITY AND CONTROL	EC-SE	3	0	0	3

This course will provide the student a strong knowledge on the Aircrafts various stability criteria's along the different axis and the controls involved in it and also the various flight performance in different flying conditions.

Course Objectives

1	To understand the various performance of flight during cruising condition
2	To understand the various maneuvering of flight
3	To provide an in-depth study of longitudinal static stability and its control.
4	To provide an in-depth study of directional and lateral static stability
5	To identify the Stability derivatives for dynamic stability.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Relate the various performance flights according to the maneuvers.	Remember
CO2.	Explain various flight maneuvers properly.	Understand
CO3.	Demonstrate the stability criteria's along the longitudinal axis of	Apply
	flight.	
CO4.	Demonstrate the stability criteria's along the directional and lateral	Apply
	axis.	
CO5.	Identify varies stability derivative problems.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

-	- 0														
	Р		Р	Р	Р		Р	Р	Р						
	0		0	0	0	Р	0	0	0	РО	РО	РО	PS	PS	PS
COs	1	PO2	3	4	5	06	7	8	9	10	11	12	01	02	03
CO1	Μ	L	Μ	S	-	-	-	-	-	-	-	-	-S	L	L
CO2	L	Μ	L	L	-	-	-	-	-	-	-	-	L	Μ	S
CO3	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	М	S
CO4	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	S	Μ
CO5	S	S	М	Μ	-	-	-	-	-	-	-	-	М	S	М
0 04		1111		. Т.Т						•	•	•	•	•	

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT – I		IGHT PERFORMA			10			
International Standard Atmosphere - Forces and moments acting on a flight vehicle -Equation of motion of a rigid flight vehicle - Different types of drag –estimation of parasite drag co-efficient								
		• •	-					
• • •	÷ .			peeds - Variation of thru				
-	•	-	-	e of airplane in level flig	ht -			
Power availa	able and power rec	quired curves. Maxim	num speed in level f	light - Conditions for				
minimum dr	ag and power requ	uired			1			
UNIT – II	MANOEUVER	ING FLIGHT PER	FORMANCE		11			
Range and e	ndurance - Climbi	ing and gliding flight	(Maximum rate of c	climb and steepest angle	of			
climb, minir	num rate of sink a	nd shallowest angle o	f glide) -Turning pe	rformance (Turning rate				
		ad factor – limitation						
	STATIC LONG	GITUDINAL STABI	II ITV		10			
				ty - Purpose of controls i				
-	-	-	-	gitudinal stability - Stick				
*	•		•	s of fuselage and nacelle				
	• •	-	•	-	-			
			-	ck free stability-Hinge	4: ala			
			metric maneuvers -	Stick force gradients - S	пск			
_ lorce per g	g' - Aerodynamic	Balancing.			1			
UNIT – IV	LATERAL AN	D DIRECTIONAL	STABILITY		8			
Dihedral eff	ect - Lateral cont	trol - Coupling betw	een rolling and yav	ving moments – Advers	se			
yaw effects	- Aileron reversa	1 - Static directional	stability - Weather	cocking effect - Rudde	er			
•		perative condition - R	•	C				
-	DYNAMIC STA	•			6			
	•	lity, Auto rotation an	nd spin, Stability de	erivatives for lateral and	d			
directionald	ynamics.							
TEXT BOC)KS:							
		ge, R.E., "Airplane Pe	erformance stability	and Control", John				
	ey & Son:,Inc, NY							
2. Nels	son, R.C. "Flight S	Stability and Automat	ic Control", McGrav	w-Hill Book Co., 2004. anics", John Wiley, NY,				
3. McC 1979	Johnick. w., Aero 9.	odynamics, Aeronaut	ics and Flight Mech	anics, joint whey, NY,				
		of Elight Stability and	Control" Edn 2 I	ohn Wiley, NY, 1982.				
				rgamon Press, Oxford, 1	980			
				e Aero dynamics", Third				
	ion,Issac Pitman,	•	J , , , , , , , , , ,	5				
		rodynamics, Aeronau	utics and Flight Mec	hanics", John Wiley, NY	ζ,			
1993 Course	5. Designers:							
	Name of the		Department/					
S.No I		Designation	College	Mail ID				
1 5	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in				
	M Senthilkumar	Assistant Professor	AgroAMANEC	anthil@umbuaa adv in				
2 N	vi Senunikumar	Assistant Professor	ACIO/ VIVIN VEC	senthil@vmkvec.edu.in				

	Category	L	Т	Р	Credit
AIRCRAFT STRUCTURES LAB	EC-SE	0	0	4	2

The aim of the subject is to provide a practical knowledge in aircraft structure.

Course Objectives

 2 To know about the fracture patterns for various materials. 3 To know about the behaviours of beam when it is subjected to various end condition. 4 To know about the loads similarity with respect to distance 5 To know which type of joint should be made to have a strong structure. 	1	To know how to find the Young's modulus of various materials.
4 To know about the loads similarity with respect to distance	2	To know about the fracture patterns for various materials.
	3	To know about the behaviours of beam when it is subjected to various end condition.
5 To know which type of joint should be made to have a strong structure.	4	To know about the loads similarity with respect to distance
	5	To know which type of joint should be made to have a strong structure.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Remember the various materials to be used for various loads.	Remember
CO2.	Understand about the various fracture patterns for various materials.	Understand
CO3.	Apply the knowledge on behaviours of beam with various end condition.	Apply
CO4.	Apply the Maxwell's Reciprocal theorem & principle of superposition	Apply
	on various beam condition.	
CO5.	Analyze the character sticks of various material with various loading	Analyze
	condition.	

Mapping with Programme Outcomes and Programme Specific Outcomes

The pring with Programme Outcomes and Programme Specific Outcomes															
		РО	PO1	PO1	PO1	PSO	PSO	PSO							
COs	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO															
1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
СО															
2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO															
3	S	S	S	S	-	-	-	-	-	-	-	М	М	М	М
CO															
4	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
СО															
5	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
C. Stronger M. Madiumur I. Laur															

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Determination of Young's modulus of steel using mechanical extensometers.
- 2. Shear centre location for closed sections
- 3. Determination of fracture strength and fracture pattern of ductile materials.
- 4. Determination of fracture strength and fracture pattern of brittle materials.
- 5. Stress Strain curve for various engineering materials.
- 6. Flexibility matrix for cantilever beam
- 7. Verification of Maxwell's Reciprocal theorem & principle of superposition.
- 8. Column Testing.

- 9. Unsymmetrical bending of beams
 10. Riveted Joints.

REFERENCE:

Aircraft Structure Lab Manual.

S.No	Name of the Faculty		Department/ College	Mail ID		
1	Sanjay Singh	Associate Professor	Aero/VMKVEC	sanjay@vmkvec.edu.in		
2	M Senthilkumar	Assistant Professor	Aero/VMKVEC	senthil@vmkvec.edu.in		