

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

17EECC88- POWER SYSTEM SIMULATION LABORATORY

NAME	<u>:</u>
REG NO	:
	· ·
DEPT	<u>:</u>
SEC	•

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY

PAIYANOOR - 603 104.

(ACCREDITED NBA - AICTE) (AN ISO 9001: 2000 Certified Institution)

Register No	
Certified that this i	s a bonafide record of the work done by
	of
	in the
	Laboratory of
	Department.
Staff In-Charge	Head of the Department
Submitted for the Universi	ity Practical Examinations Held on

External Examiner

Internal Examiner

INDEX

S.NO	Date	Name of the Experiment	Page No	Marks (10)	Signature
1		COMPUTATION OF			
1		PARAMETERS AND			
		MODELLING OF TRANSMISSION			
		FORMATION OF NETWORK			
2		MATRICES			
-		AND SOLUTION OF NETWORKS			
		POWER FLOW ANALYSIS - I:			
3		SOLUTION			
		OF POWER FLOW AND			
		RELATED PROBLEMS			
		USING GAUSS-SEIDEL			
		POWER FLOW ANALYSIS II:			
4		SOLUTION			
		OF POWER FLOW AND			
		RELATED PROBLEMS USING			
		NEWTON-RAPHSON AND			
5		SHORT CIRCUIT ANALYSIS.			
6		TRANSIENT AND SMALL			
		SIGNAL			
		STABILITY ANALYSIS:			
		SINGLE- MACHINE			
		TRANSIENT STABILITY			
7		ANALYSIS OF			
		MULTIMACHINE POWER			
8		ELECTROMAGNETIC			
		TRANSIENTS IN			
		POWER SYSTEMS			
9		LOAD – FREQUENCY			
		DYNAMICS OF			
		SINGLE AND TWO-AREA			
		POWER SYSTEMS.			
		UNIT COMMITMENT AND			
10		ECONOMIC			
		DISPATCH IN POWER SYSTEMS			

LCLE

Contents

Lis	st of Scilab Solutions	4
1	Computation of Transmission line Parameters	7
2	Modelling of Transmission Lines	14
3	Formation of Bus Admittance matrix	20
4	Formation of Bus Impedance matrix	2 3
5	Load flow solution using Gauss-Seidal method	27
6	Load flow solution using Newton-Raphson method	33
7	Symmetrical Fault Analysis	40
8	Unsymmetrical Fault Analysis	45
9	Small Signal and transient Stability Analysis of Single-machin Infinite bus system	e 51
10	Small Signal and transient Stability Analysis of Multi machine Power Systems	55
11	Electromagnetic Transients in Power Systems	60
12	Load frequency dynamics of single Area Power Systems	62
13	Load frequency dynamics of two Area Power Systems	64

14	Economic	dispatch	in	power	systems	neglecting los	sses	66
15	Economic	dispatch	in	power	systems	Including loss	ses	69

List of Experiments

Solution 1.1	Inductance of Single Phase line
Solution 1.2	Inductance of Three Phase line
Solution 1.3	Capacitance of Single Phase line
Solution 1.4	Capacitance of Three Phase line
Solution 2.1	Nominal T method
Solution 2.2	Nominal pi Method
Solution 3.1	Bus Admittance Matrix
Solution 4.1	Bus Impedance Matrix
Solution 5.1	Gauss Seidal Load Flow
Solution 6.1	Newton Raphson load Flow
Solution 7.1	Symmetrical Fault Analysis 40
Solution 8.1	Unsymmetrical Fault Analysis 45
Solution 9.1	SMIB Stability Analysis 51
Solution 10.1	Multimachine Stability Analysis
Solution 14.1	Economic Load Dispatch Excluding Losses 66
Solution 15.1	Economic Load Dispatch Including Losses 69

List of Figures

1.1 1.2 1.3 1.4	Inductance of Single Phase line8Inductance of Three Phase line10Capacitance of Single Phase line12Capacitance of Three Phase line13
2.1 2.2	Capacitance of Three Phase line
3.1	Bus Admittance Matrix
4.1	Bus Impedance Matrix
5.1 5.2	Gauss Seidal Load Flow
6.1 6.2	Newton Raphson load Flow34Newton Raphson load Flow34
7.1 7.2	Symmetrical Fault Analysis
8.1 8.2	Unsymmetrical Fault Analysis
9.1 9.2	SMIB Stability Analysis
10.1	Multimachine Stability Analysis
11.1	Transient in RLC series circuit with DC source 61
12.1	Single Area Control

13.1	Two Area Control	65
14.1	Economic Load Dispatch Excluding Losses	67
15.1	Economic Load Dispatch Including Losses	70

Computation of Transmission line Parameters

Scilab code Solution 1.1 Inductance of Single Phase line

```
1 //Program to find loop inductance of a single phase
      transmission line//
2 //This program requires user input. Sample Problem
     and user input with output are available in the
     result file //
3 //Scilab Version 5.5.2; OS: Windows
4 clc;
5 clear;
6 d=input ('Enter the spacing between conductors in
     meter: ')
7 dia=input('Enter the diameter of the conductor in
     meter: ')
8 r = dia/2
9 l=input('Enter the length of the line in km:')
10 li=10^{(-7)}*(1+4*(\log(d/r)))*1*1000
11 disp(li, 'The loop inductance for given transmission
     line in Henry is:')
12
13
```

A single phase line has two parallel conductors 2 meters apart. The diameter of each conductor is 1.2 cm. Calculate the loop inductance per km of the line.

OUTPUT:

```
Sciab 5.5.2 Console

Enter the spacing between conductors in meter:2
Enter the diameter of the conductor in meter:1.2e-2
Enter the length of the line in km:1

The loop inductance for given transmission line in Henry is:

0.0024237
```

Figure 1.1: Inductance of Single Phase line

```
//SAMPLE INPUT:
14
15
  //Enter the spacing between conductors in meter: 2
  //Enter the diameter of the conductor in meter: 1.2e
  //Enter the length of the line in km: 1
18
19
20
    //OUTPUT:
21
    //The loop inductance for given transmission line
      in Henry is:
22
23
      // 0.0024237
```

Scilab code Solution 1.2 Inductance of Three Phase line

```
2 //This program requires user input. Sample Problem
     and user input with output are available in the
      result file //
3 //Scilab Version 5.5.2; OS: Windows
4 clc;
5 clear;
6 d12=input ('Enter the distance between the conductor
     1 and 2 in meter: ')
7 d23=input ('Enter the distance between the conductor
     1 and 3 in meter: ')
8 d31=input ('Enter the distance between the conductor
     2 and 3 in meter: ')
9 deq=(d12*d23*d31)^{(1/3)}
10 dia=input ('Enter the diameter of the conductor in
     meter: ')
11 r = dia/2
12 l=input('Enter the length of the line in km:')
13 li=10^{(-7)}*(0.5+2*(log(deq/r)))*1*1000
14 disp(li, 'The loop inductance for given distance in
     Henry is: ')
15
16
17 //SAMPLE INPUT:
18 //Enter the distance between the conductor 1 and 2
     in meter:2
  //Enter the distance between the conductor 1 and 3
     in meter: 2.5
  // the distance between the conductor 2 and 3 in
     meter: 4.5
  //Enter the diameter of the conductor in meter:1.24e
  //Enter the length of the line in km:1
22
23
    //OUTPUT:
24
    //The loop inductance for given distance in Henry
25
      is:
26
      // 0.0012742
27
```

The three conductors of a 3-phase line are arranged at the corners of a triangle of sides 2 m, 2.5 m and 4.5 m. Calculate the inductance per km of the line when the conductors are regularly transposed. The diameter of each conductor is 1.24 cm.

OUTPUT:

```
Enter the distance between the conductor 1 and 2 in meter:2
Enter the distance between the conductor 1 and 3 in meter:2.5
Enter the distance between the conductor 2 and 3 in meter:4.5
Enter the distance between the conductor in meter:1.24e-2
Enter the length of the line in km:1

The loop inductance for given distance in Henry is:

0.0012742
```

Figure 1.2: Inductance of Three Phase line

Scilab code Solution 1.3 Capacitance of Single Phase line

```
meter: ')
9 l=input('Enter the length of the line in km:')
10 c = ((\%pi*8.854*10^{(-12)}*1*1000)/log(d/r))
11 disp(c, 'the capacitance of the line for given
      distance is: ')
12
13
14
15 //SAMPLE INPUT:
16 //Enter the diameter of the conductor in meter: 2e-2
17 //Enter the spacing between the conductors in meter
18
  //Enter the length of the line in km:1
19
20
    //OUTPUT:
    //the capacitance of the line for given distance is
21
22
     // 4.877D-09
23
```

Scilab code Solution 1.4 Capacitance of Three Phase line

4.877D-09

A single-phase transmission line has two parallel conductors 3 meters apart, diameter of each conductor being 2 cm. Calculate the capacitance of the line per km.

OUTPUT: Scieb 5.5.2 Console Enter the diameter of the conductor in meter:2e-2 Enter the spacing between the conductors in meter:3 Enter the length of the line in km:1 the capacitance of the line for given distance is:

Figure 1.3: Capacitance of Single Phase line

```
7 d23=input ('Enter the distance between the conductor
      1 and 3 in meter: ')
8 d31=input ('Enter the distance between the conductor
     2 and 3 in meter: ')
9 deq=(d12*d23*d31)^(1/3)
10 dia=input ('Enter the diameter of the conductor in
      meter: ')
11 r = dia/2
12 l=input('Enter the length of the line in km:')
13 Cn = ((2*\%pi*8.85*10^-12)/(log(deq/r)))*1*1000
14 disp(Cn, 'The line to neutral capacitance for given
      distance in Farad is: ')
15
16
  //SAMPLE INPUT:
17
18
  //Enter the distance between the conductor 1 and 2
     in meter:4
20 //Enter the distance between the conductor 1 and 3
      in meter:4
21 //Enter the distance between the conductor 2 and 3
```

A 3-phase, 50 Hz, 132 kV overhead line has conductors placed in a horizontal plane 4 m apart. Conductor diameter is 2 cm. If the line length is 100 km, calculate the capacitance to neutral per phase assuming complete transposition.

OUTPUT:

```
Enter the distance between the conductor 1 and 2 in meter:4
Enter the distance between the conductor 1 and 3 in meter:4
Enter the distance between the conductor 2 and 3 in meter:8
Enter the diameter of the conductor in meter:2e-2
Enter the length of the line in km:100

The line to neutral capacitance for given distance in Farad is:

0.0000009
```

Figure 1.4: Capacitance of Three Phase line

```
in meter:8

22 //Enter the diameter of the conductor in meter:2e-2

23 //Enter the length of the line in km:100

24

25 //OUTPUT:

26 //The line to neutral capacitance for given distance in Farad is:

27

28 // 0.0000009
```

Modelling of Transmission Lines

Scilab code Solution 2.1 Nominal T method

```
1 // Calculation of Transmission Line parameters using
     Nominal—T method //
2 //This program requires user input. Sample problem
     with user input and result are available in the
     result file //
3 //Scilab Version 5.5.2; OS: Windows
4 clc;
5 clear;
6 pl=input('Enter the power supplied to the load:');
7 vr=input('Enter the receiving end voltage:');
8 pf=input('Enter the power factor:');
9 spf=sin(acos(pf));
10 z=input ('Enter the series impedance value of single
     conductor: ');
11 y=input('Enter the shunt admittance value:');
12 e=(z*y)/2;
13 a = (1+e);
                           //calculation of transmission
      line parameters
14 b=z*(1+e/2);
```

```
15 \text{ c=y};
16 \text{ d=a};
17 disp(d,c,b,a,'The values of ABCD parameters
      respectively are')
18 vrph=vr/sqrt(3);
                          //receiving end voltage per
      phase
19 ir=pl/(sqrt(3)*vr*pf);
                                  //receiving end current
20 irv=ir*(pf-%i*spf);
                                  // receiving end
      current in vector form
21 vsph=(a*vrph+b*irv);
                                  //sending end voltage
      per phase
22 vsh=abs(vsph);
                                  // magnitude of sending
       end voltage per phase
23 reg=((abs(vsh/a)-abs(vrph))/vrph)*100;
      calculation of percentage regulation
  disp(reg, 'regulation of the line is')
25
26
27 //SAMPLE INPUT:
28 //Enter the power supplied to the load:30e6
29 //Enter the receiving end voltage:132e3
30 //Enter the power factor:0.85
31 //Enter the series impedance value of single
      conductor: 20 + 52 * \%i
  //Enter the shunt admittance value:315e-6*%i
32
33
34
35
    //OUTPUT:
    //The values of ABCD parameters respectively are
36
37
38
      // 0.99181 + 0.00315 i
39
       //19.8362 + 51.81856i
40
41
       //0.000315 i
42
43
44 //
         0.99181 + 0.00315i
45
```

A balanced 3-phase load of 30 MW is supplied at 132 KV, 50 Hz and 0.85 pf lagging by needs of a transmission line. The series impedance of a single conductor is (20+j52) ohms and the total phase neutral admittance is 315×10^{-6} Siemen. Using nominal T method determine Transmission line ABCD-parameters and the regulation of the line.

OUTPUT

```
Enter the power supplied to the load:30e6
Enter the receiving end voltage:132e3
Enter the power factor:0.85
Enter the series impedance value of single conductor:20+52*%i
Enter the shunt admittance value:315e-6*%i

The values of ABCD parameters respectively are

0.99181 + 0.00315i

19.8362 + 51.81856i

0.000315i

0.99181 + 0.00315i

regulation of the line is

9.2540724
```

Figure 2.1: Nominal T method

```
46 //regulation of the line is 47 48 // 9.2540724
```

Scilab code Solution 2.2 Nominal pi Method

```
1 // Calculation of Transmission Line parameters using Nominal-pi method//
2 // This Program requires user input. Sample Problem with user input and result are available in the
```

```
result file //
3 //Scilab Version 5.5.2; OS: Windows
4 clc;
5 clear:
6 d=input('Enter the value of distance:');
7 rkm=input('Enter the value of resistance per km:');
8 xlkm=input ('Enter the value of inductive reactance
      per km: ');
9 yshkm=input('Enter the value of shunt admittance per
       km: ');
10 pl=input('Enter the value of power delivered:');
11 vl=input('Enter the value of line voltage:');
12 pf=input('Enter the value of power factor:');
13 vr=v1/sqrt(3);
                            //phase voltage
                            //total resistance of the
14 r=rkm*d;
      transmission line
15 xl = xlkm*d:
                            //total inductive reactance
      of the transmission line
                            //total shunt admittance of
16 ysh = yshkm*d;
      the transmission line
17 zs=r+(xl*\%i);
                            //total impedance
18 \ a=1+(ysh*zs)/2;
                              //calculation of
      transmission line parameters
19 \text{ b=zs};
20 c = ysh*(1+(ysh*zs)/4);
21 d=a;
22 disp(d,c,b,a,'the values of ABCD parameters
      respectively are: ')
23 ilo=pl/(sqrt(3)*vl*pf);
24 \text{ sp=sin(acos(pf))};
25 \text{ ir=ilo*(pf-%i*sp)};
26 \text{ icl} = (\text{vr}*\text{ysh})/2;
27 il=ir+icl;
28 vs=(vr+(il*(r+(%i*xl)))); //sending end voltage
29 reg=((abs(vs)/abs(a)-abs(vr))/abs(vr))*100; //
      calculation of percentage regulation
30 disp(reg, 'regulation of the line is');
31
```

```
32 //SAMPLE INPUT:
33 //Enter the value of distance:100
34 //Enter the value of resistance per km:0.1
35 //Enter the value of inductive reactance per km:0.2
36 //Enter the value of shunt admittance per km:4e-6*\%i
37 //Enter the value of power delivered:10e6
38 //Enter the value of line voltage:66e3
39 //Enter the value of power factor:0.8
40
   //OUTPUT:
41
   //the values of ABCD parameters respectively are:
42
43
44
      // 0.996 + 0.002 i
45
      //10. + 20.i
46
47
  // - 0.0000004 + 0.0003992 i
48
49
50
    // 0.996 + 0.002 i
51
52
   //regulation of the line is
53
     // 5.8069405
54
```

A 3 phase, 50 Hz, 100 Km line has a resistance, inductive reactance and capacitive shunt admittance of $0.1\Omega/\text{Km}$, $0.2\Omega/\text{Km}$ and 4×10^{-6} S/Km per phase. If the line delivers 10 MW at 110 KV and 0.8 pf lagging, determine the transmission line ABCD-parameters and the regulation of the line using nominal-pi method.

OUTPUT

```
Enter the value of distance:100
Enter the value of resistance per km:0.1
Enter the value of inductive reactance per km:0.2
Enter the value of shunt admittance per km:4e-6*%i
Enter the value of power delivered:10e6
Enter the value of line voltage:66e3
Enter the value of power factor:0.8

the values of ABCD parameters respectively are:

0.996 + 0.0021

10. + 20.1

- 0.0000004 + 0.0003992i

0.996 + 0.0021

regulation of the line is

5.8069405
```

Figure 2.2: Nominal pi Method

Formation of Bus Admittance matrix

Scilab code Solution 3.1 Bus Admittance Matrix

```
2 //Program to find out bus admittance matrix of a
     power system of any size //
3 //This program requires user input. A sample problem
      with user input and output is available in the
     result file //
4 //Scilab Version 5.5.2; OS: Windows
5 clc;
6 clear;
7 linedata=input ('Enter line data in order of strt bus
     , end bus, series resistance, series reactance, shunt
      susceptance: ')
8 sb=linedata(:,1) //Starting bus number of all the
     lines stored in variable sb
9 eb=linedata(:,2) //Ending bus number of all the
     lines stored in variable eb
10 lz=linedata(:,3)+linedata(:,4)*%i; //lineimpedance=
11 sa=-linedata(:,5)*%i; //shunt admittance=-jB
```

```
12 nb=max(max(sb,eb));
13 ybus=zeros(nb,nb);
14 for i=1:length(sb)
15
       m=sb(i);
16
       n=eb(i);
17
       ybus (m,m) = ybus (m,m) + 1/lz(i) + sa(i);
       ybus (n,n) = ybus (n,n) + 1/lz(i) + sa(i);
18
       ybus (m,n) = -1/lz(i);
19
20
       ybus(n,m)=ybus(m,n);
21 end
22 disp(ybus, 'The Bus Admittance matrix is:')
23
24 //SAMPLE INPUT:
25
26 //Enter line data in order of strt bus, end bus,
      series resistance, series reactance, shunt
      susceptance: [1 2 0.02 0.04 0;1 3 0.01 0.03 0;2 3
      0.0125 \ 0.025 \ 0
27
    //OUTPUT:
28
29
    //The Bus Admittance matrix is:
30
         20. - 50.i - 10. + 20.i
31 //
                                    -10. + 30.i
32 / /
       -10. + 20.i
                         26. - 52.i
                                      -16. + 32.i
                                        26. - 62.i
       -10. + 30.i - 16. + 32.i
33 //
```

For the network shown in figure, determine the bus admittance matrix .

OUTPUT:

```
Enter line data in order of strt bus, end bus, series resistance, series reactance, shunt susceptance: [1 2 0.02 0.04 0;1 3 0.01 0.03 0;2 3 0.0125 0.025 0]

20. - 50.i - 10. + 20.i - 10. + 30.i

- 10. + 20.i 26. - 52.i - 16. + 32.i

- 10. + 30.i - 16. + 32.i 26. - 62.i
```

Figure 3.1: Bus Admittance Matrix

Formation of Bus Impedance matrix

Scilab code Solution 4.1 Bus Impedance Matrix

```
2 //Program to determine bus impedance matrix of a
     power system of any size using building algorithm
3 //This program needs user input. Sample problem with
      user input and output is available in the result
       file //
4 //Scilab Version 5.5.2; OS: Windows
5 clc;
6 clear;
7 linedata=input('enter the line data values in the
     order of starting bus, ending bus, resistance and
     reactance: ') //note:enter 0 for reference bus
8 sb=linedata(:,1)
9 eb=linedata(:,2)
10 z=linedata(:,3)+linedata(:,4)*%i //impedance z=R+
     jΧ
11 zbus=[];
12 check=[];
```

```
13 for i=1:length(sb)
14
       m=sb(i);
15
       n=eb(i);
       mn = min(m,n);
16
17
       nm = max(m,n);
18
       ncheck=length(find(check==nm));
                                          //Variable
          used for checking whether bus nm is already
          existing
19
       mcheck=length(find(check==mn));
                                            //Variable
          used for checking whether bus mn is already
          existing
20
       [rows columns] = size(zbus);
21
  //Condition for connection of line between reference
       bus and new bus
       if mn == 0 \& ncheck == 0
22
           zbus = [zbus zeros(rows,1); zeros(1,rows) z(i)
23
              1:
24
           check=[check nm];
  //Condition for connection of line between existing
25
      bus and new bus
26
             else if mcheck > 0 & ncheck == 0
                zbus=[zbus zbus(:,mn);zbus(mn,:) zbus(mn
27
                   ,mn)+z(i)];
                check=[check nm];
28
  //Condition for connection of line between reference
29
       bus and existing bus
30
                elseif mn == 0 & ncheck > 0
                zbus=[zbus zbus(:,nm);zbus(nm,:) zbus(nm
31
                   ,nm)+z(i)];
32
                //Modifying Z bus size using Kron's
                   reduction tehnique
33
                zbusn=zeros(rows, rows);
34
                for r=1:rows
                    for t=1:columns
35
                         zbusn(r,t)=zbus(r,t)-(zbus(r,t))
36
                            rows+1)*zbus(rows+1,t))/(zbus
                            (rows+1, rows+1));
37
                    end
```

```
38
                end
39
                zbus=zbusn
  //Condition for connection of line between two
40
      existing buses
            elseif mcheck>0 & ncheck>0
41
42
                zbus = [zbus zbus(:,nm)-zbus(:,mn);zbus(nm
                    ,:)-zbus(mn,:),z(i)+zbus(mn,nm)+zbus(
                   nm,nm)-2*zbus(nm,mn)];
                 //Modifying Z bus size using Kron's
43
                    reduction tehnique
                zbusn=zeros(rows, rows);
44
                for r=1:rows
45
46
                     for t=1:columns
                        zbusn(r,t)=zbus(r,t)-(zbus(r,rows
47
                           +1)*zbus(rows+1,t))/(zbus(rows
                           +1, rows+1));
48
                    end
49
               end
               zbus=zbusn;
50
51
           end
52
      end
53
   disp(zbus, 'The bus impedance matrix is:');
55
56
57
   //SAMPLE INPUT:
58
   //enter the line data values in the order of
      starting bus, ending bus, resistance and reactance
      : [0 \ 1 \ 0 \ 0.5; 1 \ 2 \ 0 \ 0.2; 2 \ 3 \ 0 \ 0.1; 3 \ 0 \ 0 \ 0.4]
60
    //OUTPUT:
61
    //The bus impedance matrix is:
62
63
64 //
          0.2916667i
                          0.2083333i
                                         0.1666667i
          0.2083333 i
                          0.2916667i
                                         0.2333333 i
65 //
          0.1666667i
                          0.2333333 i
                                         0.2666667i
66 //
```

Determine the bus impedance matrix of the given power system, where the per unit values of line impedances are marked in the diagram.

Figure 4.1: Bus Impedance Matrix

Load flow solution using Gauss-Seidal method

Scilab code Solution 5.1 Gauss Seidal Load Flow

```
1 //Program to find out power system voltage at the end of the iteration by gauss siedal method//
2 //This program requires user input. A sample problem
```

Figure 5.1: Gauss Seidal Load Flow

For the system shown in figure determine the voltage at the end of the iteration by gauss siedal method. Assume that base \underline{MVA} as 100.

Bus no	Voltage	Gene	rator	Lo	ad	Q min	Q max
	In p.u	P	Q	P	Q		
1	1.05	-	8.78	-	-	1-2	-
2	1.02	0.3	100		5.55	-10	100
3	2	-	846	0.4	0.2	3.41	120

Figure 5.2: Gauss Seidal Load Flow

```
with user input and output is available in the
      result file //
3 // Question of example problem is available in file "
      GausssSeidalQuestionFile.jpg" and result is
      available in the file "GaussSeidalOutputFile.jpg"
4 //Scilab Version 5.5.2; OS: Windows
5 clc;
6 clear;
7 linedata=input ('enter the linedata in the order of
      starting bus, ending bus, series resistance, series
     inductance and shunt suspectance in matrix form:
     )
  sb=linedata(:,1) //Starting bus number of all the
      lines stored in variable sb //
  eb=linedata(:,2) //Ending bus number of all the
     lines stored in variable eb //
10 lz=linedata(:,3)+linedata(:,4)*%i
                                        //lineimpedance=
     R+jX //
11 sa=-linedata(:,5)*%i //shunt admittance=-jB //
12 nb=max(max(sb,eb)); //number of buses calculation
     //
13 y=zeros(nb,nb);
14 for i=1:length(sb) // starting of admittance bus
     matrix calculation part //
       m=sb(i);
15
16
       n=eb(i);
       y(m,m)=y(m,m)+1/1z(i)+(sa(i)/2);
17
       y(n,n)=y(n,n)+1/1z(i)+(sa(i)/2);
18
       y(m,n) = -1/1z(i);
19
20
       y(n,m)=y(m,n);
                       // end of admittance bus matrix
21 end
      calculation part
22 disp(y,'y bus admittance is:');
23 busdata=input ('enter busdata in the order type (1.
     slack, 2.pv, 3.pq), PG, QG, PL, QL, vmag, del, Qmin and
     Qmax: ')
24 typ=busdata(:,1) // type of all buses in the power
     system is stored in typ variable //
```

```
25 qmin=busdata(:,8) // minmum limit of Q for all the
      buses is stored in the variable qmin//
26 qmax=busdata(:,9) // maximum limit of Q for all the
       buses is stored in the variable qmax//
27 p=busdata(:,2)-busdata(:,4) // real power of all the
       buses are calculated and is stored in the
      variable p //
28 q=busdata(:,3)-busdata(:,5) // reactive power of
      all the buss are calculated and is stored in the
      variable q //
v=busdata(:,6).*(cosd(busdata(:,7))+%i*sind(busdata(:,7))
      (:,7));
30 alpha=input ('enter the value of accelaration factor:
      <sup>'</sup>);
31 iter=1;
32 \text{ err} = 1;
33 \text{ vn}(1) = \text{v}(1);
34 vold=v(1);
35 while abs(err)>5*10^{-5}) // starting of calculation
       part of bus voltage for first iteration //
36
       for i=2:nb
37
            sumyv=0;
38
            for j=1:nb
                sumyv = sumyv + y(i,j) * v(j);
39
40
            end
41
            if typ(i) == 2
42
                q(i)=-imag(conj(v(i)*sumyv));
                if q(i) < qmin(i) | q(n) > qmax(i)
43
                     vn(i) = (1/y(i,i))*(((p(i)-%i*q(i))/(
44
                        conj(v(i))))-(sumyv-y(i,i)*v(i)))
45
                     vold(i)=v(i);
                     v(i) = vn(i);
46
47
                     typ(i)=3
                if q(i) < qmin(i)</pre>
48
                     q(i)=qmin(i);
49
                else
50
                     q(i) = qmax(i);
51
```

```
52
                end
            else
53
                vn(i) = (1/y(i,i))*(((p(i)-%i*q(i))/(conj(
54
                   v(i))))-(sumyv-y(i,i)*v(i)));
                ang=atan(imag(vn(i)), real(vn(i)));
55
                vn(i) = abs(v(i))*(cos(ang)+%i*sin(ang));
56
                vold(i) = v(i);
57
                v(i) = vn(i);
58
59
            end
            elseif typ(i) == 3
60
                vn(i) = (1/y(i,i))*(((p(i)-%i*q(i))/(conj(
61
                   v(i))))-(sumyv-y(i,i)*v(i)));
62
                vold(i) = v(i);
                v(i)=vn(i);
63
64
            end
65
            end
66 err=max(abs(abs(v)-abs(vold)));
67
68 iter=iter+1;
69 for i=2:nb
       if err > 5*10^{(-6)} & typ(i) == 3
70
       v(i)=vold(i)+alpha*(v(i)-vold(i));
71
72
       end
73 end
74 end
75 printf ('the GS load flow converged in %d iterations
      n', iter-1);
76 \, \text{nn} = 1 : \text{nb};
77 res=[nn' abs(v) (atan(imag(v),real(v)))*(180/%pi)]
78 disp(res, 'the final voltages are in the order of bus
       no, v mag, v angle: ');
79
80 //SAMPLE INPUT and OUTPUT
81 //enter the linedata in the order of starting bus,
      ending bus, series resistance, series inductance
      and shunt suspectance in matrix form: 1 2 0 0.4
      0;2 3 0 0.2 0;1 3 0 0.3 0]
82
```

```
//y bus admittance is:
83
84
                              3.3333333 i
85 //
       - 5.8333333i
                         2.5 i
          2.5 i
                       -7.5i
                                 5. i
86 //
          3.3333333i 5.i -8.3333333i
87 //
88 //enter busdata in the order type (1.slack, 2.pv, 3.pq
      ), PG, QG, PL, QL, vmag, del, Qmin and Qmax: [1 0 0 0 0
      1.05 \ 0 \ 0 \ 0; 2 \ 0.3 \ 0 \ 0 \ 1.02 \ 0 \ -0.1 \ 1; 3 \ 0 \ 0 \ 0.4
      [0.2 \ 1 \ 0 \ 0 \ 0]
89 //enter the value of accelaration factor:1
90 //the GS load flow converged in 5 iterations
91
92
    //the final voltages are in the order of bus no, v
       mag, v angle:
93
94 //
          1.
                1.05
                               0.
                1.02
95 //
          2.
                               0.7840633
                1.0070672 - 2.1827934
96 //
```

Load flow solution using Newton-Raphson method

Scilab code Solution 6.1 Newton Raphson load Flow

```
1
2 //Program to find out load flow solution using
    Newton Raphson method//
3 //This program requires user input. A sample problem
    with user input and output is available in the
    result file//
4 //Example problem is available in the file "
    NRQuestionFile.jpg" and user input and output is
    available in the file "NRResultFile"
5 //Scilab Version 5.5.2; OS:Windows
6
7 clear;
8 clc;
9 linedata=input('Enterlinedata in the order line no.,
    Frombus, Tobus, series resistance, series reactance,
```

Figure shows the one-line diagram of a simple three-bus power system with generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 per unit. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line impedances are marked in per unit on a 100-MVA base and the line charging susceptances are neglected.

Determine the bus voltages and angle of all 3 buses using Newton Raphson method.

Figure 6.1: Newton Raphson load Flow

Figure 6.2: Newton Raphson load Flow

```
Line charging admittance: ');
10 Busdata=input ('Enter busdata in the order busno.,
      real power, reativepower, busvoltage, bus type 1-for
       slack 2-for PQ and 3-for PV: ');
11 npv=input('Enter the number of PV bus:');
12
13 // Determination of bus admittance matrix //
14 nb=max(Busdata(:,1));
15 nl=max(linedata(:,1));
16  Psp=Busdata(:,2);
17 Qsp=Busdata(:,3);
18 vsp=Busdata(:,4);
19 rem=Busdata(:,5);
20 \quad Y = zeros(nb, nb);
21 sb=linedata(:,2);
22 eb=linedata(:,3);
23 z=linedata(:,4)+linedata(:,5)*%i;
24 ly=linedata(:,6);
25 \quad for \quad i=1:nl
26
       m=sb(i)
27
       n=eb(i);
       Y(m,m)=Y(m,m)+1/z(i)+ly(i)/2;
28
       Y(n,n)=Y(n,n)+1/z(i)+ly(i)/2;
29
       Y(m,n) = -1/z(i);
30
       Y(n,m)=Y(m,n);
31
32
      end
33 disp('Bus admittance matrix')
34 print(%io(2),Y)
35
36 //NR Load flow//
37 \text{ absY} = \text{abs}(Y);
38 thetaY=atan(imag(Y),real(Y));
39 v=vsp';
40 iteration=1;
41 \text{ ang}=zeros(1,nb);
42 mismatch=ones(2*nb-2-npv,1);
43 while max(abs(mismatch))>0.0001
       J1=zeros(nb-1,nb-1);
44
```

```
J2=zeros(nb-1,nb-npv-1);
45
                           J3=zeros(nb-npv-1,nb-1);
46
                           J4=zeros(nb-npv-1,nb-npv-1);
47
                          P=zeros(nb,1);
48
49
                           Q=P;
50
                           del_P=Q;
                           del_Q=Q;
51
52
                           del_del=zeros(nb-1,1);
53
                           del_v=zeros(nb-1-npv,1);
54
                           ang;
55
                          mag = abs(v);
                          for i = 2: nb
56
57
                                          for j=1:nb
                                                          P(i)=P(i)+mag(i)*mag(j)*absY(i,j)*cos(
58
                                                                    thetaY(i,j)-ang(i)+ang(j));
                                                              if rem(i)^=3
59
                                                                                 Q(i)=Q(i)+mag(i)*mag(j)*absY(i,j)*
60
                                                                                            sin(thetaY(i,j)-ang(i)+ang(j));
61
                                                                  end
62
                                                  end
63
                                                  end
64 Q = -1 * Q;
65 \text{ del_P=Psp-P};
66 del_Q=Qsp-Q;
67 \quad for \quad i=2:nb
68
                          for j=2:nb
69
                                          if j^=i
                                                          J1(i-1, j-1) = -mag(i) * mag(j) * absY(i, j) * sin
70
                                                                     (thetaY(i,j)-ang(i)+ang(j));
                                                          J2(i-1,j-1)=mag(i)*absY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)*cos(thetaY(i,j)
71
                                                                    i, j) - ang(i) + ang(j));
                                                          J3(i-1, j-1) = -mag(i) * mag(j) * absY(i, j) * cos
72
                                                                     (thetaY(i,j)-ang(i)+ang(j));
                                                          J4(i-1,j-1) = -mag(i)*absY(i,j)*sin(thetaY)
73
                                                                     (i,j)-ang(i)+ang(j));
74
                                           end
75
                           end
76 end
```

```
77 \quad for \quad i=2:nb
78
        for j=1:nb
             if j~=i
79
                  J1(i-1,i-1)=J1(i-1,i-1)+mag(i)*mag(j)*
80
                     absY(i,j)*sin(thetaY(i,j)-ang(i)+ang(i)
                     j));
81
                  J2(i-1,i-1) = J2(i-1,i-1) + mag(j) * absY(i,j)
                     *cos(thetaY(i,j)-ang(i)+ang(j));
                  J3(i-1,i-1)=J3(i-1,i-1)+mag(i)*mag(j)*
82
                     absY(i,j)*cos(thetaY(i,j)-ang(i)+ang(
                     j));
83
                  J4(i-1,i-1) = J4(i-1,i-1) + mag(j) * absY(i,j)
                     *sin(thetaY(i,j)-ang(i)+ang(j));
84
             end
85
         end
         J2(i-1,i-1)=2*mag(i)*absY(i,i)*cos(thetaY(i,i))+
86
            J2(i-1,i-1);
         J4(i-1,i-1) = -2*mag(i)*absY(i,i)*sin(thetaY(i,i))
87
            -J4(i-1,i-1);
88
        end
89 J = [J1 J2; J3 J4]
90 lenJ=length(J1);
91 i = 2;
92 j = 1;
93 while j<=lenJ
94
        if rem(i) == 2
95
             j = j + 1;
        else
96
             J(:, length(J1)+j) = [];
97
             lenJ=lenJ-1;
98
99
        end
100 end
101 i = i + 1;
102 lenJ=length(J1);
103 i = 1;
104 j=2;
105 while i <= lenJ
        if rem(j) == 2
106
```

```
107
             i=i+1;
108
        else
109
             J(length(J1)+i,:)=[];
110
             lenJ=lenJ-1;
111
             Q(i+1) = []
112
             del_Q(i+1,:)=[]
113
        end
      // j=j+1;
114
115
        end
116 P(1,:) = []
117 Q(1,:) = []
118 del_P(1,:)=[];
119 del_Q(1,:)=[];
120 mismatch=[del_P;del_Q];
121 del=J\mismatch;
122 del_del=del(1:nb-1);
123 del_v=del(nb:length(del));
124 ang=ang(2:nb)+del_del';
125 j=1;
126 \text{ for } i=2:nb
127
        if rem(i) == 2
             v(i)=v(i)+del_v(j);
128
129
             j = j + 1;
130
        end
131 end
132 \text{ mag} = abs(v);
133 ang=[0 ang];
134 nbr=1:nb;
135 iteration=iteration+1;
136 end
137 disp(iteration-1, 'The load flow solution coverged at
        iteration')
                     Type
138 disp('bus no
                             voltage
                                        angle')
139 disp([nbr' rem mag' ang'])
140
141
142 //SAMPLE INPUT and OUTPUT:
143 //Enterlinedata in the order line no., Frombus, Tobus,
```

```
series resistance, series reactance, Line charging
       admittance: [1 1 2 0.02 0.04 0;2 2 3 0.0125 0.025
       0;3 \ 3 \ 1 \ 0.01 \ 0.03 \ 0
144 //Enter busdata in the order busno., real power,
       reativepower, busvoltage, bus type 1-for slack 2-
       for PQ and 3-for PV: \begin{bmatrix} 1 & 0 & 0 & 1.05 & 1; 2 & -2.566 & -1.102 \end{bmatrix}
        1 \quad 2; 3 \quad -1.386 \quad -0.452 \quad 1 \quad 2
145 //Enter the number of PV bus:0
146
147 // Bus admittance matrix
148 // Y =
149
150 //
         20. - 50.i - 10. + 20.i - 10. + 30.i
                       26. - 52.i - 16. + 32.i
        -10. + 20.i
   // - 10. + 30. i - 16. + 32. i 26. - 62. i
152
153
154 // The load flow solution coverged at iteration
155
156 //
           4.
157
                        voltage angle
158 // bus no
                  Type
159
160 //
           1.
                  1.
                         1.05
                                        0.
161 //
                  2.
           2.
                         0.9818350 - 0.0611482
                  2.
                         1.0012492 - 0.0499584
162 //
           3.
```

Symmetrical Fault Analysis

Scilab code Solution 7.1 Symmetrical Fault Analysis

```
1 //Program to find out fault current, post-fault
     voltages and line flow of a given network //
2 //This program requires user input. A sample problem
      with user input and output is available in the
     result files. Question is available in the file "
     SymmetricalFaultQuestionFile.jpg" and result is
     available in the file "SymmetricalFaultResultFile
     .jpg"//
3 //Scilab Version 5.5.2; OS: Windows
4 clc;
5 clear;
6 linedata=input ('enter the line data values in the
     order of starting bus, nding bus, resistance and
     reactance: ')
7 f=input('enter the bus at wich fault occurs:')
8 bv=input('enter the pre-fault bus voltage:')
9 sb=linedata(:,1) //Starting bus number of all the
```

PROBLEM:

The generators at buses 1 and 3 of the network has impedances j1.5p.u. If a 3ϕ short circuit fault occurs at bus 2 ,when there is no load(all bus voltages are equal to 1.0 p.u),find initial symmetrical current in fault in the line 1-3 and post fault voltages using bus building algorithm.

Figure 7.1: Symmetrical Fault Analysis

```
enter the line data values in the order of starting bus, nding bus, resistance and reactance: [0 1 0 1.5;1 2 0 0.2;2 3 0 0.15;3 0 0 1.5;1 3 0 0.3]
enter the bus at which fault occurs:2
enter the pre-fault bus voltage:1
the impedance matrix is:
   0.77458301 0.74648811 0.72541701
                0.83621601
   0.74648811
                              0.75351191
    0.72541701 0.75351191
 the fault current is:
  - 1,19586331
the post fault voltages v1,v2,v3 respectively are:
   0.1073022
   0
   0.0989028
enter the starting bus, ending bus and the impedance between them to calculate the line flow:1
enter the ending bus to calculate the line flow:3
enter the impedance between the above buses:0.3*%i
the line flow current is:
  - 0.02799801
```

Figure 7.2: Symmetrical Fault Analysis

```
lines stored in variable sb //
10 eb=linedata(:,2) //Ending bus number of all the
      lines stored in variable eb //
11 z=linedata(:,3)+linedata(:,4)*%i //lineimpedance=R+
     jX //
12 zbus = [];
13 check=[];
14 for i=1:length(sb) //starting of impedance matrix
      calculation part //
       m=sb(i);
15
       n=eb(i);
16
17
       mn = min(m,n);
18
       nm = max(m,n);
19
       ncheck=length(find(check==nm));
       mcheck=length(find(check==mn));
20
       [rows columns] = size(zbus);
21
       if mn==0 \& ncheck==0
22
           zbus=[zbus zeros(rows,1);zeros(1,rows) z(i)
23
           check=[check nm];
24
25
             else if mcheck > 0 & ncheck == 0
                zbus=[zbus zbus(:,mn);zbus(mn,:) zbus(mn
26
                   ,mn)+z(i)];
                check=[check nm];
27
                elseif mn == 0 & ncheck > 0
28
29
                zbus=[zbus zbus(:,nm);zbus(nm,:) zbus(nm
                   ,nm)+z(i)];
                zbusn=zeros(rows,rows);
30
                for r=1:rows
31
32
                    for t=1:columns
                         zbusn(r,t)=zbus(r,t)-(zbus(r,t))
33
                            rows+1)*zbus(rows+1,t))/(zbus
                            (rows+1, rows+1));
34
                    end
35
                end
36
                zbus=zbusn
           elseif mcheck>0 & ncheck>0
37
                zbus = [zbus zbus(:,nm)-zbus(:,mn);zbus(nm
38
```

```
,:)-zbus(mn,:),z(i)+zbus(mn,nm)+zbus(
                   nm,nm)-2*zbus(nm,mn)];
                zbusn=zeros(rows, rows);
39
                for r=1:rows
40
                    for t=1:columns
41
42
                        zbusn(r,t)=zbus(r,t)-(zbus(r,rows
                           +1)*zbus(rows+1,t))/(zbus(rows
                           +1, rows+1));
43
                   end
44
               end
45
               zbus=zbusn;
46
          end
47
      end
  end
         //ending of impedance bus matrix calculation
      part //
49 disp(zbus, 'the impedance matrix is:');
50 ifa=bv/zbus(f,f) //calculation of fault current//
51 disp(ifa, 'the fault current is: ')
52 disp('the post fault voltages v1, v2, v3 respectively
      are: ');
53 for i=1:n
54 v(i)=bv-(ifa*zbus(i,f)); //calculation of postfault
      bus voltages //
55 disp(v(i));
56 end
57 a=input ('enter the starting bus to calculate the
      line flow: ');
58 b=input ('enter the ending bus to calculate the line
      flow: ');
59 zs=input('enter the impedance between the above
      buses: ');
60 i13=(v(a)-v(b))/zs; //calculation oflineflows//
61 disp(i13, 'the line flow current is: ')
62
63 //SAMPLE INPUT and OUTPUT:
64 //enter the line data values in the order of
      starting bus, nding bus, resistance and reactance
      : [0 \ 1 \ 0 \ 1.5; 1 \ 2 \ 0 \ 0.2; 2 \ 3 \ 0 \ 0.15; 3 \ 0 \ 0 \ 1.5; 1 \ 3 \ 0]
```

```
0.3]
65 //enter the bus at wich fault occurs:2
66 //enter the pre-fault bus voltage:1
67
68 // the impedance matrix is:
69
                         0.7464881 i \qquad 0.7254170 i
70 //
         0.7745830 i
                                     0.7535119 i
0.7745830 i
71 //
         0.7464881 \,\mathrm{i}
                         0.8362160 i
72 / /
         0.7254170 i
                         0.7535119 i
73
74 // the fault current is:
75
76 // - 1.1958633i
77
  // the post fault voltages v1, v2, v3 respectively are
79
80 //
        0.1073022
81
82 //
         0
83
84 // 0.0989028
  //enter the starting bus to calculate the line flow
      :1
  //enter the ending bus to calculate the line flow:3
  //enter the impedance between the above buses:0.3*\%i
88
89 // the line flow current is:
90
91 // - 0.0279980 i
```

Unsymmetrical Fault Analysis

Scilab code Solution 8.1 Unsymmetrical Fault Analysis

```
2 //Program to find out unsymmetrical fault current//
3 //This program requires user input. A sample problem
      with user input and output is available in the
     result file. Question is available in the file"
     UnsymmetricalFaultQuestionFile.jpg" and result is
      available in the file"
     UnsymmetricalFaultResultFile.jpg"//
4 //Scilab Version 5.5.2; OS: Windows
5 clc;
6 clear;
7 a=input('Enter the positive sequence, negative
     sequence and zero sequence of first generator in
     matrix form: ')
8 PG1=a(:,1);//positive sequence of generator 1 is
     stored in the variable PG1
9 NG1=a(:,2);//negative sequence of generator 1 is
     stored in the variable NG1
10 ZG1=a(:,3); // negative sequence of generator 1 is
     stored in the variable ZG1
11 b=input ('Enter the positive sequence, negative
```

- sequence and zero sequence of first transformer in matrix form: ')
- 12 PT1=b(:,1);//positive sequence of transformer 1 is stored in the variable PT1
- 13 NT1=b(:,2);//positive sequence of transformer 1 is stored in the variable NT1
- 14 ZT1=b(:,3);//positive sequence of transformer 1 is stored in the variable ZT1
- 15 c=input('Enter the positive sequence, negative sequence and zero sequence of first transmission line in matrix form:')
- 16 PTL=c(:,1);//positive sequence of transmission line 1 is stored in the variable PTL
- 17 NTL=c(:,2);//positive sequence of transmission line 1 is stored in the variable NTL
- 18 ZTL=c(:,3);//positive sequence of transmission line 1 is stored in the variable ZTL
- 19 d=input('Enter the positive sequence, negative sequence and zero sequence of second transformer in matrix form:')
- 20 PT2=d(:,1);//positive sequence of transformer is stored in the variable PT2
- 21 NT2=d(:,2);//positive sequence of transformer 1 is stored in the variable NT2
- 22 ZT2=d(:,3);//positive sequence of transformer 1 is stored in the variable ZT2
- 23 e=input('Enter the positive sequence, negative sequence and zero sequence of second generator in matrix form:')
- 24 PG2=e(:,1);//positive sequence of transformer 1 is stored in the variable PG2
- 25 NG2=e(:,2);//positive sequence of transformer 1 is stored in the variable NG2
- 26 ZG2=e(:,3);//positive sequence of transformer 1 is stored in the variable ZG2
- 27 MVAB=input('Enter the value of base MVA:');
- 28 KVB=input('Enter the value of base KV:');
- 29 z1=((PG1*%i+PT1*%i)*(PTL*%i+PT2*%i+PG2*%i))/((PG1*%i

```
+PT1*%i)+(PTL*%i+PT2*%i+PG2*%i));//calculation of
       positive impedence
30 z2=((NG1*%i+NT1*%i)*(NTL*%i+NT2*%i+NG2*%i))/((NG1*%i
      +NT1*%i)+(NTL*%i+NT2*%i+NG2*%i));//calculation of
       negative impedence
31 z0=((ZG1*%i+ZT1*%i)*(ZTL*%i+ZT2*%i+ZG2*%i))/((ZG1*%i
      +ZT1*\%i)+(ZTL*\%i+ZT2*\%i+ZG2*\%i));//calculation of
       zero impedence
32 Ib=(MVAB*(10^6))/((1.732*KVB*(10^3)))//calculating
      base current
33 disp(z0,z2,z1, 'the values of positive(z1) negative(
      z2), zero(z0) sequence impedance respectively are
      ');
34 disp('OPTION', 'LG FAULT=1', 'LL FAULT=2', 'LLG FAULT=3
      <sup>'</sup>);
35 MENU=input('Enter the choice of fault:')
36 if MENU==1 //calculating Line to Ground fault
37
       If = (3*(1))/(z0+z1+z2)
       FAULTCURRENT = If * Ib;
38
       disp(FAULTCURRENT, 'The fault current is :');
39
40 \, \text{end}
  if MENU==2//Calculating Line to Line Fault
41
       If = ((-1.732j)*(1))/(z1+z2)
42
       FAULTCURRENT = If * Ib;
43
44 disp(FAULTCURRENT, 'The fault current is : ');
45 end
46 if MENU==3//calculating Line-Line-Ground fault
       z=(z0*z2)/(z0+z2);
47
       Ia1=(1)/(z1+z);
48
       Ia0 = ((-1 + (Ia1 * z1))/z0);
49
       If = 3 * Ia0;
50
51
       FAULTCURRENT = If * Ib;
52
    disp(FAULTCURRENT, 'The fault current is :');
53 end
54
  //SAMPLE INPUT and OUTPUT
55
56
57 //Enter the positive sequence, negative sequence and
```

```
zero sequence of first generator in matrix form
      : [0.32 \ 0.26 \ 0.09]
58 //Enter the positive sequence, negative sequence and
      zero sequence of first transformer in matrix form
      : [0.23 \ 0.23 \ 0.23]
59 //Enter the positive sequence, negative sequence and
      zero sequence of first transmission line in
      matrix form: [0.56 0.56 0.09]
60 //Enter the positive sequence, negative sequence and
      zero sequence of second transformer in matrix
      form: [0.16 0.16 0.16]
61 //Enter the positive sequence, negative sequence and
      zero sequence of second generator in matrix form
      : [0.38 \quad 0.24 \quad 0.15]
62 //Enter the value of base MVA:100
63 //Enter the value of base KV:110
64
  // the values of positive (z1) negative (z2), zero (z0)
      sequence impedance respectivel
           y are
66
  //
67
68 //
      0.3666667i
69
70 //
       0.3244138 i
71
72 // 0.1777778 i
73
74 // LLG FAULT=3
75
76 // LL FAULT=2
77
78 // LG FAULT=1
79
  // OPTION
80
81 //Enter the choice of fault:3
82
83 // The fault current is :
84
```

Unsymmetrical Fault

PROBLEM

Find the positive, negative and zero sequence for a given power system. Also find LG, LL, LLG fault current.

G1: Z1 = 0.32; Z2 = 0.26; Z3=0.09

T1: Z1 = 0.23; Z2 = 0.23; Z3 = 0.23

T2: Z1 = 0.16; Z2 = 0.16; Z3 = 0.16

Transmission Line: Z1 = Z2 = 0.56; Z3 = 0.09

G2: Z1 = 0.38; Z2 = 0.24; Z3 = 0.15

Figure 8.1: Unsymmetrical Fault Analysis

85 // 2112.5397 i

```
OULLUL.
Enter the positive sequence, negative sequence and zero sequence of first generator in matrix form: [0.32 0.26 0.09]
Enter the positive sequence, negative sequence and zero sequence of first transformer in matrix form: [0.23 0.23 0.23]
Enter the positive sequence, negative sequence and zero sequence of first transmission line in matrix form: [0.56 0.56 0.09]
Enter the positive sequence, negative sequence and zero sequence of second transformer in matrix form: [0.16 0.16 0.16]
Enter the positive sequence, negative sequence and zero sequence of second generator in matrix form: [0.38 0.24 0.15]
Enter the value of base MVA:100
Enter the value of base KV:110
0.36666671
   0.32441381
   0.17777781
 LLG FAULT=3
LL FAULT=2
LG FAULT=1
OPTION
Enter the choice of fault:3
The fault current is :
   2112.53971
```

Figure 8.2: Unsymmetrical Fault Analysis

Small Signal and transient Stability Analysis of Single-machine Infinite bus system

Scilab code Solution 9.1 SMIB Stability Analysis

```
//Program to find out transient stability analysis
    of single machine - infinite bus system //
//An example problem and outputs are available in
    files 'result1' and 'result2'
//Scilab Version 5.5.2; OS:Windows

clc;
clear;
xd=0.3;
```

Consider a synchronous machine characterized by the following parameters:

$$X_d = 1.0$$
 $X_q = 0.6$ $X'_d = 0.3$ per unit

and negligible armature resistance. The machine is connected directly to an infinite bus of voltage 1.0 per unit. The generator is delivering a real power of 0.5 per unit at 0.8 power factor lagging. Determine the voltage behind transient reactance neglecting the saliency effect. Also find the power angle curve.

Resut CAMASICOMM The Voltage behind transferst reactance in pu is 1.18 + 0.186 ->

Figure 9.1: SMIB Stability Analysis

Figure 9.2: SMIB Stability Analysis

```
//
10 theta=acos(0.8);
     Power factor angle
11
12 S=(0.5/0.8)*cos(theta)+%i*sin(theta);
     Apparant Power
13 V = 1;
      Prefault vltage is assumed to be 1 pu
14 Ia=(conj(S)/V);
                                                     //
      Pefault steady state current
15
16 E=V+(\%i*xd)*(Ia);
                                                    //
      Voltage behind transient reactance
17
18 disp(E, 'The voltage behind transient reactance in pu
       is ')
19
20 //To find the power angle curve
21
22 delta=0:0.001:%pi;
23 P=((E*V)/xd)*(sin(delta));
24
25 plot(delta,P)
26 xlabel('delta in radians')
27 ylabel('Power in pu')
28 title('Power angle curve')
```

Small Signal and transient Stability Analysis of Multi machine Power Systems

Scilab code Solution 10.1 Multimachine Stability Analysis

```
1 //Program to find out transient stability analysis
     of multi machine at the end of the iteration //
2 //This program requires user input. A sample problem
      with user input and output is available in the
     result file //
3 //Scilab Version 5.5.2; OS: Windows
4 //program for transient stability analysis of multi
     machine //
5 clc;
6 clc;
7 clear;
8 f=input('enter the frequency:');
9 bv=input('enter the base value in MVA:');
10 v=input('enter the value of bus voltage in p.u:');
11 e=input('enter the value of transient reactance
     voltage in pu: ');
12 ld=input('enter the total load:');
```

```
13 x1=input ('enter the prefault reactance in p.u:');
14 x2=input('enter the post fault reactance value:');
15 x3=input('enter during the fault reactance value:');
16 delt=input('enter the time interval in seconds:');
17 H=input('enter the inertia constant:');
18 \text{ pe1=ld/bv};
19
20 \text{ pe2=0};
21 delnot=asin((pe1*x1)/(e*v));
22
23 \text{ omeganot} = 2*3.14*f;
24
25
26 \text{ ddel} = \text{omeganot} - (2*3.14*f);
27
28 ddelomega = (((3.14*f)*(pe1-pe2))/H);
29
30 //end of first step at t=0.05 \,\mathrm{sec}
31 del1=(delnot+(ddel*delt));//predicted values
32
33 delomega1=ddel+(ddelomega*delt);
34
35 //derivation at the end of t=0.05 \,\mathrm{sec}
36 ddel1=ddel+(ddelomega*delt);
37
38 ddelomega = (((3.14*f)*(pe1-pe2))/H);
39
40 delc1=delnot+((delt/2)*(ddel+ddel1));
41
42 delomegac1=ddel+((delt/2)*(ddelomega+ddelomega));
43
44 ddelc1=ddel+((delt/2)*(ddelomega+ddelomega));
45
46 ddelomegac=(((3.14*f)*(pe1-pe2))/H);
47
48 delp2=delc1+ddelc1*delt;
49
50 delomegap2=(delomegac1+(ddelomega*delt));
```

```
51
52 ddelomegap = (((3.14*f)*(pe1-pe2))/H);
53
54
55 delc2=delc1+(delt/2*(ddelc1+delomegap2));
56
57 delomegac=(delomegac1+(ddelomega*delt));
58
59 ddelc2=(delomegac1+(ddelomega*delt));
60
61 ddelomegac2 = (((3.14*f)*(pe1-pe2))/H);
62
63 delp3=delc2+delomegac*delt;
64
65 delomega3=delomegac+ddelomegac2*delt;
66
67 //derivation at the end of t=0.15 \,\mathrm{sec}
68 disp('The final values at the end of t=0.15 sec are
      displayed below')
69 ddelp3=delomegac+ddelomegac2*delt;
70 disp(ddelp3, 'ddelp3=');
71 ddelomega3 = (((3.14*f)*(pe1-pe2))/H);
72 \text{ disp}(ddelomega3, 'ddelomega3=');
73 disp('corrected values');
74 delc3=delc2+((delt/2)*(delomegac+delomega3));
75 \operatorname{disp}(\operatorname{delc3}, '\operatorname{delc3}=');
76 delomegac3=delomegac+((delt/2)*(ddelomega3+
      ddelomega3));
77 disp(delomegac3, 'delomegac3=');
78
79 //SAMPLE INPUT:
80 //enter the frequency:50
81 //enter the base value in MVA:500
82 //enter the value of bus voltage in p.u:1
83 //enter the value of transient reactance voltage in
      pu:450/400
84 //enter the total load:460
85 //enter the prefault reactance in p.u:0.5
```

```
86 //enter the post fault reactance value:0.75
87 //enter during the fault reactance value:1
88 //enter the time interval in seconds:0.05
89 //enter the inertia constant:2.5
90
91
   //OUTPUT
92
93 // The final values at the end of t=0.15 sec are
      displayed below
94
95 // ddelp3 =
96
97 //
          8.6664
98
99 // ddelomega3=
100
101 //
          57.776
102
103 // corrected values
104
105 // delc3 =
106
107 // 1.0712162
108
109 // delomegac3 =
110
111 //
          8.6664
```

Transient Stability of Multi Machine A 50 HZ, 500 MVA, 400 KV generator (with transformer) is connected to a 400 kV infinite but her through an interconnector. The generator has H= 2.5 M/MV.

kV infinite bus bar through an interconnector. The generator has H= 2.5 MJMVA, voltage behind transient reactance of 450kV and is loaded 460 MW. The transfer reactance between generator and bus bar under various conditions are:

Prefault: 0.5 p.u During fault: 1.0 p.u. Post fault: 0.75 p.u.

Calculate swing equation using intervals of 0.05 sec and assuming that the fault is cleared at 0.15 sec.

OUTPUT:

```
enter the frequency:50
enter the base value in MVA:500
enter the value of bus voltage in p.u:1
enter the value of transient reactance voltage in pu:450/400
enter the total load:460
enter the prefault reactance in p.u:0.5
enter the post fault reactance value:0.75
enter during the fault reactance value:1
enter the time interval in seconds:0.05
enter the inertia constant:2.5
The final values at the end of t=0.15 sec are displayed below
ddelp3=
   8.6664
ddelomega3=
   57.776
corrected values
delc3=
   1.0712162
delomegac3=
   8.6664
```

Figure 10.1: Multimachine Stability Analysis

Electromagnetic Transients in Power Systems

This code can be downloaded from the website wwww.scilab.in

Figure 11.1: Transient in RLC series circuit with DC source

Load frequency dynamics of single Area Power Systems

This code can be downloaded from the website wwww.scilab.in

Figure 12.1: Single Area Control

Load frequency dynamics of two Area Power Systems

This code can be downloaded from the website wwww.scilab.in

Figure 13.1: Two Area Control

Economic dispatch in power systems neglecting losses

Scilab code Solution 14.1 Economic Load Dispatch Excluding Losses

```
//Program to find out Economic load dispatch
neglecting losses//
//This program requires user input. A sample problem
with user input and output is available in the
result file//
//Question and result of example problem is
available in file "EDwithoutLoss.jpg"
//Scilab Version 5.5.2; OS:Windows

clear;
clc;
n=input('Enter no. of units:');
F=input('Enter the cost coefficient in matrix form:
');
constraint=input('Enter min and max values of P for
all units:');
pd=input('Enter total demand:');
```

Determine the economic generation schedule of three generating unit in a power system to meet a system load of $275~\mathrm{MW}$. The Cost equations and the operating limits of each unit are given below.

```
\begin{array}{lll} F_1 = 0.05P_1{}^2 + 23.5P_1 + 700 & ; & 40 <= P_1 <= 150 \\ F_2 = 0.2P_2{}^2 + 20P_2 + 850 & ; & 40 <= P_2 <= 150 \\ F_3 = 0.09P_3{}^2 + 18P_3 + 960 & ; & 40 <= P_3 <= 150 \end{array}
```

OUTPUT

```
Enter no. of units :3
Enter the cost coefficient in matrix form :[0.05 23.5 700;0.2 20 850;0.09 18 960]
Enter min and max values of P for all units:[40 150;40 150;40 150]
Enter total demand:275

The optimum schedule is:
P =

130.53846
41.384615
103.07692
```

Figure 14.1: Economic Load Dispatch Excluding Losses

```
12 a=F(:,1); b=F(:,2); c=F(:,3);
13 Pmin=constraint(:,1);
14 Pmax=constraint(:,2);
15 chk=zeros(n,1);
16 \text{ rem}=1;
17 \text{ while } rem == 1
        sx = 0; sy = 0;
18
19
        for i=1:n
20
             if i~=chk(i)
21
                  sx = sx + b(i) / (2*a(i));
22
                  sy = sy + 1/(2*a(i));
23
             end
24
        end
25
        lamda=(pd+sx)/sy;
26
        sch=0;
27
        for i=1:n
            if i~=chk(i)
28
29
                  P(i) = (lamda - b(i)) / (2*a(i));
                  if P(i) < Pmin(i) | P(i) > Pmax(i)
30
                        if P(i) < Pmin(i)</pre>
31
                             P(i) = Pmin(i);
32
```

```
33
                      else
34
                          P(i) = Pmax(i);
35
                      end
36
                      pd=pd-P(i);
37
                      chk(i)=i;
38
                      sch=sch+1;
39
                 end
40
            end
            if sch == 0
41
42
                 rem=0;
43
            else
44
                 rem=1;
45
            end
46
        end
47 end
48 disp('The optimum schedule is:')
49 print(%io(2),P)
50
51 //SAMPLE INPUT
52 //Enter no. of units :3
53 //Enter the cost coefficient in matrix form :[0.05]
      23.5 \quad 700; 0.2 \quad 20 \quad 850; 0.09 \quad 18 \quad 960
54 //Enter min and max values of P for all units: [40]
      150;40 150;40 150
55 //Enter total demand:275
56
57
    //OUTPUT
  // The optimum schedule is:
58
59
60
61 //
          130.53846
62 //
          41.384615
63 //
          103.07692
```

Economic dispatch in power systems Including losses

Scilab code Solution 15.1 Economic Load Dispatch Including Losses

```
1 //Program for Economic Load Dispatch problem
      including loss coefficients //
2 //This program requires user input. A sample problem
      with user input and output is available in the
      result file named "EDwithLoss.jpg"//
3 //Scilab Version 5.5.2; OS: Windows
4 clear;
5 clc;
6 n=input('Enter no. of units:');
7 B=input('Enter the loss coefficient in matrix form :
      <sup>'</sup>);
8 a=B(:,1);//loss coefficients stored in variable a
9 b=B(:,2);//loss coefficients stored in variable b
10 c=B(:,3);//loss coefficients stored in variable c
11 pg=input('Enter the power of the units in matrix
     form in p.u:');
12 bv=input('Enter the base value');
```

ECONOMIC DISPATCH PROBLEM INCLUDING LOSSES

The transmission loss coefficients are given by B=

0.01	-0.0003	-0.0002
-0.0003	0.0025	-0.0005
-0.0002	-0.0005	0.0031

Three plants A, B, C supply powers of 50 MW, 100 MW and 200 MW respectively. Calculate the transmission loss in the network in p. u value and the incremental transmission loss of the three plants. Assume base value= 200MVA.

```
Enter no. of units:3
Enter the loss coefficient in matrix form:[0.01 -0.0003 -0.0002;-0.0003 0.0025 -0.0005;-0.0002 -0.0005 0.0031]
Enter the power of the units in matrix form in p.u:[50/200 100/200 200/200]
Enter the base value200

The transmission power loss in pu is

0.003675

The incremental losses in pu are

0.0043
0.00135
0.0056
```

Figure 15.1: Economic Load Dispatch Including Losses

```
13 pl = 0;
14 for i=1:n//calculation of power loss
        for j=1:n
15
16
            pl=pl+pg(j)*B(i,j)*pg(i);
17
        end
18 \text{ end}
19 disp(pl, 'The transmission power loss in pu is',);
20 ITL=zeros(n,1);//Calculation of incremental
      transmission loss
21 for i=1:n
22
       for j=1:n
            ITL(i) = ITL(i) + 2*B(i,j)*pg(j);
23
24
25
            end
26 \text{ end}
27 disp(ITL, 'The incremental losses in pu are');
28
29 //SAMPLE INPUT:
30
31 //Enter no. of units :3
\frac{32}{2} //Enter the loss coefficient in matrix form : [0.01]
      -0.0003 \quad -0.0002; -0.0003 \quad 0.0025 \quad -0.0005; -0.0002
      -0.0005 \quad 0.0031
33 //Enter the power of the units in matrix form in p.u.
      : [50/200 \ 100/200 \ 200/200]
34
  //Enter the base value200
35
    //OUTPUT
36
    //The transmission power loss in pu is
37
38
39 / /
          0.003675
40
   // The incremental losses in pu are
41
42
          0.0043
43 //
          0.00135
44 //
45 //
          0.0056
```