

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

17ECCC90-FPGA SYSTEM DESIGN LAB

Program/ Branch : B. E. / ECE

Year / Semester : III/ VI

Academic Year : 2020 – 2021 (Even Semester)

Regulation : R 2017

HOD/ ECE

17ECCC90
FPGA SYSTEM DESIGN LAB

Category L T P Credit

CC 0 0 4 2

PREAMBLE - This lab-oriented course will focus on the design of large-scale system-on-a-chip (SOC)

solutions within field-programmable gate arrays (FPGAs). Modern FPGA densities and commercially available

cores enable a single developer to design highly complex systems within a single FPGA.

PREREQUISITE - Nil

COURSE OBJECTIVES

1 To design and simulate basic logic circuits, combinational and sequential logic circuits using HDL

software.

2 To implement the designed logic circuits in FPGA device.

3
To verify the input and output of designed logic circuits

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Design and simulation of digital logic circuits Apply

CO2. Design and implement the combinational logic circuits in FPGA device Evaluate

CO3. Design and implement several Sequential circuits in FPGA device Evaluate

CO4. Develop complex logic circuits Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO

S

PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO1

0

PO1

1

PO1

2

PSO

1

PSO

2

PSO

3

CO

1

M M M M L - M - - - - M M S L

CO

2

S M S L M - - - - - - M M L -

CO

3

S S S S L - M - - - L M S S L

CO

4

S M L L L - - - - - - M M L -

S- Strong; M-Medium; L-Low

SYLLABUS

1. Implementation of Logic Gates –Data flow model and Behavioral model

2. Combinational logic circuits –Adders and Subtractor

3. Code converters-Binary to Gray and Gray to Binary

4. 3 to 8 Decoder –74138

5. 4 Bit Comparator –7485

6. 8 x 1 Multiplexer –74151 and 2X4 Demultiplexer –74155

7. 16 x 1 Multiplexer –74150 and 4X16 Demultiplexer –74154

8. Sequential circuits -Flip-Flops

9. Decade counter –7490.

10. Synchronous & Asynchronous Counters

11. Shift registers –7495.

12. Universal shift registers –74194/195.

13. RAM (16 x 4) –74189 (Read and Write operations).

14. Stack and Queue Implementation using RAM.

COURSE DESIGNERS

S.N

o

Name of the

Faculty

Designatio

n

Department Mail ID

1 Dr.L.K.Hema
Professor

& Head
ECE hemalk@avit.ac.in

2 Dr.T.Sheela
Associate

Professor
ECE sheela@vmkvec.edu.in

3
Mr.C.Arunkumar

Madhuvappan

Assistant

Professor
ECE arunkumarmadhuvappan@vmkvec.edu.in

4 Mr.S.Selvam

Assistant

Professor

(Gr-II)

ECE selvam@avit.ac.in

EX.NO:1 DATE:

Design Logic Gates Using Verilog HDL in Xilinx Platform

Aim:
To develop the source code for logic gates by using VERILOG and obtain the

simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

Logic Diagram:

AND Gate: OR Gate:

Logic Diagram: Truth Table: Logic diagram Truth
Table

NOT Gate: NAND Gate:

Logic Diagram: Truth Table: Logic Diagram Truth
Table

NOR Gate: XOR Gate:

Logic Diagram: Truth Table: Logic Diagram Truth Table

XNOR Gate:

Logic diagram: Truth table:

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

A B Y=AB

0 0 0

0 1 0

1 0 0

1 1 1

A Y=A’

0 1

1 0

A B Y=(ab)’

0 0 1

0 1 1

1 0 1

1 1 0

A B
0 0 0

0 1 1

1 0 1

1 1 0

A B Y=(A+B)’

0 0 1

0 1 0

1 0 0

1 1 0

A B
0 0 1

0 1 0

1 0 0

1 1 1

Verilog Code:

AND Gate: Simulation Output:

module andgate(a,b, c);

input a,b;

output c;

assign c=a & b;

endmodule

OR Gate: Simulation Output:

module orgate(a,b, c);

input a,b;

output c;

assign c= a |b;

endmodule

NOT Gate: Simulation Output:

module notgate(a, abar);

input a;

output abar;

assign abar = ~a;

endmodule

NAND Gate: Simulation output:

module nandgate(a,b, c);

input a,b;

output c;

assign c = ~(a & b);

endmodule

NOR Gate: Simulation Output:

module norgate(a,b, c);

input a,b;

output c;

assign c = ~(a | b);

endmodule

XOR Gate: Simulation Output:

module exorgate(a,b, c);

input a,b;

output c;

assign c = a ^ b;

endmodule

XNOR Gate: Simulation Output:

module exnorgate(a,b, c);

input a,b;

output c;

assign c = ~(a ^ b);

endmodule

Result:

Thus the gates (AND, OR, NOT, NAND, NOR, XOR and XNOR gates) are simulated

verified with VERILOG program.

EX.NO:2 DATE:

BASIC EXPERIMENTS

Aim:

To Simulate and synthesis Adders and subtractors using Verilog HDL

Software tools required:

Synthesis tool: Xilinx ISE 8.2

Simulation tool: Project Navigator

a) Half Adder and Half subtractors.

ALGORITM:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the entity and architecture by using VERILOG source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis report.

Step5: Verify the output by simulating the source code.

Step6: Write all possible combinations of input using the test bench.

Step7: Obtain the place and route report.

HALF ADDER:

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG CODING:

Dataflow Modeling:

module ha_dataflow(a, b, s, ca);

 input a;

 input b;

 output s;

 output ca;

 assign#2 s=a^b;

 assign#2 ca=a&b;

endmodule

A B SUM

(s)

CARRY

(ca)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Simulation output:

Synthesis RTL Schematic:

HALF SUBSTRACTOR:

LOGIC DIAGRAM: TRUTH TABLE:

VERILOG CODING:

Dataflow Modeling:

module hs_dataflow(a, b, dif, bor);

 input a;

 input b;

 output dif;

 output bor;

 wire s1;

 assign#3 abar=~a;

 assign#3 dif=a^b;

 assign#3 bor=b&s1;

endmodule

A B DIFFERENCE

(diff)

BORROW

(bor)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

HALF SUBTRACTOR:

Synthesis RTL Schematic:

Simulation output:

Synthesis RTL Schematic:

b) Full Adder and Full Subtractors.

Aim:

To Simulate and synthesis Full Adders and Full subtractors using Verilog HDL

Software tools required:

Synthesis tool: Xilinx ISE 8.2

Simulation tool: Project Navigator

ALGORITM:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the entity and architecture by using Verilog source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis report.

Step5: Verify the output by simulating the source code.

Step6: Write all possible combinations of input using the test bench.

Step7: Obtain the place and route report.

FULL ADDER:

LOGICDIAGRAM: TRUTH TABLE:

Dataflow Modeling:

module fulsubdataflow(a, b, cin, sum, carry);

 input a;

 input b;

 input cin;

 output sum;

 output carry;

 wire s1,d1,d2;

 assign s1= a^b;

 assign diff=s1^cin;

 assign d1= a and b;

 assign d2= s1 and cin;

 assign carry=(d1 | d2);

 endmodule

Structural Modeling Full Adder using Half Adder:

module fa_2ha(a, b, cin, sum, carry);

 input a;

 input b;

 input cin;

 output sum;

 output carry;

 wire p,q,r;

 ha_dataflow

 h1(a,b,p,q),

A B C SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 h2(p,cin,sum,r);

 or o1(carry,q,r);

endmodule

Dataflow Modeling

module ha_dataflow(a, b, sum, carry);

 input a;

 input b;

 output sum;

 output carry;

 assign#3 sum=a^b;

 assign#3 carry=a&b;

endmodule

Simulation output:

FULL SUBTRACTOR:

LOGIC DIAGRAM: TRUTH TABLE:

Dataflow Modeling:

module fulsubdataflow(a, b, c, diff, borrow);

 input a;

 input b;

 input c;

 output diff;

 output borrow;

 wire s1,s2,s3,s4,s5;

 assign s1= a^b;

 assign diff=s1^cin;

 assign s2= ~a;

 assign s3= s2 and b;

 assign s4= b and c;

 assign s5=s2 and c;

 assign borrow=(s3 | (s4) s5;

 endmodule

A B C DIFFERENCE BORROW

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Structural Modeling:

module fs_2hs(a, b, c, diff, borrow);

 input a;

 input b;

 input c;

 output diff;

 output borrow;

 wire p,q,r;

 hs_dataflow

 h1(a,b,p,q),

 h2(p,c,diff,r);

 or o1(borrow,q,r);

endmodule

Dataflow Modeling

module hs_dataflow(a, b, dif, bor);

 input a;

 input b;

 output dif;

 output bor;

 wire abar;

 assign#3 abar=~a;

 assign#3 dif=a^b;

 assign#3 bor=b&abar;

endmodule

Simulation output:

FULL ADDER:

Synthesis RTL Schematic:

FULL SUBTRACTOR:

Synthesis RTL Schematic:

Result:

Thus the Adders and subtractors are simulated verified with VERILOG program.

EX.NO:3 DATE:

CODE CONVERTERS-BINARY TO GRAY AND GRAY TO BINARY

Aim:

To Simulate and synthesis Code converters- Binary to Gray and Gray to Binary

using Verilog HDL

Software tools required:

Synthesis tool: Xilinx ISE 8.2

Simulation tool: Project Navigator

a) Binary to Gray and Gray to Binary

ALGORITM:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the entity and architecture by using VERILOG source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis report.

Step5: Verify the output by simulating the source code.

Step6: Write all possible combinations of input using the test bench.

Step7: Obtain the place and route report.

Verilog Code for Binary to Gray code conversion:

module bin2gray

 (input [3:0] bin, //binary input

 output [3:0] G //gray code output);

//xor gates.

assign G[3] = bin[3];

assign G[2] = bin[3] ^ bin[2];

assign G[1] = bin[2] ^ bin[1];

assign G[0] = bin[1] ^ bin[0];

endmodule

Verilog Code for Gray code to Binary conversion:

module gray2bin

 (input [3:0] G, //gray code output

 output [3:0] bin //binary input);

assign bin[3] = G[3];

assign bin[2] = G[3] ^ G[2];

assign bin[1] = G[3] ^ G[2] ^ G[1];

assign bin[0] = G[3] ^ G[2] ^ G[1] ^ G[0];

endmodule

Result:

Thus the Binary to Gray and Gray to Binary are simulated verified with VERILOG

program.

EX.NO:4 DATE:

 3 TO 8 DECODER & ENCODER

Aim:

To develop the source code for Decoder & Encoder by using VERILOG and obtain

the simulation, synthesis, place and route and implement into FPGA.

Software tools required:

Synthesis tool: Xilinx ISE 8.2

Simulation tool: Project Navigator

 DECODER & ENCODER:

Algoritm:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the entity and architecture by using VHDL source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis report.

Step5: Verify the output by simulating the source code.

Step6: Write all possible combinations of input using the test bench.

Step7: Obtain the place and route report.

PROGRAM:

module Decoder(a,b,c,d0,d1,d2,d3,d4,d5,d6,d7);

input a,b,c;

output d0,d1,d2,d3,d4,d5,d6,d7;

assign d0=(~a&~b&~c),

d1=(~a&~b&c),

d2=(~a&b&~c),

d3=(~a&b&c),

d4=(a&~b&~c),

d5=(a&~b&c),

d6=(a&b&~c),

d7=(a&b&c);

endmodule

DECODERS:

Logic Diagram: Truth Table

A B C Z(0) Z(1) Z(2) Z(3)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

ENCODER:

module encoder(D, x,y,z);

input [7:0] D;

output x,y,z;

assign x=D[4]|D[5]|D[6]|D[7];

assign y=D[2]|D[3]|D[6]|D[7];

assign z=D[1]|D[3]|D[5]|D[7];

endmodule

DECODER:

Behavioral-module

module decoder(A,B,C,Z);

input A,B,C;

output [3:0] Z;

reg [3:0] Z;

reg xbar,ybar,zbar;

always @ (A or B) begin

Abar=~A;

Bbar=~B;

Z[0]=Abar&Bbar&C;

Z[1]=Abar&B&C;

Z[2]=A&Bbar&C;

Z[3]=A&B&C;

end

endmodule

Result:

Thus the Decoder & Encoder are simulated and verified with VERILOG program.

1 0 1 0 0 1 0

1 1 1 0 0 0 1

EX.NO:5 DATE:

4 BIT COMPARATOR

To develop the source code for 4 Bit Comparator by using VERILOG and obtain the

simulation, synthesis, place and route and implement into FPGA.

Software tools required:

Synthesis tool: Xilinx ISE 8.2

Simulation tool: Project Navigator

 4 BIT COMPARATOR:

Algoritm:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the entity and architecture by using VHDL source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis report.

Step5: Verify the output by simulating the source code.

Step6: Write all possible combinations of input using the test bench.

Step7: Obtain the place and route report.

4 bit Comparator:

//declare the Verilog module - The inputs and output signals.

module comparator(

 Data_in_A, //input A

 Data_in_B, //input B

 less, //high when A is less than B

 equal, //high when A is equal to B

 greater //high when A is greater than B

);

 //what are the input ports.

 input [3:0] Data_in_A;

 input [3:0] Data_in_B;

 //What are the output ports.

 output less;

 output equal;

 output greater;

 //Internal variables

 reg less;

 reg equal;

 reg greater;

 //When the inputs and A or B are changed execute this block

 always @(Data_in_A or Data_in_B)

 begin

 if(Data_in_A > Data_in_B) begin //check if A is bigger than B.

 less = 0;

 equal = 0;

 greater = 1; end

 else if(Data_in_A == Data_in_B) begin //Check if A is equal to B

 less = 0;

 equal = 1;

 greater = 0; end

 else begin //Otherwise - check for A less than B.

 less = 1;

 equal = 0;

 greater =0;

 end

 end

endmodule

Result:

Thus the 4 Bit Comparator is simulated and verified with VERILOG program.

EX.NO:6 DATE:

8 X 1 MULTIPLEXER & 1X4 DEMULTIPLEXER

Aim:

To develop the source code for Multiplexer and Demultiplexer by using VERILOG

and obtain the simulation, synthesis, place and route and implement into FPGA.

Software tools required:

Synthesis tool: Xilinx ISE 8.2

Simulation tool: Project Navigator

 MULTIPLEXER AND DEMULTIPLEXER:

Algoritm:

Step1: Define the specifications and initialize the design.

Step2: Declare the name of the entity and architecture by using VHDL source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis report.

Step5: Verify the output by simulating the source code.

Step6: Write all possible combinations of input using the test bench.

Step7: Obtain the place and route report.

MULUTIPLEXER:

Logic diagram:

 Truth table:

VERILOG SOURCE CODE:

Dataflow Modeling:

module muxdataflow(s, i, y);

 input [1:0]s;

 input [3:0]i;

 output y;

 wire f1,f2,f3,f4,f5,f6;

 assign f1=~s[1];

 assign f2=~s[0];

INPUT OUTPUT

s[1] s[0] y

0 0 D[0]

0 1 D[1]

1 0 D[2]

1 1 D[3]

 assign f3=i[0]&f1&f2;

 assign f4=i[1]&f1&s[0];

 assign f5=i[2]&s[1]&s[0];

 assign f6=i[3]&s[1]&s[0];

 assign y=f3|f4|f5|f6;

endmodule

module Mulitplexer(d0,d1,d2,d3,d4,d5,d6,d7,sel,out);

input d0,d1,d2,d3,d4,d5,d6,d7;

input [2:0] sel;

output reg out;

always@(sel)

begin

case(sel)

3'b000:out=d0;

3'b001:out=d1;

3'b010:out=d2;

3'b011:out=d3;

3'b100:out=d4;

3'b101:out=d5;

3'b110:out=d6;

3'b111:out=d7;

endcase

end

endmodule

Simulation output:

Synthesis RTL Schematic:

DEMULTIPLEXER:

LOGIC DIAGRAM: Truth table:

INPUT OUTPUT

D S0 S1 Y0 Y1 Y2 Y3

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

Y0

S1 S0

Din

Enable

2
3

4
5

1

2
3

4
5

1

2
3

4
5

1

1
2

Y1

2
3

4
5

1

Y2

1
2

Y3

VERILOG SOURCE CODE:

Dataflow Modeling:

module demuxdataflow((din, s0, s1, d);

 input din;

 input s0;

 input s1;

 output [3:0]d;

 wire f1,f2;

 assign f1=~s1;

 assign f2=~s0;

 assign d[0]=din&f1&f2;

 assign d[1]=din&f1&s0;

 assign d[2]=din&s1&f2;

 assign d[3]=din&s1&s0;

endmodule

Simulation output:

Synthesis RTL Schematic:

RESULT:

 Thus the output’s of 8 X 1 MULTIPLEXER & 1X4 DEMULTIPLEXER are verified

by synthesizing and simulating the VERILOG code.

EXP NO: 07 DATE:

DESIGN OF FILP-FLOPS USING VERILOG HDL IN XILINX

PLATFORM
Aim:

To develop the source code for flip-flops by using VERILOG and obtain the

simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using VERILOG source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

SR Flip Flop:

Logic Diagram: Truth Table:

SR Flip Flop - Program:

module srff_clk(s, r, clk, q, qn);

input s, r, clk, q;

output qn;

reg qn;

always @(posedge clk,s,r,q)begin

qn=(s|((~r)&q));

end

endmodule

Simulation Output: Schematic Diagram:

Q(t) S R Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 X

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 x

D Flip Flop:

Logic Diagram: Truth Table:

Program: Simulation Output:

module DFF(d, clk, q);

input d;

input clk;

output q;

reg q;

always @(posedge clk)begin

q=d;

end

endmodule

RTL Schematic: Schematic Diagram:

T- Flip Flop:

Logic Diagram: Truth Table:

Program: Simulation Output:

module TFF(t, clk, q,qout);

input t,q;

input clk;

output qout;

reg qout;

always @(posedge clk)begin

qout=t^q;

end

endmodule

Q(t) D Q(t+1)

0 0 0

0 1 1

1 0 0

1 1 1

Q(t) T Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

RTL Schematic: Schematic Diagram:

Schematic Diagram:

JK Flip Flop:

Logic Diagram: Truth Table:

Program: Simulation Output:

module JKFF(J,K, clk, q,qout);

input J,K,q;

input clk;

output qout;

reg qout;

always @(posedge J,K,q, clk)begin

qout=(J&(~q))|(q&(~K));

end

endmodule

Schematic Diagram:

Result: Thus, the flip flops (SRFF,DFF,TFF.JKFF) are simulated and synthesized with

verilog program.

Q(t) J K Q(t+1)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

EXP NO: 08 DATE:

DESIGN OF COUNTER USING VERILOG HDL IN XILINX PLATFORM

Aim:
To develop the source code for counter by using VERILOG and obtain the simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using VERILOG source code.

Step3: Write the source code in VERILOG.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

Verilog Code:

I. Up_Counter:

module upcounter (out, enable, clk, reset);

output [7:0] out;

input enable, clk, reset;

reg [7:0] out;

always @(posedge clk)

if (reset) begin

out <= 8'b0 ;

end else if (enable) begin

out <= out + 1;

end

endmodule

II. Up_Down_Counter:

Program:

module up_down_counter (out , up_down

,clk ,reset);

output [7:0] out; input up_down, clk, reset;

reg [7:0] out;

always @(posedge clk)

if (reset) begin

out <= 8'b0 ;

end else if (up_down) begin

out <= out + 1;

end else begin

out <= out - 1;

end

endmodule

Simulation Output:

RTL Schematic: Schematic Diagram:

Result:

 Thus the various counters are simulated and synthesized with verilog program.

Exp No: 09 Date:

4 BIT UP COUNTER WITH ASYNCHRONOUS

AIM:

To develop the source code for 4 BIT UP COUNTER with Asynchronous generator by

using verilog and obtain the simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using verilog source code.

Step3: Write the source code in verilog.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

Asynchronous Counter:

4-bit Unsigned Up Counter with Asynchronous

module counter (C, CLR, Q);

input C, CLR;

output [3:0] Q;

reg [3:0] tmp;

 always @(posedge C or posedge CLR)

 begin

 if (CLR)

 tmp = 4'b0000;

 else

 tmp = tmp + 1'b1;

 end

 assign Q = tmp;

endmodule

4-bit Unsigned Down Counter with Synchronous:
module counter (C, S, Q);

input C, S;

output [3:0] Q;

reg [3:0] tmp;

 always @(posedge C)

 begin

 if (S)

 tmp = 4'b1111;

 else

 tmp = tmp - 1'b1;

 end

 assign Q = tmp;

endmodule

Result:

 Thus the 4 bit and 8 bit PRBS generator is simulated and synthesized with verilog program.

Exp No: 10 Date:

SHIFT REGISTER

 Aim:
To develop the source code for Shift Register by using verilog and obtain the simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using verilog source code.

Step3: Write the source code in verilog.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

SHIFT REGISTER:

 module shift_register(s1,d,clk,s0,q);

 parameter n=3;

 input s1,clk;

 input [n:0] d;

 output s0;

 output [n:0] q;

 genvar i;

 assign d[3]=s1;

 generate

 for(i=0; i<=n; i=i+1)

 dff U1(.d(d[i]),.q(q[i]),.clk(clk));

 endgenerate

 assign q[3]=d[2];

 assign q[2]=d[1];

 assign q[1]=d[0];

 assign q[0]=s0;

 endmodule

Result:

 Thus the Shift Register is simulated and synthesized with verilog program.

Exp No:11 Date:

DESIGN OF ACCUMULATOR USING VERILOG HDL IN XILINX PLATFORM

Aim:
To develop the source code for accumulator by using verilog and obtain the simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using verilog source code.

Step3: Write the source code in verilog.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

Program: Simulation Output:

module accum (C, CLR, D, Q);

input C, CLR;

input [3:0] D;

output [3:0] Q;

reg [3:0] tmp;

always @(posedge C or posedge CLR)

 begin

 if (CLR)

 tmp = 4'b0000;

 else

 tmp = tmp + D;

 end

 assign Q = tmp;

endmodule

RTL Schematic: Schematic Diagram:

Result:

Thus the accumulator is simulated and synthesized with verilog program.

EXP NO: 12 DATE:

DESIGN OF ARITHMETIC LOGIC UNIT USING VERILOG HDL IN XILINX

PLATFORM

Aim:
To develop the source code for arithmetic logic unit by using verilog and obtain the

simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using verilog source code.

Step3: Write the source code in verilog.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

Program: Simulation Output:

module alu(out, a,b, opcode);

output [7:0] out;

input [3:0] a,b;

input [1:0] opcode;

reg [7:0]out;

parameter

ADD=2'b00,

SUB=2'b01,

MUL=2'b10,

DIV=2'b11;

always @(a,b,opcode)

case(opcode)

ADD:out=a+b;

SUB:out=a-b;

MUL:out=a*b;

DIV:out=a/b;

endcase

endmodule

Result:

Thus the arithmetic logic unit is simulated and synthesized with verilog program.

Exp No: 13

Date:

DESIGN OF PRBS GENERATOR USING VERILOG HDL IN XILINX PLATFORM

Aim:
To develop the source code for PRBS generator by using verilog and obtain the simulation.

Software Required:

 Xilinx – Project Navigator

 ModelSim Simulator

Procedure:
Step1: Define the specifications and initialize the design.

Step2: Declare the name of the module by using verilog source code.

Step3: Write the source code in verilog.

Step4: Check the syntax and debug the errors if found, obtain the synthesis is report.

Step5: Verify the output by simulating the source code.

4-Bit PRBS Generator:

Program:

module prbs(rand,clk,rst);

input rst,clk;

output [3:0]rand;

wire [3:0]rand;

reg [3:0]temp;

always @(posedge clk or posedge rst)

begin

if(rst)

begin

temp<=4'b1111;

end else

begin

temp<={temp[0]^temp[1],temp[3],temp[2],te

mp[1]};

end end

assign rand=temp;

endmodule

8-Bit PRBS Generator:

 Linear feedback shift register

module lfsr (data, out, enable , clk , reset);

output [7:0]

input [7:0] data;

input enable, clk, reset;

reg [7:0] out;

wire linear_feedback;

assign linear_feedback = !(out[7] ^ out[3]);

always @(posedge clk)

if (reset) begin

out <= 8'b0 ;

end else if (enable) begin

out <= {out[6],out[5],

out[4],out[3],

out[2],out[1],

out[0], linear_feedback};

end

endmodule

RTL Schematic: Schematic Diagram:

Result:

 Thus the 4 bit and 8 bit PRBS generator is simulated and synthesized with verilog program.

Exp No: 14

Date:

STUDY OF PLACE AND ROUTE AND BACK ANNOTATION FOR FPGA

Aim:
To study Place and Route and Back annotation for FPGA using Xilinx Project Navigator

software.

Software Required:

 Xilinx – Project Navigator.

 ModelSim Simulator.

Theory:

Before timing simulation can occur, the physical design information must be translated and

distributed back to the logical design. For FPGAs, this back-annotation process is done with a

program called NetGen. For CPLDs, back-annotation is performed with the TSim Timing Simulator.

NetGen distributes information about delays; setup and hold times, clock to out, and pulse widths

found in the physical NCD design file back to the logical NGD file and generate a Verilog or VHDL

netlist for use with supported timing simulation, equivalence checking, and static timing analysis

tools.

Procedure:

 Open Xilinx -> Project Navigator.

 Select File -> NEW PROJECT.

 In the New Project Wizard, do the following:

 In the Project Name field, enter a name for the project as decoder.

 In the Project Location field, enter the directory name or browse to the directory.

 In the Top-Level Module Type drop-down list, select HDL and click Next.

 In the Device Properties page of the New Project Wizard, set the following options.

 Product Category – All

 Family – Spartan3E

 Device – XC3S500E

 Package – FG320

file:///E:/Xilinx/doc/usenglish/help/iseguide/mergedProjects/projnav/html/pn_hidd_npw_project.htm
file:///E:/Xilinx/doc/usenglish/help/iseguide/mergedProjects/projnav/html/pn_hidd_npw_device.htm

 Speed Grade – 4

 Verify that Enable Enhanced Design Summary is selected.

 If you are creating an HDL or schematic project, click Next, and optionally, create a new

source file for your project.

 Click New Source. Select Verilog Module in New Source Window and enter the File Name

as decoder and click Next.

 Again click Next and click Finish.

 Click Next.

 Click Next to display the Information page of the New Project Wizard and finally click finish

to create the project.

 Double click the file name, which is inside the Sources in Project window and write the

program for 3:8 Decoder using Verilog.

 Highlight the *.v file in the Sources in Project window.

 Go to Processes for Source window.

 Double click Generate Post–Place & Route Simulation Model, which is inside Place and

Route.

 After all the processes before Place and Route is over, the window looks as shown below.

 Select Post-Route Simulation in Sources window.

 After you select the file name, Run Simulate Post-Place and Route Model in Processes

Window.

 After you run the previous process, ModelSim Window is opened.

 Now Force signal “x” to “001” and click the Run button in Waveform Window

 Now you can see the output waveform including the gate delays and net delays

 Thus by doing Post-Place and Route Simulation, we get the Back-Annotated waveform.

Program of any Combinational Circuits:

Result:
Thus we have studied the Place and Route and Back annotation for FPGA software.

Exp No: 15 Date:

STUDY OF SYNTHESIS FOR XILINX TOOLS

Aim:
To study the various synthesis tools used in the Xilinx - Project Navigator software using

Full adder logic circuit as an example.

Software Required:

 Xilinx – Project Navigator.

Theory:
At the time when the development of VHDL was initiated the major concern was to have a

standardized and unique method for documentation of complex digital circuits which would also

allow simulating the circuit descriptions. Based on these objectives, VHDL provided semantic

elements mainly for simulation purposes.. In the context of software tools and VHDL, synthesis is an

automatic method of converting a higher level abstraction, such as a behavioral description, to a

lower level abstraction, for example, a gate-level net list.

Procedure:

 Now start the Project Navigator. The previous project appears. Select the Verilog module,

in the right hand side, program appears.

 In Sources window, select Synthesis/Implementation. In process, select + in User

Constraints.

 Select Assign Package Pins. It gives message that User Constraint File will be created. Click

Yes.

 Xilinx PACE Software window appears with I/O names. Select Loc.

 Give Pin numbers say for signal a, l13. In our FPGA Kit, l13 is connected to DIP switch.

 Select input pins from switches and output pins from LED bar graph and then save.

 The Bus Delimiter screen appears. Check OK.

 Then exit from the Xilinx PACE window.

 In the main window, fulladder.ucf file is added.

 Click the verilog module. In Processes window, Synthesis, Implement design and Generate

Programming file appears.

 Select + in Synthesis.

 Select Synthesis and right click and Run.

 After completing the synthesis, a tick mark appears

 Then select + in Implement design and select it. Right click and Run.

 It will run the following : Translate, Map, Place and Route functions

 Then select + in Generate Programming Files and generate it by right clicking and select

Run.

 After generating the Programming file, select Configure Device (IMPACT) and right click

and Run.

 Xilinx IMPACT software is opened and welcome screen appears.

 Select Prepare a PROM File and then next.

 In this next screen, select Xilinx PROM and PROM file format MCS. In our FPGA Kit,

Xilinx PROM is used to store the program for FPGA and the PROM file format is MCS.

 In the next screen, the particular Xilinx PROM is selected

 In our Kit, xcf04s Platform Flash PROM is present and this device is chosen.

 Then click Add button is pressed to select this PROM.

 In the next screen, the file generation summary is given.

 In the next screen, diagram of Xilinx PROM appears. In this screen, click OK.

 The generated bit file is used to generate the PROM file in the MCS format. The next screen

displays the bit file.

 When it asks for adding of additional device, click NO.

 Click OK in the next window when it asks for continuation.

 Click Generate file in the available operations and the PROM file is generated and it is

indicated in the screen.

 Switch on the Kit which is connected to the Parallel port of the system. Double click

Boundary Scan in the iMPACT modes. During Boundary scan, the kit should be ON.

 In the right hand side, plain window appears. Right click in this window and select Initialize

chain.

 Next, a window appears with generated PROM file. Select the MCS format file and click

Open.

 Now, that file has been taken for programming. Keep the cursor on the device and right click.

 Select the Program .Programming Properties screen appears. Select verify and erase before

programming.

 Once you click OK, the program is downloaded to the PROM.

 Finally, the “Program succeeded” screen appears.

 In the kit, press the Prog key. Now, the program in the PROM is loaded to the FPGA and the

FPGA acts according to the circuit designed.

Result:

Thus the study about various synthesis tools used in the Xilinx - Project Navigator software

is studied.

