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COURSE OBJECTIVES 

1 To understand image acquisition and storage using a open source software – SCILAB 

2 To study and analyze different image transforms on images 

3 
To study, analyze and apply different techniques and algorithms for image 
enhancement 

4 
To study, analyze and apply different techniques and algorithms for image 
restoration 

5 
To study, analyze and apply different techniques and algorithms for image 
compression 

COURSE OUTCOMES 

On the successful completion of the course, students will be able to 

CO1.Understand the acquisition and storage of different types of images Understand 

CO2. Understand Analyze and Apply different image transforms and 
their properties 

Apply 

CO3. Apply different Image Smoothening & Sharpening algorithms in 
time and frequency domain 

Apply 

CO4. Apply different algorithms for image restoration Apply 

CO5. Apply different techniques for image segmentation Apply 

CO6. Apply different image compression techniques Apply 
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List of Experiments 
 

1) To acquire an image, store in different formats and display the properties of the 

images 

2) To find the discrete Fourier transform of a gray scale image and perform inverse 

transform to get back the image 

3) Analyze the rotation and convolution properties of the Fourier transform using any 

gray scale image 

4) Find the discrete cosine transform of a given image. Compare discrete Fourier 

transform and discrete cosine transforms 

5) Apply histogram equalization for enhancing the given images 

6) Perform image enhancement, smoothing and sharpening,  in spatial domain using 

different spatial filters and compare the performances 

7) Perform image enhancement, smoothing and sharpening,  in frequency domain 

using different filters and compare the performances 

8) Perform noise removal using different spatial filters and compare their 

performances 

9) For the given image perform edge detection using different operators and compare 

the results 

10) For a given image, compress and decompress using wavelets. Study and compare  

the efficiency of the scheme with any two schemes 
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1. IMAGE TYPES 
Aim: 
To display images of different types along with the information about the 
images 
 
Theory: 
The different image types used in this program are  
bmp – bitmap image file 
jpeg – joint photographic expert group 
png – portable network graphics 
tiff – tagged Image File format 
 
The functions used in this program are  
subplot divides the current figure into rectangular panes that are numbered 
rowwise. Each pane contains an axes object which you can manipulate using 
Axes Properties. Subsequent plots are output to the current pane. h = 
subplot(m,n,p) or subplot(mnp) breaks the figure window into an m-by-n 
matrix of small axes, selects the pth axes object for the current plot, and 
returns the axes handle. The axes are counted along the top row of the figure 
window, then the second row, etc. 
 
imshow – The function imshow(filename) displays the image stored in the 
graphics file filename. The file must contain an image that can be read by 
imread or dicomread. imshow calls imread or dicomread to read the image 
from the file, but does not store the image data in the MATLAB workspace. If 
the file contains multiple images, imshow displays the first image in the file. 
The file must be in the current directory or on the MATLAB path. 
impixelinfo – The function impixelinfo creates a Pixel Information tool in the 
current figure. The Pixel Information tool displays information about the pixel 
in an image that the pointer is positioned over. The tool can display pixel 
information for all the images in a figure. 
imageinfo – The function imageinfo creates an Image Information tool 
associated with the image in the current figure. The tool displays information 
about the basic attributes of the target image in a separate figure. 
title – The function title('string') outputs the string at the top and in the center 
of the current axes. 
  



MATLAB Program 
 
  
clc; 
clear all; 
close all; 
  
subplot(2,2,1), imshow('cameraman.tif'),title('cameraman.tif'); 
subplot(2,2,2), imshow('peppers.png'),title('peppers.png'); 
subplot(2,2,3), imshow('baby.bmp'),title('baby.bmp'); 
subplot(2,2,4), imshow('oldman.jpg'),title('oldman.png'); 
impixelinfo; 
  
imageinfo('cameraman.tif'); 
imageinfo('peppers.png'); 
imageinfo('baby.bmp'); 
imageinfo('oldman.jpg'); 
 
 
 
 
  



OUTPUT 
 
 

Image Information for peppers.png 

Filename 
C:\Program 
Files\MATLAB\R2009b\toolbox\images\imdemos\peppers.png 

FileModDate 16-Dec-2002 06:10:58 

FileSize 287677 

Format png 

FormatVersion [] 

Width 512 

Height 384 

BitDepth 24 

ColorType truecolor 

FormatSignature [137 80 78 71 13 10 26 10] 

Colormap [] 

Histogram [] 

InterlaceType none 

Transparency none 

SimpleTransparencyData [] 

BackgroundColor [] 

RenderingIntent [] 

Chromaticities [] 

Gamma [] 

XResolution [] 

YResolution [] 

ResolutionUnit [] 

XOffset [] 

YOffset [] 

OffsetUnit [] 

SignificantBits [] 

ImageModTime 16 Jul 2002 16:46:41 +0000 

Title [] 

Author [] 

Description Zesty peppers 

Copyright Copyright The MathWorks, Inc. 

CreationTime [] 

Software [] 



Disclaimer [] 

Warning [] 

Source [] 

Comment [] 

OtherText [] 

 
 
 

Image information for camearman.tif 
 

Filename 
C:\Program 
Files\MATLAB\R2009b\toolbox\images\imdemos\cameraman.
tif 

FileModDate 04-Dec-2000 13:57:54 

FileSize 65240 

Format tif 

FormatVersion [] 

Width 256 

Height 256 

BitDepth 8 

ColorType grayscale 

FormatSignature [77 77 42 0] 

ByteOrder little-endian 

NewSubFileType 0 

BitsPerSample 8 

Compression PackBits 

PhotometricInterpretatio
n 

BlackIsZero 

StripOffsets [8x1 double] 

SamplesPerPixel 1 

RowsPerStrip 32 

StripByteCounts [8x1 double] 

XResolution 72 

YResolution 72 

ResolutionUnit None 

Colormap [] 

PlanarConfiguration Chunky 

TileWidth [] 



TileLength [] 

TileOffsets [] 

TileByteCounts [] 

Orientation 1 

FillOrder 1 

GrayResponseUnit 0.0100 

MaxSampleValue 255 

MinSampleValue 0 

Thresholding 1 

Offset 64872 

ImageDescription 
This image is distributed by The MathWorks, Inc. with 
permission from the Massachusetts Institute of Technology. 

 
Image information for baby.bmp 

Filename E:\ baby.bmp 

FileModDate 03-Mar-2006 04:05:44 

FileSize 687054 

Format Bmp 

FormatVersion Version 3 (Microsoft Windows 3.x) 

Width 500 

Height 458 

BitDepth 24 

ColorType truecolor 

FormatSignature BM 

NumColormapEntries 0 

Colormap [] 

RedMask [] 

GreenMask [] 

BlueMask [] 

ImageDataOffset 54 

BitmapHeaderSize 40 

NumPlanes 1 

CompressionType None 

BitmapSize 687000 

HorzResolution 0 

VertResolution 0 

NumColorsUsed 0 

NumImportantColors 0 



 
Image information for oldman.jpg 

 
Filename E:\oldman.jpg 

FileModDate 28-Jun-2014 13:25:04 

FileSize 43635 

Format Jpg 

FormatVersion '' 

Width 526 

Height 526 

BitDepth 24 

ColorType truecolor 

FormatSignature '' 

NumberOfSamples 3 

CodingMethod Huffman 

CodingProcess Progressive 

Comment {'*'} 

 
 
 
Result: 
Images of different types have been displayed and studied. 
  



2. IMAGE TRANSFORM - FOURIER TRANSFORM 
Aim: 
The program is to  
a) Find the Fourier Transform of an image and also the inverse fourier 
transform.  
b) Verify the rotation property of Fourier Transform  
c) Verify the convolution property of the Fourier Transform 
 
Theory: 
The fourier transform, developed by Jean Baptiste Joesph Fourier, is widely 
used in the field of image processing. An image is a spatially varying function. 
One way to analyse spatial variations is to decompose an image into a set of 
orthogonal functions, one such being the fourier functions. A fourier 
transform is used to transform an intensity image into the domain of spatial 
frequency. 
The program first creates an image, finds its fourier transform and displays it. 
The inverse fourier transform is found to obtain and display the input image. 
The rotation property of Fourier transform states that if an image is rotated 
by a certain angle, its fourier transform is also rotated by the same angle. The 
program rotates the input image by an angle of 45 degrees. The fourier 
transform of the rotated image is found and displayed. 
The convolution property of the Fourier transform states that the convolution 
of two images in time domain is equivalent to multiplication of the fourier 
transforms of the individual images. Two images are created. The convolution 
of the two images is carried out and displayed. The fourier transforms of the 
individual images are found, multiplied and inverse fourier transform is 
applied to the product. We can observe that the output image is the same as 
obtained through convolution. 
  



MATLAB PROGRAM 
clc; 
clear all; 
close all; 
  

%  to create an image, find and display its Fourier transform & also to find the 
inverse fourier transform % 

  
a=zeros(256,256); 
a(110:140,110:140)=1; 
  
subplot(3,1,1), imshow(a), title('Input Image'); 
a1=log(1+abs(fftshift(fft2(a)))); 
subplot(3,1,2),imshow(mat2gray(a1)),title('Fourier Transform of the input 
image'); 
  
a1=fft2(a); 
b=ifft2(a1); 
subplot(3,1,3), imshow (b), title('Input image obtained by Inverse fourier 
transform'); 
  

%   To verify the rotation property of the Fourier Transform    % 
  
a=zeros(256,256); 
a(110:140,110:140)=1; 
figure; 
subplot(2,2,1), imshow(a), title('Input Image'); 
a1=log(1+abs(fftshift(fft2(a)))); 
subplot(2,2,2),imshow(mat2gray(a1)),title('Fourier Transform of the input 
image'); 
  
c=imrotate(a,45,'bilinear','crop'); 
subplot(2,2,3),imshow(c), title('Input image rotated by 45 degrees'); 
  
c1=log(1+abs(fftshift(fft2(c)))); 
subplot(2,2,4),imshow(mat2gray(c1)), title('Fourier transform of the rotated 
image'); 
   

%  TO VERIFY THE CONVOLUTION PROPERTY % 



  
figure; 
a=zeros(256,256); 
a(110:140,110:140)=1; 
subplot(2,2,1),imshow(a),title('First input image'); 
  
b=zeros(256,256); 
b(170:200,170:200)=1; 
subplot(2,2,2), imshow(b), title('Second input image'); 
  
  
d=conv2(a,b,'same'); 
subplot(2,2,3), imshow(d),title('Convolution of input images in time domain'); 
  
a1=fft2(a); 
b1=fft2(b); 
e=a1.*b1; 
f=fftshift(ifft2(e)); 
subplot(2,2,4), imshow(f), title({'Result of Multiplication of FFTs'; 'of input 
images and IFFT'}) 
  
 
Result: 
Thus the fourier transform and inverse fourier transform has been studied as 
well as the rotation and convolution properties of the fourier transform. 
  



3. IMAGE TRANSFORM – DISCRETE COSINE TRANSFORM 
Aim: 
The program is to find the Discrete Cosine Transform of an image and also the 
inverse discrete cosine transform.  
 
Theory: 
A discrete cosine transform (DCT) expresses a finite sequence of data points 
in terms of a sum of cosine functions oscillating at different frequencies. DCTs 
are important to numerous applications in science and engineering, from 
lossy compression of audio (e.g. MP3) and images (e.g. JPEG) (where small 
high-frequency components can be discarded), to spectral methods for the 
numerical solution of partial differential equations. The use of cosine rather 
than sine functions is critical for compression, since it turns out that fewer 
cosine functions are needed to approximate a typical signal, whereas for 
differential equations the cosines express a particular choice of boundary 
conditions. In particular, a DCT is a Fourier-related transform similar to the 
discrete Fourier transform (DFT), but using only real numbers. The DCTs are 
generally related to Fourier Series coefficients of a periodically and 
symmetrically extended sequence whereas DFTs are related to Fourier Series 
coefficients of a periodically extended sequence. DCTs are equivalent to DFTs 
of roughly twice the length, operating on real data with even symmetry (since 
the Fourier transform of a real and even function is real and even), whereas in 
some variants the input and/or output data are shifted by half a sample. There 
are eight standard DCT variants, of which four are common. 
 
Result: 
Thus the discrete cosine transform and inverse discrete cosine transform have 
been studied. 

https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Spectral_method
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Boundary_condition
https://en.wikipedia.org/wiki/Boundary_condition
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Even_and_odd_functions


MATLAB PROGRAM 
clc; 
clear all; 
close all; 
  

%  to create an image, find and display its discrete cosine  transform & also to 
find the inverse fourier transform % 

  
I4=[1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1] 
D4=dctmtx(4) 
output4 = D4*I4*D4 
input4=D4'*output4*D4' 
  
  

%   To find the DCT of a given image and the inverse transform    % 
  
I = imread('cameraman.tif'); 
J = dct2(I); 
K = idct2(J); 
imshow(I),title('Input Image'); 
figure,imshow(log(abs(J)),[]), colorbar, title('DCT of input image'); 
figure,imshow(K,[0 255]), title('Input Image obtained by IDCT');  
 
 
 
 
  



4. IMAGE TRANSFORM – HADAMARD TRANSFORM 
Aim: 
To generate Hadamard matrix for N=4, find the Hadamard transform for a 
matrix of size 4 x 4. To generate a binary figure of size(256 x 256 and find its 
Hadamard transform as well as verify the inverse Hadamard. 
Theory: 
The Hadamard transform is based on basis functions that are simply +1 or -1, 
instead of the more complex sine and cosine functions used in the Fourier 
transform. The function Hadamard is used to generate the Hadamard matrix 
of required size. The program generates a Hadamard matrix of size 4 x 4. The 
Hadamard of the input matrix is found and the inverse also. The program also 
generates an image of size 256 x 256. The Hadamard and the inverse 
Hadamard are found to verify the program. 
  



MATLAB PROGRAM 
 
clc; 
clear all; 
close all; 
  
  
A=[1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1]; 
disp('The input matrix is'),A 
H4=hadamard(4); 
disp('The hadamard matrix for N=4 is: '), H4 
B = 1/4*H4*A*H4; 
disp('The hadamard transform of the input matrix is'),B 
A=1/4*H4'*B*H4'; 
disp('The inverse hadamard is'),A 
  
  
A=zeros(256,256); 
A(100:150,100:150)=1; 
subplot(1,3,1),imshow(A),title('Input Image'); 
H256=hadamard(256); 
B=1/256*H256*A*H256; 
subplot(1,3,2),imshow(B),title('hadamard of the input image'); 
A=1/256*H256'*B*H256'; 
subplot(1,3,3),imshow(A),title('Input Image obtained by inverse transform'); 
  
 
Result: 
The Hadamard matrix has been generated and verified for an input matrix of 
size N=4. The Hadamard of a generated image of size N=256 is generated and 
verified. 



The input matrix is 
A = 
     1     1     1     1 
     1     1     1     1 
     1     1     1     1 
     1     1     1     1 
The hadamard matrix for N=4 is:  
H4 = 
     1     1     1     1 
     1    -1     1    -1 
     1     1    -1    -1 
     1    -1    -1     1 
The hadamard transform of the input matrix is 
B = 
     4     0     0     0 
     0     0     0     0 
     0     0     0     0 
     0     0     0     0 
The inverse hadamard is 
A = 
     1     1     1     1 
     1     1     1     1 
     1     1     1     1 
     1     1     1     1 

  



5. HISTOGRAM EQUALISATION 
Aim: 
To study the different methods of histogram equalization and their effects on 
enhancing the image. . 
Theory: 
The histogram of an image with intensity levels in the range [0, L-1] is a 
discrete function h(rk) = nk, where rk is the kth intensity level and nk is the 
number of pixels in the image with intensity rk. A  histogram shows us the 
distribution of grey levels in the image. Histograms are the basis for numerous 
spatial domain techniques. Histogram manipulation can be used for image 
enhancement. In histogram equalisation, the pixels are made to occupy the 
entire range of possible intensity levels and in addition the pixels are made to 
be distributed uniformly. The net effect will be an image that shows a great 
deal of gray level detail and has high dynamic range. 
The function imhist is used to display the histogram of a given image. The 
figure shows a selection of images and their histograms.  Notice the 
relationships between the images and their histograms. Note that the high 
contrast image has the most evenly spaced histogram.  
Function - histeq 
 
g=histeq(f, nlev) 
 
f is the input image array 
nlev is the number of intensity levels specified for the output image. If nlev is 
equal to the total number of possible levels in the input image then histeq 
implements the transformation directly. If nlev is less than the total number of 
possible levels in the input image then histeq attempts to distribute the levels 
so that they will approximate a flat histogram. 
We can see that the histogram equalization done here has produced an image 
with washed out appearance. 
The reason can be understood by studying the histogram of the equalized 
image. The intensity levels have been shifted to the upper one half of the gray 
scale thereby giving the image the low contrast washed out appearance. 
 
Function adapthisteq 
enhances the contrast of the grayscale image  by transforming the values 
using contrast-limited adaptive histogram equalization (CLAHE). 
CLAHE operates on small regions in the image, called tiles, rather than the 
entire image. Each tile's contrast is enhanced. The neighboring tiles are then 



combined using bilinear interpolation to eliminate artificially induced 
boundaries. The contrast, especially in homogeneous areas, can be limited to 
avoid amplifying any noise that might be present in the image. 
J = adapthisteq(I,param1,val1,param2,val2...) specifies any of the additional 
parameter/value pairs listed in the following table. Parameter names can be 
abbreviated, and case does not matter. 
 
 
 
 
 
 





MATLAB PROGRAM 
clc; 
clear all; 
close all; 
f=imread('fig0308(a).tif'); 
imshow(f); 
title('Orginal image'); 
figure, imhist(f) 
ylim(‘auto’) 
title('Histogram of the original image'); 
g=histeq(f,256); 
figure,imshow(g) 
title('Histogram equalised image'); 
figure,imhist(g) 
ylim(‘auto’) 
title('Histogram of the equalised image'); 
 
 
clc; 
clear all; 
close all; 
f=imread('fig0310(a).tif'); 
imshow(f); 
title('Orginal image'); 
figure, imhist(f) 
ylim('auto') 
title('Histogram of the original image'); 
g=histeq(f,500); 
figure,imshow(g) 
title('Histogram equalised image'); 
figure,imhist(g) 
ylim('auto') 
title('Histogram of the equalised image'); 
 
clc; 

clear all; 
close all; 
f=imread('fig0310(a).tif'); 
imshow(f); 



title('Orginal image'); 
figure, imhist(f) 
ylim('auto') 
title('Histogram of the original image'); 
g=histeq(f,256); 
figure,imshow(g) 
title('Histogram equalised image'); 
figure,imhist(g) 
ylim('auto') 
title('Histogram of the equalised image'); 
h=adapthisteq(f, 'Numtiles', [25 25], 'cliplimit', 0.05, 'distribution', 
'rayleigh'); 
figure, imshow(h) 
title('contrast limited adaptive histogram equalisation'); 
figure,imhist(h) 
title('histogram of contrast limited adaptive histogram equalised image'); 

 
 
  



6. IMAGE SMOOTHING 
Aim: 
To smoothen the given image using different spatial filters and study the 
effects. 
 
Theory: 
Image smoothing spatial filters are used for blurring and noise reduction. The 
output of a smoothing linear filter is simply the average of the pixels 
contained in the neighborhood of the filter mask. These filters are also called 
as averaging filters. In averaging filters, the value of every pixel in the image is 
replaced by the average of the gray levels in the neighborhood defined by the 
filter mask. This process results in an image with reduced sharp transitions in 
gray levels. However edges which are desirable features of an image are 
characterized by sharp transitions in gray levels. Hence averaging filters have 
the undesirable effect that blurs the edges. A major use of averaging filters is 
in the reduction of irrelevant detail in an image. Irrelevant details refer to the 
pixel regions that are small with respect to the size of the filter mask. A spatial 
averaging filter in which all coefficients are equal is sometimes is called a box 
filter.  
We consider an input image of size 500 x 500 pixels as shown. The black 
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45 and 55 pixels. Their 
borders are 25 pixels apart. The letters at the bottom range are of sizes 10, 12, 
14, 16, 18, 20, 22 and 24 pixels. The large letter is 60 pixels. The vertical bars 
are 5 pixels wide, 100 pixels high and separated by 20 pixels. The diameter of 
the circles is 25 pixels and the circles are 15 pixels apart.  The noisy rectangles 
are of size 50 x 120 pixels. 
The filter masks used in the program are of sizes 3, 5, 9, 15 and 35 pixels. For 
filter mask of size 3 x 3, there is a general slight blurring throughout the 
image. But details that are approximately the same size as the filter mask are 
affected considerably more. For example the small letter ‘a’ and the fine grain 
noise show significant blurring when compared to the rest of the image. The 
jagged borders of the characters and gray circles have been smoothed 
pleasantly. For the 5 x 5 mask, the result is similar with a slight increase in the 
blurring. For n=9, we can see considerably more blurring. For 15 x 15 and 35 x 
35 masks, the results are extreme with respect to the size of the objects. 
 
 
 
  



MATLAB PROGRAM 
clc; 
clear all; 
close all; 
  
f=imread('inputimage.tif'); 
subplot(1,2,1),imshow(f),title('Input Image'); 
  
w=1/9*ones(3); 
g1=imfilter(f,w); 
subplot(1,2,2),imshow(g1),title('Image smoothened by square averaging filter 
mask of size 3 x 3'); 
  
 
w=1/25*ones(5); 
g2=imfilter(f,w); 
figure, subplot(1,2,1),imshow(g2),title('Image smoothened by square 
averaging filter mask of size 5 x 5'); 
  
w=1/81*ones(9); 
g3=imfilter(f,w); 
subplot(1,2,2),imshow(g3),title('Image smoothened by square averaging filter 
mask of size 9 x 9'); 
  
w=1/225*ones(15); 
g4=imfilter(f,w); 
figure, subplot(1,2,1),imshow(g4),title('Image smoothened by square 
averaging filter mask of size 15 x 15'); 
  
 w=1/1225*ones(35); 
g5=imfilter(f,w); 
subplot(1,2,2),imshow(g5),title('Image smoothened by square averaging filter 
mask of size 35 x 35'); 
 
Result: 
Different spatial filters have been used for image smoothening and the effects 
have been studied. 
  



7. IMAGE SHARPENING 
Aim: 
To sharpen the given image using different spatial filters and study the effects. 
 
Theory: 
Sharpening spatial filters seek to highlight fine detail by removing blurring 
from images and highlighting the edges. Sharpening filters are based on 
spatial differentiation. Differentiation measures the rate of change of a 
function. It’s just the difference between subsequent values and measures the 
rate of change of the function. The second order derivative simply takes into 
account the values both before and after the current value. The 2nd derivative 
is more useful for image enhancement than the 1st derivative due to the 
stronger response to fine detail and simpler implementation. The first 
sharpening filter we will look at is the Laplacian filter, one of the simplest 
sharpening filters. Applying the Laplacian to an image we get a new image that 
highlights edges and other discontinuities. The result of Laplacian filtering is 
not an enhanced image. We have to do more work in order to get our final 
image. We have to subtract the Laplacian result from the original image to 
generate our final sharpened enhanced image. In the final sharpened image 
edges and fine detail are much more obvious. The same process can be 
repeated for Sobel and Prewitt filters also. 
 
Result: 
Different spatial filters have been used for image sharpening and the effects 
have been studied. 
 
  



MATLAB PROGRAM 
clc; 
clear all; 
close all; 
 
f=imread('fig0413(a).tif'); 
subplot(2,2,1),imshow(f),title('input image'); 
 
w=1/81*ones(9); 
g=imfilter(f,w); 
subplot(2,2,2),imshow(g),title('Smoothened Image'); 
 
 
 
w=fspecial('laplacian',0); 
g1=imfilter(g,w,'replicate'); 
i=f-g1; 
subplot(2,2,3),imshow(i);title('special laplacian filter'); 
 
 
w=fspecial('prewitt'); 
g2=imfilter(g,w); 
i=f-g2; 
figure, imshow(i);title('Prewitt filter'); 
 
w=fspecial('sobel'); 
g3=imfilter(g,w); 
i=f-g3; 
figure, imshow(i);title('Sobel filter'); 
 
 
 
  



8. EDGE DETECTION 
Aim: 
To detect the edges in the given image using different operators. 
 
Theory: 
The basic idea behind edge detection is to find places in an image where the 
intensity changes rapidly, using one of the following criteria 
a) Find places where the first derivative of the intensity is greater in 
magnitude than a specified threshold. 
b) Find places where the second derivative of the intensity has a zero crossing 
The function edge in the MATLAB provides several edge estimations based on 
the above criteria.  Sobel edge detector computes the gradient by using the 
disrete differences between the rows and columns of a discrete neighborhood 
where the center pixel is in each row and column is weighed by 2 to provide 
smoothing. Prewitt edge detector finds the edges using the prewitts 
approximation to the first order derivatives implemented using prewitt mask. 
Robert edge detector finds the edges using the Robert approximation to the 
first order derivatives implemented using Robert cross gradient mask. The 
lapalcian of Gaussian edge detector finds edges by looking for zero crossings 
after filtering the input image with a LoG filter. The zero Crossing detector 
finds the edges by looking for zero crossings after filtering the input image 
with a specified filter. The canny edge detector finds edges by looking for local 
maxima of the gradient of the input image. The gradient is calculated using the 
derivatives of a Gaussian filter. The method uses two thresholds to detect 
strong and weak edges in the output, and includes the weak edges only if they 
are connected to the strong edges. Therefore this method is more likely to 
detect true weak edges. The program uses all the above edge detectors to find 
the edges of a checkerboard image. 
  



MATLAB PROGRAM 
clc; 
close all; 
clear all; 
  
  
a = checkerboard(15,5,5)>0.5;  
subplot(2,3,1);  
imshow(a); title('Input Image'); 
  
 b = edge(a,'sobel',0.1,'both'); 
subplot(2,3,2);  
imshow(b); title('Sobel Horizontal and vertical Edge Detection '); 
  
b = edge(a,'sobel',0.1,'horizontal'); 
subplot(2,3,3);  
imshow(b); title('Sobel Horizontal Edge Detection'); 
  
b = edge(a,'sobel',0.1,'vertical'); 
subplot(2,3,4);  
imshow(b); title('Sobel Vertical Edge Detection'); 
  
  
  
d = edge(a,'prewitt','horizontal',0.1); 
subplot(2,3,5);  
imshow(d); title('Prewitt Horizontal Edge Detection'); 
  
d = edge(a,'prewitt','vertical',0.1); 
subplot(2,3,6);  
imshow(d); title('Prewitt Vertical Edge Detection'); 
  
d = edge(a,'prewitt','both',0.1); 
figure, subplot(2,3,1);  
imshow(d); title('Prewitt Horizontal and Vertical Edge Detection'); 
  
c = edge(a,'roberts','both'); 
subplot(2,3,2);  
imshow(c); title('Roberts Horizontal and Vertical Edge Detection'); 



  
e = edge(a,'canny',.01); 
subplot(2,3,3);  
imshow(e); title('Canny Edge Detection '); 
  
 f = edge(a,'zerocross'); 
subplot(2,3,4);  
imshow(f); title('Zero Cross Edge Detection'); 
  
c = edge(a,'log'); 
subplot(2,3,5);  
imshow(c); title('Laplacian of Gaussian Edge Detection'); 
Result: 
The detection of edges in the given image has been carried out using various 
edge detectors and verified. 
  



9. NOISE REMOVAL 
Aim: 
To remove the noise from the given image. 
 
Theory: 
The method of choice for reducing noise is the spatial filtering. Different 
spatial filters like the arithmetic mean filter, geometric mean filter, harmonic 
mean filter, contraharmonic mean filter, median filter, max filter, min filter, 
midpoint filter and alpha trimmed mean filter. 
The different types of noises that can occur are random noise, salt and pepper 
noise, salt noise, pepper noise, Gaussian noise etc..,  
The type of filter used to remove or reduce noise in a given noisy image 
depends on the noise present in the image and the image characteristic itself. 
In this program we are considering an input image corrupted by 4 different 
noises namely salt and pepper noise, salt noise, pepper noise and Gaussian 
noise. For each noise we are considering two filters and verify the 
performance by calculating the rmse values.  
The program can be extended by including all filters for all the types of noises. 
 

 
 
 
 
 

  



MATLAB PROGRAM 
clc; 
clear all; 
close all; 
  
f=imread('fig0505(a).tif'); 
 g=imnoise(f,'salt & pepper',0.1); 
subplot(2,3,1), imshow(g),title('Input image corrupted by salt and pepper 
noise'); 
g1=spfilt(g,'amean',3,3); 
subplot(2,3,2),imshow(g1),title('Salt and Pepper Noise removal with 
arithmetic mean filter '); 
 g2=spfilt(g,'median',3,3); 
subplot(2,3,3),imshow(g2),title('Salt and Pepper Noise removal with median               
filter '); 
   
[M N]=size(f); 
R=imnoise2('salt & pepper',M,N,0.1,0); 
gp=f; 
gp(R==0)=0; 
subplot(2,3,4),imshow(gp),title('Image corrupted by Pepper noise'); 
   
g3=spfilt(gp,'chmean',3,3,1.5); 
subplot(2,3,5),imshow(g3),title('Pepper noise removal by contraharmonic 
mean filter'); 
 g4=spfilt(gp,'max',3,3); 
subplot(2,3,6),imshow(g4),title('Pepper noise removal by max filter'); 
 [M N]=size(f); 
R=imnoise2('salt & pepper',M,N,0,0.1); 
gs=f; 
gs(R==1)=255; 
figure,subplot(2,3,1),imshow(gs),title('Image corrupted by Salt noise'); 
  
g5=spfilt(gs,'atrimmed',3,3); 
subplot(2,3,2),imshow(g5),title('Salt noise removal by alphatrimmed filter'); 
 g6=spfilt(gs,'min',3,3); 
subplot(2,3,3),imshow(g6),title('Salt noise removal by min filter'); 
   
gh=imnoise(f,'gaussian'); 



subplot(2,3,4),imshow(gh),title('Image corrupted by gaussian noise'); 
  
g7=spfilt(gh,'gmean',3,3); 
subplot(2,3,5),imshow(g7),title('Gaussian noise removal by geometric mean 
filter'); 
 g8=spfilt(gh,'hmean',3,3); 
subplot(2,3,6),imshow(g8),title('Gaussian removal by harmonic mean filter'); 
  
rmse1=compare(f,g); 
disp('The RMSE between the input image and the image with salt and pepper 
noise'),rmse1 
rmse2=compare(f,g1); 
disp('The RMSE after applying arithmetic mean filter for reducing salt and 
pepper noise'),rmse2 
rmse3=compare(f,g2); 
disp('The RMSE after applying median filter for reducing salt and pepper 
noise'),rmse3 
 rmse4=compare(f,gp); 
disp('The RMSE between the input image and the image with pepper 
noise'),rmse4 
rmse5=compare(f,g3); 
disp('The RMSE after applying contraharmonic mean filter for reducing 
pepper noise'),rmse5 
rmse6=compare(f,g4); 
disp('The RMSE after applying max filter for reducing pepper noise'),rmse6 
 rmse7=compare(f,gs); 
disp('The RMSE between the input image and the image with salt 
noise'),rmse7 
rmse8=compare(f,g5); 
disp('The RMSE after applying alphatrimmed filter for reducing salt 
noise'),rmse8 
rmse9=compare(f,g6); 
disp('The RMSE after applying min filter for reducing salt noise'),rmse9 
 rmse10=compare(f,gh); 
disp('The RMSE between the input image and the image with gaussian 
noise'),rmse10 
rmse11=compare(f,g7); 
disp('The RMSE after applying geometric mean filter for reducing gaussian 
noise'),rmse11 



rmse12=compare(f,g8); 
disp('The RMSE after applying harmonic mean filter for reducing gaussain 
noise'),rmse12 
 
Result: 
The performance of different filters have been studied for removing noises of 
different types. 



10. INVERSE FILTERING 
Aim: 
To study the effect of inverse filtering in restoring degraded images. 
 
Theory: 

In the restoration of images degraded by noise and motion blur, the 
simplest approach is to ignore the noise term in the degradation model and 
form an estimate of the form F^(u,v) = G(u,v) / H(u,v). The corresponding 
estimate of the image is obtained by taking the inverse fourier transform of 
F^(u,v) . This approach is called the inverse filtering. Taking noise into 
account, we can express our estimate as F^(u,v)  = F(u,v) + N(u,v)/H(u,v). 
Even if H(u,v) is known exactly, F(u,v) and thereby the input image cannot be 
recovered exactly because the noise component is a random function whose 
fourier transform N(u,v) is not known. In addition there usually is the 
problem of H(u,v) having numerous zeros. Even if the noise term N(u,v) were 
negligible, dividing it by vanishing values of H(u,v) would dominate 
restoration estimates.  The typical approach when attempting inverse filtering 
is to form the ratio F^(u,v) = G(u,v) / H(u,v) and then limit the frequency 
range for obtaining the inverse, to frequencies near the origin. The idea is that 
zeros in H(u,v) are less likely to occur near the origin because the magnitude 
of the transform typically is at its highest values in that region. There are 
numerous variations of this basic theme.  

In the program we first use direct inverse filtering to restore the image 
and observe that the process is dominated by noise. Having an estimations of 
the noise signal ratio improves the restoration process. 
 
Result: 
Image restoration using direct inverse filtering and with the usage of 
estimated NSR has been compared. 
 
  



MATLAB PROGRAM 
clc; 
clear all; 
close all; 
  
I = im2double(imread('cameraman.tif')); 
subplot(2,2,1),imshow(I),title('Input Image'); 
LEN = 21; 
THETA = 11; 
PSF = fspecial('motion', LEN, THETA); 
blurred = imfilter(I, PSF, 'conv', 'circular'); 
noise_mean = 0; 
noise_var = 0.0001; 
blurred_noisy = imnoise(blurred, 'gaussian', ... 
                        noise_mean, noise_var); 
subplot(2,2,2),imshow(blurred_noisy),title('Input Image degraded by motion 
blur and noise'); 
estimated_nsr = 0; 
wnr2 = deconvwnr(blurred_noisy, PSF, estimated_nsr); 
subplot(2,2,3), imshow(wnr2),title('Restoration of Blurred, Noisy Image Using 
Ideal Inverse Filter'); 
estimated_nsr = noise_var / var(I(:)); 
wnr3 = deconvwnr(blurred_noisy, PSF, estimated_nsr); 
subplot(2,2,4),imshow(wnr3), title('Restoration of Blurred, Noisy Image Using 
Estimated NSR'); 
  



11. LOSSLESS COMPRESSION 
Aim: 
To achieve lossless compression of the given image using MATLAB program 
 
Theory: 

Image compression addresses the problem of reducing the amount of 
data required to represent a digital image. Compression is achieved by 
removing one or three data redundancies namely coding redundancy, 
spatial/temporal redundancy and irrelevant information.  

When coding the gray levels of an image, Huffman codes contain the 
smallest possible number of code symbols (bits) per source symbol subject to 
the constraint that the source symbols are coded one at a time. Huffman code 
generation is not in itself compression. To realize the compression that is built 
into a Huffman code, the symbols for which the code was created must be 
mapped in accordance with the code generated. The Huffman compression is 
achieved by using the function mat2huff. Huffman encoded images are of little 
use unless they can be decoded to recreate the original images from which 
they were derived. The decoder must compute the Huffman code used to 
encode and then inverse map the encoded data to rebuild the input image. The 
function huff2mat is used for the purpose.  

The lossless predictive coding eliminates the interpixel redundancies of 
closely spaced pixels by extracting and coding only the new information in 
each pixel. The new information of a pixel is defined as the difference between 
the actual and the predicted value of that pixel. The functions mat2lpc and 
lpc2mat are used to implement the lossless predictive coding and decoding 
processes. 

 
 

  



MATLAB PROGRAM 
clc; 
clear all; 
close all; 
 
f=imread('cameraman.tif'); 
subplot(1,3,1),imshow(f),title('Input Image'); 
c=mat2huff(f); 
g=huff2mat(c); 
cr1=imratio(f,c) 
subplot(1,3,2),imshow(g, [0 255]),title('Image Decoded after Huffman 
Coding'); 
rmse=compare(f,g) 
 
c=mat2lpc(f); 
cr1=imratio(f,c) 
g=lpc2mat(c); 
subplot(1,3,3),imshow(g, [0 255]),title('Image Decoded after Lossless 
Predictive Coding'); 
rmse=compare(f,g) 
 
Result: 
Lossless compression has been done using Huffman and Lossless Predictive 
coding and the results verified. 
  



12. WAVELET CODING 
Aim: 
To study the wavelet coding and its applications in image compression 
 
Theory: 
The wavelet transform has made it easier to compress, transmit and analyse 
many images. Unlike the fourier transform, whose basis functions are 
sinusoids, wavelet transforms are based on small waves called wavlets of 
varying frequency and limited duration. This allows them to provide the 
equivalent of a musical score for an image, revealing not only what notes (or 
frequencies) to play but also when to play them. Fourier transforms on the 
other hand provide only the notes or frequency information and the temporal 
information is lost in the transformation process. 
The two dimensional wavelet transform results in a 2-dimensional scaling 
function and three directionally sensitive wavelets. The wavelets measure 
functional variations and intensity variations for images along different 
directions namely horizontal, vertical and diagonal.  
The program does single level wavelet decomposition. The inverse wavelet 
transform gives the input image. Then the different coefficients namely 
approximate coefficients, horizontal detail coefficients and diagonal detail 
coefficients are made zero one at a time and inverse transform is applied in 
each case to observe the effect. It can be seen that the zeroing of approximate 
coefficients results in considerable loss of image information and a large 
RMSE value which indicates that the approximate coefficients are very much 
essential. The zeroing of horizontal, vertical or diagonal detail coefficients do 
not result in much loss of information as can be seen by their lower RMSE 
values. 
 
  



MATLAB PROGRAM 
clc 
clear all 
close all; 
 
f = imread (‘figure.tif’); 
subplot(1,3,1), imshow(f), title(‘Input Image’); 
 
[c,s] = wavefast(f,1,’sym4’); 
subplot(1,3,2), wavedisplay(c,s,-6), title(‘One Scael Wavelet Transform’); 
 
f1 = waveback(c,s,’sym4’); 
subplot(1,3,3), imshow(mat2gray(f1)), title(‘Image obtained thro inverse 
wavelet’); 
 
[nc,y] = wavecut(‘a’c,s); 
Figure, subplot(2,2,1), wavedisplay(nc,s,-6), title(‘Approximate coefficients 
made zero’); 
f1=waveback(nc,s,’sym4); 
f1=uint8 (f1) 
subplot(2,2,2), imshow(mat2gray(f1)),title(‘Image obtained after zeroing all 
approximate coeffiicients’); 
 
 
[nc,y] = wavecut(‘h’c,s); 
figure, subplot(2,2,3), wavedisplay(nc,s,-6), title(‘Horizontal detail coefficients 
made zero’); 
f2=waveback(nc,s,’sym4); 
subplot(2,2,4), imshow(mat2gray(f2)),title(‘Image obtained after zeroing all 
horizontal detail  coeffiicients’); 
 
 
[nc,y] = wavecut(‘v’c,s); 
figure, subplot(2,2,1), wavedisplay(nc,s,-6), title(‘Vertical detail coefficients 
made zero’); 
f3=waveback(nc,s,’sym4); 
subplot(2,2,2), imshow(mat2gray(f3)),title(‘Image obtained after zeroing all 
vertical detail coeffiicients’); 
 



 
[nc,y] = wavecut(‘d’c,s); 
figure, subplot(2,2,3), wavedisplay(nc,s,-6), title(‘Diagonal detail coefficients 
made zero’); 
f4=waveback(nc,s,’sym4); 
subplot(2,2,4), imshow(mat2gray(f4)),title(‘Image obtained after zeroing all 
diagonal detail coeffiicients’); 
rmse1=compare(f,f1); 
rmse2=compare(f,f2); 
rmse3=compare(f,f3); 
rmse4=compare(f,f4); 
 
 
 
 
 


