AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI &

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation,
Deemed to be University, Salem, Tamil Nadu, India)
(AICTE APPROVED AND NAAC ACCREDITED)

Faculty of Engineering and Technology

REGULATIONS 2017

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Programme:

B.E / B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS) CURRICULUM AND SYLLABUS

(Semester I to VIII)

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Vision

• To continuously strive to uplift the youth for the betterment of the society both in the Rural and Urban areas by offering Quality Engineering Education through the Department.

Mission

- To sculpt the students as foundational pillars of Knowledge and Skill in problem analysis.
- To make the students to be competence that stand up to all challenges in the realms of Engineering, Sciences, Technology and Management with Ethics, Morals and Principles.
- Promoting research activity skills through the application of Electronic gadgets.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Electronics and Communication Engineering programme will be able to:

PSO1	The ability to absorb and apply fundamental knowledge of Core Electronics subjects to								
	Analyze, Design and develop various types of Integrated Electronic Systems.								
PSO2	Select and apply Modern Engineering Hardware and Software Tools to Analyze Complex								
	Electronics Engineering associated problems.								
PSO3	Knowledge of Social & Environmental awareness along with Ethical Responsibility to								
	achieve Successful Career Addresses the real world applications using Optimal Resources								
	as an Entrepreneur.								

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	Provides a forum for graduates to attain firm foundation in Electronics and Communication
	Engineering fundamentals with an attitude to pursue Continuing Education.
PEO2	Offers an environment to create ample opportunities to graduates to cherish needed skills for
	their successful Professional Career & Societal Developments.
PEO3	Facilitate to sculpt their Skills and Competence in the realm of research in Engineering &
	Technology.

Credit Requirement for the Course Categories

Sl. No.	Category of Courses	Credits to be earned
	A. Foundation Courses (FC)	Min – Max. 54 - 81
	i. Humanities and Sciences (English and Management Courses)	12 – 21
01		$\frac{12-21}{24-33}$
	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen Programme of study.	81
	C. Elective Courses (EC)	18 - 24
03	i. Programme Specific (Class Room or Online)	12 – 15
	ii. Open Elective (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
04	ii. Internship	3
	iii. Industry Supported Courses	6
	**E. Employability Enhancement Courses	9 - 18
	+ Co - Curricular Courses + Extra Curricular Courses	_
	i. Employability Enhancement Courses (Personality	3 - 6
0.5	Development Training, Participation in Seminars,	
05	Professional Practices, Summer Project, Case Study etc.)	
	ii. Co - Curricular Courses (NCC, NSS, Sports, Games, Drills	3 - 6
	and Physical Exercises)	
	iii. Extra Curricular Courses	3 - 6
	Minimum Credits to be earned	180

^{** -} Mandatory, Credits would be mentioned in Mark sheets but not included for CGPA Calculations. For overall CGPA calculations, a student has to earn minimum 171 credits in Categories A to D.

CURRICULUM

B.E / B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING

SEMESTER I TO VIII

B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VIII

CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-81)

	(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (12 - 21)												
SL.	T		OFFERING	1		1		<u> </u>	PREREQUISITE				
NO	CODE	COURSE	DEPT.	CATEGORY	L	T	P	С					
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HS)	3	0	0	3	NIL				
2.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HS)	3	0	0	3	NIL				
3.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HS)	0	0	4	2	NIL				
4.	17YMHS82	YOGA & MEDITATION	PHYSICAL EDUCATION	FC (HS)	0	0	4	2	NIL				
5.	17MBHS01	ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAGEMENT	FC (HS)	3	0	0	3	NIL				
6.	17MBHS02	FINANCE AND ACCOUNTING FOR ENGINEERS	MANAGEMENT	FC (HS)	3	0	0	3	NIL				
	(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS) - CREDITS (24 - 33)												
1.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL				
2.	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL				
3.	17MABS06	DIFFERENTIAL EQUATIONS AND TRANSFORMS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS				
4.	17MABS10	PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	MATHEMATICS	FC (BS)	2	2	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS				
5.	17MABS17	NUMERICAL METHODS, RANDOM PROCESSES AND OPTIMIZATION	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS DIFFERENTIAL EQUATIONS AND TRANSFORMS				
6.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL				
7.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL				
8.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL				
		(iii) ENGINEERING SCIEN	ICES (BASIC ENGIN	EERING COURS	SES) - (CREDIT	'S (18 - 2	7)					
1.	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	4	0	0	4	NIL				
2.	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL				
3.	17MEES84	ENGINEERING GRAPHICS (THEORY & PRACTICE)	MECHANICAL	FC(ES)	1	0	4	3	NIL				
4.	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	3	0	0	3	NIL				
5.	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL				
6.	17EEES82	ENGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING B. BASIC	EEE & ECE	FC(ES)	0	0	4	2	NIL				

		ELECTRONICS ENGINEERING							
7.	17CMES81	ENGINEERING SKILLS PRACTICE LAB A. BASIC CIVIL ENGINEERING B. BASIC MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	0	0	4	2	NIL
8.	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL

B.I	B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VIII CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (81)											
	CATEGO	ORY B – CORE COURSES	RELEVANT	TO THE PRO	OGR/	AMMI	E - C	RED	, , ,			
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE			
1.	17ECCC01	SEMICONDUCTOR DEVICES	ECE	CC	3	0	0	3	NIL			
2.	17ECCC02	ANALOG CIRCUITS	ECE	CC	3	0	0	3	SEMICONDUCTOR DEVICES			
3.	17ECCC03	PASSIVE NETWORK ANALYSIS & SYNTHESIS	ECE	CC	3	0	0	3	NIL			
4.	17ECCC04	SIGNALS AND SYSTEMS	ECE	CC	3	0	0	3	NIL			
5.	17CSCC33	PROBLEM SOLVING USING COMPUTERS	CSE	CC	3	0	0	3	NIL			
6.	17ECCC05	DIGITAL LOGIC CIRCUITS & DESIGN	ECE	CC	3	0	0	3	BASIC ELECTRICAL & ELECTRONICS ENGG			
7.	17ECCC06	ELECTRONICS MEASUREMENT AND INSTRUMENTATION	ECE	CC	3	0	0	3	NIL			
8.	17EECC08	CONTROL SYSTEMS	EEE	CC	3	0	0	3	BASIC ELECTRICAL & ELECTRONICS ENGG			
9.	17ECCC07	MICROCONTROLLERS & ITS APPLICATIONS	ECE	CC	3	0	0	3	NIL			
10.	17ECCC08	ELECTROMAGNETICS AND TRANSMISSION LINES & WAVEGUIDES	ECE	CC	3	0	0	3	PASSIVE NETWORK ANALYSIS & SYNTHESIS			
11.	17ECCC09	SIGNAL PROCESSING	ECE	CC	3	0	0	3	SIGNALS AND SYSTEMS			
12.	17ECCC10	LINEAR INTEGRATED CIRCUITS	ECE	CC	3	0	0	3	SEMICONDUCTOR DEVICES			
13.	17ECCC11	DATA COMMUNICATION NETWORKS	ECE	CC	3	0	0	3	NIL			
14.	17ECCC12	DIGITAL CMOS SYSTEMS	ECE	CC	3	0	0	3	DIGITAL LOGIC CIRCUITS & DESIGN			
15.	17ECCC13	ANTENNA AND WAVE PROPAGATION	ECE	CC	3	0	0	3	ELECTROMAGNETICS AND TRANSMISSION LINES & WAVEGUIDES			
16.	17ECCC14	DIGITAL IMAGE PROCESSING	ECE	CC	3	0	0	3	SIGNAL PROCESSING			
17.	17ECCC15	ANALOG & DIGITAL COMMUNICATION	ECE	CC	3	0	0	3	NIL			
18.	17ECCC16	MICROWAVE & OPTICAL COMMUNICATION SYSTEMS (THEORY & PRACTICE)	ECE	СС	2	0	2	3	NIL			
19.	17ECCC17	FPGA SYSTEM DESIGN	ECE	CC	3	0	0	3	NIL			
20.	17ECCC18	INTERNET OF THINGS FOR ELECTRONICS	ECE	CC	3	0	0	3	NIL			
21.	17ECCC19	WIRELESS COMMUNICATION SYSTEMS (THEORY & PRACTICE)	ECE	СС	2	0	2	3	ANALOG & DIGITAL COMMUNICATION			
22.	17ECCC81	SEMICONDUCTOR DEVICES LAB	ECE	CC	0	0	4	2	NIL			
23.	17ECCC82	DIGITAL LOGIC CIRCUITS & DESIGN LAB	ECE	CC	0	0	4	2	BASIC ELECTRICAL & ELECTRONICS ENGG			
24.	17ECCC83	ANALOG CIRCUITS LAB	ECE	CC	0	0	4	2	SEMICONDUCTOR DEVICES			
25.	17CSCC84	COMPUTER PROGRAMMING LAB	CSE	CC	0	0	4	2	NIL			
26.	17ECCC85	LINEAR INTEGRATED CIRCUITS &	ECE 9	CC	0	0	4	2	SEMICONDUCTOR DEVICES & ANALOG			

		MICROCONTROLLERS							CIRCUITS
		LAB							
27.	17ECCC86	SIGNAL PROCESSING	ECE	CC	0	0	4	2	SIGNALS AND
		LAB	ECE		U	U	4	2	SYSTEMS
28.	17ECCC87	DIGITAL IMAGE	ECE	CC	0	0	4	2	SIGNAL PROCESSING
		PROCESSING LAB	ECE		U	U	4	2	SIGNAL PROCESSING
29.	17ECCC88	DATA		CC					
29.		COMMUNICATION	ECE	CC	0	0	4	2	NIL
		NETWORKING LAB							
30.	17ECCC89	ANALOG & DIGITAL	ECE	CC	0	0	4	2	NIL
		COMMUNICATION LAB	ECE		U	U	4	2	NIL
31.	17ECCC90	FPGA SYSTEM DESIGN	ECE	CC	0	0	4	2	NIL
		LAB	ECE		U	U	4	2	NIL
32.	17ECCC91	MICROWAVE &		CC					
32.		OPTICAL	ECE	CC	0	0	4	2	NIL
		COMMUNICATION LAB							
33.	17ECCC92	INTERNET OF THINGS	ECE	CC	0	0	4	2	NIL
		LAB	ECE		U	U	4	2	MIL

B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 24)

	(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)											
O.	(I) P	TROGRAMINIE SPECIFIC	`		E) - C	KEDI.	15 (12	15)				
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	T	P	C	PREREQUISITE			
1.	17ECEC01	ADVANCED DIGITAL SYSTEM DESIGN	ECE	EC (PS)	3	0	0	3	NIL			
2.	17ECEC02	PCB & PLC	ECE	EC (PS)	3	0	0	3	NIL			
3.	17ECEC03	SATELLITE COMMUNICATION	ECE	EC (PS)	3	0	0	3	ANALOG & DIGITAL COMMUNICATION			
4.	17ECEC04	DSP WITH FPGA	ECE	EC (PS)	3	0	0	3	NIL			
5.	17ECEC05	RADIO FREQUENCY INTEGRATED CIRCUITS	ECE	EC (PS)	3	0	0	3	ELECTROMAGNETI CS AND TRANSMISSION LINES & WAVEGUIDES			
6.	17ECEC06	MEMS AND SENSORS	ECE	EC (PS)	3	0	0	3	NIL			
7.	17ECEC07	RF SYSTEM DESIGN	ECE	EC (PS)	3	0	0	3	NIL			
8.	17ECEC08	MIMO WIRELESS COMMUNICATIONS	ECE	EC (PS)	3	0	0	3	ANALOG & DIGITAL COMMUNICATION			
9.	17ECEC09	RADAR SIGNAL PROCESSING	ECE	EC (PS)	3	0	0	3	SIGNAL PROCESSING			
10.	17ECEC10	DATA COMPRESSION	ECE	EC (PS)	3	0	0	3	DIGITAL IMAGE PROCESSING			
11.	17ECEC11	SATELLITE IMAGE ANALYSIS	ECE	EC (PS)	3	0	0	3	DIGITAL IMAGE PROCESSING, SATELLITE COMMUNICATION			
12.	17ECEC12	VIDEO PROCESSING	ECE	EC (PS)	3	0	0	3	DIGITAL IMAGE PROCESSING			
13.	17ECEC13	COMMUNICATION NETWORK SECURITY	ECE	EC (PS)	3	0	0	3	DATA COMMUNICATION NETWORKS			
14.	17ECEC14	NETWORK MANAGEMENT	ECE	EC (PS)	3	0	0	3	DATA COMMUNICATION NETWORKS			
15.	17ECEC15	HIGH PERFORMANCE COMMUNICATION NETWORKS	ECE	EC (PS)	3	0	0	3	DATA COMMUNICATION NETWORKS			
16.	17ECEC16	WIRELESS AD-HOC AND SENSOR NETWORKS	ECE	EC (PS)	3	0	0	3	DATA COMMUNICATION NETWORKS			
17.	17ECEC17	ELECTROMAGNETIC INTERFERENCE &	ECE	EC (PS)	3	0	0	3	ELECTROMAGNETI CS AND			

		COMPATIBILITY							TRANSMISSION LINES &
18.	17CSCC04	COMPUTER	CSE	EC (PS)	3	0	0	3	WAVEGUIDES NIL
19.	17ECEC18	ARCHITECTURE SDR & COGNITIVE RADIO	ECE	EC (PS)	3	0	0	3	ANALOG & DIGITAL
20.	17ECEC19	ISDN	ECE	EC (PS)	3	0	0	3	COMMUNICATION ANALOG & DIGITAL
21.	17ECEC20	ROBOTICS AND AUTOMATION	ECE	EC (PS)	3	0	0	3	COMMUNICATION NIL
22.	17ECEC21	ADVANCED ROBOTICS	ECE	EC (PS)	3	0	0	3	NIL
23.	17ECEC22	INNOVATIVE PROJECT	ECE	EC (PS)	0	0	6	3	NIL
24.	17ECEC23	MACHINE VISION	ECE	EC (PS)	3	0	0	3	NIL
		SPECIAI	IZATION - E	MBEDDED S	SYSTE	MS			
1.	17ECSE01	ADVANCED PROCESSORS	ECE	EC (SE)	3	0	0	3	NIL
2.	17ECSE02	EMBEDDED CONTROL SYSTEMS	ECE	EC (SE)	3	0	0	3	NIL
3.	17ECSE03	EMBEDDED SYSTEMS ARCHITECTURE	ECE	EC (SE)	3	0	0	3	NIL
4.	17ECSE04	EMBEDDED SYSTEM DESIGN	ECE	EC (SE)	3	0	0	3	NIL
5.	17ECSE05	REAL TIME OPERATING SYSTEMS	ECE	EC (SE)	3	0	0	3	NIL
6.	17ECSE06	SYSTEM ON CHIP	ECE	EC (SE)	3	0	0	3	NIL
7.	17ECSE07	SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEM	ECE	EC (SE)	3	0	0	3	NIL
8.	17ECSE08	ADVANCED PROCESSORS LAB	ECE	EC (SE)	0	0	4	2	NIL
9.	17ECSE09	EMBEDDED SYSTEMS LAB	ECE	EC (SE)	0	0	4	2	NIL
10.	17ECSE10	EMBEDDED SYSTEMS DESIGN LAB	ECE	EC (SE)	0	0	4	2	NIL
11.	17ECSE11	RTOS LAB	ECE	EC (SE)	0	0	4	2	NIL
	1		CIALIZATION		CAL	ı	ı	1	
1.	17BMCC04	BIOMEDICAL INSTRUMENTATION & MEASUREMENTS	BME	EC (SE)	3	0	0	3	NIL
2.	17BMCC03	BIOSENSORS AND TRANSDUCERS	BME	EC (SE)	3	0	0	3	NIL
3.	17BMEC02	BIOTELEMETRY	BME	EC (SE)	3	0	0	3	NIL
4.	17BMEC12	HOSPITAL MANAGEMENT	BME	EC (SE)	3	0	0	3	NIL
5.	17ECSE12	MEDICAL ELECTRONICS	ECE	EC (SE)	3	0	0	3	NIL
6.	17BMCC10	MEDICAL IMAGE PROCESSING AND ANALYSIS	ВМЕ	EC (SE)	3	0	0	3	NIL
7.	17BMSE16	WEARABLE TECHNOLOGY	BME	EC (SE)	3	0	0	3	NIL
8.	17BMCC82	BIOMEDICAL INSTRUMENTATION LAB	ВМЕ	EC (SE)	0	0	4	2	NIL
9.	17ECSE13	BIOMEDICAL IMAGE PROCESSING LAB	ECE	EC (SE)	0	0	4	2	NIL
10.	17ECSE14	BIOMEDICAL SIGNAL PROCESSING LAB	ECE	EC (SE)	0	0	4	2	NIL
11.	17ECSE15	DATA ACQUISITION LAB	ECE	EC (SE)	0	0	4	2	NIL

		SPECIALISATIO	N – INTERNE	T OF THING	S ANI	SENS	ORS		
1.	17ECSE16	FIBER OPTIC SENSORS	ECE	EC (SE)	3	0	0	3	NIL
2.	1/ECSE10	AND APPLICATIONS IOT IN AUTOMOTIVE	ECE	EC (SE)	3	0	0	3	NIL
	17ECSE17	SYSTEMS	ECE		3	0	0	3	NIL
3.	17ECSE18	IOT FOR INDUSTRIAL SYSTEMS	ECE	EC (SE)	3	0	0	3	NIL
4.	17ECSE19	RFID AND FLEXIBLE SENSORS	ECE	EC (SE)	3	0	0	3	NIL
5.	17ECSE20	SMART IOT APPLICATIONS	ECE	EC (SE)	3	0	0	3	NIL
6.	17ECSE21	WIRELESS SENSOR NETWORKS AND IOT	ECE	EC (SE)	3	0	0	3	NIL
7.	17ECSE22	WIRELESS TECHNOLOGIES FOR IOT	ECE	EC (SE)	3	0	0	3	NIL
8.	17ECSE23	CHEMICAL SENSOR LAB	ECE	EC (SE)	0	0	4	2	NIL
9.	17ECSE24	SENSOR SYSTEMS LAB	ECE	EC (SE)	0	0	4	2	NIL
10.	17ECSE25	WIRELESS SENSOR NETWORKS LAB	ECE	EC (SE)	0	0	4	2	NIL
		(ii) OPEN ELECTIVE	(CLASS ROO	M OR ONLI	NE) - (CREDI	TS (6 -	9)	
1.	17EECC15	ELECTRICAL TECHNOLOGY	EEE	EC (OE)	3	0	0	3	NIL
2.	17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EEE	EC (OE)	3	0	0	3	NIL
3.	17EEEC22	SCADA	EEE	EC (OE)	3	0	0	3	NIL
4.	17EECC16	POWER ELECTRONICS AND DRIVES	EEE	EC (OE)	3	0	0	3	NIL
5.	17MECC12	COMPUTER INTEGRATED MANUFACTURING	MECH	EC (OE)	3	0	0	3	NIL
6.	17MESE32	COMPOSITE MATERIALS	MECH	EC (OE)	3	0	0	3	NIL
7.	17MESE17	MODERN MANUFACTURING METHODS	МЕСН	EC (OE)	3	0	0	3	NIL
8.	17MESE22	AUTOMOTIVE INFOTRONICS	MECH	EC (OE)	3	0	0	3	NIL
9.	17MEEC04	AGRICULTURAL ENGINEERING EQUIPMENTS	МЕСН	EC (OE)	3	0	0	3	NIL
10.	17MEEC11	INDUSTRIAL ROBOTICS	MECH	EC (OE)	3	0	0	3	NIL
11.	17MEEC13	INDUSTRIAL SAFETY	MECH	EC (OE)	3	0	0	3	NIL
12.	17MECC16	INDUSTRIAL AUTOMATION	MECH	EC (OE)	3	0	0	3	NIL
13.	17ATCC04	AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS	AUTO	EC (OE)	3	0	0	3	NIL
14.	17ATCC10	AUTOMOTIVE POLLUTION CONTROL	AUTO	EC (OE)	3	0	0	3	NIL
15.	17ATEC13	COMPUTER SIMULATION OF IC ENGINE PROCESSES	AUTO	EC (OE)	3	0	0	3	NIL
16.	17ATEC14	COMPUTER CONTROLLED VEHICLE SYSTEMS	AUTO	EC (OE)	3	0	0	3	NIL
17.	17CSCC16	CLOUD COMPUTING	CSE	EC (OE)	3	0	0	3	NIL
18.	17CSCC09	JAVA PROGRAMMING	CSE	EC (OE)	3	0	0	3	NIL
19.	17CSPI10	MOBILE APPLICATION DEVELOPMENT	CSE	EC (OE)	3	0	0	3	NIL
20.	17CSEC34	WEB DESIGN AND MANAGEMENT	CSE	EC (OE)	3	0	0	3	NIL
21.	17CSEC09	ETHICAL HACKING	CSE	EC (OE)	3	0	0	3	NIL

22.	17CSEC11	GREEN COMPUTING	CSE	EC (OE)	3	0	0	3	NIL
23.	17CSEC32	VIRTUAL REALITY	CSE	EC (OE)	3	0	0	3	NIL
24.	17CSCC01	DATA STRUCTURES	CSE	EC (OE)	3	0	0	3	NIL
25.	17CSCC02	OBJECT ORIENTED PROGRAMMING	CSE	EC (OE)	3	0	0	3	NIL
26.	17CSCC03	DATABASE MANAGEMENT SYSTEM	CSE	EC (OE)	3	0	0	3	NIL
27.	17CSEC06	CRYPTOGRAPHY AND NETWORK SECURITY	CSE	EC (OE)	3	0	0	3	NIL
28.	17BMEC09	DESIGN OF MEDICAL DEVICES	BME	EC (OE)	3	0	0	3	NIL
29.	17BMEC01	MEDICAL OPTICS	BME	EC (OE)	3	0	0	3	NIL
30.	17BMEC21	MEDICAL SIMULATION IN LIFE SUPPORTING DEVICES	ВМЕ	EC (OE)	3	0	0	3	NIL
31.	17BMSE07	MEDICAL RADIATION SAFETY ENGINEERING	BME	EC (OE)	3	0	0	3	NIL
32.	17BMSE18	ROBOTICS & AUTOMATION IN MEDICINE	BME	EC (OE)	3	0	0	3	NIL
33.	17CVEC08	REMOTE SENSING TECHNIQUES AND APPLICATIONS	CIVIL	EC (OE)	3	0	0	3	NIL
34.	17CVEC18	WIND ENGINEERING	CIVIL	EC (OE)	3	0	0	3	NIL

B.E./B.TECH. - ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VIII CATEGORY D - PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)- CREDITS (18) (i) PROJECT - CREDITS (9) (i) INTERNSHIP + INDUSTRY ELECTIVES - CREDITS (9) PREREQUISITE SL. OFFERING COURSE \mathbf{C} CODE **CATEGORY** T P \mathbf{L} DEPT. NO 1. 17ECPI01 PROJECT ECE ΡI 0 0 18 9 NIL 2. 17ECPI02 MINI PROJECT ECE ΡI 0 6 3 NIL ADVANCED 3. 17ECPI03 ECE ΡI 3 0 0 3 NIL MICROPROCESSOR VIRTUAL 4. ΡI 17ECPI04 INSTRUMENTATION FOR ECE 3 0 0 3 NIL ELECTRONICS BUSINESS INTELLIGENCE AND 5. 17CSPI04 CSE ΡI 3 0 0 3 NIL ITS APPLICATIONS LEARNING IT ESSENTIALS BY 6. 17CSPI07 CSE ΡI 3 0 0 3 NIL DOING

CATEGORY E – EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18)

(** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

(i) EMPI	OVARILIT	Y ENHANCEN	MENT COURSES (EEC)
11/12/14/1	~/ ~	1 19131173130	

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	T	P	С	PREREQUISITE
1.	17APEE01	PERSONALITY SKILLS DEVELOPMENT – I	MATHS	EE		WEEKS FRAININ		1	NIL
2.	17APEE02	PERSONALITY SKILLS DEVELOPMENT – II	ENGLISH & MANAGEMENT	EE		WEEKS FRAININ		1	NIL
3.	17ECEE01	BASICS ON ELECTRONIC GADGETS, COMPONENTS ASSEMBLING AND SOLDERING	ECE	EE	0	0	2	1	NIL
4.	17ECEE02	TELEVISION SERVICING	ECE	EE	0 0 2		1	NIL	
5.	17ECEE03	BASICS ON PLC	ECE	EE	0	0	2	1	NIL
6.	17ECEE04	PCB DESIGNING	ECE	EE	0	0	2	1	NIL
7.	17ECEE05	MOBILE SERVICING	ECE	EE	0	0	2	1	NIL
	· ·	(ii) CO -	CURRICULAR CO	OURSES (CC	C)		u.		
1.	17APEE03	NCC	NCC CELL	EE	2 WEEKS OF TRAINING IN NCC CAMP			1	NIL
2.	17APEE04	NSS	NSS CELL	EE	SOCIA	WEEKS AL SERV ISS CAM	ICE IN	1	NIL
3.	17APEE05	SPORTS AND GAMES (INTER –UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE		-		1	NIL
4.	17APEE06	SPORTS AND GAMES (INTRA-UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE		-		2	NIL
5.	17APEE07	SPORTS AND GAMES (STATE AND NATIONAL LEVELS)	PHYSICAL EDUCATION	EE	-		3	NIL	
		EXT	TRA CURRICULA	R COURSES	}				
1.	17ECEE06	EXTRA CURRICULAR COURSE – I	ECE	EE		15 HOUF	RS	1	NIL
2.	17ECEE07	EXTRA CURRICULAR COURSE – II	ECE	EE	15 HOURS		1	NIL	
3.	17ECEE08	EXTRA CURRICULAR COURSE – III	ECE	EE	15 HOURS			1	NIL
4.	17ECEE09	EXTRA CURRICULAR COURSE – IV	ECE	EE	1	15 HOUR	RS	1	NIL

17EGHS01	TECHNICAL ENGLISH	Category	L	Т	P	Credit
		FC(HS)	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

_															
PRER	PREREQUISITE: NIL														
COLID	COURSE OBJECTIVES														
1															
2	To make them to become effective communicators														
3	To ensure that learners use Electronic media materials for developing language														
4	To aid the students with employability skills.														
5	To motivate students continuously to use English language														
6	To develop the students communication skills in formal and informal situations														
COUR	OURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	Listen, r	ememb	er and r	espond	to othe	rs in di	fferent	scenari	.0]	Remembe	er		
			speak	fluent	ly and	correc	ctly wi	th corr	ect pro	nunciati	on in	Understar	nd		
	nt situat		1 .	. •			•.•								
CO3. 1	Γo make	the stu	dents e	xperts 1	n profe	ssional	writing				4	Apply			
	o make											Apply			
			students	good	comm	unicato	ors at	the wo	rk plac	ce and	to be	Apply			
	ically st		danta na		tha mal	a of too	hnical	itin ~	in thair	careers	in.	A nolvero			
	o make ss, techr					e or tec	minear	writing	III tileli	careers	un 4	Analyze			
						COME	S AND	PROC	FRAM	ME SPE	CIFIC (OUTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M			M	M	S		L	S	L	S	S	S	M
CO2	L	M		L	M	M	S		L	S	S	S	S		
CO3	M L L M L L M S S S M														
CO4	4 M M M L S S S S														
CO5	M M M M M S M L S M S S M														
CO6															
C Stro	ng M	Madium	· I I o	X 7											

SYLLABUS

SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

ARTICLES

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines - Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones - Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

TENSE FORM

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

IMPERSONAL PASSIVE VOICE

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

SENTENCE PATTERN

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXT BOOK:

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS:

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.
- 4. Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	prem.english@avit.ac.in

	<u> </u>	•				
		FC(HS)	3	0	0	3
17EGHS02	BUSINESS ENGLISH	Category	L	T	P	Credit

PREAMBLE

Language is one of the most valued possessions of men. It acts as a repository of wisdom. Among all other languages English, the international language plays a vital role as a propeller for the advancement of knowledge in different fields and as a telescope to view the dream of the future.

PREREQUISITE:	Nil
---------------	-----

COUR	RSE OB	JECTI	VES												
1	To in	npart ar	nd enha	nce cor	porate c	commu	nication	l.							
2	To er	nable le	arners t	o devel	op pres	entatio	n skills								
3	To build confidence in learners to use English in Business context														
4	To make them experts in professional writing														
5	To ass	sist stuc	lents un	derstan	d the ro	ole of th	inking	in all fo	orms of	commun	nication				
6	To eq	uip stuc	lents wi	ith emp	loyabili	ty and	job sear	ching s	kills						
COUF	RSE OU	TCOM	IES		-										
On the	success	ful con	pletion	of the	course,	studen	ts will b	e able t	.0						
CO1. 0	Commu	nicate w	ith a ra	nge of	formal	and info	ormal c	ontext				Understai	nd		
CO2.	Students	s will u	ndergo	in activ	ities, de	emonsti	ating ir	teractio	on skills	s and cor	sider	Apply			
how o	wn com	nunicat	tion is a	djusted	in diffe	erent sc	enario								
CO3. S	Strength	ening o	f oral a	nd writt	en skill	s in the	busine	ss conte	ext			Apply			
CO4. 0	Create in	iterest a	ımong t	he stud	ents abo	out a to	pic by e	xplorin	g thoug	ghts and	ideas	Apply			
CO5. I	Make the	e studer	nts to s	tart with	n pleasi	ng note	and m	ake the	m to gi	ve differ	ent	Apply			
ideas															
	Make the											Apply			
MAPI	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC (OUTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M		L		L	S	S		M	S		S	S	M	
CO2		M	S	M		M	M		L	S		S			
CO3											M				

S- Strong; M-Medium; L-Low

L

L

M

M

M

M

SYLLABUS

CO4

CO5

CO₆

SUBJECT AND VERB AGREEMENT: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

M

M

M

L

S

S

S

L

M

S

 \mathbf{S}

S

M

M

M

L

L

L

STRESS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILL

Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews - FAQs - E - Mail Netiquette - Sample E - mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION

Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

CRITICAL READING

Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXT BOOK:

1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS:

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	prem.english@avit.ac.in

17EGHS8	81		ENGI	LISH I	ANG	UAGE	LAB			Catego	ry L	T	P C	redit
										FC(HS	S) O	0	4	2
PREAMB	LE													
English L														
practicing			anguag	e skills	throug	gh inte	ractive	lesson	s and co	mmuni	cative mo	ode of t	eaching.	
PREREQ	UISITE	: Nil												
COURSE	ODIEC	TIVES	<u> </u>											
	understa			ation n	iisance	e in th	e corno	rate se	ector					
2 To tong		nd the r	ole of	mother	tongu	e in se	cond la	nguage	e learnir	ng and to	o avoid ii	nterfere	ence of m	other
3 To	commu	nicate e	ffective	ely thro	ough di	fferent	t activit	ties						
	understa													
	se study						of cor	nmuni	cation					
	improve		al skills	of the	studer	nts								
COURSE														
On the suc)					
CO1. Give											Understa	nd		
CO2. Best	•							speak	ing.		Apply			
CO3. Give	better jo	ob oppo	rtunitie	es in co	rporate	comp	anies				Apply			
CO4. Bett					s of E	nglish	langua	age th	rough a	udio-	Apply			
CO5. Spea	king ski	lls with			onfide	nce wl	nich in	turn e	nhances	their	Apply			
CO6. Acqu			npeten	ce to u	se both	spoke	en and v	written	langua	ge in	Apply			
a wide ran						1					11 7			
MAPPIN	G WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFIC O	UTCC	MES	
COS PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S		L			S	S	M				S
CO2 N	[M	S		M	S	M	S
CO3 N	[S		M	S	S	S
CO4 M	[M			M	S	S
CO5 N	[S						M			M	S	S
CO6	M	M							M			M	M	S
S- Strong;	M-Medi	um; L-I	Low	1					1	1		1		1

SYLLABUS

MODULE I

Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening - Listening to a

song and understanding- (fill in the blanks) Telephone Conversation

MODULE II

Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III

Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

MODULE IV

Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

MODULE V

Case study of Etiquette in different scenario.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	prem.english@avit.ac.in

17YMHS82	YOGA & MEDITATION	Category	L	T	P	Credit
171111102		FC(HS)	0	0	4	2

PREAMBLE

Yoga is a physical, mental and spiritual practice or discipline which originated in ancient India and is followed in all over the world. Yoga is a discipline to improve or develop one's inherent power in a balanced manner. The University has been celebrating International Yoga day every year on 21st June. The University has developed Yoga to provide physical, mental and spiritual practices to the employees, students of the university.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To understand the fundamental concepts of yogic practices
- 2 To study the selected yogic practices and its impact on selected systems in the human body.
- 3 Learned the Principles of Practicing Asana, Pranayama and Meditation.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

- CO1. Understanding the purpose of learning of yogic practices.
- CO2. Knowledge of the interconnections between the body, the breath, the mind and the emotions in the context of maintaining resilience and well-being
- CO3. Understanding the principles of practicing asana, pranayama and meditation
- CO4. Knowledge of health and disease relevant to the practice of the yoga therapy.
- CO5. Creating awareness about international yoga day.

SYLLABUS

- 1. Starting Prayer.
- 2. Surya Namaskar.
- 3. Asanas-Padmasana, Vajrasana, Tadasana, Ardhakati chakrasana ,Uthana Padasana, Ustrasana,Makarasana,Paschimottanasana, Halasana, Savasana
- 4. Pranayama-Nadishuddhi, Kapalabhati, Sitkari, Sitali
- 5. Meditation-Deep Relaxation.
- 6. Mudra-Chin Mudra, Chinmaya Mudra.
- 7. Closing Prayer.

TEXTBOOKS

- 1. Iyengar B.K.S (2001), Yoga the path to holistic health, Dorling: Kindersley.
- 2. Mariayyah.P (2000) Suriyanamaskar, Perunthurai: Jaya Publishing House.

REFERENCE BOOKS

- 1. Saraswati, Niranjanananda (2010) Prana and pranayama. Mungaer.
- 2. Iyengar B.K.S (2003), The art of yoga, New Delhi. Harper Collins publishers.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail Id	
1.	Dr.G.S.Thangapandiyan	Assistant Professor	Physical Education	yogistp@gmail.com	
2.	Mr.N.Jayaraman	Assistant Professor	Physical Education	narayanajayaram82@gmail.com	

17MBHS01	ENGINEERING STARTUPS	Category	L	T	P	Credit
	AND ENTREPRENEURIAL	FC(HS)	3	0	0	3
	MANAGEMENT					

PREAMBLE:

A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: Nil

COURSE OBJECTIVES:

- 1. To understand the basics of Startups Management and components.
- 2. To analyze the startups fund management practices
- 3. To practice the various kinds of stocks and employment considerations in startups.
- 4. To apply the importance of intellectual property rights and its procedures.
- 5. To explore the entrepreneurial mindset and culture.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1.Explain the concept of engineering startups, objectives and functions and its components.	Understand
CO2. Analyze the startups funding issues and remuneration practices in startups business.	Analyse
CO3. Analyze the various kinds of stocks and employment opportunities and consideration in	Analyse
startups business.	
CO4.Compare and contrast the various forms of intellectual property protection and practice.	Analyse
CO5.Explore the entrepreneurial mindset and culture that has been developing in	Evaluate
companies of all sizes and industries.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	M	M	S	-	M	-	M	-	L	L
CO2	S	S	M	M	M	L	-	-	-	-	-	M	L	L	-
CO3	S	S	S	M	M	M	-	-	-	-	-	M	L	-	M
CO4	S	S	S	M	M	M	ı	-	_	-	-	M	ı	M	L
CO5	S	S	-	M	M	M	-	-	-	-	-	M	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up: Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares – Compensation and startup Employment Considerations: Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents—Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Entrepreneurship: Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

TEXT BOOKS:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

REFERENCE BOOKS:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COURSE DESIGNERS:

S.No	Name of the Paculty Designation		Department	Mail ID		
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in		
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in		

17MBHS02	FINANCE AND ACCOUNTING	Category	L	T	P	Credit
1710111502	FOR ENGINEERS	FC(HS)	3	0	0	3

PREAMBLE: Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

PREREQUISITE: NIL

COURSE OBJECTIVES:

- 1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.
- 2. To apply the various methods to claim depreciation and
- 3. To practice fundamental investment decision through capital budgeting techniques.
- 4. To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.
- 5. To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1.Understand the importance of recording, book keeping and reporting of the business	Understand
transaction.	
CO2. Identify and Apply suitable method for charging depreciation on fixed assets.	Apply
CO3. Analyse the various methods of capital budgeting techniques for investment decision.	Apply
CO4.Justify the scope of cost-volume-profit analysis, standard costing, and marginal	Analyse
costing techniques for decision making.	
CO5. Estimation of working capital requirements of the organization.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	M	L	S	M	-	S	-	M	M	L	M	L	M
CO2	L	-	-	L	M	-	L	L	-	-	L	M	L	L	-
CO3	-	M	-	M	L	-	-	L	S	M	-	L	-	L	M
CO4	L	L	-	S	-	-	L	-	-	L	M	L	M	L	M
CO5	L	-	L	S	L	-	-	M	M	L	-	L	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction: Business Environment – Forms of business – Book Keeping and Accounting – Accounting Concepts and Conventions – Journal – Subsidiary books - Ledger – Trial Balance – Final Accounts

Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Evaluation Techniques – Non-Discounting Cash Flow Techniques: Pay Back Period – Accounting Rate of Return – Discounting Cash Flow Techniques: NPV – IRR - Profitability Index.

Costing Accounting: Concepts - Elements of Cost - Preparation of Cost Sheet - Types of Costs - Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – ACP, Aging schedule – Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2	Dr. Rajeshkumar	Assistant Professor	Management Studies	Rajesh.mba@avit.ac.in

17CHBS01	ENVIRONMENTAL SCIENCE &	Category	L	T	P	C
17 (111)	ENGINEERING	FC(BS)	3	0	0	3

Preamble

Environmental science and Engineering is an interdisciplinary field that integrates physical, chemical, biological, information sciences and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protect it. Furthermore, it deals the social issues and ethics to develop quality engineer in our country.

Prerequisite

NIL

Course Objectives

1	Applying Science and Engineering knowledge to protect environment
2	To provide comprehensive insight in natural resources and protect natural resources
3	To create awareness on the various pollutions and their impact.
4	To educate the ways and means to manage natural calamities
5	To impart fundamental knowledge on human welfare measures

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Comprehend the impact of engineering solutions in a global and	Understand
	societal context	
CO2.	Illustrate the contemporary issues that results in environmental	Understand
	degradation and would attempt to provide solutions to overcome	
	those problems	
CO3.	Illustrate the importance of ecosystem and biodiversity	Apply
CO4.	Practice to improve the environment and sustainablity	Apply
CO5.	Conclude the importance of conservation of resources.	Analyze
CO6.	Estimate the important role of IT in healthy environment for future	Analyze
	generations	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	PO	PO	РО	РО	РО	РО	РО	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1.	S	M	-	-	-	M	S	S	M	M	-	S	M	M	S
CO2.	S	-	-	-	-	S	S	S	-	-	-	S	-	M	S

CO3.	S	-	-	-	-	M	S	M	L	-	-	S	M	-	S
CO4.	S	-	-	-	-	M	S	S	M	M	-	S	-	M	S
CO5.	S	-	-	-	-	M	S	S	M	M	-	S	-	M	S
CO6.	S	-	-	-	-	M	S	S	M	M	-	S	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources , water resources, food resources , energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION

Pollution - Definition, man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards - Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual - Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation - Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights - Value education - Women and child welfare, Role of information technology in environment and human health.

TEXTBOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and tandards Vol I & II, Enviro media.
- 4. Dr. J. Meenambal, Environmental Science and Engineering, MJP Publication, Chennai
- 5. Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0, 2004

Course Designers:

S.	Name of the Faculty	Designation	Department	Mail ID
No			_	
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

17MABS01	ENGINEERING MATHEMATICS	Category	L	T	P	Credit
		FC(BS)	2	2	0	3
PREAMRIE						

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

PREREQUISITE --NIL

COURSE OBJECTIVES

1	To identify the characteristics of a linear system with Eigen values and Eigen vectors.
2	To improve their ability in solving geometrical applications of differential calculus
3	To find a maximum or minimum value for a function of several variables subject to a given constraint.
4	To understand the integration techniques for evaluating surface and volume integrals.

5 Incorporate the knowledge of vector calculus to support their concurrent and subsequent engineering studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

Understand
Apply
Apply
Apply
Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	M							M	S	M	M
CO2	S	M	M	M	M							M	S	M	M
CO3	S	M	M	M	M							M	S	M	M
CO4	S	M	M	M	M							M	S	M	M
CO5	S	M	M	M	M							M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.G.Selvam	Asso.Prof	Mathematics	selvam@vmkvec.edu.in
2	Ms.S.Gayathri	Asst.Prof.Grade I	Mathematics	gayathri@avit.ac.in

17M/	ABS06		DIFF	EREN'	TIAL	EQUA	TION	S ANI)	Catego	ory	L	T	P	Credit
17111	1D SUU			T	RANS	FORN	IS			FC(B	S)	2	2	0	3
PREA	MBLE	2							I		I	I.			
Ord	inary D	iffere	ntial Ed	quation	is use	ed in co	ontrast	with t	he tern	n partial	differer	ntial equ	ation w	hich ma	y be with
_				_						=	_				e domain.
		•		-							domain	with the	help of	Transfo	rmations.
Transf	orm ted	chniqu	es are v	ery im	portan	t tool i	n the a	nalysis	of sign	nals.					
	EQUI BS01 -		eering	Mathe	matics										
	RSE O										201 1				
1	To lea	To learn ordinary differential equations with constant and variable coefficients													
2	To learn Laplace transform and its Inverse method to solve differential Equations and integral transforms														
3	To derive a Fourier series of a given periodic function by evaluating Fourier coefficients														
4	To calculate the Fourier transform of periodic functions														
5	To lea	arn abo	out Z- t	ransfor	ms and	d its ap	plication	ons							
COUF	RSE O	UTCO	MES												
	On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	dents	will be	able to					
				-							ts and	Simulta	neous fi	rst	Apply
	order l			_											11 3
CO2.	Use the	Lapla	ce Trai	nsform	techni	que to	solve o	ordinar	y diffe	rential e	quations	S.			Apply
CO2 7	To onn!	v Eou	ior con	ias mat	hoda ta	n anlwa	hound	0447 X70	luo pro	hloma fo	r linaar	ODEa			Apply
COS.	ro appi	y roui	ier sen	ies mei	nous to	Solve	bound	ary va	iue pro	blems fo	or imear	ODES.			Apply
			urier t	ransfor	m as tl	ne tool	to con	nect th	ne time	domain	and fre	equency	domain	in	Apply
signal processing.															
				<u> </u>											Apply
												I	OUTCO		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	M							M	S	S	M
CO2	S	S	M	M	M							M	S	S	M

S

S

S

M

M

M

S

S

S

M

M

M

M

M

M

M

M

M

CO3

CO4

CO5

S

S

S

S

S

S- Strong; M-Medium; L-Low

M

M

M

SYLLABUS

ORDINARY DIFFERENTIAL EQUATIONS: Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS: Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

FOURIER SERIES: Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS: Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS: Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

TEXT BOOKS:

- 1. Engineering mathematics I & II ", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 3. Veerarajan, T., "Engineering Mathematics I,II and III", Tata McGraw Hill Publishing Co., New Delhi (2011).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M.Vijayarakavan	Asso.Prof	Mathematics	vijayarakavan@vmkvec.edu.in
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	Mathematics	thamizhsudar@avit.ac.in

17M	IABS10	, P	ARTI	AL DI	FFER	ENTIA	AL EQ	UATIO	NS	Catego	ory	L	T	P	Credit
17101	IADSI			AND	LINE	AR AL	GEBR	RA		FC(B	S)	2	2	0	3
PREA	MBLE	2													
and fit nvolv	oer opti ing add	cs. It c lition a	can be and sca	solved lar mu	by var ltiplica	rious m tion ha	athema	atical tec	chniq	ues. The	e genera	l theory	of math	nematica	cs circui il system is. Linea
	EQUI					1 m	c								
	BS06 - RSE OI			Equation	ons and	Trans	forms								
1				annlia	rations	of part	ial diff	erential	egnat	tions					
2							tial equ		cquai						
3									nsforr	nations	and dias	onaliza	tion		
4															
5	To apply the concept of inner product spaces in orthogonalization. To compute the linear transformations and find matrices of general linear transformations.														
	RSE OI									<u> </u>					
				on of t	he cou	rce ctii	dents v	vill be a	hle to	•					
			-							fferentia	l equation	ons relat	ed to		
	eering F					,		1			1			Unde	erstand
	_			_		arisin	g in en	gineerin	ng pro	blems li	ke wave	equation	ons and	Appl	y
	ow equ					algehi	raic ski	lle to co	mnut	e the din	nension	of row	cnace		
	lumn s	-		-		_	aic ski	115 10 00	mpuo	c the dir	nension	Of TOW	space	Appl	y
C O4.	Apply the concept of inner product space in various linear system related problems. Apply														
CO5 1	CO5. Form orthogonal basis and use them to solve engineering problems.												Appl	y	
	PING V						1			RAMM				MES	T
			PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MAPI COS	PO1	PO2	103									M	S	M	Ì
MAPI COS CO1	S	M		M	M										
MAPI COS CO1 CO2	S S	M S		M	M							M	S	M	
	S	M													 M M

S- Strong; M-Medium; L-Low

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

BOUNDARY VALUE PROBLEMS: Classification of second order linear partial differential equations - Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of two-dimensional heat equation - Fourier series solutions in Cartesian coordinates.

VECTOR SPACE AND SUBSPACE: Introduction to vector space and subspace, Linear independent and dependent, spanning set, Basis and dimension, Row space and column space.

INNER PRODUCT SPACES: Inner products, inner product spaces- Cauchy-Schwarz inequality, Linear functional and adjoints, unitary operations and normal operators- spectral theorem.

ORTHOGONALITY AND LINEAR TRANSFORMATION: Introduction to orthogonality, Least square approximation, Orthogonal basis and Gram Schmidt orthogonalisation, Linear transformation and its matrix representation.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 35th Edition, Khanna Publishers, Delhi, 2012.
- 2. Kennath M. Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, Pearson India Publishing, New Delhi, 2015
- 3. M.Artin, "Algebra", Prentice Hall of India Pvt. Ltd., New Delhi, 2005.

REFERENCES:

- 1. A.Singaravelu, "Transforms and Partial Differential Equations", Meenakshi Agencies, Chennai, 2015.
- 2. Kreyszig, E., "Advanced Engineering Mathematics" (8th Edition), John Wiley and Sons, (Asia) Pvt. Ltd., Singapore, 2000.
- 3. Dr.Gunadhar Paria, "Linear Algebra", New Central Book Agency (P) Ltd, 2009.

COURSE DESIGNERS

S	S.No	Name of the Faculty	Designation	Department	Mail ID
	1	Mrs.V.T.Lakshmi	Asso.Prof	Mathematics	lakshmi@vmkvec.edu.in
	2	Ms.S.Sarala	Asst.Prof. grade II	Mathematics	sarala@avit.ac.in

17MABS17	NUMERICAL METHODS, RANDOM	Category	L	T	P	Credit
	PROCESSES & OPTIMIZATION	FC(BS)	2	2	0	3

PREAMBLE

Numerical analysis naturally finds applications in all fields of engineering and the physical sciences. The course will develop numerical methods aided by technology to solve differential equations and numerical linear algebra is important for data analysis. The purpose of the course is, to provide the students with the theoretical framework fundamental to the processing of signals with random variation. Starting from basic probability, the course proceeds to a thorough study of models for stochastic processes which are relevant in processing of random signals. The optimization is the process of maximizing of a desired quantity or the minimizing of an undesired one. Further the course will develop problem solving skills.

PREREOUISITE

1. 17MABS01 - Engineering Mathematics 2.17MABS06 - Differen

2.17MABS06 - Differential	Equations &	z Transforms
---------------------------	-------------	--------------

COURSE OBJECTIVES

- To familiar with interpolation concepts.
 To find numerical solutions of Ordinary differential equations.
- ______
- To be thorough with probability concepts and Random Variables.
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems etc in communication engineering.
- 5 To acquire skill on optimization techniques.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

	CO1. Apply various numerical methods to find intermediate numerical value & Polynomial of Numerical	Apply
	Data.	
	CO2. Solve the Initial value problems in ordinary differential equations using single step and multistep	Apply
	methods.	
r		

CO3. Calculate the probabilities associated with the distributions of random variables.

Apply

CO4. Illustrate the fundamentals of probability theory and random processes to practical engineering problems, and identify and interpret the key parameters that underlie the random nature of the problems.

Analyze

CO5. Focus optimization methods to realistic engineering problems, including developing a model, defining an optimization problem, applying optimization methods, exploring the solution, and interpreting results.

Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M		M	M							M	M	M	
CO2	S	M		M	M							M	M	M	
CO3	S	S	M	M	M							M	S	M	M
CO4	S	S	M	M	M							M	S	M	M
CO5	S	S	S	M	M							M	S	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

RANDOM VARIABLES: Discrete and continuous random variables- Probability mass function – Probability density functions - moments, Moment generating functions and their properties.

RANDOM PROCESSES: Classification, Stationary and Markov process, Binominal process, Poisson process, Sine-wave process, Ergodic processes.

OPTIMIZATION: LPP – Concave & convex steps, Global and Local optimization, Formation of LPP – Standard form of LPP, Graphical solution of LPP – Simplex method – Transportation and Assignment problems.

TEXT BOOKS:

- 1. Jain M.K., Iyengar S.R.K and Jain R.K., "Numerical Methods for Engineering and Scientific Computation (Fourth Edition)", New Age International (P) Ltd., New Delhi, 2010.
- 2. Ross S.M., "Stochastic Processes", John Wiley & Sons, 3rd Edition, 2010.
- 3. Sharma.J.K, "Operations Research: Theory and Applications", Macmillan India Ltd., Fourth Edition, 2009.

REFERENCES:

- 1. Gerald C.F., Wheatley P.O., "Applied Numerical Analysis" (Fifth Edition), Addison Wesley, Singapore, 1998
- 2. P.Kandasamy, K.Thilagavathy, K.Gunavathy "Probability, Random Variables and Random Processes": S.Chand & Company Ltd., New Delhi. (First Edition 2003).
- 3. Hamdy A. Taha, "Operations Research An Introduction", Macmillan Co., Seventh Edition, 2000.

S.N	o Name of	the Faculty	Designation	Department	Mail ID
	1. Dr.L.Ta	milselvi	Professor	Mathematics	ltamilselvi@avit.ac.in
	2. Dr. S.Pui	nitha	Associate Professor	Mathematics	punitha@vmkvec.edu.in

17PC	CBS02	PHYSICAL SCIENCES Categ	Т	P	Credit			
		PART A - ENGINEERING PHYSICS FC(E)	S)	2	0	0	2	
PREA	MBLE		•				•	
domair fibers	ns. Under	rstanding the concepts of laser, types of lasers, thepropagation of unication and different types of non-destructive techniques will a conceptual based devices.	f light th	rough	fibers, appl	ications	of optical	
PRER	EQUISIT	TE: NIL						
COUR	SE OBJ	ECTIVES						
1	To reca	ll the properties of laser and to explain principles of laser						
2	To asse	ss the applications of laser						
3	To deta	il the principles of fiber optics						
4	To stud	y the applications of fiber optics						
5	To expl	ain various techniques used in Non-destructive testing						
COUR	SE OUT	COMES						
On th	ne success	sful completion of the course, students will be able to						
CO1.	Understa	and the principles laser, fiber optics and non-destructive testing			Understar	nd		
CO2.	Understa	and the construction of laser, fiber optic and Non-Destructive testi	ng equip	ments	Understar	nd		
CO3.	CO3. Demonstrate the working of laser, fiber optic and Non-Destructive testing based Apply							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCO	MEC
I MALLING WITH I ROGRAMME OUTCOMES AND I ROGRAMME SLECIFIC OUTCO	

CO4. Interpret the potential applications of laser, fiber optics and Non-Destructive testing in

CO5. Differentiate the working modes of various types of laser, fiber optic and Non-

COS PO 1 PO2 2 PO3 3 PO4 4 PO5 5 PO6 6 PO7 7 PO8 7 PO9 7 PO10 7 PO11 7 PO12 7 PSO 2 7 PSO 3 1 CO1 S M M IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII																
CO2 S L M M CO3 S M M M CO4 S M M M M S M M S	COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO3
CO3 S M M M CO4 S M M S M	CO1	S		M									M			
CO4 S M M M S M M S M	CO2	S		L									M			
	CO3	S			M			M					M			
CO5 S M M M M M	CO4	S	M		M	M	S	M					M	S	M	
	CO5	S	M	M									M		M	

Apply

Analyze

S- Strong; M-Medium; L-Low

components and devices

Destructive testing based devices.

various fields.

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission - Population Inversion - Einstein coefficients - Lasing action - Types of Laser - Nd:YAG laser, CO2 laser, GaAs laser - Applications of Laser - Holography - construction and reconstruction of a hologram

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

- 1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.
- 2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.
- 3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co, 2010.

REFERENCE BOOKS

- 1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.
- 2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.
- 3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.
- 4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.
- 5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.
- 6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

17PCBS02	PHYSICAL SCIENCES PART B -ENGINEERING CHEMISTRY	Category	L	T	P	C
171 CDS02	CHEWISTRI	FC(BS)	2	0	0	2

Preamble

Objective of this course is to present a better understanding of basic concepts of chemistry and its applications on different engineering domains. It also imparts knowledge on fundamentals of Electrochemistry, Energy storage technologies, properties of water and its treatment methods, classification of fuels, Non conventional sources of Energy and various advanced Engineering materials.

Prerequisite

NIL

Course Objectives

1	To impart basic knowledge in Chemistry so that the student will understand the
1	engineering concept
2	To familiar with electrochemistry and Battery and fuel Cells
2	To lay foundation for practical applications of water softening methods and its
3	To lay foundation for practical applications of water softening methods and its treatment methods in engineering aspects.
4	To inculcate the knowledge of fuels and advanced material.
1	

Course Outcomes

After the successful completion of the course, learner will be able to

	Describe the electrochemistry, batteries and working principle of	Understand
	energy storage devices	
CO2.	Estimate the hardness of water	Apply
CO3.	Identify suitable water treatment methods	Analyze
CO4.	Outline the important features of fuels and advanced materials	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	РО	РО	PO	РО	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1.	S	M	-	M	-	S	S	S	-	-	L	M	M	-	-
CO2.	S	S	M	-	-	M	M	M	-	-	-	M	-	-	S
CO3.	S	S	M	-	-	M	S	M	-	-	-	M	-		M
CO4.	S	-	-	-	L	L	M	L	-	-	-	S	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

Electrochemistry, Batteries and Fuel cells

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement.

Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H₂-O₂ fuel cell)

Water Technology and Corrosion

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite & Demineralisation) – Domestic water treatment – Desalination (Electrodialysis & Reverse Osmosis).

Fuels And Chemistry of Advanced Materials

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXT BOOKS

1. Engineering Chemistry by prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

S.	Name of the Faculty	Designation	Department	Mail ID		
No						
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbazagan@vmkvec.edu.in		
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	gilbertsunderraj@vmkvec.edu.in		
		Professor				
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in		
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in		
		Professor	-	-		

17PHBS05	SMART MATERIALS	Category	L	Т	P	Credit
		FC(BS)	3	0	0	3
DDEAMOLE						

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PREREQUISITE

COURSE OBJECTIVES

NIL

conducting materials.

COC	ASE OBJECTIVES
1	To explain the fundamental properties and classification of smart materials, crystalline materials, Nano materials,
	Magnetic materials and Super conducting materials.
2	To paraphrase the basic crystalline structure and its properties.
3	To illustrate the synthesis and fabrication of Nano materials.
4	To predict the application of smart materials, crystalline materials, Nano materials, Magnetic materials and Super

5 To analyze the various parameters of crystalline materials.

COURSE OUTCOMES

On the successful completion of the course, students will be able to								
CO1. Restate the properties of various materials.	Understand							
CO2. Summarize the various structures of materials.	Understand							
CO3. Predict the applications of various materials to designing equipments.	Apply							
CO4. Illustrate the properties of materials to designing equipments.	Apply							
CO5. Calculate the crystalline parameters of the materials.	Analyze							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	M	S				M			S	S		
CO2	S	M	S	M	S				M			M	S	M	M
CO3	S	S	S	S	S				S			M	S		M
CO4	S	M	S	M	S				M			M	S		M
CO5	M	S	S	M	M				S			M	M		M

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up

approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

1. Mani P, Engineering Physics II, Dhanam Publications, 2018.

REFERENCES:

- 1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

COUR	COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in							
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in							
3	Dr .G. LATHA	Professor	Physics	latha.physics@avit.ac.in							
4	Dr. R. N. VISWANATH	Professor	Physics	viswanath.physics@avit.ac.in							

17PCBS81	PHYSICAL SCIENCES LAB: PART A – REAL	Category	L	T	P	Credit
	AND VIRTUAL LAB IN PHYSICS	FC(BS)	0	0	2	1

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	To impart basic skills in taking reading with precision of physics experiments								
2	To inculcate the habit of handling equipments appropriately								
3	To gain the knowledge of practicing experiments through virtual laboratory.								
4	To know the importance of units								
5	To obtain results with accuracy								

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Recognize the importance of units while performing the experiments, calculating the physical parameters and obtaining results	Understand
CO2. Operate the equipments with precision	Apply
CO3. Practice to handle the equipments in a systematic manner	Apply
CO4. Demonstrate the experiments through virtual laboratory	Apply
CO5. Calculate the result with accuracy	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S													
CO2	S	S	M	M	S				M			M	M	M	
CO3	S														
CO4	S	S	M	M	S							S	M	M	
CO5	S	S													

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Young's modulus of a bar Non-uniform bending
- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc

- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Missions Research Foundation (Deemed to be University), Salem.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in		
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in		
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in		
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in		

17PCBS81

PHYSICAL SCIENCES PART B - ENGINEERING CHEMISTRY LAB

Category	L	T	P	C
FC(BS)	0	0	2	1

Preamble

The main objective of this course is to develop the intellectual and psychomotor skills of the students by imparting knowledge in water technology and quantitative analysis.

Prerequisite

NIL

Course	Objectives
1	To impart basic skills in Chemistry so that the student will understand the engineering
1	concept.
2	To inculcate the knowledge of water and electrochemistry.
	To lay foundation for practical applications of chemistry in engineering aspects.
3	To lay foundation for practical applications of chemistry in engineering aspects.

Course Outcomes

After the successful completion of the course, learner will be able to

CO1.	Estimate the chemical properties of water	Apply
CO2.	Determine the presence of various elements in the water	Analyze
CO3.	Calculate the strength of acids, oxidizing and reducing agents	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1.	S	M	M	-	L	M	M	S	-	-	-	M	-	-	M
CO2.	S	M	M	-	L	M	M	L	-	-	-	M	M	M	-
CO3.	S	S	M	-	L	M	M	M	-	-	-	M	-	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. Estimation of Iron by Spectrophotometer

TEXT BOOKS

1. Laboratory Manual on Engineering Chemistry prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

1. Laboratory Manual on Engineering Chemistry, K. Bhasin S, Dhanpat Rai Publishing Co Pvt Ltd

S.	Name of the Faculty	Designation	Department	Mail ID
No				
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbazagan@vmkvec.edu.in
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	gilbertsunderraj@vmkvec.edu.in
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor	_	-

17CMES02	BASIC CIVIL ENGINEERING	Category	L	Т	P	Credit
		CC	2	0	0	2

Preamble

The aim of the subject is to provide a fundamental knowledge of basic Civil Engineering

Prerequisite

Nil

Course Objectives

- 1.To understand the basic concepts of surveying and construction materials.
- 2. To impart basic knowledge about building components.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Describe the scientific terms related to surveying and construction materials.	Apply
Co2. Familiarize with the different components of building and forces acting on them.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	S	-	-	-	-	-	-	-	-	L
CO2	S	M	L	S	M	S	-	-	-	-	-	-	-	-	L

S- Strong; M-Medium; L-Low

Syllabus

UNIT - I SURVEYING AND CIVIL ENGINEERING MATERIALS 15 - hours

Surveying: Objects – types – classification – principles – measurements of distances – angles – levelling – determination of areas – illustrative examples.

Civil Engineering Materials: Bricks – stones – sand – cement – concrete – steel sections.

UNIT - II	BUILDING COMPONENTS AND STRUCTURES	15 - hours

Foundations: Types, Bearing capacity – Requirement of good foundations.

Superstructure: Brick masonry – stone masonry – beams – columns – lintels – roofing – flooring – plastering – Mechanics – Internal and external forces – stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping.

Text Books

1. "Basic Civil and Mechanical Engineering", VMU, (2017). Company Ltd., New Delhi, 2009

Reference Books

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.
- 2. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies.

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1.	S.SUPRIYA	jansupriyanair@gmail.com
2.	C.VAIDEVI	Vaidevi.c@avit.ac.in

17CMES02	B-BASICS OF MECHANICAL	Category	L	T	P	Credit
1/CNIESU2	ENGINEERING	FC(ES)	2	0	0	2

Preamble

Basic Mechanical Engineering gives the fundamental ideas in the areas of manufacturing and Automobile engineering. An engineer needs to understand, the basic manufacturing techniques and working principle of an Automobile Engineering Components.

Prerequisite –NIL

Course Objective

- 1 To demonstrate the principles of casting and metal joining processes in manufacturing.
- 2 To describe and to apply the in depth knowledge in automotive engines and important components.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Illustrate	with	the	application	of	casting	and	metal	joining	processes	in	Apply
COI.	manufacti	aring.										
CO2.	. Explain the operation of automotive engines and important components.											Understand

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	-	-	-	-	-	-	-	-	M	L	-
CO2	S	M	L	L	-	-	-	-	-	-	-	-	M	L	-

S- Strong; M-Medium; L-Low

Syllabus

FOUNDRY AND WELDING

Foundry: Introduction to Casting - Types, Pattern- Definition, Function. Foundry tools. Green Sand Moulding application.

Welding: Introduction to welding, Classification – Gas welding, Arc Welding, TIG, MIG, Plasma – Definitions. Arc Welding - Methods and Mechanisms – Applications.

AUTOMOTIVE ENGINES AND COMPONENTS

Introduction, Two stroke and four stroke cycle – Petrol and Diesel Engines - Construction and working, Fundamentals of automotive components - Brakes, Clutches, Governor, Flywheel, Axles, Drives etc., Fuel supply systems, Exhaust emission and control.

Text Books

1 Basic Civil and Mechanical Engineering, School of Mechanical Engineering Sciences, VMU, Salem

Reference Books

- K. Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai
 NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida
- 3 TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai

Course Designers

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.in
2	M.Saravanakumar	Asst. Prof	Mech /AVIT	saravanakumar@avit.ac.in

17EEES03	F	BASICS	S OF E		RICAL SINEE		ELECT	roni	CS	Catego	ory L	T	P	Credit
1/EEESUS		A.	BASI				NGINE	EERING	G	FC(E	S) 2	0	0	2
PREAMBLE It is a prelim discussed her graduates.	inary o													
PREREQUIS	SITE –	Nil												
COURSE OI	BJECT	IVES												
	ndersta eering.		electric	al inve	ntions,	basic o	concept	s of A	C and D	C circu	its and	basic la	ws of el	ectrical
2 To g	To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.													
3 To u	To understand the fundamentals of safety procedures, Earthing and Power system.													
COURSE OUTCOMES														
On the successful completion of the course, students will be able to														
CO1: Explain the evolution of electricity, name of the inventors, electrical quantities and basic laws of electrical engineering.														
CO2: Demons	strate O	hm's a	nd Fara	day's L	aw.						Apply			
CO3: Underst		basic o	concept	s of me	asuring	instrur	nents, e	electrica	l machir	neries	Unders	tand		
CO4: Analyz	e the		• •			loads,	power	rating	of elec	trical	Analyz	e		
CO5: Explain	the ele	ctrical s	safety a	nd prot	ective d	levices.					Unders	tand		
CO6: Comparof convention			• •		•	genera	ation sy	stems b	y applic	ation	Analyz	e		
MAPPING V						ES AN	D PRO	GRAM	IME SP	ECIFIC	OUT	COMES		
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	M	L		S							L	L		
CO2 S	M	S	S					M	-		M	L	L	
CO3 L	S	L		S					L		L	L	M	
CO4 S	M	S	L	L	S	S			S		L	L	M	M
CO5 L	M	S	M		S	M	M		S		L	L	L	L
CO6 S	L	S	L	M	S	S			M		L	L	L	L
S- Strong; M-	Mediu	n: L-Lo	ow	i		1	1	1	1	1		1	1	1

SYLLABUS

HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current— DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor & vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials – Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domestic load. Energy Efficient equipments – star ratings.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.
- 4. P. Selvam, R. Devarajan, A.Nagappan, T. Muthumanickam and T. Sheela"Basic Electrical and Electronics Engineering", First Edition, VMRFDU, Anuradha Agencies, 2017

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in			
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in			
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in			
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in			

17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	Category	L	Т	P	Credit
17EEES03	B. BASIC ELECTRONICS ENGINEERING	FC(ES)	2	0	0	2
DDEALDE						

PREAMBLE

The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, demultiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems.

PRERQUISITE – Nil

COURSE OBJECTIVES

- 1 To learn and identify various active and passive components and their working principles.
- 2 To understand the number conversion systems.
- To learn the digital logic principles and realize adders, multiplexer, etc.,
- 4 To understand the application oriented concepts in the communication systems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Interpret working principle and application of various active and passive electronic components like resistors, capacitors, inductors, diodes and transistors.	Understand
CO2. Construct the rectifiers and regulators circuits and explore their operations.	Apply
CO3. Execute number system conversions and compute several digital logic operations.	Apply
CO4. Design adders, Multiplexer, De-Multiplexer, Encoder, Decoder circuits.	Apply
CO5. Apply the modern technologies in developing application oriented gadgets like the UHD, OLED, HDR.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	-		1				M				S	-	-
CO2	S	M	M	M	1		M		M			M	S	M	-
CO3	S	M	M						M				M	-	-
CO4	S	M	M	M	1		M		M			M	S	-	M
CO5	S	M			M		M		M	M		M	M	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in				
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in				
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in				
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in				

17MEES84	ENGINEERING GRAPHICS	Category	L	T	P	Credit
1/1/12/2304	(Theory & Practice)	FC(ES)	1	0	4	3

Preamble

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Prerequisite - NIL

Course	e Objective
1	To implement the orthographic projections of points, straight lines, plane surfaces and solids.

- To construct the orthographic projections of sectioned solids and true shape of the sections.
- 3 To develop lateral surfaces of the uncut and cut solids.
- 4 To draw the pictorial projections (isometric and perspective) of simple solids.
- 5 To sketch by free hand the orthographic views from the given pictorial view.

Course Outcomes: On the successful completion of the course, students will be able to

	Course	outcomes. On the successful completion of the course, students will be able to	
	CO1.	To Interpret the physical geometry of any object through its orthographic or	UNDERSTAND
	CO1.	pictorial projections	
	CO2.	Apply in the form of drawing of the orthographic projections of points, straight	Apply
	CO2.	lines, plane surfaces and solids.	
	CO3.	To establish in the form of drawing of the orthographic projections of sectioned	Apply
		solids and true shape of the sections.	
	CO4.	Develop lateral surfaces of the solid section and cut section of solids.	Apply
	CO5.	Sketch the pictorial projections (isometric and perspective) of simple solids.	Apply
CO6.		To apply free hand sketch of the orthographic views from the given pictorial view.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
CO1	S	S	L	S	L	-	-	-	-	-	-	-	L	ı	-
CO2	S	S	L	S	L	-	-	-	-	-	-	-	L	ı	-
CO3	S	S	L	S	L	-	-	-	-	ı	-	-	L	ı	-
CO4	S	M	L	S	S	-	-	-	-	ı	-	-	L	ı	-
CO5	S	S	L	S	L	-	-	-	-	ı	-	-	L	ı	-
CO6	S	S	L	S	L	-	-	-	-	1	-	-	L	1	-

S- Strong; M-Medium; L-Low

Syllabus

PLANE CURVES AND FREE HAND SKETCHING

Conics – Construction of ellipse– First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

PROJECTION OF POINTS, LINES

Projection of points, Projection of straight lines located in the first quadrant: inclined to both planes – Determination of true lengths and true inclinations – rotating line method only.

PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section. Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ISOMETRIC VIEW AND PERSPECTIVE PROJECTION

Princip	les of isometric View – isometric scale – isometric view of simple solids- Introduction to Perspective									
projecti	ion									
Text B	ooks									
1	Natarajan K V, "Engine	ering Graphics", Tata M	McGraw-Hill Publishin	ng Company Ltd. New Delhi.						
2	K.Venugopal and V.Pra	lbhu Raja, "Engineering	g Graphics", New Age	International Private Limited.						
3	K.R.Gopalakrishna"Eng	gineering Drawing" (Vo	ol. I & II), Subhas Pub	lications, 2014.						
Refere	nce Books									
1	N.D. Bhat and V.M. Panchal, Engineering Graphics, Charotar Publishers 2013									
2	E. Finkelstein, "AutoCAD 2007 Bible", Wiley Publishing Inc., 2007									
3	R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.									
4	DhananjayA.Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw Hill Publishing Company Limited, 2008.									
5	G.S. Phull and H.S.San		phics", Wiley Publicati	ions, 2014.						
Course	e Designers									
S.No	Department /									
1	Prof. N.Rajan	Associate Professor	Mech / VMKVEC	rajan@vmkvec.edu.in						
2	Prof. M.SARAVANAN	Asst. Prof	Mech / AVIT	saravanan@avit.ac.in						

1700	ECA1		TEC	SENTET.	AT C AT	г <i>С</i> ОЪ/	IDI JTER	NC		Catego	ory	L '	Г Р	Cre	edit
17CS	ESUI		ESS	SENTIA	ALS OI	r COM	IPUIII	NG		ES		3	0 0	3	3
	ourse air sizing p												software i		
PRER	QUISI	ΓE – N	il												
COUF	RSE O	BJEC	ΓIVES	}											
1	To pr	ovide b	asic kno	owledge	e of har	dware a	ınd soft	ware co	mpone	nts of co	mputers.				
2	To int	roduce	and de	monstra	ite vario	ous soft	ware ap	plication	on pack	ages.					
3	To stu	ıdy Pro	blem so	olving T	echniqu	ues and	progra	m deve	lopmen	t cycle.					
4	To lea	arn abou	ut vario	us algo	rithm aı	nd iden	ifying	the algo	rithm e	fficiency	•				
5	To lea	arn diffe	erent al	gorithm	for var	rious ap	plicatio	on.							
COUF	RSE O	E OUTCOMES													
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)					
CO1. 7	Γo unde	erstand	the Bas	ic know	ledge o	n hard	ware an	d softw	are tern	ninologie	s.	Uno	derstand		
CO2. 7	Го Dem	onstrat	e the va	rious A	pplicati	ion Pac	kages 1	ike MS-	word, l	MS- Exce	el etc.	Apj	oly		
CO3.T		erstand	Progra	am Dev	olveme	ent Cyc	ele and	apply	various	s Problei	n Solvii	ng App	oly		
CO4.T	o analy	ze the	efficien	cy of A	lgorithi	ns.						Ana	alyze		
CO5.T	o Impl	ement o	of Algor	rithms f	or vario	ous con	cepts.					Apj	oly		
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCC	MES	AND I	PROG	RAMM	E SPEC	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	-	-	-	-	-	-	-	-	-	-	-	M	S	-
CO2	S	M	M	-	M	-	-	-	-	-	-	M	M	M	-
CO3	S	S	S	-	M	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	-	S	-	-	-	-	-	ı	-	-	-	-
CO5	S	M	M	-	M	-	-	-	-	-	1	S	-	-	-
G G,	ong: M	-Mediu	ım: L-I	LOW											

SYLLABUS

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system – Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software – Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle - Algorithm Development - Flow chart generation - Programming Constructs (Sequential, Decision-Making, Iteration) - Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

- 1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.
- 2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

S	. No.	Name of the Faculty	Designation	Department	Mail ID
	1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
	2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

2 To it is a second of the success of the success of the succes of the success	CE e of this conferent open source SITE OBJECT provide be introduce compute learn about compute output compute	IVES Pasic know differed the excent the exce	s to intrespect of the system amming owledgent method are progressed in the system of	roduce s along g tool ge on P hods in rams us nctions handlin	Python parties, strong by the python parties, strong python grant functions and the python py	orogran ring, tu	nming o	concept	rful dyna ython ha	s evolve			age to	
The purpose code for difference powerful op PRERQUIS NIL COURSE (1 To 1 2 To 1 3 To 2 4 To 1 5 To 6 COURSE (COLUMN COLUMN COLUM	e of this conferent open source SITE OBJECT provide be introduce compute learn abordon compute outcompute outcompute python sing various open source outcompute outc	IVES Pasic know differed the excent the exce	owledgent method prent fur eption	s along g tool ge on P hods in rams us nctions handlin	ython parties, stressing python grunce	progran ring, tu thon co	nming o	concept	ython ha	s evolve				
COURSE COURSE COURSE COO1. Learn methods usin CO2. Apply	provide be introduce compute learn about compute OUTCOM ressful compute python sing various	differer differer ut diffe excent the excent	ent method in the programment function on of the	hods in rams us nctions handlin	i list, st sing py s in pyt ng func	ring, tu thon co	ple, dic ontrol st	tionary	and sets					
1 To j 2 To i 3 To o 4 To j 5 To o COURSE (On the succ CO1. Learn methods usi CO2. Apply	provide be introduce compute learn about compute OUTCOM ressful compute a python sing various	differer differer ut diffe excent the excent	ent method in the programment function on of the	hods in rams us nctions handlin	i list, st sing py s in pyt ng func	ring, tu thon co	ple, dic ontrol st	tionary	and sets					
2 To it 3 To it 4 To it 5 To it COURSE (On the succ CO1. Learn methods usi CO2. Apply	introduce compute learn abo compute OUTCON ressful con a python s ing variou	different differ	ent method in the programment function on of the	hods in rams us nctions handlin	i list, st sing py s in pyt ng func	ring, tu thon co	ple, dic ontrol st	tionary	and sets	•				
3 To a 4 To 3 5 To a COURSE CO On the succ CO1. Learn methods usi CO2. Apply	compute learn abo compute OUTCOM ressful compute python sing various	differer ut diffe the exce MES mpletio tatemer	nt progressive prent fundamental fundament	rams us nctions handlin	sing py s in pyting func	thon co	ontrol st			•				
4 To 1 5 To 6 COURSE (On the succ CO1. Learn methods usi CO2. Apply	learn abo compute OUTCOM essful con python s ing variou	ut diffe the exco MES mpletio tatemer	rent fur eption	nctions handlir	s in pyting func	hon.		atemen	its.					
5 To of COURSE On the succe CO1. Learn methods usin CO2. Apply	OUTCOM essful con python s ing variou	the exco MES mpletio tatemer	eption on of the	handlir	ng func		ile cond							
On the succe CO1. Learn methods usi CO2. Apply	OUTCOMESSESSESSESSESSESSESSESSESSESSESSESSESS	MES mpletio tatemer	n of the			tions, i	песоп	onte or	od CSV o	nd ISO	N			
On the succ CO1. Learn methods usi CO2. Apply	essful con python s ing variou	mpletio tatemer		e cours				epis ai	iu CS V a	ilu JSO	11.			
CO1. Learn methods usi CO2. Apply	python s ing variou	tatemer			se, stud	ents wi	ll be ab	le to						
CO2. Apply					s and in				out and o	utput	Underst	and		
	y the ditte					ist Stri	no Tur	iles and	l Diction	arv	Apply			
•	n solution										Apply.			
statements. CO4.Apply generators.	the funct	ion pro	grams	with al	l the co	oncepts	like laı	nbda, d	lecorator	s and	Apply.			
CO5. Comp						, file co	ncept p	rogran	ns and		Apply			
MAPPING						IES A	ND PR	OGRA	MME S	PECIF	IC OUT	COME	S	
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSC 3
CO1 S	M	M	M	M	-	-	-	-	-	-	-	-	M	-
CO2 S	M	M	M	M	-	-	-	-	-	-	-	M	-	-
CO3 M		S	S	M	-	-	-	-	-	-	-	M	M	<u> </u>
CO4 S CO5 S	S M	S M	S M	M M	-	-	-	-	-	-	-	M	M M	- M
S- Strong; N				IVI	_	_	-	_	_	-			IVI	IVI
3- Buong, N	VI-IVICUIUI	.II, L-L(J VV											

SYLLABUS

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionary operations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUR	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

17EEES82	ENGINEERING SKILLS PRACTICE LAB	Category	L	Т	P	Credit
	A. BASIC ELECTRICAL ENGINEERING	FC(ES)	0	0	2	1

PREAMBLE

It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various types of earthing methods.

PRERQUISITE – NIL

COURSE OBJECTIVES

- To learn the residential wiring and various types of electrical wiring.
- 2 To measure the various electrical quantities.
- 3 To know the necessity and types of earthing and measurement of earth resistance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO 1: Implement the various types of electrical wiring.	Apply

CO 2: Measure the fundamental parameters of AC circuits.

Analyze

CO 3: Measure the earth resistance of various electrical machineries.

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L		S							L	L	M	L
CO2	S	M	S	S					M			M	L	M	L
CO3	L	S	L		S					L		L	L	M	L

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring.
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

62

17EE	EES82							TICES			ategory	L	Т	P	C	redit
17151	2E302	PA	RT B -	BASIC	C ELE(CTRON	NICS E	NGINI	EERIN	G 1	FC(ES)	0	0	2		1
This c		s to pr									eering. I					
PRER	QUISI	TE – N	ïl													
COUL	RSE OF	BJECT	IVES													
1	To fan	niliarize	the ele	ectronic	compo	nents, l	oasic el	ectronic	equipi	nents an	d solderi	ng techi	niques			
2	To stu	To study the characteristics of Diodes, BJT and FET.														
3	To understand the principles of various digital logic gates.															
4	To understand the concept of basic modulation techniques.															
COUL	URSE OUTCOMES															
On the	succes	sful cor	npletio	n of the	course	, studen	ts will	be able	to							
CO1.	Constru	ct expe	riments	for PN	and Ze	ner dio	de char	acterist	ics		1	Underst	and			
CO2. 1	Demons	strate th	e funda	mentals	s of solo	dering t	echniqu	ies.				Apply				
CO3. 0	Classify	the cha	aracteri	stics of	Diodes	, BJT a	nd FET	`.			4	Apply				
CO4. 1	Distingu	iish bet	ween a	mplitud	e and fi	requenc	y modu	ılation t	techniqu	ues.	4	Apply				
CO5.	Verify t	he truth	tables	of logic	gates ((AND,	OR, NO	OT, NA	ND, NO	OR, XOF	R).	Apply				
MAPI	PING V	VITH P	ROGE	RAMM	E OUT	COMI	ES ANI) PRO	GRAM	ME SPI	ECIFIC	OUTC	OMES	8		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S M M M															
CO2	M	M	M						M		M		N	1		
CO3	S	M							M		M		N	1		

M

M

M

M

S

S

M

 \mathbf{M}

M

S- Strong; M-Medium; L-Low

S

S

CO4

CO5

M

M

M

LIST OF EXPERIMENTS

- 1. Identifying Electronics Components.
- 2. Practicing of Soldering and Desoldering.
- 3. Characteristics of PN junction Diode.
- 4. Characteristics of Zener diode.
- 5. Input & Output characteristics of BJT.
- 6. Transfer characteristics of JFET.

- 7. Verification of Logic Gates.
- 8. Study of Amplitude Modulation.9. Study of Frequency Modulation.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

	ENGINEERING SKILLS PRACTICE
17CMES81	LAB
	PART A - BASIC CIVIL ENGINEERING

Category	L	T	P	Credit
CC	0	0	2	1

Preamble

Engineering Skills Practice is a hands-on training practice to Mechanical, Civil and Mechatronics Engineering students. It deals with fitting, carpentry, sheet metal and related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution

Prerequisite

Nil

Course Objectives

- 1.To understand the basic concepts of surveying and construction materials.
- 2. To impart basic knowledge about building components.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Prepare the different types of fitting.	Apply
Co2. Prepare the different types of joints using wooden material	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	L	L	L	L	L	L	L	L	L	L	L	-	L	L
CO2.	S	S	S	L	L	L	L	L	L	L	L	L	-	L	L

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS:

Buildings:

1. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

Plumbing Works:

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- 3. Study of pipe connections requirements for pumps and turbines.
- 4. Preparation of plumbing line sketches for water supply and sewage works.
- 5. Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- 6. Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- 7. Study of the joints in roofs, doors, windows and furniture.
- 8. Hands-on-exercise: Wood work, joints by sawing, planning and cutting.

Text Books

1." Laboratory Reference Manual

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1.	S.Supriya	jansupriyanair@gmail.com
2.	C.Vaidevi	<u>Vaidevi.c@avit.ac.in</u>

45 C) 45 CO	ENGINEERING SKILLS PRACTICE LAB	Category	L	Т	P	Credit
17CMES81	B. BASIC MECHANICAL ENGINEERING	FC(ES)	0	0	2	1
Preamble			•	•		
Workshop is	a hands-on training practice to Mechanica	al Engineerir	ng stu	dents.	It deals	with fitting,

Workshop is a hands-on training practice to Mechanical Engineering students. It deals with fitting, carpentry, foundry and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

Prerequisite -NIL

Course Objective

- 1 To perform the practice in different types of fitting processes.
- 2 To utilize the different type of joints using wooden materials.
- 3 To perform and acquire in depth knowledge in metal joining processes.
- 4 To demonstrate the pattern using foundry processes.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Identify the different types of fitting using MS plate.	Apply
CO2.	Predict the different types of joints using wooden material	Apply
CO3.	Utilize the different types of joining process in metal by Arc Welding	Apply
CO4.	Make use of different types of green sand mould	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO	PSO	PSO	PS											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	O3
CO1	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
CO4	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

 $Tee - \overline{Fitting}$

Vee – Fitting

Preparation of a mould for a single piece pattern

Preparation of a mould for a split piece pattern

Half- Lap Joint in Carpentry

Dove Tail Joint in Carpentry

Lap Joint – Welding

Butt Joint – Welding

Text Books

1 BASIC MECHANICAL ENGINEERING, LAB MANUAL

Reference Books

- 1 K. Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai
- NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida

Course Designers

S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Dr. V. K. Krishnan	Associate Professor	Mech / VMKVEC	vkkrishnan@vmkvec.edu.in
2	B.SELVA BABU	Assistant Professor	Mech/AVIT	selvababu@avit.ac.in

67

15000000		Category	L	T	P	Credit
17CSES83	PROGRAMMING IN PYTHON LAB	ES	0	0	4	2
PREAMBLE			1			
Γhis laboratory	enables the students clearly understand the basi	c concepts of pyth	on, conti	ol stat	ements	and file
commands in p	ython.					
PRERQUISIT	TE .					
NIL						
COURSE OU	TCOMES					
On the success:	ful completion of the course, students will be abl	le to				
			,	Under	stand	
CO1. Learn Sy	ntax and Semantics and create Functions in Pyth	ion				
	ntax and Semantics and create Functions in Pyth trings and Files in Python.	ion		Under	stand	
CO2. Handle S	<u> </u>			Unders Apply	stand	
CO2. Handle S	trings and Files in Python.				stand	
CO2. Handle S CO3. Design so statements.	trings and Files in Python.				stand	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	M	L	-	-	-	-	-	-	-	-	-	M	-	M
CO3	S	M	M	-	-	-	-	-	-	-	-	-	M	-	М
CO4	S	M	M	-	-	-	-	-	-	-	-	-	M	-	M
CO5	S	M	M	-	-	-	-	-	-		-	-	-	M	-

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
3	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

17ECCC01	SEMICONDUCTOR DEVICES	Category	L	Т	P	Credit
		CC	3	0	0	3

PREAMBLE

The course is designed to teach the physical principles and operational characteristics of semiconductor devices with emphasis on metal-oxide systems, bipolar, high-electron mobility, and field-effect transistors. Topics also include SCR, TFET, HEMT, Silicon Nano Wire tubes. The course provides advanced background in solid state electronic devices and is intended to help students to develop their basic analytical skills and continue advanced research in the varied branches of semiconductor devices.

PRERQUISITE NIL															
COURSE OBJECTIVES															
1	To emphasis the physics of semiconductors and the working of semiconductor devices like PN and Zener diodes														
	with th	with their applications.													
2	To imp	To impart knowledge on working principle, configuration, operational characteristics and limitation of BJTs.													
3	To und	To understand the construction and Characteristics of JFETs and MOSFETs.													
4	To stud	To study the working principle and applications of discrete and integrated voltage regulators													
5	To familiarize with several special semiconductor devices like SCR, MISFET, TFET, HEMT and Silicon Nano									Nano					
	Wire tubes.														
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1. I	Explain	the ele-	ctron	transpo	rt proj	perties	and o	peratio	n of	semicond	uctor U	nderstan	d		
devices	like D	oiode a	nd thei	r relev	ant ap	plication	ns like	HWR	, FWR	d, Clipper	r and				
Clampe	r, etc.,														
CO2. Q	O2. Quantify the specification and characteristics of BJT in different configuration. Apply														
CO3. D	emonstr	ate RM	S and	ripple f	factor v	alues o	f RC f	ilters ii	n simpl	e power	supply A	pply			
and vol	tage reg	ulators	circuits												
CO4. R	CO4. Relate the construction and characteristics of JFET and its families. Apply														
CO5 F															
CO5. Examine the characteristics and applications of special devices like Shockley Apply															
Diode, Unijunction Transistor, Phototransistors, MISFETs, MESFETs, etc.,															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	-	-	-	-	-	-	M	-	-	M	M	-	-
CO2	M	M	M	-	-	-	_	ı	M	1	-	M	M	M	-
CO3	M	M	M	-	-	-	M	-	M	-	-	M	M	-	-
CO4	S	M	M	M	-	-	M	-	M	-	-	M	S	M	-
CO5	S	М	-	М	-	-	-	_	M	-	-	М	S	M	M

S- Strong; M-Medium; L-Low SYLLABUS

SEMICONDUCTOR DIODES AND APPLICATIONS

Introduction, Semiconductor Materials - Ge, Si, and GaAs, Covalent Bonding and Intrinsic Materials, Energy Levels, n-Type and p-Type Materials, Semiconductor Diode, Resistance Levels, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Reverse Recovery Time, Diode Specification Sheets, Semiconductor Diode Notation, Diode Testing, Zener Diodes, Light-Emitting Diodes, Sinusoidal Inputs; Half-Wave Rectifier, Full-Wave Rectifier, Clipper, Clamper, Zener Diode, Voltage-Multiplier Circuits, Practical Applications

BIPOLAR JUNCTION TRANSISTORS

Introduction, Transistor Construction, Transistor Operation, Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Transistor Specification Sheet, Transistor Testing, Transistor Casing and Terminal Identification.

FIELD EFFECT TRANSISTORS

Introduction, Construction and Characteristics of JFETs, Transfer Characteristics, Important Relationships, Depletion-Type MOSFET, Enhancement-Type MOSFET, MOSFET Handling.

VOLTAGE REGULATORS

Introduction, General Filter Considerations, Capacitor Filter, RC Filter, Discrete Transistor Voltage Regulation, IC Voltage Regulators.

SPECIAL PURPOSE DEVICES

Introduction, Silicon-Controlled Rectifier, Basic Silicon-Controlled Rectifier Operation, SCR Characteristics and Applications, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFETs, TFETs, HEMTs, Silicon Nano Wire Transistor.

TEXT BOOK:

 Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2013.

REFERENCE BOOKS:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 2010.
- 2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford Press, 2009.
- 3. B L Theraja, R S Sedha, "Principles of Electronic Devices and Circuits", S.Chand, 2004.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1.	Dr.P.Selvam	Professor	ECE	hodeee@vmkvec.edu.in			
2.	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in			
3.	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in			
4.	Mr. R. Karthikeyan	Assistant Professor	ECE	rrmdkarthikeyan@avit.ac.in			

17ECCC02	ANALOG CIRCUITS	Category	L	T	P	Credit	
		CC	3	0	0	3	
PREAMBLE							

Analog circuits enables the students to have an insight knowledge on fundamentals of various electronic circuits. The designed course makes the students to work on the various applications of the electronic devices. This subject helps the students to design, model and develop rectifier circuits, amplifier circuits, oscillator circuits and many other real time application circuits

PREREQUISITE

17ECCC01 - Semiconductor Devices							
COURSE OBJECTIVES							
1	To understand the small signal BJT/FET Models.						
2	Identify the frequency response of BJT and FET.						
3	Apply the basic concept and working of various types of feedback amplifiers and oscillators.						
4	To understand the working different types of large signal amplifiers and tuned amplifiers.						
5	5 To learn about various compound configurations of multivibrators.						
COU	RSE OUTCOMES						
On the successful completion of the course, students will be able to							
CO1.	Illustrate the small signal models of BJT/FET amplifiers.	Apply					
CO2. Design an amplifier for a given frequency response. Apply							
	Construct different oscillators, multivibrators & compound configurations redback amplifier circuits.	Apply					
CO4.	Design oscillator circuits by using simulation tools.	Apply					
	Analyze various parameters of feedback amplifier (voltage series, voltage current series and current shunt) by using simulation tools.	Analyze					
	Analyze the efficiency of large signal amplifiers and bandwidth of tuned fier by using simulation tools.	Analyze					

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO2	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
CO3	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
CO4	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
CO5	S	S	S	S	M	-	-	-	-	-	-	M	S	M	M
C06	S	S	S	S	M	-	-	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

BIASING CIRCUITS AND SMALL SIGNAL MODELS

Biasing circuits: DC load line and bias point – BJT biasing circuits – FET biasing circuits. Small-signal models: AC load line, Two port devices and hybrid Model, Analysis of transistor amplifier circuits using hparameters, Hybrid- π CE transistor model.

BJT AND JFET FREQUENCY RESPONSE

BJT amplifiers: CE, CB and CC amplifiers, FET amplifiers: CS, CG and CD amplifiers –designing BJT & FET amplifier networks Frequency response: low frequency response of BJT with RL, Low frequency response of FET amplifiers – Miller effect capacitance – high frequency response of BJT and FET amplifiers, Multistage frequency effect.

FEEDBACK AMPLIFIERS AND OSCILLATOR CIRCUITS

Classification of Amplifiers, Feedback Concepts, Effect of Negative Feedbacks, Voltage Series Feedback, Current Series Feedback, Voltage Shunt Feedback and Current Shunt Feedback, Oscillator basics, Types of Oscillators-RC oscillator, LC Oscillator and Crystal Oscillator.

LARGE SIGNAL AMPLIFIERS AND TUNED AMPLIFIERS

Class A Large Signal amplifier, Second Order Distortion, Push –Pull Amplifier, Class B, Class AB amplifiers, Class C amplifiers, Tuned amplifiers – single tuned – double tuned – synchronously tuned amplifiers –Real Time Applications of amplifiers.

COMPOUND CONFIGURATIONS AND MULTIVIBRATORS

Introduction, Cascade Connection, Cascode Connection, Darlington Connection, Differential Amplifier Circuit, CMRR, Schmitt Trigger.

TEXT BOOKS:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 4TH Edition, 2015.
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2013.

REFERENCE BOOKS:

- 1. Adel S Sedra, Kenneth C Smith, "Microelectronic Devices", Oxford University Press, 7th Edition, 2015.
- 2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- 3. Jacob Millman, Christos C Halkias, Chetan D Parikh, "Integrated Electronics", Tata McGraw Hill, 2nd Edition, 2010.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.A.Nagappan	Professor	BME	principal@vmkvec.edu.in			
2	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in			
3	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in			
4	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in			

				1	ı	1	,					
17E(CCC03	PASSIVE NETWORK ANALYSIS & SYNTHESIS										
		SINIHESIS	CC	3	0	0	3					
PREAN												
A netw	A network refers to any interconnected set of objects. An 'electrical network' is an interconnection of											
electrica	electrical elements (Active and Passive) such as resistors, inductors, capacitors, transformers, diodes,											
sources.	arces, controlled sources and switches. Passive networks have interconnection of elements which cannot											
	generate energy but can dissipate or stored energy. All electrical and electronic devices can be represented											
by elect	ric circuits.	So formulation of equivalent circuit and the study	of behavio	or of	the d	evice	s such as					
filters a	nd attenuato	rs or networks is formulated by analyzing the ed	quivalent cir	rcuit	with	netw	ork laws,					
theorem	and graph th	neory.										
PRERI	EQUISITE:-	NIL										
COURS	COURSE OBJECTIVES											
1	1 To understand basic circuit concepts.											
2	To study networks and solution of DC and AC circuits.											
3	To understand series and parallel resonance concepts and analysis of coupled circuits.											
4	To introduce different methods of circuit analysis using Network theorems, duality and topology.											
5	To understand transient analysis of RL, RC and RLC circuits with DC and sinusoidal excitations.											

COURSE OUTCOMES

On the successful completion of the course, students will be able to							
CO1. Explain the basic circuit analysis concepts	Understand						
CO2. Apply the knowledge of basic circuital law and simplify the network using reduction techniques	Apply						
CO3. Infer and analyze transient response, Steady state response, network functions	Analyze						
CO4. Analyze circuits using ideal passive elements and controlled sources	Analyze						
CO5. Synthesize one port and two port networks and devices	Analyze						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	PSO2	PSO
		2	3										O1		3
CO1	M	M	L	-	-	-	-	-	-	-	-	-	S	M	-
CO2	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-
CO3	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-
CO4	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-
CO5	S	S	M	-	M	-	-	-	M	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CIRCUIT ANALYSIS AND NETWORK TOPOLOGY

Ohm's Law – Kirchhoff's laws – Mesh current and node voltage method of analysis for D.C and A.C. circuits - Network terminology - Graph of a network - Incidence and reduced incidence matrices – Trees – Cutsets - Fundamental cutsets - Cutset matrix – Tie sets - Link currents and Tie set schedules - Twig voltages and Cutset schedules, Duality and dual networks.

NETWORK THEOREMS AND TRANSFORMATIONS

Network theorems - Superposition theorem, Thevenin's theorem, Norton's theorem, Reciprocity theorem, Millman's theorem, and Maximum power transfer theorem ,application of Network theorems - Network reduction: voltage and current division, source transformation – star delta conversion.

RESONANCE AND COUPLED CIRCUITS

Resonance - Series resonance - Parallel resonance - Variation of impedance with frequency - Variation in current through and voltage across L and C with frequency - Bandwidth - Q factor - Selectivity. Self inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of multiwinding coupled circuits - Series, Parallel connection of coupled inductors - Single tuned and double tuned coupled circuits.

TRANSIENT ANALYSIS

Natural response - Forced response - Transient response of RC, RL and RLC circuits to excitation by Step Signal, Impulse Signal and exponential sources - Complete response of RC, RL and RLC Circuits to sinusoidal excitation.

TWO PORT NETWORKS AND SYNTHESIS

Two port networks, Z parameters, Y parameters, Transmission (ABCD) parameters, Hybrid(H) Parameters, Interconnection of two port networks, Symmetrical properties of T and TT networks.

Synthesis of One Port and two port Networks: Properties and synthesis of R-L, R-C, L-C Impedance and Admittance Functions. Filters and attenuators.

TEXT BOOKS:

- 1. William H. Hayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", McGraw Hill Science Engineering, Eighth Edition, 11th Reprint 2016.
- 2. Joseph Edminister and Mahmood Nahvi, "Electric Circuits", Schaum's Outline Series, Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 2016.

REFERENCE BOOKS:

- 1. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth Edition, McGraw Hill, 9th Reprint 2015.
- 2. A.Bruce Carlson," Circuits: Engineering Concepts and Analysis of Linear Electric Circuits", Cengage Learning, India Edition 2nd Indian Reprint 2009.
- 3. Allan H.Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage Learning, Fifth Edition, 1st Indian Reprint 2013.

S.No.	Name of the Faculty	Designation	Dept	Mail ID				
1	Mr.C.Arunkumar	Assistant	ECE	arunkumarmadhuvappan@vmkvec.edu.in				
	Madhuvappan	Professor		T T T T T T T T T T T T T T T T T T T				
2	Mr.R.Thirunavukkarasu Assistant		ECE	thirunavukkarasu@vmkvec.edu.in				
	Wif. R. Tilli ulla vukkarasu	Professor	LCL	tiii unavakkarasu @ viiikvee.edu.iii				
		Assistant						
3	Mr. R. Karthikeyan	Professor	ECE	rrmdkarthikeyan@avit.ac.in				
		(Gr-II)						

17ECC	C04	SIGNALS AND SYSTEMS	Category	L	T	P	Credit		
1/1200		DEGITIED THE DEFINIO	CC	3	0	0	3		
PREAM Signals a		estems arise in a wide variety of fields. These concepts a	and techniques	s asso	ciated	with	in areas of		
		chnology. Signals are functions of one or more independe ture of some phenomenon. Signals vary continuous / discr							
signals b	y prod	ducing other signals (output) having some desired behave tems and to design systems to enhance or restore signals to	vior. It introdu	uces t	he stu	dents	s to analyz		
PRERE							<u>.</u>		
COURS	E OB.	JECTIVES							
1 Т	Γo und	lerstand the various classifications of Continuous time and	d Discrete tim	e Sigi	nals ar	d Sy	stems.		
2 Т	To learn about the spectral analysis of Periodic and Aperiodic Signals using Fourier series.								
3 Т	Го ітр	part the knowledge in analysis and characterization of the	CT system the	rough	Lapla	ce tra	ansforms.		
	To learn about the analysis and characterization of the DT system through Discrete Fourier Transforms and Z Transform.								
COURS	E OU'	TCOMES							
On the su	uccess	ful completion of the course, students will be able to							
CO1. Cla	assify	the type of signals and systems.				Un	derstand		
and		ne the time and frequency domain characteristics of continuidic signals with the properties of Fourier Series and Fourely.	-			1	Apply		
CO3. Fir	nd the	response of a continuous time LTI System using convolut	tion.			1	Apply		
		ne the time and frequency domain characteristics of discressignals using the properties of DTFT, DFT & Z-Transfor	-		d	1	Apply		
	-	DFT and IDFT coefficients of a given discrete time sequ Transform algorithms.	ence using Fa	ıst		1	Apply		
_	oply an	nd characterize the causality and stability of Discrete LTI sens.	system using Z	Z-		1	Apply		

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L	-	-	-	-	-	-	-	-	-	S	M	-
CO2	S	M	M	-	M	-	-	-	M	-	-	M	-	-	-
CO3	S	M	M	-	M	-	-	-	M	-	-	M	-	-	-
CO4	S	M	M	-	M	-	-	-	M	-	-	M	-	-	-
CO5	S	M	M	-	M	-	-	-	M	-	-	M	S	M	S
C06	S	S	M	-	M	-	-	-	M	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals, Discrete time signals, Unit step, Unit ramp, Unit impulse – Representation of signals in terms of unit impulse, Classification of continuous time signals & Discrete time signals-Continuous time systems-Discrete time systems- Classification of continuous time systems and Discrete time systems.

ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series analysis-Representation of Continuous time Periodic signals – Trigonometric and exponential-Spectral Properties of Periodic power signals - Properties of Continuous time Fourier series – Parseval's relation for power signals, Fourier transform analysis-Representation of Continuous time signals- Properties of Continuous time Fourier transform –Fourier transform of a Periodic function, Rayleigh's Energy theorem.

LTI CONTINUOUS TIME SYSTEM

Convolution Integral, Impulse response, Solution of Differential equation with initial conditions- Zero state response and Zero input response, Block diagram representation, Fourier methods for analysis, Laplace transform analysis.

ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS

Representation of sequences – Discrete Time Fourier Transform (DTFT) - Discrete Fourier Transform (DFT) and its properties –Fast Fourier Transform-FFT Algorithm, DIF & DIT-Z Transform-Inverse Z Transform, Unilateral Z-Transform.

LTI DT SYSTEM

Convolution sum - Impulse response and properties of LTI systems - Difference equations - Z Transform analysis - System stability and causality - Frequency response - Block Diagram representation.

TEXT BOOKS:

- 1. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Pearson education, 2nd edition, 2007.
- 2. John G. Proakis and Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", Pearson Education, 4thEdition, 2007.

REFERENCE BOOKS:

- 1. B.P. Lathi, "Linear Systems & Signals", Oxford Press, Second Edition, 2009.
- 2. Rodger E Ziemer, William H. Tranter, D. Ronald Fannin, "Signals and Systems continuous and Discrete", Pearson Education, 4th Edition, 2009.
- 3. Douglas K Linder, "Introduction to Signals and Systems", Mc-Graw Hill, 1st Edition, 1999.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

17CSCC33

PROBLEM SOLVING USING COMPUTER

Category	L	T	P	Credit			
CC	3	0	0	3			

PREAMBLE

S- Strong; M-Medium; L-Low

This course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

compu	computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.														
PRER	QUIS	ITE													
Nil															
COUI	RSE O	BJEC'	TIVES	5											
1.	To ur	To understand the basic concepts of problem solving methodology.													
2.	To st	To study and apply algorithm design.													
3.	To st	To study and apply programming and developing skills.													
4.	To understood, analyze and evaluate the problem.														
5.	To ap	To apply, analyze, evaluate and solve the problem by using programming concepts.													
COUI	RSE O	SE OUTCOMES													
On the	succe	successful completion of the course, students will be able to													
CO1.	Comprehend the role of computing and use of programming concepts in Understand														
	loping engineering solutions.														
	2. Develop algorithms to solve fundamental mathematical problems, merging, Apply														
	g and so			<u>C</u> ,			1		1.				A 1		
							and patte				• ,		Analy		
	•	•			•		the prob			•		parts,	Evalu	ate	
solution		uai pai	ts usin	g prope	1 Conti	or struc	ctures an	ia com	pose i	into an c	overan				
CO5.	Desig	n algo	rithmic	solutio	ns to p	roblen	ns drawn	from	engine	eering c	ontexts	and	Apply	I	
			•				anguage								
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCO	MES A	ND PF	ROGR	RAMM	E SPE	CIFIC	OUTC	OMES	
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	M	М	M	-	-	-	-	-	-	-	-	M	-	-
CO2	М	М	М	M	-	-	-	-	-	-	-	-	M	-	-
СОЗ	М	М	S	M	-	-	-	-	-	-	-	-	M	-	-
CO4	S	M	М	M	-	-	-	-	-	-	-	-	M	-	M
CO5	S	M	M	M	-	-	-	-	-	-	-	-	M	-	M

SYLLABUS

Introduction to problem solving with computers - Computing Systems:

Hardware and Software – Engineering Problem Solving Methodology: problem specification and analysis, algorithm design, flowchart, implementation, program testing and verification.

Algorithm Design: Fundamental algorithms:

Swapping of two variables – counting – summation of set of numbers – factorial – Fibonacci sequence – base conversion Factoring Techniques: smallest divisor of an integer – greatest common divisor – generating prime number – generating prime factor

Merging, Sorting and Searching Techniques:

Two way merge – sorting by selection sort – sorting by exchange – sorting by insertion – linear search – binary search Array techniques: Array order reversal – Statistical measurement - array counting - array Partitioning Text Processing and Pattern Searching: Key word search – text line editing –linear pattern search.

Programming Concepts:

Basics of programming -Constant, variable, keywords, data types - Operators, operator precedence, expressions - Control Structures: Selection structure- Repetition Structure.

Modular Programming and Functions:

User defined functions- Recursive functions Array Handling: 1-D, 2-D: declaration – initialization, Using arrays as function arguments- Strings Pointers: Basics of Pointers - Arrays and Pointers - Pointers and Functions - Structures and Union - File Handling.

TEXT BOOK:

1. R. G. Dromey, "How to solve it by Computer", Pearson Education India,2014

REFERENCES:

- 1. Maureen Sprankle, Jim Hubbard, "Problem Solving & Programming Concepts",
- 2. Prentice Hall, 2012
- **3.** Jeri R. Hanly Elliot B. Koffman, "Problem Solving and Program Design in C", 7th Edition, Pearson, 2013
- **4.** Delores M. Etter, "Engineering Problem Solving with C", Pearson, 4th Edition, 2013.
- 5. Donald E. Knuth, "Art of Computer Programming", Pearson Education, 2012.
- 6. Yashavant Kanetkar, "Let us C", 8th Edition, BPB Publications, 2007.

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in
2.	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17ECCC05	DIGITAL LOGIC CIRCUITS & DESIGN	Category	L	Т	P	Credit
1/ECCC05	DIGITAL LOGIC CIRCUITS & DESIGN	CC	3	0	0	3

PREAMBLE

One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent of integrated circuits(ICs). Developments in the IC technology have made it possible to fabricate complex digital circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques suitable for a variety of digital system design applications.

PREREQUISITE

	17EEES03 - Basics of Electrical and Electronics Engineering							
COU	COURSE OBJECTIVES							
1	1 To understand the various number systems and their conversions.							
2	To learn the Boolean expressions, Boolean postulates and Karnaugh map method	d to reduce the variables.						
3	To impart the design knowledge of various combinational logic circuits and seq	uential circuits.						
4	To understand the basics of hardware descriptive language.							
5	5 To design the RTL for various logic circuits.							
COL	URSE OUTCOMES							
On t	ne successful completion of the course, students will be able to							
CO1	. Explain the basic principles of digital system, Logic gates and Boolean laws.	Understand						
CO2	CO2. Simplify Boolean expression using K-Map techniques. Apply							
CO3	CO3. Examine various Combinational circuits using logic gates. Apply							
CO4	CO4. Illustrate the operation of sequential circuits using Flip flops Analyze							
CO5	Analyze various digital circuits using HDL programming.	Analyze						

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
														O2	
CO1	S	M	L	-	-	-	-	-	-	-	-	L	S	-	-
CO2	S	M	M	L	L	-	-	-	-	-	-	L	S	M	-
CO3	S	S	M	M	M	-	-	-	-	-	-	L	S	M	M
CO4	S	S	M	M	M	-	-	-	-	-	-	L	S	M	M
CO5	S	S	M	M	M	-	-	-	-	-	L	L	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

Basics of digital system:

About Digital system, Analog versus Digital, Advantages of processing information in digital form, Number System-Binary,Octal,Decimal & Hexadecimal Number Systems & its Conversion, Complement Arithmetic, Signed Binary Numbers, Binary Codes, Binary Storage And Registers.

Boolean Algebra, Logic Gates & Gate –Level Minimization:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable K-maps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL).

Combinational logic:

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder, Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers.

Synchronous Sequential Logic, Register & Counters:

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters.

Design At The Register Transfer Level:

Register Transfer Level Notation, Register Transfer Level In HDL, ASM, Sequential Binary Multiplier, Control Logic, HDL Description Of Binary Multiplier, Design With Multiplexers, Race Free Design, Latch Free Design.

TEXT BOOKS:

- 1. Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
- 2. John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall, 2005.

REFERENCE BOOKS:

- 1. Stephen D. Brown, and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design, 2nd Edition," McGraw Hill, June, 2007.
- 2. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.
- 3. Floyd T.L., "Digital Fundamentals", Charles E. Merrill publishing Company, 1982.
- 4. Tokheim R.L., "Digital Electronics Principles and Applications", Tata McGraw Hill, 1999.
- 5. Jain R.P., "Modern Digital Electronics", Tata McGraw Hill, 1999

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

		E	LECT	RONI	CS MI	EASUR	REMEN'	T ANI	,	Catego	rv	L	Т	P		redit
17E(CCC06		2201			ENTA'				CC	- 3	3	0	0		3
PREA	MBLE												Ü			
To und	derstand	d the	Basic c	concep	ts of e	lectron	ic meası	uremen	ts, Sig	gnal Ge	nerator	and A	Analyse	ers,	Trans	ducers,
							suremen						•			
PRER	QUISI	TE														
	NIL															
COUF	URSE OBJECTIVES															
1	To familiarize with the basic concepts of measurement and the related instrumentation Systems.															
2	To im	part kı	nowled	ge on l	Electro	nic mea	asuremei	nts and	calibr	ation of	instrun	nents.				
3							rs and si									
4	To int	roduce	variou	ıs Data	a acqui	sition s	ystems, '	Transd	icers,	and fibe	r optic	power	measu	rer	nents.	
COUF	RSE OU	JTCO	MES													
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents wil	ll be ab	le to							
CO1. I	Identify	errors	in diff	erent t	ypes of	f electro	onic mea	sureme	nts.				J	Jnd	lerstand	d
CO2. I	Determi	ne the	unkno	wn val	ues of	capacit	ance and	l induc	ance u	ising A	C bridge	es.		A	pply	
CO3. I	Explain	conce	pts and	circui	t const	ruction	of vario	us Ana	log &	Digital	voltage			A	pply	
measu	rement	metho	ds.													
							equency							Aı	nalyze	
CO5. A	CO5. Analyze the various elements in data acquisition systems and fiber optic Analyze															
measu	measurements.															
MAPI	PING V	VITH	PROG	RAM	$ME \overline{O}$	UTCO	MES AN	ND PR	OGRA	AMME	SPECI	FIC (OUTC	ON	1ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSC	1	PSO2	PSO3
CO1	M	M	L	-	L	-	-	-	M	-	-	-	S		M	-

S- Strong; M-Medium; L-Low

S

S

S

M

M

M

M

M

M

M

M

L

L

L

L

SYLLABUS

CO₂

CO₃

CO₄

CO₅

BASIC MEASUREMENT

Measurement and error – Units and standards of measurements – Permanent Magnet Moving Coil Mechanism – DC Ammeters, Voltmeters Multimeters, Ohmmeter, AC Indicating Instruments, Thermo instruments, Electrodynamometers, Watt-hour meter. Bridge measurements –Wheatstone, Kelvin, Maxwell, Hay, Schering, and Wien bridge.

M

M

M

M

S

S

S

S

M

M

M

M

BASIC ELECTRONIC MEASUREMENTS

Amplified DC Meter, AC Voltmeter using rectifiers, True RMS Responding Voltmeter, Electronic Multimeter, Consideration in Choosing an Analog Voltmeter, Digital Voltmeters-Ramp, Integrating, Successive approximation. Q meters – RF voltage and power measurements. Cathode ray oscilloscopes – block schematic – Special oscilloscopes–Storage Oscilloscope, Sampling Oscilloscope, Digital Storage Oscilloscopes

SIGNAL GENERATORS AND ANALYZERS

Function generators – RF signal generators – Sweep generators – Frequency synthesizer – wave analyzer – Harmonic distortion analyzer – spectrum analyzer.

FREQUENCY COUNTERS AND TRANSDUCERS

Simple Frequency Counter, Measurement Errors, Extending the frequency range, Automatic and computing counters. Classification of Transducers, Selecting a Transducer, Strain gauges, Displacement Transducers, Temperature Transducers, and Photosensitive Devices.

DATA ACQUISITION SYSTEMS AND FIBER OPTIC MEASUREMENTS

Elements of digital data acquisition system – interfacing of transducers – multiplexing – IEEE 488 bus – fiber optic measurements-Sources and Detectors-Fiber Optic Power measuring- Light sources – Optical time domain reflectometer.

TEXT BOOKS:

1. Albert D.Helfrick and William D.Cooper – Modern Electronic Instrumentation and Measurement Techniques, Prentice Hall of India, 2008

REFERENCES:

- 1. Joseph J. Carr, Elements of Electronics Instrumentation and Measurement, 2nd Edition Pearson education, 2009.
- 2. Alan. S. Morris, Principles of Measurements and Instrumentation, Prentice Hall of India, 2nd edn., 2003.
- 3. Ernest O. Doebelin, Measurement Systems- Application and Design-Tata McGraw-Hill- 2004.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Selvam	Professor	ECE	hodeee@vmkvec.edu.in
2	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in
3	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in
4	Mr. S. Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in

17EECC08	17EECC08 CONTROL SYSTEMS	Category	L	T	P	Credit
1722200	CONTROL STSTEMS	CC	3	0	0	3
DDEALDE						

PREAMBLE

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

17EEES03 – Basic Electrical and Electronics Engineering

COURSE OBJECTIVES

- 1 Understand the feedback and feed-forward control; apply block diagram representations of control systems.

 To find time response of given control system model, various controllers design and simulation using
- MATLAB.
- To understand the frequency domain analysis, use of frequency response methods for open loop and closed loop control systems.
- To analyze the stability of closed and open loop systems using various methods and to design compensators,
- 5 To develop and analyze the state space models.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1	Find Transfer function of systems.	Understand
CO2	Find the time response of given control system model and to design a controller.	Create
CO3	Find the frequency response of control system model using frequency response plots.	Analyze
CO4	Analyze the stability of the control system and design the suitable compensators.	Create
CO5	Apply state space techniques to model control systems.	Evaluate

MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	M	-	ı	-	-	-	M	M	S	M	-
CO2	S	M	-	M	S	-	ı	M	-	-	-	M	S	M	S
CO3	S	M	-	M	S	-	ı	1	-	-	-	M	S	M	-
CO4	S	M	-	M	S	-	M	-	-	-	M	M	S	M	S
CO5	S	M	-	M	S	L	L	-	M	-	M	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – Open and closed loop systems – Mechanical Translational and Rotational Systems, Electrical analogy – Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, ,Frequency domain specifications, Correlation between time and frequency responses, Minimum phase, Non minimum phase and all pass transfer functions, Bode Plot, Polar Plot, Constant M and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Construction of root loci, Nyquist stability criterion. Lag, Lead and Lag-Lead networks, Compensator design using Bode plots & Root Locus.

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time systems. Synchros – AC servomotors- DC Servo motors - Stepper motors- Tacho generator.

TEXT BOOKS

- 1. K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
- 2. I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
- 3. C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
- 4. R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB

Reference).

- 5. M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008
- 6. Nise N.S, "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

- 1.Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.
- 2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.
- 3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/
- 4. Control Systems N. K. Sinha, New Age International (P) Limited Publishers.
- 5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

COURS	COURSE DESIGNERS								
S.No.	Name of the Faculty	Designation	Department	e-mail id					
1	N.P. GOPINATH	Assistant Professor GR-II	EEE / AVIT	gopinathnp@avit.ac.in					
2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in					

17ECCC07	MICROCONTROLLERS & ITS APPLICATIONS	Category	L	T	P	Credit
T/LCCC07		CC	3	0	0	3
PREAMBLE						

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To learn the concepts of microprocessors and knowledge of interfacing devices.
2	To study the Architecture of 8051 microcontroller
3	To develop skill in simple program writing of microcontroller
4	To study the interfacing and applications of microcontroller
5	To study the advanced microcontrollers.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the concept of microprocessor and interfacing devices.	Understand						
CO2. Explain the architecture and function of 8051 microcontroller	Apply						
CO3. Design and implement programs on 8051 Microcontroller	Analyze						
CO4. Design and implement applications using 8051 Microcontroller	Analyze						
CO5. Illustrate various applications using advanced Microcontrollers. Ana							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	-	M	-	-	-	-	-	-	M	S	S	S
CO2	S	S	S	-	M	-	-	-	-	-	-	M	S	M	M
CO3	S	M	M	-	M	M	-	-	-	-	-	M	S	S	M
CO4	S	S	M	-	M	M	-	-	-	-	-	M	S	S	M
CO5	S	M	S	-	M	M	-	-	-	-	-	M	S	M	M
S_ Stro	ng: M-I	Medium	· I -I ov	17											

S- Strong; M-Medium; L-Low

SYLLABUS

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization - Signal Description of 8086 - Addressing modes - Data Transfer Instruction - Arithmetic Instruction - Branching Instruction - Program Transfer Instruction - simple programs- Programmable Peripheral Interface 8255 - Programmable Communication Interface 8251 USART - Programmable Interrupt Controller 8259A - Direct Memory Access Controller 8257- Programmable Interval Timer 8253 - Keyboard/Display Controller 8279.

INTEL 8051 MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- Serial Communication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing- DC Motor Interfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, I²C – SPI – Watchdog timer – ARM7 (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS:

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2. Frank D. Petruzella. "Programmable Logic Controllers", McGraw-Hill Book, Company, 1989

REFERENCE BOOKS:

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Mr.S.Selvam	Assistant Professor	ECE	selvam@avit.ac.in				
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in				
3	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in				

17ECCC08	ELECTROMAGNETICS AND TRANSMISSION LINES &	Category	L	Т	P	Credit					
	WAVEGUIDES	CC	3	0	0	3					

PREAMBLE

Electronics and communication engineers need to understand the fundamental principles and laws of electromagnetism to develop and implement better analog and digital electronic communication system that take into account the electromagnetic propagation and radiation effects. Students will learn scientific and mathematical knowledge on Theorem, Laws, Principle & Applications of Static Electric field, Static Magnetic field and Time varying Electromagnetic fields and phenomena of Electrical signal propagation along the transmission lines.

PREREQUISITE

17ECCC03 - Passive Network Analysis & Synthesis

COUR	RSE OBJECTIVES											
1	To recognize the "constitutive relationships" for fields and understand w	hy they are required.										
2	To acquire knowledge for estimating static electric and static magnetic fi	elds using various laws and										
	thermos.											
3	To understand estimate Time Varying Fields using Faraday's Law and A	Ampere's Law										
4	To understand the role of characteristics impedance and propagation cons	stant on electrical signal during										
	propagation along the line.											
5	To acquire knowledge for the measurement of basic transmission line parameters, such as the reflection											
	coefficient, standing wave ratio, and impedance											
COUR	RSE OUTCOMES											
On the	successful completion of the course, students will be able to											
CO1: I	Formulate potential problems within electrostatics, and stationary current	Understand										
distrib	ations in linear, isotropic media, and also solve such problems in simple											
geome	geometries using separation of variables.											
CO2.	CO2. Deduce potential problems within magnetostatics, using Ampere's force Apply											
law, B	Siot-savart law and Gauss law. Also solve such problems in simple											
	tries using separation of variables.											
	Define and derive expressions for the energy both for the electrostatic and	Apply										
	tostatic fields, and derive Poyntings theorem from Maxwells equations											
	erpret the terms in the theorem physically											
	Derive and Apply the line equations in terms of characteristic impedance	Apply										
and pr	opagation constant and to determine voltage and current at distance of											
	ission line with specific frequency											
	Apply the specific condition to validate the telephone cable fit for Audio	Apply										
	ncy range only also apply the condition to design distortion less line											
	oading of transmission line											
	Analyze SWR, Reflection factor, Reflection loss and Zin in terms of	Analyze										
reflecti	on co- efficient in zero dissipation line.											

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	-	ı	ı	-	ı	-	i	M	S	M	-
CO2	S	S	M	M	-	ı	ı	-	ı	-	ı	M	S	M	-
CO3	S	S	M	M	-	M	M	-	ı	-	ı	M	S	M	-
CO4	S	S	M	M	-	M	M	-	1	-	1	M	S	M	-
CO5	S	S	M	M	-	M	M	-	ı	-	i	M	S	M	-
CO6	S	S	M	M	-	M	M	-	-	-	-	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

STATIC ELECTROMAGNETIC FIELDS

Introduction to co-ordinate system, Gradient, Divergence, Curl, Divergence Theorem, Stroke's Theorem, Coulomb's Law, Electric field Intensity, Principle of superposition, Electric Scalar potential, Line charge distribution by Moment method, Electric flux Density, Gauss's Law and its applications, Field Computations and Problems.

STATIC MAGNETIC FIELD

Magnetic field of a current carrying element, Ampere's Force law, The Biot-Savart Law, Magnetic Flux density, Gauss law for magnetic fields, Torque on a loop, Magnetic moment, Ampere's Law and Magnetic field intensity, Magneto motive force, Field cells and permeability, Vector potential, Field computation and problems.

TIME VARYING ELECTRIC & MAGNETIC FIELDS

Faraday's Law, Transformer and Motional Induction, Maxwell's equation from Faraday's Law, Self and Mutual inductance, Displacement current, Maxwell's equation from Ampere's Law and its in-consistency, Boundary relation, Poynting Vector, Comparison of field and circuit theory, Circuit Application of pointing Vector.

TRANSMISSION LINE THEORY

Introduction - Types of transmission lines - General theory of transmission line - Line constants - Transmission line equation - Physical significance of the equations - The Infinite line - Distortion in a line - Distortion-less line - Telephone cables - Loading of lines - Types of loading- General equation for line with any termination - Input impedance - Open and Short circuited line.

RADIO FREQUENCY TRANSMISSION LINES

Line approximations – Parameters of open wire line at radio frequency, parameters of coaxial lines at radio frequencies, constants for the line of zero dissipation – Voltages and Currents on the dissipation-less lines – input impedance of a lossless line – Wavelength and velocity of propagation – Reflection – Reflection coefficient, Reflection loss, Reflection factor, Standing wave ratio, Input impedance in terms of reflection coefficient.

TEXT BOOKS:

- 1. John D. Krauss, "Electromagnetics", McGraw Hill, 1992.
- 2. David K. Chang, "Field and Wave Electromagnetics", Second edition, Addison Wesley, New Delhi, 2004.
- 3. John D. Ryder, Network lines and fields, 2nd Edition, Prentice Hall of India, 2003.

REFERENCE BOOKS:

- 1. Hayt W.H., "Engineering Electromagnetics", McGraw Hill, 8th Edition, 2012
- 2. Seth S.P., Elements of Electromagnetic Fields, 2nd Edition, Dhanpat Rai& Sons, 2007.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
2.	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
3.	Mr.C.Arunkumar	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in
	Madhuvappan			

17ECCC09	SIGNAL PROCESSING	Category	L	T	P	Credit
		CC	3	0	0	3

PREAMBLE

Signal processing is an area of science and engineering which has developed very rapidly over past few decades. It is method of extracting information from the signal which, in turn depends upon type of the signal and nature of information it carriers. Digital signal processing has a tremendous growth in today's techniques and is applied almost in every field because off numerous advantages. In fact digital circuits do not depend upon precise values of digital signal. Also digital circuits are less sensitive to changes in components values, and temperature. In a digital processor any accuracy can be achieved by changing number of bits assigned for the coefficient.

PREREQUISITE

17ECCC04 - Signals and Systems

COUR	SE OBJECTIVES
1	To learn the computation steps for the DFT and FFT algorithm.
2	To acquire knowledge in various design and implementation methods for IIR and FIR filters.
3	To learn and realization of FIR and IIR Systems.
4	To identify the coefficient effects in finite word length registers.
5	To recognize the sampling rate conversion with filter design
6	To study the TMS320C5X DSP processor architecture and their addressing modes.
COLID	SE OUTCOMES

COURSE OUTCOMES

On the successful	completion of the course,	students will be able to

CO1: Compute DFT, FFT algorithms by using radix 2 DIT and DIF methods.	Apply
CO2. Design IIR digital filters in analog domain for given specifications and transforming to	Apply
digital domain using transformation techniques	
CO3.Realize IIR structure in Direct Form - I, II, Cascade and Parallel Forms	Apply
CO4. Design FIR filter in digital domain using Fourier series, frequency sampling and windowing	Apply

CO4. Design FIR filter in digital domain using Fourier series, frequency sampling and windowing techniques

CO5. Illustrate the issues of finite word length effects.

CO6. Design a linear phase filter for implementing sampling rate conversion and describe the

Analyze

CO6. Design a linear phase filter for implementing sampling rate conversion and describe the TMS320C5X DSP processor architecture and their addressing modes.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L	-	-	-	-	-	-	-	-	1	-	-	-
CO2	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-
CO3	S	S	M	-	M	-	ı	-	M	-	-	M	S	M	-
CO4	S	S	M	-	M	-	-	-	M	-	-	M	-	-	-
CO5	S	S	M	-	M	-	-	-	M	-	-	M	-	-	-
CO6	S	S	M	-	M	-	-	-	M	_	-	M	S	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

DISCRETE FOURIER TRANSFORMS & FAST FOURIER TRANSFORMS:

Introduction to DFT, Efficient computation of DFT, properties of DFT - FFT using DIT and DIF algorithms, – Circular convolution.

DESIGN AND IMPLEMENTATION OF IIR FILTERS

Design of analog filters using Butterworth and Chebyshev approximations – IIR digital filter design from analog filter using impulse invariance technique and bilinear transformations-IIR Realizations.

DESIGN AND IMPLEMENTATION OF FIR FILTERS:

Linear phase response – Design techniques for FIR filters – Fourier series method and frequency sampling method –Design of Linear phase FIR filters using windows: Rectangular, Hanning and Hamming windows.

FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS:

Fixed point arithmetic – effect of quantization of the input data due to Finite word length. Product round off – need for scaling – Zero input limit cycle oscillations - Limit cycle oscillations due to overflow of adders

PROCESSOR FUNDAMENTALS & MULTIRATE DIGITAL SIGNAL PROCESSING:

Introduction – Memory architecture of Von Neumann, Harvard & VLIW – pipelining – TMS320C5x architecture - Addressing modes – Decimation by a factor D - Interpolation by a factor I - Filter design and Implementation of sampling - rate conversion, sampling - rate conversion of Band pass filters.

TEXT BOOKS:

- 1. John .G. Proakis and Dimitris C. Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Fourth edition, 2007.
- 2. B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.
- 3. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Prentice Hall, Third Edition, 2009.

REFERENCE BOOKS:

- 1. Sanjit Mitra, "Digital Signal Processing A Computer based approach", Tata McGraw Hill, New Delhi, 2011.
- 2. M.H.Hayes, "Digital Signal Processing", Tata McGraw Hill, New Delhi, Edition, 2009.

COOL	OF DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
3	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
4	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

17ECCC10	LINEAR INTEGRATED CIRCUITS	Category	L	Т	P	Credit		
		CC	3	0	0	3		
PREAMBLE								
Linear Integra	Linear Integrated circuits enables the students to have an insight knowledge on fundamentals of various integrated							

Linear Integrated circuits enables the students to have an insight knowledge on fundamentals of various integrated circuits. The designed course makes the students to work on the various applications of the Integrated Circuits. This subject helps the students to design, model and develop amplifier circuits, comparators, regulators, filters, timer, D/A and A/D converters and PLL.

D/A an	D/A and A/D converters and PLL.														
PRER	EQUI	SITE													
17ECCC01 - Semiconductor Devices															
COURSE OBJECTIVES															
1	To Understand the basics of Integrated Circuits and its fabrication.														
2	To get familiarized with operational amplifiers and its Characteristics.														
3	To Construct various circuits using operational amplifier and analyze its performance.														
4	To design and the working of waveform generators, regulators, filters and timers circuits.														
5	To U	ndersta	nd the	basic c	concept	ts of PI	LL.								
COUR	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to)					
										omponent	S	Understa	ınd		
CO2. I	nterpre	et the C)peratio	onal Ar	nplifie	r with	its cha	racteris	stics.			Apply			
CO3. I	Design	and an	alyze t	he vari	ous ap	plicatio	ons of (Operati	ional A	mplifier.		Analyze			
CO4. I			_									Analyze			
CO5. I								its.				Analyze			
CO6. A	Analyz	e the va	arious 1	functio	nal blo	cks of	PLL.					Analyze			
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAMME	SPECI	FIC OU	TCOM	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	1	1	-	-	-	-	-	-	M	S	-	-
CO2	S	M	M	M	M	-	-	-	-	-	-	M	S	-	-
CO3	S	S	M	M	M	ı	-	-	-	-	-	M	S	-	M
CO4	04 S S M M M M S									-					
CO5	S	S	M	M	M	-	-	-	-	_	-	M	S	M	-
CO6	S	S	M	M	M	-	-	-	-	-	-	M	S	M	M
S- Stro	ng; M-	-Mediu	ım; L-I	LOW											

SYLLABUS

INTEGRATED CIRCUIT FABRICATION AND CHARACTERISTICS

Integrated Circuit Technology —Basic Monolithic Integrated Circuits-Epitaxial Growth-Masking and Etching-Diffusion of Impurities-Transistors for monolithic circuits-Monolithic Diodes-Integrated Resistors-Integrated Capacitors and Inductors-Monolithic —Circuit Layout-Additional Isolation Methods-Large Scale and Medium Scale Integration.

OPERATIONAL AMPLIFIER

Basic operational Amplifier – Ideal Operational Amplifier – Operational Amplifier Internal Circuits – Examples of IC Op Amps – FET Operational Amplifiers – DC Characteristics – AC Characteristics – Analysis of Data Sheets of an Op Amp.

OPERATIONAL AMPLIFIER APPLICATIONS

Basic Op Amp Applications – Instrumentation Amplifiers – AC Amplifiers – V to I and I to V Converters – Op Amp Circuits Using Diodes – Sample and Hold Circuits – Log/Antilog Amplifiers – Adder/ Sub tractor – Multiplier and Divider – Differentiator and Integrator – Operational Transconductance Amplifier-Pspice Simulation Tools.

COMPARATORS, REGULATORS, FILTERS AND TIMERS

Comparators – Square, Triangular and Sawtooth wave Generators, Series Op Amp Regulators – IC Voltage Regulators – 723 General Purpose Regulators – RC Active Filters – Active Filters using OTA's, Timer – Description of Functional Diagram – Monostable and Astable Operation – Schmitt Trigger

PLL, D/A AND A/D CONVERTERS

PLL – Basic Principles – Phase Detectors/ Comparators – Voltage Controlled Oscillator – Low Pass Filter – Monolithic PLL – PLL Applications – Basic DAC Techniques – A–D Converters – DAC/ ADC Specifications.

TEXT BOOKS:

- 1. D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuits", New Age International Publishers, 5th Edition 2018.
- 2. Jacob Millman, Chirstos C. Halkias, "Integrated Electronics", Tata Mc-GRAW Hill, Edition, 3rd Edition, 2010

REFERENCE BOOKS:

- 1. Robert F Coughlin, Fredrick F.Driscoll," Operational Amplifiers and Linerar Integrated Circuits", Phi Learning,6th Edition,2009.
- 2. Sergio Franco, "DesignwithOperational Amplifiers and Analog Integrated Circuits", Tata Mc-GRAW Hill ,4th Edition, 2016.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17ECCC11	DATA COMMUNICATION	Category	L	\mathbf{T}	P	Credits
	NETWORKS	CC	3	0	0	3
PREAMBLE						

PKEAMBLE

To introduce the concepts of communication networks, in depth understanding of network architecture of different layers of data communications and its security protocols.

PREREQUISITE: Nil

COURSE OBJECTIVES

- 1 To understand the physical layers of layered models.
- 2 To be exposed to error detection/correction & medium access controls.
- 3 To be familiar with Internet Protocols & current scenario
- 4 To understand the concepts of Transport & Application layers.
- 5 To be familiar with Network & Internet security.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Understand the basics and working of layered architecture	Understand
CO2. Differentiate different error control, Link control, access control and different LAN Technologies. Also to evaluate merits and demerits	Apply
CO3. Explain the role of protocol and design it for appropriate routing mechanism.	Analyze
CO4. Analyze the various transport and application layer protocols in real time.	Analyze
CO5. Study the functioning and methods of data and network security.	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	РО	PO	РО	PO	PO	РО	PSO1	PSO2	PSO3						
COS	1	2	3	4	5	6	7	8	9	10	11	12	F301	1 1302	1303
CO1	M	M	-	-	L	-	-	-	L	1	-	L	S	M	-
CO2	S	S	L	-	M	-	-	-	-	L	-	-	S	S	-
CO3	S	S	M	-	-	-	-	-	M	L	L	-	M	M	-
CO4	S	S	L	-	-	-	-	L	L	L	L	L	M	S	-
CO5	M	L	L	-	L	-	-	M	M	-	-	M	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

Physical Layer.

Data Communications-Networks & its types-Standards-Networks models —Protocol layering-TCP / IP protocol suite-OSI model.

Digital to Digital conversion-Analog to Digital conversion-Transmission modes-Digital to Analog conversion-Analog to Analog conversion-Multiplexing-Spread spectrum-Guided and Unguided Transmission media-Switching-Circuit switched networks-Packet switching-Structure of Switch.

Data Link Layer.

Link layer addressing.

Error Detection & Correction: Block coding-Cyclic codes-Checksum-Forward error correction. Data link control: DLC services-Data link layer protocols-HDLC-PPP.

Medium Access Control: Random access-Controlled access-Channelization.

Wired LANS: Ethernet protocol-Standard Ethernet-Fast Ethernet & Gigabit Ethernet.

Wireless LANS: IEEE 802.11 project-WiMAX-Cellular Telephony-Satellite networks.

Connecting devices, Virtual LANS.

Network Layer.

Network layer services-Packet switching-Performance-IPv4 Addresses.

Internet Protocol, ICMPv4, Mobile IP.

Unicast Routing: Routing algorithms-Unicast routing protocols.

Multicast routing: Multicasting basis-Intra domain & Inter domain Multicast protocols, IGMP.

Next Generation IP: IPv6 Addressing-IPv6 protocol-ICMPv6 protocol-Transition from IPv4 to IPv6.

Transport & Application Layer

Transport layer protocols-User Datagram Protocol-Transmission Control Protocol-SCTP.

Client server programming-WWW & HTTP-FTP-Electronic mail-TELNET-SSH-DNS-SNMP-Compression-Multimedia Data & in the Internet- Real-Time Interactive protocol-P2P Networks-CHORD-PASTRY-KADEMLIA-BITTORNET.

Network & Internet Security

Quality of Service: Data flow characteristics-Flow control to improve QoS-Integrated services-Differentiated services.

Cryptography: Introduction-Confidentiality-Other aspects of Security.

Internet Security: Network layer security-Transport layer security-Application layer security-Firewalls.

TEXT BOOK:

1. Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill, 2013.

REFERENCE BOOKS:

- 1. Andrew S. Tannenbaum, "Computer Networks", Pearson Education, Fifth Edition, 2011.
- 2. James F. Kurose, Keith W. Ross, "Computer Networking- A Top -Down Approach Featuring the Internet", Fifth Edition, Pearson Education, 2009.
- 3. Larry L. Peterson, Bruse S. Davie, "Computer Networks: A System Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.
- 4. Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2010.

	Course Designers										
S.No	Name of the Faculty	Designation	Department	e-Mail ID							
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in							
2	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.i							
3	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.i n							
4	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu .in							

17ECCC12	DIGITAL CMOS SYSTEMS	Category	L	Т	P	Credit
		CC	3	0	0	3

PREAMBLE

This course deals comprehensively with all aspects of transistor level design of all the digital building blocks common to all CMOS microprocessors, DPSs, network processors, digital backend of all wireless systems etc. The focus will on the transistor level design and will address all important issues related to size, speed and power consumption. The units are classified according to the important building and will introduce the principles and design methodology in terms of the dominant circuit choices, constraints and performance measures.

PREREQUISITE

17ECCC05 - Digital Logic Circuits & Design

COURSE OBJECTIVES	

1	To understand the MOS transistor theory, CMOS technologies and the Layout.						
2	To understand the concepts of designing combinational and sequential circuit using CMOS logic						
	configuration.						
3	To Learn the design of CMOS Logic circuits and subsystems.						
4	To Understand the CMOS Fabrication process.						

COURSE OUTCOMES

On the suc	cessful con	nletion of	the course	, students wi	ll be able to
On the suc	ccssiui con	ibicuon oi	uic course.	. Students Wi	n oc aoic to

To understand the concepts of VERILOG HDL programming.

CO1. Understand the design methodology and tradeoffs of the various circuit choices for	Understand
each of all the blocks discussed.	
CO2. Carry out transistor level hand calculation based design of the most important	Apply
building blocks used in digital CMOS VLSI circuits.	
CO3. Design various sequential logic circuits and analyze its design methodology.	Apply
CO4. Execute system level design using various VLSI system components.	Apply
CO5. Model the system using Hardware Description Language	Analyze

Analyze

CO6. Analyze concepts and methods of digital system design techniques through experiments.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L	-	-	-	-	-	-	-	-	-	S	M	-
CO2	S	S	M	-	M	-	-	-	M	-	-	M	-	-	-
CO3	S	S	M	-	M	-	-	-	M	-	-	M	-	-	-
CO4	S	S	M	-	M	-	-	-	M	-	-	M	-	-	-
CO5	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-
CO6	S	S	M	-	M	-	-	-	M	-	-	M	S	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER

MOS (FET) Transistors, CMOS Logic, CMOS Fabrication, VLSI Design flow, Ideal I-V Characteristics, Non-Ideal I-V Effects, CMOS Inverter DC Characteristic, Beta Ratio Effects, Noise Margin, Scaling: Transistor scaling, Interconnect scaling and Impacts on design.

COMBINATIONAL LOGIC CIRCUITS

MOS layers, Stick diagram, Design rules and Layout, Propagation Delays, Combinational circuit design-Static CMOS, Dynamic circuits, Pass transistor circuits, differential circuits, BiCMOS circuits, Low Power Logic Design, comparison of circuit families.

SEQUENTIAL LOGIC CIRCUITS

Sequencing Static Circuits, Circuit Design of Latches and Flipflops – Conventional, Pulsed Latches, Resettable and Enabled Latches and Flipflops, Differential flipflops, Static sequencing element methodology, Sequencing dynamic circuits.

VLSI SYSTEM COMPONENTS CIRCUITS AND SYSTEM LEVEL PHYSICAL DESIGN

Multiplexers, Decoders, Comparators, Priority Encoders, Shift Registers, Arithmetic circuits, Ripple carry adder, Carry Look Ahead adder, High Speed adders, Multipliers, Physical design, Crosstalk, Floor planning, Power and Clock distributions.

VERILOG HDL

VLSI design flow ,Hierarchical modeling concepts, Basic Concepts: Data types ,Modules and ports, Gate Level Modeling, Data Flow Modeling, Behavioral Modeling, Switch level Modeling, Task and Function

TEXT BOOKS:

- 1. N.Weste, D.Harris, Ayan Banerjee "CMOS VLSI Design", Third Edition, 2005.
- 2. Douglas A. Pucknell, Kamran Eshraghian "Basic VLSI Design", Third Edition, 2011, Prentice Hall of India.
- 3. Samir Palnitkar, "Verilog HDL Guide to Digital Design and synthesis", 2nd Edition, Pearson Education 2003.

REFERENCE BOOKS:

- 1. Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India.
- 2. Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010 3rdEdition.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in
3	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
4	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

17ECCC13	ANTENNA AND WAVE PROPAGATION	Category	L	T	P	Credit
1.20001		CC	3	0	0	3
PREAMBLE						

In the era of multimedia, Internet, Web-world, Mobile and Bluetooth, communication is becoming wireless. Antennas are important component in making wireless communication a reality. This course is essential to understand the fundamental principles of Antenna theory and its parameters computation, and wave propagation with a lucid explanation of the basic concepts and equations.

PREREOUISITE

17ECCC08 - Electromagnetics and Transmission Lines & Waveguides															
	-	17ECC	CO8 -	Electro	magne	tics an	d Tran	smissio	on Line	es & Wa	veguide	S			
COUF	RSE OI	BJECT	ΓIVES												
1	To stu	ıdy the	EM th	neory a	nd radi	ation f	undam	entals							
2	To stu	ıdy abo	out wir	e anter	na and	larrays	S								
3	To stu	ıdy abo	out the	apertu	re ante	nnas									
4	To study about the antenna measurements														
5															
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. 1	Illustrat	te the a	antenna	a paran	neters	like Ra	diated	electri	ic and	magneti	c fields,	Apply			
Radiat	CO1. Illustrate the antenna parameters like Radiated electric and magnetic fields, Apply Radiation resistance, Aperture area, effective length, Gain and Directivity etc.														
CO2.	CO2. Apply far field and polynomial equations to obtain maxima ,minim of Apply														
radiati	on patt	ern for	N po	int sou	rces ar	nd con	structio	on of p	olynor	nial ,bi-	nominal				
arrays	respect	ively													
CO3. I	Design	and int	terpret	by cho	osing a	approp	riate ar	tenna	for a gi	iven		Apply			
applica	ations (TV, ra	dar, wi	reless)											
CO4. I	Design	dipole,	, Yagi	and pat	tch ante	ennas f	or a gi	ven spe	ecificat	tion		Apply			
CO5. A	Analysi	s by d	etermiı	ning th	e propa	agation	factor	s in va	rious l	evels of	ground,	Analy	ze		
atmosp	atmosphere, ionosphere wave propagations														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	L	-	-	-	-	-	-	-	-	S	-	-
CO2	S	-	L	L	-	-	-	-	_	_	-	-	S	-	-

CC	S P	O1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CC	1	S	M	L	L	-	-	-	-	-	-	-	-	S	-	-
CC	2	S	-	L	L	-	-	-	-	-	-	-	-	S	-	-
CC)3	S	M	M	L	-	-	-	-	-	-	-	-	S	M	-
CC)4	S	M	M	M	L	-	-	ı	ı	-	-	L	S	M	-
CC)5	S	S	M	L	L	L	L	L	L	-	-	L	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

ELECTROMAGNETIC RADIATION AND ANTENNA BASICS

Review of electromagnetic theory: Vector potential, Solution of wave equation, retarded case, Hertizian dipole. Antenna characteristics: Radiation pattern, Beam solid angle, Directivity, Gain, Input impedance, Polarization, Bandwidth, Reciprocity, Equivalence of Radiation patterns, Effective aperture, Vector effective length.

POINT SOURCES AND THEIR ARRAYS

Wire antennas: Short dipole, Radiation resistance and Directivity, Half wave Dipole, Monopole, Small loop antennas. Antenna Arrays: Linear Array and Pattern Multiplication, Two-element Array, Uniform Array, Polynomial representation.

LOOP, SLOT and HORN ANTENNAS

Aperture Antennas: Magnetic Current and its fields, Uniqueness theorem, Field equivalence principle, Pattern properties, Slot antenna, Horn Antenna, Pyramidal Horn Antenna, Reflector Antenna-Flat reflector, Corner Reflector, Common curved reflector shapes, Lens Antenna.

SPECIAL ANTENNAS and ANTENNA MEASUREMENTS

Special Antennas: Long wire, V and Rhombic Antenna, Yagi-Uda Antenna, Helical Antenna- Axial mode helix, Normal mode helix, Biconical Antenna, Log periodic Dipole Array, Spiral Antenna, Micro strip Patch Antennas.

ANTENNA MEASUREMENTS

Antenna Measurements: Radiation Pattern measurement, Gain and Directivity Measurements, Anechoic Chamber measurement.

RADIO WAVE PROPAGATION

Structure of atmosphere, Mode of propagation, Ground wave propagation, Reflection, diffraction, Ionospheric propagation, Electrical properties, Effects of Earths magnetic field. Friss formula and Channel Sounding Measurements – Base station and link budget problems.

TEXTBOOK:

1. John D.Kraus, Ronald J Marhefka and Ahmad S Khan, "Antennas and Wave Propagation", McGraw-Hill Education, 4ed, 2013.

REFERENCE BOOKS:

- 1. E.C.Jordan and Balmain, "Electromagnetic waves and Radiating Systems", Pearson Education / PHI, 2006.
- 2. A.R.Harish, M.Sachidanada, "Antennas and Wave propagation", Oxford University Press, 2007.
- 3. Constantine A. Balanis, Antenna Theory Analysis and Design, John Wiley, 2nd Edition, 2007.
- 4. R.E.Collins, "Antenna and Radio wave propagation", McGraw-Hill
- 5. W.L Stutzman and G.A. Thiele, "Antenna analysis and design", John Wiley, 2000.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.N.Manikanda	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
	Devarajan			
4	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in

17ECCC14	DIGITAL IMAGE PROCESSING	Category	L	T	P	Credit
		CC	3	0	0	3

PREAMBLE

Digital Image Processing has applications in all walks of present day digital life. The student stands to gain knowledge of the basics of images, acquisition of images, enhancement of images, restoration of images, compression of images for efficient storage and transmission, color image processing, image segmentation and morphological image processing.

PREREQUISITE: Signal Processing

COURSE OBJECTIVES

- 1 To understand the Mathematics behind Image Sampling, Quantization and Image Transforms.
- To understand different Filtering techniques both in the Frequency domain as well as the Time domain and analyze them.
- 3 To understand Noise removal and other Restoration techniques and apply them.
- 4 To understand and apply Multi Resolution techniques for Image Compression.
- 5 | To understand Morphological representation, Image Segmentation and Representation.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Summarize how Digital Images are acquired, stored, processed and interpret	Understand						
of various Image Transformations.	Understand						
CO2. Demonstrate the various techniques to enhance Image quality in Spatial &	Annly						
Frequency domain filtering methods.(Also using Simulation tools)	Apply						
CO3. Paraphrase the concepts of Image Restoration and Color Image							
processing.(Also using Simulation tools)							
CO4. Illustrate the various Wavelet transforms & Image Compression	Annly						
methods.(Also using Simulation tools)	Apply						
CO5. Examine the different applications of various Morphological processing,	Analyza						
Image Segmentation & Representation techniques.(Also using Simulation tools)	Analyze						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO9	PO 10	PO1 1	PO1 2	PSO 1	PSO 2	PS O3
CO1	S	S	M	M	-	-	-	-	M	-	-	-	M	M	-
CO2	S	S	S	M	S	-	-	-	M	-	-	-	S	S	-
CO3	S	S	M	M	S	-	-	-	M	ı	-	-	S	S	ı
CO4	S	M	M	M	M	-	-	-	M	ı	-	-	S	S	ı
CO5	S	M	M	M	M	-	_	-	M	-	-	_	S	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

Digital Image Fundamentals and Image Transforms

Origin of digital image processing – Fundamental steps in digital image processing – Components of an image processing system – Elements of visual perception – Image sensing and acquisition – Image sampling and quantization – Basic relationships between pixels – Introduction to mathematical tools used in digital image processing – Fields that use digital image processing

Transforms for Image processing - Discrete Fourier transform - Discrete Cosine transform - Haar transform - Hadamard transform - Walsh transform

Intensity transformations & Filtering

Basic intensity transformation functions – Histogram processing – Fundamentals of spatial filtering – Smoothing spatial filtering – Sharpening spatial filters – Fuzzy techniques for intensity transformations and spatial filtering

Basics of filtering in frequency transforms – Image smoothing using frequency domain filters - Image sharpening using frequency domain filters.

Image Restoration & Color Image Processing

Image restoration model – Noise parameters – Restoration in the presence of noise only –spatial filtering –Periodic noise reduction by frequency domain filtering – Degrading functions-Estimating the degradation function – Inverse filtering – Wiener filtering – Constrained least square filtering – Geometric mean filtering – Image reconstruction from projections

Color fundamentals – Color models – Pseudo color image processing – Color transformations – Color image Smoothing and sharpening – Color image segmentation – Noise in color images – Color image compression

Wavelets and Multiresolution processing & Image Compression

Background – Multiresolution expansion – Wavelet transform in one dimension – Fast wavelet transform – Wavelet transform in two dimensions- Wavelet packets

Image compression models – Huffman coding – Arithmetic coding – LZW coding – Run length coding – Bit plane coding – Block transform coding – Predictive coding – Wavelet coding

Morphological Processing, Segmentation & Representation

Morphological Processing - Erosion and dilation - Opening and closing - Basic morphological operations - Grey scale morphology. Image Segmentation - Point, Line and Edge detection - Thresholding - Region based segmentation - segmentation using morphological watersheds - use of motion in segmentation. Image Representation - Boundary descriptors - Regional descriptors

TEXT BOOKS:

- 1) "Digital Image Processing", Rafael C Gonzalez & Richard E Woods, Pearson Education International, Fourth Edition, 2018, Pearson
- 2) "Fundamentals of Digital Image Processing", A.K. Jain, Pearson Education India, 2015.

REFERENCE BOOKS:

- 1) Digital Image Processing, Bernd Jahne, Springer -Verlag, Fifth Edition, 2002, ISBN 3-540 67754 2
- 2) The Essential Guide to Image Processing", Al Bowik,2009, Elsevier Inc, ISBN 978-0-12-374457-9
- 3) S. Jayarman, S. Esakkirajan and T. Veerakumar, "Digital Image Processing", Tata McGraw Hill, 2010.

	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	DEPT	Mail ID									
1	Mr. P. Subramanian	Associate Professor	ECE	subramanian@avit.ac.in									
2	Dr. D. Vijendra Babu	Professor	ECE	Vijendrababu@avit.ac.in									
3	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in									
4	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in									

17ECCC1	ANALOG & DIGITAL	Category	L	T	P	Credit					
1,20001	COMMUNICATION	CC	3	0	0	3					
PREAMB	LE	·									
This course provides a thorough introduction to the basic principles of Analog and Digital Communications. It											
also deals with Analog and Digital Modulation techniques, Communication Transmitter & Receiver design,											
	nd Bandpass Communication Techniques, Noise	Analysis and N	Aultiple	exing	techniq	ues.					
PREREQ	ISITE - Nil										
COURSE	DBJECTIVES										
1 To Uı	derstand the basic elements of analog communication	ation system									
	n the basic concepts behind the transmission and										
	part the knowledge about Analog to Digital Trans			matio	n Theor	ry					
	alyze & design the performance of various digita										
	ply the knowledge of Digital Communication circ	cuits in various	fields.								
COURSE	OUTCOMES										
On the suc	essful completion of the course, students will be	able to									
CO1.Interp	ret the various Analog communication systems.		1	Under	stand						
CO2.Illustr	ate the principle and operation behind various Mo	odulators ,		Apply							
Demo	Demodulators in Analog communications										
CO3. Appl	different coding theory to estimate Entropy, Mu	itual		Apply							
	nation, Information rate etc.										
	nstrate the concept of various digital carrier modu	ulation and		Apply							
detern	ine their error probability.										
CO5.Analy	O5. Analyze the major classifications of spread spectrum techniques Analyze										

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	1	-	-	L	S	-	1
CO2	S	M	M	-	M	-	-	-	ı	-	-	M	S	M	M
CO3	S	M	M	M	-	-	-	-	ı	-	-	M	S	M	1
CO4	S	S	M	M	-	-	-	-	ı	-	-	M	S	M	M
CO5	S	M	M	M	L	-	_	-	-	-	-	L	S	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

Analog Communication Systems

Principles of Amplitude Modulation – AM Modulators- Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM Demodulators, AM transmitters-Low level & High level Transmitters, AM Receivers – TRF, Super Heterodyne Receiver, Double conversion AM receivers.

Angle Modulation: Transmission And Reception

Angle Modulation - FM and PM, Modulation Index, Frequency Modulators and Demodulators, Phase Modulators, FM transmitters- Direct & Indirect transmitters, Angle Modulation Vs Amplitude Modulation, FM Receivers, Frequency Vs Phase modulation.

Analog to Digital Transition Systems & Information Theory

Pulse Amplitude Modulation, Pulse Position Modulation, Pulse Code Modulation, Sampling Rate, DPCM, Delta Modulation, Time Division Multiplexing, Information Theory- Uncertainty, Information and entropy, source coding theorem, Discrete Memoryless channels, Mutual Information, Channel capacity, Channel coding theorem.

Digital Transmission

Pulse Transmission – Inter Symbol Interference, Eye pattern, Digital carrier Modulation-Binary Amplitude Shift Keying, Binary Frequency Shift Keying, Binary Phase Shift Keying, QPSK, bit and baud rate, BER Analysis

Spread Spectrum Modulation

Pseudo noise sequences, Direct sequence Spread Spectrum with coherent BPSK, Frequency hop spread spectrum modulation, Multiple Access Techniques – Wireless Communication, TDMA and FDMA

TEXT BOOK:

1. Simon Haykin and Michael Moher, "Communication systems" John Wiley & Sons, Fifth Edition, 2016

REFERENCE BOOKS:

- 1. Simon Haykin and Michael Moher, "An Introduction to Analog and Digital Communications", John Wiley & Sons, second Edition, 2006.
- 2. Martin S.Roden, "Analog and Digital Communication System", 3rd Edition, PHI, 2002
- 3. Wayne Tomasi, "Electronic Communication Systems: Fundamentals Through Advanced", Pearson Education, 2001.
- 4. B. Carlson, "Introduction to Communication systems", 3rd Edition, McGraw Hill, 1989

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

17ECCC16	MICROWAVE & OPTICAL COMMUNICATION SYSTEMS	Category	L	T	P	Credit
17Ecccio	(THEORY & PRACTICE)	CC	2	0	2	3

Microwave pertains to the study and design of Microwave circuits, Components, and systems. Fundamental principles are applied to Analysis, Design and Measurement techniques in this field. Also to gain knowledge about different types of Optical Emission, Detection Communication Systems and their Applications. This course makes the students to be familiar with the microwave and optical Measurements.

PREREQUISITE - Nil

COURSE OBJECTIVES

- To learn the terminology used in Microwave transmission system, Microwave components and their S-Parameters and its application in various fields
- To learn the various Microwave sources, semiconductor devices and IC's.
- To measure different parameters at microwave frequencies
- 4 To know the basics of solid state physics and understand the nature and characteristics of light And optical sources and amplifiers
- To learn the principle of optical detection and mechanism in different detection devices.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Summarize the principles of Microwaves and Fiber Optics in Communication System.	Understand
CO2. Demonstrate the various Microwave Sources and Semiconductor Devices.	Apply
CO3. Illustrate the different parameter measurements in Microwave Engineering.	Apply
CO4. Outline the optical fibers and sources used for Communication System.	Analyze
CO5. Analyze the optical detectors and amplifiers used for Communication Systems in different	Analyze
applications.	
CO6. Evaluate the performance of given antenna and RF filters by applying radio frequency	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	-	-	-	-	-	-	-	M	-	-	M	-	-
CO2	S	S	S	-	-	-	-	-	M	M	M	M	S	-	-
CO3	S	S	S	-	-	-	-	-	M	M	M	M	S	M	-
CO4	S	S	-	M	-	-	-	-	-	M	ı	M	S	M	M
CO5	S	S	M	M	-	-	-	-	M	M	M	M	S	M	M
CO6	S	S	S	M	S	M	M	M	M	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO MICROWAVES, COMPONENTS AND THEIR S-PARAMETERS

Microwave history, spectrum and band characteristics of microwaves-a typical microwave system. Applications of

Microwaves: Traditional, industrial and biomedical fields, S-matrix – significance, formulation and properties. S-matrix representation of a multi port network, Waveguide Attenuators, Waveguide Multi port Junctions- E plane and H plane Tees, Magic Tee, and Hybrid Ring, Directional Couplers, Isolator, Circulator- S-matrix calculations.

MICROWAVE SOURCES-O AND M-type TUBES, SEMICONDUCTOR DEVICES AND IC'S

Microwave tubes: O-type – Two cavity Klystron Amplifier, Reflex Klystron oscillator, M-type – cross-field effects, Magnetrons- types, HELIX TWT- types and characteristics of slow wave structures, structure of TWT and amplification process, Avalanche Transit Time Devices- principle of operation and characteristics of IMPATT and TRAPATT diodes, Schottky Barrier Diodes, IC'S:Monolithic Microwave Integrated Circuits (MMIC), MIC materials-Types.

MICROWAVE MEASUREMENTS

Power, Frequency and impedance measurement at microwave frequency, Network Analyzers and measurement of scattering parameters, Spectrum Analyzer and measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure.

INTRODUCTION -OPTICAL FIBERS AND OPTICAL SOURCES

Introduction to vector nature of light, Basic optical Laws and Definitions, Optical Fiber Modes and Configurations, Single Mode Fibers and Graded- Index Fiber Structures, Fiber Materials, Attenuation- Absorption, Scattering Losses, Bending Losses, Core and Cladding Losses, Optical sources - LED and LASER diode - Principles of operation

OPTICAL DETECTORS AND AMPLIFIERS

Principal of Photodiodes, Types of Optical detectors –PN Photodiode, PIN Photodiode, Avalanche photodiode, Phototransistor, semiconductor Laser Amplifiers, Erbium-Doped Fiber Amplifier, Raman Fiber amplifier, Brillouin Fiber amplifier, Applications of Optical Amplifiers, Noise in Optical Amplifiers.

RF PRACTICE

Directivity, Gain and Radiation pattern measurement for dipole, loop and Yagi - Uda antenna - RF Filters.

TEXT BOOKS:

- 1. Samual Y.Liao, "Microwave Devices and Circuits", PHI, 3rd Edition, 2003.
- 2. Collin R.E., "Foundation of Microwave Engineering", McGraw Hill, 2nd Edition, 2009.
- 3. Keiser. G, "Optical fiber communications", 4th Edition Tata McGraw-Hill, New Delhi, 2008
- 4. Franz & Jain, "Optical communication, Systems and Components", Narosa Publications, New Delhi, 2000.

REFERENCE BOOKS:

- 1. Microwave Principles Herbert J.Reich, J.G.Skalnik, P.F.Ordung and H.L.Krauss, CBS Publishers and Distributors, New Delhi, 2004.
- 2. Peter A.Rizzi, "Microwave Engineering Passive Circuits", PHI Publications.
- 3. Chatterjee.R, "Elements of Microwave Engineering", Affiliated East-West Press Pvt. Ltd.
- 4. John Gowar, "Optical Communication Systems", 2nd Edition Prentice Hall, 1993.
- 5. Agrawal. G.P, "Fiber-Optic Communication Systems" 3rd Edition John Wiley & Sons, 2002.

COUR	COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in						
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathysr@vmkvec.edu.in						

17ECCC17	FPGA SYSTEM DESIGN	Category	L	T	P	Credit
		CC	3	0	0	3

Field programmable devices are able to match the functional complexity of ASIC Devices such as PROM, PLDs (PLAs, PALs). PALs were widely used for glue logic and replaced SSI and MSI devices. Complex PLD"s are hierarchical PLD"s that connects smaller PLD"s through a central programmable interconnect to enable the implementation of medium complexity digital circuits. Main feature of CPLDs are the wide decoding, but has a low register to logic ratio. CPLD"s architecture is not scalable, due to the central switch used in connecting small PLD structures. Digital designs once built in custom silicon are increasingly implemented in field programmable gate arrays (FPGAs), but effective FPGA system design requires a understanding of new techniques developed for FPGAs. This course deals FPGA fabrics, introduces essential FPGA concepts, and compares multiple approaches to solving basic problems in programmable logic.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To analyze the design principle of synchronous and asynchronous circuits.
2	To design complex programmable logic by analyzing the FPGA architecture.

- To know the functional operation of various components of FPGA logics.
- 4 To expertise in VHDL programming.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Analysis, Design and Optimisation of the sequential digital systems.	Understand
CO2. Illustrate the FPGA architecture- logic cell, I/O cell and interconnects	Analyze
CO3. Design Complex Programmable Logic Devices for specific applications	Analyze
CO4. Discriminate the functional operation of various components of FPGA logics	Analyze
CO5. Design new logical design using VHDL programming	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS03
CO1	S	M	M	M	L	-	M	-	ı	-	-	M	S	S	-
CO2	S	M	S	L	M	-	-	-	-	-	-	M	M	L	-
CO3	S	S	S	S	L	-	M	-	ı	-	L	M	-	-	L
CO4	S	M	L	L	L	-	-	-	-	-	-	M	-	-	-
CO5	M	S	S	S	S	L	M	-	ı	-	L	M	-	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

Sequential Circuit Design using state machine approach

Synchronous and Asynchronous Sequential Circuit -Finite State Machine- Moore and Mealy, State Diagram, State table, State Assignment, Optimization of sequential circuit – State Minimization – Determination of state equivalence using an implication table,Races and Hazards.

Programmable Logic to ASICs

Programmable Read Only Memories (PROMs), Programmable Logic Arrays (PLAs), Programmable Array Logic (PALs), the Masked Gate Array ASIC, CPLDs and FPGAs.

Complex Programmable Logic Devices

CPLD Architectures, Function Blocks, I/O Blocks, Clock Drivers, Interconnect CPLD Technology and Programmable Elements.

FPGA Systems

Basic Concepts, Digital Design and FPGAs, FPGA-Based System, VLSI Technology-Manufacturing Processes, Transistor Characteristics, CMOS logic gates, Wires, Registers and RAM, Packages and Pads, FPGA Fabrics-FPGA Architectures, SRAM-Based FPGAs, Permanently Programmed FPGAs, Chip I/O, Circuit Design of FPGA Fabrics, Architecture of FPGA Fabrics

Hardware Description Language VHDL

Introduction to VHDL, structural, functional programming, Combinational Logic-Combinational Network Delay, Power and Energy Optimization, Arithmetic Logic, Logic Implementation for FPGAs, Physical Design for FPGAs, Sequential Machines-Sequential Design Styles, Rules for Clocking, Performance Analysis, Power Optimization.

TEXT BOOKS:

- 1. Charles H.Roth Jr, Larry L.Kinney "Fundamentals of Logic Design", Seventh edition, Cengage Learning 2014.
- 2. Jan M. Rabey, Anantha Chandrakasan and Borivoje Nikolic "Digital integrated circuits: A Design Perspective

(2nd Edition) ", Pearson 2009

REFERENCE BOOKS:

- 1. Wayne Wolf "FPGA –Based System Design" Pearson Education, 2004.
- 2. Bob Zeidman, "Designing with FPGAs and CPLDs", Elsevier, CMP Books, 2002.
- 3. M. Morris Mano and Michael D. Ciletti, "Digital Design", PHI, fourth edition, 2008
- 4. R.F.Tinder: Engineering Digital Design, (2/e), Academic Press, 2000
- 5. Stephen Brown Zvonko Vranesic "Fundamentals of Digital Logic with VHDL Design" Tata McGraw-Hill Edition.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2	Dr. L. K. Hema	Professor	ECE	hemalk@avit.ac.in
3	Dr.T.Sheela	Associate	ECE	sheela@vmkvec.edu.in
		Professor		
4	Mr. S. Selvam	Assistant	ECE	Selvam@avit.ac.in
		Professor (Gr-II)		

17ECCC18	INTERNET OF THINGS FOR ELECTRONICS	Category	L	T	P	Credit
		CC	3	0	0	3

The purpose of this course is to impart knowledge on Internet of Things (IoT), which relates to the study of sensors, actuators, and controllers, among other Things, IoT applications and examples overview (building automation, transportation, healthcare, industry, etc.) with a focus on wearable electronics

PREREQUISITE - Nil

COURSE OBJECTIVES

1	Understanding of IoT value chain structure (device, data cloud), application areas and technologies involved
2	Understand IoT sensors and technological challenges faced by IoT devices, with a focus on wireless, energy, power, RF and sensing modules
3	Market forecast for IoT devices with a focus on sensors

- 4 Explore and learn about Internet of Things with the help of preparing projects designed for Raspberry Pi
- 5 To study the advanced internet of things for electronics

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the concept of Internet of Things.	Understand
CO2. Explain the IOT Sensors To Appear	Apply
CO3. Design and implement of technological sensors	Analyze
CO4. Design and implement applications using internet of things	Analyze
CO5. Explain the advanced internet of things used in different applications.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L	-	-	-	-	-	-	M	S	-	ı
CO2	L	S	S	-	M	-	-	-	-	_	-	M	S	M	ı
CO3	S	M	M	-	L	M	-	-	-	-	-	M	S	-	-
CO4	S	L	L	-	L	S	-	-	-	-	-	M	S	M	M
CO5	M	M	S	-	M	L	-	-	-	-	-	M	S	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Internet of Things Promises-Definition-Scope-Sensors for IoT Applications-Structure of IoT-IoT Map Device

SEVEN GENERATIONS OF IOT SENSORS TO APPEAR

Industrial sensors –Description & Characteristics–First Generation –Description & Characteristics–Advanced Generation –Description & Characteristics–Integrated IoT Sensors –Description & Characteristics–Polytronics Systems –Description & Characteristics–Sensors' Swarm –Description & Characteristics–Printed Electronics – Description & Characteristics–IoT Generation Roadmap

TECHNOLOGICAL ANALYSIS

Wireless Sensor Structure-Energy Storage Module-Power Management Module-RF Module-Sensing Module

IOT DEVELOPMENT EXAMPLES

ACOEM Eagle – EnOcean Push Button – NEST Sensor – Ninja Blocks - Focus on Wearable Electronics

PREPARING IOT PROJECTS

Creating the sensor project -Preparing Raspberry Pi -Clayster libraries -Hardware-Interacting with the hardware - Interfacing the hardware-Internal representation of sensor values -Persisting data -External representation of sensor values -Exporting sensor data -Creating the actuator project-Hardware -Interfacing the hardware -Creating a controller -Representing sensor values -Parsing sensor data -Calculating control states -Creating a camera -Hardware -Accessing the serial port on Raspberry Pi -Interfacing the hardware -Creating persistent default settings -Adding configurable properties -Persisting the settings -Working with the current settings -Initializing the camera

REFERENCE BOOKS:

- 1. Dr. Guillaume Girardin, Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole Développement Copyrights, 2014
- 2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015
- 3. Editors OvidiuVermesan Peter Friess, 'Internet of Things From Research and Innovation to Market
- 4. Deployment', River Publishers, 2014
- 5. N. Ida, Sensors, 'Actuators and Their Interfaces', Scitech Publishers, 2014.
- 6. Qusay F. Hassan, 'Internet of things a to z: technologies and applications', John Wiley and Sons Ltd, 2018

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L. K. Hema	Professor	ECE	hemalk@avit.ac.in
2	Mr.G.Ramachandran	Assistant	ECE	ramachandrang@vmkvec.edu.in
		Professor		
3	Mr.R.Ramani	Assistant	ECE	ramani@vmkvec.edu.in
		Professor		
4	Mr.G.Sureshkumar	Assistant	ECE	sureshkumar@vmkvec.edu.in
		Professor		

17ECCC19	WIRELESS COMMUNICATION	Category	L	Т	P	Credits
17ECC19	SYSTEMS (THEORY & PRACTICE)	CC	2	0	2	3

To introduce the concepts of wireless / mobile communication using cellular environment. To make the students to know about the various modulation techniques, propagation methods, coding and multi access techniques used in the mobile communication. Various wireless network systems and standards are to be introduced.

PREREQUISITE -

COURSE OBJECTIVES

1	It deals with the fundamental cellular radio.
2	It presents different ways to radio propagation models
3	It provides idea about analog and digital modulation techniques used in wireless communication.
	communication.
4	It also deals with the different types of equalization techniques and diversity concepts
5	It deals with advanced transceiver schemes and second generation and third generation wireless networks

COURSE OUTCOMES

On the successful completion of the course, students will be able to

· · · · · · · · · · · · · · · · · · ·	
CO1. Discuss the cellular system design and technical challenges.	Understand
CO2. Analyze the Mobile radio propagation, fading, diversity concepts and the channel modeling.	Analyze
CO3. Analyze Multiuser Systems, CDMA, WCDMA network planning and OFDM Concepts.	Analyze
CO4. Analyze the design parameters, link design.	Analyze
CO5. Summarize the principles and applications of wireless systems and standards	Evaluate
CO6. Test digital carrier modulation system and multiplexing accessing system	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P O 1	P O 2	P O 3	PO 4	P O 5	P O 6	PO 7	PO 8	P O 9	P O 10	P O 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	S	L	L	-	L	-	-	ı	-	-	-	M	S	M	-
CO2	L	S	S	-	M	-	-	ı	-	-	-	M	S	S	S
CO3	S	M	M	-	L	M	-	ı	-	-	-	M	ı	M	-
CO4	S	L	L	-	L	S	-	-	-	-	-	M	S	S	-
CO5	S	S	S	-	M	L	-	-	-	-	-	M	M	-	M
CO6	S	S	S	-	M	M	M	ı	M	-	-	M	S	M	M
S- Stror	ng: M	-Med	ium:	L-Lov	v										

SYLLABUS

SERVICES AND TECHNICAL CHALLENGES

Types of Services, Requirements for the services, Multipath propagation, Spectrum Limitations, Noise and Interference limited systems, Principles of Cellular networks, Multiple Access Schemes.

WIRELESS PROPAGATION CHANNELS

Propagation Mechanisms (Qualitative treatment), Propagation effects with mobile radio, Channel Classification, Link calculations, Narrowband and Wideband models.

WIRELESS TRANSCEIVERS

Structure of a wireless communication link, Modulation and demodulation – Quadrature Phase Shift Keying, $\pi/4$ -Differential Quadrature Phase Shift Keying, Offset-Quadrature Phase Shift Keying, Binary Frequency Shift Keying, Minimum Shift Keying, Gaussian Minimum Shift Keying, Power spectrum and Error performance in fading channels.

SIGNAL PROCESSING IN WIRELESS SYSTEMS

Principle of Diversity, Macrodiversity, Microdiversity, Signal Combining Techniques, Transmit diversity, Equalisers- Linear and Decision Feedback equalisers, Review of Channel coding and Speech coding techniques.

ADVANCED TRANSCEIVER SCHEMES

Spread Spectrum Systems- Cellular Code Division Multiple Access Systems- Principle, Power control, Effects of multipath propagation on Code Division Multiple Access, Orthogonal Frequency Division Multiplexing – Principle, Cyclic Prefix, Transceiver implementation, Second Generation(GSM, IS–95) and Third Generation Wireless Networks and Standards

PRACTICE

Digital Carrier Transmitter and Receiver (PSK, FSK and ASK), TDM and FDM

TEXT BOOKS:

- 1. Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.
- 2. Simon Haykin & Michael Moher, "Modern Wireless Communications", Pearson Education, 2007.

REFERENCE BOOKS:

- 1. Rappaport. T.S., "Wireless communications", Pearson Education, 2003.
- 2. Gordon L. Stuber, "Principles of Mobile Communication", Springer International Ltd., 2001.
- 3. Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2007.

S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Mr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.ac.in
2	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in
3	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

	SEMICONDUCTOR DEVICES	Category	L	T	P	Credit					
17ECCC81	LAB	CC	0	0	4	2					
PREAMBLE											
To reinforce learning	in the accompanying semiconductor devices co	ourse through hands-o	n exp	erien	ce by ex	amining the					
electrical characteristi	electrical characteristics of various semiconductor devices, such as diodes, BJTs and FETs. To provide the student with										
the capability for perf	the capability for performing various analysis of semiconductor devices.										
PRERQUISITE- NII	PRERQUISITE- NIL										

COURSE	OBJECTIVES	

COURSE O	COURSE OBJECTIVES												
1	To emphasize the practical, hands-on component of this course.												
2	To complement the theoretical material presented in lecture, and as such, is integral and												
	indispensible to the mastery of the subject.												
3	To study experimentally the characteristics of diodes, BJT's and FET's.												
4	To verify practically the response of various special purpose electron devices.												
5	To provide students engineering skills by way of breadboard circuit design with electronic devices												
	and components.												

COURSE OUTCOMES

On the successful completion of the course, students will be able to								
CO1. Construct and find the ripple factor and efficiency of HWR and FWR by conducting	Apply							
experiments.								
CO2. Construct clipper and clamper circuits for any given specifications and illustrate their output.	Apply							
CO3. Determine the given transistor parameters from the characteristics of BJT in CE and CC	Apply							
Configuration.								
CO4. Design transistor voltage regulator for given specifications and verify its output.	Analyze							
CO5. Examine the characteristics of SCR, DIAC and TRIAC.	Analyze							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	-	-	M	-	M	-	M	-	S	M	1
CO2	S	M	M		-	-	M	-	M	-	M	-	S	M	ı
CO3	S	M	M	-	-	-	M	-	M	-	M	-	S	M	-
CO4	S	M	M	-	-	-	M	-	M	-	M	-	S	M	M
CO5	S	M	M	-	-	-	M	-	M	-	M	-	S	M	-

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Half Wave Rectifier
- 2. Full Wave Rectifier
- 3. Clipper
- 4. Clamper
- 5. Input/output Characteristics of CE Amplifier
- 6. Input/output Characteristics of CC Amplifier
- 7. Transfer Characteristics of JFET
- 8. Voltage Regulator
- 9. TRIAC, DIAC
- 10. SCR

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Selvam	Professor	ECE	hodeee@vmkvec.edu.in
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
3	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
4	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in

119

17ECCC82	DIGITAL LOGIC CIRCUITS & DESIGN	Category	L	T	P	Credit
	LAB	CC	0	0	4	2

To provide experience & explore designs in analyzing and testing of digital logic circuits like combinational and sequential circuits using lab instruments as well as simulation software.

Prerequisite: Basic Electrical and Electronics Engineering

PRERQUISITE

17EEES03 - Basics of Electrical and Electronics Engineering

COURSE OBJECTIVES

1	To impart the knowledge in analysis and design of various combinational logic circuits.
2	To learn about design and analysis of sequential circuits using flip flops.
3	To Expose students about design and simulation of logic circuits using HDL.

COURSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1.Construct various logic circuits.	Apply
CO2. Demonstrate the various combinational logic circuits by using discrete components	Apply
CO3. Analyze different sequential logic circuits by using discrete components.	Analyze
CO4. Test the various digital logic circuits by using simulation software.	Evaluate
CO5. Measure and record the experimental data for various digital circuits.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	M	-	-	-	M	-	-	L	S	-	-
CO2	S	-	-	-	S	-	-	-	M	-	-	L	S	M	-
CO3	S	M	M	M	M	-	-	-	M	-	-	L	S	M	-
CO4	S	M	-	-	M	-	-	-	M	-	-	L	S	S	M
CO5	S	M	-	-	M	-	-	_	M	-	-	L	S	M	-

S- Strong; M-Medium; L-Low

List of Experiments

Hardware Experiments

- 1. Design and implementation of Adders using logic gates.
- 2. Design and implementation of Sub tractors using logic gates.
- 3. Design and implementation of BCD to Excess -3 code converter using logic gates
- 4. Design and implementation of Binary to Gray code converter using logic gates
- 5. Design and implementation of 4 bit BCD adder using IC 7483
- 6. Design and implementation of 2 Bit Magnitude comparator using logic gates
- 7. Design and implementation of Multiplexer and De-Multiplexer using logic gates
- 8. Design and implementation of encoder and decoder using logic gates
- 9. Design and implementation of 3 bit synchronous up/down counter.
- 10. Implementation of SISO, SIPO, and PISO shift registers using flip flops.

Software Experiments using HDL

- 1. Design and Simulation of Full adder circuit using Gate level modelling
- 2. Design and Simulation of 2X2 multiplier circuit using structural level modeling.
- 3. Design and Simulation of 8 to 1 Multiplexer circuit using behavioural level modeling.

COURSE DESIGNERS

0 0 0				
S.No	. Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

120

17ECCC83	ANANLOG CIRCUITS LAB	Category	L	T	P	Credit
		CC	0	0	4	2

The goal of this lab is to supplement the theory course Analog Circuits. Students will gain experience in Analog circuits design for given specification. They will analyze and test electronic circuits using simulation software and laboratory instruments.

PRERQUISITE

17ECCC01 - Semiconductor Devices

COUF	RSE OBJECTIVES
1	To impart the design knowledge of various small signal amplifier circuits
2	To design the feedback amplifier and Oscillator
3	To study the characteristics of Power & Tuned amplifiers circuits
COUF	RSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Design & Simulation of Compound configurations of analog circuits.	Apply
CO2. Apply the concepts of transistor biasing to study the small signal behavior of	Apply
BJT for Amplification	
CO3. Design and infer the frequency response and bandwidth of Feedback	Analyze
amplifiers.	
CO4. Investigate the concepts of Power & Tuned amplifiers	Analyze
CO5. Simulate & Estimate the frequency of LC and RC Oscillators	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	_														
CO1	S	M	M	M	M	-	-	-	M	-	-	M	S	S	-
CO2	S	M	M	M	M	-	-	-	M	_	-	M	S	S	-
CO3	S	S	M	M	M	-	-	-	M	-	1	M	S	S	-
CO4	S	S	M	M	M	-	-	-	M	_	-	M	S	S	-
CO5	S	S	S	S	S	M	-	-	M	M	-	S	S	S	M

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Design, Simulation and Hardware realization of Single Stage Common Emitter amplifier for given specification
- 2. Simulation & Hardware realization of Feedback amplifiers and its frequency analysis
 - a) Voltage Series
 - b) Current Shunt
- 3. Design, Simulation and Hardware realization of Sinusoidal waveform generators.
 - a) RC Oscillators
 - b) LC Oscillators
- 4. Design and simulation of Power amplifiers
- 5. Frequency Response characterization of Tuned amplifier circuit.
 - a) Single Tuned
 - b) Double Tuned
- 6. Design and hardware realization of Multistage Amplifier for given specification
 - a) Cascade
 - b) Darlington
- 7. Design and simulation of Differential pair circuit with active load and current references and its frequency analysis.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nagappan	Professor	BME	principal@vmkvec.edu.in
2	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
3	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17CSCC84	COMPUTER PROGRAMMING LAB	Category	L	Т	P	Credit
17050004	COMI OTERT ROGRAMMING LAD	CC	0	0	4	2
PREAMBLE						
· ·	ive hands on training to the students in unders his will improve the problem solving capability TE NIL		•			
COURSE OU	UTCOMES					
On the succes	ssful completion of the course, students will b	e able to				
CO1 Write, c specification/a	compile, debug, link and execute C program for application	or the given		Appl	y	
GOA D :	and implement algorithms involving decision					

Apply

Apply

Apply

Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO3. Use different data structures for solving the given problem using computer

CO5. Analyze the implementation complexity of algorithm by modularizing the

arrays and pointers.

CO4. Create/update data files.

problem into small modules for the given problem

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	_	-	-	S	-	-	M	M	-	-	L	M	-	-
CO2	S	M	L	-	S	-	-	M	S	L	-	M	M	-	-
CO3	S	M	L	-	S	-	-	M	S	L	-	M	M	-	-
CO4	S	M	L	-	S	-	-	M	S	-	-	-	M	-	M
CO5	S	S	M	-	S	-	-	M	S	L	-	M	M	-	M
S- Stro	ong; M-	Mediur	n; L-Lo	w	ı	ı	ı	I		<u>I</u>	1	1		<u> </u>	

LIST OF EXPERIMENTS

- 1. Basic programs to understand different types of data, operators and expressions.
- 2. Programs using control structures
 - i) Factorial of a number
 - ii) Fibonacci series
 - iii) Generating prime numbers
 - iv) Generating Armstrong numbers
 - v) Greatest common divisor
- 3. Programs using arrays
 - i) Merging of arrays
 - ii) Array order reversal
 - iii) Selection sort
 - iv) Bubble sort
 - v) Insertion sort
- 4. Programs using strings
 - i) Palindrome checking
 - ii) String sorting
 - iii) Linear pattern search
 - iv) Text line editing
- 5. Programs using functions
- 6. Programs using pointers
- 7. Programs using structures
- 8. Programs using file structure

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in
2	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17ECCC85

LINEAR INTEGRATED CIRCUITS & MICROCONTROLLERS LAB

Category	L	T	P	Credit
CC	0	0	4	2

PREAMBLE

To provide the skill to design linear integrated circuits using op-amp and other special purpose circuits. Assembly language programming for microcontroller and interfacing peripheral devices with microcontroller is vital due to the persisting real time application scenarios. Hence exposure to interface ADCs, DACs with microprocessor and acquiring knowledge about the real time applications like stepper motor control, key board etc., is essential.

PRERQUISITE

17ECCC01 - Semiconductor Devices

17ECCC02 - Analog Circuits

COURSE OBJECTIVES

- 1 To learn the characteristics of integrated circuits through op-amp.
- 2 To implement various operations using Op-amp
- To write the assembly language program for 8086 and 8051.
- 4 To write the programs for communication between microcontroller and peripheral devices

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Determine Gain of inverting and Non inverting Amplifier using Op-Amp	
CO2. Analyze and Implement various circuits Applications like integrator, differentiator, Comparator etc, using Op-amp.	•
CO3. Design and test the performance of multi-vibrators for given specifications using timer IC	•
CO4. Develop assembly language program for basic applications like arithmetic operations, interrupt and UART, etc	Analyze

CO5. Apply the practical knowledge of Microcontroller in designing various Circuit.

MADDING WITH D	DOODAMME	OUTCOMES AND	DDOCDAMME	DECIPIC OUTCOMES
MAPPING WITH P	KUC÷KAWIWIH	OUTCOMES AND	PROGRAMINIES	PECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	1	1	1	1	M		L		M	1	M		
CO2	M	L	1	1	1	1	M		L		M	1	M	-	
CO3	M	L	1	1	1	1	M		M		M	1	M	-	
CO4	M	L	-	-	!	1	M		M		M		M		
CO5	M	L					M		M		M		M		

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

LINEAR INTEGRATED CIRCUITS LAB

Design

- 1. Inverting, Non-Inverting and Differential Amplifier.
- 2. Integrator, Differentiator, Comparator and Schmitt trigger.
- 3. Active LPF and HPF.
- 4. Astable and Monostable Multivibrators using IC 555
- 5. Voltage regulation using IC 723

MICROCONTROLLERS LAB

- 6. 8086 & 8051 Assembly language program for Arithmetic Operations.
- 7. 8051 Assembly language program for Logical, Interrupt & UART Operations.
- 8. Interfacing DAC to Microcontroller and generate Square, Triangular and Saw –tooth waveforms.
- 9. Interfacing ADC to Microcontroller.
- 10. Interfacing Stepper Motor to 8051 and operate it in Clockwise and Anti-Clockwise directions.

REFERENCES

1. Laboratory Reference Manual.

S.No.	Name of the Faculty	Designation	Departme	Mail ID
			nt	
1	Mr.N.Manikanda	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
	Devarajan			
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17ECCC86	SIGNAL PROCESSING LAB	Category	L	T	P	Credit
		CC	0	0	4	2

The purpose of this course is to give hands on training to the students in understanding the theory of signals and systems and practicing the algorithms used in digital signal processing. This will improve the understanding capability of the signal and system theory and simulation capability of the signal processing algorithms.

PREREQUISITE

17ECCC04 - Signals and Systems

COURSE OBJECTIVES								
1	To generate the elementary signals/ waveforms.							
2	To compute the convolution of signal.							
3	To design different types of filters and obtain frequency response.							
4	To compute magnitude and phase components using DFT.							
COUR	SE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1.	Test the time and frequency domain representation of discrete time signals through	Analyze						
simulat	ion							
CO2. A	Analyze the time and frequency domain response of discrete time systems through	Analyze						
simulat	ion							
CO3. A	nalyze the effects of quantization error in the filter coefficients through simulation	Analyze						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO4. Develop FIR and IIR filter for the specification derived from the given problem and

C	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C	O1	M	M	L	-	-	-	-	-	-	-	-	_	S	M	-
C	O2	S	S	M	-	M	-	-	-	M	-	_	M	S	M	1
C	O3	S	S	M	-	M	-	-	-	M	-	-	M	S	M	ı
C	O4	S	S	M	-	M	-	-	_	M	-	_	M	S	M	_

Create

S- Strong; M-Medium; L-Low

simulate the frequency response.

SYLLABUS

- 1. Generate different time signals and display the same.
- 2. Compute the linear convolution of a signal using DFT.
- 3. Compute the circular convolution of a given signal.
- 4. Design analog Chebyshev filters and apply bilinear transformation
- 5. Design analog Butterworth filters and apply bilinear transformation
- 6. Design analog Chebyshev filters and apply impulse invariance transformation
- 7. Design analog Butterworth filters and apply impulse invariance transformation

- 8. Design FIR filters using Fourier series method and frequency sampling methods
 9. Design FIR filters using Different windowing techniques
 10. Effect of quantizations

 COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in		
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in		
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in		
4	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in		

171	ECCC	97	DIC	HTAI	LIMA	GE P	ROC	ESS	ING	Cat	egory	L	T	P	Credit
1/1		07				LAB					CC	0	0	4	2
PREA								. 1					C.		
To un	dersta	nd and	ımple	ement	ımage	proce	ssing	techr	nques	susing	open s	ource	softwa	re	
PREF	PRERQUISITE: Signal Processing														
COU	COURSE OBJECTIVES														
1				_	_			_		a open		softw	vare – S	CIL	AB
2	To st	udy ar	nd ana	lyze d	ifferen	ıt imag	ge trar	nsforr	ns on	image	S				
3	To st	udy, a	nalyze	and a	pply c	liffere	nt tec	hniqu	ies an	d algor	ithms t	for im	age enl	nance	ement
4	To st	udy, a	nalyze	and a	pply c	liffere	nt tec	hniqu	ies an	d algor	ithms t	for im	age res	torat	ion
5	To st	udy, a	nalyze	and a	pply c	liffere	nt tec	hniqu	ies an	d algor	ithms	for im	age coi	mpre	ssion
COU	5 To study, analyze and apply different techniques and algorithms for image compression COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
	CO1. Apply the various Image Transforms and their properties for processing of														
	Digital Images. CO2. Demonstrate different Image Smoothening & Sharpening algorithms in Spatial														
					_			g &	Sharp	ening a	algoritl	nms 1	n Spati	al	Apply
and Fi								icac i	n Dia	ital Ima	0000				Apply
										ction in		25			Apply Apply
										pression			S.	I	Analyze
										PROC					
OUT	COMI	ES													
COS	PO	PO	PO	PO	PO	PO	PO	PO		PO	PO	PO	PSO	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	M	M	S	-	-	-	M	-	-	-	S	S	-
CO2	S	S	M	M	S	-	-	-	M	-	-	-	S	S	-
CO3	S	S	M M	M M	S	-	-	-	M M	-	-	-	S S	S S	-
CU4	<u>ა</u>	S	1V1	1V1	S	-	-	_	1V1		-	_	S	<u>s</u>	
CO5	S	S	S	M	S	-	-	-	M	-	-	-	S	S	-
S- Str	S- Strong; M-Medium; L-Low														

List of Experiments

- 1) To acquire an Image, store in different formats and display the properties of the Images
- 2) To find the discrete Fourier transform of a Grayscale Image and perform Inverse Transform to get back the Image.
- 3) Analyze the rotation and convolution properties of the Fourier Transform using any Grayscale Image.
- 3) Find the Discrete Cosine Transform of a given Image. Compare Discrete Fourier Transform

and Discrete Cosine Transforms

- 4) Apply Histogram Equalization for enhancing the given Images.
- 5) Perform Image Enhancement, Smoothing and Sharpening, in Spatial domain using different Spatial Filters and compare the performances.
- 6) Perform Image Enhancement, Smoothing and Sharpening, in Frequency domain using different Filters and compare the performances.
- 7) Perform Noise removal using different Spatial filters and compare their performances.
- 8) For the given Image perform Edge detection using different operators and compare the results.
- 9) For a given Image, Compress and Decompress using Wavelets. Study and compare the efficiency of the scheme with any two schemes.

	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Dept	Mail ID							
1	Mr. P. Subramanian	Associate Professor	ECE	subramanian@avit.ac.in							
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in							
3	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in							

17EC	0000	DATA COMMUNICATION	Category	L	T	P	Credits				
17EC	CC88	NETWORKING LAB	0	4	2						
PREA	MBLE										
To giv	e in de	oth knowledge in data communication w	ithin the noc	les in	establ	ished n	etwork.				
PRER	REQUI	SITE: Nil									
COUI	RSE OI	BJECTIVES									
1	To lea	rn the knowledge about the communica	tion between	two	compu	iters.					
2	To Learn and implement different protocols.										
3	To Learn and implement routing protocols.										
Cours	se Outc	omes									
On the	succes	sful completion of the course, students	will be able t	0							
CO1.		tand the basic communication princip	les between	the	two	A	nalyze				
CO2.	Constru	ct the network in different topological s	tructures.			(Create				
CO3.	Analyze	e the performances of different network	protocols			A	nalyze				
	Differe g algori	ntiate the performances, merits and others.	demerits of	diffe	rent	A	nalyze				
		VITH PROGRAMME OUTCOMES	AND PROG	RAN	AME S	SPECI	FIC				
OUT	COMES			-							

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	M	M	-	_	L	-	-	-	L	-	-	L	S	M	-
CO2	S	S	L	-	M	-	-	-	-	L	-	-	S	S	-
CO3	S	S	M	-	-	-	-	-	M	L	L	-	M	S	-
CO4	S	S	L	_	_	_	_	L	L	L	L	L	M	M	-

Syllabus

- 1. Study of serial data Communication between two computers.
- 2. Study of Parallel data Communication between two computers.
- 3. Study of Network Topologies Star, Bus & Ring
- 4. Implementation of stop and wait protocol using simulator.
- 5. Implementation of Sliding window protocol using simulator.
- 6. Implementation of Go-Back N protocol using simulator.
- 7. Implementation of Selective Repeat protocol using simulator.
- 8. Study the performance of the network with CSMA/CD protocol.
- 9. Study the performance of the network with CSMA/CA protocol.
- 10. Implementation of routing algorithm
 - a. Distance vector Routing Algorithm
 - b. Link State Routing Algorithm
- 11. Encryption and Decryption.
- 12. Study of Ethernets and Fast Ethernets

	COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Dept	Mail ID						
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in						
2	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in						

17ECCC89	ANALOG & DIGITAL	Category	L	T	P	Credit
	COMMUNICATION LAB	CC	0	0	4	2

The purpose of this course is to give hands on training to the students in understanding the theory of communications and practicing sessions used in analog and digital communication systems. This will improve the understanding capability and simulation capability of the communications.

PRERQUISITE

NIL

COURSE OBJECTIVES

1	To impart the knowledge on generation and detection of Analog signals.
2	To carry out experiments in order to learn about various analog to digital conversion schemes.
3	To Expose students on various digital modulation schemes using kits and MATLAB software.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Construct and test Analog modulation and demodulation circuits	Apply
CO2. Construct and test circuits for pulse amplitude and pulse position modulation circuits	Apply
CO3. Construct and test the performance of digital carrier modulation techniques.	Analyze
CO4. Generate PN sequences and Spread spectrum techniques.	Analyze
CO5. Simulate of Analog modulation and Demodulation using MATLAB.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	L	-	-	L	S	M	-
CO2	S	L	L	-	-	-	-	-	L	-	-	-	S	M	-
CO3	S	S	S	M	M	-	-	-	M	-	-	M	S	M	M
CO4	S	M	M	L	-	-	-	-	L	-	-	L	S	M	M
CO5	S	S	S	M	M	-	-	-	M		-	M	S	S	M

S- Strong; M-Medium; L-Low

List of Experiments

- 1. Signal Sampling and Reconstruction.
- 2. Generation of Amplitude Modulation and Demodulation
- 3. Frequency Modulation and Demodulation
- 4. Pre-emphasis and De-emphasis
- 5. Pulse Amplitude Modulation, Pulse Position Modulation
- 6. Generation of ASK,FSK
- 7. Generation of PSK and QPSK
- 8. Generation of PN Sequences and Direct sequence spread spectrum
- 9. Simulation of Analog Modulation schemes in MATLAB
- 10. Simulation of Analog Demodulation schemes in MATLAB

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17ECCC90	FPGA SYSTEM DESIGN LAB	Category	L	T	P	Credit
		CC	0	0	4	2

PREAMBLE - This lab-oriented course will focus on the design of large-scale system-on-a-chip (SOC) solutions within field-programmable gate arrays (FPGAs). Modern FPGA densities and commercially available cores enable a single developer to design highly complex systems within a single FPGA.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To design and simulate basic logic circuits, combinational and sequential logic circuits using HDL software.
- 2 To implement the designed logic circuits in FPGA device.
- 3 To verify the input and output of designed logic circuits

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Design and simulation of digital logic circuits	Apply
CO2. Design and implement the combinational logic circuits in FPGA device	Evaluate
CO3. Design and implement several Sequential circuits in FPGA device	Evaluate
CO4. Develop complex logic circuits	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	M	L	-	M	-	-	-	-	M	M	S	L
CO2	S	M	S	L	M	-	-	-	-	-	-	M	M	L	-
CO3	S	S	S	S	L	-	M	-	-	-	L	M	S	S	L
CO4	S	M	L	L	L	-	-	-	-	-	-	M	M	L	-

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Implementation of Logic Gates –Data flow model and Behavioral model
- 2. Combinational logic circuits -Adders and Subtractor
- 3. Code converters-Binary to Gray and Gray to Binary
- 4. 3 to 8 Decoder –74138
- 5. 4 Bit Comparator –7485
- 6. 8 x 1 Multiplexer –74151 and 2X4 Demultiplexer –74155
- 7. 16 x 1 Multiplexer –74150 and 4X16 Demultiplexer –74154
- 8. Sequential circuits -Flip-Flops
- 9. Decade counter –7490.
- 10. Synchronous & Asynchronous Counters
- 11. Shift registers –7495.
- 12. Universal shift registers -74194/195.
- 13. RAM (16 x 4) –74189 (Read and Write operations).
- 14. Stack and Queue Implementation using RAM.

	ASE DESIGNERS								
S.No	Name of the	Designation	Department	Mail ID					
	Faculty								
	Da I. V. Hama	Professor &	ECE	hemalk@avit.ac.in					
1	Dr.L.K.Hema	Head	ECE	nemark@avit.ac.m					
2 Dr.T.Sheela		Associate	ECE	sheela@vmkvec.edu.in					
2	Dr. I .Sheeia	Professor		Sheera whikvee.edu.iii					
2	Mr.C.Arunkumar	Assistant	ECE						
3	Madhuvappan	Professor		arunkumarmadhuvappan@vmkvec.edu.in					
		Assistant							
4	Mr.S.Selvam	Professor	ECE	selvam@avit.ac.in					
4		(Gr-II)							
		(=							

17ECCC91	MICROWAVE & OPTICAL	Category	L	T	P	Credit
	COMMUNICATION LAB	CC	0	0	4	2

To know and understand how communication is being established at Microwave frequencies and by using fiber in optical communication.

PREREQUISITE -NIL

COURSE OBJECTIVES

- 1 To learn the characteristics of Microwave Oscillators, Waveguide tees and Couplers
- To learn the LED,LASER and PHOTODIODE characteristics by using Optical fibers
- To expose the analog and digital data transmission using fiber optics.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the principles of Microwave Communication and determine the Characteristics of	Apply
Oscillators and Waveguide Tees.	
CO2. Apply the principles of Microwave Communication and determine the Characteristics of	Analyze
directional coupler and examine the parameters of horn antenna.	
CO3. Analyze the performance of Analog and Digital data communication through fiber optic link	Analyze
CO4. Measure the characteristics of semiconductor devices using fiber optical communication system.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	-	M	-	-	-	-	S	S	-	S	M	-
CO2	S	S	M	-	M	-	-	-	-	S	M	M	S	M	-
CO3	S	M	M	S	M	-	-	-	-	S	S	M	S	S	S
CO4	S	M	S	M	M	-	-	-	-	S	S	M	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

MICROWAVE:

- 1. Characteristics of Gunn diode Oscillator.
- 2. Characteristics of Reflex Klystron oscillator.
- 3. Characteristics of Directional Coupler
- 4. Characteristics of E/H Plane waveguide Tee
- 5. Characteristics of Magic Tee.
- 6. Horn Antenna Gain and directional Characteristics

OPTICAL COMMUNICATION:

- 1. Numerical aperture determination for fibers
- 2. D.C. Characteristics of LED and PIN Photo Diode
- 3. Optical transmission using Analog Modulation
- 4. Data transmission through Fiber Optic Link.
- 5. PI Characteristics of LASER diode.

S.No	Name of the	Designation	Department	Mail ID						
	Faculty									
1	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in						
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathysr@vmkvec.edu.in						
3	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in						

17ECCC92	INTERNET OF THINGS LAB	Category	L	Т	P	Credit
		CC	0	0	4	2
DDEALDI	1 D 1 ' ' ' '	D			1	1 'C'

PREAMBLE - Purpose and requirement specification, Process specification, Domain model specification, information model specification, Service specifications, IoT level specification, Functional view specification, Operational view specification, Device and component integration, Application development.

PREREQUISITE - Nil

COURSE OBJECTIVES

- To understand fundamentals of IoT and embedded system including essence, basic design strategy and process modelling.
- 2 To understand fundamentals of security in IoT.
- To learn real world application scenarios of IoT along with its societal and economic impact using case studies.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Implement an architectural design for IoT for specified requirement							
CO2. Solve the given societal challenge using IoT.	Evaluate						
CO3. Design and implement IoT circuits for real time application	Evaluate						
CO4. Develop complex IoT circuits	Evaluate						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	M	L	-	M	-	-	-	-	M	S	S	M
CO2	S	M	S	L	M	-	-	-	-	-	-	M	S	M	-
CO3	S	S	S	S	L	-	M	-	-	-	L	M	S	S	M
CO4	S	M	L	L	L	-	-	-	-	-	-	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Definition and characteristics of IoT,
- 2. Internet of Things: Vision, Emerging Trends, Economic Significance,
- 3. Technical Building Blocks, Physical design of IoT, Things of IoT, IoT Protocols, Logical design of IoT, IoT functional blocks,
- 4. IoT communication models, IoT Communication APIs,
- 5. IoT enabling technologies,
- 6. IoT levels and deployment templates,
- 7. IoT Issues and Challenges, Applications

COOL	COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in						
2	G.Ramachandran	Assistant Professor	ECE	ramachandrang@vmkvec.edu.in						

17ECEC01	ADVANCED DIGITAL SYSTEM	Category	L	T	P	Credit
	DESIGN	EC(PS)	3	0	0	3

PREAMBLE - The course provides an in-depth coverage of systematical development and synthesis of advanced digital integrated circuits with emphasis on Field Programmable Gate Array (FPGA) technology. The course will cover digital hardware system design, digital arithmetic, dynamic partial reconfiguration of FPGA, high level synthesis and functional verification.

PREREQUISITE – Nil

COURSE OBJECTIVES

- 1 To introduce methods to analyze and design synchronous and asynchronous sequential circuits.
- 2 To introduce the architectures of programmable devices.
- To introduce design and implementation of digital circuits using programming tools.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Solve the sequential digital circuits	Apply
CO2. Experimentation on Hardware / software co-design (FPGA design)	Apply
CO3. Analyze digital system design using PLD.	Analyze
CO4. Analyze combinational and sequential circuits using VHDL systems.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	-	-	-	-	M	-	-	M	M	S	M
CO2	S	M	S	-	M	-	-	-	M	-	-	M	M	M	-
CO3	S	S	S	-	M	-	-	-	M	-	-	M	S	S	M
CO4	S	S	S	M	M	-	-	-	-	-	-	M	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

SEQUENTIAL CIRCUIT DESIGN

Analysis of clocked synchronous sequential circuits and modeling-State diagram, state table, state table assignment and reduction-Design of synchronous sequential circuits design of iterative circuits-ASM chart and realization using ASM

ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of asynchronous sequential circuit –flow table reduction-races-state assignment-transition table and problems in transition table-design of asynchronous sequential circuit-Static, dynamic and essential hazards –data synchronizers –mixed operating mode asynchronous circuits –designing vending machine controller

FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS

Fault table method-path sensitization method –Boolean difference method-D algorithm -Tolerance techniques –The compact algorithm –Fault in PLA –Test generation-DFT schemes –Built in self test

SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES

Programming logic device families –Designing a synchronous sequential circuit using PLA/PAL –Realization of finite state machine using PLD –FPGA –Xilinx FPGA-Xilinx 4000

SYSTEM DESIGN USING VERILOG

Hardware Modelling with Verilog HDL –Logic System, Data Types and Operators For Modelling in Verilog HDL –Behavioural Descriptions in Verilog HDL –HDL Based Synthesis –Synthesis of Finite State Machines–structural modeling –compilation and simulation of Verilog code –Test bench -Realization of combinational and sequential circuits using Verilog –Registers –counters –sequential machine –serial adder –Multiplier-Divider –Design of simple microprocessor.

REFERENCE BOOKS:

- 1. Charles H.Roth Jr "Fundamentals of Logic Design" Thomson Learning 2004
- 2.M.D.Ciletti, Modeling, Synthesis and Rapid Prototyping with the Verilog HDL, Prentice Hall, 1999.
- 3.M.G.Arnold, Verilog Digital –Computer Design, Prentice Hall (PTR), 1999.
- 4. Nripendra N Biswas "Logic Design Theory" Prentice Hall of India, 2001
- 5.Parag K.Lala "Digital system Design using PLD" B S Publications,20036.ParagK.Lala "Fault Tolerant and Fault Testable Hardware Design" B SPublications,20027.S. Palnitkar, Verilog HDL –A Guide to Digital Design and Synthesis, Pearson, 2003

S.No	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in			
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in			

17ECEC02	PCB & PLC	Category	L	T	P	Credit
		EC(PS)	3	0	0	3

Printed circuit boards are inarguably one of the most influential inventions of the 20th century. Nearly every piece of technology today uses at least one of these devices, and they have played roles in historically significant events like world war II and space travels. To gain an appreciation for PCB technology, let's look at several significant moments in the history of circuit boards.

A Programmable Logic Controller (PLC) is an industrial computer control system that continuously monitors the state of input devices and makes decisions based upon a custom program to control the state of output devices.

state of input devices and makes decisions based upon a custom program to control the state of output devices.															
PREREQUISITE NIL															
COURSE OBJECTIVES															
1	To Understand the need for PCB and electronics components.														
2	To learn PCB layout design flow and Artwork generation.														
3	To obtain knowledge in Etching Soldering and Assembly techniques.														
4	To Ur	ndersta	nd the	basic c	oncept	of PL	C and	basic p	rogran	nming.					
5	To Ea	rn Kno	owledg	e to de	ploy P	LC for	varies	applic	ations	like Tim	ers, Prog	gram coi	ınters e	tc.	
COUR	SE OU	JTCO	MES												
On the	On the successful completion of the course, students will be able to														
CO1. A	. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand														
CO2. A	CO2. Apply layout design rules and Artwork generations to prepare for PCB for Apply														
any spe	cific a	pplicat	tions.												
CO3. In	nterpre	t varie	s techn	iques ı	used in	Etchir	ıg, Sol	dering	proces	s of PCE	3 and	Apply			
compor	nents A	Assemb	oling ru	iles on	PCB.										
CO4. D	evelop	varie	s I/O n	nodule,	basic	PLC p	rogram	ming a	and des	sign vari	es types	Apply			
of mem	of memory.														
CO5. D	esign	Autom	nation s	systems	s for in	dustria	l appli	cations	•			Analy	ze		
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	M	M	-	M	-	-	-	M	-	-	M	S	M	-
CO3	S	M	M	-	M	-	-	-	M	-	-	M	S	M	M
CO4	S	M	M	-	M	-	-	-	M	-	-	M	S	M	-
CO5	S	M	M	-	M	_	_	M	M	-	_	M	S	M	M

SYLLABUS

S- Strong; M-Medium; L-Low

INTRODUCTION TO PCB: Connectivity in electronic equipment, Evaluation of PCB, Components of PCB, Classification of PCB, Manufacturing of Basic PCB, Challenges in modern PCB Design, PCB with Embedded Components, standards of PCB and useful standards, Basics of Electronic Components – Active and Passive components, Special types of diodes, linear integrated circuits, semiconductor memories, surface mount devices.

LAYOUT PLANNING AND ARTWORK DESIGN: Drawing and diagrams, General PCB Design considerations, Mechanical design considerations, electrical design considerations, Component placement rules,

Fabrication and assembly considerations, environmental factors, cooling requirements and packaging density, layout design, Layout design checklist, useful standards. Basic approach to manual Artwork, General design guidelines for Artwork preparations, Automated Artwork generations.

ETCHING, SOLDERING AND ASSEMBLY TECHNIQUES: Etching solutions and chemistry, Etching arrangements, Etching parameters, equipments and techniques, Problems in etching, Theory of soldering, Soldering variables, Soldering materials, Soldering and brazing, soldering tools and other hand soldering tools, PCB assembly process, Mass Soldering. Health and Safety aspects.

INTRODUCTION TO PLC: Programmable Logic Controllers (PLCs): Programmable Logic Controllers, Parts of a PLC, Principles of Operation, Modifying the Operation, PLCs versus Computers, PLC Size and Application. PLC Hardware Components - The I/O Section , I/O Modules and Specifications, The CPU, Memory Design and Types, Programming Devices, Recording and Retrieving Data, PLC workstations. Basics of PLC Programming-Processor Memory Organization, Program Scan, PLC Programming Languages and Instructions, Entering the Ladder Diagram, Modes of Operation.

APPLICATIONS OF PLC: Programming Timers-Mechanical Timing Relay and Instructions, Retentive Timer, Cascading Timers. Programming Counters - Counter Instructions and types, Incremental Encoder-Counter Applications, Combining Counter and Timer Functions, Program Control Instructions, PLC Installation Practices. Editing and Troubleshooting.

TEXT BOOKS:

- 1. Printed Circuit Boards: Design, Fabrication, Assembly and Testing by RS Khandpur, Tata McGraw Hill Education Pvt Ltd., New Delhi, 2018.
- 2. Frank D. Petruzella, "Programmable Logic Controllers", McGraw-Hill Companies, Third Edition, March 2004.

REFERENCE BOOKS:

- 1. Printed Circuit Boards: Design, Fabrication, and Assembly (McGraw-Hill Electronic Engineering-2006) by Raghbir Singh Khandpur
- 2.Ian G.Warnock, "Programmable Controller's Operation and Application", Prentice Hall International, UK, 1992.
- 3. Electronic Product Design Volume-I by S D Mehta, S Chand Publications
- 4. John W. Webb and Ronald A.Reis, "Programmable Logic Controllers Principles and Applications", III Edition, Prentice Hall Inc., New Jersey, 1995.

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Mr.G.SureshKumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in							
2	Mr G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in							
3	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in							
4	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in							
5	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in							

							:			-		I	Γ	ı	
17E	CEC03	,	SATEI	JJTE	COM	MUNICA	ATION	Cat	egory		L	T	P	Cre	edit
1712	CECU.		AILI		COM	VIOTUICE	ATION	EC	(PS)		3	0	0	3	3
PREA	MBL	E										•			
Electr	Electronics and Communication engineer needs to learn about the basics of various types of Communication Systems. This subject also deals with Space & Earth Segment, Broadcasting, Uplink, Downlink and its services.														
Syster	ns. Thi	s subje	ect also	deals	with Sp	oace & Ea	arth Segm	ent, Broado	casting,	Upli	nk, D	ownli	nk and i	ts servic	es.
PREF	REQUI	SITE	- 17EC	CC15	- Analo	og & Dig	ital Comn	nunication							
COU	COURSE OBJECTIVES														
1															
2	To ob	tain kı	nowled	ge on c	ommu	nication 6	establishm	nent in sate	llite sys	tems.					
3															
4															
5	To ob	tain kı	nowled	ge of E	roadca	sting usi	ng Satellit	e							
COU	COURSE OUTCOMES														
On the	e succe	ssful c	omplet	ion of	the cou	rse, stude	ents will b	e able to							
CO1.F	Explain	the or	bital ar	nd func	tional 1	orinciples	s of satelli	te commun	ication	s syst	em		Und	derstand	
CO2.I	Design,	inter	pret a	nd ide	ntify 1	he techi	nologies	for satellit	te com	muni	cation	ı		Apply	
systen	ns												<i>I</i>	трргу	
CO3.	Illustra	te the	design	of space	e segn	ent and e	earth segm	nent					A	Apply	
CO4.	Demon	strate	the var	ious m	ethods	of satelli	te access.						A	Apply	
CO5.	Design	a vari	ous sat	ellite a	pplicati	ion.							A	Apply	
							IES AND	PROGRA	MME	SPE	CIFI	COU			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	РО	РО	PSO1	PSO2	PSO3
			103	101	103	100	10,	100	10)	10	11	12		1502	1505
CO1	S	M	-	-	-	-	-	-	-	-	-	-	M	-	-
CO2	S	S	M	L	M	-	L	_	L	-	-	-	S	M	-
CO3	S	S	M	L	L	-	-	-	-	-	-	L	S	-	-
CO4	S	M	L	-	M	-	-	-	-	-	-	L	S	S	-
CO5	S	S	M	M	S	-	L	-	M	-	M	M	S	S	-
S- Str	S- Strong; M-Medium; L-Low														

SYLLABUS

SATELLITE ORBIT

Satellite orbits: Kepler's laws – Earth satellite orbiting satellite terms-Orbital elements – Orbital perturbations – Inclined Orbits – Sun synchronous orbit. **Constellation:** Geo stationary satellites – Non geostationary constellation – Launching of Geostationary satellites.

LINK DESIGN

EIRP – Transmission Losses – Power Budget equation – System Noise Carrier to noise ratio – Uplink – Downlink – Effects of rain – Inter modulation noise.

SPACE AND EARTH SEGMENT

Space Segment: Power Supply – Altitude control – Station keeping – Thermal Control – TT&C – Subsystems – Antenna subsystem –Transponders – Wideband Receiver. **Earth Segment:** receive only home TV system – Community antenna TV system.

SATELLITE ACCESS

Single Access- Pre assigned FDMA – Demand Assigned FDMA – SPADE system- TWT amplifier operation – Downlink analysis – TDMA – reference bursts – Preamble – Postamble – Carrier recovery – Network synchronization – Pre assigned TDMA – Assigned –CDMA introduction.

BROADCAST AND SERVICES

Broadcast: DBS – Orbital Spacings- Power ratings – Frequency and Polarization – Transponder Capacity – Bit rate – MPEG – Forward Error Correction. ODU-IDU – Downlink Analysis – Uplink – Satellite Mobile services: VSAT–GPS.

TEXT BOOK:

1. Dennis Roddy, "Satellite Communications", Tata Mc-Graw Hill Publications, 4th Edition, 2008.

REFERENCE BOOKS:

- 1. Madhavendra Richharia, Leslie David, "Satellite Systems for Personal Applications Concepts and Technology", Wiley- Blackwell, 2010.
- 2. Wilbur L.Prichard, Henry G. Suyerhood, Ropert A. Nelson, "Satellite Communication System Engineering", 2nd Edition, Pearson Education, 1993.
- 3. Pratt, Timothy, Charles W. Bostian, "Satellite Communication", John Wiley and Sons, 2nd Edition, New York, 1986.

S.No	Name of the Faculty	Mail ID				
1	Mr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.ac.in		
2	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in		
3	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit,.ac.in		

17ECEC04	DSP WITH FPGA	Category	L	T	P	Credit
17ECECUI	DSI WIIIIFI GA	EC(PS)	3	0	0	3

PREAMBLE This course provides the students, the knowledge about implementation of Communication blocks on FPGA. It provides both the fixed point and floating point representation of data used for implementation. It considers algorithms and techniques for the optimal way of implementing the communication system blocks efficiently on FPGA.

FPGA.															
PRER	EQUI	SITE –	Nil												
COUL	COURSE OBJECTIVES														
1	1 0														
2	To discriminate floating point artainette for other artainette logie.														
	3 To implement FIR and IIR filters using pipelining and parallel processing														
4	4 To design communication blocks using different types of FFT algorithms														
COU	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	CO1. Explore the design flow of FPGA and programming language. Apply														
CO2.	CO2. Compute simple FPGA logic using floating point arithmetic, MAC and SOP units Apply														
	CO3. Implement FIR and IIR Filters using distributed arithmetic, pipelining and/or parallel processing Apply														
CO4. I		e the di	ifferen	types	of FFT	' algorit	thms in	cluding	g Coole	ey-Tukey	, Winog	grad and	Good-	Analyze	,
CO5. 1	Design	commu	ınicatio	on bloc	ks for 1	nodula	tion, de	emodul	ation, c	convolut	ion code	S		Analyze	}
MAPI	PING V	VITH 1	PROG	RAM	ME OU	JTCON	MES A	ND PR	ROGRA	AMME	SPECIE	FIC OU	ГСОМЕ	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	L	-	-	-	-	M	-	M	M	L	L
CO2	S	S	L	M	M	-	-	-	-	M	-	M	M	L	-
CO3	S	S	M	M	L	-	-	-	-	L	-	M	L	L	L
CO4	S	S	M	M	-	-	-	L	-	L	-	M	M	L	-
CO5	S	M	M	M	-	-	-	L	-	L	-	M	L	L	-
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

FPGA Technology

Introduction to FPGA, FPGA Design flow, Programming languages, programming technology

Basic Building Blocks

Number Representation, Binary adders, Binary dividers, Floating point arithmetic, MAC & SOP unit

Digital filter implementation

FIR filter - Theory and structure, Filter Design, Constant coefficient, FIR Design, IIR filter - IIR theory, Coefficient computation, Implementation detail, Fast IIR filter

Fourier Transform

DFT algorithms, Goertzel algorithm, Hartley transform, Winograd DFT, Blustein chirp-z transform, Rader algorithm, FFT algorithms, Cooley-tukey, Good thomas, Winograd FFT

Communication blocks

Error control codes, Linear block code, Convolution codes, Modulation and Demodulation, Adaptive filters, LMS, RLS, Decimator and Interpolator, High Decimation Rate filters.

TEXT BOOKS:

- 1. Uwe.Meyer-Baese, —Digital Signal Processing with Field Programmable Gate Arraysl, Springer, Third edition, May 2007.
- 2. Keshab K. Parhi, —VLSI Digital Signal Processing systems, Design and implementation, Wiley, Inter Science, 1999.

REFERENCE BOOKS:

- 1. John G. Proakis, —Digital Communications, Fourth Ed. McGraw Hill International Edition, 2000.
- 2. Michael John Sebastian Smith, Applications Specific Integrated Circuits, Pearson Education, Ninth Indian reprint, 13th edition, 2004.
- 3. Sophocles J. Orfanidis, —Introduction to Signal Processing, Prentice Hall, 1996

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Assistant Professor	ECE	sheela@vmkvec.edu.in
2	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in

17ECEC05	RADIO FREQUENCY INTEGRATED	Category	L	T	P	Credit
	CIRCUITS	EC (PS)	3	0	0	3

Electronics and Communication engineer needs to learn about the basic wireless principles, RLC network, MOSFET, High frequency amplifier, Low noise amplifier, voltage reference and mixer circuits. Student will be able design radio frequency integrated circuits to be used in many applications.

PREF	PREREQUISITE: 17ECCC08 - Electromagnetics And Transmission Lines & Waveguides														
COU	COURSE OBJECTIVES														
1	To learn the basics of wireless principles, RLC network &Smith Chart														
2	To familiarize about MOSFET devices and distributed systems.														
3	To study about High Frequency and Low noise amplifier.														
4	To study about the voltage and mixers.														
COU	OURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1:	O1: Explain the wireless principles, RLC network & smith chart. Understand														
CO2:	02: Explain the MOSFET devices. Understand														
CO3:	Exami	ne the	perfori	nance	High fr	equen	cy amp	lifier.					Ap	ply	
CO4:	Estima	ite the	parame	eters ne	eded fo	or Low	noise	amplif	ier desi	ign.			Ap	ply	
CO5:	Explai	n basic	voltag	ge refer	ence ci	ircuit a	nd mix	ers					Ap	ply	
MAP	PING	WITH	PRO	GRAN	IME C	OUTC(OMES	AND	PROG	RAM	ME S	PECI	FIC OU	TCOM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	S	L	S	S	L	L	-	L	-	-	-	L	M	M	-
CO2	S	S	M	M	M	-	M	-	-	-	-	M	S	M	-
CO3	M	M	L	S	M	-	L	M	-	-	-	M	-	M	-

S- Strong; M-Medium; L-Low

M

SYLLABUS

CO4 M

L

CO₅

INTRODUCTION TO WIRELESS PRINCIPLES, PASSIVE RLC NETWORKS & SMITH CHART

M

WIRELESS PRINCIPLES: A brief history of wireless systems, Noncellular wireless applications, Shannon, Modulations, Propagation.

PASSIVE RLC NETWORKS: Introduction, Parallel RLC Tank, Series RLC Networks, Other RLC networks, RLC Networks as impedance Transformers.

THE SMITH CHART AND S-PARAMETERS: The smith chart, S-parameters, Band Width Estimation Techniques, Open – circuit time constant, Short circuit time constant.

MOS DEVICE PHYSICS & DISTRIBUTED SYSTEMS

M

Introduction-FETs & MOSFET, MOS device - Operation and characteristics

Distributed Systems: Introduction, Link between lumped and distributed regimes driving-point impedance of iterated structures, Transmission lines, Behavior of Finite – length transmission lines, transmission line equations.

HIGH FREQUENCY AMPLIFIER DESIGN & LOW NOISE AMPLIFIER

HIGH FREQUENCY AMPLIFIER DESIGN: Introduction, Zeros as bandwidth Enhancers, The shunt – series amplifier, Bandwidth Enhancement with fT Doublers, Tuned amplifiers.

LOW NOISE AMPLIFIER: Introduction, Derivation of intrinsic MOSFET two-port noise parameters, LNA topologies, Power match versus noise match, Power-constrained noise optimization, large signal performance, Mixer fundamental, Nonlinear systems as linear mixers.

VOLTAGE REFERENCES AND BIASING

Introduction, Review of diode behavior, Diodes and bipolar transistors in CMOS technology, Supply-independent bias circuits, Band gap voltage reference, Noise: Thermal noise, Shot noise, Flicker noise, Popcorn noise, Classical two- port noise theory, Examples of noise calculations, A handy rule of thumb, Typical noise performance.

MULTIPLIER - BASED MIXERS

Multiplier – based mixers, Sub sampling mixers, Diode ring mixers, RF power amplifiers, Introduction, general considerations, Class A, AB, B and C power amplifier, Class D amplifiers, Class E amplifiers Class F amplifiers, Modulation of power amplifiers, RF PA design examples.

TEXT BOOKS:

- 1. The Design of CMOS Radio-Frequency Integrated Circuits by Thomas H. Lee. Cambridge University Press, 2004.
- 2. Reinhold Ludwig and Powel Bretchko, RF Circuit Design Theory and Applications, Pearson Education Asia, First Edition, 2001.

REFERENCE BOOKS:

- 1. RF Microelectronics by Behzad Razavi. Prentice Hall, 1997.
- 2. Mathew M. Radmanesh, Radio Frequency & Microwave Electronics, Pearson Education Asia, Second Edition, 2002.

S.No.	Name of the Faculty	Designation	Dept	Mail ID		
	M D M I D	Assistant	EGE			
	Ms. R. Mohana Priya	Professor (Gr-II)	ECE	mohanapriya@avit.ac.in		
2	Ms.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in		

17EC	EC06	MEMS AND SENSORS	Category	L	T	P	Credits		
1/EC	ECUO	MEMS AND SENSORS	EC (PS)	3	0	0	3		
PREA	MBLE	E							
_		knowledge on MEMS (Micro Electro		Syste	em). T	his ena	bles them to		
	•	ze, fabricate and test the MEMS based	components.						
PRER	REQUI	SITE: Nil							
COUI	RSE OI	BJECTIVES							
1	To un	derstand the concepts of basic MEMS	structures.						
2	To lea	arn about the various MEMS Sensors a	nd its construc	ction.					
3	To learn about the micro machining products.								
4	4 To understand the functioning of various optical MEMS Sensors.								
5	To study the various applications of MEMS Sensors								
Course Outcomes									

On the successful completion of the course, students will be able to

CO1. Understand the basic fabrication of MEMS systems.	Understand
CO2. Design various MEMS sensors for required applications.	Apply
CO3.Apply the different micromachining process in MEMS sensor fabrication.	Apply
CO4. Analyze the light source utilization in MEMS sensors.	Analyze
CO5. Evaluate the various real time applications of MEMS Sensors.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO1	DSO2	PSO3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1301	1302	1303
CO1	L	-	-	-	-	ı	-	ı	-	ı	-	-	M	-	ı
CO2	S	L	M	-	-	ı	-	ı	-	ı	-	L	S	M	ı
CO3	L	S	M	-	L	1	-	ı	ı	ı	-	L	S	S	1
CO4	S	S	S	-	M	-	-	-	-	-	-	L	M	M	-
CO5	S	S	S	-	M	M	M	M	-	1	-	L	S	M	-

S - Strong; M - Medium; L - Low

SYLLABUS

INTRODUCTION

MEMS and Microsystems, Typical products of MEMS and Microsystem products, Microsensors, Micro actuator, Evolution of Micro fabrication, Microsystems and Microelectronics, MEMS materials.

MICRO SENSORS AND MICROSYSTEMS

Micro sensors- Acoustic wave sensors, Biomedical Sensors and Biosensors, Optical Sensors, Pressure sensors, Micro actuation- Actuation using Thermal Forces, Piezoelectric Crystals,

Electrostatic Forces, MEMS with Micro actuators- Micro grippers, Micro motors, Micro valves, Micro accelerometers.

PRINCIPLES OF MICROMACHINING

Introduction, Photolithography, Bulk Micromachining, Thin Film Deposition, Etching, surface Micromachining, LIGA

OPTICAL MEMS

Fundamental Principle of MOEMS Technology, Review Properties of Light, Light Modulators, Beam Spliotter, Micro lens, Micro mirrors, Digital Micro mirror Device (DMD), Light Detectors, Grating Light Valve, Optical Switch.

REAL TIME UTILISATION OF MEMS SENSORS

Health Care, Micro fluid Dispenser, Micro needle, Micro pumps, Chem-Lab-On-A-Chip(CLOC), E-Nose, DNA sensors, Surface Acoustic Wave(SAW) Sensors.

TEXT BOOKS:

- 1. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu, "MEMS", Pearson education, 2000.
- 2. N. P. Mahalik, "MEMS", Tata McGraw hill, Sixth reprint, 2012.

REFERENCE BOOKS:

- 1. Stephen Santeria," Microsystems Design", Kluwer publishers, 2000.
- 2. Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
- 3. Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000

S.No	Name of the Faculty	Designation	Dept	Mail ID
1	R. Karthikeyan	Assistant		
		Professor	ECE	rrmdkarthikeyan@avit.ac.in
		(Gr-II)		
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in

17EC	TCOT	,	Т	DE CV	CTE	M DE	CICN	т.	(Catego	ry	L	Γ	P	•	Cr	edits
1/EC	ECU/		r	T SI	SIL	VI DE	SIGN	١		EC (PS	S)	3	0	0)		3
PRE	AMBI	Æ															
Electr	onics	and	Comr	nunic	ation	engin	neer n	eeds	to lea	arn abo	out	imp	orta	nce an	d is	sues	in the
design	n of F	RF. S	tuden	t will	also	study	y abo	ut RF	filte	er, amp	lifie	er, a	ctiv	e devi	ces,	osci	llators,
mixer	s, wire	eless	synthe	esizer	s and	detect	tors.										
PREI	PREREQUISITE: Nil																
COU	RSE (DBJE	CTI	VES													
1	To l	earn t	he im	porta	nce ar	ıd issı	ies in	the de	esign	of RF							
2	To	lesign	n RF f	ilter a	nd ac	tive d	evices	5									
3	To	lesign	n RF a	mplif	ier de	sign											
4	To s	tudy	about	the cl	haract	eristic	es of c	scilla	tors,	mixers	, wi	reles	s sy	nthesiz	zers	and	
4	dete	ctor															
Cours	se Ou	tcom	es														
On the	e succ	essfu	l com	pletio	n of tl	ne cou	ırse, s	tuden	ts wil	l be ab	le to)					
CO1:	Expla	in the	basic	c RF i	ssues										Und	ersta	nd
CO2:	Desig	n and	cons	truct t	he RF	filter	ſ.								Α	pply	
CO3:	Exam	ine t	he pe	rform	ance	of RF	diod	le, BJ	T and	d FET'	's ai	nd o	thei	•	۸	1	
active	devic	es.													А	pply	
CO4:	Estim	ate th	e para	amete	rs nee	ded fo	or RF	ampl	ifier (design					A	pply	
CO5: Design oscillator, mixer, wireless synthesizers and detector circuits. Apply																	
	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC																
OUT	COM	ES															
COS	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PC		O	PSO1	PS	SO2	PSO3

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	S	L	L	S	L	L	-	L	L	-	-	-	M	M	-
CO2	S	L	M	M	M	-	M	-	-	-	-	-	S	S	-
CO3	M	M	L	S	M	ı	L	-	-	ı	-	-	S	M	-
CO4	M	M	M	M	L	S	L	-	L	ı	-	-	S	M	-
CO5	S	L	M	M	L	L	S	M	-	-	-	-	M	M	-

S – Strong; M – Medium; L – Low

SYLLABUS

INTRODUCTION TO RF ISSUES

Importance of RF design- Electromagnetic spectrum, RF behavior of passive components, chip components and circuit board considerations, Examples of Transmission Lines, scattering parameters, smith chart and applications, Network Properties and applications.

RF FILTER DESIGN

Overview, Basic resonator and filter configuration, special filter realizations, smith chart based filter design, coupled filter.

ACTIVE RF COMPONENTS AND MODELLING

RF diodes, BJT, FET'S, High electron mobility transistors, diode models, transistor model, measurement of Active Devices, impedance matching using discrete components, micro strip line matching networks.

RF AMPLIFIER DESIGNS

Characteristics, amplifier power relations, stability considerations, constant gain circles, constant VSWR circles, high power and multistage amplifiers.

OSCILLATORS, MIXERS & APPLICATIONS

Basic oscillator model, High Frequency oscillator configuration, basic characteristic of mixers, wireless synthesizers, detector design.

TEXT BOOKS:

- 1. Reinhold Ludwig and Powel Bretchko, RF Circuit Design Theory and Applications, Pearson Education Asia, First Edition, 2001.
- 2. Mathew M. Radmanesh, Radio Frequency & Microwave Electronics, Pearson Education Asia, Second Edition, 2002.

REFERENCE BOOKS:

- 1. Joseph. J. Carr, Secrets of RF Circuit Design, McGraw Hill Publishers, Third Edition, 2000.
- 2. Ulrich L. Rohde and David P. NewKirk, RF / Microwave Circuit Design, John Wiley & Sons USA 2000.
- 3. Roland E. Best, Phase Locked Loops: Design, simulation and applications, McGraw Hill Publishers 5TH edition 2003

S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in

17ECEC08	MIMO WIRELESS	Category	L	T	P	Credit
17ECEC00	COMMUNICATIONS	EC (PS)	3	0	0	3

This course covers the fundamentals of Multiple input multiple output (MIMO) antenna based wireless communication systems. Also it covers important concepts of MIMO communication such as capacity computation, error probability analysis, transmitter and receiver design, multi-user communication, etc.

PREREQUISITE - 17ECCC15-Analog & Digital Communication

COU	TRSE OBJECTIVES	
1	To learn the fundamentals of Multiple input multiple output,(MIMO)	antenna based
	wireless communication systems.	
2	To Understand the Precoding Design Performance and its applications	
3	To analyze the Space–time coding for wireless communications	
4	To analyze the concepts in receiver design	
5	To apply the concepts in multi user receiver design	
COU	RSE OUTCOMES	
On th	ne successful completion of the course, students will be able to	
CO1.	Explain the concept of fundamentals of Multiple input multiple outputs,	Understand
(MIN	MO) antenna based wireless communication systems.	Understand
CO2.	Demonstrate the Precoding Design, Performance and its applications	Apply
CO3.	Illustrate Space–time coding for wireless communications	Apply
CO4.	Design the receiver systems	Apply
CO5.	Illustrate the concepts in multi user receiver design	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P O 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PS O2	PS O3
CO1	S	S	S	-	M	-	L	-	-	-	-	M	M	ı	-
CO2	M	L	S	-	M	-	L	-	-	-	-	M	M	S	-
CO3	M	M	S	-	L	M	M	M	M	-	M	M	M	-	-
CO4	L	M	M	M	L	S	M	S	M	-	S	M	S	M	-
CO5	M	M	S	-	M	L	S	S	M	-	S	M	S	ı	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION, CAPACITY LIMITS OF MIMO SYSTEMS: MIMO wireless communication, MIMO channel and signal model, A fundamental trade-off, MIMO transceiver design, MIMO in wireless networks, MIMO in wireless standards. Mutual information and Shannon capacity ,Single-user MIMO, Multi-user MIMO, Multi-cell MIMO ,MIMO for ad hoc networks

PRECODING DESIGN: Transmit channel side information, Information-theoretic foundation

for exploiting CSIT, A transmitter structure, Precoding design criteria, Linear Precoder designs, Precoder performance results and discussion ,Applications in practical systems.

SPACE-TIME CODING FOR WIRELESS COMMUNICATIONS: Introduction, Background, Space-time coding principles- Space-time code design criteria, Space-time trellis codes (STTC), Space-time block codes (STBC), A new non-linear maximum-diversity quaternionic code, Diversity-embedded space-time codes, Applications, Discussion and future challenges.

FUNDAMENTALS OF RECEIVER DESIGN: Introduction, Reception of uncoded signals, Factor graphs and iterative processing, MIMO receivers for uncoded signals, MIMO receivers for coded signals, Some iterative receivers

MULTI-USER RECEIVER DESIGN: Introduction, Multiple-access MIMO systems, Iterative space—time multi-user detection, Multi-user detection in space—time coded systems, Adaptive linear space—time multi-user detection

TEXT BOOKS:

 Mimo Wireless Communications, Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj, H. Vincent Poor, Cambridge University Press 2007

REFERENCE BOOKS:

1. Principles of Mobile Communications by G. Stuber, Springer, Latest ed.

COUR	SE DESIGNERS			
S.No.	Name of the faculty	Designation	Department	E-Mail Id
1	Mr.S.SELVAM	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in
2	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in

17ECEC09	RADAR SIGNAL PROCESSING	Category	L	Т	P	Credit
		EC (PS)	3	0	0	3

Radar signal processing is gaining importance in various fields including commercial, public safety, defense and

		_								radar sig		O ,		of radar	signals,			
PRER	EQUI	SITE:-	17ECC	CC09 -	Signal	Proces	ssing											
COUF	RSE O	BJECT	IVES															
1	To in	troduce	the cor	ncepts	of rada	r syste	m princ	ciples a	nd con	cept of si	gnal pro	cessing	in radar s	ystems.				
2	To obtain the knowledge of radar signal data acquisition and waveform's																	
3	To introduce the concepts of Dopplerapplications in radar and radar signal detection principles.																	
4	To kn	ow abo	ut diffe	erent ra	dar sig	nal me	asuren	nents an	d track	king								
5	To int	troduce	the co	ncept o	f synth	etic ap	erture i	imaging	g and fi	iltering te	chniques	S.						
		UTCO																
On the	succes	ssful co	mpletic	on of th	e cours	se, stud	lents w	ill be at	ole to									
CO1. I	CO1. Explain the basic principles of radar and signal models. Understand																	
	CO2. Explain the data acquisition of radar signals; design the radar waveforms and ilters of radar systems. Apply																	
CO3.	_	the p	ulsed	Dopple	er proc	essing	and	detectio	ns pro	ocedures	of rada	r	A	Apply				
CO4. I	llustrat	e the co	oncepts	of rad	ar mea	sureme	ents						A	Apply				
		strate th		epts of	synthe	etic ape	erture i	maging	(SAR	.) and Sp	ace-Time	e	A	Apply				
MAPI	PING V	VITH I	PROG	RAMN	ME OU	TCON	MES A	ND PR	OGR	AMME S	SPECIF	IC OU	COMES	8				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3			
CO1	M	L	-	-	-	_	-	-	-	-	-	L	S	-	-			
CO2	S	S	M	L	L	-	-	-	-	-	-	-	- S S -					
CO3	S	S	L	L	L	-	-	-	L	-	-	-	- M S -					
CO4	S	S	L	M	M	-	-	-	-	-	-	L	M	-	-			

CO5	S	S	L	M	M	-	-	-	-	-	-	_	M	M	-
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to Radar Systems and Signal Processing

History and Applications of Radar, Elements of a Pulsed Radar, Common Threads in Radar Signal Processing, A Preview of Basic Radar Signal Processing, Signal Models, Frequency Models, Spatial Models, Spectral Model

Pulsed Radar Data Acquisition & Radar Waveforms

Pulsed Radar Data Acquisition: Acquiring and Organizing Pulsed Radar Data, Sampling the Doppler Spectrum, Sampling in the Spatial and Angle Dimensions, I/Q Imbalance and Digital I/Q,

Radar Waveforms: The Waveform Matched Filter, Matched Filtering of Moving Targets, The Ambiguity Function, The Pulse Burst Waveform, Frequency-Modulated Pulse Compression Waveforms, Range Sidelobe Control for FM Waveforms, The Stepped Frequency Waveform, The Stepped Chirp Waveform, Phase-Modulated Pulse Compression Waveforms, Costas Frequency Codes, Continuous Wave Radar

Doppler Processing & Detection Fundamentals:

Moving Platform Effects on the Doppler Spectrum, Moving Target Indication, Pulse Doppler Processing, Pulse Pair Processing, Clutter Mapping and the Moving Target Detector, MTI for Moving Platforms: Adaptive Displaced Phase Center Antenna Processing

Radar Detection as Hypothesis Testing, Threshold Detection in Coherent Systems, Threshold Detection of Radar Signals, Binary Integration, Constant False Alarm Rate Detection, system-Level Control of False Alarms

Measurements and Tracking:

Estimators, Range, Doppler, and Angle Estimators, Introduction to Tracking

Introduction to Synthetic Aperture Imaging & Space-Time Adaptive Processing

Introduction to SAR Fundamentals, Stripmap SAR Data Characteristics, Stripmap SAR Image Formation Algorithms, Spotlight SAR Data Characteristics, The Polar Format Image Formation Algorithm, Interferometric SAR,

Spatial Filtering, Space-Time Signal Environment, Space-Time Signal Modeling, Processing the Space-Time Signal, Reduced-Dimension STAP. Advanced STAP Algorithms and Analysis, Limitations to STAP

TEXT BOOK:

1. Fundamentals of Radar Signal Processing, Second Edition, Mark A. Richards, McGraw-Hill, 2014

REFERENCE BOOKS:

- 1. Merrill I. Skolnik, Introduction to RADAR Systems, Tata McGraw Hill, Third Edition 2001.
- 2. Steven M.Kay, "Fundamentals of Statistical Signal Processing", Vol II Detection Theory, Prentice Hall Inc, 1998.

S.	Name of the Faculty	Designation	Departme	Mail ID
No		g	nt	
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

		Category	L	T	P	Credit
17ECEC10	DATA COMPRESSION	EC(PS)	3	0	0	3

The course covers the theory of quantization and basic concepts in source coding and applications of the theory and concepts to systems that convert analog or high-rate digital signals into low-rate digital representations with or without loss of fidelity. The concept of source coding is extended to general descriptions of a statistical information source where various data modeling techniques find useful applications.

PREREQUISITE

17ECCC14 - Digital Image Processing

COURSE OBJECTIVES

1	To gain a fundamental understanding of data compression methods for text, images, and video, and related
	issues in the storage, access, and use of large data sets
2	To select, giving reasons that are sensitive to the specific application and particular circumstance, most
	appropriate compression techniques for text, audio, image and video information

- 3 Illustrate the concept of various algorithms for compressing text, audio, image and video information.
- 4 To know the Image compression standards like GIF, JPEG and JBIG.
- 5 To acquire the knowledge in audio compression and speech compression like JPEG, MPEG and H.264.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Expose the principle and process of Loss less image compression, Text compression, Audio	Understand						
Compression							
CO2. Determine the Huffman code using various encoding procedure and decoding types in different	Apply						
Applications.							
CO3. Analyze the performance of Binary and Huffman coding in applications of image compression							
and File Compression with various compression techniques							
CO4. Characterize the influence of transform coding techniques on image compression	Analyze						
CO5.Characterize the influence of transform coding techniques on audio and video compression	Analyze						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	M	-	-	-	-	-	-	M	S	M	-
CO2	S	S	S	-	M	-	-	-	-	-	-	M	S	S	-
CO3	S	M	M	M	M	-	-	-	-	-	-	M	S	S	M
CO4	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO5	S	S	S	ı	M	ı	-	ı	ı	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

Compression Techniques

Loss less compression, Lossy Compression, Measures of performance, Modeling and coding, Mathematical Preliminaries for Loss-less compression: A brief introduction to information theory, Models: Physical models, Probability models, Markov models, composite source model, Coding: uniquely decodable codes, Prefix codes.

The Huffman coding algorithm

Minimum variance Huffman codes, Adaptive Huffman coding: Update procedure, Encoding procedure, Decoding procedure. Golomb codes, Rice codes, Tunstall codes, Applications of Hoffman coding: Loss less image compression, Text compression, Audio Compression.

Coding

Coding a sequence, Generating a binary code, Comparison of Binary and Huffman coding, Applications: Bi-level image compression- The JBIG standard, JBIG2, Image compression. Dictionary Techniques: Introduction, Static Dictionary: Diagram Coding, Adaptive Dictionary. The LZ77 Approach, The LZ78 Approach, Applications: File Compression-UNIX compress, Image Compression: The Graphics Interchange Format (GIF), Compression over Modems: V.42 bits, Predictive Coding: Prediction with Partial match (ppm): The basic algorithm, The ESCAPE SYMBOL, length of context, The Exclusion Principle, The Burrows-Wheeler Transform: Move to- front coding, CALIC, JPEG-LS, Multi-resolution Approaches, Facsimile Encoding, Dynamic Markoy Compression.

Image Compression - Facsimile and gray scale compression, GIF, JPEG and JBIG progressive image compression, JBIG2, MH, MR, MMR, Wavelets.

Video Compression and Audio Compression

Motion Compensation, Temporal and Spatial Prediction, MPEG and H.264. Audio Compression - Digital Audio, WAVE Audio Format, ADPCM Audio Compression, Speech Compression, FLAC, MPEG-4 Audio Lossless Coding(ALS), MPEG- 1/2 Audio Layers

TEXT BOOKS:

- 1. The Data Compression Book Mark Nelson.
- 2. Data Compression: The Complete Reference David Salomon.
- 3. Khalid Sayood, "Introduction to Data Compression" Fourth Edition, Morgan Kauffmann Publishers, Inc, Newnes, 2012.

REFERENCE BOOK:

1. Introduction to Data Compression – Khalid Sayood, Morgan Kaufmann Publishers.

S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in		
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in		

17ECE	SATELLITE IMAGE ANALYSIS	Category	L	T	P	Credit						
1.202		EC(PS)	3	0	0	3						
PREAMBLE												
Remote Sensing (RS) refers to the science of identification of earth surface features by measuring portion of reflected or emitted electromagnetic radiation from earth's surface by sensors onboard manmade satellites orbiting around the earth. The output of a remote sensing system is usually an image representing the scene being observed. Many further steps of digital image processing and modeling are required in order to extract useful information from the image. This course deals with various image processing techniques that are applied on satellite images for the purpose of geometric & radiometric correction, enhancement, feature extraction, classification, fusion and compression operations. PREREQUISITE												
	17ECCC14 - Digital Image Proces	sing										
	17ECEC03 - Satellite Communica	tion										
COURS	SE OBJECTIVES											
1	To learn the characteristics and statistical ana	lysis of satelli	te image data	ì.								
2	To study the various image enhancement tech	nniques applie	d for image d	lata for ana	alysis.							
3	To learn the different data transformation app	olied for image	analysis.									
4	To acquire skills in feature extraction techniq	ues for image	analysis.									
5	To acquire skills in data fusion and data comp	pression meth	ods for analys	sis.								
	SE OUTCOMES											
	successful completion of the course, students					Γ						
CO1. U	Inderstand the various preprocessing techniques	ues and the na	iture of the S	atellite im	age using	Understand						

CO1. Understand the various preprocessing techniques and the nature of the Satellite image using	Understand
statistical methods.	
CO2. Apply the different Image Enhancement Methods to improve the visual quality of Satellite	Apply
images for societal benefits.	
CO3. Illustrate the various data transformation techniques.	Apply
CO4. Analyze the performance of Satellite image data using different feature extraction and	Analyze
training Methods using software tools.	
CO5. Evaluate the Performance of various fusion and Compression Algorithms over Satellite	Evaluate
Image	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	-	-	-	-	-	-	M	-	-	-
CO2	S	M	M	M	M	M	M	-	M	-	M	M	S	S	M
CO3	S	M	-	-	M	-	-	-	M	-	-	M	-	-	-
CO4	S	S	M	M	M	-	-	-	M	M	M	M	S	S	-
CO5	S	M	M	M	M	-	-	-	M	M	M	M	M	M	-
S- Stro	ng· M-l	Medium	· I -I o	137						•					

S- Strong; M-Medium; L-Low

SYLLABUS

Satellite Data

Satellite Image Characteristics, Preprocessing-Geometric Correction, Radiometric Correction Image Statistics - Univariate Statistics, Multivariate Image Statistics and Image Quality statistics.

Satellite Image Enhancement

Radiometric Enhancement-Histogram Based Enhancements, Density Slicing, Stretching, Geometric Enhancement-Neighborhood Operations, Template Operators.

Data Transformation

Spectral Transforms - Multispectral Ratios - Vegetation Indexes, Principal Components, Tasseled-Cap Components, Color-Space Transforms, Spatial Transforms—Convolution, Fourier Transform, Scale Space Transforms.

Image Analysis And Understanding

Feature Extraction-Statistical, Structural, Spectral, Training –Supervised, Unsupervised, Hybrid Training.

Data Fusion

Feature Space fusion, Spatial domain fusion, Scale space fusion, Data Compression- Compression by coding, Fractal Compression, Wavelet Compression.

TEXTBOOKS:

- 1. Robert A. Schowengerdt, Remote Sensing Models & Methods For Image Processing, III Edition, 2004.
- 2. J. A. Richards "Remote Sensing Digital Image Analysis: An Introduction", Second Revised Edition, 1993.

REFERENCE BOOKS:

- 1. Thomas M.Lillesand, Ralph W.Kiefer, "Remote Sensing and Image Interpretation", Fifth Edition, 2004.
- 2. John R. Jensen, "Remote Sensing Of The Environment –An Earth Resource Perspective", Pearson Education Series, 2003.
- 3. Rafael C.Gonzalez, Richard E.Woods, "Digital Image Processing" (3rdEdition) Rafael C.Gonzalez, Richard E.Woods, Prentice Hall, 2007.

S.No	Name of the	Designation	Department	Mail ID		
	Faculty					
1	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in		
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in		

17ECEC12	VIDEO PROCESSING	Category	L	Т	P	Credit
17ECEC12	V1220 1 110 028811 10	EC(PS)	3	0	0	3

The purpose of this course is to provide an insight to the fundamental theory and techniques for efficient representation, processing of video signals and the applications of digital video. This course covers essential topics including motion analysis and video tracking. This provides a formal problem formulation for video tracking and typical challenges that make video tracking difficult. Also it discusses current and emerging applications of video tracking. Also covers video processing applications on such diverse topics as video surveillance, face tracking and recognition from video, motion tracking in medical videos, and using video to assist speech recognition.

PREREQUISITE

17ECCC14 - Digital Image Processing

COURSE OBJECTIVES

1	To learn the basic concepts of video processing
2	To learn about the various methodologies for motion estimation
3	To learn the basic concepts of coding systems
4	To understand about the waveform based video coding techniques
5	To understand about the content dependent and scalable video coding techniques

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Express the theory and models in Video Processing.	Understand
CO2. Apply quantitative models of video processing for various engineering applications.	Apply
CO3. Apply video tracking algorithms for intelligent surveillance and medical applications	Apply
CO4. Analyze different background subtraction techniques for different scenario	Analyze
CO5. Analyze to choose sensor based on the applications	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	-	-	M	-	-	-	-	-	-	M	S	-	-
CO2	S	M	M	-	M	-	-	-	-	-	-	M	S	-	_
CO3	S	M	M	-	M	-	-	-	-	-	-	M	S	-	-
CO4	S	M	S	M	M	-	-	-	-	-	-	M	S	M	M
CO5	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

Video: Analog vs Digital, Analog to Digital, Color models in video- YUV,YIQ,YCbCr,- Types – Component, Composite, S-Video- Analog video – NTSC, PAL, SECAM Interlaced and Progressive Scan, Resolution, Color models in video- YUV,YIQ,YCbCr

Video Compression: Motion Analysis- Motion estimation (Pixel based and block matching based), motion compensation Digital video – Chromo subsampling, CCIR, HDTV- Video Compression Techniques- Basic Video Compression Techniques- Video compression based on motion compensation- MPEG Video Coding I: MPEG 1 and MPEG 2- MPEG Video Coding II: MPEG 4, 7 and 21.

Digital Video Hardware: How cameras work, Refraction, optics, F- Stop, Shutter speed, Depth of field, Digital image sensors- CCD vs CMOS, Manual, auto focus, power requirements, Day and night cameras, Infra red and thermal technologies, Indoor/ Outdoor cameras, Fixed/PTZ/ Moving cameras, CCTV

Motion Segmentation- Background subtraction, Identifying region of interest in image sequences, Challenges, background subtraction using color or feature, Pixel level processing, Region level Processing. Frame level processing

Applications – Video Tracking, surveillance- Architecture of Automated video surveillance system- Components knight multi camera surveillance system medical applications –Robotics and unmanned vehicles - Performance Measures- Sensitivity, Specificity, Precision, Recall- Confusion Matrix

REFERENCE BOOKS:

- 1. Essential Guide to Video Processing by Al Bovik, Academic Press, 2009
- 2. Digital Video Surveillance and security by Anthony C Caputo, Elsevier Inc, 2010
- 3. Video Tracking Theory and Practice by Emilio Maggio, Andrea Cavallaro, John Wiley and Sons pvt Ltd, 2011
- 4. Automated Multi camera Video Surveillance Algorithms and Practice, Omar Javed, Mubarak Shah, Springe 2008
- 5. Intelligent Surveillance Systems by Huihuan Qian, Xinyu Wu, Yangsheng Xu, Springer, 2011

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.D.Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
2	Mr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in

17ECEC13	COMMUNICATION NETWORK	Category	L	T	P	Credits
1/ECECIS	SECURITY	EC (PS)	3	0	0	3
PREAMBLE						
To introduce knowledge about the security issues in network and different algorithms used for						

PREREQUISITE: 17ECCC11 - Data Communication Networks

COURSE OBJECTIVES

digital data communication network.

- 1 To understand the basic encryption standards.
- 2 To understand the advanced encryption methodologies.
- 3 To understand the knowledge of basic functioning of encryption algorithms.
- 4 To understand the concept of guided data security.
- 5 To understand the functioning of wireless data security.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO 1. Understand the basic protocols in data security.	Understand
CO 2. Apply different encryption standards in data security.	Apply
CO 3. Design new algorithms for data security through multiple functions.	Apply
CO 4. Design different security practice for data communication.	Apply
CO 5. Analyze the issues in wireless security.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PSO1	PSO2	PSO3											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1301	1302	1303
CO1	M	L	-	-	-	L	-	-	1	-	-	-	M	M	-
CO2	S	S	L	-	-	L	-	-	1	-	-	L	S	M	-
CO3	L	S	S	S	-	L	-	S	L	-	-	M	S	S	-
CO4	M	S	S	-		L	-	S	S	-	-	L	M	-	M
CO5	L	L	M	L	S	L	-	-	L	-	-	S	M	M	-
CO6															

S - Strong; M - Medium; L - Low

SYLLABUS

DATA ENCRYPTION STANDARD

Services – Mechanisms and Attacks – OSI security Architecture – Model for Network Security – Classical Encryption Techniques – Symmetric Cipher Model – Substitution Techniques – Transposition Techniques – Rotor Machines – Stenography – Block Ciphers and Data Encryption Standard – Simplified DES – Block Cipher Principles, Data Encryption Standard – Strength of DES – Differential and Linear Crypt Analysis, Block Cipher Design Principles – Block Cipher Modes of Operation

ADVANCED ENCRYPTION STANDARD

Advanced Encryption Standard – Evaluation Criteria for AES, AES Cipher– Contemporary Symmetric Ciphers – Triple DES, Blowfish, RC5 – Characteristics of Advanced Symmetric

Block Ciphers – RC4 Stream Cipher – Confidentiality using Symmetric Encryption – Placement of Encryption Function – Traffic Confidentiality – Key Distribution and Random Number Generation.

PUBLIC KEY ENCRYPTION AND HASH FUNCTIONS

Public Key Cryptography and RSA – Principles of Public Key Cryptosystems – RSA Algorithm – Key Management and other public key cryptosystems – Key Management – Diffie–Hellman Key Exchange – Elliptic Curve Arithmetic – Elliptic Curve Cryptography – Message Authentication and Hash Functions – Authentication Requirements – Authentication Functions – Message Authentication Codes – Hash Functions and MACs; Hash Algorithms – MD5 Message Digest Algorithm, Secure Hash Algorithm RIPEMD 160, HMAC – Digital Signatures and Authentication Protocols – Digital Signature Standards.

NETWORK SECURITY PRACTICE

Authentication Applications – Kerberos – X.509 Authentication Service– Electronic Mail Security – Pretty Good Privacy – S/MIME– IP Security – IP Security Overview– IP Security Architecture – Authentication Header – Encapsulating Security Payload – Combining Security Associations – Web Security – Web Security Considerations – Secure Sockets Layer and Transport Layer Security – Secure Electronic Transaction.

WIRELESS NETWORK SECURITY

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS. WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor.

TEXT BOOKS:

- 1. William Stallings, "Network Security Essentials", 2nd edition, Prentice Hall of India New Delhi, 2004
- 2. Charlie Kaufman, "Network Security Private Communication in Public World" 2nd edition, Prentice Hall of India New Delhi, 2004..

REFERENCE BOOKS:

- 1. William Stallings, "Cryptography and Network Security", 3rd edition, Prentice Hall of India, New Delhi, 2004.
- 2. R. K. Nichols and P. C. Lekkas," Wireless Security" Mc Graw Hill 2002.

S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in

17ECEC14	NETWORK MANAGEMENT	Category	L	T	P	Credits
1/ECEC14	NEI WORK MANAGEMENI	EC (PS)	3	0	0	3
PREAMBLE	E					

To understand the principle functioning of network management and challenges pertaining to the management of emerging network technologies.

PREREQUISITE: 17ECCC11 – Data Communication Networks

COURSE OBJECTIVES

- 1 To understand the need for interoperable network management.
- 2 To learn to the concepts and architecture behind standards based network management.
- 3 To understand the concepts and terminology associated with SNMP and TMN.
- 4 To understand network management as a typical distributed application.
- 5 To study the current trends in network management technologies.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

	·	
CO1	Acquire the knowledge about network management standards (OSI and TCP/IP)	Understand
CO2	Acquire the knowledge about various network management tools and the skill to use them in monitoring a network	Apply
CO3	Analyze the challenges faced by Network managers	Analyze
CO4	Analyze various commercial network management systems and open network management systems.	Analyze
CO5	Analyze and interpret the data provided by NMS and take suitable actions.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	S	L	-	-	L	-	-	-	-	-	-	M	S	M	M
CO2	M	S	L	-	L	-	-	-	-	-	-	-	M	M	-
CO3	M	S	S	M	M	-	-	M	-	1	-	-	S	S	1
CO4	S	M	S	M	S	-	-	-	-	-	M	L	M	-	-
CO5	S	S	M	S	S	1	-	S	-	L	M	-	M	M	1

S – Strong; M – Medium; L – Low

SYLLABUS

Fundamentals of Computer Network Technology.

Network Topology, LAN, Network node components- Hubs, Bridges, Routers, Gateways, Switches, WAN, ISDN Transmission Technology, Communications protocols and standards. Network Management: Goals, Organization, and Functions, Network and System Management, Network Management System Platform, Current Status and future of Network

OSI Network Management

OSI Network Management Model-Organizational Model-Information Model, Communication Model. Abstract Syntax Notation - Encoding structure, Macros Functional model CMIP/CMIS

Internet Management (SNMP)

SNMP(V1 and V2)-Organizational model-System Overview, The information model, communication model-Functional model, SNMP proxy server, Management information, protocol remote monitoring, RMON SMI and MIB, RMON1,RMON2 - A Case Study of Internet Traffic Using RMON.

Broadband Network Management

Broadband networks and services, ATM Technology-VP,VC, ATM Packet, Integrated service, ATMLAN emulation, Virtual LAN. ATM Network Management-ATM Network reference model, integrated local management Interface. ATM Management Information base, Role of SNMD and ILMI in ATM Management, M1, M2, M3, M4 Interface. ATM Digital Exchange Interface Management-, TMN conceptual Model- TMN Architecture, TMN Management Service Architecture.

Network Management Applications

Configuration management, Fault management, performance management, Event Correlation Techniques security Management, Accounting management, Report Management, Policy Based Management Service Level Management- Network Management Tools, Network Statistics Measurement Systems – Web Based Management, XML Based Network Management - : Future Directions.

TEXT BOOKS:

1. Mani Subramanian, "Network Management Principles and practice", Pearson Education, New Delhi, 2012.

REFERENCE BOOKS:

- 1. Stallings, William, "SNMP, SNMPv2, SNMPv3, and RMON 1 and 2," Pearson Education, 2012.
- 2. Morris, "Network management", 1st Edition, Pearson Education, 2008.
- 3. Lakshmi G. Raman, "Fundamentals of Telecommunication Network Management", Eastern Economy Edition IEEE Press, New Delhi, 1999.
- 4. Mark Burges, "Principles of Network System Administration", 1st Edition, Wiley Dream Tech, 2008.

COU	COURSE DESIGNERS								
S.No	Name of the Faculty	Designation	Dept	Mail ID					
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in					
2	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in					

17ECEC15	HIGH PERFORMANCE COMMUNICATION	Category	L	T	P	Credit
	NETWORKS	EC(PS)	3	0	0	3

Electronics and Communication engineer needs to learn about the various types of network model. Student will learn about the congestion and traffic management for developing an efficient communication network. Also the basic principles, laws and different protocols needed for a high performance communication networks.

PREREQUISITE: -17ECCC11 - Data Communication Networks

COURSE OBJECTIVES

- To understand the basics of High Speed Networks and its working principles. Also its applications
- 2 To learn about congestion, traffic management algorithms and its management.
- 3 To impart knowledge on various types of interior and exterior routing protocols.
- 4 To learn various types of Services and its application.
- 5 To understand protocols used for QoS Support.

COURSE OUTCOMES

ı	On the successful com	pletion of the course.	students will be able to
ı	on the baccessiai con	prediction of the course,	btadents will be able to

CO1: Explain various network models and Demonstrate the ATM Services.	Understand
CO2: Explain the Fiber Channel and Wireless LAN.	Understand
CO3: Apply the concepts of Congestion control and traffic management for effective communication.	Apply
CO4:Analyzing the various protocols and its application in communication	Analyze
CO5: Examine various Integrated and Differentiated Services.	Analyze
CO6: Illustrate different protocols for providing effective QoS.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

OUT	COM														
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	L	L	S	M	L	-	L	L	-	ı	-	M	M	-
CO2	S	M	L	S	S	L	-	-	L	-	ı	-	S	M	-
CO3	M	M	S	S	M	M	L	-	-	-	ı	-	M	S	-
CO4	S	L	L	S	M	S	L	-	-	-	-	-	M	S	-
CO5	M	L	M	S	S	L	S	M	L	-	ı	-	S	M	-
CO6	S	M	M	S	M	L	S	-	-	-	-	-	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

HIGH SPEED NETWORKS

Network Models, Categories of Networks, Internetwork, Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL, High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANs

CONGESTION AND TRAFFIC MANAGEMENT

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

INTERIOR AND EXTERIOR ROUTING PROTOCOL

Interior Routing Protocol-Internet Routing Principles, Distance Vector Protocol, Exterior Routing Protocol -Link state Protocol, Path Vector Protocols-BGP and IDRP, Multicasting.

INTEGRATED AND DIFFERENTIATED SERVICES

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services

PROTOCOLS FOR OoS SUPPORT

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

TEXT BOOKS:

- 1. William Stallings, "High Speed Networks and Internet", Pearson Education, Second Edition, 2002.
- 2. Behrouz A Forouzan, "Data Communications and Networking;, Tata McGraw Hill Private Limited, Fourth Edition.

REFERENCE BOOKS:

- 1. Warland, Pravin Varaiya, "High performance communication networks", Second Edition, Jean Harcourt Asia Pvt. Ltd., 2001.
- 2. Irvan Pepelnjk, Jim Guichard, Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2, 2003.

	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Dept	Mail ID										
1	Ms. R. Mohanapriya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in										
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in										

1500	ŒQ14	_	WI	RELI	ESS A	D-H	OC A	ND	(Catego	ry 1	L	ГР	Cr	edits						
17EC	ECI	•	\mathbf{S}	ENS ()R N	ETW	ORK	S		EC (P	_	3 (0 0 3								
PRE	MBI	LE								·	•	•		•							
To le	arn th	ne con	ncepts	behi	nd W	ireles	ss AD	OHOC	, Dat	a tran	smissi	ion in	MANI	ET and	Sensor						
Netwo																					
PREI	REQU	<u> ISIT</u>	E: 17	ECCO	<u> 211 - </u>	Data	Comn	nunica	ation]	Netwo	rks										
COU	RSE (OBJE	CTI	VES																	
1	Τοι	ınders	stand	the co	ncept	s of s	ensor	netwo	orks.												
2 To understand the MAC and transport protocols for ADHOC networks.																					
3	To learn about Wireless sensor Network and data retrieval in WSN.																				
4	To understand the security of sensor networks.																				
5	<u> </u>																				
Cours	se Ou	tcom	es																		
On the	e succ	essfu	l com	pletio	n of tl	ne cou	ırse, s	tuden	ts wil	l be ab	le to										
CO1.	Enum	erate	the ba	asic o	perati	ng pro	ocedu	re of A	ADHO	OC net	works	S.	Ţ	Jndersta	nd						
CO2.	Exan	nine	the st	andar	ds in	the	establ	lished	netv	vorks	and a	ble to	О	Analyz	Δ.						
redefi														Anaryz							
CO3. wirele				vork	about	its d	lata tr	ansm	ission	and	retriev	als i	n	Analyz	e						
CO4.I				ndards	for s	ecurir	g the	data						Evaluat	e						
									virele	ss sens	or net	works	S	Evaluat	æ						
MAP	PING	W	TH	PRO	GRA	MMI	E OI	JTCO	MES	S AN	D PI	ROGI	RAMM	E SPE	CIFIC						
OUT																					
COS	РО	РО	РО	PO	РО	РО	PO	РО	РО	PO	PO	РО	DCO1	DGO2	DCO2						
COS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3						
CO1	M	S	-	-	-	-	-	-	-	-	-	-	M	-	-						
CO2	S	M	S	L	-	-	-	-	-	-	-	L	M	S	-						
CO3	L	S	M	-	L	M	L	-	-	-	-	L	-	-	-						
CO4	S	S	S	M	M	-	-	-	-	-	-	S	-	S	-						

S – Strong; M – Medium; L – Low

S

M

SYLLABUS

CO5

INTRODUCTION

Introduction to Ad Hoc Wireless Networks: Characteristics of MANETs, Applications of MANETs, Challenges. Routing in MANETs: Topology-based versus Position-based approaches, Topology based routing protocols, Position based routing, Other Routing Protocols.

S

DATA TRANSMISSION IN MANET AND STANDARDS FOR WLAN, WPAN

Data Transmission In MANETs-The Broadcast Storm, Multicasting, Geocasting- IEEE 802.11 Standard for Wireless LANs , IEEE 802.15 Working Group for WPANs , IEEE 802.15.3, IEEE 802.15.4 , WLANs versus WPANs..

WIRELESS SENSOR NETWORK

Basics of Wireless Sensors and Applications: The Mica Mote, Sensing and Communication Range, Design issues, Energy consumption, Clustering of Sensors, Applications

Data Retrieval In Sensor Networks: Classification of WSNs, MAC layer, Routing layer, Highlevel application layer support, Adapting to the inherent dynamic nature of WSNs.

SECURITY IN WSN

Security in Ad hoc Wireless Networks, Key Management, Secure Routing, Cooperation in MANETs, Intrusion Detection Systems. Sensor Network Platforms and Tools: Sensor Network Hardware, Sensor Network Programming Challenges, Node-Level Software Platforms.

SENSOR NETWORK PLATFORMS AND TOOLS

Sensor Network Hardware. Sensor Network Programming Challenges. Node- Level Software Platforms, Operating System – Tiny0S: Imperative Language: nesC. Dataflow style language: TinyGALS. Node Level Simulators. NS-2 and its sensor network extension. TOSSIM.

TEXT BOOKS:

- 1. Ad Hoc and Sensor Networks Theory and Applications, Car/osCorderlo Dharma R Aggarwal, World Scientific Publications / Cambridge University Press, March 2006.
- 2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009...

REFERENCE BOOKS:

- 1. Adhoc Wireless Networks Architectures and Protocols, C.Siva Ram Murthy, B.S.Murthy, Pearson Education, 2004
- 2. Wireless Sensor Networks Principles and Practice, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010
- 3. Wireless Ad hoc and Sensor Networks Protocols, Performance and Control, Jagannathan Sarangapani, CRC Press, Taylor & Francis Group, 2007, rp 2010.
- 4. Security in Ad hoc and Sensor Networks, Raheem Beyah, et al., World Scientific Publications / Cambridge University Press, 2010.

S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Mr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in

17ECEC17	ELECTROMAGNETIC INTERFERENCE &	Category	L	T	P	Credit
17ECECT7	COMPATIBILITY	EC(PS)	3	0	0	3

All systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. Electromagnetic interference (EMI) is a potential threat to the present day electronic devices.

PREREQUISITE

17ECCC08 - Electromagnetics and Transmission Lines & Waveguides

COURSE OBJECTIVES

1	To impart concepts of electromagnetic interference and electromagnetic compatibility
2	To distinguish various electromagnetic interference coupling principles
3	To get familiarize with several electromagnetic interference control techniques
4	To analyze the electromagnetic compatibility issues related to the design of PCBS

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Demonstrate the concept of EMI / EMC related to product design & development.	Apply
CO2. Distinguish the different EM coupling principles and its impact on performance of electronic system	Analyze
CO3. Organize the electromagnetic interferences using the concepts of both susceptibility and immunity	Analyze
CO4. Analyze various EM compatibility issues with regard to the design of PCBs and ways to improve the overall system performance	Analyze
CO5. Examine the electromagnetic interference measurements and standards	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	M	-	-	-	-	M	-	M	S	M	M
CO2	S	S	-	M	M	-	-	-	-	M	-	M	S	M	-
CO3	S	S	M	M	M	-	-	-	-	M	-	M	S	M	M
CO4	S	S	M	M	-	-	-	M	-	M	-	M	S	M	-
CO5	S	M	M	M	-	-	-	M	-	M	-	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

EMI / EMC Concepts

EMI-EMC definitions and Units of parameters; Sources and victim of EMI; Conducted and Radiated EMI Emission and Susceptibility; Transient EMI, ESD; Radiation Hazards.

EMI Coupling Principles

Conducted, radiated and transient coupling; Common ground impedance coupling; Common mode and ground loop coupling; Differential mode coupling; Near field cable to cable coupling, cross talk; Field to cable coupling; Power mains and Power supply coupling.

EMI Control Techniques

Shielding- Shielding Material-Shielding integrity at discontinuities, Filtering- Characteristics of Filters-Impedance and Lumped element filters-Telephone line filter, Power line filter design, Filter installation and Evaluation, Grounding- Measurement of Ground resistance-system grounding for EMI/EMC-Cable shielded grounding, Bonding, Isolation transformer, Transient suppressors, Cable routing, Signal control. EMI gaskets

EMC Design of PCBs

EMI Suppression Cables-Absorptive, ribbon cables-Devices-Transient protection hybrid circuits, Component selection and mounting; PCB trace impedance; Routing; Cross talk control- Electromagnetic Pulse-Noise from relays and switches, Power distribution decoupling; Zoning; Grounding; VIAs connection; Terminations.

EMI Measurements and Standards

Open area test site; TEM cell; EMI test shielded chamber and shielded ferrite lined anechoic chamber; Tx /Rx Antennas, Sensors, Injectors / Couplers, and coupling factors; EMI Rx and spectrum analyzer; Civilian standards-CISPR, FCC, IEC, EN; Military standards-MIL461E/462. Frequency assignment - spectrum conversation. British VDE standards, Euro norms standards in japan - comparisons. EN Emission and Susceptibility standards and Specifications.

REFERENCES:

- 1. V.P.Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, Newyork, 1996.
- 2. Henry W.Ott.,"Noise Reduction Techniques in Electronic Systems", A WileyInter Science Publications, John Wiley and Sons, Newyork, 1988.
- 3. Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1986. C.R.Paul, "Introduction to Electromagnetic Compatibility", John Wiley and Sons, Inc, 1992.
- 4. Don R.J. White Consultant Incorporate, "Handbook of EMI/EMC", Vol I-V,198
- 5. http://www.nptel.ac.in/courses/117101057/

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in

17CSCC04	COMPUTER ARCHITECTURE	Category	L	T	P	Credit
PDEALGRA	COM OTER ARCHITECTURE	CC	3	0	0	3

This course is dedicated to number system, logic design, and memory and processing. This is the only course that is concerned with the hardware of a computer, its logic design and organization. It aims at making the student familiar with digital logic and functional design of arithmetic and logic unit that is capable of performing floating point arithmetic operations.

PREREQUISITE: Nil

COURSE OBJECTIVES

- 1 To learn about the design of the processors.
- 2 To learn about the data transfer.
- 3 Understand the functional units of a computers, bus structures and addressing modes.
- 4 Apply the knowledge of algorithms to solve arithmetic problems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be use to	
CO1 Explain about computer organization components.	Understand
CO2 Compute simple arithmetic operations for fixed-point and floating-point addition, subtraction, multiplication & division.	Apply
CO3 Design combinational and sequential digital functions.	Analyse
CO4 Construct an instruction set capable of performing a specified set of operations.	Analyze
CO5 Demonstrate a memory system for a given set of specifications	Analyze
CO6 Explain pipelining concepts	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	M	-	-	-	-	-	-	-	L	M	-	-
CO2	M	M	M	M	-	-	-	-	-	-	-	L	M	-	-
CO3	M	M	S	M	-	-	-	-	-	-	-	-	M	-	-
CO4	S	M	M		-	-	-	-	-	-	-	-	M	-	M
CO5	S	-	M	L	-	-	-	-	-	-	-	-	M	-	M
CO6	М	M	M	S	-	-	-	1	1	-	-	L	M	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Computer Organization- Main memory – CPU operation – Interrupt concept – I/ O techniques – Bus concept – Computer performance factors – System performance measurement- High performance techniques – Comparison of Architecture and Organization – Study of Salient features and architectures of Advanced processors (80286, 80386, 80486, Pentium).

PROCESSOR DESIGN AND CONTROL UNIT

Goals – Design process –Data path organization – Main memory interface – Data path for single instructions- Floating point unit data path – Role of control unit – Reset sequence – Interrupt recognition and servicing – Abnormal situation handling – Hardwired control unit – Micro programmed control unit.

MEMORY DESIGN & MEMORY MANAGEMENT

Memory types – Functional and usage modes – Memory allocation- Multiple memory decoding – Memory hierarchy – Instruction pre fetch – Memory interleaving – Write buffer – Cache memory – Virtual memory – Associative memory.

INTRA SYSTEM COMMUNICATION AND I/O

I/O controller & driver- Case study: Hard disk controller in IBM PC – I /O ports and bus concepts – Case study: Keyboard interface – Bus cycle – Asynchronous and Synchronous Transfer – Interrupt handling in PC – I/O techniques in PC – Case Study: RS 232 interface – Modern serial I/O interface – Bus arbitration techniques – Hard disk interface in PC.

ADVANCED ARCHITECTURE

Classification of parallelism – Multiple functional units – Pipelining – Vector computing – array processors – High performance architecture – RISC systems – Super scalar architecture – VLIW architecture – EPIC architecture – Multiprocessor systems – Cache coherence problem – Fault tolerance.

TEXT BOOKS:

1. William Stallings, "Computer Organization And Architecture – Designing For Performance", Sixth Edition, Pearson Education, 2007.

REFERENCES:

- 2. Govindarajulu, "Computer Architecture and Organization Design principles and applications", Tata McGraw Hill publications, New Delhi.
- 3. David A. Patterson And John L. Hennessy, "Computer Organization And Design: The Hardware/Software Interface", Fifth Edition, Morgan Kaufmann, 2013.
- 4. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 1998.
- 5. A.K.Ray & K.M.Bhurchandi, "Advanced Microprocessors and peripherals- Architectures, Programming and Interfacing", McGraw-Hill Education (India), 2013 reprint.

S. No.	Name of the faculty	Designation	Department	Mail Id		
1.	Mr. G. Seenivasan	Assistant. Professor	CSE	seenivasan@vmkvec.edu.in		
2.	Mrs. S.Leelavathy	Assistant. Professors (GII)	CSE	leelavathy@avit.ac.in		

		1							1		1		1		
17ECEC18		18	SDR & COGNITIVE RADIO							ategor	y L	T	P	Cre	dit
]	EC (PS) 3	0	0	3	
PREAMBLE To enable the student to understand the emerging technologies of Software Defined Radio (SDR) and Cognitive radio															
PREREQUISITE – 17ECCC15 – Analog & Digital Communication															
COURSE OBJECTIVES															
1 To learn about the basics of SDR															
2															
3															
4															
		OUT													
On t	he suc	cessfu	ıl com	pletic	on of t	he co	urse, s	studer	its wil	l be abl	e to				
CO1	. Und	erstan	d the	charac	cterist	ics, be	enefits	s and	design	of SDI	R	τ	Jnders	tand	
CO2 SDR		onstra	ate the	profi	le and	l radio	reso	urce n	nanage	ement c	of		App	ly	
	. App trum i		conce	pt of	Cogni	itive r	adio a	ınd an	alyze	the			App	ly	
			ne cog	nitive	radio	comi	nunic	ation	techni	ques ar	nd		App	1 _v	
algo	rithms	\$											Дрр	1 y	
CO5	. Dem	onstra	ate abo	out th	e Cog	nitive	Radi	o Net	work t	heory			App	ly	
			TH P	ROG	RAM	ME ()UT(COMI	ES AN	D PRO	OGRA	MME S	PECI	FIC	
	CON			ı	Г	ı		1		· ·		Т	1		
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PS	PS	PS
S	1	2	3	4	5	6	7	8	9	10	1	2	O1	O2	O3
CO 1	S	S	L	S	L	M	M	-	L	-	L	L	-	S	_
CO 2	S	S	L	L	L	M	M	-	L	-	L	L	-	S	_
CO 3	S	S	M	S	L	M	M	-	M	-	L	L	M	S	1
CO 4	S	S	L	L	M	M	L	-	M	-	L	L	M	M	-
CO	S	S	L	S	M	M	L	-	M	_	L	L	_	M	_

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO SDR'S

The Need for Software Radios, What is Software Radio, Characteristics and benefits of software radio- Design Principles of Software Radio, RF Implementation issues- The Purpose of RF Front – End, Dynamic Range- The Principal Challenge of Receiver Design – RF Receiver Front- End

Topologies- Enhanced Flexibility of the RF Chain with Software Radios- Importance of the Components to Overall Performance- Transmitter Architectures and Their Issues- Noise and Distortion in the RF Chain, ADC and DAC Distortion.

SDR - PROFILE AND RADIO RESOURCE MANAGEMENT:

Communication Profiles- Introduction, Communication Profiles, Terminal Profile, Service Profile, Network Profile, User Profile, Communication Profile Architecture, Profile Data Structure, XML Structure, Distribution of Profile Data, Access to Profile Data, Management of Communication Profiles, Communication Classmarks, Dynamic Classmarks for Reconfigurable Terminals, Compression and Coding, Meta Profile Data

COGNITIVE RADIO COMMUNICATION: SPECTRUM ISSUES

Radio frequency spectrum & regulation: Spectrum Nature's Communication Highway-Regulatory History & Successes-Emerging Regulatory Challenges & Actions-Regulatory Issues of Cognitive Access-Spectrum Measurements and Usage-Applications for Spectrum Occupancy Data.

COGNITIVE RADIO COMMUNICATION TECHNIQUES & ALGORITHMS

Agile transmission techniques: Wireless Transmission for Dynamic Spectrum Access-Noncontiguous Orthogonal Frequency Division Multiplexing- NCOFDM based Cognitive Radio: Challenges and Solutions

Reconfiguration, Adaptation & Optimization: Adaptation Engine-Operating Parameters-Operating Parameters-Cognitive Adaptation Engines.

COGNITIVE RADIO NETWORK THEORY

Cognitive Radio Network Architectures-Topology-Aware CRN Architectures-Publish-Subscribe CRN Architecture

TEXTBOOKS:

- 1. Markus Dillinger, Kambiz Madani, "Software Defined Radio Architecture System and Functions", WILEY 2003.
- 2. Walter Tuttle Bee, "Software Defined Radio: Enabling Technologies", 2002, Wiley Publications.
- 3. Alexander M. Wyglinski, Maziar Nekovee, Y. Thomas Hou, "Cognitive Radio Communications and Networks Principles and Practice", Academic Press , Elsevier Inc., 2010.

REFERENCE BOOKS:

- 1. Jeffrey H. Reed, "Software Radio: A Modern Approach to Radio Engineering", 2002, PEA Publication.
- 2. Paul Burns, "Software Defined Radio for 3G", 2002, Artech House.
- 3. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio: Architectures, Systems and Functions", 2003, Wiley.
- 4. Walter Tuttlebee, "Software Defined Radio: Enabling Technologies", John Wiley & Sons, Ltd. 2002.
- 5. Bruce A. Fette, "Cognitive Radio Technology", Newnes, Elsevier Inc., 2006.
- 6. Kwang-Cheng Chen, Ramjee Prasad, "Cognitive Radio Networks", John Wiley and Sons,

2009.

7. Huseyin Arslan (Ed.), "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems", Springer, Khattab-Cheng Chen, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks-From Theory to Practice", Springer Series: Analog Circuits & Signal processing, 2009.

S. No.	Name of the Faculty	Designation	Dept	Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in
3	Ms.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
4	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in

17ECEC19	ISDN	Category	L	T	P	Credit
		EC (PS)	3	0	0	3

Electronics and Communication engineer needs to learn about the basic OSI model. Student will also study about ISDN standard and services. Student will learn about the congestion and traffic management for developing an efficient communication network. Also the different protocols needed for ISDN and Broadband ISDN.

PREREOUISITE:	17ECCC15 - Analog	o & Digital (Communication
	TIECCULE - Aliaios	e ox Digital (Johnmunication

COURSE OBJECTIVES

1	To learn about the basic ISDN Standards and Services
2	To Study the ISDN architecture and signaling
3	To familiarize study the Broadband ISDN
4	To study about network traffic Management
5	To analyze network performance modeling and estimation.

COURSE OUTCOMES

On the successful	completion of the course,	students will be able to
On the baccessian	completion of the course,	stadelits will be able to

On the successful completion of the course, students will be able to				
CO1: Explain the basic ISDN standards. And services	Understand			
CO2: Explain the ISDN architecture and signaling.	Understand			
CO3: Apply the concepts of Congestion control and traffic management for effective communication.	Apply			
CO4: Examine the ATM network traffic and its management to get efficient service.	Analyze			
CO5: Explain various Queuing Analysis.	Apply			
CO6: Calculate the parameters of network.	Apply			

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

0020	0010011220														
COS	P	PO	PSO	PSO	PSO										
COS	O1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	L	L	S	L	L	M	L	L	-	-	-	M	M	-
CO2	S	M	M	S	M	L	M	-	M	-	-	-	M	S	-
CO3	M	M	L	S	M	M	L	-	1	-	-	-	M	M	-
CO4	M	L	M	S	L	S	L	-	L	-	-	-	M	M	-
CO5	M	L	L	S	L	L	S	M	M	-	-	-	M	M	-
CO6	S	M	L	S	L	L	S	-	S	-	-	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

ISDN – STANDARDS AND SERVICES

Switching technologies and OSI Model, ISDN channels, access interfaces, functional devices and standards, ISDN services and attribute.

ISDN PROTOCOL ARCHITECTURE AND SIGNALING

Physical layer protocol, D-channel data link layer and layer 3 protocols, Network signaling systems, SS7 protocol –architecture and services, ISDN products, Switches, Multiplexers, Terminal

adapters, ISDN chip sets.

BROAD BAND ISDN

Frame Relay – concepts, protocols, applications and products, asynchronous transfer mode – concepts, protocols, application and products, switched multi-megabit data service, Internet protocol over ISDN frame relay and ATM.

NETWORK TRAFFIC MANAGEMENT

ATM traffic and congestion control, Traffic management framework, control mechanism and attributes, ABR traffic management, GFR traffic management.

NETWORK PERFORMANCE MODELING AND ESTIMATION

Queuing analysis, single server and multi-server queues, Networks of Queues, Estimating model parameters, Self-similar traffic – performance implication, modeling and estimation

TEXT BOOKS

- 1. Gary C. Kesslar and Peter Southwick, "ISDN concepts, facilities and services", McGraw Hill, 3rd Edition, 1997.
- 2. Behrouz A Forouzan,"Data Communications and Networking; ,Tata McGraw Hill Private Limited, Fourth Edition,2012

REFERENCE BOOKS

- 1. Balaji Kumar, "Broad Band Communications" McGraw-Hill, 1995.
- 2. William Stallings, "High Speed Networks and Internet", Pearson Education, Second Edition, 2002.

		COURS	E DESIGNERS	
S.N o.	Name of the Faculty	Designation	Dept	Mail ID
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
3	Ms. R. Mohana Priya Mr.S.Selvaraju	Assistant Professor (Gr-II) Associate Professor	ECE ECE	mohanapriya@avit.ac.in selvaraju@vmkvec.edu.in
4	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in

17ECEC20	ROBOTICS AND AUTOMATION	Category	L	Т	P	Credit
172020	Robolies in Director in the committee	EC(PS)	3	0	0	3

Robotics is the applied science of motion control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications). Robotics, sensors, actuators and controller technologies are continuously improving and evolving synergistically. In the 20th century, engineers have mastered almost all forms of motion control and have proven that robots and machines can perform almost any job that is considered too heavy, too tiring, too boring or too dangerous and harmful for human beings. This course supports the students to design and develop multi-DOF manipulator and wheeled mobile robot.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To Understand the actuators used in robotic manipulators and indicate their advantages and limitations.
- To apply the forward kinematic model of multi-degree of freedom to develop a robot arm and wheeled robot
- To apply a static force and dynamic model of two degrees of freedom to develop robot arm
- To apply a step by step procedure for the generation a cubic polynomial trajectory for a joint with specified kinematic constraints
- 5 To apply and develop a program for point-to-point applications

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the working of the subsystems of robotic manipulator and wheeled mobile robot	Understand
CO2. Demonstrate the forward kinematic model of multi-degree of freedom (DOF) manipulator and inverse kinematic model of two and three degrees of freedom planar robot arm and wheeled robot	Apply
CO3. Exhibit the static force and dynamic model of two degrees of freedom planar robot arm	Apply
CO4. Organize a trajectory in joint space using polynomial and trigonometric functions with given	Analyze

kinematic constraints of multi-degree of freedom (DOF) manipulator

CO5. Experiment a offline robot program for point-to-point applications such as pick and place, palletizing, sorting and inspection of work-parts

Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	M	-	-	M	S	M	-
CO2	S	M	M	-	-	-	-	-	M	-	-	M	S	M	-
CO3	S	M	M	-	-	-	-	-	M	-	-	M	S	M	-
CO4	S	M	M	-	M	-	-	-	M	-	-	M	S	M	-
CO5	S	M	M	-	M	-	-	-	M	-	-	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to Robotics. Mechanical structure: Robot Configuration - Robot Anatomy, Sub-systems/ Elements of Industrial Robot - Performance characteristics of industrial Robots. Mobile robot locomotion: Introduction, key issues for locomotion, wheeled locomotion-wheel design, geometry, stability, manoeuvrability and controllability. Applications - Progressive advancement in Robots – Point to point and continuous motion applications - Mobile manipulators and its applications.

Kinematic model: Forward Kinematics for two DOF manipulator – Algebraic method, Mechanical structure and notations, Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation) Description of links and joints, Denavit-Hartenberg (DH) notation, Forward Kinematics for multi-Degrees of Freedom (DOF) manipulator. Inverse kinematics of two DOF planar manipulator - Manipulator workspace. Mobile Robot kinematics: kinematic model and constraints, Mobile robot workspace-motion control.

Static model: Differential relationship - Velocity analysis – Jacobian matrix – Determination of forces and equivalent torques for joints of two link planar robot arm. Dynamic model: Euler –Lagrangian formulation - Forward and inverse dynamic model for two DOF planar manipulator.

Trajectory planning: Definitions and planning tasks, Joint space techniques – Motion profiles – Cubic polynomial, Linear Segmented Parabolic Blends and cycloidal motion - Cartesian space techniques. Navigation: Graph search and potential field path planning - navigation architecture - offline and online planning.

Robot Programming- Manual Programming – Teach Pendant, Offline programming - VAL programming, Online Programming. Case Studies.

TEXTBOOKS

- 1. S.K.Saha, "Introduction to Robotics", Second Edition, McGraw Hill Education (India) Private Limited, 2014.
- 2. Roland Siegwart and Illah R.Nourbakhsh, "Introduction to Autonomous Mobile Robots", Prentice Hall of India (P) Ltd., 2005.

REFERENCE BOOKS

- 1. 1. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotics: Modelling, Planning and Control", First Edition, Springer-Verlag London, 2009
- 2. K.S. Fu, R.C Gonzalez and C.S. Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Editions, 2008.
- 3. John J.Craig, "Introduction to Robotics, Mechanics and Control", Third Edition, Pearson Education, 2005.
- 4. Mark W.Spong, M.Vidyasagar, "Robot Dynamics and Control", Wiley India, 2009.
- 5. George A. Bekey, "Autonomous Robots From Biological Inspiration to Implementation and Control", MIT Press, 2005.
- 6. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementation", MIT Press, 2005.
- 7. Mikell P. Groover, Mitchell Weiss, Roger N.Nagel and Nicholas G. Odrey, "Industrial Robotics Technology, Programming and Applications" Tata McGraw-Hill, 2008.
- 8. Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 9. P.A. Janakiraman, "Robotics and Image Processing", Tata McGraw-Hill, 1995.

COUR	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in							
2	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in							

17ECEC21	ADVANCED ROBOTICS	Category	L	T	P	Credit
1/LCLC21	THE VIEWELL MODELLIES	EC(PS)	3	0	0	3

PREAMBLE Advanced Robotics will explore in great depth areas relevant to not only industrial robotics but service robots (i.e. robots outside a factory environment particularly mobile robots) and the application of this technology to real world environments e.g. driverless vehicles, unmanned aerial vehicles and tele-robots. Students will also master robot kinematics and dynamics.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To gain knowledge in robotic elements
- 2 To explore the kinematics of serial and parallel robotics
- To know the motion of robot in various coordinates and surfaces

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Illustrate the kinematics of parallel robotics	Apply
CO2. Examine about the kinematics of serial robot such as the direct and inverse kinematic problems	Apply
CO3. Discriminate various robotic elements like sensors and actuators	Analyze
CO4. Investigate the motion of robot in various coordinates	Analyze
COF Evaluate the meeting of asheet in covered conference like flat covered as a masses to make	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO5. Explore the motion of robot in several surfaces like flat surface, uneven terrain

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	M	S	-	-
CO2	S	M	-	-	-	-	-	-	-	-	-	M	S	-	-
CO3	S	S	S	-	-	-	-	M	-	-	-	M	S	-	-
CO4	S	S	S	-	-	-	-	M	-	-	-	M	S	M	-
CO5	S	S	S	-	-	-	-	M	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

Elements of robots -- joints, links, actuators, and sensors

Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and

external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.

Kinematics of serial robots

Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.

Kinematics of parallel robots

Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.

Motion planning and control

Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.

Modeling and analysis of wheeled mobile robots

Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three-wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.

Reference Books

- 1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2nd reprint, 2008.
- 2. Fu, K., Gonzalez, R. and Lee, C.S. G., Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in
2	N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
3	G.Murali	Assistant Professor	ECE	muraligvmkvec@vmkvec.edu.in

17F	CEC2	,	INN	JOVAT	rive i	PROJE	СТ	Cate	gory	L		T	P	Cred	dit
1712	CECZ		1111	OVA		KOJE		EC((PS)	0		0	6	3	
PRE	MBL	E									•				
This o	course	is an i	ntrodu	ctory c	ourse (on Proje	ct. It fo	cuses or	n provid	ling you	with th	e know	ledge a	nd funda	mental
under	standin	g of C	reativit	ty, Inno	ovation	, and so	me cont	emporar	y appro	aches to	innovat	tion incl	uding d	esign thi	nking.
PREF	PREREQUISITE – Nil														
COU	COURSE OBJECTIVES														
1	1 To Develop Creativity and Innovation														
2															
3								ced by v	arious o	organiza	tions				
COU	RSE O	UTCO	OMES												
On the	e succe	ssful c	omple	tion of	the cou	ırse, stu	dents wi	ill be ab	le to						
CO1.	Discus	s both	individ	dual an	d conte	extual fa	ctors tha	at are lin	ked to c	reativity	/			Analyze	
CO2.	Discus	s key o	concep	ts and p	orincip	les that g	guide in	novative	e practic	es				Analyze	
CO3.	Discus	ss the r	need fo	r and s	ignific	ance of	adopting	g a desig	n thinki	ng mind	lset		,	Analyze	
CO4.	Explai	n desig	n thinl	king pr	actices	and the	ir applic	ations					(Create	
CO5.	Develo	p the	design	thinkin	g princ	ciples an	d proce	SS]	Evaluate	
MAP	PING	WITH	PRO	GRAN	IME C	OUTCO	MES A	ND PRO	OGRAN	MME SI	PECIFI	C OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	L	-	-	-	M	M	-	M	M	M	M
CO2	S	L	L	M	M	-	-	-	М	M	-	M	M	M	-
CO3	M	M	M	M	L	-	-	-	M	L	1	M	M	M	M
CO4	S	S	M	M	-	-	-	L	-	L	S	M	S	M	-

M

CO5 S M M M M S- Strong; M-Medium; L-Low

Norms

- 1. Group Case Studies/Assignments
 - a. Overall understanding of the case/assignment
 - b. Highlighting innovations and various approaches adopted
 - c. Clarity and coherence of presentation
- 2.Group Project
 - a. Overall, application of Innovation and Design thinking process
 - b. Originality of ideas from the modernization
 - c. Quality and relevance of final prototype
 - d. Preparation of Project Report
 - e. Preparation and Submission of Projects to funding agencies.(Optional)

	TOE DESIGNERS							
S. No	Name of the Faculty	Designation	Dept	Mail ID				
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in				
2	Dr. L. K. Hema	Professor	ECE	hemalk@avit.ac.ins				
3	Mr. S. Selvaraj	Professor	ECE	selvaraju@vmkvec.edu.in				
4	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in				

17ECEC23	MACHINE VISION	Category	L	Т	P	Credit
		EC(PS)	3	0	0	3

In the current automated world, Machine Vision plays a major role in several significant applications such as imaging-based automatic inspection and analysis, Intelligent transportation system, Logistics, Robot guidance, Packaging industries and many. It provides an detailed view of the various process involved.

PREREQUISITE

Nil

COURSE OBJECTIVES

- 1 To understand the Image filtering operations, Morphological operationsThreholding Images.
- To determine the concepts of Binary shape & Boundary Pattern analysis, Detection & Pattern matching techniques.
- 3 To examine the concepts of 3-D Vision, Image Transformations & Motion.
- To illustrate the automated visual inception, in vehicle vision systems, inspection of cereal grains & surveillance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Intrepret the Low Level Vision techniques and methods of Machine Vision							
CO2.Demonstrate the Intermediate Level Vision techniques.	Apply						
CO3.Paraphase the 3-D Vision and Motion procedures.	Apply						
CO4.Infer the various Real-Time Pattern Recognition systems.	Analyse						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO	PO1	PO12	PSO	PS	PS									
S	1	2	3	4	5	6	7	8	9	10	1	PO12	1	O2	O3
CO 1	S	M	M	L	-	-	-	-	1	-	-	-	S	M	-
CO 2	S	S	M	L	-	-	-	-	ı	-	-	-	S	M	-
CO 3	S	S	M	L	-	-	-	-	1	-	-	-	S	M	-
CO 4	S	S	S	M	-	-	-	-	-	-	_	-	S	S	-

S- Strong; M-Medium; L-Low

SYLLABUS:

LOW-LEVEL VISION

Images and Imaging Operations, Basic Image Filtering Operations, Thresholding Techniques, Edge Detection, Corner and Interest Point Detection, Mathematical Morphology, Texture

INTERMEDIATE-LEVEL VISION

Binary Shape Analysis, Boundary Pattern Analysis, Line Detection, Circle and Ellipse Detection, The Hough Transform and Its Nature, Pattern Matching Techniques

3-D VISION AND MOTION

The Three-Dimensional World, Tackling the Perspective n-point Problem, Invariants and Perspective, Image Transformations and Camera Calibration, Motion

REAL-TIME PATTERN RECOGNITION SYSTEMS

Automated Visual Inspection, Inspection of Cereal Grains, Surveillance, In-Vehicle Vision Systems, Statistical Pattern Recognition, Image Acquisition, Real-Time Hardware and Systems Design Considerations

TEXT BOOK

1. Computer and Machine Vision: Theory, Algorithms, Practicalities, E.R. Davies, Fourth Edition, 2012, Academic Press, Elsevier

REFERENCE BOOKS

- 1. Computer Vision: Algorithms and Applications, Richard Szeliski, Springer, 2010
- 2. Machine Vision Algorithms and Applications, C Steger, M Ulrich Christian Wiedemann, Wiley-VCH, 2007, ISBN: 3527407340.
- 3. Hands-On Algorithms for Computer Vision, Amin Ahmadi Tazehkandi, Packt, 2018, ISBN:9781789130942

S.No	Name of the Faculty	Designatio n	Dept	Mail ID								
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in								
2	Mr. P. Subramanian	n Associate Professor		subramanian@avit.ac.in								
3	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in								

17ECSE01	ADVANCED PROCESSORS	Category	L	Т	P	Credit
		EC (SE)	3	0	0	3

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To learn the concepts of Microprocessor & Microcontrollers
 2 To be familiarize with interrupt processing & interfacing memory
 3 To understand the interfacing peripherals & applications.
 4 To analyze the 32-bit Intel Microprocessors.
 - 5 To understand the ARM family of processors.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the concept of Microprocessor & Microcontrollers	Understand
CO2. Examine the interrupt processing & interfacing memory	Apply
CO3. Illustrate the interfacing peripherals & applications.	Apply
CO4. Illustrate the ARM family of processors.	Apply
CO5. Analyze the 32-bit Intel Microprocessors.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	M	M	-	M	-	-	-	L	-	-	-	S	S	-
CO2	L	L	M	-	M	-	-	-	L	-	-	-	M	S	-
CO3	M	M	S	-	L	M	-	-	L	-	-	-	S	M	-
CO4	L	M	L	-	L	S	-	-	L	-	-	-	M	-	-
CO5	M	M	S	-	M	L	-	-	L	-	-	-	M	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Introduction to microprocessors and microcontrollers, system bus organization, 8085 architecture Introduction to 8085 instructions, addressing modes, stacks and

subroutines. Introduction to 16-bit and 32-bit microprocessors – 80x86 family. Assembly language programming for 8086/8088.

INTERRUPT PROCESSING & INTERFACING MEMORY: Hardware and software Interrupts in 8085, 8086/8088. DMA, SRAM/DRAM, cache memory Memory layout for 8086/8088. Virtual mode operation.

INTERFACING PERIPHERALS AND APPLICATIONS: 8254 software programmable timer/counter, 8259A priority interrupt controller Digital interfacing – keyboards, displays Analog interfacing – sensors, transducers

32-BIT INTEL MICROPROCESSORS: The Intel 80286, 80386, 80486, Pentium and RISC based intel MMX architecture. Real mode of 80386, Protected mode of 80386, Virtual 8086 mode.

ARM FAMILY OF PROCESSORS: Overview of ARM architecture, Android-ARM hardware- software interface- ARM7 (LPC2148) microcontroller – Architecture and applications- PIC 16F877 microcontroller.

TEXT BOOKS:

- 1. Michael J. Flynn and Wayne Luk, "Computer System Design System-on-Chip", Wiley India Pvt. Ltd.
- 2. Steve Furber, "ARM System on Chip Architecture", 2nd Edition, 2000, Addison Wesley Professional.

REFERENCE BOOKS:

- 1. Ricardo Reis, "Design of System on a Chip: Devices and Components", Latest Edition, 2004, Springer
- 2. Jason Andrews, "Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology)", Newnes, BK and CDROM.
- 3. Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip Verification Methodologies and Techniques", 2001, Kluwer Academic Publishers.

S.No.	Name of the faculty	Designation	Department	E-Mail Id	
1	Mr.S.SELVAM	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in	
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in	

	~~-		EN	1BEL	DEL	CO	NTRO	OL	Ca	ategor	v]	L	T	P	(Credits
17E	CSE)2				EMS			_	C (SE	•	3	0	0		3
PRE	PREAMBLE															
To in	To introduce the basic concepts of control systems and its embedded implementation.															
PREREQUISITE: Nil																
COURSE OBJECTIVES																
1	1 To learn the basics of control systems.															
2	Γ	o lea	rn coi	ntrol t	heory	as us	sed in	embe	edded	syster	ns.					
3	Γ	o lea	ırn apı	olicati	on of	conti	ol sy	stems	•							
4	Γ	o lea	rn I/C) devi	ces us	sed in	conti	ol sys	stems	•						
COU	RSE (OUT	COM	ES												
On the	On the successful completion of the course, students will be able to															
CO1. Understand the basic mathematical model for the function Understand																
CO2.	Deve	lop no	ew tes	ting p	roce	dures	for er	nbedo	led sy	stems	•			Αp	ply	
CO3.	Know	v abo	ut the	outpu	ıt dev	ice re	quire	ment	of em	bedde	d syst	ems.		Αp	ply	
CO4.	Imple	ement	the b	asic c	ontro	l algo	rithm	s for	embe	dded s	ystem			Ana	alyz	e
CO5.												tem.		Ana	alyz	e
CO6.														Ana		
MAP			VITH	PR	OGF	RAMI	ME	OUI	CON	MES	ANI) PI	ROGRA	MME	SP	PECIFIC
OUT		ES	T				ı			T			T			
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO	2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			_	1505
CO1	S	S	M	L	M	-	-	-	-	-	-	-	S	S		-
CO2	S	M	L	-	-	-	-	-	-	-	-	-	M	S		-
CO3	M	S	S	-	-	L	-	-	-	-	-	-	S	M		-
CO4	S	S	S	M	M	-	-	-	-	-	-	L	M	_		-
CO5	S	S	M	-	L	L	-	-	ı	-	ı	L	M	S		-
CO6	S	S	S	S	L	-	-	M	-	-	-	L	S	S		-
S-St	rong;	\overline{M}	Medi	ım; L	-Lo	W										

SYLLABUS

CONTROL SYSTEM BASICS

Z-transforms – performance requirements - block diagrams – analysis and design - sampling theory – difference equations.

CONTROL SYSTEM IMPLEMENTATION

Discretization method – Fixed point mathematics – Nonlinear controller elements – Gain scheduling – Controller implementation and testing in Embedded Systems. - A case study of robotic control system.

CONTROL SYSTEM TESTING

Software implications - Controller implementation and testing in embedded systems - Measuring frequency response.

INPUT DEVICES

Keyboard basics - Keyboard scanning algorithm - Character LCD modules - LCD module display Configuration - Time-of-day clock - Timer manager - Interrupts - Interrupt service routines - Interrupt-driven pulse width modulation. Triangle waves analog vs. digital values - Auto port detect - Capturing analog information in the timer interrupt service routine - Automatic, multiple channel analog to digital data acquisition..

OUTPUT DEVICES AND SENSORS

H Bridge – relay drives - DC/ Stepper Motor control – optical devices. Linear and angular displacement sensors: resistance sensor – induction displacement sensor – digital optical displacement sensor – pneumatic sensors. Speed and flow rate sensors: electromagnetic sensors – fluid flow sensor – thermal flow sensor. Force sensors: piezoelectric sensors – strain gauge sensor – magnetic flux sensor – inductive pressure sensor – capacitive pressure sensor. Temperature sensors: electrical – thermal expansion – optical Case Study- Examples for sensor, actuator, control circuits with applications..

TEXT BOOKS:

- 1. Jim Ledin, "Embedded control systems in C/C++", CMP Books, 2004.
- 2. Tim Wiscott, "Applied control for embedded systems", Elsevier Publications, 2006.

REFERENCE BOOKS:

- 1. Jean J. Labrosse, "Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C", The publisher, Paul Temme, 2011.
- 2. Ball S.R., "Embedded microprocessor Systems Real World Design", Prentice Hall, 2002.
- 3. Lewin A.R.W. Edwards, "Open source robotics and process control cookbook", Elsevier Publications, 2005.

COURS	COURSE DESIGNERS											
S. No	Name of the Faculty	Designation Department		e-Mail ID								
1	Mr. P. subramanian	Associate Professor	ECE	subramanian@avit.ac.in								
2	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in								
3	Dr. P. M. Murali	Associate Professor	ECE	muralipm@vmkvec.edu.in								
4	S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in								

4		CS	134	1
	 н.		и	

EMBEDDED SYSTEMS ARCHITECTURE

Category	L	T	P	Credit
EC (SE)	3	0	0	3

PREAMBLE

To understand the components that make up embedded systems architecture and to reap the benefits of architectural modeling in embedded design.

PREREQUISITE:-

COURSE OBJECTIVES

- 1 To introduce students to the embedded systems, its hardware and software.
- 2 To introduce devices and buses used for embedded networking.
- 3 To explain programming concepts and embedded programming in C and C++
- 4 To introduce the software development tools in embedded systems.
- 5 To introduce the concepts of Real Time Operating System

COURSE OUTCOMES

On the successful completion of the course, students will be able to

i '	
CO1. Introduce the concepts of embedded system design and design process	Understand
CO2.Suggest the networking of different devices and communication between two nodes	Apply
CO3. Illustrate the Programming concepts and embedded programming	Apply
CO4. Explain the Real time operating system concepts and basic design	Apply
CO5. Interpret software development tools for embedded system.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	РО	PO1	PO1	PSO	PS	PS									
S	1	2	3	4	5	6	7	8	9	10	1	2	1	O2	O3
CO 1	S	S	S	S	S	M	M	L	L	Ī	1	1	S	S	1
CO 2	S	M	M	L	M	M	M	L	L	Ī	1	1	M	M	1
CO 3	S	S	M	M	M	S	M	L	L	Ī	1	1	M	M	1
CO 4	S	M	S	L	L	S	L	M	L	Ī	1	1	M	M	1
CO 5	S	M	S	M	M	M	L	M	L	-	-	-	M	M	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction to Embedded System Architecture

Embedded Systems – Processor embedded into a system – Embedded hardware units and devices in a system – Embedded Software in a system – Embedded System on Chip – Design

process in embedded system – Introduction to embedded system architecture – Embedded Systems model – Standards and Networking

Embedded Hardware

Embedded Board and the von Neumann Model - Powering the Hardware - Basic Hardware Materials - Common Passive Components on Boards and in Chips - Semiconductors and the Active Building Blocks of Processors and Memory

Embedded Processors

ISA Architecture Models - Internal Processor Design - Processor Performance - Reading a Processor's Datasheet - Board Memory - ROM, RAM, Auxiliary Memory, Memory Management of External Memory, Board Memory and Performance

Board I/O, Buses and Device Drivers

Managing Data: Serial versus Parallel I/O, Interfacing the I/O Components, I/O and Performance,

Board Buses - Bus Arbitration and Timing, Integrating the Bus with Other Board Components, Bus Performance

Device Drivers for Interrupt handling – Memory Device Drivers – On board device drivers

Device Drivers and Embedded Operating Systems

Embedded Operating Systems – Process – Multi tasking and Process Management – Memory Management – I/O and File System Management – OS Performance Guideliines – Middleware and Application Software

Implementation and Testing : Implementing the Design, Quality Assurance and Testing of the Design

TEXT BOOKS:

- 1. "Embedded Systems Architecture A comprehensive Guide for Engineers and Programmers", 2nd Edition, Tammy Noergaard, Elsevier, 2012,
- 2. "Embedded Systems- Architecture, Programming and Design", 2nd Edition, Rajkamal, TataMcGrawhill, 2008,

S.No	Name of the Faculty	Designation	Dept	Mail ID			
1	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in			
2	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in			

17EC	SE04	EM	PEDD	ED CV	veten.	1 DESIG	'NI	Cate	gory	1		Т	P	Cro	edit		
ITEC	SEU4		DEDD	ED S	ISIEN	I DESIC	311	EC(SE) 3 0 0 3									
PREA	PREAMBLE																
Ability to understand comprehensively the technologies and techniques underlying in building an embedded solution to a wearable, mobile and portable system																	
PREF	REQUI	SITE -	Nil														
COU	RSE O	BJECT	TIVES														
1	To un	derstar	nd the F	Embed	ded con	cepts an	d Eml	bedded	system	Archite	ecture						
2	·																
3	To se	lect a p	roper N	Microc	ontrolle	er for an	applic	ation									
4	To un	derstar	nd the u	isage o	f the de	velopme	ent an	d debu	gging t	ools							
5	To lea	arn and	apply	the kno	owledge	e of Men	nory s	ystems	and Pe	eripheral	.S						
COU	RSE O	UTCO	MES														
On the	e succes	ssful co	mpleti	on of t	he cour	se, stude	ents w	ill be a	ble to								
CO1.	Define	an emb	edded	system	and co	mpare v	vith ge	eneral p	ourpose	System				Unders	tand		
CO2.	CO2. Appreciate the methods adapted for the development of a typical Embedded system Apply																
	CO3. Get introduced to RTOS and related mechanisms like an ability to design a system, Analyze																
						eds with			onstrai	nts							
	CO4. Identify, formulate, and solve engineering problems Analyze																
CO5. Use the techniques, skills, and modern engineering tools necessary for engineering practice Analyze																	
MAP	PING V	WITH	PROG	FRAM	ME OU	JTCOM	IES A	ND PF	ROGR	AMME	SPECII	FIC OU	TCOM	ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	S	M	M	L	L	-	-	-	-	-	-	L	S	-			

M

M

M

M

S

S

S

S

M

M

-

M

M

CO2

CO3

CO4

CO5

S

S

S

S

S

M

S

S

S- Strong; M-Medium; L-Low

S

M

S

S

M

M

M

L

M

M

-

-

-

-

-

-

SYLLABUS

INTRODUCTION TO EMBEDDED SYSTEM

Embedded system processor, hardware unit, soft wareembedded into a system, Example of an embedded system, Embedded Design life cycle, Embedded System modeling [flow graphs, FSM, Petri nets], Layers of Embedded Systems.

PROCESSOR AND MEMORY ORGANIZATION

Bus Organization, Memory Devices and their Characteristics, Instruction Set Architecture [RISC, CISC], Basic Embedded Processor/Microcontroller Architecture [8051, ARM, DSP, PIC], memory system architecture [cache, virtual, MMU and address translation], DMA, Co-processors and Hardware Accelerators, pipelining.

I/O DEVICES AND NETWORKS

I/O Devices[Timers, Counters, Interrupt Controllers, DMA Controllers, A/D and D/A Converters, Displays, Keyboards, Infrared devices], Memory Interfacing, I/O Device Interfacing [GPIB, FIREWIRE, USB, IRDA], Networks for Embedded systems(CAN, I2C, SPI, USB, RS485, RS 232), Wireless Applications [Bluetooth, Zigbee].

OPERATING SYSTEMS

Basic Features of an Operating System, Kernel Features [polled loop system, interrupt driven 113 system, multi rate system], Processes and Threads, Context Switching, Scheduling[RMA, EDF, fault tolerant scheduling], Inter-process Communication, real Time memory management [process stack management, dynamic allocation], I/O[synchronous and asynchronous I/O, Interrupts Handling, Device drivers], RTOS [VxWorks, RT-LINUX].

EMBEDDED SYSTEM DEVELOPMENT

Design Methodologies [UML as Design tool, UML notation, Requirement Analysis and Use case Modeling], Design Examples [Telephone PBX, Inkjet Printer, PDA, Elevator Control System, ATM System], Fault-tolerance Techniques, Reliability Evaluation Techniques.

REFERENCE BOOKS:

- 1. Wayne Wolf "Computers as components: Principles of Embedded Computing System design" The Morgan Kaufmann Series in Computer Architecture and Design, 2012.
- 2.Jane W. S., Liu, "Real time systems", Pearson Education, 2004.
- 3.Raj Kamal, "Embedded systems Architecture, Programming and design", Second Edition, 2008.
- 5. Steve Heath, "Embedded Systems Design", EDN Series, 2003.

S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in		
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in		

171	ECS	E05

REAL TIME OPERATING SYSTEMS

Category	L	T	P	Credit
EC (SE)	3	0	0	3

PREAMBLE

The use of real time operating system has become necessity to build complex embedded systems. To make the student learn fundamentals of operating systems, implementation aspects of real time concept and few applications on RTOS.

PREREOUISITE	 Nil
	• 1 N I I

COURSE OBJECTIVES

- 1 To understand the basics of an operating system
- 2 To understand the concept of real time operating systems and applications
- 3 To understand real time models and applications

On the successful completion of the course, students will be able to

COURSE OUTCOMES

CO1.To Know the basic of operating systems, design and implementation of an operating system	Understand
CO2. To explain the concept of Real Time Operating Systems	Understand
CO3. To apply the components of an real time models and	Apply

ianguages	
CO4. Analyze the design issues with case studies	Analyze

CO5. Analyze different RTOS application domains	Analyze
---	---------

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

OUI	CON	ILS													
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PS	PS
S	1	2	3	4	5	6	7	8	9	10	1	2	1	O2	O3
CO 1	S	S	S	S	L	M	L	-	-	-	L	M	S	S	1
CO 2	M	L	S	L	M	L	M	-	-	-	M	M	S	M	1
CO 3	M	M	S	L	M	L	S	-	-	-	M	M	M	M	1
CO 4	M	M	S	M	M	L	M	-	-	-	M	S	M	M	ı
CO 5	L	M	M	L	M	L	L	-	-	-	L	S	L	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

REVIEWOFOPERATINGSYSTEMS

Basic Principles- Operating System structures—System Calls—Files—Processes— Design and Implementation of processes—Communication between processes—Introduction to Distributed operating system—Distributed scheduling.

OVERVIEWOFRTOS

RTOS Task and Task state-Process Synchronisation-Message queues—Mailboxes- pipes—Critical section—Semaphores—Classical synchronization problem—Deadlocks-

REALTIMEMODELSANDLANGUAGES

Event Based–Process Based and Graph based Models–Real Time Languages–RTOS Tasks–RTscheduling-Interrupt processing–Synchronization–Control Blocks–Memory Requirements.

REALTIMEKERNEL

Principles—Design issues—Polled Loop Systems—RTOS Porting to a Target—Comparison and study of various RTOS like QNX—VX works—PSOS—CExecutive—Case studies.

RTOSAPPLICATIONDOMAINS

RTOS for Image Processing–Embedded RTOS for voice over IP–RTOS for fault Tolerant Applications – RTOS for Control systems

TEXT BOOKS:

- 1. RajKamal, "EmbeddedSystems-Architecture, Programming and Design" TataMcGrawHill, 2006.
- 2. HermaK., "RealTimeSystems—DesignfordistributedEmbeddedApplications", KluwerAcademic, 1997.
- 3. CharlesCrowley, "OperatingSystems-ADesignOrientedapproach" McGrawHill 1997.

REFERENCE BOOKS:

- 1. C.M.Krishna, Kang, G.Shin, "RealTimeSystems", McGrawHill, 1997.
- 2. Raymond J.A.Bhur, Donald L.Bailey, "An Introduction to RealTimeSystems", PHI1999.
- 3. MukeshSighalandNGShi"AdvancedConceptsinOperatingSystem",McGrawHill2000.

COU	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Dept	Mail ID							
1	Ms. R. MohanaPriya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in							
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandrang@vmkvec.edu.in							

17ECSE06	SYSTEM ON CHIP	Category	L	T	P	Credit
17ECSE00		EC(SE)	3	0	0	3

With technological advances that allow us to integrate complete multi-processor systems on a single die, Systems-on-Chip (SoCs) are at the core of most embedded computing and consumer devices, such as cell phones, media players and automotive, aerospace or medical electronics. This course will provide an understanding of the concepts, issues, and process of designing highly integrated SoCs following systematic hardware/software co-design & co-verification principles

PREREQUISITE - Nil

COURSE	OBJECTIVES
--------	-------------------

- 1 To learn the concepts of processor architecture, memory, addressing & interconnections.
- 2 To study the Different Processors.
- 3 To study the memory design for SOC(internal, external)
- 4 To study the interconnect customization & Configuration
- 5 To study the applications of SOC

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the concept of processor architecture, memory, interconnections	Understand
CO2. Review the different types of processors.	Apply
CO3. Design and implement the memory for both internal and external	Analyze
CO4. Interpret the concept of interconnect customization & Configuration	Understand
CO5. Demonstrate the applications of system on chip.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO1	PO	PO	PO	PO	PO0	PO0	PO0	PO0	PO1	PO1	PO1	PSO	PSO	PSO
S	101	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	S	M	S	-	M	-	-	-	-	-	1	M	M	1	1
CO 2	L	L	S	-	M	-	-	-	-	-	1	M	1	1	1
CO 3	M	M	S	-	L	M	-	-	-	-	1	M	S	M	1
CO 4	L	M	L	S	L	S	-	-	-	-	1	M	S	M	1
CO 5	M	M	S	-	M	L	-	-	-	-	1	M	M	1	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO THE SYSTEM APPROACH: System Architecture, Components of the system, Hardware & Software, Processor Architectures, Memory and Addressing. System level interconnection, An approach for SOC Design, System Architecture and Complexity.

PROCESSORS: Introduction, Processor Selection for SOC, Basic concepts in Processor Architecture, Basic concepts in Processor Micro Architecture, Basic elements in Instruction handling. Buffers: minimizing Pipeline Delays, Branches, More Robust Processors, Vector

Processors and Vector Instructions extensions, VLIW Processors, Superscalar Processors.

MEMORY DESIGN FOR SOC: Overview of SOC external memory, Internal Memory, Size, Scratchpads and Cache memory, Cache Organization, Cache data, Write Policies, Strategies for line replacement at miss time, Types of Cache, Split – I, and D – Caches, Multilevel Caches, Virtual to real translation, SOC Memory System, Models of Simple Processor – memory interaction.

CUSTOMIZATION AND CONFIGURATION: Inter Connect Architectures, Bus: Basic Architectures, SOC Standard Buses, Analytic Bus Models, Using the Bus model, Effects of Bus transactions and contention time. SOC Customization: An overview, Customizing Instruction Processor, Reconfiguration Technologies, Mapping design onto Reconfigurable devices, Instance Specific design, Customizable Soft Processor, Reconfiguration – overhead analysis and trade-off analysis on reconfigurable Parallelism.

APPLICATION STUDIES / **CASE STUDIES**: SOC Design approach, AES algorithms, Design and evaluation, Image compression – JPEG compression.

TEXT BOOKS:

- 1. Michael J. Flynn and Wayne Luk, "Computer System Design System-on-Chip", Wiley India Pvt. Ltd.
- 2. Steve Furber, "ARM System on Chip Architecture", 2nd Edition, 2000, Addison Wesley Professional.

REFERENCE BOOKS:

- 1. Ricardo Reis, "Design of System on a Chip: Devices and Components", 1st Edition, 2004, Springer
- 2. Jason Andrews, "Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology)", Newnes, BK and CDROM.
- 3. Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip Verification Methodologies and Techniques", 2001, Kluwer Academic Publishers.

Name of the faculty	Designation	Department	E-Mail Id
Mr.S.SELVAM	Assistant Professor (Gr-II)	Electronics & Communication Engineering	selvam@avit.ac.in
Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in

17ECSE07	SOFTWARE TECHNOLOGY	Category	L	T	P	Credit
17ECSEU7	FOR EMBEDDED SYSTEM	EC(SE)	3	0	0	3

The subject introduces the students to the modern technologies used in developing embedded software for better software quality. The introduction is both theoretical and practical. The subject shows why modern embedded software systems are complex, it lists the consequences of complexity, and details how we handle complexity in this context, and how we define and increase software quality. The subject then iterate through the modern solutions available to keep control over the software development process, and how we can increase software quality.

PREREQUISITE - Nil

PKE	ŒQUI	1311E	— INII												
COU	RSE O	BJEC	TIVES	S											
1	To le	arn the	conce	epts of	softwa	re arch	itecture	e, analy	ysis, de	esign o	& mai	intena	nce.		
2	To st	udy the	e Data	represe	entatio	n.									
3	To fa	miliari	ze abou	ut the n	nixing	C and	assemb	oly							
4	To kr	ow abo	out inp	ut and	output	progra	ımming	5							
5	To study the memory management														
COU	URSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.	Explai	n the c	oncept	of soft	ware a	rchitec	ture, a	nalysis	, desig	n & n	nainte	nance).	Unders	stand
CO2.	Explai	n the d	ifferen	t Data :	represe	entation	1.							Unders	stand
CO3.	Illustra	ite the	concep	t of inp	out and	outpu	t progr	ammin	g					App	ly
CO4.	Exami	ne the	memor	y mana	agemer	nt								App	ly
CO5.	Analyz	ze and	implen	nent the	e mixir	ng C an	d asse	mbly la	anguag	e prog	gramr	ning		Anal	yze
MAP	PING	WITH	PRO	GRAN	IME C	UTC	OMES	AND	PROG	RAN	IME	SPE(CIFIC	OUTCO	MES
COS	PO1	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PO PO PSO1 PSO2 PSO3													
1															

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	M	M	L	-	M	-	-	-	L	-	-	M	M	-	-
CO2	M	M	L	-	M	-	-	-	L	-	-	M	M	S	-
CO3	S	M	L	-	L	M	-	-	M	-	-	M	S	M	-
CO4	S	M	L	-	L	S	M	-	L	-	-	M	_	S	-
CO5	S	S	S	-	M	L	M	-	M	-	-	M	S	-	

S- Strong; M-Medium; L-Low

SYLLABUS

SOFTWARE TECHNOLOGY: Software Architectures, Software development Tools, Software Development Process Life Cycle and its Model, Software Analysis, Design and Maintenance.

INTRODUCTION TO DATA REPRESENTATION: Data representation ,Two's complement, Fixed point and Floating Point Number Formats ,Manipulating Bits in -Memory, I/O Ports, Low level programming in C ,Primitive data types , Arrays, Functions ,Recursive Functions, Pointers, Structures & Unions ,Dynamic Memory Allocation ,File handling ,Linked lists, Queues, Stacks.

MIXING C AND ASSEMBLY: C and assembly, Programming in assembly Register Usage

Conventions, Typical use of Addressing Options, Instruction Sequencing, Procedure Call and Return, Parameter passing, Retrieving Parameters, Everything in pass by value, Temporary variables

INPUT/ OUTPUT PROGRAMMING: I/O Instructions, Synchronization, Transfer Rate & Latency, Polled Waiting Loops, Interrupt – Driven I/O, Writing ISR in Assembly and C, Non Maskable and Software Interrupts

MEMORY MANAGEMENT: Direct Memory Access, Local and Global Scope, Automatic and Static Allocation, Distinguishing Static from Automatic Object Creation, Initialization and Destruction, Dynamic Allocation

TEXT BOOKS:

- 1. Daniel W.Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education.
- 2. Hassan Gomma, "Designing concurrent, distributed, and real time applications with UML", Pearson Education, 2000

REFERENCE BOOKS:

- 1. C.M. Krishna, Kang G. Shin, "Real Time Systems", McGraw Hill International Editions, 1997
- 2. By Albert M. K. Cheng, "Real-time systems: scheduling, analysis, and verification" wiley.

COURS	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Dept	Mail ID								
1	Mr.S.SELVAM	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in								
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in								

17ECSE08	ADVANCED	Category	L	T	P	Credit
TIECSEO	PROCESSORS LAB	EC(SE)	0	0	4	2

This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To enable the student to write basic assembly programming of 8085 processor.
- 2 The student will be able to write program to do logical operations.
- 3 To gain practical knowledge how to write 32 bit program.
- 4 To write real time application programs.
- 5 To learn various interfacing techniques.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the basic operations of 8085.	Understand
CO2. Apply the programming knowledge to do mathematical operations.	Apply
CO3. Analyze the programming knowledge to do logical operations.	Analyze
CO4. Analyze the know-how to carry out interfacing.	Analyze
CO5. Analyze mixed language programming.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO1	PO	PO	РО	PO	PO0	PO0	PO0	PO0	PO1	PO1	PO1	PSO	PSO	PSO
S	101	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	L	-	-	-	-	-	-	L	-	-	-	M	M	-
CO2	S	S	L	-	M	-	-	-	-	L	-	-	S	M	M
CO3	S	S	M	-	-	-	-	-	M	M	L	-	S	M	-
CO4	S	S	M	-	-	-	-	-	L	-	-	-	-	-	S
CO5	S	S	S	-	M	-	-	-	-	L	-	-	-	M	M

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Use of programming tools (Debug/TASM/MASM/8086kit) to perform basic arithmetic operations on 8bit/16 bit data
- 2. Assembly programming for 16-bit addition, subtraction, multiplication and division (menu based)
- 3. Assembly program to display the contents of the flag register.
- 4. Program for device driver (printer/mouse/keyboard)
- 5. Program based on 32 bit architecture (e.g. Switching from real mode to protected mode using DPMI driver, 32bit multiplication)
- 6. Program and interfacing using 8255/8253
- 7. Program and interfacing of ADC/ DAC/ Stepper motor
- 8. Mixed Language program to increment, decrement the size of the cursor and also to disable it.
- 9. Assembly program to sort numbers in ascending/descending order

S.No.	Name of the faculty	Designation	Department	E-Mail Id
1	Mr.S.SELVAM	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in

17E	CSE0	9 E	EMBI	E DD I	ED S	YST	EMS	S LA	в	Category		Т	P		redit	
									E	C (SE)	0	0	4	2		
	CAME															
To u	nders	tand,	design	and p	progra	ım En	ıbedd	ed Sys	stems	using di	fferen	t em	bed	lded pr	ocesso	rs
PRE	REQ	UISI	TE: N	ſil												
COU	JRSE	OBJ	ECTI	VES												
1	To u	inders	stand a	nd im	pleme	ent ba	sic pr	ogram	ming	using A	RM p	roces	SSO1	:S		
2	Top	rogra	m for	eleme	ntary	opera	tions	, inpu	ıt-outj	out cont	rol					
3	To u	inders	stand s	erial c	comm	unica	tion p	rogran	nming	5						
4	Top	rogra	m for	Wave	form	Gene	ration									
COU	JRSE	OUT	ГСОМ	IES												
On t	he suc	ccessf	ul con	npletio	on of t	he co	urse,	studen	ts wil	l be able	e to					
CO1	. Prog	gram ı	using A	ARM	proce	ssors								App	oly	
CO2	. Prog	gram 1	for bas	ic ele	menta	ry op	eratio	ns						App	oly	
CO3	. Prog	gram 1	for ser	ial co	nmun	icatio	n							App	oly	
CO4	. Prog	gram 1	for Wa	vefor	m ger	eratio	n							App	oly	
	PPIN CON		ТН Р	ROG	RAM	ME (OUTO	COME	ES AN	ND PRO	GRA	MM	ES	SPECI	FIC	
CO	PO	РО	PO	PO	PO	PO	PO	PO	PO		PO1	PC	1	PSO	PS	PS
S	1	2	3	4	5	6	7	8	9	10	1	2	_	1	O2	O3
CO 1	S	M	L	S	S	L	-	-	-	M	L	N	1	S	S	-
CO 2	S	M	M	S	M	L	-	-	-	M	L	N	1	M	S	-
CO 3	S	M	M	M	L	M	-	-	-	M	L	N	1	M	M	-
CO	S	M	L	L	L	M	_	-	-	M	L	N	1	L	M	_

S- Strong; M-Medium; L-Low

List of Experiments:

- 1) Program for Elementary Operations Multi precision Addition, Subtraction, and Multiplication.
- 2) Input / Output Control Programming Controlling external logic switching, Clock generation
- 3) Programming for Analog to Digital Converters and Digital to Analog Converters
- 4) Programming using Built-in-Timers
- 5) Capture Control and its application examples
- 6) Waveform Generation using PWM methods Sine Wave Generation, FSK Generation
- 7) USART and its programming
- 8) SPI Bus and its programming

COU	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Dept	Mail ID								
1	Ms. R. MohanaPriya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in								
2	Mr.S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in								

		T									T		1		T		
17E	CSE1	n E	MBE	DDE			AS DI	ESIGN	1 C	atego	ory	L	T	P	Cre	edit	
1712	COLI				\mathbf{L}^{A}	AB			I	EC (S	E)	0	0	4	2),	
The p work ARM system	ing of proce	e of th ARM essor f	proce	essor a	& PIC	micr	ocont	roller.	This	cours	e also	make	es the	e stu	ding the dent to u		
		JISIT															
COU		OBJE															
1								or & I				ller					
2								Embe									
3								and m			tace						
5								me Sy y, I/Os			accor						
6		y the					icilioi	y, 1/O	5 WILL	ргос	23301						
		OUT															
On th	e succ	cessfu	l com	pletio	n of tl	ne cou	rse, s	tudent	s will	be ab	le to						
On the successful completion of the course, students will be able to CO1:Demonstrate programs in ARM for a specific Application Apply																	
CO2: opera		ace m	emory	and '	Write	progr	ams r	elated	to me	emory	,			Ana	alyze		
CO3:	Devel	op a A	A/D aı	nd D/A	A con	vertor	s with	n ARM	1 syste	em				Ana	alyze		
CO4:	Analy	ze the	perfo	orman	ce of	interrı	upt							Ana	alyze		
	Deve ensor.	lop pr	ogran	ns for	interf	acing	keybo	oard, d	lispla	y, mo	tor			Ana	alyze		
		ılate a	mini	proje	ct usi	ng em	bedde	ed syst	em					Cr	eate		
MAP	PING	W						JTCO		AN	D P	ROG	RAN	MM	E SPE	CIFIC	
	COM												Ι		ı	200	
CO' S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS	O1	PSO2	PSO 3	
CO 1	L	M	L	-	-	-	-	-	-	L	-	-	_	-	M	1	
CO 2	S	L	M	_	M	-	-	-	M	-	M	M M M -					
CO 3	M	S	S	-	M	-	-	-	L	M	-	M	5	S	S	-	
CO 4	S	M	S	-	M	-	-	-	M	M	L	M	N	Л	M	-	
CO 5	S	S	M	-	L	-	-	-	L	L	-	S	5	S	M	-	
CO 6	M	S	M	-	L	-	-	-	L	M	M	L	Ş	S	M	M	

SYLLABUS

- 1. Study of ARM evaluation system & PIC Microcontroller
- 2. Interfacing ADC and DAC.
- 3. Interfacing LED and PWM.
- 4. Interfacing real time clock and serial port.
- 5. Interfacing keyboard and LCD.
- 6. Interfacing EPROM and interrupt.
- 7. Mailbox.
- 8. Interrupt performance characteristics of ARM and FPGA.
- 9. Flashing of LEDS.
- 10. Interfacing stepper motor and temperature sensor.
- 11. Implementing zigbee protocol with ARM.

S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in
2	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

17E	CSE1	1		T	TAS	LAB			Ca	tegor	y 1	L	T	P (Credits
1/15	CSE	1			1103	LAD			E	C(SE)	(0	0	4	2
PRE															
					ne ope	erating	g syste	em (R	TOS)	and it	s men	nory N	Ianagemei	nt.	
PREI	REQ	UISI	ΓΕ: N	Vil											
COU	RSE	OBJ	ECT.	IVES	}										
1										o OS s		s Sche	duling tec	hniques, th	reads,
2	7	To Per	form :	Multit	hread	ed Pro	ogram	ming	in RT	OS Pl	latforn	n.			
3	7	Го Асс	quire 1	the Kı	nowle	dge oi	ı worl	king o	f Inte	rrupts	and W	/riting	ISRs.		
COU	RSE	OUT	CON	IES											
On th	e suc	cessfi	ıl cor	npleti	ion of	the c	course	e, stud	dents	will t	e abl	e to			
CO1.I		basic	prog	ramm	ing fo	r the r	eal tir	ne op	eratin	g syste	ems			Understa	and
CO2.F														Analyz	ze
CO3.I	Demo	nstrate	e task	mana	gemei	nt and	inter	task c	ommı	ınicati	ion.			Analyz	ze
MAP OUT			TH P	PROC	GRAN	MME	OU	rco:	MES	AND	PRC)GRA	MME S	PECIFIC	
СО	P	P	P	P	P	P	P	P	P	P	РО	РО	DGO1	Daos	DG G G
S	O 1	O 2	O 3	O 4	O 5	O 6	O 7	O 8	O 9	O 10	11	12	PSO1	PSO2	PSO3
CO 1	S	L	-	-	-	-	-	-	L	-	-	-	S	-	-
CO	S	S	L	-	М	_	_	_	_	L	_	_	М	S	_

S - Strong; M - Medium; L - Low

SYLLABUS

CO

- 1. Study of serial data Communication between two computers.
- 2. Write the pseudo code in Linux using C/C++ to perform FCFS scheduling
- 3. Write the pseudo code in Linux using C/C++ to perform Round Robin scheduling
- 4. Write the pseudo code in Linux using C/C++ to perform Priority Based scheduling
- Write the pseudo code in Linux using C/C++ to perform Print parent process ID & child process ID using Fork()

M

L

L

- 6. Study of POSIX thread & Write appropriate the pseudo code in Linux using C/C++
- 7. Study of Semaphore & Write appropriate the pseudo code in Linux using C/C++
- 8. Study of Raspberry pi & Write appropriate the pseudo code for blinking of LED and keypad in Linux

using python

- 9. Write appropriate the pseudo code for Pipe in Linux.
- 10. Study of Dining Table philosophy problem and write appropriate pseudo code for the same

0 0 0 22	2 2 2 2 2 3 1 1 2 1 2			
S. No	Name of the Faculty	Designation	Department	e-Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.a c.in
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in

17BM	CC04	I	BIOM	EDICA	AL INS	STRUI	MENT	ATIO	N &	Cat	egory	L	Т	P	Cr	edit
1/BM	CC04			M	EASU	REMI	ENTS				CC	3	0	0		3
The variants	PREAMBLE The variety of diagnostic, control, and monitoring equipment used for medical purposes comprises an array of biomedical instrumentation. These electronic systems can be used in a physician's office, a medical laboratory, or be implanted into a patient. This course is designed to acquire knowledge about the different components of various biomedical equipment and its working principle and to measure various physiological parameters.															
PRER	PREREQUISITE - NIL															
COUR	COURSE OBJECTIVES															
1	To kn	ow abo	out bioe	lectric s	ignals,	electro	des and	its type	es.							
2	To kn	ow the	various	Bio po	tential	amplifi	ers.									
3	To stu	ıdy abo	ut vario	ous Phy	siologic	cal mea	sureme	nts.								
4	To study the recording of various cardiac signals.															
5	To stu	ıdy abo	ut clini	cal labo	ratory i	nstrum	ents an	d blood	cell co	ounters.						
COUR	SE OU	TCOM	IES													
On the	success	ful con	npletior	of the	course,	studen	ts will l	oe able	to							
CO1. E	Explain	the acq	uisition	of vari	ous bio	signals	using	various	types o	of Electro	odes.		Un	derstand		
CO2. E	Examine	the dif	fferent l	olood ty	pes of	cell and	l usage	of clini	cal labo	oratory in	nstrumer	its.	Ap	ply		
CO5. U	Jse bio-	amplifi	ers in n	nedical	applica	tions.							Ap	ply		
CO3. R	Record a	ınd ana	lyze va	rious pl	nysiolog	gical sig	gnals.						An	alyze		
CO4. C	Classify	various	s cardia	c functi	on mea	sureme	nts.						An	alyze		
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S ANI	PRO	GRAM	ME SPI	ECIFIC	OUT	CON	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	M	L				L						M	[M		
CO2	S	M	M	S		M		L	M			M	[
CO3	S	M	M	S		M	M	L	M			M	[M		
CO4	S	M	S	M		M	S	M	S			S		S	M	
CO5	95 S M S M M S M S S S M															

S- Strong; M-Medium; L-Low

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential – Resting and action potential, Nernst equation, Goldman equation. Recording electrodes – Electrodes: Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artefacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Types of electrodes.

BIO AMPLIFIERS

Bio amplifier, Need for Bio amplifier, Operational amplifier characteristics, Different modes of operation of differential amplifier, Basic operational amplifier circuits – Inverting, Non inverting, differential amplifier, Instrumentation amplifier. Chopper amplifier, Isolation Amplifier.

BIO SIGNALS RECORDING

ECG- Anatomy and Electrical conducting system of heart, Genesis of ECG, Einthoven triangle, Lead system, Segments and intervals of ECG, Normal and abnormal ECG wave forms, ECG Machine, Recording set up of EMG and EEG. Heart sounds and PCG, ERG, EOG.

CARDIAC FUNCTION MEASUREMENTS

Blood pressure measurement – direct and indirect method, Respiration rate measurement, Measurement of heart rate and pulse rate, Plethysmography technique. Blood flow measurement – electromagnetic, ultrasonic. Cardiac output measurement – Indication dilution method and dye dilution method

CLINICAL LABORATORY INSTRUMENTS AND BLOOD CELL COUNTERS

Spectrophotometer, colorimeter, flame photometer, auto-analyser. Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.
- 3. Arumugam, M, "Biomedical Instrumentation", Anuradha publications, 2008.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M "Introduction to Biomedical Equipment Technology", John Wiley and sons, New York, 4th Edition, 1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

17BMCC03	BIOSENSORS AND TRANSDUCERS	Category	L	Т	P	Credit
17BMCC03	DIOSENSONS AND TRANSDUCERS	CC	3	0	0	3

The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To use the basic concepts of transducers, electrodes and its classification.
2	To discuss the various types of electrodes.
3	To determine the recording of biological components.
4	To employ the knowledge in electrochemical and optical biosensors.
5	To outline the various biological components using biosensors.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the working principles of transducers.	Understand
CO2. Explain the various types of electrodes.	Understand
CO3. Utilize various FET sensors for recording of biological components.	Apply
CO4. Distinguish various biosensors like electrochemical and optical biosensors.	Analyze
CO5. Analyze the biological components using biosensors in various applications.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L		M		M			L			M	M		
CO2	M	L		M		M			L			M	M		
CO3	S	M	L	S		S	M	M	M			M	S		
CO4	S	S	L	S		S	M	M	S			M	S		M
CO5	S	S	L	S		S	M	M	S			S	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in		
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran@avit.ac.in		
3	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in		

17DN/	IEC02				ріот	ELEN	/ETD	T 7			Categor	y L	Т	P	Credit
1/DIV	IECU2				ыот	LLEN	TE I K	1			EC-PS	3	0	0	3
	PREAMBLE To study the overall concept of a Biotelemetry system and the concept of signal transmission.														
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	VES												
1	To stu	dy the	basic co	oncepts	and the	princij	oles use	ed in a T	Telemet	ry systen	n.				
2	To study the building blocks used to make a electrical telemetry system.														
3	To stu	dy the	basic co	ompone	nts of t	ransmit	ting and	d receiv	ing tecl	hniques.					
4	To kn	ow abo	ut how	optical	fibers a	ire used	in sign	al trans	mission	1.					
5	To un	derstan	d the re	al time	applica	tion in	biotelei	metry.							
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will t	e able	to						
CO1. I	Discuss	about tl	he basic	inform	nation a	bout Te	lemetr	y syster	n.				Uno	lerstand	
CO2. I	Describe	the kn	owledg	e about	design	of Elec	trical T	Celemet	ry Syste	ems.			Unc	lerstand	
CO3. I	Demons	trate the	e differ	ent type	es of mo	odulatio	n techn	iques.					App	oly	
CO4. A	Analyze	the imp	plement	ation o	f optica	l fibers	in telei	metry s	ystem.				Ana	lyze	
CO5. \	/alidate	the hea	althcare	system	using '	Teleme	try syst	em.					Eva	luate	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC C	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M									L		M	M		
CO2	M									L		M	M		
CO3	S		L	L		L			M	M		S	M	M	
CO4	S	M	L	L	M	M	L	M	M	S		S	S	M	
CO5	S	S	M	L	M	S	M	M	S	S		S	M	M	S
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION

Fundamental concepts – Significance, Principle, functional blocks of Telemetry and Telecontrol system- Methods of telemetry – Electrical, Pneumatic, Hydraulic and Optical Telemetry – State of the art-Telemetry standards.

ELECTRICAL TELEMETRY

Electrical Telemetry – Current Systems – Voltage Systems – Synchro Systems – Frequency systems – Position and Pulse systems – Example of a landline telemetry system.

RADIO TELEMETRY SYSTEM

Block diagram of a Radio Telemetry system – Transmitting and receiving techniques – AM, FM, PM, Multiplexing and demultiplexing – Transmitting and receiving techniques – Digital coding methods – Advantages of PCM, PWM, PM, FSK – Delta modulation – coding and decoding equipment – Example of a radiotelemetry system.

OPTICAL TELEMETRY SYSTEM

Optical fibers for signal transmission – Sources for fiber optic transmission – Optical detectors – trends in fiber– optic device development – Example of an optical telemetry System.

APPLICATION OF BIOTELEMETRY

Use of computers in distance mode of healthcare delivery, Web technology, Satellite communication systems; hypertext, voice & image transfer protocols, Medical image scanning, Data compression and Transfer, Capturing of medical signals, Analog to digital conversion, Video conferencing, Remote sensing, Rural primary setups, Referral and Super specialty centers, Societal medico legal aspects, Networking (local, national & global).

TEXT BOOKS

- 1. D.Patranabis, "Telemetry principles", Tata Mcgraw Hill Publishers.
- 2. Marilyn J. Field, "Telemedicine: A Guide to Assessing Telecommunications for Health Care", National Academic Press, 1996.

REFERENCE

1. Charles J. Amlaner, David W. Macdonald, "A Handbook on Biotelemetry and Radio Tracking", Pergamon Press; 1st Edition (January 1, 1980).

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in

17RN	IEC12			НΟ	SPITA	T MAN	JACEN	MENIT			Categor	ry I	, T	1	PC	redit
1/DIV	IEC12			по	SFIIA	L WIAT	IAGE	VIENI			EC-PS	3	0	(0	3
PREA!		knowle	edge of	plannii	ng, desi	gning a	nd safe	ty mana	agemen	t in hosp	ital servi	ces.	•	•		
PRER	EQUIS	ITE – I	NIL													
COUR	COURSE OBJECTIVES															
1	1 To obtain the knowledge about the basic planning and organization of hospitals.															
2	To st	tudy ab	out the	clinical	and ad	ministr	ative se	ervices.								
3	To in	npart k	nowled	ge on d	esignin	g of ho	spital se	ervices.								
4	To st	tudy an	d analy	ze the s	afety m	anagen	nent in	hospita	ls.							
5	To st	tudy an	d analy	ze the i	nfection	n contro	ol in ho	spitals.								
	SE OU															
	success		•													
										of hospita	ıl design.		Unders	tan	d	
CO2. E	Examine	the va	rious cl	inical s	ervices	needed	in the	hospital	l.				Apply			
CO5. (Outline t	the imp	lementa	ation of	various	sinfecti	ion con	trol tecl	nniques	•			Analyz	e		
CO4. F	Recomm	end the	e suppo	rting se	rvices r	needed	to build	the ho	spital aı	nd safety	guidelin	es.	Evalua	te		
CO3. F	Build the	e idea a	bout th	e hospi	tal servi	ices des	ign.						Create			
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC (OUTC	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	1	PSO2	PSO3
CO1	M	L						L				M			M	S
CO2	CO2 S M L L M M									M			M	S		
CO3	CO3 S M M M M M M M M M M M M										M					
CO4	S	M	S	M	S	M	M	S	M	S	L	M	M		S	S
CO5	S	S	S	S	S	M	S	S	M	S	M	M	M		S	S
S- Stro	S- Strong; M-Medium; L-Low															

PLANNING AND ORGANIZATION OF THE HOSPITALS

Roles of hospital in healthcare – hospital planning and design-outpatient services the nursing unit – intensive care Unit – nursing services – effective hospital management – directing and leading – controlling – financial management.

CLINICAL AND ADMINISTRATIVE SERVICES

Radiology and imaging services – laboratory services – operation theatre suite pharmacy – central sterile supply department – hospital infection – materials management – evaluation of hospital services.

DESIGNING OF HOSPITAL SERVICES

Engineering department – maintenance management – clinical engineering electrical system – air conditioning system – water supply and sanitary system centralized medical gas system – communication system – solid waste management and transportation.

DESIGNING SUPPORT SERVICES AND SAFETY MANAGEMENT

Admitting department – medical records department – food service department laundry and linen service housekeeping – Volunteer department – safety in hospital fire safety – Alarm system – disaster management.

HOSPITAL INFECTION CONTROL

Importance of infection control – hand hygiene – aseptic techniques – isolation precautions – disinfection and Sterilization – clinical laboratory standards to infection control – health care workers safety.

TEXT BOOKS:

- 1. Kunders G D, "Biomechanics: Hospitals, facilities planning and management", Tata Mcgraw Hill, 2008.
- 2. Sakharkar B M, "Principles of hospital administration and planning", Jaypee Brothers Medical Publishers Pvt. Limited, 2nd Edition, 2009.

REFERENCE:

1. Sanjiv Singh, Sakthikumar Gupta, Sunil Kant, "Hospital infection control guidelines, principles and practice", Jaypee Brothers Medical Publishers Pvt Limited, 1st Edition, 2012.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Mr. R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Ms.S.Mythrehi	Assistant Professor (G-I)	BME	mythrehi@avit.ac.in

17ECSE12	MEDICAL ELECTRONICS	Category	L	T	P	Credit
17200212		EC(SE)	3	0	0	3

The course is designed to make the student acquire conceptual knowledge of the physiological systems of the human body and relate them to the parameters that have clinical importance. The relation between electronic concepts and biological concepts is highlighted. The principles of electronic instrumentation that are currently deployed in the clinical side are introduced.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To learn the concept of Medical Sensors
2	To understand human body and parameters
3	To study the working of biomedical instruments
4	To study the imaging techniques
5	To understand the working of assist devices

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the human physiology.	Understand
CO2. Illustrate the working of biomedical equipments.	Apply
CO3. Apply Electronic Principles for recording and Monitoring Bio Signals	Apply
CO4. Distinguish diagnostic equipments from therapeutic equipments	Analyze
CO5. Examine the internal organs through imaging	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	-	-	M	-	-	-	-	-	-	M	M	-	-
CO2	S	S	M	-	M	-	-	M	-	-	-	M	M	-	-
CO3	S	M	M	-	M	-	-	M	-	-	-	M	S	-	_
CO4	S	S	S	-	M	-	-	M	-	-	-	M	S	-	-
CO5	S	S	S	-	M	-	-	M	-	-	-	M	S	-	_
C Ctm	ona: M	Modia	.m. I 1	C CXXX											

PHYSIOLOGY AND TRANSDUCERS:

Cell and its structure, Resting and Action Potential, Nervous system: Functional organization of the nervous system, Structure of nervous system, Neurons – Synapse, Transmitters and Neural Communication, Cardiovascular system, respiratory system, Basic components of a bio-medical system, Transducers - Ultrasonic transducers, Temperature measurements - Fiber optic temperature sensors.

ELECTRO – PHYSIOLOGICAL MEASUREMENTS:

Electrodes, Limb electrodes, Floating electrodes, pregelled disposable electrodes, Micro, needle and surface electrodes, Amplifiers, Preamplifiers, differential amplifiers, chopper amplifiers, Isolation amplifier, ECG, EEG, EMG, ERG, Lead systems and recording methods, Typical waveforms.

NON -ELECTRICAL PARAMETER MEASUREMENTS:

Measurement of blood pressure, Cardiac output, Heart rate, Heart sound, Pulmonary function measurements, Spirometer, Photo Plethysmography, Body Plethysmography, Blood Gas analyzers: pH of blood, Measurement of blood pCO2, pO2, finger-tip oxymeter, ESR, GSR measurements.

MEDICAL IMAGING AND DIAGNOSTICS:

Radio graphic and fluoroscopic techniques, Computer tomography, MRI, Ultrasonography, Endoscopy, Thermography, Different types of biotelemetry systems and patient monitoring, Introduction to Biometric systems.

ASSISTING AND THERAPEUTIC EQUIPMENTS:

Pacemakers, Defibrillators, Ventilators, Nerve and muscle stimulators, Diathermy, Heart –Lung machine, Lasers, Audio meters, Dialysers, Lithotripsy, Electro Surgery.

TEXT BOOKS:

- 1. R.S.Khandpur, Hand Book of Bio-Medical instrumentation, Tata McGraw Hill Publishing Co Ltd., 2003.
- 2. Leslie Cromwell, Fred J.Weibell, Erich A. Pfeiffer, Bio-Medical Instrumentation and Measurements, II edition, Pearson Education, 2002.

REFERENCE BOOKS:

- 1. Joseph J. Carr, John M. Brown, Introduction to Biomedical Equipment Technology, Fourth Edition, Pearson.
- 2. Shakti Chatterjee, Aubert Miller, Bio-Medical Instrumentation Systems, Cengage Learning, 2010.
- 3. C.Rajarao and S.K. Guha, Principles of Medical Electronics and Bio-medical Instrumentation, Universities press (India) Ltd, Orient Longman ltd, 2000

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in
2	N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in

17DX	ACC10	1 A	IEDIC	AT TAT	CE D	DACE	CCINC	AND	A NI A T X	7CTC	Categor	ry L	T	P	Credit
1/BN	ACC10	IVI	IEDIC <i>i</i>	AL IMA	AGE P	ROCE	99ING	AND A	ANALI	(818)	CC	3	0	0	3
To lea	MBLE arn the f					dical in	nage ac	quisitio	on and	understa	nd how t	to apply	the in	nage pro	cessing
PRER	EQUIS	ITE: 1'	7BMC	C08 - B	IOME	DICAI	SIGN	AL PR	OCES	SING					
COUR	OURSE OBJECTIVES														
1	To learn the image fundamentals and mathematical transforms necessary for image processing.														
2	To study the various image enhancement techniques.														
3	To study about the various segmentation techniques applied to Medical Images.														
4	To gain knowledge about the basic concepts of image compression procedures.														
5	To ap	ply vari	ious im	age rest	oration	proced	ures in	Medica	l image	es.					
COUR	RSE OU	TCOM	1ES												
On the	success	ful con	npletion	of the	course,	studen	ts will b	e able	to						
CO1.	Summa	rize the	genera	l termir	ology	of digita	al imag	e proces	ssing.					lerstandi	ng
CO2.	Examin	e the ne	eed for	image t	ransfori	ms and	their ty	pes bot	h in spa	tial and	frequency	y domair	ı. App	oly	
CO3.	Classify	differe	ent type	s of ima	age seg	mentati	on and	apply r	estorati	on techn	iques.		Ana	lyze	
CO4.	Analyze	e the im	age co	mpressi	on mod	els and	image	compre	ssion te	echnique	S.		Ana	lyze	
CO5.	Illustrat	e vario	us meth	odologi	ies for i	mage s	egment	ation in	medica	al imagir	ng.		Ana	lyze	
MAPF	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M			M							M	M	M	
CO2	S	S	M	M	S	M			S			S	M	M	
CO3	S	S	M	M	S	M			S			S	M	S	
CO4	S	S	M	M	S	M			S			S	M	S	

M

S

S

S

 \mathbf{M}

M

S

S- Strong; M-Medium; L-Low

 \mathbf{M}

M

S

CO5

S

 \mathbf{M}

DIGITAL IMAGE FUNDAMENTALS

Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.

IMAGE ENHANCEMENT

Basic gray level transformation, Histogram processing, Smoothening by spatial filters – Sharpening by spatial filters, Smoothening- frequency domain filters, Color image Processing- color models – Pseudo color image processing – Color Image Transformation – Smoothening – Sharpening.

IMAGE SEGMENTATION AND OBJECT RECOGNITION

Edge detection- Marr Hidreth edge detector - Canny edge detector, Thresholding foundation - Basic global thresholding - Basic Adaptive thresholding, Region Based segmentation, Watershed segmentation algorithm, Patterns and pattern classes, Recognition based on decision theoretic methods - matching, Optimum statistical classifiers.

IMAGE COMPRESSION

Introduction – Principle of compression – Types of compression – Run length Encoding – Huffman Coding – Modified Huffman Coding – Modified READ – LZW – Arithmetic Coding – JPEG – Other State-of-the-Art Image Compression – Image Compression Standard File Formats.

IMAGE RESTORATION AND RECONSTRUCTION OF MEDICAL IMAGES

Image degradation models, Algebraic approach to restoration, inverse filtering, Least mean square filter, Image reconstruction from projections – Radon transforms - Filter back projection algorithm – Fourier reconstruction of MRI Images.

TEXT BOOKS:

- 1. Rafael C, Gonzalez and Richard E Woods, "Digital Image Processing", Pearson Education Asia, 3rd Edition, 2007.
- 2. Anil K Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 2nd Edition, 1997.

REFERENCES:

- 1. William K Pratt, "Digital Image Processing", John Wiley, 4th Edition, 2007.
- 2. Albert Macouski, "Medical Imaging systems", Prentice Hall, New Jersey, 2nd Edition, 1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Dr. D.Vinodkumar	Professor	BME	vinodkumar@vmkvec.edu.in
3	Ms.Santhoshini Arulvallal	Assistant Professor (Gr-I)	BME	santhoshiniarulvallal@avit.ac.in

17BMSE16	WEARABLE TECHNOLOGY	Category	L	T	P	Credit
17DMSE10	WEARABLE TECHNOLOGI	EC-SE	3	0	0	3
DDEAMDLE						

This course makes the students to understand the fundamentals and applications of the wearable technology.

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To understand the fundamentals of sensors and wearable technology.
2	To ascertain the design and integration of the smart textiles.
3	To understand the electronic textiles.
4	T endeavor various sensor in sports wearable application.

COURSE OUTCOMES

5

On the successful completion of the course, students will be able to

To understand the cloud storage of wearable devices.

CO1. Discuss the fundamentals of sensor and wearable technology.	Understand
CO2. Illustrate the electronic textiles and its applications.	Apply
CO3. Analyze the sensor for different wearable applications.	Analyze
CO4. Compare the various data storage of wearable systems.	Evaluate
CO5. Design of smart clothing.	Create

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L							L			S	M		
CO2	S	M	L	L					M			S	S	M	
CO3	S	M	M	M	S	M	L		M			S	S	M	
CO4	S	S	S	S	S	S	M	M	S	S	M	S	S	S	
CO5	S	S	S	S	S	S	M	M	S	S	S	S	S	S	M

S- Strong; M-Medium; L-Low

SYLLABUS

BASICS OF SENSORS AND WEARABLE TECHNOLOGY

Introduction to sensors – Sensor Physical Properties – Electric (Resistive, Capacitive and Inductive) – Piezoelectric – Optic – Photo elastic - Thermoelectric – Electrochemical.

 $We arable\ computers-We arable\ Electronics-Intelligent\ Clothing-Industry\ on\ we arable\ technology-Current\ Trends-Market\ Forecast.$

SMART CLOTHING

Introduction – Design of Smart Cloths – 2D Design for smart wearables – Textile Development – 3D Design for smart wearables – Construction of smart wearables – Integration – Prototype Development.

ELECTRONIC TEXTILES

Conductive Fibers for textiles – Conductive for Polymers textiles – Carbon Nanotubes yarns – Textile and Electronics Integration - Embroidered Antenna – Electronic textiles for Military Applications.

SENSOR FOR WEARABLE APPLICATIONS

Load and Pressure Measurement sensor – Sports Applications – Inertial Sensor – Sports Application – Optical Sensor – Sports Application – Angle & Displacement Sensor – Sports Application.

DATA STORAGE FOR WEARABLE TECHNOLOGY

 $Introduction-Storage\ in\ Consumer\ wearable\ -\ Cloud\ storage-Remote\ Cloud-Sensor\ Cloud-Cloudlet\ -\ Cloud\ storage\ Architecture-Confidential\ disk\ and\ Cloud\ storage\ with\ encryption-Two-layer\ confidential\ storage.$

TEXT BOOKS:

- 1. Patrick F. Dunn, "Fundamentals of Sensors for Engineering and Science", CRC Press, Taylor & Francis.
- 2. Jane McCann, David Bryson, "Smart Clothes and Wearable Technology", CRC Press, Woodhead Publishing Ltd.

REFERENCES:

- 1. Daniel A. James, Nicola Petrone, "Sensors and Wearable Technologies in Sport: Technologies, Trends and Approaches for Implementation".
- 2. Marrington, Andrew, Kerr, Don, "Management Association, Information Resources Managing Security Issues and the Hidden Dangers of Wearable Technologies".
- 3. Tilak Dias, "Electronic Textiles: Smart Fabrics and Wearable Technology", Elsevier, Woodhead Publishing.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in
2	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

17BMCC82	BIOMEDICAL INSTRUMENTATION LAB	Category	L	Т	P	Credit
17BMCC62	DIOMEDICAL INSTRUMENTATION LAB	CC	0	0	4	2

The curriculum of biomedical instrumentation lab is concerned to enable the students to know and operate the various biomedical instruments for measuring and diagnosing biological signals.

PRERQUISITE: NIL

COURSE OBJECTIVES

- 1 Design of amplifiers for biological signals.
 - Recording and analysis of bio signals.
- 3 Measurement of PH.
- 4 Study and measurement of blood pressure.
- 5 Measurement of galvanic skin resistance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Design operational amplifier for inverting and non-inverting mode.	Create
CO2. Record and analyze EEG, ECG, EMG signals.	Analyze
CO3. Measure of PH value of a given solution.	Evaluate
CO4. Measure blood pressure non-invasively.	Evaluate
CO5. Design Filters for bio signals.	Create

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	-	M	1	1	S			S	S	1	
CO2	S	S	M	M	S	M	1	1	S			S	M	M	
CO3	S	S	S	M	1	M	-	1	S			S		1	M
CO4	S	S	S	M	1	M	-	1	S			S	M	1	M
CO5	S	S	S	S	-	M	1	1	S			S	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

List of Experiments

- 1. Blood pressure measurement using sphygmomanometer
- 2. Design of instrumentation amplifier
- 3. Measurement PH using PH meter
- 4. Galvanic Skin resistance measurement
- 5. Recording of ECG using ECG simulator
- 6. Recording of EEG using EEG simulator
- 7. Recording of EMG using EMG simulator
- 8. Optical Isolation Amplifier
- 9. Study of Phono Cardiogram (PCG)
- 10. Study of Types of electrodes

REFERENCES:

Department Lab Manual

COURSE DESIGNERS

S.N	No.	Name of the Faculty	Designation	Department	Mail ID
]	1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	2	Ms.B.Farhana Ansoor	Assistant Professor (G-I)	BME	farhanaansoor@avit.ac.in

227

				DIO			T		0.020	arria.	T 1 D	Ca	tegory	L	T	P	Credit
]	7ECSF	213		RIO	MED	ICAL	IMAG	E PR	OCES	SING	LAB	E	C(SE)	0	0	4	2
The the f	PREAMBLE The purpose of learning this course on medical image processing Lab for biomedical engineering students is to acquire the fundamental concepts of image acquisition and understand how to apply the image processing techniques for various medical images. PRERQUISITE – Nil																
COI	URSE (
1											necessar		age proc	essing.			
2											chniques						
3					-						al image						
4											chniques						
5	5 Explain the different types of reconstruction techniques applied to various medical Images.																
COI	URSE (OUTC	COM	ES													
	he succ			•													
proc		and									cations) in a		_	oply			
CO	2. Appl	y ima	age e	nhanc	ement	techni	ques.						Aı	oply			
CO3	3. Exan	nine I	lmag	e segn	nentati	on and	image	comp	ressio	n techr	niques.		Aı	pply			
	4. Outl ware an			_	-	sing t	asks w	ith a	high l	evel o	of profic	ciency	via Aı	nalyze			
	5. De lication				nalyze	Imag	ge pro	ocessii	ng al	gorithi	ms in	practi	cal A	nalyze			
MA	PPING	WIT	H P	ROGR	AMM	E OUT	COMI	ES ANI	D PRO	GRAN	ME SI	PECIFIC	COUTO	COMES			
COS	PO	l P	O2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	SO2	PSO3
CO1	S				L								M	S		M	
CO2	2 S	1	M	L	L	M				M			M	S		S	
CO3	3 S	1	M	L	L	M				M			M	S		S	
CO4	S		S	M	M	S				S			S	S		S	
COS	S		S	M	M	S				S			S	S		S	

LIST OF EXPERIMENTS

- 1. Basic operations on images
- 2. Gray level transformation and histogram processing
- 3. Image smoothening and image sharpening using suitable filters
- 4. Edge detection techniques
- 5. Histogram Processing and Basic Thresholding functions
- 6. Image segmentation using morphological operations
- 7. Image Linear Filtering and Transforms
- 8. Image Restoration techniques
- 9. Image compression techniques

REFERENCES:

- 1. Albert Macouski, "Medical Imaging systems", Prentice Hall, New Jersey, 2nd Edition, 1997.
- 2. Medical image processing lab manual.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
2	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

											Cat	tegory	L	T	P	Credit
17H	ECSE14		BIO	MEDI	CAL	SIGNA	AL PR	OCES	SING	LAB		C(SE)		0	4	2
This la	PREAMBLE This laboratory introduces the different signal processing techniques used for analyzing Biomedical signals using MATLAB													ls using		
PRER	PRERQUISITE – Nil															
COUR	COURSE OBJECTIVES															
1	Developing advanced signal processing and estimation methods for analyzing and understanding biomedical signals.															
2	Advancing our knowledge of pathophysiology through the investigation of behavior that manifests in															
3	Providing opportunities for student participation in rigorous research methodology and the dissemination of															
4	The students will be motivated to apply signal processing to various areas such as image processing biomedical															
5	Contr	ibuting	to regi	onal an	d natio	nal bio	medica	l resear	ch.							
COUR	RSE OU	TCOM	IES													
On the	success	ful con	npletion	of the	course	, studer	ts will	be able	to							
	Examine nd the E									ods: The	ECG,	the Ap	pply			
CO2.		ınd eva	luate d	ifferent	metho	ds for	signal	process	ing of	the ECC	G, the E	EG Ap	pply			
CO3. I	llustrate	the art	ifact re	moval d	& signa	ıl extra	ction.					Ap	ply			
CO4. o		bioele	ctricity	in the	heart	and in	the ce	entral a	nd in	periphe	al nerv	ous Ar	nalyze			
CO5. A	Analyze									els for th	ne origin	of Ar	nalyze			
	trical si	_									ECIEI					
		1		1	1	I	I		1			C OUTO		DC	O2	DCO2
COS	PO1	PO2 S	PO3 M	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 S	PSO1 S		02 S	PSO3
CO1				L					M			-				M
CO2	S	S	M	L					M			S	S	-	S	M
CO3																
CO4																
CO5	CO5 S S S M M M S S M S S															
S- Stro	ng; M-N	Aediun	n; L-Lo	w												

LIST OF EXPERIMENTS

- 1. Representation of basic signals.
- 2. Convolution & Correlation
- 3. To write and execute programs for image arithmetic operations.
- 4. To understand various image noise models and to write programs for image restoration
- 5. Analysis of EEG waveform
- 6. Analysis of EMG Signal
- 7. Processing of bio-signals using adaptive filters
- 8. Image processing for contrast enhancement and sharpening the edges
- 9. Data Compressions of bio-signals (ECG, EEG, EMG etc.) using DCT and wavelet transforms.
- 10. To write and execute program for FFT & IFFT.

REFERENCES:

- 1. Kayvan Najarian, Robert Splinter, "Biomedical Signal and Image Processing", CRC Press, Second Edition, 2012.
- 2. Biomedical signal processing lab manual.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in

17ECSE15	DATA ACQUISITION	Category	L	T	P	Credit
	LAB	EC (SE)	0	0	4	2
PREAMBLE	1					

The data acquisition plays a significant role all the fields of Engineering and Technology. This course will introduce students about computer based instrumentation techniques and an exposure to real time applications.

PREREQUISITE - Nil

COURSE OBJECTIVES

- To enable the student to do measurements of various real time parameters
 - The student is enabled with the capacity to handle various guages
- The student is enabled to produce pulse and measure its parameters
- To handle the counters of various types 4
- The student is exposed to hardware of various gauges

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the working of Guages	Understand
CO2. Apply the knowledge of gauges to take measurements	Apply
CO3. Analyze the pulse characteristics	Analyze
CO4. Analyze the various types of measurements	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

002															
CO	PO	PO1	PO1	PO1	PSO	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	S	S	M	L	M	-	-	-	M	-	-	-	M	M	-
CO 2	S	M	L	-	-	-	-	-	M	-	-	-	M	S	-
CO 3	M	S	S	-	-	L	-	-	M	-	-	-	S	M	1
CO 4	S	S	S	M	M	-	-	M	S	-	-	L	S	M	M

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Measuring Temperature with RTDs
- 2. Measuring Pressure with Strain Gauges
- 3. Generating a Single Square Pulse
- 4. Generating a Pulse Train (A) Generating a Continuous Pulse Train (B) Generating a Finite Pulse Train
- 5. Measuring a Pulse Width
- 6. Connecting Counters to Measure Frequency and Period

- 7. Measuring the Frequency and Period of Low Frequency Signals
- 8. Measuring the Frequency and Period of High Frequency Signals
- 9. Counting Events or Elapsed Time

REFERENCE

1. Data Acquisition Lab Manual

	TOD DESIGNER	- I	<u></u>	
S.N o.	Name of the Faculty	Designatio n	Dept	Mail ID
1	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in
2	S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in

17ECSE16	FIBRE OPTIC SENSORS AND APPLICATIONS	Category	L	T	P	Credit
T/LCSL10	THE BLETTION	EC(SE)	3	0	0	3

A fiber optic sensor is a sensor that uses optical fiber either as the sensing element or as a means of relaying signals from a remote sensor to the electronics that process the signals. Fibers have many uses in remote sensing, depending on the application, fiber may be used because of its small size, and no electrical power is needed at the remote location. Many sensors can be multiplexed along the length of a fiber by using light wavelength shift for each sensor, or by sensing the time delay as light passes along the fiber through each sensor

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To familiarize about fiber optic sensor technology.
- 2 To study about Optical resonators.
- 3 To acquire knowledge about magnetic sensors.
- 4 To know about Chemical and Biosensors.
- 5 To gain knowledge about smart structures.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Recognize and classify the structures of Optical fiber and types	Understand
CO2. Describe the performance of sensors based on relative movement of opposed Grating	Understand
CO3. Recognize the sensor types for measuring various effects due to magnetic Fields	Understand
CO4. Interface hardware with relevant sensor for measuring pH level, Hydrogen, CO2, Ammonia,	Apply
chloride and Oxygen etc	
CO5. Develop a Architecture with proper sensors foe various Application like Temperature,	Apply
Pressure, fluid level, rotation and Current -voltage measurements.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L	-	-	-	-	-	-	M	M	-	-
CO2	S	S	S	-	M	-	-	-	ı	-	-	M	M	-	-
CO3	S	M	M	-	L	L	-	-	-	-	-	M	M	-	-
CO4	S	L	L	-	L	L	-	-	-	-	-	M	S	M	-
CO5	S	M	M	-	M	L	-	-	ı	-	-	M	S	M	-

SENSOR TECHNOLOGY

The Emergence of Fiber Optic Sensor Technology-Optical Fibers-Light Sources-Optical Detectors- Optical Modulators- Intensity-Based and Interferometric Sensors-Fabry perot, Mach Zender, Michelson and Sagnac

GRATING SENSORS

Multimode Grating and Polarization Sensors-Sensors Based on Relative Movement of Opposed Gratings-Grating Period Modulation-Sensors Based on the Photo-elastic Effect-Retardation Plates- Fiber Grating Sensors

DISTRIBUTED AND MAGNETIC SENSORS

Fiber Optic Distributed and Magnetic Sensor-Distributed Sensing- Basic Principles of Sensor Multiplexing- Inter ferometric Sensor Multiplexing- Faraday effect sensors-Magneto strictive – Lorentz force sensors-Evanescent Field Absorption Sensors

CHEMICAL AND BIOSENSOR

Fiber Optic Chemical and Biosensor: Reagent Mediated sensor-Humidity sensor – pH sensor – Hydrogen sensor – CO2 sensor – Ammonia sensor – Chloride sensor – Glucose sensor – Oxygen sensor – Surface Plasmonic Resonance based sensor

APPLICATIONS

Industrial Applications of Fiber Optic Sensors: Temperature – Pressure – fluid level – flow – position – vibration – rotation measurements – Current -voltage measurement – Chemical analysis. Introduction to smart structures – Applications –skins.

TEXT BOOKS:

- 1. Eric Udd, William B. Spillman, Jr., "Fiber Optic Sensors: An Introduction for Engineers and Scientists", John Wiley & Sons 2011
- 2. Bhagavānadāsa Gupta, Banshi Das Gupta, "Fiber Optic Sensors: Principles and Applications", New India Publishing 2006
- 3. David A. Krohn, "Fiber optic sensors: fundamentals and applications", ISA Publishing 2000

REFERENCE BOOKS:

- 4. Francis T.S. Yu, Shizhuo Yin, Paul B. Ruffin, "Fiber Optic Sensors", CRC Press Publisher 2010
- 5. B.Culshaw and J.Daykin, "Optic fiber Sensors Systems and Applications", Artech House 1989
- 6. KTV Grattan & BT Meggit, "Optical fiber sensor technology & Applications", Kluwer Academic 2000

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

1504	OD15	IOT	TRI A FT	TONE	VD13745	OX/O/DID	MC	Cate	gory	I		T	P	Cre	edit
T/EC	SE17	IOT	IOT IN AUTOMOTIVE SYSTEMS		IVIS	EC	(SE)	3	3	0	0	3	3		
PREA	MBLE	C													
				ion and	d integr	ration of	the p	hysica	l devic	es with	the inter	net to m	nake veh	icle auto	mation
	rious pa														
PRER	REQUI	SITE -	Nil												
COU	RSE O	BJECT	IVES												
1	To rec	cognize	the bui	lding b	locks	of Interne	t of T	Things	and cha	aracteris	tics.				
2	To un	derstan	d the ba	asic arc	hitectu	re of IOT	Γ.								
3	To kn	ow the	fundan	nental to	echnolo	ogies used	d in I	OT.							
4	To rec	cognize	the app	olicatio	n areas	of IOT.									
5	To acc	quire kr	nowledg	ge abou	it the d	esign con	ıstraiı	nts in I	OT.						
COUI	RSE O	UTCO	MES												
On the	succes	sful co	mpletio	n of th	e cours	e, studen	ts wi	ll be ab	ole to						
CO1.	Descril	oe the p	hysical	design	and lo	gical des	sign o	f IOT	with ma	achine to	machin	ie		Unders	tand
comm	unicatio	on mod	els												
						istruct a a								Apply	
					ınd rou	ting proto	ocol 1	for sens	sors de	ploymen	t in need	d of data		Analyz	e
	gation a														
						oT devic								Create	
						y conside								Create	
MAP	PING V	VITH 1	PROG	RAMN	IE OU	TCOME	ES Al	ND PR	OGRA	MME S	SPECIF	IC OUT	COME	S	
	PO1	PO2	PO3	PO4	PO5	PO6 P	207	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COS					_	- [-	-	-	-	-	-	S	_	_
COS CO1	S	L	_	-											
	S	L M	-	L	L	-	-	-	-	-	-	L	S	M	-
CO1			- - M	L M	L L	- L	-	-	-	-	-	L L	S S	M M	- M

L

S

M

M

CO5

M

S- Strong; M-Medium; L-Low

M

L

L

L

Introduction to IoT

Defining IoT - Characteristics of IoT - Physical design of IoT - Logical design of IoT - Functional blocks of IoT - Communication models - Machine to Machine - Difference between IoT and M2M

Architectural Overview

Building an architecture - Main design principles and needed capabilities - IoT architecture outline standards-considerations.

IoT Technology Fundamentals

Wireless medium access issues - MAC protocol survey - Survey routing protocols - Sensor deployment & Nodediscovery - Data aggregation and dissemination

Applications of IoT

IOT devices and sensors for vehicle Automation – GPS, GSM, Bluetooth. Sensors: level sensor, motion sensor, position sensor and object sensor. Surveillance applications –CCTV - Other IoT applications

Real-World Design Constraints

Introduction - Technical Design constraints - Data representation and visualization - Interaction and remotecontrol.

TEXT BOOKS:

1. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", 1st Edition, OrientBlackswan Private Limited, 2015.

REFERENCE BOOKS:

- 1. Peter Waher, "Learning Internet of Things", Packt publishing, 2015
- **2.** David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
2	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

17ECSE18	IOT FOR INDUSTRIAL SYSTEMS	Category	L	T	P	Credit
17ECSE10	TOTTOK INDESTRUIZ STSTEMS	EC(SE)	3	0	0	3

The objectives of this course are to provide in-depth understanding of the underlying concepts of Internet of things, building blocks, domain-specific IoTs, and Design methodology for IOT. Also the course provides knowledge on Python coding to embed the coding in various open source hardware such as Raspberry Pi and Arduino. Eventually the course extends the students" knowledge upto the level of building cost effective IOT system for real world scenario with the open source hardware and software tool chains

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To assess the	vision and	introduction	of IoT
---	---------------	------------	--------------	--------

- 2 To Understand IoT Market perspective.
- 3 To Implement Data and Knowledge Management and use of Devices in IoT Technology
- 4 To Understand State of the Art -IoT Architecture.
- 5 To classify Real World IoT Design Constraints, Industrial Automation in IoT

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Recollect the terms and definitions of embedded system and networking	Remember
CO2. Understand the details and functionality of architecture of IOT	Understand
CO3. Identify different hardware and software tools for the IOT implementation	Understand
CO4. Design an IOT system for the given scenario and able to evaluate the constraints of the system	Apply
CO5 Choose the suitable hardware and software tools chains for the given real world scenario to	Apply
fulfill the IOT requirements	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	-	-	S	-	-	L	M	L	-	-	S	-	-
CO2	M	L	-	M	S	-	-	L	M	L	-	-	S	-	-
CO3	M	L	-	M	S	-	-	L	M	L	-	L	S	-	M
CO4	S	M	L	-	S	-	-	L	M	L	-	L	S	M	M
CO5	S	M	L	ı	S	-	-	M	L	L	ı	L	S	M	M

INTRODUCTION TO IOT:

Introduction, Characteristics, Physical design, Protocols, logical design, Enabling technologies and IoT Levels. Domain Specific IoTs. IoT vs M2M.

DESIGN METHODOLOGY:

IoT systems management with NETCONF-YANG. IoT Design Methodology. IOT design Specifications, Model, Level and view Specifications, Device & Component Integration and Application Development.

LOGICAL DESIGN& PHYSICAL DEVICES:

Python packages of interest for loT, Cloud for loT, python web application framework. Basic building blocks of an loT Device.

OPEN SOURCE HARDWARE:

Raspberry PI physical devices, Raspberry Pi Interfaces, Programming, APIs / Packages. Web services. Intel Galileo-Arduino-Interfaces, Arduino Programming with IOT APIs.

CASE STUDIES: Real time applications of IoT-Connecting IoT to cloud..

TEXTBOOKS:

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things –A hands-on approach", Universities Press, 2015
- 2. Peter Waher "Learning Internet of Things", Packt Publishing, UK, 2015.
- 3. Miguel de Sousa", Internet of Things with Intel Galileo", Packt Publishing, UK, 2015

REFERENCE BOOKS:

- 1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014
- 2. Adrian McEwen, Hakim Cassimally "Designing the Internet of Things", Wiley Publishing, 2015
- 3. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014)

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandrang@vmkvec.edu.in
3	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
4	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

17ECSE19	RFID AND FLEXIBLE SENSORS	Category	L	T	P	Credit
1.20021		EC(SE)	3	0	0	3

The integration of sensor and radio frequency device (e.g., RFID tags) data into IT applications. This framework is applied to the area of healthcare applications because data quality is important to improving patient care while reducing overall costs. Real-time, high quality data are critical for emergency medical applications, telemedicine, and preventive care, which sensor based applications can provide. Methods This is a theory-based approach, illustrated with examples from the healthcare industry. A sensor design framework is presented that links the requirements of the application with the capabilities of the many types of sensors available for healthcare.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To Understand the RFID used in IT applications and indicate their advantages and limitations.
- 2 To apply the programming the RFID devices and modes of operation.
- 3 To apply flexible Sensors
- 4 To design Sensor Principles in resistance and capacitance.
- To apply and develop Sensor Interfacing and Sensor various type of systems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the type of sensors and RFID its principles	Understand
CO2. Quantify the specification and characteristics of sensors	Understand
CO3. Execute the measurements and error calculations	Apply
CO4. Demonstrate the functionality of sensors in instruments	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	S	S	-	-	-	-	-	L	-	S	-	-
CO2	L	L	L	S	S	-	-	-	-	-	L	-	S	M	-
CO3	M	M	L	S	S	-	M	M	M	-	M -		S	-	M
CO4	M	M	M	S	S	S	S	S	S	-	S	-	S	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

History and Practice of RFID: RFID Systems and Terminology, Types of RFID, Frequency Bands for RFID, Tags-Passive, Semi passive, and Active Tags. Radio Basics for UHF RFID -Signal Voltage and Power, Information, Modulation, and Multiplexing, Backscatter Radio Links, Link Budgets, Effect of Antenna Gain and Polarization on Range, Propagation in the Real World.

Introduction to Sensors: Sensor signals and systems, classification and measurement units. Sensor Characteristics: Transfer function, measuring parameters.

Sensor Principles: Electric charge, field and potentials, capacitor and dielectric constant, magnetism, Induction, resistance, Seebeck, peltier and thermal effects, Heat transfer, light and ultrasonic.

Sensor Interfacing: op-amp and Instrumentation amplifier, Excitation circuits, A/D and D/A converters and bridge circuits. Noises in sensor circuits.

Sensor systems: force, strain, Inductive, capacitive, magnetic, level, Flow, pressure, acoustic, humidity, moisture, temperature, ultrasonic, chemical, image and bio sensors. Position, displacement, motion, velocity, acceleration sensors based system.

Smart sensors: Piezo, Shape memory alloys, MR and ER fluids, optical, IOT and MEMS sensors

TEXT BOOKS:

- 1.Daniel M. Dobkin-The RF in RFID: UHF RFID in Practice–Elsevier/Newness, U.S./India –2012(2ndEdition) –ISBN: 97801239458
- 2. Jacob Fraden, "Hand book of modern sensors: Physics design and applications", Springer, 2003, 3rdedition, AIP press

REFERENCE BOOKS:

- 1.Ian R. Sinclair, "Sensors and transducers", Newness, Oxford, 2001, 3rdedition.
- 2. Doebelin E.O. and Manik D.N., "Measurement Systems", 6th Edition, Tata McGraw-HillEducation Pvt. Ltd., 2011.
- 3. John P. Bently, "Principle of measurement systems", Pearson education, Prentice Hall publication, 2004, 4thedition.
- 4.S.Renganathan, "Transducer Engineering", Allied publishers, New Delhi 2003.
- 5.Neubert, H.K.P., "Instrument Transducers –An Introduction to their Performance and Design", Oxford University Press, Cambridge, 2003

S.No	Name of the Faculty	Designation	Department	Mail ID
1	S.Kannan	Assistant Professor	ECE	kannan@vmkvec.edu.in
2	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

15ECCE20		Category	L	T	P	Credit
17ECSE20	SMART IOT APPLICATIONS	EC(SE)	3	0	0	3

This course providing a basic understanding of Internet of Things, amplifying the application areas where Internet of Things can be applied and enables designing prototypes of Internet-connected products using appropriate tools.

PRER	EQUIS	SITE:-	Nil												
COUR	COURSE OBJECTIVES 1 To learn ability on basic concept, and challenges in the Internet. 2 To predict the varies components and the protocols in Internet. 3 To build skills on embedded system with the internet. 4 To Redundant the various modes of communications with Internet.														
1	To predict the varies components and the protocols in Internet.														
2	To pr	edict th	e varies	compo	nents a	nd the p	rotoco	ls in Int	ernet.						
3	To bu	ild skil	ls on en	nbedded	l systen	n with t	he inter	net.							
4	To Re	edundar	nt the va	arious n	odes o	f comm	unicati	ons witl	h Intern	et.					
5	To Re	ecogniz	e on kn	owledge	e to ma	nage th	e resou	rces in t	he Inte	rnet.					
COUR	OURSE OUTCOMES In the successful completion of the course, students will be able to														
On the	On the successful completion of the course, students will be able to														
CO1.	Interpret the significance of IoT,WoT and Cloud of Things. Understand														
CO2.	Describe the general IoT architecture and connected domains. Understand														
CO3.	Predict consequence the requirement to figure out the suitable														
CO3.										OT appli		Anary	ZC		
CO4.	_			_			nputing	g, comp	onents	s of wear	rable	Apply	7		
CO4.	_			oes of v								rippiy			
CO5.				_				the cl	oud thr	ough W	i-Fi /	Evalua	ate		
				ce in va		•									
MAPI	PING V	VITH 1	PROG	RAMI	ME OU	J TCO	MES A	AND P	ROGE	RAMMI	E SPEC	IFIC OU	JTCON	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	ı	S	1	-	-	S	M	-						
CO2	L	-	S	M	-	-	-	-	-	-	-	-	S	M	-
CO3	M	S	М	L	-	L	M	-	-	L	-	L	-	S	-
CO4	S	-	М	-	L	-	L	-	-	-	-	L	M	S	-
CO5	S	M	S	ı	L	M	M	L	-	S	-	L	M	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO IOT

Overview and Introduction, Internet of Things (IoT), Web of Things (WoT), Cloud of Things, Need for IoT on Cloud, Services in the Cloud for the Internet of Things, Applications of IoT –Detailed Domain Model.

IOTARCHITECTURE

IoT Architecture, Sensor Layer, Gateway and Network Layer, Management Service Layer, Application Layer, IoT Enabling Technologies, Addressing Schemes, Data Storage and Analytics, Visualization. Connected Domains -Connected Home, Connected Worker, Connected Automobile, Connected Industry.

PROTOCOLS SUPPORTING IOT

Wireless Protocol for IoT, Communication Technologies -NFC, Bluetooth, Bluetooth LE, ANT, Wi-Fi, ZigBee, Z-wave, KNX Wireless, HART, 6LoWPAN, WiMAX, 2.5–4G Protocols in Different Layers, Architecture, Features & Functions of CoAP, MQTT, OAuth2, XMPP, CoAP vs HTTP, CoAP Structure Model, Security Protocol and Application for CoAP.

WEARABLE TECHNOLOGY

History of wearable computing, Challenges of wearable computing, Fundamental components of wearable technology, Design for Excellence, Touch Point Analysis, Types of Wearables -DigitalEyewear, Ring, Band, Frameworks for wearable, Android Wear, Qualcomm Vuforia, Virtual Continuum, Augment Reality, Augmented Virtuality, Virtual Reality, Mixed Reality in Wearables.

IOT PLATFORMS DESIGN METHODOLOGY

IoT Systems –Intel IoT Framework, Qualcomm IoT Framework, Microsoft IoT Framework, ARM IoT Framework, Logical Design, Programming IoT platform (eg: Python, Mono C# , Objective-C, Ruby), Program for Firmware – Case Studies

TEXT BOOKS:

- 1.Olivier Hersent, David Boswarthick and Omar Elloumi, The Internet of Things: Key Applications and Protocols, Second Edition, Wiley Publisher, 2012
- 2.Uckelmann, Dieter, Mark Harrison, and Florian Michahelles, Architecting the Internet of Things. Springer Science & Business Media, 2011.
- 3.Jean-Philippe Vasseur, Adam Dunkels, Interconnecting Smart Objects with IP: The Next Internet, Morgan Kuffmann, 2010
- 4.Jonathan L. Zittrain, The Future of the Internet, Yale University Press & Penguin UK 2008.
- 5.Samuel Greengard, The Internet of ThingsThe Internet of Things (The MIT Press Essential Knowledge series), MIT Press, 2015

REFERENCE BOOKS:

- 1. Arshdeep Bahga, Vijay Madisetti, Internet of Things: A Hands on Approach, 2014
- 2.Doukas, Charalampos, Building internet of things with the Arduino, CreateSpace Independent Publishing Platform, 2012.
- 3. Lu, Yan, Yan Zhang, Laurence T. Yang, Huansheng Ning. The Internet of Things: From RFID to the Next-Generation Pervasive Networked Systems, CRC Press
- 4. Massimo Banzi, Getting Started with Arduino (Make: Projects). O'Reilly Media. 2008.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.M.Murali	Assistant Professor	ECE	muralipm@vmkvec.edu.in
2	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

						_	
17EC	CE 21	WIRELESS SENSOR NETWORKS	Category	${f L}$	T	P	Credit
1/EC	3121	AND IOT	EC(SE)	3	0	0	3
PREA	MBLE	E				1	
		nd the fundamental concepts of wireless the various protocols with Internet of Thi				nings, ha	ve an enhanced
PRER	EQUI	SITE - Nil					
COUR	RSE O	BJECTIVES					
1	To un	derstand the various sensor network conc	epts				
2	To Kr	now the physical layer issues and analyze	Medium Acce	ss Control Pro	otocols		
3	To ide	entify with the IoT Reference Architecture	and Real Wo	rld Design Co	onstraints		
4	To rec	cognize the various IoT Protocols (Datalin	nk, Network, I	Γransport, Ses	sion, Serv	ice)	
5	To Ur	nderstand IoT value chain structure (device	ce, data cloud)	, application a	reas and to	echnolog	ies involved
COUR	RSE O	UTCOMES					
	Describ etwork	e and explain radio standards and commu	nication proto	cols for wirele	ess sensor		Understand
CO2. I	Explain	the function of the node architecture and	use of sensors	for various a	pplications	s.	Understand
	-	the architectures, functions and performance and platforms.	nce of wireless	s sensor netwo	orks		Understand
		e the basic concepts in IoT.					Understand
CO5. I	Develo	p web services to access/control IoT device	es				Apply
CO6. I	Deploy	an IoT application using Raspberry Pi.	-	_		-	Apply

\mathbf{N}	TΔ	P	PT	N(Ţ 1	W	IT	Ή	P	R	\cap	C1	R/	1	ЛT	V	\mathbf{E}	\mathbf{O}	T	\mathbf{T}	C	O	M	\mathbf{E}	S	A	N	n	P	R	O	G	R	A	M	\mathbf{N}	11	C 5	P	\mathbf{E}	C	TE	T	\boldsymbol{C}	O	Tľ	T(~(1	VI)	$\mathbf{E}S$	3

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	L	-	-	-	-	-	-	L	S	M	-
CO2	S	S	S	-	M	-	-	-	-	-	-	M	S	M	-
CO3	S	M	M	-	L	-	-	-	-	-	-	L	S	S	-
CO4	S	S	S	-	M	M	-	-	-	-	-	M	S	S	-
CO5	S	M	M	-	M	M	-	-	-	-	-	M	S	M	-
S_ Str	S. Strong: M. Medium: L. Low														

INTRODUCTION TO WIRELESS SENSOR NETWORKS

Course Information, Introduction to Wireless Sensor Networks: Motivations, Applications, Performance metrics, History and Design factors Network Architecture: Traditional layered stack, Cross-layer designs, Sensor Network Architecture Hardware Platforms: Motes, Hardware parameters

INTRODUCTION TO NS-3

Introduction to Network Simulator 3 (ns-3), Description of the ns-3 core module and simulation example.

MEDIUM ACCESS CONTROL PROTOCOL DESIGN

Fixed Access, Random Access, WSN protocols: synchronized, duty-cycled Introduction to Markov Chain: Discrete time Markov Chain definition, properties, classification and analysis MAC Protocol Analysis: Asynchronous duty-cycled. X-MAC Analysis (Markov Chain)

FUNDAMENTALS OF IOT

Introduction-Characteristics-Physical design - Protocols - Logical design - Enabling technologies -IoT Levels - Domain Specific IoT - IoT vs. M2M.

IOT DESIGN METHODOLOGY & BUILDING IOT WITH RASPBERRY PI

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development. Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

TEXT BOOKS:

- 1. W. Dargie and C. Poellabauer (2010). Fundamentals of Wireless Sensor Networks Theory and Practice. Wiley.
- 2. Arshdeep Bahga, Vijay Madisetti (2015). Internet of Things A hands-on approach. Universities Press.

REFERENCE BOOKS:

- 1. KazemSohraby, Daniel Minoli and TaiebZnati (2007). Wireless sensor networks Technology, Protocols, and Applications. Wiley Inter science.
- 2. Manoel Carlos Ramon (2014). Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers.
- 3. Takahiro Hara, Vladimir I. Zadorozhny, and Erik Buchmann (2010). Wireless Sensor Network Technologies for the Information Explosion Era. Springer.
- 4. Marco Schwartz (2014). Internet of Things with the Arduino Yun. Packet Publishing

S.No	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

17ECSE22	WIRELESS TECHNOLOGIES FOR IOT	Category	L	T	P	Credit		
17ECSE22	FOR IOT	EC(SE)	3	0	0	3		
PREAMBLE								
The co	urse follows the evolution of mobile and	wireless securi	ty, and the und	erlying pı	rinciples.	The course is		
designed to educate the purpose of defending systems from unauthorized wireless attacks. This course also discovers								
the latest security standards and practices in mobile and wireless network.								

PREREQUISITE – Nil

COUL	COURSE OBJECTIVES								
1	Understand the wireless technologies, wireless network standards.								
2	Gain the knowledge on wireless networks, denial of service attacks and client-side threats.								
3	Build an understanding of mobile data network standards.								
4	To Understand the various IoT Protocols (Datalink, Network, Transport, Session, Service)								
5	To classify Real World IoT Design Constraints, Industrial Automation in IoT.								

COURSE OUTCOMES

On the successful completion of the course, students will be able to						
CO1. Knowledge on various wireless technologies, wireless network standards and their threats.						
CO2. Show how hackers and auditors alike test wireless networks for vulnerabilities such as rogue	Apply					
access points, denial of service (DoS) attacks and client-side threats						
CO3.Demonstrate the mobile data network standards and its challenges.						
CO4Summarize the vulnerabilities and mis-configurations at wireless transport layer.	Evaluate					
CO5. Invent how an attacker might attempt to subvert and bypass Wireless security measures in	Create					
Bluetooth and WiFi.						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
M	L	M	M	M	-	-	-	-	-	-	-	S	S	-
M	L	M	M	M	-	-	-	-	-	-	-	M	M	-
S	L	M	M	M	-	-	-	M	-	-	-	S	M	-
S	L	S	S	M	-	-	-	M	M	-	M	S	M	-
S	M	S	S	S	-	-	L	M	M	M	M	M	M	-
	M M S S	M L M L S L S L	M L M M L M S L M S L S	M L M M M L M M S L M M S L S S	M L M M M M L M M M S L M M M S L S S M	M L M M M - M L M M M - S L M M M - S L S S M -	M L M M M M L M M M S L M M M S L S S M	M L M M M M L M M M	M L M M M - - - - M L M M M - - - - S L M M M - - - M S L S S M - - - M	M L M M - - - - - M L M M M - - - - - S L M M M - - - M - S L S S M - - - M M	M L M M M	M L M M - - - - - - - M L M M M - - - - - - - S L M M M - - - M - - - S L S S M - - M M - M	M L M M M - - - - - - S M L M M M - - - - - M S L M M M - - - M - - - S S L S S M - - - M M - M S	M L M M - - - - - - - S S M L M M M - - - - - - M

MOBILE & WIRELESS TECHNOLOGIES:

Introduction to wireless technologies-Mobile cellular networks -Personal Area Networks -Transmission Media – WLAN standards, controllers -Securing WLAN -Countermeasures -Wired Equivalence Protocol(WEP).Wireless threats:Kinds of security breaches-Eavesdropping -Communication Jamming -RF interference -Covert wireless channels -DOS attack –Spoofing -Theft of services -Traffic Analysis-Cryptographic threats -Wireless security Standards

MOBILE NETWORKS SECURITY:

Wireless Device security issues -CDPD security (Cellular Digital Packet Data)-GPRS security (General Packet Radio Service) -GSM (Global System for Mobile Communication) security –IP security -3G / 4G security.

WIRELESS TRANSPORT LAYER SECURITY:

Secure Socket Layer -Wireless Transport Layer Security -WAP Security Architecture -WAP Gateway -Wireless Intrusion Detection and Prevention Systems (WIDS/WIPS)

BLUETOOTH & WIFI SECURITY:

Basic specifications -Pico nets –Scatter nets -Bluetooth security architecture –Security at the baseband layer and link layer –Frequency hopping –Security manager –Authentication –Encryption -WiFi Hot spot architecture -Wireless honey pots -Security in IEEE 802.11.

WIRELESS SENSOR NETWORK SECURITY

Attacks on wireless sensor network and Preventive mechanisms: authentication and traffic analysis, Case study: centralized and passive intruder detection Case studies: Public safety wireless networks, Case study 2 – Satellite communications systems, Case study 3 – Wide Area Wireless Data Services (CDPD, GPRS, etc.), Case study 4 – Wireless LANs (802.11, etc.), Case study 5 – Wireless Metropolitan Area Networks (e.g., 802.16)

Text Books

- 1. Wireless Security-Models, Threats and Solutions, Nichols and Lekka, Tata McGraw –Hill, New Delhi, 2006.
- 2. Wireless Security, Merritt Maxim and David Pollino, Osborne/McGraw Hill, New Delhi, 2005.

Reference Books

- 1. Wireless and Mobile Network Security-Security basics, Security in On-the-shelf and emerging technologies, Hakima Chaouchi, Maryline Maknavicius, ISBN: 9781848211179,2010.
- 2. Mobile and Wireless Network Security and Privacy, Springer, ISBN: 0387710574, edition 2007.
- 3. Wireless Network Security: Theories and Applications, Springer, ISBN:978-3642365102, 2013

S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in		
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in		

17ECSE23	CHEMICAL SENSOR LAB	Category	L	Т	P	Credit
		EC(SE)	0	0	4	2

A chemical sensor is a device that transforms chemical information (composition, presence of a particular element or ion, concentration, chemical activity, partial pressure.

PRERQUISITE:-

Nil

COURSE OBJECTIVES

- 1 The course focuses on sensors for physical, chemical and biological properties.
- 2 The terminologies of electrochemical sensors and their applications in industry
- 3 Locate different type of sensors used in real life applications and paraphrase their importance

COURSE OUTCOMES

On the successful completion of the course, students will be able to
CO1. knowledge of principle based different types of sensors
CO2. Design an integrated sensor system with different types of sensors.

Apply

CO3. Predict advance in the expected performance of various sensors.

CO4. Evaluate the technological and physical limitations of a specific sensor.

Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	S	L	-	M	-	-	-	-	M	M	S	-
CO2	S	M	M	M	M	-	-	-	-	-	-	M	M	-	-
CO3	S	S	S	M	L	-	M	-	-	L	-	M	S	S	L
CO4	S	S	S	M	I.	_	_	_	_	_	_	M	M	_	-

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Sensor classification and characteristics.
- 2. Physical principles of sensing.
- 3. Working principles and applications of different types of sensors:
- 4. Presence, displacement and level.
- 5. Velocity and acceleration.
- 6. Force and strain.
- 7. Pressure and flow.
- 8. Acoustic.
- 9. Humidity and moisture.
- 10. Light and radiation.
- 11. Temperature.
- 12. Chemical and biological.
- 13. Sensor materials and technologies.
- 14. ORP(Oxidation-Reduction Potential) Sensor
- 15. O2 Gas Sensor
- 16. Ethanol Sensor
- 17. Blood Pressure Sensor

S.No	Name of the Faculty	Designation	Department	Mail ID		
1.	Dr.P.M.Murali	Assistant Professor	ECE	muralipm@vmkvec.edu.in		
2.	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in		

17ECSE24	SENSOR SYSTEMS LAB	Category	L	Т	P	Credit
		EC(SE)	0	0	4	2

The IoT is an environment where smart devices sense, anticipate, and respond to our needs as we manage them remotely. These smart devices often act as the gateway between our digital and physical world.

PRERQUISITE:- Nil

COURSE OBJECTIVES

- 1 To provide adequate knowledge in sensors
- The IoT touches many aspects of life including transportation, health care, safety, environment, energy, and more.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be uble to								
CO1. Understand the characteristics of sensors	Understand							
CO2. Demonstrate the working of various Sensors	Apply							
CO3. Aanalyze and understand various sensors based on its classification and working	Analyze							
principle								
CO4. Identify the various sensors system applications	Analyze							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	M	M	L	-	M	-	ı	1	1	M	M	S	L
CO2	S	M	M	L	M	-	-	-	-	-	-	M	M	-	-
CO3	S	S	S	S	L	-	M	-	-	-	L	M	S	S	L
CO4	S	S	S	L	L	-	-	-			-	M	M	-	_

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Read Temperature and Relative Humidity value from the sensor.
- 2.Read Light intensity value from light sensor
- 3 Read atmospheric pressure value from pressure sensor
- 4. Proximity detection with IR LED.
- 5. Generation of alarm through Buzzer
- 6. Plot the characteristics curve of Thermocouple, Thermistor and RTD.
- 7. Verify the characteristics of Load cell
- 8. Verify the characteristics of Opto-coupler
- 9. Plot the characteristics of Electrodes
- 10. Verify the characteristics of strain gauge

S.No	Name of the Faculty	Designation	Department	Mail ID				
1.	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in				
2.	Dr.P.M.Murali	Assistant Professor	ECE	muralipm@vmkvec.edu.in				

17EC	SE25	WIRELESS SENSOR NETWORKS LAB					Categ	gory	L	,	T	P	Credi	it	
1720	DE25							EC(S	SE) 0			0	4	2	
PREAMBLE															
												•		λAN. The t	
								and app			solution	s and s	serves	as a basis	for the
	REQUI			9110 001	100110 00	vare se	1 11005	шта арр	10411011						
COURSE OBJECTIVES															
1 To learn the wireless sensor network and its applications.															
2 To analyze the TCL script for transmission between nodes.															
3 To examine the TCL script for UDP and CBR traffic in WSN Nodes.															
4	To an	alyze t	he imp	lement	ation o	of routi	ng pro	tocol in	NS2.						
COU	RSE O	UTCC	DMES												
On the successful completion of the course, students will be able to															
CO1. Explain the techniques used for Wireless Sensor Network and its Applications in Engineering.											and				
CO2. Demonstrate the installation procedure of Network Simulator, Communication established between mobile nodes and sensor nodes. Apply											у				
CO3.	Illustra	te the	ГСL sc	ript us	ed for	transmi	ission	between	mobile	nodes a	and sens	or nod	es.	Apply	y
CO4.	Analyz	e the T	CL sc	ript for	UDP a	and CB	R traf	fic in WS	SN.					Analyze	
								V, DSR,						Evaluate	
								AND P			1				1
	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			D1 PSO2	PSO3
CO1	M	-	-	-	-	-	-	-	-	-	-	M	-	-	-
CO2	S	M	-	-	M	-	-	-	-	M	-	M	M	M	-
CO3	S	M	L	1	M	-	-	-	-	L	-	M	M	M	-
CO4	S	S	M	M	M	-	-	-	-	L	-	M	S	M	-
CO5	S	S	S	S	M	-	-	-	-	L	-	M	M	L	-

- 1. Introduction of Wireless sensor network applications and its Simulation.
- 2. Network Simulator installation of wireless sensor network.
- 3. Write TCL script for transmission between mobile nodes.
- 4. Write TCL script for sensor nodes with different parameters.
- 5. Generate tcl script for udp and CBR traffic in WSN nodes.
- 6. Generate tcl script for TCP and CBR traffic in WSN nodes.
- 7. Implementation of routing protocol in NS2 for AODV protocol.
- 8. Implementation of routing protocol in NS2 for DSR protocol.
- 9. Implementation of routing protocol in NS2 for TORA protocol.
- 10. Study other wireless sensor network simulators

000.														
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in										
2	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in										

		Cate										ry L	Т	P	Credit
17EEC	C15	ELECTRICAL TECHNOLOGY							FC	3	0	0	3		
PREAMBLE This course is concerned with the constructions, characteristics and applications of various electrical machines and transformer.															
PRERE	PREREQUISITE Nil														
COURS	E OBJ		VES												
1	To gain knowledge about the working principle, construction, applications of DC machines														
2	To familiarize construction, operation, testing of transformers.														
3	To gain knowledge about the construction, operation and applications of DC machines														
4	To gain knowledge about construction, principle of operation and performance of induction machines.														
5	To understand the construction, operation of special machines.														
COURS	E OU	ГСОМ	IES												
On the si	accessf	ful com	pletion	n of the	e cours	e, stud	ents wi	ill be a	ble to						
CO1	Expla mach		e cons	structio	on, cha	aracter	istics	and a _l	oplicat	ions	of DC		Unde	rstanc	l
CO2	Anal	yze the	e perfo	rmance	of dif	ferent t	types o	f DC n	nachine	es			Ana	ılyze	
CO3	Expla	ain the	fundaı	nentals	s and o	peratio	on of T	ransfor	mer				Unde	rstanc	1
CO4	Analyze the performance of different types of Transformer Analyze														
CO5	Explain the construction, operation of AC machines and special understand														
MAPPI	NG W	TH P	ROGI	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMN	1E SPEC	IFIC O	UTCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO	PSC	D2 PSO3
CO1	S	M	M	M	-	L	-	-	-	M	M	L	S	-	-
CO2	M	S	-	L	L	-	-	L	L	-	S	-	S	M	
CO3	M	M	M	S	-	-	-	-	-	L	-	L	S	M	M

CO4	S	S	ı	M	M	M	L	L	L	-	S	ı	S	ı	ı
CO5	S	M	M	M	-	-	-	-	-	L	-	L	-	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

D.C GENERATORS AND DC MOTORS

Principle of operation of DC Machines- EMF equation – Types of generators – Magnetization and load characteristics of DC generators, DC Motors – Types of DC Motors – Characteristics of DC motors – 3-point starters for DC shunt motor – Losses and efficiency – Swinburne's test – Speed control of DC shunt motor – Flux and Armature voltage control methods.

TRANSFORMERS

Principle of operation of single phase transformer – types – Constructional features – Phasor diagram on No Load and Load – Equivalent circuit, Losses and Efficiency of transformer and Regulation – OC and SC tests – Predetermination of efficiency and regulation.

THREE PHASE INDUCTION MOTOR

Principle of operation of three-phase induction motors – Slip ring and Squirrel cage motors – Slip-Torque characteristics – Efficiency calculation – Starting methods.

ALTERNATORS

Alternators – Constructional features – Principle of operation – Types - EMF Equation – Distribution and Coil span factors – Predetermination of regulation by Synchronous Impedance Method – OC and SC tests.

SPECIAL MOTORS

Principle of operation - Synchros-Synchronous reluctance motor -Stepper Motors - Switched reluctance motor-AC servomotor-AC tachometers- Shaded pole motors-Capacitor motors -Characteristics

TEXT BOOKS

- 1. "Introduction to Electrical Engineering "- M.S Naidu and S. Kamakshaiah, TMH Publ.1995
- 2." Basic Electrical Engineering" T.K. Nagasarkar and M. S. Sukhija, Oxford University Press, 2005
- 3. "Electrical Machines" Er. R.K. Rajput, Laxmi Publications, 5th Edition 2016

REFERENCES

- 1. "Theory and Problems of basic electrical engineering" I.J. Nagarath and D.P Kothari, PHI Publications 2016
- 2. "Principles of Electrical Engineering "- V.K Mehta, S. Chand Publications. 2008

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	e-mail id
1	D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
2	R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in

		Category	L	T	P	Credit
17EEEC21	NON CONVENTIONAL ENERGY SOURCES	CC	3	0	0	3

PREAMBLE

Non Conventional sources of energy are generally renewable sources of energy. This type of energy sources include anything, which provides power that can be replenished with increasing demand for energy and with fast depleting conventional sources of energy such as coal, petroleum, "natural gas etc. The non- conventional sources of energy such as energy from sun, wind, biomass, tidal energy, geo thermal energy and even energy from waste material are gaining importance. This energy is abundant, renewable, pollution free and eco-friendly. It can also be more conveniently supplied to urban, rural and even remote areas. Thus, it is also capable of solving the twin problems of energy supply in a decentralized manner and helping in sustaining cleaner environment. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on grid applications

PREREQUISITE

> NIL

COURSE OBJECTIVES

1	To impart the knowledge of basics of different non conventional types of power generation & power plants
	To understand the need and role of Non-Conventional Energy sources.
2	To learn economical and environmental merits of solar energy for variety applications.
3	To learn modern wind turbine control & monitoring.
4	To learn various power converters in the field of renewable energy technologies.
5	To study and analyse different types of Power converters for Renewable energy conversion

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1	Identify the different non conventional sources and the power generation techniques to generate electrical energy.	Understand
CO2	Explore the Solar Radiation, different Methods of Solar Energy Storage and its Applications.	Analyse
CO3	Familiarize the Winds energy as alternate form of energy and to know how it can be tapped	Understand

CO4	Explore the Geothermal Energy Resources and its methods.	Understand
CO5	Identify the Bio mass and Bio gas resources and its tapping technique	Analyze
CO6	Investigate the Tidal, Wave and OTEC Energy, Concepts of Thermo- Electric Generators and MHD Generators	Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03 CO1 L - M M - L L - - - M L -																
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 1 PO11 PO12 PS01 PS02 PS03 CO1 L - M M - L L - - - - M L -											P					
CO1 L - M M - L L - L - M L M S - M M CO3 - M M S L M L L S - S S - CO4 M L S - S S L M S L S CO5 - M L M L M S S - S	COG	DO1	DOA	DO2	DO 4	DO.	DOC	DO7	DOO	DOO	О	DO11	DO 12	DCO1	DGOO	DGO2
CO1 L - M M - L L - L - - M L - - - M L -	COS	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	1	POH	PO12	PSOI	PSO2	PSO3
CO2 L L M S - M L M S - M M CO3 - M M S L M L - - L S - S S - CO4 M L - - S S L M S M M S CO5 - M L M L S M S L - - S											0					
CO3 - M M S L M L L S - S S - CO4 M L S S - S S L M S L M S CO5 - M L M L L M L S M S L S	CO1	L	-	M	M	-	L	L	-	L	-	-	M	L	-	-
CO4 M L S - S S L M S M M S CO5 - M L M L L M L S M S L S	CO2		L		L	M		S	-	M	L	M	S	-	M	M
CO5 - M L M L L M L S M S L S	CO3	-	M	M	S	L	M	L	-	-	L	S	-	S	S	-
	CO4	M	L	-	-	-	S	-	S	S	L	M	S	M	M	S
CO6 L M - S S - M M S	CO5	-	M	L	M	L	L	M	L	S	M	S	L	-	-	S
	CO6	L	-	-	-	-	-	M	-	S	S	-	M	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Introduction to Solar Energy - Radiation and its measurement, Solar Energy conversion and its types - Introduction to Solar Energy Collectors and Storage, Applications of Solar Energy: Solar Thermal Electric Conversion Systems, Solar Electric power Generation, Solar Photo-Voltaic, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation, Stand-alone, Grid connected solar power satellite

WIND ENERGY CONCEPT

Introduction - Basic Principles of Wind energy conversion-The nature of wind- The power in the wind (No derivations) - Forces on the Blades (No derivations)-Site Selection considerations-Basic components of a

wind energy conversion system (WECS)-Advantages & Limitations of WECS-Wind turbines (Wind mill)-Horizontal Axis wind mill-Vertical Axis wind mill-performance of wind mills-Environmental aspects - Determination of torque coefficient, Induction type generators

GEOTHERMAL AND BIOMASS ENERGY

Geothermal Sources - Hydro thermal Sources - a. Vapor dominated systems b. Liquid dominated systems -Prime movers for geothermal energy conversion - Biomass Introduction - Biomass conversion techniques-Biogas Generation-Factors affecting biogas Generation-Types of biogas plants- Advantages and disadvantages of biogas plants-urban waste to energy conversion - MSW incineration plant.

TIDAL AND OTEC ENERGY

Tidal Energy-Basic Principles of Tidal Power-Components of Tidal Power Plants- Schematic Layout of Tidal Power house-Advantages & Limitations of Tidal, Wave, OTEC energy - Difference between tidal and wave power generation, OTEC power plants, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC.

TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.
- 3. Non Conventional Energy Resources, Shobh Nath. Singh, Pearson Education India, 2016, e ISBN: 978933255906 6

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

COURS	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-Mail ID										
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in										

													<u> </u>		
17EEE	C22					SCAD	Λ				Categor	ry L	T	P	Credit
17EEE						BCAD	71				EC(PS) 3	0	0	3
PREAM		ommun	ication	tool to	analyze	the po	wer sys	tem dat	e in rea	l time ap	plication	S.		,	
PRERE	QUISI	ITE – I	NIL												
COURS	E OB.	JECTI	VES												
1	To und	derstan	d the fu	ndamei	ntals of	SCAD	A.								
2	To ana	alyze th	e SCA	DA Coi	nponen	ts.									
3	To app	orise th	e comn	nunicati	on in S	CADA									
4	To lea	rn the (Concep	t of Mo	onitorin	g and C	Control	unit of	SCADA	Λ.					
5	To ana	alyze th	e appli	cation o	of SCAI	OA in p	ower S	ystem.							
COURS	E OU'	TCOM	IES												
On the su	uccess	ful con	pletion	of the	course,	student	ts will t	e able	to						
CO1. I	Estima	te the s	ystem (compon	ents of	SCAD.	A.						Eva	luate	
CO2. (Outline	e the fu	ndameı	ntals of	SCAD	Α.							Ana	lyze	
CO3. (Compa	re the	various	SCAD.	A comr	nunicat	ion pro	tocol.					Ana	lyze	
CO4. I	lllustra	te the S	SCADA	comm	unication	on.							App	oly	
CO5. I	Explaii	n the m	onitori	ng and	control	unit of	SCAD	Α.					Und	lerstand	
CO6. I	Descril	be the a	applicat	ions of	SCAD	A in po	wer sys	stem .					Und	lerstand	
MAPPI	NG W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	M	M								L	M
CO2	M				M	M								L	L
CO3	L	M			M	M		L		S		L	L	L	L
CO4	L	M			M	M				S		L	L	M	M
CO5	L				L	M						L		L	L
CO6	S	S			L	M						L	L	M	M
S- Strong	g; M-N	/ledium	; L-Lo	w											

SYLLABUS

INTRODUCTION TO SCADA

Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits.

SCADA SYSTEM COMPONENTS

Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels.

SCADA COMMUNICATION

SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLCC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

SCADA MONITORING AND CONTROL

Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

SCADA APPLICATIONS IN POWER SYSTEM

Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning

TEXT BOOKS:

- 1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems, Newnes Publications, Oxford, UK,2004.

3.

REFERENCES:

- 1. William T. Shaw, Cybersecurity for SCADA systems, PennWell Books, 2006
- 2. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
- **3.** Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power, PennWell 1999.
- **4.** Dieter K. Hammer, Lonnie R.Welch, Dieter K. Hammer, "Engineering of Distributed Control Systems", Nova Science Publishers, USA, 1st Edition, 2001

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2	L.CHITRA	Associate Professor	EEE/AVIT	chitra@avit.ac.in

17EECC16	POWER ELECTRONICS AND DRIVES	Category	L	T	P	Credit
		CC	3	0	0	3

PREAMBLE

Power electronics deals with the processing and control of 'raw' electrical power from an electrical source such as an AC mains supply, a battery bank, a photovoltaic array, or a wind turbine into a form and quality suitable for a particular electrical load. It is an enabling technology with a very wide range of applications, such as a cell phone charger, a personal computer, a microwave oven, an MRI system, a hybrid electric car, or even the electrical grid. As can be noted, the power levels handled can vary from a few watts to several hundreds of megawatts. In this course, we will study the basic principles behind the power electronic circuits used in most such power processing applications. These circuits include power converters for DC to DC, DC to AC and AC to DC applications.

PREREQUISITE-NIL

CO2

CO3

CO₄

CO₅

CO₆

S

S

S

M

M

S

S

S

S

M

S

M

M

M

M

M

S

L

L

S

S

M

_

M-

M

M

M

COUR	SE OB	JECTI	VES												
1	To get	t an ove	erview o	of differ	ent typ	es of po	ower se	micond	uctor de	evices an	d their sv	witching	characte	ristics.	
2	To un	derstan	d the op	peration	, charac	cteristic	es and p	erforma	ance par	rameters	of contro	olled rect	ifiers.		
3	To stu	dy the	operation	on, swit	ching to	echniqu	ies and	basics t	opologi	ies of DC	C-DC swi	itching re	egulators	,	
4	To lea	rn the o	differen	t modul	lation te	echniqu	es inve	rters an	d to und	derstand	harmoni	c reduction	on metho	ds.	
5	To stu	dy the	operatio	on of A	C volta	ge cont	roller.								
COUR	SE OU	TCOM	IES												
On th	On the successful completion of the course, students will be able to														
CO1:Tl	:Thebasic semiconductor physics to the properties of real power semiconductor devices and Remember														
differer	lifferentiate from low power devices.														
CO2:Tl	CO2:Theconcepts of operation of AC-DC converters in steady state and transient state of both continuous Understand														
and dis	continu	ous mo	des.												
CO3: C	Classify	and des	sign cho	oppers f	or simp	le elec	trical ap	plication	on					Apply	y
CO4: Io	dentify	the pro	per gat	ing seq	uence a	nd con	trol cire	cuit in (operatir	ng the sir	igle phas	se and th	ree phase	e Analy	yze
inverte	r circuit	S.													
CO5:A	nalyze	the pe	rforma	nce par	ameter,	vario	us tech	niques	for an	alysis ar	nd desig	n of AC	C voltage	e Analy	yze
control	ler and	also list	t the va	rious co	ntrol sc	hemes	in cycl	oconvei	ter.						
CO6:D	escribe	the con	cepts o	f electri	ic mach	ines.								Unde	rstand
CO7: Iı	mpleme	nt the p	ower e	lectroni	cs conc	epts to	AC &	DC driv	es to m	ade the	effective	control		Analy	yze
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	L	L	-	L	L	L	L	L	L	S	-

_

M

M

_

M

M

M

M

_

S

S

M

M

M

L

L

L

M

M

CO7	M	M	M	S	M	M	-	-	-	-	-	-	M	M	-

S- Strong; M-Medium; L-Low-

POWER SEMI-CONDUCTOR DEVICES

Overview of switching devices – Driver and snubber circuit of SCR TRIAC, GTO, IGBT, MOSFET – Computer simulation of PE circuits.

RECTIFIERS & CHOPPERS

Introduction-2 pulse / 3 pulse and 6 pulse converters – Dual converters. Basic Principles of Choppers - Stepdown and stepup chopper – Time ratio control and current limit control – Buck, Boost, Buck-Boost converters.

INVERTERS & AC - AC CONVERTERS

Single phase and three phase [120°& 180° mode] inverters – PWM techniques – Sinusoidal PWM, Modified sinusoidal PWM and multiple PWM.

Single phase AC voltage controllers – Multistage sequence control – single phase and three phase cycloconverter.

ELECTRICAL DRIVES

Type of Electrical Drives – Selection & factors influencing the selection – heating cooling curves condition and classes determination loading of duty of power rating simple problems.

SOLID STATE DRIVES (QUALITATIVE TREATMENT ONLY)

Advantages of solid state drives – D.C. motor control using rectifiers and choppers – control of induction motor by V, V/f and slip power recovery scheme using inverters and A.C. power regulators.

Total Hours : 45

TEXT BOOKS:

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 3rd Edition, New Delhi, 2004.
- 2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications, Second edition, 2002.

REFERENCES:

- 1. Cyril.W.Lander, "Power Electronics", McGraw Hill International, Third Edition, 1993.
- 2. P.S.Bimbra "Power Electronics", Khanna Publishers, third Edition 2003.
- 3. Philip T.Krein, "Elements of Power Electronics" Oxford University Press, 2004Edition.
- 4. N.K.De., P.K.Sen "Electric Drives", Prentice Hall, First edition 1999.
- 5. Pillai, S.K., "A First course on Electrical Drives", Wiley Eastern Ltd., New Delhi, 1982

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Mr.A.Balamurugan	Assistant Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in	
2	Mr.N.P.Gopinath	Assistant Professor	EEE/AVIT	Gopinathnp@avit.ac.in	
		(Gr-II)			

	COMPUTER INTEGRATED	Category	L	Т	P	Credit
17MECC12	MANUFACTURING	CC	3	0	0	3
Preamble				•		

The students completing this course are expected to understand the nature and role of computers in Design, manufacturing & Business aspects.

Prereq	micita.	Nii
Prereq	uisite:	INII

Cours	Course Objective						
1	To understand the concepts involved in CAD, CAM and CIM						
2	To apply geometric modelling techniques and various graphics standards in CAD						
3	To apply Modelling Techniques & graphic standard while designing.						
4	To make use of GT and CAPP concepts in processing components.						
5	To identify the components of FMS and SFC						

Course Outcomes: On the successful completion of the course, students will be able to

CO1	Discuss the basic concepts of Computer Aided Design and Manufacturing	Understand
CO2	Apply the concept of Modeling techniques for designing the components	Apply
CO3	Develop CNC programs for various mechanical components with different operations.	Apply
CO4	Apply the concepts of Group technology and Computer aided process planning techniques in Manufacturing	Apply
CO5	Identify the functions of various components of Shop Floor Control and Flexible Manufacturing Systems.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	-	-	L	-	-	-	-	-	-	-	L	-	-
CO2	S	S	S	S	S	-	-	-	M	M	M	-	M	L	-
CO3	S	S	L	S	S	-	-	-	M	M	-	-	M	L	-
CO4	M	L	M	M	S	-	-	-	M	-	M	-	L	L	-
CO5	M	L	S	L	-	-	-	-	-	-	-	-	L	L	-

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION TO CAD/CAM

The design process - Morphology of design, Product cycle - Computer Aided Design, Benefits of CAD. Role of computers - principles of computer graphics - Current trends in manufacturing engineering - Design for Manufacturing and Assembly - Sequential and concurrent engineering - Rapid prototyping.

SOLID MODELING

Graphic software: coordinate representation- graphic functions, software standards. Graphical Kernel system (GKS) - Initial graphics exchange system (IGES) - Graphic packages. Geometric Modeling - Wire frame, Surface and Solid models - Constructive Solid Geometry (CSG) and Boundary Representation (B-REP) Techniques - Features of Solid Modeling Packages.

FUNDAMENTALS OF CNC MACHINES

CNC Technology - Functions of CNC Control in Machine Tools - Classification of CNC systems - Contouring System - Interpolators, open loop and closed loop CNC systems - CNC Controllers, Direct Numerical Control (DNC Systems). - Work holding devices and tool holding devices-Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centers - Tooling for CNC machines

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models.

GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING

Introduction to CIM and its related activities-History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. - benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning - variant approach and generative approaches - CAPP and CMPP process planning systems.

SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases-factory data collection system -automatic identification methods- Bar code technology-automated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems-application and benefits.

Text l	Text Books							
1	Mikell.P.Groover "Automation, Production Systems and Computer Integrated							
	manufacturing", Pearson Education 2016. Radhakrishnan P, Subramanyan.S. and Raju V., "CAD/CAM/CIM", New Age International							
2	(P) Ltd., New Delhi.							
Refer	Reference Books							
1	Yorem koren, "Computer Integrated Manufacturing System", McGraw-Hill.							
2	Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International.							

3	David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.							
4	Roger Hanman "Computer Integrated Manufacturing", Addison – Wesley.							
5	Viswanathan.N, Narahari.Y "Performance Modeling & Automated Manufacturing systems" Prentice hall of india pvt. Ltd.							
Cours	se Designers							
S.No	Faculty Name	Designation	Department / College	Email id				
1	J.Sathees babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in				
2	L.Prabhu	Assoc.Prof	L.Prabhu Assoc.Prof Mech / AVIT prabhu@avit.ac.in					

15) (EGE26		COMPOSITE MATERIALS						(Category	y L	Т	P	C	
17MESE32	2	CO	COMPOSITE MATERIALS					1	EC(SE)	3	0	0	3	
PREAMBI	LE													
This course	reviev	vs the	various	compo	site ma	terials	their	proce	essing t	echnique	es and	l their	behavio	ors,
and to develop models and their applications in aerospace, automotive and medical fields														
PREREQU	JISITI	E - NII												
COURSE	OBJE	CTIV	ES											
1 Unders	1 Understand about Fibre reinforced Plastics													
2 Unders	tand th	ne man	ufactur	ing pro	cesses	of the	compo	osite n	naterial	S				
3 Analys	se abou	ıt macı	ro mech	anical l	behavio	or of F	RP							
4 Analys	se abou	ıt micı	omecha	nical b	ehavio	r of co	mposi	te mat	terials					
5 Unders	tand ab	out m	aterial 1	nodels	of com	posite	S							
COURSE	OUTC	OME	S											
On the succ	essful	compl	etion of	the co	urse, st	udents	will t	e able	e to					
CO1 .Unde	rstand	the ty	pes of r	einforc	ements	and fi	bers u	sed in	compo	site mat	erials		Unders	tand
CO2. Unde	rstand	variou	ıs manu	facturir	ng tech	niques	in cor	nposit	e manu	facturin	g		Unders	tand
CO3. Anal	yse th	e mac	cro mec	hanical	behav	ior of	Fiber	Reinf	orced I	Plastics			Analyz	e
CO4. An	alyse t	he Mi	cro med	hanica	l beha	vior of	Fiber	reinf	orced p	lastics			Analyz	e
CO5. App	ly mod	dels fo	r solvin	g the co	omposi	te mat	erial n	nanufa	acturing	3			Apply	
												ı		
COS	PO	РО	PO4	PO5	PO	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
1	2	3			6	7	8	9	0	1	2	1	2	3
CO1 S	-	L	-	-	M	S	-	-	-	-	-	L	-	-
CO2 S	-	L	-	-	L	S	-	-	-	-	-	L	-	-
CO3 S	S	S	S	L	L	S	_	-	_	_		L	-	-
										_		L		1
CO4 S	S	S	S	L	L	S	-	-	-	-	-	L	-	-
CO5 S	S	S	S	s	L	-	-	-	-	-	-	L	-	-
S- Strong I	 M-Med	lium	L- Lov	<u> </u> V	<u> </u>									
Syllabus														

FIBRE REINFORCED PLASTICS (FRP)

Definition; Types; General properties and characteristics; Reinforcing materials – particles, fibers,

whiskers; Properties of reinforcing materials; Matrix materials; Additives; Properties of FRP materials; Applications

MANUFACTURING PROCESSES

Open mold processes – Hand layup, Spray up, Vacuum bag, Pressure bag & autoclave, Centrifugal casting, Filament winding; Closed mold processes – Compression molding, Resin transfer molding (RTM), Injection molding, Pultrusion; SMC & DMC products, etc.

MACROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Design variables; Selection of fiber-matrix and manufacturing process; Effects of mechanical, thermal, electrical and environmental properties, Fiber orientation, Symmetric and asymmetric structure; Effects of unidirectional continuous and short fibers; Lamination theory; Failure theories.

MICROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Strengthening methods, Elasticity of fibre composites, Plasticity and fracture of composites, Crack propagation in fibre composites, Failure under compressive loads.

MATERIAL MODELS

Law of Mixtures, Shear lag model, Laminated plate model, Eshelby's models, Other models.

Text Books:

- 1. Haslehurst.S.E., "Manufacturing Technology ", ELBS, London.
- 2. Krishnan K. Chawle. "Composite Material: Science and Engineering" Second Edition, Springer.

Reference:

- 1.. T.W.Clyne, P.J. Withers, "An Introduction to metal matrix composites", Cambridge University Press.
- 2. F.C. Campbell "Structural Composite Materials", Materials Park, ASM International, 2010

\sim	D .	
Course	1)601	oners
Course	וטטע	211013

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com
2.	J.Santhosh	Assistant Professor	Mechanical/VMKV EC	santhosh@vmkvec.edu.in

								1		ı				ı	
17N	IESE1'	7 M	ODER			ACTUR	ING	Cate	egory	L		Т	P	Cre	edit
				ME	THOI	DS		EC((SE)	3		0	0		3
pro		The st				ous advan mplete kr									
Prere	quisite	– Nil													
Cours	se Obj	ective													
1	To dis	cuss the	e basic	conce	epts of	various ı	unconv	ention	al mad	chining	process	ses			
2	To De	monstra	ate the	Mech	anical	energy b	ased u	nconv	entiona	al machi	ining p	rocesse	es.		
3	To De	monstra	ate the	Electr	rical er	nergy bas	sed unc	conven	tional	machin	ing pro	cesses.			
4	To De	monstra	ate the	Chem	ical &	Electro-	Chemi	cal en	ergy b	ased un	convent	tional	machinin	g proce	esses.
5	To De	monstra	ate the	Thern	nal en	ergy base	d unco	nventi	ional r	nachinir	ng proc	esses.			
Cours	se Outo	comes:	On th	e succ	cessful	complet	tion of	the c	ourse,	student	ts will	be able	e to		
CO1.	CO1. Discuss the basic concepts of various unconventional machining processes Understand														
CO2.		lain th cesses	e Med	chanic	al ene	ergy base	ed unc	conve	ntiona	l mach	ining		Apply		
CO3.		strate (the El	ectrica	al ene	rgy base	d unce	onven	tional	machi	ning		Apply		
CO4.	_					ectro-Ch processe		ıl ene	rgy ba	ised			Apply		
CO5.		strate t cesses	the Th	ermal	energ	gy based	unco	nventi	ional 1	machin	ing	-	Apply		
Марр	oing wi	th Prog	gramn	ne Ou	tcome	s and Pr	ogram	me S	pecific	Outco	mes				
СО	PO1	РО	PO	РО	РО	PO	PO7	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
		2	3	4	5	6		8	9	0	1	2	1	2	3
CO1	S	-	-	- M	L M	-	-	-	-	-	-	-	M M	-	-
CO2	S			M	M				-	-			M	-	-
CO3	S	-	-			-	-	-			-	-			-
CO4	S	-	-	M	M	-	-	-	-	-	-	-	M	-	-
CO5	S	-	-	M	M	-	-	-	-	_	-	-	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Unconventional machining Process – Need – classification – Brief overview–merits –demerits–Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications — equipments - process parameters - surface finish and MRR- Power and control circuits—Wire cut EDM — working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants- Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

Text Books

G N	Faculty Name	Designation	Department/Name	Emoil id					
Course	Course Designers								
3	Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing"								
2	Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi.								
1	Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., NewYork								
Refere	Reference Books								
2	P.K.Mishra, "Non Conventional Machining " The Institution of Engineers (India) Text Books: Series.								
1	Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd.								

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in
2	M SARAVANAN	Asst Prof	Mech / VMKVEC	saravananm@vmkvec.edu.in

17M)	ESE22		A	UTO	MOTI	IVE		Cate	egory	L	,	Т	P	Cre	edit
1/1/1		INFOTRO		FOTRONICS EC(SE) 3						0	0	3	3		
Electro		roduct				ics Sy	stems	, Powe	r train	, Electr	onic Co	ontrol l	Units and	l Cockp	it
Cours	se Obje	ctive													
1	To Learn the various driver assistant system in a Vehicle.														
2	To Lea	rn the	Globa	ıl posi	tionin	g and	navig	ation s	ystem	1.					
3	To kno	wn the	e collis	sion w	arning	g and	detect	ion sy	stem.						
4	To stud	ly abo	ut the	adapti	ive co	ntrol s	ystem	and c	omfor	t syster	ns in au	ıtomo	biles		
5	To stud	ly abo	ut the	securi	ty and	l smar	t card	syster	n.						
Cours	se Outo	omes:	On th	ne suc	cessfu	l comp	pletion	n of th	e coui	rse, stud	lents w	ill be	able to		
CO1.	Known the vehicle motion control and stabilization system. Understand														
CO2.	Gain the knowledge of Safety and comfort system. Understand														
CO3.			vario										Understa		
CO4.			ne basi										Understa	ınd	
CO5.										nd warn			Apply		
Mapp	ing wi		_	•		•				cific Ou				T	
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
CO1	S	L	-	-	-	-	-	-	-	_	-	-	L	-	-
CO2	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO3	S	L	L	-	-	-	-	-	-	-	1	1	L	-	-
CO4	S	L	L	-	-	-	-	-	-	-	-	-	L	-	-
CO5	S	M	M	L	-	-	-	-	-	-	-	L	L	-	-
S- Str	ong; M	I-Med	ium; I	L-Low	7			•		•	-		•	•	

SYLLABUS

DRIVER ASSISTANCE SYSTEMS

Driver information, driver perception, driver convenience, driver monitoring, general vehicle control, longitudinal and lateral control, collision avoidance and vehicle monitoring.

TELEMATICS

Global positioning system, geographical information systems, navigation system, architecture, automotive vision system and road recognition.

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions.

ADAPTIVE CONTROL SYSTEMS AND COMFORT SYSTEMS

Adaptive cruise control system, adaptive noise control, active suspension system, power steering, collapsible and tilt able steering column and power windows, Adaptive lighting system.

SECURITY SYSTEMS

Antitheft technologies—mechanical, electromechanical and electronic immobilizers, alarm system, stolen vehicle tracking system, remote keyless entry, smart card system and number plate coding.

	_	_	
Text	n.	۰ ـ ۱	-~
IPYI	ĸ	M	ĸ

- Ljubo Vlacic, Michel Parent and Fumio Harashima, "Intelligent Vehicle Technologies", Butterworth-Heinemann publications, Oxford, 2001.
- 2 Robert Bosch, "Automotive Hand Book", 5th Edition, SAE, 2000.
- Ronald K Jurgen, "Navigation and Intelligent Transportation Systems Progress in Technology", Automotive Electronics Series, SAE, USA, 1998

Reference Books

- William B Riddens, "Understanding Automotive Electronics", 5th edition, Butter worth Heinemann Woburn, 1998.
- 2 Bechhold, "Understanding Automotive Electronics", SAE, 1998.
- Allan W M B, "Automotive Computer Controlled Systems", Elsevier Butterworth-Heinemann, 2011.

Course Designers

S.No	Faculty Name	Designation	Department/Na me of the College	Email id
1	M. SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in
2	R. CHANDRASEKAR	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in

17MEEC04	AGRICULTURAL ENGINEERING	Category	L	T	P	Credit
	EQUIPMENTS	EC(PS)	3	0	0	3
D 11						

Preamble

This course provides about the fundamental knowledge and working principles of agricultural machinery and equipments

Prerequisite

NIL

Course Objective

1	To Understand the different systems and working principles of tractor, power tiller, makes of tractors and power tillers.
2	To Understand the students to the working principles of farm equipments, tillage implements
3	To Understand the students to farm mechanization benefits and constraints
4	To Apply the concepts of wedding and plant protection equipments for the farm.
5	To apply and understand the basic concepts in post harvesting

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the various equipment s and mechanization used in the farm	Understand
CO2.	Understand earth moving machineries, tractor classification and implements	Understand
CO3.	Understand the mechanization and various equipment used in the farm for different field operations	Understand
CO4.	Apply the concepts of wedding and plant protection equipments for the farm processes	Apply
CO5.	Apply the various post harvesting losses and to evaluate the moisture content of various cereals and pulses	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	M	S	M	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	M	M	M	-	-	-	-	-	-	-	-	L	-	-
СОЗ	M	M	M	M	-	-	-	-	-	-	-	-	L	-	-
CO4	M	M	M	L	-	-	-	-	-	-	-	-	L	-	-
CO5	M	M	M	M	-	-	-	-	_	-	_	_	L	_	-

S- Strong; M-Medium; L-Low

SYLLABUS

TRACTORS

Classification of tractors - Tractor engines - construction of engine blocks, cylinder head and crankcase - features of cylinder, piston, connecting rod and crankshaft - firing order combustion chambers.

POWER TILLER, BULLDOZER AND TRACTOR TESTING

Power tiller - special features - clutch - gear box - steering and brake. Makes of tractors, power tillers and bulldozers. Bulldozer- salient features - turning mechanism, track mechanism, components - operations performed by bulldozers. Types of tests- test procedure - need for testing & evaluation of farm tractor -Test code for performance testing of tractors and power tillers.

SOWING AND FERTILIZING EQUIPMENT

Crop planting - methods - row crop planting systems - Devices for metering seeds - furrow openers - furrow closers- types - Types of seed drills and planters - calibration-fertilizer metering devices - seed cum fertilizer drills - paddy transplanters - nursery tray machines

WEEDING AND PLANT PROTECTION EQUIPMENT

Weeding equipment – hand hoe – long handled weeding tools – dryland star weeder – wetland conoweeder and rotary weeder – Engine operated and tractor weeders

Sprayers –types-classification – methods of atomization, spray application rate, droplet size determination – volume median diameter, numerical median diameter – drift control

HARVESTING MACHINERY

Principles of cutting crop, types of harvesting machinery, vertical conveyor reaper and binder combine harvesters, balers, threshers, tractor on top combine harvester, combine losses

Text Books

1	Jain, S.C. and C.R. Rai. Farm tractor maintenance and repair. Standard publishers and distributors, New Delhi, 1999
2	Jagdishwar Sahay. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi

- 6.,2010
- 3 Michael and Ohja. Principles of Agricultural Engineering. Jain brothers, New Delhi., 2005

Reference Books

- Barger, E.L., J.B. Liljedahl and E.C. McKibben, Tractors and their Power Units. Wiley Eastern Pvt. Ltd., New Delhi, 1997.
- Domkundwar A.V. A course in internal combustion engines. Dhanpat Rai & Co. (P) Ltd., Educational and Technical Publishers, Delhi,1999.
- 3 Kepner, R.A., et al. Principles of farm machinery. CBS Publishers and Distributers, Delhi. 99, 1997.
- 4 Harris Pearson Smith et al. Farm machinery and equipment. Tata McGraw-Hill pub., New Delhi.,1996.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.D.Bubesh kumar	Associate Professor	Mech/AVIT	bubeshkumar@avit.ac.in
2	G.Nagarajan	Professor	Mech/VMKVEC	nagarajan@vmkvec.edu.in

1/MEECH INDUSTRIAL RODOTICS	17MEEC11	INDUSTRIAL ROBOTICS	Category	L	Т	P	Credit
EC(PS) 3 0 0 3	TAREECTI	INDESTRUID ROBOTICS	EC(PS)	3	0	0	3

PREAMBLE

To study the application of industrial robots and enhance the knowledge of students in industrial applications

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To understand the Robotics and Robot drive system.
2	To Identify the controlling of Robots and devices system.
3	The Evaluate the latest technology of sensors used in robotics.
4	To classify the robot kinematics system.
5	To justify Application of robotics in industry.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.	Understand the basics of Robot and its drive system.	Understand
CO2.	To Identify the steps involved in controlling system	Apply
CO3.	Demonstrate the various kinematics system used in robots.	Apply
CO4.	Demonstrate the various sensors used in robots.	Apply
CO5.	Apply the robot in day to day applications	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	M	M	M	-	-	-	-	-	L	-	-
CO2	S	M	M	S	M	M	M	-	-	-	-	-	L	-	-
CO3	S	S	S	S	M	M	M	-	-	-	-	-	M	-	-
CO4	S	M	M	M	S	M	M	-	-	-	-	-	M	-	1
CO5	S	S	S	S	S	S	S	-	-	-	-	-	M	-	1

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION:

Robot anatomy-Definition, law of robotics, History and Terminology of Robotics-Accuracy and repeatability of Robotics-Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems-Robot Drive systems Hydraulic, Pneumatic

and Electric system Functions – Need for Robots – Different Applications.

END EFFECTORS AND ROBOT CONTROLS:

Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot-Control system for robot joint-Control actions, Adaptive control.

ROBOT KINEMATICS:

Forward kinematics – Inverse kinematics – Differences: Forward kinematics and Reverse kinematics of manipulators with two and three degrees of freedom (In 2 dimensional), four degrees of freedom (In 3 dimensional) – Deviations and problems.

ROBOT SENSORS:

Sensor -principles and applications of the following types of sensors – Position of sensors (Piezo electric sensor, LVDT, Resolvers, Optical encoders, Pneumatic position sensors) – Range sensors (Triangulation principle, Structured, Lighting approach, Time of flight range finders, Laser range meters) – Proximity sensors (Inductive, Hall effect, Capacitive, Ultrasonic and Optical proximity sensors) – Touch sensors (Binary sensors, Analog sensors) – Wrist Sensors – Compliance Sensors – Slip Sensors.

INDUSTRIAL APPLICATIONS:

Application of robots in machining - Welding - Assembly - Material handling - Loading and unloading - CIM - Hostile and remote environments.

TEXT BOOKS:

- 1 K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics Control Sensing, Vision and Intelligence", Tata McGraw-Hill Education.
- Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012

REFERENCES:

- 1 Kozyrey, Yu. "Industrial Robotics" MIR Publishers Moscow.
- Richard D.Klafter, Thomas A. Chmielewski and Michael Negin, "Robotic Engineering-An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mechanical, AVIT	antonycasmir@avit.ac.in
2	J.SANTHOSH	Assistant Professor	Mechanical/V MKVEC	santhosh@vmkvec.edu.in

1 7 1	MEE	C13		INDI	ISTR	TAT. 9	SAFET	ΓV	Ca	itegor	y .	L	T	P	Cro	edit
1/1	VIIVI	CIS		ши	BIK	IAL)	JALLI		E	C(PS))	3	0	0		3
To fa		arize v d var					esign, h				ustrial	enviro	nment ii	ncludin	g the sa	afety
NIL																
Cou	rse O	bject	ive													
1	Τοι	ınder	stand a	about	safety	man	ageme	nt an	d und	erstan	d all tl	ne safe	ty aspec	ts thor	oughly.	
2							y proce	dure	s and	preca	ution t	o be fo	llowed	during	the ope	ration
3			nt type thore				with s	suffic	cient 1	knowl	edge o	of hand	dling the	e diffe	rent typ	oes of
3	equi	pmen	its and	l mate	rials ı	used f	or indu	ıstria	ıl safe	ty.						•
4		•					ledge a of hea		-		xpertis	e ior e	mergen	cy situa	ations a	ırısıng
5									_		and sa	fety of	persona	als.		
Cou	rse O	utco	mes: (On th	e succ	cessfu	ıl comp	pletio	on of	the co	ourse,	studen	ts will b	e able	to	
CO1	•	Expla	ain the	safet	y con	cepts	and ro	le of	safety	y man	ageme	nt.		Unde	rstand	
CO2		equip		like			cts asso ssure v							Unde	rstand	
CO3		Appl		ous sa	-	neasu	res to b	oe un	derta	ken w	ith res	pect to		Apply	7	
CO4			rate the		ious s	trateg	ies to p	oreve	ent acc	cidents	s and			Analy	ze	
CO5		Outli	ne the	impl			of safe welfar	-			the v	arious	laws	Analy	ze	
Map	ping	with	Prog	ramn	ne Ou	tcom	es and	Pro	gram	me Sp	ecific	Outco	mes			
CC)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО	1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
СО	2	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
СО	3	S	M	M	L	-	-	-	-	-	-	-	-	L	-	-
СО	4	S	M	M	L	-	-	-	-	-	-	-	-	L	-	-
СО	5	S	M	M	L	-	-	-	-	-	-	-	-	L	-	-
			Ì		1	l	1 1		Ì	i l		1		Î.	Ì	

SYLLABUS

UNIT I - SAFETY MANAGEMENT

Evaluation of modern safety concepts - Safety management functions — safety organization, safety department — safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity.

UNIT II: OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation — electroplating-hot bending pipes -Safety in welding and cutting. Cold-metal Operation — Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting —shot blasting, grinding, painting - power press and other machines

UNIT III: SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals - Industrial fires and prevention - Road safety - highway and urban safety - Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

UNIT IV: ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programs -Specific hazard control strategies - HAZOP - Training and development of employees - First Aid- Fire fighting devices - Accident reporting, Investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention — Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian Boiler act - The environmental protection act - Electricity act - Explosive act.

Text	Books										
1	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House										
2	Handlin.W, "Industrial Hand Book", McGraw-Hill, 2000.										
Refe	eference Books										
1	Heinrich.H.W, "Industrial Accident Prevention", McGraw-Hill, 1980.										
2	Rudenko.N, "Material Handling Equipments", Mir Publishers, Moscow, 1981.										
3	Lees.F.P, "Loss "Prevention in Process Industries", Butterworths, New Delhi, 1986.										
4	Accident Prevention Manual for Industrial Operations", N.S.C.Chicago, 1982										
Cou	Course Designers										
S.No	Email id										

1	S.DURAITHILAGAR	ASSO.PROF	MECH/VMKVEC	duraithilagar@vmkvec.edu.in
2	C.Thygarajan	AP II	Mech/AVIT	Thygararajan@avit.ac.in

1571/0	ECC14	_			STRIA			Cate	gory	L	,	Т	P	Cro	edit
17M1	ECC16	•	A	UTOI	MATI	ON		C	C.	3		0	0	3	3
oncep	oduce	differe								Automa			ization w	vith basi	с
Cours	e Obje	ctive													
1 '	Го ехр	lain the	e facto	ry auto	omatic	n and	integr	ation							
2	To Illus	strate a	bout h	ıydrau	lics an	nd pne	umatic	es circu	uits						
3 7	Γο Des	ign the	vario	us des	ign of	pneun	natic a	nd ele	ctro-pn	eumatio	c circui	ts			
4	Γο desi	gn abo	out PL	C and	its app	olicatio	ons								
5	To illus	strate tl	ne auto	omatio	n in tr	ansfer	mach	ines &	assem	bly.					
Cours	e Outc	omes:	On th	ne succ	cessful	l comi	oletion	of the	e cour	se, stud	ents wi	ill be a	ble to		
01.							•			integra			Understa	ınd	
	techi	nologie	es in m	nanufa	cturing	g secto	or								
O2.		ain the strial a			draulic	s and	Pneum	natics I	Elemen	its used	for the		Understa	ınd	
O3.		elop th						natic ci	ircuits	for the g	given	1	Apply		
CO4.		elop Pl edures		mode	rn mai	nufact	uring a	applica	ations u	ising sta	andard	4	Apply		
CO5.				tomat	ic tran	sfer m	achine	es & as	sembl	y		1	Apply		
		mation													
1app	PO	PO	gramn PO	ne Ou PO	PO	es and	PO	PO	PO	ific Out	PO	PO	PSO	PSO	PS
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	13
CO1	S	-	-	-	-	-	-	-	-	-	-	-	L	L	
CO2	S	-	-	-	-	-	-	-	-	-	-	-	L	L	-
CO3	S	L	L	L	M	-	-	-	-	-	-	-	L	-	
CO4	S	L	S	L	M	-	-	-	-	-	-	-	L	L	I
CO5	S	L	M	M	M	-	-	-	-	-	ı	ı	L	-	-
- Str	ong; M	I-Medi	ium; I	L-Low											

SYLLABUS

INTRODUCTION TO FACTORY AUTOMATION AND INTEGRATION

Basic concepts and scope of industrial automation, socio-economic considerations, modern developments in automation in manufacturing and its effect on global competitiveness.-Need and implications of automation in manufacturing- Different types of production systems and automation-Hard/fixed automation

INTRODUCTION TO HYRDAULICS AND PNEUMATICS

Basic elements of hydraulics and pneumatics, electro-pneumatic controls and devices, electro-pneumatic

systems, fluid power control elements and standard graphical symbols for them, construction and performance of fluid power generators, hydraulic and pneumatic actuators, their design and control devices-Sequence operation of hydraulic and pneumatic actuators-Applications in manufacturing-Hydraulic

DESIGN OF PNEUMATIC AND ELECTRO-PNEUMATIC LOGIC CIRCUITS

Logic circuits to be designed for a given time displacement diagram or sequence of operation-Pneumatic safety and control circuits and their applications to clamping, traversing and releasing operations.

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC for design demonstration, programming and interface the hardware with software for modern manufacturing applications.

AUTOMATIC TRANSFER MACHINES & ASSEMBLY AUTOMATION

Classifications, analysis of automated transfer lines, without and with buffer storage, group technology and flexible manufacturing system- Types of assembly systems, assembly line balancing, performance and economics of assembly system.

Text Books

- 1 Esposito, A., 2000. *Fluid power with applications*. Upper Saddle River: Prentice-Hall International.
- 2 Majumdar, S.R., 1996. *Pneumatic systems: principles and maintenance*. Tata McGraw-Hill Education.
- Bolton, W., 2003. *Mechatronics: electronic control systems in mechanical and electrical engineering*. Pearson Education.

Reference Books

- Auslander, D.M. and Kempf, C.J., 1996. *Mechatronics: mechanical systems interfacing*. Prentice Hall.
- Deppert, W. and Stoll, K., 1975. *Pneumatic Control*. Vogel.
- 3 Merritt, H.E., 1991. *Hydraulic control systems*. John Wiley & Sons.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.SARAVANAN	ASST. PROF	MECH./ AVIT	saravanan@avit.ac.in
2	S.NATARAJAN	Assoc.Prof	MECH/VMKVEC	natarajans@vmkvec.edu.in

17ATCC04	AUTOMOTIVE ELECTRICAL AND ELECTRONICS SYSTEMS	Category	L	Т	P	Credi t
	EEE TROTTES STETENES	CC	3	0	0	3

Preamble

Automotive electrical and electronic systems used in road vehicles, enable study analyze and apply the concepts of various electrical and electronics component such as battery alternator ignition system and other engine management systems.

Prerequisite

Nil

Course Objectives

- 1. To perform the concepts of battery and charging systems..
- 2. To compilet the knowledge of starting systems in the vehicle.
- 3. To employ the knowledge in the application of various types of charging system & lighting system.
- 4. To demonstrate the application and knowledge of fundamental of automotive electronics.
- 5. To employ the application and knowledge of sensors and actuators.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Outline the concepts of Electrical and Electronics System	Understand
CO2. Summarize the various concept of starting systems.	Understand
CO3. Apply the various types of charging system & lighting system.	Apply
CO4. Identify the application automotive electronics.	Apply
CO5. Compare the sensors and actuators.	Apply

Mapp	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	S	M	M	L	-	-	-	-	-	-	-	L	L	-	-
2.	S	M	M	L	-	-	-	-	-	-	-	L	L	-	-
3.	S	S	S	M	-	-	-	-	-	-	-	M	L	-	-
4.	S	S	S	M	-	-	-	-	-	-	-	M	L	-	-
5.	S	S	S	M	-	-	-	-	-	-	-	M	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, capacity and efficiency of batteries. Various tests on battery condition, charging methods. Details of modern storage batteries.

STARTING SYSTEM

Condition of starting Behavior of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Care & maintenance of starter motor, Starter switches.

CHARGING SYSTEM & LIGHTING SYSTEM

Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cutout. Voltage and current regulators, compensated voltage regulator, alternators principle and constructional aspects and bridgerectifiers, new developments. Lighting system: insulated and earth return system, details of head light and sidelight, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level,manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.

TEXT BOOK:

- 1. Kholi, P.L., Automotive Electrical Equipment, Tata McGraw-Hill Co. Ltd., New Delhi, 2004.
- 2. Judge, A.W., Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 2004.
- 3. Younng A.P & Griffiths L, "Automobile Electrical and Electronic Equipments", English Languages Book Society & New Press.
- 4. Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control system", Prentice Hall Inc., New Jersey.

REFERENCES:

- 1. Vinal, G.W., Storage Batteries, John Wiley & Sons Inc., New York, 1985.
- 2. Crouse, W.H., Automobile Electrical Equipment, McGraw Hill Book Co. Inc., New York, 1980.
- 3. Spreadbury, F.G., Electrical Ignition Equipment, Constable & Co. Ltd., London, 1962.
- 4. Automotive Hand Book, fifth edition, Robert Bosch, Bently Publishers, 2003.

Course Designers:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	N. Shivakumar	Assistant. Professor GRII	Auto / AVIT	shivakumar@avit.ac.in

17ATCC10

AUTOMOTIVE POLLUTION CONTROL

Category	L	T	P	С
CC	3	0	0	3

Preamble

To study and purpose is to understand automotive pollution control.

Prerequisite

NIL

Course Objectives

- 1 To understand the introduction of pollutions.
- 2 To understand the pollution formation in SI engines.
- To understand the pollution formation in CI engines
 To impart the control of emission in CI engines.
- 5 To understand the measurement technique and emission standards.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Summarize the current scenario of Automobile Emissions and standards	Understand
CO2.	Apply the formation of Emissions from SI Engines.	Apply
CO3.	Apply the formation of Emissions from CI Engines.	Apply
CO4.	Examine Emission and control Techniques in SI and CI Engines.	Analyze
CO5.	Inspect measuring techniques of Emission and test procedure	Analyze

	Mapping with Programme Outcomes and Programme Specific Outcomes													
PSO2	PSO3													
	-													
	1													

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Introduction pollution control act- norms and standards. Vehicle population assessment in metropolitan cities and contribution to pollution, effects on human health and environment, global warming, types of emission, transient operational effects on pollution

POLLUTANT FORMATION IN SI ENGINES

Pollutant formation in SI Engines, mechanism of HC and CO formation in four stroke and two stroke SI engines, NOx formation in SI engines, effects of design and operating variables on emission formation, control of evaporative emission. Two stroke engine pollution

POLLUTANT FORMATION IN CI ENGINES

Pollutant formation in CI engines, smoke and particulate emissions in CI engines, effects of design and operating variables on CI engine emissions. Nox and Sox formation and control. Noise pollution from automobiles, measurement and standards.

CONTROL OF EMISSIONS FROM SI AND CI ENGINES

Design of engine, optimum selection of operating variables for control of emissions, EGR, Thermal reactors, secondary air injection, catalytic converters, catalysts, fuel modifications, fuel cells, Two stroke engine pollution control.

MEASUREMENT TECHNIQUES - EMISSION STANDARDS

NDIR, FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards, driving cycles – USA, Japan, Euro and India. Test procedures – ECE, FTP Tests. SHED Test – chassis dynamometers, dilution tunnels

TEXT BOOK:

- 1. Paul Degobert Automobiles and Pollution SAE International ISBN-1-56091-563-3, 1991.
- 2. Ganesan, V- "Internal Combustion Engines"- Tata McGraw-Hill Co.- 2013.
- 3. SAE Transactions- "Vehicle Emission"- 1982 (3 volumes).

REFERENCES:

- 1. Obert.E.F.- "Internal Combustion Engines" 1988.
- 2. Marco Nute- "Emissions from two stroke engines, SAE Publication 1998

Course	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	N. Shivakumar	Assistant. Professor GRII	Auto / AVIT	shivakumar@avit.ac.in

17ATEC13	COMPUTER SIMULATION OF IC	Category	L	T	P	C
17ATECIS	ENGINE PROCESSES	EC(PS)	3	0	0	3

Preamble

This course includes the study of adiabatic flame temperature, analysis of actual and ideal cycles and simulation of S.I, and C.I engine performance

Prerequisite

Nil

Course Objectives

- To describe the methods of measurement of HRR and calculation of adiabatic flame temperature of IC engines.

 To explain the methods of simulation of IC Engines.

 To learn the simulation of IC engines with gas exchange processes and engine performance simulation

 To know the Simulation of S.I engine with intake and exhaust charging
 - 5 To study the simulation of C.I engine performance

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Sum	marize	the me	easurem	ent of	HRR aı	nd calc	ulation	of Adia	abatic f	lame te	mperatu	re	Unde	Understand	
CO2.	App	ly the	I.C eng	gine sim	ulation	with A	Adiabat	ic comb	oustion					Ap	Apply	
CO3.		Apply the simulation of IC engines with gas exchange processes and engine performance simulation													Apply	
CO4.	Exai	Examine Simulation of S.I engine with intake and exhaust charging												Ana	Analyze	
CO5.	Analyze Simulation of C.I engine performance											Ana	Analyze			
	Mapping with Programme Outcomes and Programme Specific Outcomes															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	M	M	M				M			-	M	M		-	
CO2	S	M	M	M	I		M	M	M		I	M	M	1	1	
CO3	S	S	S	M			M	M	M		-	M	M		-	
CO4	S	S	S	M			M	M	M			M	M			
CO5	S	S	S	M			M	M	M			M	M			

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Introduction – Heat of reaction – Measurement of URP – Measurement of HRR – Adiabatic flame temperature: Complete combustion in C/H/O/N Systems, Constant volume adiabatic combustion, constant pressure adiabatic combustion. Calculation of adiabatic flame temperature – Isentropic changes

ENGINE SIMULATION WITH AIR AS WORKING MEDIUM

Deviation between actual and ideal cycle – problems, SI engine simulation with adiabatic combustion, temperature drop due to fuel vaporization, full throttle operation – efficiency calculation, part – throttle operation, super charged operation.

PROGRESSIVE COMBUSTION

SI Engines simulation with progressive combustion with gas exchange process, Heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram and other engine performance.

SIMULATION OF SI ENGINE

Intake – Exhaust - Charging and Combustion Simulation for two stroke and four stroke spark ignition Engine

DIESEL ENGINE SIMULATION

Zero, one and multi zone model for combustion, different heat release and heat transfer models, equilibrium calculations, simulation of engine performance.

TEXT BOOK:

- 1. Ganesan. V "InternalCombustion Engines" Tata McGraw-Hill, 2013.
- 2. Ganesan.V. Computer Simulation of compression ignition engines Orcent

REFERENCES:

- 1. Ramoss A.L. Modeling of Internal Combustion Engines process, McGraw Hill Publishing Co., 1992
- 2. Ashley Cambel, Thermodynamics analysis of combustion engines, John Wiley & Son, New York, 1986.
- 3. Benson, R.S., Whitehouse, N.D., Internal Combustion Engines, Pergamon Press, Oxford, 1979.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC14	COMPUTER CONTROLLED VEHICLE	Category	L	T	P	C
T/ATECI4	SYSTEMS	EC(PS)	3	0	0	3

Preamble

This course introduces the role of sensors and actuators for controlling the engine, drive line. It also provide knowledge about the transportation and safety devices controlled by computer

Prerequisite

Nil

	Course	Ob:	jectives
--	--------	-----	----------

- To explain the concepts of speed control, suspension for autonomous vehicles.

 To detail on the advanced methods of control of management systems towards adaptive cruise control automotive vehicles.

 To describe about intelligent transportation system.
- 4 To detail on the smart safety devices for automotive vehicles.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	App	ly the c	oncept	s of cor	ntrol sy	stems o	of vehic	eles tow	ards au	itonom	ous dri	ving.		Ap	Apply	
CO2.	App	ly the d	lifferen	t comp	onents	for dev	eloping	g an ada	aptive c	ruise c	ontrol.			Ap	Apply	
CO3.														Ap	Apply	
CO4.	4. Recommend smart safety devices for automotive vehicles											Ana	Analyze			
Mapping with Programme Outcomes and Programme Specific Outcomes																
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	M	M	M	-			-	-			ı	S			
CO2	S	M	M	M	M		-	-	-			1	S			
CO3	S	S	S	M	M		-	-	-			-	S			
CO4	S	S	S	M	M		-	-	-			-	S			

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Understanding autonomy – Review of the role of control in autonomy (speed control, suspension control & integrated vehicle dynamics) - Role of sensors and actuators. Examples of autonomy cruise control

ENGINE CONTROL SYSTEM

Fuel control-Ignition control in SI engines- Lambda control- idle speed control- Knock control- cylinder balancing

DRIVE LINE CONTROL SYSTEM

Speed control – gear shifting control – traction /braking- steering- suspension – vehicle handling and ride characteristics of road vehicles- adaptive cruise control

INTELLIGENT TRANSPORTATION SYSTEM

Overview – control architecture – collision avoidance, pitch, yaw, bounce control – traffic routing system- automated high way systems- lane warning system- driver information system- data

SAFETY IMPACTING DEVICES

Vision enhancement- driver conditioning warming- anti-lock braking systems – route guidance and navigation systems – in-vehicle computing – commercial vehicle diagnostic/ prognostics – hybrid/ electric and future cars- case study.

TEXT BOOK:

1. Automotive control systems, U.Kienckeand L. Nielson, SAE and springer-Verlag, 2000

REFERENCES:

- 1. Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, New Delhi.
- 2. Artamonov, M.D., Harionov, V.A. & Morin, M.M. Motor Vehicle, Mir Publishers, Moscow 1978.,
- 3. Heitner, J., Automotive Mechanics, CBS Publishers, New Delhi 1987.
- 4. Stockel Martin W and Stocker Martin T., Auto Mechanics Fundamentals, Goodheart Wilcox,

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

170	CSCC16	5		CL	OUD C	OMPU	JTING			(Category		T	P (Credit
											CC	3	0	0	3
	MBLE y and ur		nd the c	oncepts	in clou	d comp	outing a	nd appl	y them	practica	lly.	- 1	-		
PRER	EQUIS	ITE N	IL												
COUI	RSE OB	JECTI	VES												
1.	To und	To understand cloud computing concepts.													
2.	To stud	ly vario	us clou	d servic	es.										
3.	To app	ly cloud	l comp	ıting in	collabo	ration v	with oth	ner serv	ices.						
4.	То Арр	oly clou	ıd comp	outing s	ervices										
5.	To app	ly cloud	l comp	iting or	line.										
COUI	RSE OU	TCOM	IES												
On the	success	sful con	npletion	of the	course,	studen	ts will t	oe able t	to						
C O1: A	able to U	Indersta	and basi	ics in C	loud Co	mputir	ng						Unde	rstand	
CO2: A	Able to a	apply cl	oud co	mputing	g conce _l	ots in re	eal time	:					Ap	ply	
C O3: A	able to d	evelop	cloud c	omputi	ng proje	ects							Ap	ply	
C O4 : A	ble to a	pply clo	oud serv	vices									Ap	ply	
C O5 : A	Able to	collabor	ate clo	ud servi	ces wit	h other	applica	itions					Ap	ply	
MAPI	PING W	/ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	ECIFIC O	UTCON	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
\sim	M	M	М	M	-	-	-	-	-	-	-	-	M	-	-
CO1			1	1	<u> </u>			_	_	-	_	_	M	M	M
CO2	М	M	M	M	-	-	-	_							
	M M	M M	M S	M M	-	-	-	-	-	-	-	-	M	M	M
CO2									-	-		-	M M	M	M M

INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage – Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

TEXT BOOKS

- 1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.
- 2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

REFERENCES

COUR	SE DESIGNERS			
S. No.	Name of the	Designation	Department	Mail ID

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

	Faculty			
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	T.GEETHA	Assistant professor	CSE	geetha_kcs@yahoo.com

17CSCC09	JAVA PROGRAMMING	Category	L	T	P	Credit				
1705000	JAVATROGRAMMING	CC	3	0	0	3				
DDEAMDLE										

This course of study builds on the skills gained by students in Java Fundamentals and helps to advance Java programming skills. Students will design object-oriented applications with Java and will create Java programs using hands-on, engaging activities.

PREREQUISITE

NIL

COURSE OBJECTIVES

- 1. Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.
 - 2. Understand fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries, etc.
 - 3. Be aware of the important topics and principles of software development.
 - 4. Understand Event Handling and Swing Components.
 - 5. Understand Generic Programming.

COURSE OUTCOMES

On successful completion of the course, students will be able to

CO1.Knowledge of the structure and model of the Java programming language	Understand
CO2.Use the Java programming language for various programming technologies	Understand
CO3. Develop software in the Java programming language	Apply
CO4.Evaluate user requirements for software functionality required to decide whether the Java programming language can meet user requirements	Analyze
CO5.Choose an engineering approach to solving problems, Starting from the acquired knowledge of programming and knowledge of operating systems.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	S	-	-	-	-	-	-	-	-	-	-
CO2	S	M	M	-	M	-	-	-	-	-	=	-	M	M	-
CO3	S	M	L	L	M	-	-	-	-	-	-	-	M	M	-
CO4	S	M	M	L	M	ı	-	-	-	-	-	ı	M	M	-
CO5	S	M	L	L	S	ı	-	-	-	-	1	ı	M	M	-

S- Strong; M-Medium; L-Low

BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalize method.

ARRAYS, STRINGS & OBJECTS

Arrays – Strings - Packages – Java-Doc comments – Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes - The Object class – Reflection – interfaces – object cloning – inner classes – proxies.

EVENTS & GRAPHICS PROGRAMMING

I/O Streams - Filter and pipe streams - Byte Code interpretation - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Graphics programming - Frame - Components - working with 2D shapes.

SWING & GENERIC PROGRAMMING

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components – exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics.

THREADS & SOCKET PROGRAMMING

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

TEXT BOOKS:

- 1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.
- 2. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000.
- 3. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999.

REFERENCES:

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.
- 3. C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd., 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID	
1.	Mrs. R. Shobana	Assistant Professor (GII)	CSE	shobana@avit.ac.in	
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in	

17CSPI10	MOBILE APPLICATION DEVELOPMENT	Category	L	T	P	Credit			
		PI	3	0	0	3			
PREAMBLE									
In this modern	era almost every hands has a handheld devices. Each handheld	device have	the co	omput	ing ca	apability to			
meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer									
engineer to have some basic knowledge about the handheld devices platform and its supporting software development.									

This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS,

PRE REQUISITE - NIL

Windows.

- 1. Understand system requirements for mobile applications
- 2. Generate suitable design using specific mobile development frameworks
- 3. Generate mobile application design
- 4. Implement the design using specific mobile development frameworks
- **5.** Deploy the mobile applications in marketplace for distribution

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Expose to technology and business trends impacting mobile applications	Understand
CO2.Understand enterprise scale requirements of mobile applications	Understand
CO3. Familiarize in the Graphics used for Android application development	Apply
CO4. Competent with the characterization and architecture of mobile applications	Apply
CO5. Competent with designing and developing mobile applications using one application development framework.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	M	-	-	M	-	-	-	M	M	M	M
CO2	S	M	M	M	M	-	-	M	-	-	-	M	M	-	-
CO3	S	M	L	M	L	-	-	M	-	-	-	L	S	S	M
CO4	S	M	M	M	M	-	-	M	-	-	-	M	M	M	-
CO5	S	M	M	M	L	-	-	M	-	-	-	L	M	M	-

S- Strong; M-Medium; L-Low

UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications –Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

UNIT IV TECHNOLOGY I - ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

REFERENCES

- 1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.
- 2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.
- 3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mrs. S. Leelavathy	Assistant Professor (G-II)	CSE	leelavathy@avit.edu.in

-17	CSEC3	4	WE	B DESI	GN AN	ND MA	NAGE	MENT	•		Category	L	T	P	Credit
											EC	3	0	0	3
PREA	MBLE	'N										.			
To understand and learn the scripting languages with design of web applications. and maintenance and evaluation of web															
	design management.														
PREREQUISITE NIL															
	COURSE OBJECTIVES														
1	1 To introduce the student to the tools and facilities of web design														
2	To understand and learn the scripting languages with design of web applications														
3	To learn the maintenance and evaluation of Web design/development process, with Macromedia Dreamweaver as the primary Web development tool														
4	Topics covered include basic and enhanced site structure, local and remote site management, and optimization of Web graphics														
COLIB	RSE OU														
	DE OC	T CON	ILO												
On the	success	sful con	npletion	of the	course,	studen	ts will b	e able t	to						
CO1: A	Apply ar	n Inforn	nation A	Archited	ture do	cument	t for a v	veb site				Apply			
CO2: C	Construction rce and				orms to	the wel	standa	ards of t	oday an	nd inclu	des e-	Analyze			
CO3: F					tenance	(test, r	epair ar	nd chan	ge).			Analyze			
	CO4: Understand the principles of various process of Project management Apply														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
CO1	S	M	S		M	-			-	-	-		S	M	M
CO2	S	M	M	-	L	-			-	-	S	M	M	M	M
CO3	S	M	M	-	M	ı	-	-	-	-	M	M	M	-	-
CO4	S	M	S	-	M	-	-	M	-	-	S	M	-	M	-

S- Strong; M-Medium; L-Low

SITE ORGANIZATION AND NAVIGATION

User Centered Design—Web Medium—Web Design Process—Basics of Web Design—Introduction to Software used for Web Design – ADOBE IMAGE READY, DREAM WEAVER, FLASH – Evaluating Process – Site Types and Architectures – Navigation Theory – Basic Navigation Practices – Search – Sitemaps.

ELEMENTS OF PAGEDESIGN

Browser Compatible Design Issues-Pages and Layout – Templates – Text – Color – Images – Graphics and Multimedia – GUI Widgets and Forms – Web Design Patterns – STATIC pages: Slice– URL in ADOBE IMAGE READY. Creation and Editing of site map – Layer, Tables, Frame set, - CSS style – Forms – Tools like Insert, Rollover etc., in DREAM WEAVER

SCRIPTING LANGUAGES AND ANIMATION USING FLASH

Client side scripting: XHTML – DHTML – JavaScript – XML Server Side Scripting: Perl–PHP– ASP/JSP Designing a Simple Web Application - Introduction to MACROMEDIA FLASH, Importing Other File Formats to Flash – Saving and Exporting Flash Files, Frame by Frame Animation–Motion Tweening – Shape Tweening.

PRE-PRODUCTION MANAGEMENT

Principles of Project Management – Web Project Method – Project Road Map – Project Clarification – Solution Definition – Project Specification – Content – Writing and Managing Content.

PRODUCTION, MAINTENANCE AND EVALUATION

Design and Construction – Testing, Launch and Handover – Maintenance – Review and Evaluation – **Case Study:** Using the Skills and Concepts Learn with the ADOBE IMAGE READY, DREAM WEAVER, FLASH, and Scripts, Develop Portfolios in the Form of Web Pages which have to be uploaded in Free Public Domain.

TEXT BOOKS

- 1. Themas A. Powell, —The Complete Reference-Web Design, Tata McGraw Hill, Third Edition, 2003.
- 2. Ashley Friedlein, —Web Project Management , Morgan Kaufmann Publishers, 2001.
- 3.H.M. Deitel, P.J. Deitel, A.B. Goldberg, —Internet and World Wide Web How to Program^{||}, Third Edition, Pearson Education, 2004.

REFERENCES

- 1. Joel Sklar, —Principles of Web Design, Thomson Learning, 2001.
- 2. Van Duyne, Landay and Hong, —The Design of Sites: Patterns for Creating Winning Websites, Second Edition, Prentice Hall, 2006.
- 3.Lynch, Horton and Rosenfeld, —Web Style Guide: Basic Design Principles for Creating Websites, Second Edition, Yale University Press, 2002.

S. No.	Name of the Faculty	Designation	Department	Mail ID				
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in				
2	R.Bharanidharan	Professor	CSE	bharanidharan@vmkvec.edu.in				

170	17CSEC09 ETHICAL HACKING C									Category	y L	Т	P	Credit	
											EC	3	0	0	3
PREA										I		I	l l	l	
			concep	ots of so	ecurity	and ha	cking p	process							
PRER NIL	EQUI	SITE													
COUR	SE OI	BJECT	IVES												
1	To understand Technical foundation of cracking and ethical hacking														
2	To identify Aspects of security, importance of data gathering, foot printing and system hacking														
3	To understand evaluation of computer security														
4	To understand Practical tasks will be used to re-enforce and apply theory to encourage an analytical and problem based approach to ethical hacking														
5															
COUR	COURSE OUTCOMES														
On the	succes	sful co	mpletio	on of th	ne cours	se, stud	ents w	ill be al	ole to						
CO1: I compro					es an e	thical h	acker 1	require	s to tak	e in ord	er to	Underst	and		
CO2: I	dentify	tools a	and tech	nniques	to car	ry out a	penet	ration t	esting.			Underst	and		
CO3: 0	Critical	ly analy	yze sec	urity te	chniqu	es used	l to pro	tect sys	stem an	d user d	ata.	Apply			
CO4: I							the con	cepts o	f secur	ity at the	e level	Apply			
CO5: 7	o appl	y infor	mation	securit	y featu	res in r	eal tim	ie				Apply			
MAPP	ING V	VITH	PROG	RAMN	ME OU	TCON	MES A	ND PR	ROGRA	AMME	SPECI	FIC OU	TCOM	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	l PSO2	PSO3
CO1	M	M	-	-	-	-	S	-	-	-	M	M	M	M	M
CO2	M	M	S	M	1	1	ı	-	-	-	L	M	M	S	M
CO3	M	M	M	M	-	M	-	L	-	-	L	-	S	M	S
CO4	M	S	M	-	-	M	-	-	-	M	-	M	M	M	M
CO5	M	M	-	-	S	M	-	L	-	-	M	M	M	M	S
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HACKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems-Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking-Hacking Windows & Linux.

WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

- 1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.
- 2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.
- 3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.
- 4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006.

REFERENCES

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

S. No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.R.Jaichandran	Associate Professor(G-II)	CSE	rjaichandran@avit.ac.in				
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in				

170	7CSEC11 GREEN COMPUTING Ca								Category	L	Т	P	Credit		
											EC	3	0	0	3
PREA	MBLE												<u> </u>	<u> </u>	
			to adop	ot green	compu	ting pra	actices	and To	learn at	out ener	gy savin	g practic	es		
PRER NIL	EQUIS	ITE													
COUR	RSE OB	JECTI	VES												
1	To acc	quire kr	nowledg	ge to ad	opt gree	en com	puting p	practice	s						
2	To mi	nimize	negativ	e impa	cts on tl	ne envii	ronmen	t							
3	To learn about energy saving practices														
4	To learn about green compliance. And implementation using IT														
COUR	COURSE OUTCOMES														
0 1															
On the	On the successful completion of the course, students will be able to														
CO1: E	Explain	he sign	ificanc	e knowl	edge to	adopt	green c	omputii	ng pract	tices		Understa	and		
CO2: I environ		nd deve	elop the	green	asset us	sed to n	ninimiz	e negat	ive imp	acts on t	he	Apply			
	dentify zing the						and infi	rastructi	are for			Apply			
CO4: N	Make us	e of an					ng prac	tices ,tl	ne impa	ct of e-w	aste	Apply			
	bon was Analyze		rreen co	mnlian	ce imn	lement	ation us	ing IT :	and deri	ive the ca	ase				
study.	maryze	uoout g	,10011 00	, in prium	cc, mp	1011101111	ation as		aria acri		450	Analyze			
MAPP	PING W	TTH P	ROGR	AMMI	E OUT	COME	SAND	PROC	GRAMI	ME SPE	CIFIC (OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	O2 PSO
CO1	S	-	S	-	-	_	M	-	-	-	-	-	S	-	S
CO2	S	S	M	-	L	-	S	S	-	M	-	M	S	-	
CO3	S	M	M	-	-	M	S	M	-	-	-	-	M	N	
CO4	S	S	-	-	-	-	S	S	-	M	-	M	M	-	
CO5	S	M	M	-	-	S	M	-	M	-	M	S	M	-	M
S- Stro	S- Strong; M-Medium; L-Low														

FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Systems Seamless Sharing Across. Collaborating and Cloud Computing, Virtual Presence.

GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligence, CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with IT, John Wiley and Sons, 2010.

REFERENCES

- 1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journeyl, Shoff/IBM rebook, 2011.
- 2. John Lamb, —The Greening of ITI, Pearson Education, 2009.
- 3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industry, Lulu.com, 2008.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

170	CSEC32	,		VI	RTUAI	L REA	LITY				Category	L	Т	P C	redit
											EC	3	0	0	3
	MBLE									<u> </u>					
			a detaile	ed unde	rstandii	ng of th	e conce	epts of V	Virtual I	Reality a	and its ap	plication.			
PRER NIL	EQUIS	ITE													
COUR	COURSE OBJECTIVES														
1	1 To Learn Geometric modeling and Virtual environment														
2	2 To Learn Virtual Hardware and Software														
3	To Learn Virtual Reality applications														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1 : D	Different	iate bet	ween V	irtual,	Mixed a	and Au	gmente	d Realit	ty platfo	orms.		Understa	ınd		
CO2: Idespecia						gies fo	r imme	rsive te	chnolog	gy devel	opment,	Apply			
CO3: I	Demonst	rate fou	ındatio	nal liter	acy in c	lesignir	ng gami	ng syst	ems			Apply			
CO4: 0	Categori	ze the b	enefits	shortec	mings	of avail	able im	mersiv	e techno	ology pl	atforms.	Analyze			
CO5: T	o apply	the VR	conce	pts to v	arious a	pplicat	ions					Apply			
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPI	ECIFIC (OUTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO2	S	M	L	L	M	ı	-	-	-	-	-	L	M	M	M
CO3	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO4	S	L	L	L	M	-	-	-	-	-	-	M	M	M	M
CO5	S	M	L	-	M	-	-	-	-	-	-	L	M	M	-
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION

Virtual Reality & Virtual Environment: Introduction – Computer graphics – Real time computer graphics – Flight Simulation – Virtual environments – requirement – benefits of virtual reality- **3D Computer Graphics**: Introduction – The Virtual world space – positioning the virtual observer – the perspective projection – human vision – stereo perspective projection – 3D clipping – Colour theory – Simple 3D modelling – Illumination models – Reflection models – Shading algorithms

GEOMETRIC MODELLING

Geometric Modelling: Introduction – From 2D to 3D – 3D space curves – 3D boundary representation - **Geometrical Transformations**: Introduction – Frames of reference – Modelling transformations – Instances – Picking – Flying – Scaling the VE – Collision detection - **A Generic VR system**: Introduction – The virtual environment – the Computer environment – VR Technology – Model of interaction – VR System

CONTENT CREATION AND INTERACTION ISSUES

Gestalt perceptual organization - real world content - field of view - paradigm shift from real environment to virtual environment - reusing existing content - transition to VR content Human factors: Direct Vs Indirect Interaction - Modes and flow - Input device characteristics - viewpoint and control patterns.

DESIGN ISSUES

Optimizing performance - optimizing target hardware and software - **VR Hardware** : Introduction - sensor hardware - Head-coupled displays -Aquatic hardware - Integrated VR systems-**VR Software**: Introduction - Modelling virtual world -Physical simulation- VR toolkits - multiplayer environment - multiplayer networking architecture.

APPLICATION

Engineering – Entertainment – Science – Training – classroom.

TEXT BOOKS

- 1. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2002
- 2. Jason Jerald, "The VR book: Human centered design for virtual reality", CRC Press, 2015

REFERENCES

- 1. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.
- 2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", WileyInterscience, 1 Edition, 1994.
- 3. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application, and Design", Morgan Kaufmann, 1st Edition, 2002.
- 4. Jonathan Linowes, "Unity Virtual Reality Projects- Explore the world of virtual reality by building immersive and fun VR Projects using Unity 3D", Packt Publishing, 2015.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

17CSCC01	DATA STRUCTURES	CATEGORY	L	T	P	CREDIT
17050001	DATA STRUCTURES	CC	3	0	0	3
DDEAMDLE						

This course aims at understanding the basic concepts in programming structures, linear structures and non linear structures

PRERQUISITE

NIL

COURSE OBJECTIVES

- 1. To remember and understand the basic concepts in linear structures
- 2. To learn about tree structures.
- 3. To understand about balanced trees
- **4.** To learn about hashing and sets.
- **5.** To learn and understand about graphs

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Remember the basic concepts in linear structures	Understand
CO2. Learn about tree structures and tree traversals	Apply
CO3. Understand about balanced trees	Apply
CO4. Learn about hashing and sets.	Apply
CO5. Learn and understand about graphs	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	M	-	-	-	-	-	-	-	-	М	M	-	-
CO2	S	M	M	M	M	-	-	-	-	-	-	M	M	-	-
CO3	S	M	L	M	М	-	-	-	-	-	-	M	M	-	-
CO4	S	M	M	M	M	-	-	-	-	-	-	L	M	-	-
CO5	S	M	L	M	M	-	-	-	-	-	-	M	M	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

Linear Structures

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

Tree Structures

Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.

Balanced Trees

AVL Trees – Splay Trees – B-Tree - heaps – binary heaps – applications of binary Heaps .

Hashing and Set

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

TEXT BOOKS:

1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education.

REFERENCES:

- **1.** A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First Edition Reprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam@vmkvec.edu.in

17CSCC02	OBJECT ORIENTED	Category	L T		P	Credit	
	PROGRAMMING	CC	3	0	0	3	

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions.

PRERQUISITE

Nil

Nil													
COURSE OBJECTIVES													
1. To learn about the syntax and semantics of C++ programming language													
2. To learn about the concepts of object oriented programming.													
3. To determine how to reuse the code, Constructors and member functions													
4. To Analyse how to reduce the coding by applying overloading concepts													
5. To Analyse how to reuse the code, how to verify and validate the coding													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to													
CO1. Construct object-oriented programs for a given scenario using the concepts of Apply													
straction, encapsulation, message-passing and modularity													
CO2. Construct object-oriented programs for a given application by using Apply													
constructors													
CO3. Develop object-oriented programs for a given application using the concepts of Analyze													
compile-time and run-time polymorphism													
CO4. Develop object-oriented applications through inheritance concepts Analyze													
CO5. Construct object-oriented applications for a given scenario using files, Sting Analyze													
handling and to handle exceptions													
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3													
CO2 M M M M M M L M													
CO3 M M S M S M L M													
CO4 S M M M S M L M													
CO5 S M M M M M L M													
S- Strong; M-Medium; L-Low													

INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

OBJECT INITIALIZATION AND FRIEND FUNCTION

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

OVERLOADING AND GENERIC PROGRAMMING

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keyword- limitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

INHERITANCE AND VIRTUAL FUNCTION

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function.

EXCEPTION HANDLING AND STREAMS

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file- file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

TEXT BOOKS:

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2, Hill, 2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. Edition, 2008.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition 2008.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

REFERENCES:

- 1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005
- 2. 2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

S.No	Name of the faculty	Designation	Department	Mail Id			
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in			
2.	Mr.S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in			

17CSCC03	DATABASE MANAGEMENT SYSTEM	Category	L	T	P	Credit
		CC	3	0	0	3

This course aims at facilitating the student to understand the various concepts and functionalities of Database Management Systems, the method and model to store data and how to manipulate them through query languages, the effective designing of relational database and how the system manages the concurrent usage of data in multi user environment.

PREREQUISITE:

NIL

COUR	SE OB	JECTI	VES												
1	Descri	be a rel	ational	databas	e and o	bject-o	riented	databas	e.						
2	Create	, mainta	ain and	manipu	late a r	elationa	ıl datab	ase usin	g SQL						
3	Descri	be ER r	nodel a	nd norn	nalizati	on for c	latabase	design	١.						
4	Exami	ne issue	es in dat	a storaș	ge and	query p	rocessii	ng and o	can forr	nulate ap	propriat	e solutio	ns.		
5	Design	and bu	ild data	base sy	stem fo	or a giv	en real	world p	roblem						
COURSE OUTCOMES															
				of the	cours	e, stud	ents wi	II be al	ole to						
On the successful completion of the course, students will be able to CO1. Illustrate the database design for applications and use of ER Diagram. Understand															
CO2. Build and manipulate the relational database using Structured Query Language and relational languages. Apply															
CO3. Develop a normalized database for a given application by incorporating various constraints like integrity and value constraints. Apply															
CO4. A ₁							ism for	databa	se prob	lems.			Ap	ply	
										ieval of c	lata.		Ap	ply	
MAPP	ING W	ITH P	ROGE	RAMM	E OU	TCOM	IES A	ND PR	OGR	AMME	SPECI	FIC O	UTCO	MES	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	M	-	-	-	-	-	M	S	M	M	-
CO2	M	M	M	L	M	-	-	-	-	-	M	M	M	M	M
CO3	M	M	S	M	M	-	-	-	-	-	M	L	M	M	M
CO4	S	M	M	M	L	-	-	-	-	-	M	M	M	M	M
CO5	S	M	M	M	M	-	-	-	-	-	M	M	M	M	M
S- Stron	g; M-Me	edium;	L-Low			ı	1	ı		ı			ı		

INTRODUCTION

Database System Applications - Views of data - Data Models - Database Languages - Modification of the Database - Database System Architecture - Database users and Administrator- Introduction to relational databases - Structure of Relational Databases - Entity-Relationship model (E-R model) - E-R Diagrams.

RELATIONAL APPROACH

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals - Structure of SQL Queries - SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases..

DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form - Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery - Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols - Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing - Query Processing - Catalogue Information for Cost Estimation - Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, McGraw-Hill Education; 6 edition, 2010).

REFERENCES:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson India; 7th edition, 2017, 2017).
- 2. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Carlos Coronel, Steven Morris, "Database Systems Design, Implementation and Management, 13th Edition, Cengage Learning; 13th edition, 2018).

S. No.	Name of the faculty	Designation	Department	Mail Id
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@vmkvec.edu.in
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in

												T	1		1
170	CSEC06	5	CRY	PTO G				WORK		(Category	L	Т	P C	redit
			SECURITY							EC	3	0	0	3	
To unde			cepts in	crypto	graphy	and net	work se	ecurity	and the	ir applica	ations in	real time		1	
NIL	EQUIS														
COUR	RSE OB	JECTI	VES												
1															
2	To know about various encryption techniques.														
3	To understand the concept of Public key cryptography.														
4	To study about message authentication and hash functions														
5															
COUR	SE OU	TCOM	IES												
On the	success	sful con	npletion	of the	course,	student	ts will b	e able	to						
CO1: 0	Classify	the syn	nmetric	encryp	tion tec	hniques	3					Understa	and		
CO2: I	llustrate	variou	s Public	c key cr	yptogra	phic te	chnique	es				Apply			
CO3 : E	Evaluate	the aut	hentica	tion and	d hash a	lgorith	ms.					Apply			
CO4: [Discuss a	authenti	ication	applicat	ions							Apply			
CO5: S	Summar	ize the i	intrusio	n detec	tion and	l its sol	utions t	o overc	ome the	e attacks.		Analyze			
MAPP	ING W	/ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	-	-	-	-	_	-	M	M	-	-
CO2	S	M	L	-	M	-	-	-	-	-	-	M	M	-	-
CO3	S	M	L	-	M	-	-	-	-	-	-	M	M	-	-
CO4	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO5	S	L	L	-	M	-	-	-	-	-	-	M	M	M	M
S- Stro	ng; M-l	Medium	n; L-Lo	W											

INTRODUCTION

Security trends – Attacks and services – Classical crypto systems – Different types of ciphers – LFSR sequences – Basic Number theory – Congruences – Chinese Remainder theorem – Modular exponentiation – Fermat and Euler's theorem – Legendre and Jacobi symbols – Finite fields – continued fractions.

METHODS

Simple DES – Differential cryptanalysis – DES – Modes of operation – Triple DES – AES – RC4 – RSA – Attacks – Primality test – factoring

TECHNIQUES

Discrete Logarithms – Computing discrete logs – Diffie-Hellman key exchange –ElGamal Public key cryptosystems – Hash functions – Secure Hash – Birthday attacks -MD5 – Digital signatures – RSA – ElGamal – DSA.

AUTHENTICATION

Authentication applications – Kerberos, X.509, PKI – Electronic Mail security – PGP,S/MIME – IP security – Web Security – SSL, TLS, SET.

SECURITY AND FIREWALLS

System security - Intruders - Malicious software - viruses - Firewalls - Security Standards

TEXT BOOKS

- 1. Dr. S. Bose and Dr.P. Vijayakumar, "Cryptography and Network Security", First Edition, Pearson Education, 2016.
- 2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson, 2007.
- 3. William Stallings, "Cryptography and Network Security Principles and Practices", Pearson/PHI, 6th edition, 2013.

REFERENCES

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education, Second Edition, 2007.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing Third Edition Prentice Hall of India, 2006.

S. No.	Faculty		Department	Mail ID		
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in		
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in		

17BMEC09	DESIGN OF MEDICAL DEVICES	Category	L	Т	P	Credit
	DESIGN OF MEDICAL DE VICES	EC-PC	3	0	0	3

This course will offer students exposure to the core concepts of the global medical device regulatory framework and provide a foundation for the practical application. It includes all elements of the device product lifecycle from idea to initial market entry, sustaining activities and post-market activities.

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To understand the post-marketing requirements associated with medical devices.
2	To understand the necessary steps to take an idea to a prototype.
3	To follow a deterministic engineering design process to create new products.
4	To apply engineering theory to practice.
5	To perform risk assessment and countermeasure development.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.	Discuss the necessary steps to take an idea to a prototype.	Understand
CO2.	Utilize fundamental design principles, machine elements, manufacturing and assembly techniques.	Apply
CO3.	Analyze risk management concepts into the quality management system.	Analyze
CO4.	Assess the medical device regulatory framework for any given country based upon device type.	Evaluate
CO5.	Create potential regulatory pathway.	Create

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M								M			M	S	S	S
CO2	S	M							M			M	S	S	M
CO3	S	M	M	L		M		L	M			S	M	M	S
CO4	S	S	M	M	M	S		M	S		M	S	S	M	S
CO5	S	S	S	M	M	S		M	S		M	S	S	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO MEDICAL DEVICES AND MEDICAL DEVICE REGULATIONS

Medical Device Classification, Bioethics and Privacy, Biocompatibility and Sterilization Techniques, Design of Clinical Trials, Design Control & Regulatory Requirements.

INTRODUCTION TO SPECIFIC MEDICAL TECHNOLOGIES

Biopotential measurement (EMG, EOG, ECG, EEG), Medical Diagnostics (In-vitro diagnostics), Medical Diagnostics (Imaging), Minimally Invasive Devices, Surgical Tools and Implants.

MEDICAL DEVICES STANDARD AND INTELLECTUAL PROPERTY

Standard-ISO, IES, Intellectual Property - Patents, Copy rights, Trademarks, Trade secrets.

HARDWARE AND SOFTWARE DESIGN

Hardware design, Hardware risk analysis, Design and project merits, Design for six sigma, software design, software coding, software risk analysis, software metrics.

DESIGN TRANSFER AND MANUFACTURING

Transfer to manufacturing, hardware manufacturing, software manufacturing, configuration management, documents and deliverables.

TEXT BOOKS:

- 1. Richard Fries, "Reliable Design of Medical Devices", CRC Press, 2nd Edition, 2006.
- 2. Paul H. King, Richard C. Fries, Arthur T. Johnson, "Design of Biomedical Devices and Systems", Third Edition, ISBN 9781466569133.

REFERENCES:

- 1. John G. Webster (ed), "Medical Instrumentation: Application and Design", 2007.
- 2. Peter J. Ogrodnik, "Medical Device Design: Innovation from Concept to Market", Academic Press Inc; 1st Edition (2012), ISBN-10: 0123919428

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S. Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in
3	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

17BMEC01	MEDICAL OPTICS	Category	L	T	P	Credit
17BMEC01		EC-PS	3	0	0	3
PREAMBLE						

Medical optics is a branch of science uses light as an electromagnetic wave, similar to X-rays, microwaves, and radio waves, which is used as an investigational technique for medical applications. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy and optical coherence tomography.

CC	HIRSE	ORIE	CTIVES

1	To learn about properties of light and its application
2	To study various instruments in photonics
3	To understand the applications of laser
4	To understand optical holography
5	To study optical tomography

COURSE OUTCOMES

On the successful completion of the course, students will be able to

*	
CO1. Describe the optical properties of the tissues.	Understand
CO2. Apply laser in medical field for diagnosis and therapeutic application.	Apply
CO3. Analyze the various instruments used in photonics	Analyze
CO4. Categorize the various techniques for hologram construction.	Analyze
CO5. Illustrate optical tomogram.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L							L			M			M
CO2	S	M	L						L			S	M		M
CO3	S	S	M	M		M			M			S	M	M	
CO4	S	S	S	S	M	M		L	M	M		S	S	M	
CO5	S	S	S	S	M	M		L	M	M		S	S	M	

S- Strong; M-Medium; L-Low

OPTICAL PROPERTIES OF THE TISSUES

Refraction, Scattering, absorption, light transport inside the tissue, tissue properties, Light interaction with tissues, optothermal interaction, fluorescence, speckles.

INSTRUMENTATION IN PHOTONICS

Instrumentation for absorption, scattering and emission measurements, excitation light sources – high pressure arc lamp, solid state LEDs, LASERs, optical filters, polarisers, solid state detectors, time resolved and phase resolved detectors.

APPLICATIONS OF LASERS

Laser in tissue welding, lasers in dermatology, lasers in ophthalmology, otolaryngology, urology.

OPTICAL HOLOGRAPHY

Wavefronts, Interference patterns, principle of hologram, optical hologram, applications.

OPTICAL TOMOGRAPHY

Optical coherence tomography, Elastography, Doppler optical coherence tomography, Application towards clinical imaging.

TEXT BOOK

1. Leon Goldman, M.D., & R. James Rockwell, Jr., "Lasers in Medicine", Gordon and Breach, Science Publishers Inc., New York, 1971.

REFERENCE

1. Mark E. Brezinski., "Optical Coherence Tomography: Principles and Applications", Academic Press, 2006.

S.No.	Name of the Faculty	ne of the Faculty Designation		Mail ID
1	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Ms.B.Farhana Ansoor	Assistant Professor (G-I)	BME	farhanaansoor@avit.ac.in
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

17BM	FC21 MEDICAL SIMULATION IN LIFE SUPPORTING 3 5					y L	T	PC	redit						
	DEVICES EC-PS 3							0	0	3					
The pu	PREAMBLE The purpose of the course on medical simulation and life supporting device for biomedical engineer practical knowledge in operating basic life supporting devices under emergency condition.										ering s	udents i	s to get		
PRER	EQUIS	ITE:N	IL												
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the st	ructure	and fun	ction o	f heart	and bra	in.						
2	To lea	rn the v	various	techniq	ues ava	ilable f	or depl	oyment	in patie	ent suffer	ring from	respirat	ory em	ergency.	
3	То ор	erate ar	nd troub	le shoo	t mecha	anical v	entilato	or in a p	atient.						
4	To pro	ovide ha	ands on	trainin	g on life	e suppo	rting in	strume	nts.						
5	Expla	in the u	se of ul	trasoun	d in cri	tical ca	rdiovas	cular ar	ıd respii	ratory di	seases and	d trauma	diagn	osis.	
COUR	SE OU	TCOM	IES												
	success		•												
	xplain a ed unde				gy of t	he hear	t and d	lemonst	rate var	rious life	saving te	chnique	Understand		
	escribe nergenc		s techn	iques a	vailable	e for de	ploymo	ent in p	atient s	uffering	from res	piratory	Unde	erstand	
CO3. II													Apply		
	Outline gorithm								supporti	ng devi	ce and a	pproach	Anal	yze	
CO5. A						or these	patrone	<u> </u>					Anal	yze	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMN	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M		L	L		L		M	L			L	M		M
CO2	M		L	L		L		M	L			L			M
CO3	S	M	M	M	M	M		M	M			M	S		M
CO4	S	M	M	S	M	M		M	S			M	S	S	S
CO5	S	M	M	S	M	S		M	S			M	S	M	S

S- Strong; M-Medium; L-Low

BASIC LIFE SUPPORT

Anatomy and physiology of heart, Cardiogenic shock complicating acute coronary syndrome, CPR practice using mannequin, AHA BLS guidelines and practice, Automatic external Defibrillator, Defibrillator practice and troubleshooting.

ANALYZING ARRHYTHMIAS FOR LIFE SUPPORT

Description of ECG arrhythmias-an overview, Tachycardia and Bradycardia algorithm and practice, ECG arrhythmia simulator and practice, ACLS guidelines and practice using mannequins.

BASIC AIRWAY MANAGEMENT

Ventilation failure and oxygenation failure, Inserting airway adjunct (OPA – Oropharyngeal airway and NPA - Nasopharyngeal airway), Oxygen therapy, LMA and insertion Technique, AMBUBAG indication and practice.

VENTILATOR FOR LIFE SUPPORT

Basic anatomy of lung and mechanism of breathing, Mechanical ventilator history and classification, Pressure –volume flow diagram, Different modes of ventilator, Ventilator alarm and trouble shooting, Indication and disease specific ventilation, Weaning from ventilator.

ROLE OF ULTRASOUND IN LIFE SUPPORT

Basic principle of ultrasound and different modes of display, Different transducers used in ultrasound, Ultrasound doppler blood flow meter, Ultrasonography in emergency cardiovascular care, Lung ultrasound, Fast scan.

TEXT BOOKS:

- 1. Arthur C. Guyton, John Edward Hall, "Textbook of Medical Physiology",13th Edition Elsevier Inc 2016.
- 2. John M. Field, Peter J. Kudenchuk, Robert O'Connor, Terry Vanden Hoek, "The Textbook of Emergency Cardiovascular Care and CPR", lippinocot William and wilkins, 1st Edition, 2009.
- 3. James G. Adams, "Emergency Medicine: Clinical Essentials", Saunders an imprint of Elsevier Inc, 2nd Edition, 2013
- 4. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata Mc Graw Hill, 2nd Edition, 2003.

REFERENCES:

- 1. Peter Papadakos, Burkhard Lachmann, "Mechanical Ventilation: Clinical Applications and Pathophysiology", sunders an imprint of Elsevier, 1st Edition 2008.
- 2. Ashfaq Hasan ,"Understanding Mechanical Ventilation: A Practical Handbook", Springer verlag London limited, 2nd Edition 2010.
- 3. Matthias Hofer, "Ultrasound Teaching Manual: The Basics of Performing and Interpreting", thieme newyork Stuttgart, 3rd Edition, 2013.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Ms.S.Mythrehi	Assistant Professor (G-I)	BME	mythrehi@avit.ac.in

PS-SE 3 0 0 3	17BMSE07	MEDICAL RADIATION SAFETY ENGINEERING	Category	L	Т	P	Credit
	17DNISEU7	WEDICAL RADIATION SAFETT ENGINEERING	PS-SE	3	0	0	3

To impart sufficient information on the various precautionary and safety measures for radiation protection in medicine.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To provide an insight to the basics of radiation physics.
- 2 To enable them understand the guidelines of radiation protection and radiation detectors.
- To provide information on safety measures related to UV, laser and nuclear medicine.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the Radio frequency and Microwave radiations.	Understand
CO2. Examine the Laser and UV radiation control measure.	Apply
CO3. Outline the protective measures and radiation hazards in nuclear medicine and radiotherapy.	Analyze
CO4. Assess the various monitoring methods & Hazard in radiation protection	Evaluate
CO5. Designing to reduce the radiation hazards.	Create

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M					L		L				M	M	M	
CO2	S	M	M			M	M	M	L			M	M	S	M
CO3	S	S	M	M		M	S	M	M			M	M	S	M
CO4	S	S	S	S		S	S	S	S		M	S	M	S	S
CO5	S	S	S	S	M	S	S	S	S		S	S	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO RF AND MICROWAVE RADIATION

Sources of radio frequency radiation – Effects of radio frequency radiation – Development of standards for human safety – Calculation of RF field quantities – RF radiation measuring instruments and methods.

RADIATION DETECTION AND MEASUREMENT

Fundamentals of radiation detection – Conducting radiation measurements and surveys – Gas detectors – Designing to reduce radiation hazards – Radio frequency radiation safety management and training – Scintillation detectors – Statistics of Counting – minimum detectable activity – Quality assurance of radiation counters.

RADIATION SAFETY IN NUCLEAR MEDICINE AND RADIOTHERAPY

Design and description of NM department – Radiation protection in nuclear industry – Guidelines for radiation protection- Molecular medicine and radiation safety program procedures for safe operation of radiation equipment – Radiation protection in external beam radiotherapy – Radiation protection in brachytherapy – Radioactive wastes.

LASER AND ULTRAVIOLET RADIATION SAFETY

Classification of UV radiation – Sources of UV – Biological effects of UV – Hazards associated with UV radiation – UV control measures – Safety management of UV Classifications of LASER and its radiation hazards – control measures – Emergencies and incident procedures.

MONITORING AND INTERNAL DOSIMETRY

Monitoring methods – personal radiation monitoring – Records of personal dosimetry – ICRP method – MIRD method – Internal doses from radiopharmaceuticals – Bioassay of radioactivity –Hazard and risk in radiation protection – radiological incidents and emergencies – Regulation to radiation protection.

TEXT BOOKS:

- 1. Jamie V Trapp, Thomas Kron, "An introduction to radiation protection in medicine", CRC press Taylor & Francis group, 2008
- 2. Alan Martin, Samuel Harbison, Karen Beach, Peter Cole, Hodder Arnold, "An introduction to radiation protection", 6th Edition 2012.

REFERENCES:

- 1. Max Hlombardi, "Radiation safety in nuclear medicine", CRC Press Taylor & Francis group, 2nd Edition, 2007.
- 2. Aruna Kaushik, Anupam mondal, B.S. Dwarakanath, R.P.Tripathi, "Radiation protection manual", INMAS, DRDO, 2010.
- 3. Ronald kitchen, "RF and microwave radiation safety", Newness publishers, 2nd Edition, 2001.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mrs. S. Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in		
2	Ms.S.Mythrehi	Assistant Professor (Gr-I)	BME	mythrehi@avit.ac.in		
3	Mr. R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in		

17BMSE18	ROBOTICS & AUTOMATION IN MEDICINE	Category	L	Т	P	Credit
17DMSE10	ROBOTICS & AUTOMATION IN MEDICINE	EC-SE	3	0	0	3

The purpose of learning this course on automation and robotics in medicine to acquire knowledge and understand the basic function and to create new application of robotic and automation system in medical field especially in surgery.

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To understand the basics of Robotics, Kinematics.
2	To understand the basics of Inverse Kinematics.
3	To explore various kinematic motion planning solutions for various Robotic configurations.
4	To study the basic inverse Kinematic motion planning solutions.
5	To explore various applications of Robots in Medicine.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

ı ,	
CO1. Understand the basics of robotic systems.	Understand
CO2. Illustrate the application of automation and robotics in medicine.	Apply
CO3. Categorize the level of planning for various Robotic configurations.	Analyze
CO4. Compare Robotics system and formulate Kinematics.	Evaluate
CO5. Design Robotic systems for Medical application.	Create

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M		L	L					L			M	M		
CO2	S		M	M				M	M			S	M	M	
CO3	S	S	S	M	M		L	M	M		L	S	M		
CO4	S	S	S	S	S	S	M	S	S	M	M	S	S		
CO5	S	S	S	S	S	S	M	S	S	M	S	S	S	S	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction Automation and Robots, Classification, Application, Specification, Notations, Direct Kinematics Dot and cross products, Coordinate frames, Rotations, Homogeneous coordinates Link coordination arm equation – Five-axis robot, Four-axis robot, Six-axis robot.

KINEMATICS

Inverse Kinematics – General properties of solutions tool configuration, Five axis robots, Three Four axis, Six axis Robot, Workspace analysis and trajectory planning work envelope and examples, workspace fixtures, Pick and place operations, Continuous path motion, Interpolated motion, Straight-line motion.

ROBOT VISION

Robot Vision Image representation, Template matching, Polyhedral objects, Shane analysis, Segmentation – Thresholding, region labeling, Shrink operators, Swell operators, Euler numbers, Perspective transformation, Structured illumination, Camera calibration.

PLANNING

Task Planning Task level programming, Uncertainty, Configuration, Space, Gross motion, Planning, Grasp Planning, Fine-motion planning, Simulation of planar motion, Source and Goal scenes, Task Planner simulation.

APPLICATIONS

Applications in Biomedical Engineering – Bio Engineering, Biologically Inspired Robots, Neural Engineering, Application in Rehabilitation – Interactive Therapy, Bionic Arm, Clinical and Surgical – Gynaecology, Orthopaedics, Neurosurgery.

TEXT BOOKS:

- 1. Robert Schilling, "Fundamentals of Robotics-Analysis and control", Prentice Hall, 2003.
- 2. J.J.Craig, "Introduction to Robotics", Pearson Education, 2005.

REFERENCES:

- 1. Staugaard, Andrew C, "Robotics and Artificial Intelligence: An Introduction to Applied Machine Learning", Prentice Hall Of India, 1987
- 2. Grover, Wiess, Nagel, Oderey, "Industrial Robotics: Technology, Programming and Applications", McGraw Hill, 1986.
- 3. Wolfram Stadler, "Analytical Robotics and Mechatronics", McGraw Hill, 1995.
- 4. Saeed B. Niku, "Introduction to Robotics: Analysis, Systems, Applications", Prentice Hall, 2001.
- 5. K. S. Fu, R. C. Gonzales and C. S. G. Lee, "Robotics", McGraw Hill, 2008.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran@avit.ac.in		
2	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in		
3	Mr. S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in		

	REMOTE SENSING	Category	L	T	P	Credit
17CVEC08	TECHNIQUES AND APPLICATIONS	EC	3	0	0	3

Preamble

Remote sensing is the science and art of obtaining information about an object, area or phenomenon, by the use of either recording or real time sensing devices that are not in physical contact with the object. The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. These GPS satellites circle the earth twice a day in a very precise orbit and transmit signal information to earth. Remote sensing and GPS data are further used in numerous applications, including GIS data collection, surveying, and mapping.

Prerequisite

Nil

Course O	Course Objectives										
1	Students will learn about the land use mapping techniques, site suitability techniques										
2	Students will learn about the use of zone mapping for water bodies										
3	Students will learn about the use of mapping techniques for Agriculture and Earth sciences										
4	Students will also learn about the recent techniques used for GPS system										

Course Outcomes

On the successful completion of the course, students will be able to

Co1. Recollect the fundamentals of physics of Remote sensing and concepts.	Remember
Co2. Outline the various data acquisition systems and collection methods for remote sensing data information and storage	Understand
Co3.Apply knowledge of satellites on various Civil Engineering applications.	Apply
Co4. Utilize the various data input methods for mapping	Apply
Co5. Creation of data models using remote sensing techniques and GPS	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	-	-	-	-	-	-	-	-	-	-	-	L	L	L
CO2.	S	-	-	-	-	-	-	-	-	-	-		L	M	L
CO3.	S	1	ı	ı	ı	ı	-		ı	-	ı	ı	ı	M	M
CO4.	S	L			L		-	-	L	L	L		L	L	M
CO5.	S	L	-	-	L	-	-	-	L	L	L	-	L	M	M

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I INTRODUCTION

9 - hours

Definition – Physics of remote sensing – electromagnetic radiation (EMR) – remote sensing windows – interaction of EMR with atmosphere, earth surface, soils, water and vegetation – platform and sensors – image interpretations.

UNIT – II LAND USE STUDIES

9 - hours

Definition of land use – land use / land cover classification – schemes and levels of classification systems with RS data – land use mapping – change detection – urban land use planning, site suitability analysis, transportation planning.

UNIT – III | WATER RESOURCES

9 – hours

Areal assessment of surface water bodies – Capacity survey of water bodies – mapping of snow-covered areas – flood risk zone mapping – identification of groundwater potential zones, recharge areas – droughts, definition, drought assessment and management.

UNIT – IV | AGRICULTURE, SOIL AND FORESTRY

9 – hours

Crop inventory mapping – production estimation – command area monitoring – soil mapping – crop stress detection – estimation of soil erosion – forest types and density mapping – forest fire risk zone mapping.

UNIT – V EARTH SCIENCE

9 – hours

Lithology – lithological mapping – structural mapping – Geomorphology – nature and type of landforms – identification – use of remote sensing data for landslides – targeting mineral resources – Engineering geology and Environmental geology.

Text Books

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman., Remote Sensing and Image Interpretation. V Edn. John Willey and Sons (Asia) Pvt. Ltd., New Delhi, 2004
- 2. Lo. C.P.and A.K.W.Yeung, Concepts and Techniques of Geographic Information Systems. Prentice-Hall of India Pvt. Ltd., New Delhi, 2002

Reference Books

- 1 .Chandra, A.M, Geo Informatics, New Age International (P) Limited, Publishers.
- 2. Fazal, Shahab, GIS Basics, New Age International (P) Limited, Publishers.
- 3. Space Applications Centre. Manual for Forest mapping and Damage detection using satellite data, Report No.IRS-UP/SAC/FMDD/TN/16/90,1990, pp-253.
- 4. Sabins, F.F.Jr. Remote sensing principles and interpretation, W.H.Freeman & Co., 1978.
- 5. Manual of Remote Sensing Vol. II. American Society of Photogrammetry

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1.	M.Senthilkumar , Asst. Professor	senthilkumar@vmkvec.edu.in
2.	A.Fizoor Rahman, Asst. Professor	fizoorr@gmail.com
3.	D.Parthiban, Asst. Professor	Parthiban.civil@avit.ac.in

17CVEC18	WIND ENGINEERING	Category	L	T	P	Credit	
	,,,,,	EC	3	0	0	3	

Preamble

The course includes studies of sustainable development and energy sources. Basic mathematical and physical concepts will be covered. An introduction to prerequisites for wind power development including how a wind turbine works, planning for wind energy, environmental impact, location and economic aspects will be given. The phases of wind power projects is studied. Oral and written presentations in a scientific context will be discussed and practiced in the course. A site study visit to an operating wind farm is included.

Prerequisite

Nil

Course Objectives

- 1. To learn about the forces generated on structures due to normal wind as well as gusts.
- 2. To analyses the dynamic effects produced due to chimney, tower and silos
- 3. To understand about the seismic design of various structures
- 4. To analyses the application in design and its implementations

Course Outcomes

On the successful completion of the course, students will be able to

CO1. give an account of and analyse energy sources and their sustainability	Understand
Co2. identify and explain a wind power project's phases	Create
Co3. identify and evaluate factors affecting wind energy development	apply
Co4. analyse the siting conditions for wind power development	apply
CO5. clearly present an individual or group assignment within wind power in oral or written form	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

COG	PO	PO1	PO1	PO1	PSO1	PSO2	PSO3								
COS	1	2	3	4	5	6	7	8	9	0	1	2			
CO1	L	S	S	S		L	S	L			L		L	-	L
CO2	L	S	S	S	L	M	S	L		L	L		L	-	L
CO3	S	S	S	S	L	M	L	L		L			L	L	M
CO4	L	S	L	S	L		S	L		L		L	L	L	M
CO5	S	S	S	S			S	M		L	L		L	L	M

S- Strong; M-Medium; L-Low

Syllabus

UNIT - I	INTRODUCTION	9 - hours							
Terminology	V – Wind Data – Gust factor and its determination - Wind speed variation wi	th height – Shap							
factor – Asp	ect ratio – Drag and lift.								
UNIT - II	EFFECT OF WIND ON STRUCTURES	9 - hours							
Static effect	 Dynamic effect – Interference effects (concept only) – Rigid structure – A 	eroelastic							
structure (concept only).									
UNIT - III	NIT - III EFFECT ON TYPICAL STRUCTURES 9 - 1								
Tail building	s – Low rise buildings – Roof and cladding – Chimneys, towers and bridges	S.							
UNIT - IV	APPLICATION TO DESIGN	9 - hours							
Design force	es on multistorey building, towers and roof trusses.	,							
2 001811 10100									

Text Books

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers,

London, 1993.			

Reference Books

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990.
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1	A.Fizoor Rahman	fizoorr@gmail.com
2	M.Senthilkumar	Senthilkumar@vmkvec.edu.in

17ECPI01	PROJECT	Category	L	T	P	Credit
1,201101	INOUZEI	PI	0	0	18	9

PREAMBLE

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE - Nil

COURSE OBJECTIVES

l	00010										
	1	To provide learners with the opportunity to apply the knowledge and skills acquired in their									
1	courses to a specific problem or issue.										

- To allow learners to extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.
- To encourage learners to think critically and creatively about academic, professional, or social issues and to further develop their analytical and ethical leadership skills necessary to address and help solve these issues.
- To provide learners with the opportunity to refine research skills and demonstrate their proficiency in written & oral communication skills.
- To take on the challenges of teamwork, prepare a presentation in a professional manner, and document all aspects of design work.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the knowledge and skills acquired in their courses to a specific problem or issue.	Apply
CO2. Extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.	Analyze
CO3. Think critically and creatively about academic, professional, or social issues and to further develop their analytical and ethical leadership skills necessary to address and help solve these issues.	Create
CO4. Refine research skills and demonstrate their proficiency in written & oral communication skills.	Evaluate

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
CO'S	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO2	PSO3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1301		
CO1	S	L	L	M	M	-	-	-	М	M	-	M	M	M	-
CO2	M	M	M	M	L	-	-	-	M	L	-	M	M	M	M
CO3	S	S	M	M	-	-	-	L	ı	L	S	M	S	S	-
CO4	S	M	M	M	-	-	-	L	-	L	М	M	S	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;
- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of

the report.

17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

S.No.	Name of the Faculty	Designation	Departme nt	Mail ID
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in
2	Dr. L. K. Hema	Professor & Head	ECE	hemalk@avit.ac.ins
3	Mr. S. Selvaraj	Professor	ECE	selvaraju@vmkvec.edu.in
4	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in

			1							1		1		1	
17	ECPI	02		MIN	I PR <i>C</i>)JECT	٦	Cate	egory]	L	T	P	Cre	edit
1//		.02		1,111	1110	JUL CI		I	PI	(0	0	6	3	3
									nverting						
		nodel	/ prot	totype	invol	ving m	ıulti-di	isciplir	nary ski	lls and	l / or kı	nowled	ge and	l worki	ng in
at tea															
		UISI													
COL	COURSE OBJECTIVES 1 To concentualize a povel idea / technique into a product														
1															
2	Apply the acquired knowledge to carry out a capstone project having substantial multidisciplinary component														
3															
4	To take on the challenges of teamwork, prepare a presentation in a professional manner,														
COL	and document all aspects of design work														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
	CO1. Apply the knowledge and skills acquired in their courses to a specific problem												nlv		
	or issue. Apply												Piy		
						wledg ponen		carry	out a	capsto	ne pro	ject h	aving	Ap	ply
					•			20000		ntation		nuofoss	i on al		
						s of de			a prese	паног	ı III a	profess	sionai	Ana	lyze
CO4	. Exp	lain d	esign	think	ing pr	actices	and th	neir ap	plicatio	ns				Cre	ate
MAI	PPIN	G WI	тн і	PROC	RAN	IME (HTC	OMES	SAND	PROC	TRAM	ME S	PECIE	TIC:	
	CON			1100			,,,,			1100			LOII	10	
CO	РО	PO	РО	PO	PO	PO	РО	РО	PO0	РО	PO1	PO	PS	PS	PS
S	1	2	3	4	5	06	07	08	9	10	1	12	O1	O2	О3
CO 1	S	M	M	M	L	-	-	-	M	M	-	M	M	M	M
CO	S	L	L	M	M	-	-	-	М	M	_	M	M	M	_
2				111	1,1					1,1		1,1	111	111	
CO 3	M	M	M	M	L	ı	ı	-	M	L	-	M	M	M	M
CO 4	S	S	M	M	-	-	-	L	-	L	S	M	S	M	-
	rong;	M-M	lediur	n; L-I	Low			<u> </u>							

Norms

- Each student must register to the project course related to his or her program
- ➤ Mini Project course consists of one semester and would be allowed to register only during the final year of study.
- ➤ Minor design project identification, the objective and methodology and expected outcome of the proposed work.
- > Presentation of the proposed work design, implementation and partial result
- Presentation of complete project work with results and discussion Demonstration of project work
- ➤ Minor Project Report

S. No	Name of the Faculty	Designation	Dept	Mail ID
1	Dr. T. Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec _edu.in
2	Dr. D. Vijendra Babu	Professor	ECE	Vijendrababu@avit.ac.in

17E(CPI03		AI)VAN(CED M	ICROI	PROCE	ESSOR		Ca	tegory	$ \mathbf{L} $	T		P	Credit
											PI	3	0		0	3
PREA	MBLE	E										1 1		<u> </u>		
To lear	n the ar	chitectu	ire and	prograr	nming	of adva	nced mi	icropro	cessors.							
PRER	EQUI	SITE -	Nil													
COUF	RSE O	BJECT	TIVES													
1	To int	roduce	the con	cepts o	f advan	ced mic	croproce	essors.								
2	To int	roduce	the pro	grammi	ing tech	niques	using N	MASM,	DOS a	nd BIOS	function	calls.				
3	To int	roduce	the bas	ic archi	tecture	of Pent	ium fan	nily of p	process	ors.						
4	To int	roduce	the arcl	hitectur	e progra	amming	g and in	terfacir	ng of ad	vanced N	/licropro	cessors	·			
5	To int	roduce	the con	cepts a	nd archi	itecture	of RIS	C proce	essor.							
COUF	RSE O	UTCO	MES													
On t	he succ	essful	comple	etion of	f the co	ourse, s	tudent	s will t	e able	to						
CO1:	Explai	in the x	86 arc	hitectu	re and	memo	ry orga	nizatio	on of th	e proces	ssor			τ	Understa	nd
	Demorer instru			_	-	•	_	he vario	ous ado	lressing	modes	and da	ta	Į	Understa	nd
CO3: 1	List and	d descr	ibe the	RISC	and CI	SC arc	hitectu	ıre						H	Evaluate	
CO4:	Illustr	ate the	instruc	ctions s	et pres	ent in	a proce	essor fo	or logic	al and a	rithmeti	c oper	ation	ns A	Apply	
CO5:	Analyz	ze the f	eatures	s and o	peratio	ns of v	arious	feature	es of th	e open s	ource h	ardwa	re.	A	Analyze	
MAPI	PING V	VITH	PROG	SRAM	ME O	UTCO	MES .	AND I	PROG	RAMM	E SPEC	CIFIC	OU	TCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 P	SO1	PSO2	PSO3
CO1	S	M	-	L	M	M	L	M	S	-	-	-		S		-
CO2	S	S	M	-	S	M	L	M	S	-	-	-		S	S	-
CO3	S	M	-	-	-	M	L	M	S	-	-	-		S	S	-
CO4	S	-	S	L	S	M	L	M	S	-	-	-		S	S	-
CO5	S	-	-	M	S	M	L	-	S	-	-	-		S	-	_

S- Strong; M-Medium; L-Low

8086 MICROPROCESSOR:

Register organization, x86 architecture and signal description, physical memory organization, Bus operation, I/O addressing, special processor activities, Modes of operations. Addressing modes, Instruction sets.

PENTIUM MICROPROCESSORS

Pentium Microprocessor Architecture – Special Pentium Registers – Pentium Memory Management – New Pentium Instructions – Pentium Pro Microprocessor Architecture – Special features – Pentium II Microprocessor Architecture – Pentium III Microprocessor Architecture – Pentium III Architecture – Pentium IV Architecture – Comparison of Pentium Processors.

RISC PROCESSORS I

PowerPC620 – Instruction fetching – Branch Prediction – Fetching – Speculation, Instruction dispatching – dispatch stalls – Instruction Execution – Issue stalls- Execution Parallelism – Instruction completion – Basics of P6 micro architecture – Pipelining – our of- order core pipeline – Memory subsystem.

RISC PROCESSORS II(Superscalar Processors)

Intel i960 – Intel IA32- MIPS R8000 – MIPS R10000 – Motorola 88110 – Ultra SPARC processor- SPARC version 8 – SPARC version 9.

PC HARDWARE OVERVIEW

Functional Units & Interconnection, New Generation Mother Boards 286 to Pentium 4 Bus Interface- ISA- EISA-VESA- PCI- PCIX. Peripheral Interfaces and Controller, Memory and I/O Port Addresses.

TOTAL HOURS: 45

TEXT BOOKS

- 1. B.B.Brey The Intel Microprocessor 8086/8088 /80186/80188, 80286, 80386, 80486 PENTIUM, PENTIUM Pro, PII, PIII & IV Architectures, Programming & Interfacing, Pearson Education, 2004.
- 2. John Paul Shen, Mikko H.Lipasti, "Modern Processor Design", Tata McGraw Hill, 2006.

REFERENCE BOOKS

- 1. Douglas V.Hall, "Microprocessors and Interfacing", Tata McGraw Hill, II Edition 2006
- 2. Mohamed Rafiquzzaman, "Microprocessors and Microcomputer Based System Design", II Edition, CRC Press, 2007

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in
2	G.Ramachandran	Assistant Professor	ECE	ramachandrang@vmkvec.edu.in
3	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in

17ECPI04	VIRTUAL INSTRUMENTATION	Category	L	T	P	Credit
17201104	FOR ELECTRONICS	PI	3	0	0	3

PREAMBLE

To obtain comprehensive knowledge in virtual instrumentation and some of its applications.

PREREQUISITE - NIL

COUR	COURSE OBJECTIVES							
1	To review background information required for studying virtual instrumentation.							
2	To study the programming techniques of virtual instrumentation.							
3	To study the various data acquisition techniques							
4	To study the various tool set in virtual instrumentation.							
5	To study applications using virtual Instrumentation							
COUR	SE OUTCOMES							
On the s	successful completion of the course, students will be able to							
	Enumerate the concept of information required for studying virtual	Understand						
instrume	entation.							
CO2. Br	CO2. Break down the programming techniques of virtual instrumentation. Analyze							
CO3. De	CO3. Describe the various data acquisition techniques Understand							
CO4. Re	CO4. Review the various tool set in virtual instrumentation. Understand							
CO5. De	CO5. Demonstrate the applications using virtual Instrumentation Apply							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P O 1	PO 2	PO 3	PO 4	PO 5	PO0 6	PO0 7	PO0 8	PO0 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	M	S	S	-	M	-	-	-	-	-	-	M	M	-	-
CO2	L	S	M	-	M	-	-	-	-	-	-	M	M	S	-
CO3	S	M	S	L	L	M	-	-	-	-	-	M	M	ı	-
CO4	M	M	L	S	L	S	-	-	-	-	-	M	-	S	-
CO5	M	M	S	-	M	L	-	-	-	-	-	M	-	-	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Virtual Instrumentation: Historical perspective - advantages - block diagram and architecture of a virtual instrument - Conventional Instruments versus Traditional Instruments - data-flow techniques, graphical programming in data flow, comparison with conventional programming.

VI PROGRAMMING TECHNIQUES: VIs and sub-VIs, loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, State machine, string and file I/O, Instrument Drivers, Publishing measurement data in the web

DATA ACQUISITION: Introduction to data acquisition on PC, Sampling fundamentals, Input/Output techniques and buses. Latest ADCs, DACs, Digital I/O, counters and timers, DMA, Software and hardware installation, Calibration, Resolution, Data acquisition interface requirements – Issues involved in selection of Data acquisition cards – Data acquisition cards

with serial communication - VI Chassis requirements. SCSI, PCI, PXI system controllers, Ethernet control of PXI. Networking basics for office & Industrial applications, VISA and IVI.

TOOL SETS: Use of Analysis tools, Fourier transforms, power spectrum, correlation methods, windowing and filtering. Application of VI in process control designing of equipments like oscilloscope, Digital multimeter, Design of digital Voltmeters with transducer input Virtual Laboratory, Web based Laboratory

APPLICATIONS: Distributed I/O modules- Application of Virtual Instrumentation: Instrument Control, Development of process database management system, Simulation of systems using VI, Development of Control system, Industrial Communication, Image acquisition and processing, 99 Motion control. Development of Virtual Instrument using GUI, Real-time systems, Embedded Controller, OPC, HMI / SCADA software, Active X programming.

TEXT BOOKS:

- 1. Gary Johnson, LabVIEW Graphical Programming, Second edition, McGraw Hill, New York, 1997.
- 2. Lisa K. wells & Jeffrey Travis, LabVIEW for everyone, Prentice Hall, New Jersey, 1997

REFERENCE BOOKS:

1. Kevin James, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Newnes, 2000.

S.No	Name of the Faculty	Designatio n	Dept	Mail ID
1	Mr. S. Selvam	Assistant Professor (Gr-II)	ECE	Selvam@avit.ac.in
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in

17CS	SPI04		BU	USINES				AND	ITS		Categor	y L	Т	P	Credit
					APP	LICAT	10NS				PI	3	0	0	3
Busines		-					_			_				tegrate, a Data mini	-
PRERI	EQUIS	ITE – I	NIL												
COUR	SE OB														
1	To Int	roduce	student	ts to vai	rious bu	siness	intellige	ence co	ncepts						
2	To lea	ırn the	concept	s of dat	a integr	ation u	sed to o	develop	intellig	ent syste	ms for d	ecision s	upport		
3	To int	roduce	visuali	zation t	ool for	prepare	the ent	terprise	reportii	ng					
4	To lea		lytical c	compon	ents and	d techn	ologies	used to	create	dashboa	rds and s	corecard	ls, data/1	text/Web	mining
4			insights	s into or	ganizat	tional o	peration	ns in im	plemen	tation of	systems	for Busi	ness Int	elligence	(BI)
COUR	SE OU	TCOM	1ES												
On th	e succe	essful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
	earn ah	out the	concer	ots of O	LTP an	d OLA	P for Bl	I infrast	ructure	developi	ment		Unde	erstand	
CO2. C	Gained	an unde	erstandi	ng of h	ow busi	ness pr	ofessio	nals car	use an	alytics te	chnique		Anal	yze	
	nnly C	lusterin	o Asso	ociation	and Cl	assifica	tion tec	hnique	s for Da	ıta Integr	ation		Appl	у	
										ive analy			Appl	y	
CO5. D	Develop	systen	ns to m		monito	r and p				ariables		ormance	Appl	y	
							S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO2	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO3	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO4	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
CO5	S	M	L	-	M	-	-	-	-	-	-	M	M	M	M
7 04		M = 1:	Т Т				<u> </u>								1
)- Stroi	ng; M-l	vieaiun	n; L-Lo	W											

SYLLABUS

INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards - Introduction to SSRS Architecture— Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

- 1. Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.
- 2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.
- 3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mrs. S. Leelavathy	Assistant Professor(G-II)	CSE	leelavathy@avit.edu.in

17CS	SPI07		LEA	ARNIN	G IT F	ESSEN	TIALS	BY D	OING		Catego	ory	L	Т	P (Credit
1.00					PI		3	0	0	3						
PREA	MBLE															
include	es prog	rammin	ng, Dat	tabase a	and we	b Tech	nology	among	gst othe	Essenti r related	topics.	This	cou	rse refe	ers to th	e basic
PRER				- IIght	type of	WCOSI			t und en	idole sta				pic we	в аррисс	
	RSE OF	JEC 1	IVES													
1	To lea	arn abo	ut the e	ssentia	ls of In	ıformat	ion Te	chnolog	gy							
2	To ge	t an ide	ea abou	t the sc	ripting	langua	ges.									
3	To ge	t an ide	a abou	t the in	ternet p	protoco	ols									
COUR	SE OU	JTCON	MES													
On the	succes	sful cor	npletio	n of the	course	e, stude	nts wil	l be abl	e to							
CO1 U	Unders	tand th	e netw	orking	conce	pt inte	rnet pi	rotocol	s, netw	ork rou	ting	Und	erstar	nd		
CO2. U	Jnderst	and the	fundar	nentals	of web	applic	ations a	and its	modelir	ng		Und	erstar	nd		
CO3. U	Unders	tand ar	nd lear	n the so	cripting	g langı	uages v	with de	esign of	f web		** 1		1		
applica					-	_						Una	erstar	nd		
CO4. A	Analyze	the pro	ocess of	f mobil	e comn	nunicat	ion and	l netwo	rk techi	nologies		Anal	lyze			
CO5. I	Build s	imple i	nteract	ive app	olication	ns, data	abase a	pplicat	ions an	d multir	nedia	Anal	lvze			
applica	itions.															
MAPP	ING V	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO)GRA	MME SI	PECIFI	C O	UTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	D12	PSO1	PSO2	PSO3
CO1	S	M	M	M	-	-	-	-	-	-	-		M	M	M	-
CO2	S	M	M	M	-	-	-	-	-	-	-		M	M	M	-
CO3	S	M	M	M	-	-	-	-	-	-	-]	M	M	M	-
CO4	M	M	M	M	M	-	-	_	-	_	_]	M	M	-	_
CO5	M	M	M	M	S	_	_	_	_	_	_		M	S	M	-
S- Stro	ng; M-							<u> </u>								

SYLLABUS

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads.

Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries – SQL Tuning techniques – Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison Wesley, 1991

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in