

Faculty of Engineering and Technology

REGULATIONS 2021

Programme:

M.E / M.Tech. - Embedded Systems Technologies Full Time (2 Years)

CHOICEBASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to IV)

VINAYAKA MISSION'S RESEARCH FOUNDATION

(DEEMED TO BE UNIVERSITY), SALEM CURRICULUM FOR REGULATION-2021 Credit Requirement for the Course Categories

M.E/M. Tech-Embedded Systems Technologies (FULL TIME)

S. No	Category of courses	Type of courses	Suggested break up of credits
1	A Foundation courses(Foundite)	Mathematics/Applied Mathematics	3
1.	A. Foundation courses(5 credits)	Research Methodology and IPR	2
2.	B. Program core courses(32 credits)	Core courses	32
		Program electives	15
3.	C. Elective courses(18 credits)	Open electives (Courses on emerging areas.)	03
		Project work phase I	6
	D. Emmloyability Enhancement	Project work phase II	12
4.	D. Employability Enhancement Courses and courses for presentation of Technical skills	Internship	1
	related to the specialization(20 credits)	Technical Seminar	1
5.	E. Mandatory Courses/Audit courses	Any two courses on: 1. English for Research Paper Writing 2. Disaster Mitigation and Management 3. Value Education 4. Constitution of India 5. Pedagogy Studies 6. Personality Development Through Life Enlighten Skills	Zero credit
Tot	l calcreditstobeearnedfortheawardofM.		75

M.E./N	M.E./M.TECH. – EMBEDDED SYSTEMS TECHNOLOGIES - SEMESTER I TO IV										
A. Foundation courses -Credits(05)											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE		
1.		APPLIED MATHEMATICS FOR ELECTRONICS ENGINEERS	MATH	FC-BS	2	1	0	3	NIL		
2.		RESEARCH METHODOLOGY AND IPR	ECE	FC-HS	2	0	0	2	NIL		

		MBEDDED SYSTEMS TECHNOLOG	IES - SEME	STER I TO IV					
SL. NO	CODE	Courses - Credits (32)	OFFERING DEPT.	CATEGORY	L	T	P	С	PREREQUISITE
1		MODERN DIGITAL PRINCIPLES AND DESIGN	ECE	CC	3	0	0	3	NIL
2		CONTROLLER BASED SYSTEM DESIGN	ECE	СС	4	0	0	4	NIL
3		DESIGN OF EMBEDDED SYSTEMS	ECE	CC	3	0	0	3	NIL
4		SOFTWARE FOR EMBEDDED SYSTEMS	ECE	CC	3	0	0	3	NIL
5		ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROCESSING	ECE	CC	3	0	0	3	NIL
6		WIRELESS SENSORS AND NETWORKING DEVICES	ECE	CC	3	0	0	3	NIL
7		ARM RISC PROCESSORS AND ARCHITECTURE	ECE	CC	3	0	0	3	NIL
8		INTERNET OF THINGS FOR EMBEDDED SYSTEMS	ECE	CC	3	0	0	3	NIL
9		ADVANCED SYSTEM ON CHIP DESIGN	ECE	CC	3	0	0	3	NIL
10		EMBEDDED SYSTEMS LAB – I	ECE	СС	0	0	4	2	NIL
11		EMBEDDED SYSTEMS LAB – II	ECE	СС	0	0	4	2	NIL

M.E./M.TECH. – EMBEDDED SYSTEMS TECHNOLOGIES - SEMESTER I TO IV

C. Elective courses -Credits (18)

i. Pro	gram Elect	tives-Credits 15		
SL. NO	CODE	COURSE	OFFERING DEPT.	

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	T	P	С	PREREQUISITE
1		MEMORY TECHNOLOGIES	ECE	EC-PS	3	0	0	3	NIL
2		MEMS TECHNOLOGY	ECE	EC-PS	3	0	0	3	NIL
3		EMBEDDED LINUX	ECE	EC-PS	3	0	0	3	NIL
4		ADVANCED DIGITAL SIGNAL PROCESSING	ECE	EC-PS	3	0	0	3	NIL
5		PROGRAMMING IN PYTHON	ECE	EC-PS	3	0	0	3	NIL
6		EMBEDDED PRODUCT DEVELOPMENT	ECE	EC-PS	3	0	0	3	NIL
7		DISTRIBUTED EMBEDDED COMPUTING	ECE	EC-PS	3	0	0	3	NIL
8		SOFT COMPUTING AND OPTIMIZATION TECHNIQUES	ECE	EC-PS	3	0	0	3	NIL
9		CRYPTOGRAPHY AND NETWORK SECURITY	ECE	EC-PS	3	0	0	3	NIL
10	_	EMBEDDED SYSTEMS FOR AUTOMOTIVE ELECTRONICS	ECE	EC-PS	3	0	0	3	NIL
11		COMPUTER VISION AND IMAGE UNDERSTANDING	ECE	EC-PS	3	0	0	3	NIL

12	NANO ELECTRONIC	ECE	EC-PS	3	0	0	3	NIL
	SYSTEMS ENTREPRENEURSHIP	200	EC-1 0					1.11
13	OPPORTUNITIES IN EMBEDDED SYSTEMS	ECE	EC-PS	3	0	0	3	NIL
14	RECONFIGURABLE PROCESSOR TECHNOLOGIES	ECE	EC-PS	3	0	0	3	NIL
15	ADVANCED ROBOTICS AND CONTROL	ECE	EC-PS	3	0	0	3	NIL
ii. Open e	lectives(Courses on emerging a	reas)- Cre	dits 3					
1	SOLAR AND ENERGY STORAGE SYSTEMS	EEE	OE-EA	3	0	0	3	NIL
2	METAL ADDITIVE MANUFACTURING	MEC H	OE-EA	3	0	0	3	NIL
3	SUSTAINABLE BUILT ENVIRONMENT	CIVI L	OE-EA	3	0	0	3	NIL
4	ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
5	WASTE TO ENERGY	ВТЕ	OE-EA	3	0	0	3	NIL
6	BIOMEDICAL PRODUCT DESIGN AND DEVELOPMENT	ВМЕ	OE-EA	3	0	0	3	NIL
D.Employal Credits (20	oility Enhancement Courses And Course)	es For Prese	ntation Of Tech	nical Sk	ills Re	lated	ТоТ	The Specialization-
1	PROJECT WORK PHASE I	ECE	EE-P	0	0	12	6	NIL
2	PROJECT WORK PHASE II	ECE	EE-P	0	0	24	12	NIL
3	INTERNSHIP	ECE	EE-PII	0	0	2	1	NIL
4	TECHNICAL SEMINAR	ECE	EE-S	0	0	2	1	NIL
E. Mandat	tory Courses/Audit courses- Zei	ro credit						
1	ENGLISH FOR RESEARCH PAPER WRITING	HS	AC	0	0	2	0	NIL
				_		2	0	
2	DISASTER MITIGATION AND MANAGEMENT	CIVIL	AC	0	0	2		NIL
3	DISASTER MITIGATION AND MANAGEMENT VALUE EDUCATION	HS	AC AC	0	0	2	0	NIL NIL
	MANAGEMENT							
3	MANAGEMENT VALUE EDUCATION	HS	AC	0	0	2	0	NIL

	APPLIED MATHEMATICS FOR	Category	L	T	Р	Credit					
	ELECTRONICS ENGINEERS	FC- BS	2	1	0	3					
PREAM	BLE										
Mather	natics is fundamental for any field of technology. The aim	of the subject	is to imp	art esse	ntial						
mathematical topics for the PG courses in Electronics and Communication Engineering Department.											
PRERE	PREREQUISITE										
	Nil										
COURS	COURSE OBJECTIVES										
1	To understand the concepts of fuzzy logic.										
2	To make the student learn different matrix methods and some of	the applications	5.								
3	To understand the concepts of random variables.										
4	To make the student learn dynamic programming and th	eir applicatior	ıs.								
5 ′	To understand the concepts of different queuing models.										
COURS	RSE OUTCOMES										
On the successful completion of the course, students will be able to											
CO1. Apply the Concepts of fuzzy sets, knowledge representation using fuzzy rules, fuzzy logic, fuzzy prepositions and fuzzy quantifiers and applications of fuzzy logic.											
_	CO2. Apply the concept of diagonalisation of matrices in the field of electronics and communication engineering.										

Apply

Apply

Apply

CO3. Conceptualize the computational procedure of PERT and CPM method.

computational procedure of dynamic programming.

analyzing queuing models

CO4.Conceptualize the principle of optimality and sub-optimization, formulation and

CO5.Explain the basic characteristic features of a queuing system and acquire skills in

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	S	S	M	L				M				M			
CO2	S	S	M	L				M				M			
CO3	S	S	M	L				M				M			
CO4	S	S	S	L				M				M			
CO5	S	S	M	M	L			M	-			M			

S- Strong; M-Medium; L-Low

SYLLABUS

FUZZY LOGIC

Classical logic – Multivalued logics – Fuzzy propositions – Fuzzy quantifiers

MATRIX THEORY

Some important matrix factorizations – The Cholesky decomposition – QR factorization – Least squares method -Singular value decomposition - Toeplitz matrices and some applications.

ONE DIMENSIONAL RANDOM VARIABLES

Random variables - Probability function – moments – moment generating functions and their properties– Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a Random Variable.

DYNAMIC PROGRAMMING

Dynamic programming – Principle of optimality – Forward and backward recursion – Applications of dynamic programming – Problem ofdimensionality.

QUEUEING MODELS

Poisson Process – Markovian queues – Single and Multi-server Models – Little's formula – Machine Interference Model – Steady State analysis – Self Service queue.

Text Books/ References Books:

- 1. George J. Klir and Yuan, B., Fuzzy sets and fuzzy logic, Theory and applications, Prentice Hall of India Pvt. Ltd., 1997.
- 2. Moon, T.K., Sterling, W.C., Mathematical methods and algorithms for signal processing, Pearson Education, 2000.
- 3. Richard Johnson, Miller & Freund's Probability and Statistics for Engineers,
- 7th Edition, Prentice Hall of India, Private Ltd., New Delhi (2007).
- 4. Taha, H.A., Operations Research, An introduction, 7th edition, Pearson education editions, Asia, New Delhi, 2002.
- 5. Donald Gross and Carl M. Harris, Fundamentals of Queueing theory, 2nd edition, John Wiley and Sons, New York (1985).

COURS	COURSE DESIGNERS											
S.NO	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. S.Punitha	Associate Professor	Mathematics	punitha@vmkvec.edu.in								
2	Ms. S. Sarala	Assistant Professor- Grade II	Mathematics	sarala@avit.ac.in								

	RESEARCH METHODOLOGY AND IPR	Category	L	Т	P	Credit			
		FC- HS	2	0	0	2			
PREA	MBLE			ı					
Thi	s course is aimed at familiarizing students with the policies	of Intellectual F	Property F	Rights (1	PR) to	help them			
integr	ate the IPR process in their research activities. This cours	e is primarily i	neant for	identif	ying hi	s/her own			
prote	ctable innovations and realizing the process of taking it from be	nch to market.							
PRER	PREREQUISITE : Nil								
COUR	SE OBJECTIVES								
1	Illustrate research problem formulation								
2	Acquire knowledge on legal aspects of plagiarism								
3	Knowledge on technical report writing								
4	Process of patenting and development procedure for granting	patent							
5	Analyze research related information and make use of pate	ent information a	and databa	ases					
COUR	SE OUTCOMES								
On th	On the successful completion of the course, students will be able to								
CO1. Define the scope and objectives of a research problem Remember									
CO2.	CO2. Describe legal compliances of Plagiarism Understand								
CO3.	Demonstrate technical report writing				Apply	у			
CO4.	CO4. Reframe the process of patenting and development procedure for granting patent Analyze								

Analyze

CO5.Analyze research related information and make use of patent information and

databases

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1	M	M	-	-	-	-	-	-		-	-	M	M	M	-
CO2	M	M	M	-	M	-	-	-	M	-	-	M	M	M	•
CO3	M	M	M	-	M	-	-	-	M	-	-	M	M	M	-
CO4	S	S	M	-	M	-	-	-	M	-	-	M	S	M	•
CO5	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

Unit I

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

Unit II

Effective literature studies approaches, analysis Plagiarism, Research ethics.

Unit III

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit IV

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit V

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications, New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc, traditional knowledge Case Studies, IPR and IITs.

Text Books/ References Books:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.

COURS	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in							
2	Dr.T.Muthumanicka m	Professor & Head	ECE	muthumanickam@vmkvec.edu.in							

								Cate	gory		L	Т	P	Cre	edit
		MO		IGITAL I DESIGN		LES ANI	O	C	CC	:	3	0	0	:	3
PREA	MBLE														
The p	rimary	aim o	f this	course	is to u	ınderst	and th	ne fund	dament	als beh	ind the	digital l	ogic des	sign. Fro	m that
stude	nts can	gain th	ne expe	erience	, to des	sign any	digita	al circu	iits and	l system	s. The co	ourse inc	cludes fu	ındame	ntals of
Boole	analge	bra, co	mbinat	tional, s	sequen	tial circ	uitsan	ıdappl	ication	sofdigit	alelectr	onics.St	udents	canlearn	
the ba	isic pro	gramn	ning co	ncepts	to imp	olemen	t digita	al circu	iits usi	ng hard	ware de	scription	ı langua	ge.	
PRER	EQUIS	ITE – N	Vil												
COUR	SE OBJI	ECTIVES	S												
1				ents to	the fu	ndame	ntals c	of sequ	ential s	system o	design, A	synchro	nous ci	rcuits,	
-		hing er													
2		ach the y of Pro					hroug	h comp	parativ	e study (on the cla	assificat	ion of co	mmerci	al
3						in digit	al swit	tching	circuit	<u> </u>					
4						f Progra				<u>. </u>					
5										amiliari	zing the	concepts	acquir	ed over t	he 5
						d emplo									
COUR	SE OUT	COMES													
On the	e succe	ssful co	omplet	ion of	the cou	ırse, stı	ıdents	will b	e able t	:0					
CO1. A	Analyze	e and d	esign s	equen	tial dig	ital circ	cuits.							Ар	ply
CO2. E)esign <i>a</i>	anduse	progra	ammin	gtools	forimp	lemen	tingdi	gital cir	cuits of	industry	standar	ds.		ply
												applicat		Reme	mber
CO4. A	Acquire	know	ledge a	bout H	IDL pro	ogramn	ning.							Unde	rstand
								apacit	v due t	o knowl	edge up	gradatio	n on	Unde	rstand
				-		edded s					0 1				
MAPP	ING W	ITH PR	ROGRA	MME O	UTCO	MES AN	D PRO)GRAM	IME SP	ECIFIC (OUTCOM	IES			
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	S	-	M	-	-	-	L	-	S	S	-	-
CO2	S	S	-	-	M	L	-	-	-	M	-	S	S	-	-
CO3	S	S	M	L	-	M	M	-	L	-	-	S	S	-	M
CO4	S	S	-	-	L	L	-	-	M	-	L	S	S	M	M
CO5	M	S	-	-	L	-	S	-	-	-	-	S	S	-	M
S- Str	ong; M	-Mediu	m; L-L	OW					1	1	I	I	1	1	1

UNIT I SEQUENTIAL CIRCUIT DESIGN

Analysis of Clocked Synchronous Sequential Networks (CSSN) Modeling of CSSN – State table Assignment and Reduction – Design of CSSN – ASM Chart – ASM Realization.

UNIT II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Asynchronous Sequential Circuit (ASC) – Flow Table Reduction – Races in ASC – State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards – Designing Hazard free circuits

UNIT III FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS

Fault Table Method – Path Sensitization Method – Boolean Difference Method – Kohavi Algorithm – Tolerance Techniques –Built-in Self Test

UNIT IV ARCHITECTURES & DESIGN USING PROGRAMMABLE DEVICES

Realize combinational, Arithmetic, Sequential Circuit with Programmable Array Logic; Architecture and application of Field Programmable Logic Sequence. Architecture of EPLD, Programmable Electrically Erasable Logic – Programming Techniques -Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects- Xilinx FPGA – Xilinx 2000 - Xilinx 4000 family

UNIT V HDL PROGRAMMING

Overview of digital design with VHDL, hierarchical modelling concepts, gate level modelling, data flow modelling, behavioural modelling, task & functions, logic synthesis-simulation-Design examples, Ripple carry Adders, Carry Look ahead adders, Multiplier, ALU, Shift Registers, Multiplexer, Comparator, Test Bench Note: Class room discussions and tutorials can include the following guidelines for improved teaching /learning process: Discussions / Practice on Workbench: Logic Synthesis and Simulation for digital designs

- 1. 1. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.
- 2. Stephen Brown and Zvonk Vranesic, "Fundamentals of Digital Logic with VHDL Deisgn", Tata McGraw Hill, 2002
- 3. William J. Dally / Curtis Harting / Tor M. Aamodt," Digital Design Using VHDL:A Systems Approach, Cambridge Univerity Press,2015.
- 4. Charles H. Roth Jr., "Digital Systems design using VHDL", Cengage Learning, 2010.
- 5. Mark Zwolinski, "Digital System Design with VHDL", Pearson Education, 2004
- 6. Parag K Lala, "Digital System design using PLD", BS Publications, 2003
- 7. Stephen M.Trimberger, FPGA Technology, Springer, 1994
- 8. Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India, 2001
- 9. Charles H. Roth Jr., "Fundamentals of Logic design", Thomson Learning, 2004.
- 10. John V.Oldfeild ,Richard C.Dorf, "Field Programmable Gate Arrays", Wiley India Edition, 2008

COURS	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in

This cours design of r			DES					gory]		T P			
PREAMBL This cours design of r PREREQUI			DEG	IGN			C	C	4	1	0	0	,	4
	o io to m						l							
							ne arch	itectur	e, progr	amming	and int	erfacing	of syste	em
PREREQU	nicropro	cessor	s and n	nicroco	ntrolle	ers.								
	SITE - N	IL												
COURSE O	BJECTIVE	S												
1 To	introduc	e the fu	ındam	entals (of micr	ocontr	oller b	ased s	ystem d	esign.				
2 To	teach I/0	and R	TOS ro	ole on n	nicroc	ontroll	er.							
3 To	know Mi	crocon	troller	based	systen	n desig	n, appl	ication	ıs.					
	teach I/0													
5 To	involve	Discus	sions/	Practic	e/Exe	rcise oi	nto rev	ising 8	familia	rizing th	ie conce	pts acqı	iired	
COURSE O	JTCOMES	5												
On the suc	cessful c	omplet	ion of	the cou	ırse, st	udents	will b	e able t	:0					
CO1. 8-bit	microco	ntrolle	rs, lear	n asser	nbly a	nd C-pi	rogram	ming o	of PIC.				Remer	
CO2. Learr													Remer	nber
CO3. Learr	ers will	study a	about P	IC mic	rocont	roller a	and sys	stem de	esign.				Apply	
CO4. Work	and exp	erimer	nt with	real ti	me app	olicatio	ns and	projec	t based	learning	<u>5</u> .		Apply	
CO5. Utiliz		-	crocon	troller	softwa	are dev	elopm	ent too	ols such	as a com	ipiler, m	ake	Apply	
MAPPING	WITH PE	ROGRA	мме о	UTCO	MES AN	ND PRO	GRAM	ME SP	ECIFIC C	UTCOM	ES			
COS PO	1 PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1 L	M	М	L	-	-	-	-	-	-	M	-	S	-	-
CO2 L	М	M	L	-	-	-	-	-	-	L	-	S	-	-
CO3 -	М	S	M	-	-	-	-	-	-	M	M	S	-	M
CO4 L	M	S	S	-	-	-	-	-	-	L		S	M	-
CO5 L	S	S	S	L	-	-	-	-	-	M	S	S	-	M

UNIT I 8051 ARCHITECTURE

 $Architecture-memory\ organization-addressing\ modes-instruction\ set-Timers-Interrupts-I/O\ ports, Interfacing\ I/O\ Devices-Serial\ Communication$

UNIT II 8051 PROGRAMMING

Assembly language programming – Arithmetic Instructions – Logical Instructions – Single bit Instructions – Timer Counter Programming – Serial Communication Programming, Interrupt Programming, LCD digital clock, thermometer – Significance of RTOS for 8051

UNIT III PIC MICROCONTROLLER

 $Architecture-memory\, organization-addressing\, modes-instruction\, set-PIC\, programming\, in\, Assembly\, \&\, C-I/O\, port,\, Data\, Conversion,\, RAM\, \&\, ROM\, Allocation,\, Timer\, programming,\, practice\, in\, MP-LAB.$

UNIT IV PERIPHERAL OF PIC MICROCONTROLLER

Timers – Interrupts, I/O ports- I2C bus-A/D converter-UART- CCP modules -ADC, DAC and Sensor Interfacing – Flash and EEPROM memories.

UNIT V SYSTEM DESIGN – CASE STUDY

Interfacing LCD Display – Keypad Interfacing - Generation of Gate signals for converters and Inverters - Motor Control – Controlling DC / AC appliances – Measurement of frequency - Standalone Data Acquisition System

REFERENCE BOOKS:

- 1. Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC Microcontroller and Embedded Systems using Assembly and C for PIC18', Pearson Education 2008
- 2. Rajkamal,"Microcontrollers Architecture, Programming Interfacing, & System Design, Pearson, 2012.
- 3. Muhammad Ali Mazidi, Sarmad Naimi ,Sepehr Naimi 'AVR Microcontroller and Embedded Systems using Assembly and C", Pearson Education 2014.
- 4. Muhammad Ali Mazidi, Janice G. Mazidi and Rolin D. McKinlay, 'The 8051 Microcontroller and Embedded Systems' Prentice Hall, 2005.
- 5. John Iovine, 'PIC Microcontroller Project Book', McGraw Hill 2000
- 6. Senthil Kumar, Saravanan, Jeevanathan, "microprocessor & microcontrollers, Oxford, 2013.
- 7. Myke Predko, "Programming and customizing the 8051 microcontroller", TMcGraw Hill 2001.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in

											Category	L	T I	P C	redit
			DES	SIGN ()F EM	BEDD	ED SY	STE	ИS	-	CC	3	0 ()	3
an e	s cours	ded sy									s of the de re develop		d devel	opmen	t of
COUR	SE OBJI	ECTIVE	ES												
1	To Kr	now ab	out th	e Basi	cs of E	mbedo	led Sy	stems	and i	ntrod	uction to R	TOS			
2	To Im I/O.	pleme	nteml	oedded	l hardv	vare &	firmw	are us	singer	nbedo	led-C for C	51 to int	erface v	vith dif	ferent
3			rate th		edded	systen	n desig	gn usir	ng ARI	M IP co	re with em	phasis o	onits		
4	To dis	scuss t	he var	ious m	ethod	s of Te	esting								
5	To kn	ow ab	out Al	RM Arc	hitect	ure									
COUR	SE OUT	COME	S												
On the	e succe	essful o	comple	etion o	f the co	ourse,	studei	nts wi	ll be a	ble to					
CO1.D	Define, C ology	Classify	andAn	alyze e	mbedd	edsyst	em pro	ductd	esignv	vith IC			Anal	yze	
	Design & ace I/O.	imple	mentd	evice dr	riversir	nembe	dded-C	for C5	1 targe	etMCU	to		Crea	ate	
techni										,,,			Арр	oly	
CO4. P	ropose	serial	& paral	lel prot	ocols to	o desigi	n netwo	orked (embed	lded sy	rstems		Anal	yze	
	Analyze			_	_		-	_	_				Anal	yze	
								1			CIFIC OUT	1			
COS	P01	P02	P03	P04	P05	P06	P07	P08		PO10	PO11	P012	PSO1	PSO2	PSO3
CO1	M	L					M		L		M		M		
CO2	M	L					M		L		M		M		
CO3	M	L					M		M		M		M		
CO4	M	L					M		M		M		M		
CO5	CO5 M L M M M M S- Strong; M-Medium; L-Low														

UNIT I: EMBEDDED DESIGN LIFE CYCLE

9

Product specification – Hardware / Software partitioning – Detailed hardware and software design – Integration – Product testing – Selection Processes – Microprocessor Vs Micro Controller – Performance tools – Bench marking – RTOS Micro Controller – Performance tools – Bench marking – RTOS availability – Tool chain availability – Other issues in selection processes.

UNIT II: PARTITIONING DECISION

9

Hardware / Software duality – coding Hardware – ASIC revolution – Managing the Risk – Coverification – execution environment – memory organization – System startup – Hardware manipulation – memory mapped access – speed and code density

UNIT III: INTERRUPT SERVICE ROUTINES

9

Watch dog timers – Flash Memory basic toolset – Host based debugging – Remote debugging – ROM emulators – Logic analyser – Caches – Computer optimisation – Statistical profiling

UNIT IV: IN CIRCUIT EMULATORS & TESTING

9

Buller proof run control – Real time trace – Hardware break points – Overlay memory – Timing constraints – Usage issues – Triggers. Bug tracking – reduction of risks & costs – Performance – Unit testing – Regression testing – Choosing test cases – Functional tests – Coverage tests – Testing embedded software – Performance testing – Maintenance.

UNIT V: ARM CORE ARCHITECTURE:

9

ARM Core Architecture: Introduction to RISC concepts with ARM as CPU, ARM engine Architecture, AMBA Bus, Core Registers, Programming Modes, Importance of Thumb Mode, CPSR, SPSR, Pipeline, Exceptions, Interrupts

TEXT BOOKS:

- 1. Introduction to Embedded Systems, Shibu K V, 2009, Tata McGraw Hill Education Private Limited, ISBN: 10: 0070678790
- 2. Embedded System Design, Steve Heath, 2004, Elsevier, 2nd Edition, ISBN 9780750655460
- 3. .EmbeddedMicrocomputerSystems-RealTimeInterfacing-JonathanW.Valvano;Cengage Learning; Third or lateredition

- 1. Embedded Systems A contemporary Design Tool, James K Peckol, 2008, John Weily, ISBN: 0-444-51616-6.
- 2. Real-Time Concepts for Embedded Systems, Qing Li and Carolyn Yao, 2003, CMP Books, ISBN:1578201241

COURS	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Departm ent	Mail ID									
1	Mr.Vijay	Assistant Professor (G-II)	ECE	vijay.ece@avit.ac.in									
2	Ms.Vanitha	Assistant Professor (G-II)	ECE	vanitha.ece@avit.ac.in									

	SC)FTWA	RE FOR	EMBED	DED		Cate	gory		L	Т	P	Cro	edit
			SYST	EMS			C	CC	;	3	0	0	:	3
PREAMBLE	ı											I		
The primar	y aim	of this	s cour	se is t	o und	erstan	d the	design	of eml	oedded	systems	demar	nds for	one to
understand	the ar	chitect	ural fe	atures	of a c	hosen	micro	contro	ller; the	softwa	re devel	opment	poses	several
specific chal	_			_										the- art
microcontro					el, and	Motor	olaand	l the so	ftwaree	ngineeri	ng pract	icesapp	licable	
to the design			d syste	ms.										
PREREQUIS	SITE – 1	NIL												
COURSE OBJ	ECTIVE	S												
1 To ex	kpose tl	he stud	lents to	the fu	ndame	entals o	of emb	edded	Progran	ıming.				
2 To In	troduc	e the G	NU C F	rograr	nming	Tool C	hain ir	Linux						
	-		-						-	rogram	ming			
									h a case					
	volve D of the								amiliari	zing the (concept	sacquir	ed over t	the 5
COURSE OUT	COMES	6												
On the succe	essful c	omplet	tion of	the cou	ırse, st	udents	will b	e able 1	to					
CO1. Use GN	IU C to	develo	p embe	edded s	softwa	re.							Remer	nber
CO2. Unders	stand th	ne fund	lament	al emb	edded	systen	ns desi	gn para	adigms.				Remer	nber
CO3. Unders		ne arch	itectur	es, pos	sibiliti	es and	challe	nges, b	oth with	n respec	t to softv	ware	Remer	nber
CO4. Improv design	e empl	oyabili	ty by k	nowled	lge up g	gradati	on on r	ecentt	rendsin	embedo	led syste	ems	Apply	
CO5. Improvembedded s				capaci	ty due	to kno	wledge	e up gr	adation	on recei	nt trend:	s in	Apply	
MAPPING W	ITH PF	ROGRA	MME C	UTCO	MES AN	ID PRO	OGRAM	IME SP	ECIFIC (OUTCOM	IES			
COS PO1	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1 S	S	-	S	-	M	-	-	-	L	-	S	S	-	-
CO2 S	M	-	-	M	L	-	-	-	M	-	S	S	-	-
CO3 S	S	M	L	-	M	M	-	L	-	-	S	S	-	M
CO4 S	S	-	-	L	L	-	-	M	-	L	S	S	М	-
CO5 M	S	-	-	L	-	S	-	-	-	-	S	S	-	M
S- Strong; M	-Mediu	ım; L-L	ow	<u> </u>	<u> </u>				<u> </u>	[<u> </u>	1	1

UNIT I EMBEDDED PROGRAMMING

C and Assembly - Programming Style - Declarations and Expressions - Arrays, Qualifiers and Reading Numbers - Decision and Control Statements - Programming Process - More Control Statements - Variable Scope and Functions - C Preprocessor - Advanced Types - Simple Pointers - Debugging and Optimization - In-line Assembly.

UNIT II. C PROGRAMMING TOOL CHAIN IN LINUX

C preprocessor - Stages of Compilation - Introduction to GCC - Debugging with GDB - The Make utility - GNU Configure and Build System - GNU Binary utilities - Profiling - using *gprof* - Memory Leak Detection with *valgrind* - Introduction to GNU C Library

UNIT III EMBEDDED C

Adding Structure to 'C' Code: Object oriented programming with C, Header files for Project and Port, Examples. Meeting Real-time constraints: Creating hardware delays - Need for timeout mechanism - Creating loop timeouts - Creating hardware timeouts

UNIT IV EMBEDDED OS

Creating embedded operating system: Basis of a simple embedded OS, Introduction to sEOS, UsingTimer 0 and Timer 1, Portability issue, Alternative system architecture, Important design considerations when using sEOS-Memory requirements - embedding serial communication & scheduling data transmission - Case study: Intruder alarm system

UNIT V PYTHON PROGRAMMING

Basics of PYTHON Programming Syntax and Style – Python Objects – Dictionaries – comparison with C Programming on Conditionals and Loops – Files – Input and Output – Errors and Exceptions – Functions – Modules – Classes and OOP – Execution Environment. Note: Class room discussions and tutorials can include the following guidelines for improved teaching /learning process.

- 1. 1. Steve Oualline, 'Practical C Programming 3rd Edition', O'Reilly Media, Inc, 2006.
- 2. Michael J Pont, "Embedded C", Pearson Education, 2007.
- 3. Christian Hill, Learning Scientific Programming with Python, CAMBRIDGE UNIVERSITY PRESS, 2016.
- 4. Wesley J.Chun, "Core python application Programming 3rd Edition", Pearson Educat, 2016.
- 5. Mark J.Guzdial," introduction to computing and programming in python a Multimedia approach,4th edition, Pearson Education, 2015.
- 6. Stephen Kochan, "Programming in C", 3rd Edition, Sams Publishing, 2009.
- 7. Mark Lutz,"Learning Python, Powerful OOPs, O'reilly, 2011.
- 8. Peter Prinzs, Tony Crawford, "C in a Nutshell", O'Reilly, 2016.
- 9. Dr.Bandu Meshram, "Object Oriented Paradigm C++ BeginnersGuide C
- 10. David Griffiths, Dawn Griffiths, "Head First C", O'reilly, 2015.

COUR	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in									
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in									

			ANCED ECTURI		UTER ARALLEI	L	Cate	gory		L	Т	P	Cre	edit
				ESSING		_	C	C	:	3	0	0		3
PREAMBLE	I								L		I.			
The primary	aim of	this co	urse is	to disc	cuss the	e basic	struct	ure of a	a digital	comput	er and to	study i	n detail	the
organization	n of the	Contro	l unit, t	he Arit	thmetic	and L	ogical ı	ınit, th	e Memo	ry unit a	nd the I/	'0 unit		
PREREQUIS	SITE – I	NIL												
COURSE OBJ	ECTIVE	S												
1 To ea	ducate 1	the stu	dents t	o the f	undam	entals	of para	allel pr	ocessing	3				
2 To to	each th	e funda	amenta	ls of n	etwork	topol	ogies fo	or mult	iproces	sors				
3 To in	ıtroduc	e diffe	rent pi	peline	design	S								
4 Toir	troduc	e featu	res of p	arallel	proces	sors, r	nemor	ytechn	ologies,	OS for m	ulti prog	gramme	d compu	ıter
										rizing th	e concej	ots acqu	iired	
l .			the su	bject fo	or impr	oved e	employ	ability	skills					
COURSE OUT	COMES	<u> </u>												
On the succe	essful c	omplet	tion of	the cou	ırse, stı	udents	will b	e able t	to					
CO1. Unders	stand th	ne oper	ations	of mul	tiproce	essor a	nd mu	lticom	outer sy	stems.			Remer	nber
CO2. Unders		ne vario	ous adv	anced	proces	sor te	chnolo	gy, pip	elining a	and scal	able		Remer	nber
CO3. Know t	he wor	king o	f super	scalar	pipelin	e, cacl	ne men	nory or	ganizati	ion			Remer	nber
CO4. Unders									_		nddynar	nic	Under	stand
data flow								,						
CO5. Improv recent trend						ship ca	ipacity	dueto	knowle	dge up gr	adation	on	Apply	
MAPPING W						ID PRO	GRAM	ME SP	ECIFIC (OUTCOM	IES			
COS PO1		P03							P010	P011	P012	PSO1	PSO2	PSO3
CO1 S	-	-	-	-	M	-	-	-	M	-	-	S	M	-
200														
CO2 M	M	S	-	-	-	-	L	-	-	-	-	S	-	-
соз м	-	S	S	-	-	-	-	S	-	-	-	S	-	M
CO4 M	-	-	-	S	-	M	-	-	-	M	-	S	M	-
CO5 -	M	-	-	M	S	-	-	M	-	-	M	S	-	M
 S- Strong; M	<u> </u> -Mediu	l ım; L-L	ow											

UNIT I THEORY OF PARALLELISM

Parallel Computer models – the state of computing-introduction to parallel processing- parallelism in uniprocessors& Multiprocessors,-parallel architectural classification schemes-speedup performance laws- Program and Network Properties-H/W-S/W Parallelism and Functions - C Preprocessor - Advanced Types - Simple Pointers - Debugging and Optimization – In-line Assembly.

UNIT II SYSTEM INTERCONNECT ARCHITECTURES

System interconnect Architectures-Network Properties and routing-Static Interconnection Networks- Dynamic Interconnection Networks-Multiprocessor System Interconnects-inter processor communication network-Structure of Parallel Computers; Hierarchical bus systems-Crossbar switch and multiport memory-multistage and combining network

UNIT III PIPELINING AND SUPERSCALAR TECHNOLOGIES

Pipeline principle and implementation-classification of pipeline processor-introduction of instruction, processor pipelining-pipeline mechanisms-hazards

arithmetic.

UNIT IV HARDWARE TECHNOLOGIES

Introduction to features of advanced embedded processors through Basic Comparative study: of Architectures -addressing modes -instruction types-performance of- Parallel and scalable architectures, Multiprocessor and SIMD, MIMD computers, RISC, CISC, Superscalar, VLIW, Vector, Systolic processors of their unique features - Scalable, Multithreaded and data flow Architectures-inter PE communication-interconnection networks- Array & vector processors, vector instruction types performance modeling-design of vectorising compiler- case Architecture of Itanium processor, Pentium Processor, SPARC Processor.

UNIT V OS ISSUES FOR MULTI PROCESSOR

Introduction-Need for Preemptive OS – Synchronizing and Scheduling in Multiprocessor OS-, Usual OS scheduling Techniques, threads – Classification of multi-processor OS – Software requirements of multiprocessor OS, Distributed scheduler – PVM – PT Threads in shared memory systems

- 1. Kai Hwang "Advanced Computer Architecture". Tata McGraw Hill 2000
- 2. Advanced Computer architecture, By Rajiv Chopra, S Chand, 2010
- 3. John L. Hennessy, David A. Petterson, "Computer Architecture: A Quantitative Approach", $4^{\rm th}$ Edition, Elsevier, 2007
- 4. DezsoSima, Terence Fountain, Peter Kacsuk, "Advanced computer Architecture Adesign Space Approach". Pearson Education, 2003.
- 5. Sajjan G. Shiva "Advanced Computer Architecture", Taylor & Francis, 2008
- 6. Rajaraman, C.Siva Ram Murthy, "Parallel Computers- Architecture and Programming", Prentice Hall India, 2008
- 7. Carl Homacher, Zvonko Vranesic, Sefwat Zaky, "Computer Organisation", 5th Edition, TMH, 2002.
- 8. David E. Culler, Jaswinder Pal Singh with Anoop Gupta "Parallel Computer Architecture", Elsevier, 2004.
- 9. John P. Shen. "Modern processor design Fundamentals of super scalar processors", Tata McGraw Hill 2003.
- 10. Harry F. Jordan Gita Alaghaband, "Fundamentals of Parallel Processing". Pearson Education, 2003.
- 11. Richard Y. Kain, "Advanced computer architecture A system Design Approach", PHI, 2003.

COUR	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in									
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in									

		,	WIREL	ESS SI	ENSOR	S AND		Cate	egory	1		T	P	Cr	edit
			NET	TWOR	KING	DEVIC	CES	CC			3	0	0	;	3
PREA	MBL	E													
	•					-				_	,	l by indi			
							otocol	ssuch	as floo	ding and	l gossipi	ng are c	ommon	lypropo	osed to
		mation			on in W	/SNs									
PREI	REQU	ISITE	- NII	_											
COUF	RSE OI	BJECT	IVES												
1	To di	scuss t	he ove	rview	of wire	eless se	nsor n	etwor	ks.						
2	To fa	miliari	ze the	archit	ecture	of diffe	erent n	etwor	ks						
3)									protocol					
4												signing		bedded	system
5				e imple	ementa	tion o	f proto	cols o	n WSN	I in vario	ous app	lications	S		
		JTCON													
									be abl	e to					
		n the b												Under	
								,			0 1	cipleso	fWSN.	Under	
CO3.	Explai	n the n	eed of	Physic	cal laye	er desig	gn cha	llenge	s and N	MAC Pro	otocols.			Remei	nber
CO4.	Design	the Sı	nart S	ensors	and A	pplicat	tions o	f WSN	Ι.					Apply	
~~	_			•.				•		, ,	,			Apply	
_			•	•			rship	capacit	yduet	o knowl	edge upg	gradatio	non		
recen	t trena	s in en	nbeaae	ea syst	ems ae	esign									
MAP	PING	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROGI	RAMMI	E SPEC	IFIC O	UTCOM	IES	
COS	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO6	PO ₇	PO8	PO ₉	PO10	PO11	PO12	PSO ₁	PSO ₂	PSO ₃
CO ₁	M	L	L	L	L	M	/	-	-	M	-	M	M	M	L
CO ₂	M	M	M	L	L	M	-	-	-	M	-	M	M	M	L
CO ₃	M	M	M	M	L	L	-	-	-	M	-	M	M	M	L
CO ₄	M	M	M	L	L	M	-	-	-	-	-	M	M	M	L
	M	L	L	L	L	M	_	_	_	_	_	M	M	M	L
CO5	IVI	L	ш	- 1								111	111		- 1

UNIT I OVERVIEW OF WIRELESS SENSOR NETWORKS

Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor Networks.

UNIT II ARCHITECTURES

Single-Node Architecture Hardware Components, Consumption Sensor Nodes. Energy of Operating Systems and Execution Environments. Network Architecture - Sensor Network Scenarios, Optimization Goals and Figures of Gateway Concepts. Merit,

UNIT III NETWORKING SENSORS

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing

UNIT IV INFRASTRUCTURE ESTABLISHMENT

Topology Control, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control.

UNIT V SENSOR NETWORK PLATFORMS AND TOOLS

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.

TEXT BOOKS:

- 1. Holger Karl & Andreas Willig, " Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007

REFERENCE BOOKS:

- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, And pplications", John Wiley, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.V.Vanitha	Assistant Professor	ECE	Vanitha.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in

		A	RM RISO	C PROCI	PROCESSORS AND				gory	I		T	P	Cre	dit
			Al	RCHITI	RCHITECTURE				EC		3		0	3	 }
PREA	MBLE														
The p	rimary	aim of	this co	urse is	to cov	er appl	ication	n and d	esign c	of ARM (A	Advance	d RISC I	Machine) systen	ıs.
Topics	s inclu	de asse	embly a	nd C la	nguag	e prog	rammi	ng and	an int	roductio	n to the	control	and into	erfacing	of ARM
based	systen	ns.													
PRER	EQUIS	ITE – ı	NIL												
COURS	SE OBJI	ECTIVE	S												
1	To tea	ch the	archite	cture of	genera	ıl AVR p	rocess	or							
2	To tea	ch the	archite	cture ar	ıd prog	rammir	ng of 8/	'16 bit F	RISC pr	ocessor					
3	To tea	ch the	implem	entatio	n of DS	P in AR	M proc	essor							
4	To dis	cuss or	n meme	roy ma	nageme	ent, app	lication	n develo	pment	in RISC p	rocessoi	•			
5								vising &	familia	arizing th	e concep	ts acquir	ed over t	he 5 Units	s of
COLIDA			or impro	oved en	iployar	oility sk	IIIS								
COUK	SE OUT	COMES)												
On the	e succe	ssful c	omplet	ion of	the cou	ırse, st	udents	will be	e able t	0					
CO1. I	Describ	e the pr	ogramı	ner's m	odel of	ARM p	rocesso	or and c	reate a	nd test as	sembly l	evel		Reme	mber
	ımming			C			1		1		·	+- ADM			
proces	-	ze vario	ous type	es or cop	orocess	ors and	aesign	i suitab	ie co-pi	cocessor	interiace	to AKM		Reme	mber
-		the arc	hitectu	ral supp	ort of	ARM fo	r opera	ting sys	tem an	d analyz	e the fund	ction of r	nemory	Reme	mhar
	ement													Kenie	111001
	Develop pment.		underst	anding	on the	concep	ts ARM	Archite	ecture, _]	programi	ning and	applicat	cion	Under	stand
	-		ess deli	vers ins	ight int	to vario	us emb	edded i	process	ors of RI	SC archit	ecture /		Δ.	-1
		-	ssors w		_			-						Ap	ріу
MAPP	ING W	ITH PF	ROGRA	MME O	UTCO	MES AN	ID PRO)GRAM	ME SP	ECIFIC O	UTCOM	ES			
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	L	1	M	L	-	-	-	-	-	M	L	-	-
CO2	M	L	L	-	M	L	-	-	-	-	-	M	L	-	-
CO3	M	L	L	-	M	L	-	-	-	-	-	M	L	-	-
CO4	M	L	L	-	M	L	-	-	-	-	-	M	L	-	-
CO5	M	L	L	-	M	L	-	-	-	-	_	M	L	-	-
						_							_		
S- Str	ong; M	-Mediu	ım; L-L	0W											

UNIT I AVR MICROCONTROLLER ARCHITECTURE

Architecture – memory organization – addressing modes – I/O Memory – EEPROM – I/O Ports – SRAM – Timer – UART – Interrupt Structure- Serial Communication with PC – ADC/DAC Interfacing

UNIT II ARM ARCHITECTURE AND PROGRAMMING`

Arcon RISC Machine – Architectural Inheritance – Core & Architectures -- The ARM Programmer's model - Registers – Pipeline-Interrupts – ARM organization - ARM processor family – Co-processors. Instruction set – Thumbinstruction set – Instruction cycle timings.

UNIT III ARM APPLICATION DEVELOPMENT

 $Introduction\ to\ RT\ implementation\ with\ ARM\ -- Exception\ Handling\ -- Interrupts\ -- Interrupt\ handling\ schemes-Firmware and bootloader\ -- Free\ RTOS\ Embedded\ Operating\ Systems\ concepts\ -- example\ on\ ARM\ core like\ ARM\ processor.$

.

UNIT IV MEMORY PROTECTION AND MANAGEMENT

Protected Regions-Initializing MPU, Cache and Write Buffer-MPU to MMU-Virtual Memory-Page Tables-TLB-Domain and Memory Access Permission-Fast Context Switch Extension.

UNIT V DESIGN WITH ARM MICROCONTROLLERS

Assembler Rules and Directives- Simple ASM/C programs- Hamming Code- Division-Negation- Simple Loops –Look up table-Block copy- subroutines-application.

REFERENCE BOOKS:

- 1. Steve Furber, 'ARM system on chip architecture', Addision Wesley
- 2. Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield 'ARM System
- 3. Developer's Guide Designing and Optimizing System Software', Elsevier 2007.
- 4. Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi 'AVR Microcontroller and Embedded
- Systems using Assembly and C", Pearson Education 2014.
- 5. ARM Architecture Reference Manual, LPC213x User Manual
- 6. www.Nuvoton.com/websites on Advanced ARM Cortex Processors
- 7. Trevor Martin, 'The Insider's Guide To The Philips ARM7-Based Microcontrollers,
- 8. An Engineer's Introduction To The LPC2100 Series' Hitex (UK) Ltd.,

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.R. Karthikeyan	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in

Т P Category L Credit INTERNET OF THINGS FOR EMBEDDED **SYSTEMS** CC3 0 3 0 PREAMBLE This syllabus is intended for the Engineering students and enables them to lean about Embedded systems This syllabus contains intelligent agent, Difference between IoT and M2M and application. Which is. useful to how represent knowledge and in machine learning contain some important prediction method. Thus, this syllabus focuses on IO T systems Home Automation Agriculture. PREREQUISITE - NIL **COURSE OBJECTIVES** To understand and gain complete knowledge about internet of things 1 To study about network protocol 2 To learn basic programming and IoT tools 3 To get a knowledge in Embedded programming 4 To familiarize the students in writing assembly programming and interfacing with Peripherals using 5 PIC Microcontroller COURSE OUTCOMES On the successful completion of the course, students will be able to Understand **CO1:**. Understand the concepts of Internet of Things. **CO2:** - Classify and analyze the various standards and protocols used for embedded Apply interfaces **CO3:** Design IoT applications in different domains Analyze **CO4**: Examine the various types of software unit testing necessary for embedded **Evaluate** system design. CO5: - Develop knowledge and skills necessary to develop a real time embedded **Evaluate** system. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P₀2 P03 PO4 P05 P06 P07 **PO8** P09 PO10 P011 PO12 PSO1 PSO2 **PSO3** L L C01 M S S M M L S S CO₂ M L L M M CO3 S S M L M M M L L M CO4 M S L S M M S S M M L L S S S CO5 L L M M M

S- Strong; M-Medium; L-Low

NTRODUCTION TO EMBEDDED SYSTEM &IOT: Embedded system- characteristics of embedded system- categories of embedded system- requirements of embedded systems- challenges and design issues of embedded system- Defining IoT, Characteristics of IoT, Physical Design of IoT, Logical Design of IoT, Functional BlocksofIoT, and Communication Models & APIs, machine to machine, Difference between IoT and M2M, Software Define Network.

EMBEDDED SOFTWARE DEVELOPMENT AND TOOLS: Software architectures, Round - Robin, Round- Robin with Interrupts, Function Queue Scheduling architecture, Introduction to assembler - Compiler - Cross compilers, Linker/ Locators, Simulators - Embedded Firmware Design Approaches and Development Languages.

EMBEDDED SOFTWARE DEVELOPMENT AND TOOLS: Software architectures, Round - Robin, Round- Robin with Interrupts, Function Queue Scheduling architecture, Introduction to assembler - Compiler - Cross compilers, Linker/ Locators, Simulators - Embedded Firmware Design Approaches and Development Languages

EMBEDDED PROGRAMMING: Programming in assembly language (ALP) vs High Level Language - C Program elements: - Macros and functions, Use of Date Types, Structure, Pointers, Function Calls - Introduction to different IoTTools, Developing Applications through IoTTools, Developing Sensor based Application through Embedded System Platform, Implementing IoT concepts with Python.

DOMAIN SPECIFIC APPLICATIONS: IoT applications - Home Automation-Agriculture- Health care - Surveillance Applications - Smart Grid - Introduction to Industrial IoT (IIoT)

TEXT BOOKS:

- 1. Perry Lea, "Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security", Packt, 2018.
- 2. David Hanes, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", Cisco press, 2017.

REFERENCES:

- 1. Samuel Greengard, "The Internet of Things", The MIT Press Essential Knowledge series, 2015.4. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach", 2014.
- $2. \ Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols", 2nd Edition, Wiley, 2012.$
- ${\it 3. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice", 2010.}$

S.No.	NameoftheFaculty	Designation	Departmen t	Mail ID
1	Ms.Lakshmishree B	Assistant Professor (Gr-I)	BME	lakshmishree.bme@avit.ac.in

2	Ms.sandhiya R	Assistant Professor (Gr-I)	ВМЕ	sandhiya.bme@avit.ac.in		
3	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in		
4	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in		

P ADVANCED SYSTEM ON CHIP **Category** T Credit L **DESIGN** CC 3 0 0 3 **PREAMBLE** This course includes details for designing and developing an image processing demo application. PREREQUISITE: NIL **COURSE OBJECTIVES** To create high level functional specifications to design To implement and test on real hardware using standard hardware description and software 2 programming languages To design and develop image processing demo application **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1 –Understand the design of Arm Cortex-A based SoCs in a Understand standard hardware description language CO2 – Use and choose between different techniques for digital system Apply design and capture CO3 – Evaluate implementation results (e.g. speed, area, power) and Analyze correlate them with the corresponding high level design and capture CO4 - Use commercial tools to develop Arm Cortex-A based SoCs Create MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PSO1 PSO₂ **PSO3** 9 S 1 2 3 4 5 6 7 8 10 11 12 CO S M S M M M 1 CO S L L M M M M 2 CO M M S S S L M M 3 CO S S M M M L M M S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to Programmable SoCs, ARM Processor

SoC Design, Moore's Law, Scaling, Design Productivity Gap, Bridging the Design Productivity Gap, Example Arm-based SoC, SoC v Microcontroller v Processor, SoC Design Flow, SoC Example: NVIDIA Tegra 2, SoC Example: Apple SoC Families,

Arm Processors, Arm Processor Families, Arm Processors vs Arm Architectures, Arm and Thumb Instruction Sets, AAPCS, Processor modes, Vector table, Memory model.

Arm DS-5 Arm 7

Arm DS-5 Development Studio Overview, ARM DS-5 Code, ARM DS-5 Build, ARM DS-5 Debug, Debug Hardware, Virtual Debug Interface – VSTREAM, ARM DS-5 Analyser – Streamline, ARM DS-5 Analyser – Energy Probe, ARM DS-5 Simulation, ARM DS-5 Device Configuration Database

ARM assembler file syntax, Single/ Double register data transfer, Addressing Memory, Pre- and Post -Indexed Addressing, Multiple Register Data Transfer, Data Processing Instructions, Shift/Rotate Operations, Instructions for loading constants, Multiply/Divide, Bit Manipulation Instructions, Byte Reversal, Flow control, Branch instructions, Interworking, Compare and Branch if zero, Conditional Instructions,

ARM Cortex-A9 Processor

Cortex- A9, Cortex-A9 MPCore, Cortex-A9 MPE Configuration, Cortex-A9 Media Processing Engine, Performance Monitoring Unit (PMU), Cortex A9 supports ARMv7-A Architecture, caches, Data Cache, Memory Management Unit, ARM v7 Architecture Effects

AMBA AXI4 Bus Architecture

What is a Bus, Bus Types, Bus Terminology, Bus Operation, Communication Architecture Standards, ARM AMBA System Bus, AMBA 3 AXI Interface, AMBA 4 Specifications, AXI Components and Topology, Transcation Channels, Basic Signals, Clock and Reset, Channel Timing Example, Relationship Between the Channels

AXI UART and AXI4-Stream Peripherals

Serial Communication, Serial Communication vs Parallel Communication, Types of Serial Communication, UART Overview, UART Protocol, Character- Encoding Scheme, ASCII Encoded Characters, AXI UART Implementation, UART Control, UART Register Block, First In First Out(FIFO),

AXI4-Stream with VGA Output Peripheral

VGA Overview, How VGA Signals Work?, VGA Timing, VGA Interface, Utilization of FIFO, Hardware Implementation

AXI4-Stream with HDMI Input Peripheral

HDMI Overview, HDMI Interface, HDMI Signals: TMDS Channels, TMDS Timing, Data Display Channels, Consumer Electronics Control, Hot Plug Detect, AX14- Stream HDMI Input Peripheral, TMDS Deserialization and Decoding in Xilinx FPGA, Utilization of FIFO, TVALID / TUSER / TLAST Logic

Final Application: Image Processing

Edge Detection, Image Scaling, Gray Scale, Intensity Gradient Magnitude, Software Programming: Edge Detection Algorithm

Reference Books:

- 1. ARM System-on-Chip Architecture by Steve B. Furber
- 2. ARM Assembly Language: Fundamentals and Techniques by William Hohl
- 3. Cortex-A Series Programmer's Guide for ARMv7-A by Arm http://infocenter.arm.com/help/topic/com.arm.doc.den0013d/index.html
- 4. The Zynq Book Tutorials for Zybo and ZedBoard by Louise H Crockett (Author), Ross A Elliot (Author), Martin A Enderwitz.

COUR	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Dept	Mail ID							
1	R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in							
2	ARM University Program										

				na sec		CVCTE	MC 7 4 5				Category	L	T	P C	redit
				EMB	EDDED SYSTEMS LAB I						CC	0	0	2	2
PREAMBLE To provide the skill to develop Assembly language programming for various types of microcontroller and interfacing peripheral devices with microcontroller is vital due to the persisting real time application scenarios. Hence exposure to interface ADCs, DACs with															
	PRERQUISITE NIL														
COUR	SE OBJ	ECTIVI	ES												
1	To w	rite th	e prog	rams f	or com	munio	cation	betwe	een m	icrocc	ntroller aı	nd perip	heral c	levices	
2	To w	rite th	e prog	rams f	or 16 b	out Mi	cro Co	ntroll	ers						
3	To w	rite th	e prog	rams u	sing A	RM Pr	ocesso	ors							
4	To st	udy on	ie type	of Rea	ıl Time	Oper	ating S	Systen	ns (R7	ros)					
COLIB	SE OUT	COME	c												
	e succe			etion o	f the co	ourse,	stude	nts wi	ll be a	ble to)				
	Develo metic o	_	-			-		ic app	licati	ons lik	xe .	Analyze	<u>:</u>		
CO2.I	Develop	asser	nbly la	anguag	e prog	ram fo	or basi	c app	licatio	ns lik	e	Analyze	<u> </u>		
	arithmetic operations, interrupt and UART, etc CO3. Develop and execute program using ARM architecture. Analyze														
CO4.	CO4. Understand the concept of Real Time Operating Systems (RTOS). Analyze														
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	PO2	P03	P04	P05	P06	PO7			P010		P012	PSO1	PSO2	PSO3
CO1	M	L					M		L		M		M		
CO2	M	L					M		L		M		M		

M

M

M

M

M

M

M

M

CO3

CO4

M

M

L

L

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Design with 8 bit Microcontrollers 8051/PIC Microcontrollers
 - i) I/O Programming, Timers, Interrupts, Serial port programming
 - ii) PWM Generation, Motor Control, ADC/DAC, LCD and RTC Interfacing, Sensor Interfacing
 - iii) Both Assembly and C programming
- 2. Design with 16 bit Microcontrollers
 - I/O programming, Timers, Interrupts, Serial Communication,
- 3. Design with ARM Processors.
 - I/O programming, ADC/DAC, Timers, Interrupts,
- 4. Study of one type of Real Time Operating Systems (RTOS)
- 5. Electronic Circuit Design of sequential, combinational digital circuits using CAD Tools
- 6. Simulation of digital controllers using MATLAB/LabVIEW.
- 7. Programming with DSP processors for
 - Correlation, Convolution, Arithmetic adder, Multiplier, Design of Filters FIR based, IIR based
- 8. Design with Programmable Logic Devices using Xilinx/Altera FPGA and CPLD Design and Implementation of simple Combinational/Sequential Circuits
- 9. Network Simulators
 - Simple wired/ wireless network simulation using NS2
- 10. Programming of TCP/IP protocol stack.

Reference:

1. Laboratory Reference Manual.

S.No.	Name of the Faculty	Designation	Departm	Mail ID
			e	
			nt	
1	Mr.Vijay	Assistant Professor	ECE	vijay.ece@avit.ac.in
		(G-II)		
2	Ms.Vanitha	Assistant Professor	ECE	vanitha.ece@avit.ac.in
		(G-II)		

			EMD	EDDE	D CVC	TTTNAG	CIAD	II	C	Categor y	7	L	Т	P	Cre	dit
			FMR	EDDE	D 212	TEMS	LAB	-11		CC		0	0	4	2	
PREAN	ABLE								I			ı	I	ı		
To lear	rn pr	ogra	ammi	ng co	ncep	ts usi	ng VF	IDL a	nd Xili	nx. The	stud	lents	wil	l learn	desig	ı wit
										r boar						
										s & PIC				llers. T	o mal	кe
				ize w	rith G	UI Sir	nulat	ion to	ol for	develo	oing	oroje	cts.			
PRERE NIL	LQUI:	SIIE	ı													
COURS	E OB	JECT	IVES													
1 T	o Stu	ıdy I	Progr	amm	ing co	ncep	ts us	ing VI	IDL ar	nd Xilin	X.					
									tion t							
3 T	'o I o	ırn t	-ho 147	orkin	σof /	DM ~	rocc	ccor 0	, DIC N	Microco	ntrol	lor				
ى 1	To Learn the working of ARM processor & PIC Microcontroller															
<u>4</u> Т	The students will learn design with simulators/experiments, inprogramming															
p	processor boards, processor interfacing using Rasberry Pi Microcontroller Board															
COURS	E OU	TCO	MES													
On the	succ	essf	ul co	mplet	ion o	f the	cours	e, stu	dents	will be	able	to				
CO1.	Disc	uss	the p	rogra	mmi	ng co	ncept	s usin	g VHI	OL and		Und	erst	and		
Xilinx CO2. D	امتحا	n n	rogra	ıme ii	cina (ZIII Si	mula	tion t	oole			Anal	1,770			
CO3.D	emoi	nstra	ate pr	ograi	ns in .	ARM	foras	pecifi	c Appl	ication		App	ly			
		_		_			erent	app	olicatio	ons us	ing	Anal	lyze	!		
Rasber							EC AN	D DDO	CDAM	ME CDE	CIPIC	O LUTTO	014	7.0		
									1	ME SPE					D.C.	D.C.
CO P S 1		0 0	P0 3	PO 4	P0 5	P0 6	PO 7	P0 8	P0 9	PO 10	P01 1	P()12	PSO 1	PS 02	PS 03
		M	L	-	-	-	-	-	-	L			_		M	-
1			_													
	M	S	S	-	M	-	-	-	L	M	L		M	S	S	-
2									1.7						1.7	<u> </u>
CO 1	L	M	L	-	-	-	-	-	M	L	-		-	-	M	-
	S	S	M	-	L	-	-	-	L	L	M		M	S	M	-
4																
S- Stro	-		1.											•		

LIST OF EXPERIMENTS:

1. ATMEL CPLDs – Prochip designer a) Schematic entry b) VHDL entry

- 2. AT40K FPGA series synthesis design simulation of application programs
- 3. Xilinx EDA design tools device programming –PROM programming
- 4. Programming & Simulation in GUI Simulators / Tools
- 5. Code compressor studio for embedded DSP using Texas tool kit
- 6. Programming ARM processor :ARM7 / ARM9/ARM Cortex, Study on incircuit Emulators, cross compilers , debuggers
- 7. IPCORE usage in VOIP through SoC2 tools
- $8.\ Programming with Rasberry Pi Microcontroller Board: Study on incircuit Emulators, cross compilers, debuggers$
- 9. Third party tools for embedded java and embedded C++ applications through cadence tools.

REFERENCE

1. Laboratory Reference Manual

COU	COURSE DESIGNERS											
S. No	Name of the Faculty	Mail ID										
1	Mrs. R.MohanaPriya, A.P(Gr-II), ECE	mohanapriya@avit.ac.in										
2	Mr. Vijay, A.P(Gr-II),ECE	vijay.ece@avit.ac.in										

	MEMORY TECHNOLOGIES	Category	L	T	P	Cre dit				
		EC- PS	3	0	0	3				
PREAM	BLE		•	•						
This cou	rse is helps in understanding various memory arc	hitecturesan	d its fal	orica	tion p	orocesses				
PRERE	QUISITE Nil									
COURSE	OBJECTIVES									
1	To familiarize on various architecture and	d classificatio	ns on \	Volat	ile m	emory				
2	Analyze and identify suitable nonvolatile	Analyze and identify suitable nonvolatile memory								
3	To analyze the various influencing parmemory technology.	To analyze the various influencing parameters on semiconductor memory technology								
4	To understand the embedded logic ar	chitectures a	and its	rela	tion	S.				
5	To learn about future trends in memo	ry technolog	gies.							
COURSE	OUTCOMES									
On the	successful completion of the course, student	s will be abl	e to							
	lect architecture and design semiconductor and subsystems.	memory	Evalı	iate						
	ster ability to understand the role of embedde s in industry	ed	Analy	yze						
	alyze various types of advancement in semico	onductor	Appl	у						
CO4. Ac	quire knowledge about different embedded	system	Analy	yze						
	signandEvaluatestate-of-the-art memory ch	ipdesign	Analy	yze						

MAI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO	PS0
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO 2	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
C0 3	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
CO 4	S	S	S	M	M	-	•	-	-	-	-	M	S	M	M
CO 5	S	S	S	S	M	-	•	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

RAM TECHNOLOGIES

SRAM: Static Random Access Memories (SRAMs), SRAM Cell Structures, MOS SRAM Architecture, MOS SRAM Cell and Peripheral Circuit, Bipolar SRAM, Advanced SRAM Architectures, Application Specific SRAMs.

DRAM: DRAMs, MOS DRAM Cell, BiCMOS DRAM, Error Failures in DRAM, Advanced DRAM Design and Architecture, Application Specific DRAMs. SRAM and DRAM Memory controllers.

ROM TECHNOLOGIES

Masked ROMs, PROMs, Bipolar & CMOS PROM, EEPROMs, Floating Gate EPROM Cell, OTP EPROM, EEPROMs, Non-volatile SRAM, Flash Memories.

SEMICONDUCTOR MEMORY RELIABILITY AND RADIATION EFFECTS

General Reliability Issues, RAM Failure Modes and Mechanism, Nonvolatile Memory, Radiation Effects, SEP, Radiation Hardening Techniques. Process and Design Issues, Radiation Hardened Memory Characteristics, Radiation Hardness Assurance and Testing. -tunneling hot electron transistors.

EMBEDDED MEMORIES DESIGNS AND APPLICATIONS:

Embedded Memory Developments, Cache Memory Designs, Embedded SRAMDRAM Designs, DRAM ASICs, DRAM Processes with Embedded Logic Architectures, Embedded EEPROM and Flash Memories

FUTURE MEMORY DIRECTIONS: MEGABYTES TO TERABYTES

Future Memory Developments, Magnetoresistive Random Access Memories (MRAMs), Resonant Tunneling Diode-Based Memories, Single-Electron Memories, Phase-Change Nonvolatile Memories, Protonic Nonvolatile Memories

TEXT BOOKS:

1. Ashok K Sharma, "Advanced Semiconductor Memories: Architectures, Designs and Applications", Wiley Interscience.

2. Ashok K Sharma," Semiconductor Memories: Technology, Testing and Reliability, PHI

REFERENCE BOOKS:

- 1. Hidaka, Hideto (Ed.), Embedded Flash Memory for Embedded Systems: Technology, Design for Sub-systems, and Innovations, 2018, ISBN 978-3-319-55306-1
- 2. Joe Brewer, Manzur Gill "Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices (IEEE Press Series on Microelectronic Systems Book 8)"

COUR	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.Vijay	Assistant Professor (G-II)	ECE	vijay.ece@avit.ac.in										
2	Ms.Vanitha	Assistant Professor (G-II)	ECE	vanitha.ece@avit.ac.in										

MEMS TECHNOLOGY	Category	L	T	P	Credit
	EC-PS	3	0	0	3

PREAMBLE

The objective of this course is to make students understand the concepts of MEMS material and its fabrication process. To design and get familiarized with electrostatic sensor, thermal sensor, piezoelectric sensors and actuators. To understand the concepts of MEMS devices & its characteristics and its application.

PRER	EQUISI NIL	TE													
COUR	SE OBJE	CTIVE	S												
1	To understand properties of MEMS materials ,microstructure and fabrication methods.														
2	To design and model the Electrostatic sensors and actuators.														
3	To design and model the thermal sensors and actuators.														
4	To understand the fundamentals of piezoelectric sensors and actuators through exposure to different														
	MEMS														
5															
	SE OUT														
	On the successful completion of the course, students will be able to														
	01. Understand about MEMS materials, microstructure and its fabrication Understand														
	Explain								tors			Apply			
	Design											Analyze			
			pplica	tionof	piezoe	lectric	senso	rsanda	actuato	orsthroug	gh	Analyze			
	ent ME			CME	MC 1		1	1				77 1 .			
	Explain											Underst	and		
										SPECIFIC			1		
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	P012	PSO1	PSO2	PSO3
CO1	S	S	M	-	M	-	-	-	-	-	-	S	S	M	-
CO2	S	S	L	-	M	M	-	-	-	-	-	S	S	M	-
CO3	S	S	M	-	L	M	-	-	-	-	-	S	S	M	-
CO4	S	M	L	-	M	M	-	-	-	-	-	S	S	M	-
CO5	CO5 M M L - L - - - - - S S M - S-Strong; M-Medium; L-Low														
5- Str	ong; M-	меан	ım; L-l	70M											

MEMS AND MICRO SYSTEM-FABRICATION, MATERIALS AND ELECTRO-MECHANICAL CONCEPTS

MEMS materials: Silicon, silicon compounds, polymers, metals, Micro fabrication process, Silicon and other material based fabrication processes, conductivity of semiconductors-Crystal planes and orientation-stress and strain-beam bending, torsional deflections-Intrinsic stress-resonant frequency and quality factor.

ELECTROSTATIC SENSORS AND ACTUATION

Principle, material, design and fabrication of parallel plate capacitors as electrostatic sensors and actuators - Applications

THERMAL SENSING AND ACTUATION

Principle, material, design and fabrication of thermal couples, thermal bimorph sensors, thermal resistor sensors-Applications.

PIEZOELECTRIC SENSING AND ACTUATION

Piezoelectric effect- -properties of piezoelectric materials-Applications, Piezoresistive sensors, Magnetic actuation, Micro fluidics applications

MEMS DEVICES AND ITS CHARACTERISTICS

Architecture, working and basic quantitative behaviour of Cantilevers, Microheaters, Accelerometers, Pressure Sensors, Piezoresistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency.

TEXT BOOKS:

- 1. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
- $_{\rm 2.}$ M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes",Elsevier, Newyork, 2000

REFERENCES:

- 1. Marc Madou, "Fundamentals of microfabrication", CRC Press, 1997.
- 2. Boston, "Micromachined Transducers Sourcebook", WCB McGraw Hill, 1998.

S.No.	Name of the Faculty	Mail ID
1	R. Mohana Priya, A.P(Gr-II), ECE	mohanapriya@avit.ac.in
2	Mr.Rajat, A.P(Gr-II),ECE	rajatkumar.ece@avit.ac.in

				EMI	BEDDEI) LINU	Κ		(Category	L	T	P	Cred	lit
									E	EC-PS C	3	0	0	3	
PREAM	MBLE														
The ob	ojective	of this	course	is to m	iake sti	ıdents	unders	tand th	ie conc	epts of Lin	ux Opei	ating S	ystem, GN	NU cross	
platfo	rm tool (chain. T	o learn	about	Kernel.	Toget	familia	rized w	ith diffe	erentmem	ory dev	ices and	file trans	fer meth	od.
DDEDI	20111011	15													
PKEKE	E QUISIT NIL	Ł													
COLIDS	SE OBJEC	TIVEC													
1	· · · ·		ndthofi	ındamı	ntalco	fI inuv	Operat	inacuc	tom itc	basiccomr	nande				
1		rogran		ınuanı	ziitaisu	Lillux	Operac	iligsys	tem, 168	Dasiccomi	nanus				
2				with e	nbedd	ed Linu	x GNU	Cross I	Platforr	n Tool Cha	in.				
3										vices and fi		fer .			
4	To un	dersta	nd the	fundan	nentals	concep	ots of C	onfigur	e Kern	el.					
5	To lea	arn abo	ut Linu	ıx drive	ers										
COURS	SE OUT	COMES													
	succes														
	xplain t											Apply			
	iscuss (Unders	tand		
CO3. A	nalyze	the per	rformai	nce of v	arious	differe	nt men	nory de	evices a	nd file tra	nsfer.	Analyze	9		
CO 4 11			1' '		1 .					(l l.		A 1			
	nustrate ent MEN		opiicati	on or p	iezoeie	ctric se	ensors a	ana act	uators	through		Analyze	<u>)</u>		
	iscuss (ıx drive	rs and	its ann	lication	1					Unders	tand		
								RAMME	SPECI	FIC OUTCO		<u> </u>			
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO
CO1	S	S	L	-	M	M	-	-	-	-	-	1012	S	M	-
CO2	M	M	L	-	L	-	-	-	-	-	-		S	M	-
CO3	S	S	M	-	L	M	-	-	-	-	-		S	M	-
- CO :		1		İ	3.6	3.6		i				1	1 0		

M

M

S

S

-

M

M

L

CO4

CO5

S

M

M

M

S- Strong; M-Medium; L-Low

L

L

BASICS OF LINUX

Linux System and its Working with Files and Directories - Linux File system - Partitions and File systems - Understanding Linux Permissions; Using Command Line Tools: Executing Commands from the Command Line - Getting to a Shell - Popular Command-Line Commands - Working with the Bash Shell

EMBEDDED LINUX

Introduction-Origin of Embedded Linux-Embedded Linux vs Desktop Linux-Commercial Embedded Linux and its Distribution-Architecture of Embedded Linux - Linux Kernel Architecture - GNU Cross Platform Toolchain

HOST-TARGET SETUP & ITS ARCHITECTURE

RealLifeEmbeddedLinuxSystems-DesignandImplementationMethodology-TypesofHost/TargetDevelopment Setups Debug Setups - Generic Architecture of an Embedded Linux System - System Startup - Types of Boot Configurations - System Memory - Processor Architectures - Buses and Interfaces - I/O – Storage

INTRODUCTION TO KERNEL & ITS CONFIGURATION

Introduction to Linux Kernel Modules- GNU Cross-Platform Development Toolchain - C Library Alternatives- - Eclipse: An Integrated Development Environment - Terminal Emulators - Kernel-Selection - configurationl - Compiling - Installing-Basic Root Files ystem Structure - Libraries - Modules and Images - - Application Demo: Building a Ranging Sensor Kernel Module

LINUX DRIVERS

Introduction in to basics on Linux drivers, introduction to GNU cross platform Toolchain-

TEXT BOOK:

- 1. Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum, 'Building Embedded Linux Systems 2nd Edition', SPD -O'Reilly Publications, 2008.
- 2. Robert Love, "Linux System Programming, SPD -O'Reilly Publications, 2010

REFERENCES:

- P.Raghavan, Amol Lad, Sriram Neelakandan, "EmbeddedLinux System Design & Development, Auerbach Publications, 2012
- 2. William von Hagen, 'Ubuntu Linux Bible 3rd Edition', Wiley Publishing Inc., 2010
- 3. Jonathan Corbet, Alessandro Rubini & Greg Kroah-Hartman, 'Linux Device Drivers 3rd Edition', SPD -O'Reilly Publications, 2011

S.No.	Name of the Faculty	Mail ID
1	R.Mohana Priya, A.P(Gr-II), ECE	mohanapriya@avit.ac.in
2	Mr.Vijay A.P (Gr-II)/ECE	vijay.ece@avit.ac.in

				ADV	ANCED			AL			Category	L	T	P C	redit
					P	ROCESS	SING				EC- PS	3	0)	3
incl mor	s cours uding	image gical ir	recor		ion an	d rest	oratio			_	ligital ima and enha		_		_
NIL			nc												
COUR:	1	ECTIVE		hands	mather	natical	doscri	ntion o	and me	ndalling	g of discret	a tima ra	ındom s	ignale	
2			-	al proc				•	illu Illi	Juenni	g of discret	e tillie ra	illuolli S	igilais	
3				edge of											
4	-								ltirate	concep	ots and tec	hniques			
5	To di	scuss N	Method	of lead	ling alg	orithm	s for v	arious	applic	ations					
COLID	CE OUT	COME	C												
				etion o	f the co	nurse	studei	nts wi	ll he a	hle to					
CO1. F	ormula	ate time	doma	in and f	requen	cy dom	ain des	cripti	on of V	Vide Sei		Apply			
			-	ectral fa		tion the	eorem,	spectr	um est	imatior	1,	Apply			
CO3. A	apply V	Viener f	iltering	g, LMS a		ns, Lev	inson r	ecursio	on algo	rithm,		Apply			
		of adap ion, into		ters ion, San	npling r	ate con	versio	ı. Appl	ication	ns of					
multir	ate sig	nal pro	cessing	5								Apply			
CO5. I	nfer ab	out the	e contro	ol instr	uctions	, interr	upts, a	nd pip	eline	operati	ons	Apply			
MAPP	ING W	итн р	ROGR	AMME	OUTC	OMES	AND P	ROGR	AMM	E SPEC	CIFIC OUT	COMES			
COS	P01	P02	P03	P04	P05	P06	P07	P08		PO10	P011	P012	PSO1	PSO2	PSO3
CO1	S	S	M	-	M	-	-	-	-	-	-	M	S	М	-
CO2	S	S	S	M	M	-	-	-	-	-	-	M	S	М	M
CO3	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
	S	M	M	L	L	-	•	-	•	-	-	L	S	M	-
CO4								i		1		1	S	Ì	1

UNIT I DISCRETE RANDOM SIGNAL PROCESSING

 $\label{lem:process} Discrete random processes - Ensemble averages - Wide sense stationary process - Properties - Ergodic process - Sample mean \& variance - Auto-correlation and Auto-correlation matrices Properties - White noise process - Weiner Khitchine relation - Power spectral density - Filtering random process - Spectral Factorization Theorem - Special types of Random Processes - AR,MA,ARMA Processes - Yule-Walker equations.$

UNIT II SPECTRUM ESTIMATION

Bias and Consistency of estimators - Non-Parametric methods - Periodogram - Modified Periodogram - Barlett's method - Welch's method - Blackman-Tukey method - Parametric methods - AR, MA and ARMA spectrum estimation - Performance analysis of estimators.

UNIT III SIGNAL MODELING AND OPTIMUM FILTERS

Introduction-Leastsquaremethod-Padeapproximation-Prony's method-Levinson Recursion-Lattice filter-FIRWienerfilter-Filtering-Linear Prediction-Non Causal and Causal IIRWeiner Filter-Mean square error - Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

FIR Adaptive filters - Newton's steepest descent method - Widrow Hoff LMS Adaptive algorithm - Convergence - Normalized LMS - Applications - Noise cancellation - channel equalization - echo canceller - Adaptive Recursive Filters - RLS adaptive algorithm - Exponentially weighted RLS sliding window RLS.

UNIT V MULTIRATE SIGNAL PROCESSING

Decimation - Interpolation - Sampling Rate conversion by a rational factor I/D - Multistage implementation of sampling rate conversion - Polyphase filter structures - Applications of multirate signal processing.

TEXT BOOKS:

- **1.** John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Prentice Hall of a. India, New Delhi, 2005.
- **2.** Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., New York, 2006.

REFERENCE BOOKS:

- 1. P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992. a.
- 2. S. Kay," Modern spectrum Estimation theory and application", Prentice Hall, Englehood a. Cliffs, NJ 1988. 5. Simon Haykin, "A

COURS	COURSE DESIGNERS												
S.No.	NameoftheFaculty	Designation	Departm e nt	Mail ID									
1	Mr.Vijay	Assistant Professor (G-II)	ECE	vijay.ece@avit.ac.in									
2	R.Mohana Priya	Assistant Professor (G-II)	ECE	mohanapriya@avit.ac.in									

		p	ROGR	AMMIN	IG IN P	VTHON	J	(CATEG	ORY	L	T	P	CRE	DIT
		•	ito dia			111101	•		EC P:		3	0	0	3	3
PREA	MBLE							•							
Γhe pι	urpose	of this c	ourse	is to int	roduce	Pytho	n, a ren	narkab	ly pow	erful dyr	amic p	rogramr	ninglan	guage	to
write															
									doma	in. Pytho	on has e	evolved	on more)	
	ar andp		ul opei	1 sourc	e prog	rammı	ng too								
	QUISIT	Ł													
NIL															
COURS	SE OBJE														
1				nowled											
2	To in	troduc	e diffei	rent me	ethods	in list,	string,	tuple,	diction	ary and	sets.				
3								contro	ol state	ments.					
4	To lea	arn abo	out diff	erent f	unctio	ns in p	ython.								
5	То со	mpute	the ex	ceptio	n hand	ling fu	nctions	s, file co	ncepts	s and CS	V and J	SON.			
COUR	SE OUT	COMES	5												
On the	succes	ssful co	mplet	ion of t	he cou	rse, stı	ıdents	will be	able to	0					
CO1.L	earnpy	thonst	ateme	nts,cor	nment	sandin	dentat	ion,tol	ens,in	putand		Unders	tand		
outpu															
	ods usir														
	1 1 1						·			Dictional	_	Apply			
CO3.D staten		olution	sforco	mplex	progra	msusi	ngdeci	sionma	akingai	ndloopii	ng	Apply.			
CO4.A	pplyth	efuncti	onpro	grams	withal	ltheco	ncepts	likelan	ıbda,d	ecorator	·s	Apply.			
and			•				-								
gener															
	omput						file co	nceptp	rogran	nsand		Apply			
	stand t						D DDG	CD 434	AF ODE	TOTAL OF	TITICO N	v D.C.			
MAPP	ING WI	TH PK	OGRA	MME O	UTCON	IES AN	D PKO	GRAM	ME SPE	ECIFIC O	UTCOM	IES			
COS	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PS 02	PSO 3
CO1	S	M	M	M	M	-	-	-	-	-	-	-	-	M	-
CO2	S	M	M	M	M	-	-	-	-	-	-	-	М	-	-
CO3	М	S	S	S	M	-	-	-	-	-	-	-	М	M	-
CO4	S	S	S	S	M	-	-	-	-	-	-	-	М	M	-
CO5	S	M	M	M	M	-	-	-	-	-	-	-	-	M	M
		N / L . 1 ·	m; L-Lo		•	•	•	•	•	•	•	•	•	•	•

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Datatypes-Operators

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keywordvariable arguments-Recursions-Anonymous functions: lambda-Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionaryoperations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'ReillyMedia, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

		Category	L	T	P	Credit
	EMBEDDED PRODUCT DEVELOPMENT	EC- PS	3	0	0	3
PREAM	IBLE		l		1	
Embed	ded product development course enables the studen	ıts to integr	at	e l	κno	owledge
in desi	gn, development and industry integrity of the cycle.					
PRERE	QUISITE					
	NIL					
COURS	E OBJECTIVES					
1	To analyze and learn various aspects of product develo	pment.				
2	Design & development of concept generation and its rel	ated metho	ds	;		
3	Architectures in product development and various appr	roaches to b	e	stı	ıdi	ed.
4	Integration of various tools for simulation for industry a	applications	S.			
5	To study about the complete Embedded Product Develo	opment Life	Cy	yc]	e	
COURS	E OUTCOMES					
On the	successful completion of the course, students will l	pe able to				
CO1. Aı	nalyze various strategies used for product developm	ent Ana	lyz	ze		
	oplystructural approach to concept generation, ity, selection and testing.	App	ly			
	nderstand various aspects of design such as indus		ly			
	design of Consumer specific product, its Rev	erse				
Engine archite	ering manufacture, economic analysis and product					
	ools&techniques used for industry design in manufacturing	ng. Ana	lyz	ze		
CO5. A	nalyze the complete cycle of EDLC	Ana	lyz	ze		

MAI	PPING	WITH	IPRO(GRAM	MEOU	JTCO	MESA	NDPR	OGRA	MMES	PECIFIC	OUTC	OMES		
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO	PS0
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO 2	S	S	M	M	M	-	-	-	-	-	-	M	S	M	M
C0 3	S	S	M	M	M	-	-	-	-	-	-	M	S	M	M
CO 4	S	S	S	M	M	-	•	-	-	-	-	M	S	M	M
CO 5	S	S	M	S	M	-		-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

PRODUCT DEVELOPMENT

Need for PD- Generic product Development Process Phases- Product Development Process Flows- Product Development organization structures-Strategic importance of Product Planning process – Product Specifications-Target Specifications-Plan and establish product specifications - integration of customer, designer, material supplier and process planner, Competitor and customer - Understanding customer and behavior analysis.

DESIGN AND DEVELOPMENT

Concept Generation, Five Step Method-Basics of Concept selection- Creative thinking –creativity and problem solving- creative thinking methods- generating design concepts-systematic methods for designing –functional decomposition – physical decomposition. Embedded System development environment - IDE, Types of file generated on cross compilation, disassembler / decompiler, simulator, emulator and debugging, embedded product development life-cycle, trends in embedded industry.

APPROACHES IN PRODUCT DEVELOPMENT

Product development management - establishing the architecture - creation - Product Architecture changes - variety - component standardization, clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture- competitive benchmarking-Approach for the benchmarking process

INDUSTRY DESIGN

Design for manufacturing - Industrial Design-Robust Design - Prototype basics - Principles of prototyping - Planning for prototypes- Economic & Cost Analysis - Testing Methodologies- Product Branding. Role of Integrating CAE, CAD, CAM tools for Simulating product performance and manufacturing processes electronically- Basics on reverse engineering - Reverse engineering strategies - Finding reusable software components - Recycling real-time embedded software-based approach and

its logical basics- Incorporating reverse engineering for consumer product development –case study

EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Objectives, different Phases & Modeling of the Embedded product Development Life Cycle (EDLC), Case studies on Smart card- Adaptive Cruise control in a Car -Mobile Phone software for key inputs.

TEXT BOOKS:

- 1. "Product Design and Development", Anita Goyal, Karl T Ulrich, Steven D Eppinger, McGraw –Hill International Edns.1999/ Tata McGraw Education, ISBN-10-007-14679-9.
- 2. R.G. Kaduskar and V.B. Baru, "Electronic Product Design", Wiley, 2014.
- 3. KEVIN OTTO & KRISTIN WOOD, "Product Design and Development", 4th Edition,2009, Product Design Techniques in Reverse Engineering and New Product Development, Pearson Education (LPE),2001/ISBN 9788177588217

REFERENCE BOOKS:

- 1. Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction", 3rd Edition, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7
- 2. Yousef Haik, T. M. M. Shahin, "Engineering Design Process", 2nd Edition Reprint, Cengage Learning, 2010, ISBN 0495668141

COU	JRSE DESIGNERS			
S.	Name of the	Designation	Department	Mail ID
No.	Faculty			
1	Ms.Vanitha	Assistant Professor(G-II)	ECE	vanitha@avit.ac.in
2	Mr.Vijay	Assistant Professor (G-II)	ECE	vijay.ece@avit.ac.in

		Category	L	T	P	Cre
	DISTRIBUTED EMBEDDED COMPUTING					dit
		EC-	3	0	0	3
		PS				
PREAMBLE						

Sound knowledge on fundamentals of Networking and Embedded Systems. The $designed \ course \ makes \ the \ students \ to \ work \ on \ the \ various \ applications \ of \ the \ coding.$

PREREQU	JISITE	
	NIL	
COURSE C	DBJECTIVES	
1	To enhance the knowledge in distributed system and in networking	nternet-based
2	Design & analyze the concepts of distributed embedo	ded systems
3	Security and testing of embedded protocols with a implications	cost and performance
4	To understand the distributed computing with it	ts model.
5	To learn about various security, threads & netwo	orks in web services.
COURSE C	OUTCOMES	
On the su	ccessful completion of the course, students will be able	e to
CO1. Inter	rnet based network distribution in embedded domain	Apply
CO2. Real	time embedded system model, analysis and performance ermined.	Apply
CO3. Secu	rity and testing of embedded protocols and to identify	Apply
fault tole	rance.	
CO4. Auth	entication of the distributed models.	Analyze
CO5. Thre	eads, Firewall and various other security measures in	Analyze
web serv	ices are focused.	

MAI	PPING	WITH	IPRO(GRAM	MEOU	JTCO	MESA	NDPR	OGRA	MMES	PECIFIC	OUTC	OMES		
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO	PS0
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO 2	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
C0 3	S	S	S	M	M	-	-	-	-	-	-	M	S	M	M
CO 4	S	S	S	M	M	-	•	-	-	-	-	M	S	M	M
CO 5	S	S	S	S	M	-	•	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO DISTRIBUTED SYSTEM

Introduction- Communication in distribution system-Client/Server Model-Synchronization in distributed system. Parallels between the large-scale (Internet-based) and small-scale networked distributed embedded system domains

DISTRIBUTED EMBEDDED SYSTEMS

Real-time systems, models, communication and scheduling, design and validation, implementation, performance, power and cost, embedded network protocols.

SECURITY AND TESTING

Basics of embedded system security, distributed cyber physical systems that includes integration of protocols, middleware services, and tools into a common architecture with layered, reusable, secure, fault-isolating components, project case studies for distributed embedded systems

DISTRIBUTED COMPUTING

Definition of distributed computing - Model of distributed computation- Distributed shared memory- Authentication in distributed system

SECURITY IN COMPUTING

Security meaning- Threads in networks- Network security control- Firewall-Authentication- E-mail security- Security in web services- Case studies

TEXT BOOKS:

- 1. Hermann Kopetz, "Real-Time Systems Design Principles for Distributed Embedded Applications", Springer, Second Edition, 2011
- 2. Ajay D Kshemkalyani, Mukesh Singhal, "Distributed Computing" Principles, Algorithm and systems, Cambridge university press 2008.
 - 3. Charles P. Pfleeger, "Security in Computing", Pearson 2009.

REFERENCE BOOKS:

- 1. Steve Heath, "Embedded System Design", Newnes, 2003.
- 2. Peter Marwedel, "Embedded System Design Embedded System Design Foundations of Cyber Physical Systems", Springer, Second edition, 2011.
- 3. Wayne Wolf, "Computers as Components", Second edition, Morgan Kaufmann, 2008

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.Vanitha	Assistant Professor(G-II)	ECE	vanitha@avit.ac.in
2	Mr.Vijay	Assistant Professor (G-II)	ECE	vijay.ece@avit.ac.in

			SOFT	COMPU	ITING A	ND		Cate	gory]	L	T	P	Cre	edit
		0	PTIMIZA	ATION TI	ECHNIQU	ES		E P		;	3	0	0	:	3
PREA	MBLE	l												<u>I</u>	
This o	course	focus c	n givir	ng intro	oductio	n to so	me ne	w field	ls in so	ft comp	uting wi	ith its pr	rincipal	compon	ents of
fuzzy	logic a	and GA	which	helps	stude	nts to o	differe	ntiate	traditi	onal and	d geneti	c algorit	hm. Th	is cours	e gives
insigh	ntful stu	udy ab	out pro	blems	incurr	ed in v	arious	doma	ins and	l the cor	nprehen	sive sof	t compu	ıting	
techn	iques p	rovide	s solut	ion to	these p	roblen	ns ben	efiting	the stu	idents fo	or the pu	rsuit of	allied re	esearch	
PRER	EQUIS	ITE – 1	nil												
COUR	SE OBJI	ECTIVE	S												
1			nd the		mental	concep	ots of s	oft cor	nputin	g, artific	ial neur	al netwo	orks and		
2	To Fa	miliari	ize witl	h recer	ıt adva	nceme	nts in A	Artifici	al neur	al netw	orks and	l optimi	zation to	echniqu	es
3	To kn	ow the	e opera	tion of	neuro	-fuzzy :	systen	ıs							
4	To kn	ow Op	timiza	tion Te	chniqu	ies									
5	To in	volve i	in diffe	rent ty	pes of	Advano	ced Op	timiza	tion Te	chnique	es				
COUR	SE OUT	COMES	3												
On th	e succe	essful c	omplet	ion of	the cou	ırse, stı	udents	will b	e able t	.0					
	Compre			damen	tals of	artifici	al neu	ral net	work, f	uzzy sys	stems ar	ıd		Remen	nber
CO2. I probl		tand th	ne signi	ificance	e of var	ious o _l	ptimiz	ation a	lgorith	ms appl	ied to er	ngineeri	ng	Remen	nber
CO3. l	Be capa	able of	develo	ping A	NN-bas	sed mo	dels.							Apply	
CO4. F	Be capa	bleofc	hoosin	gappro	priate	optimi	zation	techni	ques fo	rengine	eringap	plicatio	ns.	Apply	
	Be capa eering			ng app	ropriat	te adva	nced o	ptimiz	ation t	echniqu	es tools	for		Apply	
				MME O	UTCO	MES AN	ID PRO	GRAM	ME SP	ECIFIC C	OUTCOM	ES		<u>I</u>	
COS	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	S	S	S	S	M	M	M	M	M	L	L	M	S	M	-
CO2	S	S	S	M	M	M	-	M	L	-	-	L	M	M	-
CO3	S	S	S	S	S	M	-	L	L	-	L	M	S	M	M
CO4	S	S	M	M	L	L	-	_	-	-	-	-	M	-	-
205													<u> </u>	_	

CO5

S

S- Strong; M-Medium; L-Low

M

UNITI INTRODUCTION TO SOFT COMPUTING AND NEURAL NETWORKS

Introduction to soft computing: soft computing vs. hard computing – various types of soft computing techniques, from conventional AI to computational intelligence, applications of soft computing. Fundamentals of neural network: biological neuron, artificial neuron, activation function, single layer perceptron – limitations. Multi-layer perceptron – back propagation algorithm.

UNIT II ARTIFICIAL NEURAL NETWORKS

Radial basis function networks – reinforcement learning. Hopfield / recurrent network – configuration –stability constraints, associative memory and characteristics, limitations and applications. Hopfield vs. Boltzmann machine. Advances in neural networks – convolution neural networks. Familiarization of Neural network toolbox.

UNIT III FUZZY LOGIC AND NEURO FUZZYSYSTEMS

Fundamentals of fuzzy set theory: fuzzy sets, operations on fuzzy sets, scalar cardinality, union and intersection, complement, equilibrium points, aggregation, projection, composition. Fuzzy membership functions. Fundamentals of neuro-fuzzy systems – ANFIS. Familiarization of ANFIS Toolbox.

UNITIV INTRODUCTION TO OPTIMIZATION TECHNIQUES

Classification of optimization problems – classical optimization techniques. Linear programming – simplex algorithm. Non-linear programming – steepest descent method, augmented Lagrange multiplier method – equality constrained problems.

UNITY ADVANCED OPTIMIZATION TECHNIQUES

Simple hill climbing algorithm, Steepest ascent hill climbing – algorithm and features. Simulated annealing – algorithm and features. Genetic algorithm: working principle, fitness function. Familiarization with Optimization Toolbox.

REFERENCES:

- 1. Laurene V. Fausett, "Fundamentals of neural networks, architecture, algorithms and applications, Pearson Education, 2008.
- 2. Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and soft computing", Prentice Hall of India, 2003.
- 3. Simon Haykin, "Neural Networks A comprehensive foundation", Pearson Education, 2005.
- 4. David E. Goldberg, "Genetic algorithms in search, optimization and machine learning", Pearson Education, 2009.
- 5. Singiresu S. Rao, "Engineering Optimization Theory and Practice", 4th edition, John Wiley & Sons, 2009.
- 6. Thomas Weise, "Global Optimization algorithms Theory and applications", self-published, 2009

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in

CRYPTOGRAPHY AND NETWORK SECURITY Category L T P Credit
SECURITY
EC-PS 3 0 0 3
PREAMBLE
To understand the concepts in cryptography and network security and their applications in real time
PREREQUISITE
NIL
COURSE OBJECTIVES
To understand the basic concepts in understanding cryptography and network security
To know about various encryption techniques.
To understand the concept of Public key cryptography.
To study about message authentication and hash functions
To impart knowledge on Network security
COURSE OUTCOMES
On the successful completion of the course, students will be able to
CO1: Classify the symmetric encryption techniques Understand
CO2: Illustrate various Public key cryptographic techniques Apply
CO3: Evaluate the authentication and hash algorithms. Apply
CO4: Discuss authentication applications Apply
CO5: Summarize the intrusion detection and its solutions to overcome the attacks. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
C0s P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS05 P05 P05
CO1 S M L - M M M
CO2 S M L - M M M
LUZ
CO2 S M L - M M M CO3 S M L - M M M
CO3 S M L - M M M

SYLLABUS INTRODUCTION

Security trends – Attacks and services – Classical crypto systems – Different types of ciphers – LFSR sequences - Basic Number theory - Congruences - Chinese Remainder theorem - Modular exponentiation-Fermat and Euler's theorem-Legendre and Jacobi symbols-Finite fields-continuedfractions.

METHODS

Simple DES - Differential cryptanalysis - DES - Modes of operation - Triple DES - AES - RC4 - RSA - Attacks -Primality test – factoring

TECHNIQUES

Discrete Logarithms - Computing discrete logs - Diffie-Hellman key exchange -ElGamal Public key cryptosystems -Hash functions - Secure Hash - Birthday attacks -MD5 - Digital signatures - RSA -ElGamal - DSA.

AUTHENTICATION

Authentication applications - Kerberos, X.509, PKI - Electronic Mail security - PGP, S/MIME - IP security -WebSecurity – SSL, TLS, SET.

SECURITY AND FIREWALLS

System security - Intruders - Malicious software - viruses - Firewalls - Security Standards

TEXT BOOKS

- 1. Dr. S. Bose and Dr.P. Vijayakumar, "Cryptography and Network Security", First Edition, Pearson Education, 2016.
- 2. WadeTrappe,LawrenceCWashington, "Introduction to Cryptography with coding theory", 2nded, Pearson, 2007.
- 3. William Stallings, "Cryptography and Network Security Principles and Practices", Pearson/PHI, 6th edition, 2013.

REFERENCES

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education, Second Edition, 2007.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing Third Edition Prentice Hallof India, 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	AssociateProfessor	CSE	rjaichandran@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in

	EMBEDDED SYSTEMS FOR AUTOMOTIVE	Category	LT	P	Credit
	ELECTRONICS	EC- PS	30	0	3
PREA	AMBLE			11	
Embe	edded product development course enables the stud	dents to int	egr	ate	
	vledge in design, development and industry integrity		_		
PRFI	REQUISITE				
I ILLI	NIL				
COLL	DCF ODIFCTIVES				
COU	RSE OBJECTIVES				
1	To analyze and learn various aspects of product deve	elopment.			
2	Design & development of concept generation and its	related met	hod	S	
3	Architectures in product development and various a	pproaches to	o be	stu	died.
4	Integration of various tools for simulation for industr	ry applicatio	ns.		
5	To study about the complete Embedded Product Dev	relopment Li	ife (Cycle	
COU	RSE OUTCOMES				
On th	ne successful completion of the course, students will	he able to			
		be able to			
	Analyze various strategies used for product lopment	Anal	yze	<u>}</u>	
	Apply structural approach to concept generation,	App	ly		
	tivity, selection and testing.				
	Understand various aspects of design such as indus		ly		
	gn, design of Consumer specific product, its Rev				
	neering manufacture, economic analysis and produc	it			
	itecture.				
	Tools & techniques used for industry design in	Anal	yze	<u>}</u>	
manu	nfacturing. Analyze the complete cycle of EDLC	Anal	VIZ C	\	
GUJ.	Analyze the complete cycle of EDEC	Allal	yzt		

	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PS0	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	S	S	M	-	M	-	-	-	-	-	-	M	S	M	-
CO 2	S	S	M	M	M	-	-	-	-	-	-	M	S	M	M
CO 3	S	S	M	M	M	-	-	-	-	-	-	M	S	M	M
CO 4	S	S	S	M	M	-	-	-	-	1	-	M	S	M	M
CO 5	S	S	M	S	M	-	-	-	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

REVIEW OF EMBEDDED SYSTEMS

Introduction to functional building blocks of embedded systems – Register, memory devices, ports, timer, interrupt controllers using circuit block diagram representation for each categories -Devices & buses for devices network – serial communication using I2C, CAN, USB buses – parallel communication using ISA, PCI – device drivers in a system – Serial port & parallel port

INTRODUCTION TO AUTOMOTIVE ELECTRONICS

Body and convenience electronics, Vehicle power supply controllers and lighting modules, Door control modules Safety electronics: Active safety systems such as ABS, ASR& ESP etc., Passive safety systems such as restrained systems and their associated sensor in an automobile. Power train electronics: Petrol Engine Management, Infotainment electronics: Dashboard /Instrument cluster, car audio, telematics system, navigation system, multimedia systems etc. Cross application technologies:42-volt vehicle power supply system

EMBEDDED COMMUNICATIONS

Embedded Communications A Review of Embedded Automotive Protocols, Dependable Automotive CAN Networks, Flex Ray Protocol

HARDWARE MODULE

Hardware Modules MC9S12XD family features Modes of operation: functional block diagram overview, Programming model Map Overview Pulse width Modulator (PWM) On chip ADC serial communication protocol: SCI, SPI, IIC, CAN

VEHICLES MANAGEMENT SYSTEM & ELECTRONIC DIAGNOSIS

Electronic Engine Control-engine mapping, air/fuel ratio spark timing control strategy, fuel control, electronic ignition-Vehicle cruise control- speed controlanti-locking braking system-electronic suspension - electronic steering, wiper control. System diagnostic standards and regulation requirements -On board diagnosis of vehicles electronic units & electric units-Speedometer, oil and temperature gauges, and audio system.

TEXT BOOKS:

- 1. William B. Ribbens," Understanding Automotive Electronics", Elseiver, 2012.
- 2. Electronic Engine Control technology Ronald K Jurgen Chilton's guide to Fuel Injection Ford
- 3. Jurgen, R., Automotive Electronics Hand Book

REFERENCE BOOKS:

- 1. Tom Denton, "Automotive Electricals / Electronics System and Components", 3rd Edition, 2004.
- 2. Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 4thEdition,2004.

S.	Name of	Designatio	Departmen	Mail
No.	the Faculty	n	t	ID
1	Ms.Vanitha	Assistant Professor (G- II)	ECE	vanitha@avit.ac.in
2	Mr.Vijay	Assistant Professor (G- II)	ECE	vijay.ece@avit.ac.in

		CON	1PUTER	RVISION	ANDIM	1AGE		Cate	gory]	L	Т	P	Cre	edit
			UN	DERST	CANDIN	NG		EC-l	PS	:	3	0	0	:	3
PREA	MBLE							I							
The ir	ntent o	f this c	ourse i	is to fa	miliari	ze the s	studen	ts to e	xplain	the fund	lamenta	l concep	ts/issu	es of Co	mputer
Vision	and I	mage P	rocess	ing, an	d majo	r appro	oaches	that a	ddress	them. T	his cour	se prov	ides an	introduc	ction to
comp	uter v	ision i	ncludir	ng ima	ge aco	quisitio	n and	imag	e form	ation n	nodels,	radiome	tric mo	dels of	image
forma	tion, i	mage	format	ion in	the ca	amera,	image	e proce	essing	concept	ts, conc	ept of f	eature	extraction	on and
		_								_				n and tr	
image	class	ificatio	n, sce	ne un	dersta	nding,	objec	t class	sificatio	on and	trackin	g, imag	ge fusio	n, and	image
regist	ration,	etc.													
PRER	EQUIS	ITE – I	NIL												
COUR	SE OBJI	ECTIVE	S												
1	To in	troduc	e stude	ents the	e funda	mental	ls of in	nage fo	rmatio	n.					
2		troduc mition	e stude	ents the	e majo	r ideas,	metho	ods, an	d techr	niques o	f compu	ter visio	n and p	attern	
3		velop	an app	reciatio	on for v	various	issues	s in the	design	n of com	puter vi	sion and	l object	recognit	tion
4	To ga	in the	knowle	edge ab	out m	achine l	learnii	ng.							
5	_	ovide t			ith pro	gramm	ing ex	perien	ce fror	n implei	menting	comput	er visio	n and ob	ject
COUR		COMES		40115.											
On the	e succe	essful c	omplet	ion of	the cou	ırse, stı	udents	will b	e able t	o					
CO1. i	dentify	basic	concer	ts. teri	minolo	gv. the	ories. 1	models	and m	ethods	in the fie	eld of		Remen	nber
	uter vi		•	,		0,5	,								
			vn prin	ciples	of hum	an visu	ıal svs	tem an	d imag	e forma	tion.			Under	stand
											resenta	tion, ed	ge	Under	stand
detect	tion an	d dete	ction of	f other	primit	ives, st	ereo, r	notion	and ob	oject rec	ognition	ı .			
CO4. I	Learne	rs can a	acquire	know	ledge a	about m	nachin	e learn	ing.					Apply	
CO5. s	uggest	a desi	gn of a	compu	ıter vis	sion sys	stem fo	or a spe	ecific p	roblem.				Apply	
MAPP	ING W	ITH PF	ROGRA	MME O	UTCO	MES AN	D PRO)GRAM	IME SP	ECIFIC (OUTCOM	ES			
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	S	-	-
CO2	M	M	L	L	L	-	-	-	-	-	L	-	S	-	-
CO3	L	S	S	S	S	S	-	-	-	-	S	S	S	-	M

M

S

M

M

CO4

M

M

CO5	S	S	S	S	S	L	-	-	-	-	S	1	S	M	M
S- Strong; M-Medium; L-Low															

UNIT I: Introduction to Computer Vision and Basic Concepts of Image Formation:

Introduction and Goals of Computer Vision and Image Processing, Image Formation Concepts. Radiometry, Geometric Transformations, Geometric Camera Models. Camera Calibration, Image Formation in a Stereo Vision Setup, Image Reconstruction from a Series of Projections.

UNIT II: Image Processing Concepts:

Image Transforms, Image Enhancement. Image Filtering, Colour Image Processing, Image Segmentation.

UNIT III: Image Descriptors and Features:

Texture Descriptors, Colour Features, Edges/Boundaries. Object Boundary and Shape Representations .Interest or Corner Point Detectors, Histogram of Oriented Gradients, Scale Invariant Feature Transform, Speeded up Robust Features, Saliency.

UNIT IV Fundamentals of Machine Learning:

Linear Regression, Basic Concepts of Decision Functions, Elementary Statistical Decision Theory, Parameter Estimation, Clustering for Knowledge Representation, Dimension Reduction, Linear Discriminant Analysis.

UNIT V : Applications of Computer Vision:

Artificial Neural Network for Pattern Classification, Convolutional Neural Networks, Auto encoders. Gesture Recognition, Motion Estimation and Object Tracking, Programming Assignments.

REFERENCE BOOKS:

- 1. Forsyth & Ponce, "Computer Vision-A Modern Approach", Pearson Education.
- 2. M.K. Bhuyan, "Computer Vision and Image Processing: Fundamentals and Applications", CRC Press, USA, ISBN 9780815370840 CAT# K338147.
- 3. Richard Szeliski, "Computer Vision- Algorithms & Applications", Springer

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in

NANO ELECTRONIC SYSTEMS	Category	L	Т	P	Credit
NANO ELECTRONIC 3131 EMS	EC	3	0	0	3
	-				
	PS				

PREAMBLE

This course enables students about the fundamental understanding of Nanoelectronics followed by the advancements in MEMS and NEMS systems. It also provides an advanced level vast understanding on MOSFETS & and molecular electronics.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To provide a better understanding of nanotechnology with nanomaterials.
- 2 To deploy better knowledge on Spintronics and Quantum Computing.
- 3 To have a good exposure on different types of microscopes and molecular electronics
- 4 To provide a deep understanding of MEMS & NEMS systems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

i ,	
CO1. Expose technical knowledge in one or more areas of specialization.	Understand
CO2. Discuss the types of nanotechnology, molecular technology and the preparation of nano materials.	Analyze
CO3. Explain the fundamental of the devices such as logic devices, field effect devices, and spintronics.	Understand
CO4. Distinguish various types of MEMS and NEMS devices.	Analyze
CO5. Analyze the Quantum transport devices and single electron devices .	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO 2	PSO 3
CO1	S	ı	L	ı	ı	M	S	-	-	S		S	-	M	-
CO2	S	-	S	1	S		L	S	L	S	M	-	S	-	-
CO3	S	S	L	L	S	M	S	-	S	L	S	-	L	S	-
CO4	S	-	L	1	M		S	S	-	M	-	L	-	S	-
CO5	M	S	L	M	-	M	S	-	L	L	-	-	L	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Need for Nanotechnology -Types of nanotechnology and nanomachines – periodic table – atomic structure – molecules and phases – energy – molecular and atomic size – surface and dimensional space – top down and bottom up. Fundamentals of logic devices: Requirements – dynamic properties – threshold gates - physical limits to computations - Spintronics – Quantum cellular automata – Quantum computing.

MICROSCOPES & NANO MATERIALS

Electron Microscope - Scanning Electron Microscope - Atomic Force Microscope - Scanning Tunneling Microscope - Preparation - Plasma Arcing - Chemical Vapor Deposition - Sol-Gels - Electrode Position - Ball Milling - Applications Of Nanomaterials

MoSILICON MOSFETs & QUANTUM TRANSPORT DEVICES: Silicon MOSFETS - Novel materials and alternate concepts:- fundamentals of MOSFET Devices- scaling rules – silicon-dioxide based gate dielectrics – metal gates – junctions & contacts – advanced MOSFET concepts. Quantum transport devices based on resonant tunneling: Electron tunneling – resonant tunneling diodes – resonant tunneling devices; Single electron devices for logic applications- Single electron devices – applications of single electron devices to logic circuits.

MOLECULAR ELECTRONICS: Electrodes & contacts – functions – molecular electronic devices – first test systems – simulation and circuit design – fabrication; Future applications: MEMS – robots – random access memory – mass storage devices

MEMS & NEMS: Introduction to MEMS and NEMS, working principles, micro sensors, micro actuators, Pizoresistivity, Pizoelectricity and thermoelectricity, MEMS/NEMS design, processing, Oxidation, Sputter deposition, Evaporation, Chemical vapor deposition.

TEXT BOOKS:

- 1. Stephen D. Sentaria, Microsystem Design, Kluwer Academic Press, 2019.
- 2. Marc Madou, Fundamentals of microfabrication & Nanofabrication., 2018
- 3. T. Fukada & W.Mens, Micro Mechanical system Principle & Technology, Elsevier, 1998.
- 4. Julian W.Gardnes, Vijay K. Varda, Micro sensors MEMS & Smart Devices, 2001.

REFERENCE BOOKS:

- 1. Nano Technology and Nano Electronics Materials, devices and measurement Techniques by WR Fahrner Springer, 2020
- 2. Nano: The Essentials Understanding Nano Scinece and Nanotechnology by T. Pradeep; Tata Mc. Graw Hill, 2019.
- 3. Spin Electronics by M. Ziese and M.J. Thornton, 2019.
- 4. Nanoelectronics and Nanosystems From Transistor to Molecular and Quantum Devices by Karl Goser, Peter Glosekotter, Jan Dienstuhl.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.V.Prabhakaran	Assistant Professor (G-II)	BME	prabhakaran.bme@avit.ac.in
2	Ms.R.Mohana Priya	Assistant Professor (G-II)	ECE	mohanapriya@avit.ac.in

															l	
		ENT	'REPREN	EURSHIP	OPPORT	CUNITIES	S IN EMB	EDDED S	YSTEMS	S	Categor	y L	Т	P	Cre	dit
											EC	3	0	0		3
											PS					
PREAM	IBLE	•								•		,	•			
		_				-			-	_	ucts & de ie embed	_		emp	hasis	the
PRERI	PREREQUISITE - Nil															
COURS	COURSE OBJECTIVES															
1	- provide the grant of the gran															
2	To develop an understanding on business promotion process.															
3	To impart embedded system technology based entrepreneurship.															
4																
COURS	E OUTC	OMES														
On the	succes	sful con	npletion	of the	course,	studen	ts will b	e able t	0							
	escribe lize the						omputii	ngsyste	mandth	ne embed	dedsyste	em, also	Re	mem	ber	
CO2. M	/lanage	people,	proces	ses, and	resour	ces wit	hin a di	verse oi	ganizat	tion			Ev	aluat	e	
	nalyzet tunities		nal/ext	ternalfa	ctorsaf	fecting	abusine	ess/orga	anizatio	ntoevalı	ıatebusin	iess	An	alyze	?	
CO4. U	Indersta	and the	integra	tion of	custom	er requi	iremen	ts in pro	duct de	esign			Un	ders	tand	
	oinvolv ne 5 Uni				•			_	liarizin	gthecon	ceptsacqı	iired	An	alyze)	
									ECIFIC (OUTCOM	ES					
cos	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO	P	so	PSO 3
													1	2		
CO1	S	S		L		M		S		S			L			
CO2	L	S		M	M		S		L		S				S	
CO3		S	M		L			S		M		S			M	
CO4	M		S			M		S		S		M			M	
CO5	S	L		S		S		L		S		S	S			

S- Strong; M-Medium; L-Low

FUNDAMENTALS OF EMBEDDED SYSTEMS: Introduction to Embedded Systems –Structural units in Embedded processor, selection of processor & memory devices- DMA, Memory management methods- memory mapping, cache replacement concept, Timer and Counting devices, Watchdog Timer, Real Time Clock.

APPROACHES IN PRODUCT DEVELOPMENT: Product development management - establishing the architecture - creation - Product Architecture changes - variety - component standardization, clustering -geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture competitive benchmarking- Approach for the benchmarking process-Design for manufacturing - Industrial Design-Robust Design - Prototype basics - Principles of prototyping-Planning for prototypes-Economic & Cost Analysis - Testing Methodologies - Product Branding

ELECTRONIC PRODUCT DEVELOPMENT STAGES: Product Development Stages-Embedded product modeling- Linear, Iterative, Prototyping, Spiral - Selection of Sensor, Voltage Supply, Power supply protection, Grounding and noise elimination methods, Thermal protection with heat management - PCB design steps - Software design and testing method - documentation.

SCOPE OF EMBEDDED PRODUCTS: Embedded systems design, modeling, Feasibility study on embedded system products-Entrepreneurial skills for embedded system hardware and software architecture, software and hardware co-design and challenges; problems of entrepreneurship in Embedded system field.

MARKET DEMAND OF EMBEDDED SYSTEMS: Embedded system Product development- feature driven development- release management-market pull product search, Entrepreneurial case studies: Mobile phone development- automation components-Washing machine- Food Processing system and devices- High Performance embedded computers- Industrial Controllers

TEXT BOOKS:

- 1. Peckol, "Embedded system Design", John Wiley & Sons, 2019
- 2. Shibu.K.V, "Introduction to Embedded Systems", TataMcgraw Hill,2015
- 3. Jeffry Timmons, New Ventrure creation, McGraw Hill, 1999
- 4. James K.peckol," Embedded Systems: A contemporary Design Tool", Wiley, 2014

REFERENCE BOOKS:

- 1. Kuratko, Enmterpreneurship: A Contemporary Approach, Thomson Learning, 2019.
- 2. Thomas Zimmerer et.al., Essentials of Entrepreneurship and small business Management 3rd Ed. Pearson Education, 2016
- 3. Greene, Entrepreneurship: Ideas in Action, Thomson Learning, Mumbai, 2000
- **4.** LyLa B. Das "Embedded Systems: An Integrated Approach" Pearson, 2013

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Mr.V.Prabhakaran	Assistant Professor (G-II)	BME	prabhakaran.bme@avit.ac.in			
2	Ms.Mohana Priya	Assistant Professor (G-II)	ECE	mohanapriya@avit.ac.in			

RECONFIGURABLE PROCESSOR TECHNOLOGIES	Category	L	Т	P	Credit
RECOM I GORDEE I ROCESSON I EGITADE GUES	EC	3	0	0	3
	-				
	PS				

PREAMBLE

This course is designed to induce fundamental knowledge and understanding of the principles and practice in reconfigurable architecture and computing. In addition, this course will enhance the understanding of FPGA and SOC applications in HDL perspective.

PREREQUISITE - Nil

COURSE OBJECTIVES

- To Introduce Software and Hardware Tools used in Processor Technology.
- 2 To Design VLSI Subsystems using Verilog HDL.
- 3 To Implement the Arithmetic and Logical Unit on FPGA.
- 4 To Understand the Reconfigurable processors with SOC Applications.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understandreconfigurable processors, which makes it an important IP in modern System-on-Chips (SoCs)	Understand
CO2. Analyze predominant Reconfigurable processors across embedded, general-purpose, and high-performance application domains	Analyze
CO3.Enhance Employability and entrepreneurship capacity due to knowledge upgradation on recent trends in embedded systems design	Analyze
CO4. Evaluate the Reconfigurable processor with SOC applications	Evaluate
CO5. Analyze the Intellectual Property based HDL design	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO 2	PSO 3
CO1	S	L	ı	M	L	ı	S	ı	L	-	S	1	S	-	L
CO2	M	•	S	•	S	1	L	•	S	-	S	S	,	L	1
CO3	ı	L	ı	S	1	S	1	L	ı	M	1	S	M	-	1
CO4	S	S	•	L	L	S	S	-	M	M		1	L	M	-
CO5	S	-	M	-	-	L	-	S	-	-	M	-	-	L	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Introduction to reconfigurable processor- Reconfigurable Computing-Programming elements and Programming Tools for Reconfigurable Processors, ASIC design flow- Hardware/Software Codesign- FPAA Architecture Overview- recent trends in Reconfigurable Processor & SoC.

PROGRAMMABLE LOGIC DEVICES CPLD: Introduction to Programmable logic devices, SPLDs, CPLD building blocks-Architectures and features of Altera: MAX 7000, MAX V-Xilinx XC 9500, Cool Runner-II.

LOGICS OF FPGA: FPGA architecture overview- Challenges of FPGA processor design-Opportunities of FPGA processor design-Designing Soft Core Processors – Designing Hardcore Processors – hardware/software co-simulation- FPGA to multi core embedded computing- FPGA based on-board computer system

RECONFIGURABLE PROCESSORS & SOC APPLICATIONS: SoC Overview –Architecture and applications of Xilinx Virtex II pro ,Zynq-7000, Altera Excalibur, Cyclone V -Triscend A7, E5- Atmel FPSLIC- Multicore SoCs. Reconfigurable processor based DC motor control- digital filter design- mobile phone development- High Speed Data Acquisition -Image Processing application-controller implementation for mobile robot.

PROGRAMMING & INTELLECTUAL PROPERTY BASED DESIGN: HDL Based Programming and High level Synthesis using C, Partial Reconfiguration, Soft core, Firm core and Hard Core, Software tools

TEXT BOOKS:

- 1. S. Hauck, "Reconfigurable Computing: Theory and practice of FPGA based Computation", Morgan Kaufmann, 2018.
- 2. Simon, "Programming FPGA's: Getting started with Verilog:, McGraw Hill Education, 2016.
- 3. Wayne Wolf, "FPGA-Based System Design", Pearson Education, 1e, 2005.

REFERENCE BOOKS:

- 1. Nurmi, Jari (Ed.) "Processor Design System-On-Chip Computing for ASICs and FPGAs" Springer, 2017.
- 2. Ian Grout, "Digital system design with FPGAs and CPLDs" Elsevier, 2008.
- 3. Joao Cardoso, Michael Hübner, "Reconfigurable Computing: From FPGAs to Hardware/Software Codesign" Springer, 2011.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Mr.V.Prabhakaran	Assistant Professor (G-II)	BME	prabhakaran.bme@avit.ac.in			
2	Ms.R.Mohana Priya	Assistant Professor (G-II)	ECE	mohanapriya@avit.ac.in			

ADVANCED ROBOTICS AND CONTROL	Category	L	Т	P	Credit
ADVANCED ROBOTICS AND CONTROL	EC	3	0	0	3
	-				
	PS				

PREAMBLE

This course is designed to enlighten the students with advanced process control of robotics in static and dynamic states by clearly enlightening differential motion and path planning. In addition, is also enhances the concept of micro and nano robotics.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To introduce robot terminologies and robotic sensors To educate direct and inverse kinematic relations
2	To educate on formulation of manipulator Jacobians and introduce path planning techniques
3	To educate on robot dynamics
4	To introduce robot control techniques

COURSE OUTCOMES

CO.1 Understand the components and basic terminology of Robotics	Understand
CO2. Model the motion of Robots and analyze the workspace and trajectory panning of robots	Create
CO3. Develop application based Robots	Evaluate
CO4. Formulate models for the control of mobile robots in various industrial applications	Create
CO ₅ . Evaluate all the mechanics involved in the robotics	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

cos	PO ₁	PO2	PO ₃	PO4	PO ₅	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO ₁	S	1	S	-	L	L	M	L	M	S	-	-	S	-	L
CO2	M	1	1	S	-	M	L	S	M	-	S	-	L	1	M
CO ₃	S	S	-	M	-	S		M		S	-	M	-	M	-
CO ₄	-	M	S	-	S	-	L	_	M	-	L	-	M	L	-
CO ₅	S	-	L	-	M	-	M	_	S	-	L	-	S	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Definition-Classification-History- Robots components-Degrees of freedom-Robot joints-coordinates-Reference frames-workspace-Robot languages-actuators-sensors-Position, velocity and acceleration sensors-Torque sensors-tactile and touch sensors-proximity and range sensors- vision system-social issues..

KINEMATICS: Mechanism-matrix representation-homogenous transformation-DH representation-Inverse kinematics solution and programming-degeneracy and dexterity

DIFFERENTIAL MOTION AND PATH PLANNING: Jacobian-differential motion of frames-Interpretation-calculation of Jacobian-Inverse Jacobian- Robot Path planning

DYNAMIC MODELLING & ROBOT CONTROL SYSTEM: Lagrangian mechanics- Two-DOF manipulator- Lagrange-Euler formulation – Newton-Euler formulation – Inverse dynamics - Linear control schemes-joint actuators - decentralized PID control- computed torque control – force control- hybrid position force control- Impedance / Torque control

MICRO & NANO ROBOTICS: Micro/Nanorobotics system overview-Scaling effect-Top down and bottom up approach-Actuators of Micro/Nano robotics system-Nanorobot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nanorobot in targeted drug delivery system

TEXT BOOKS:

- 1. R.K. Mittal and IJ Nagrath, "Robotics and Control", Tata MacGraw Hill, Fourth edition.
- 2. Saeed B. Niku, "Introduction to Robotics", Pearson Education, 2018.
- 3. Fu, Gonzalez and Lee Mcgrahill, "Robotics", international edition.

REFERENCE BOOKS:

- 1. R.D. Klafter, TA Chmielewski and Michael Negin, "Robotic Engineering, An Integrated approach", Prentice Hall of India, 2018
- 2. Richard D. Klafter, Thomas .A, Chri Elewski, Michael Negin, "Robotics Engineering an Integrated Approach", Phi Learning., 2019.
- 3. Francis N. Nagy, Andras Siegler, "Engineering Foundation of Robotics", Prentice Hall Inc., 2018.
- 4. Janaki Raman .P.A, "Robotics and Image Processing an Introduction", Tata McGraw Hill Publishing company Ltd., 2018.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.V.Prabhakaran	Assistant Professor (G-II)	BME	prabhakaran.bme@avit.ac.in
2	Ms.Mohana Priya	Assistant Professor (G-II)	ECE	mohanapriya@avit.ac.in

		SOI	ARA	ND E	NERGY	STO	RAG	E SYST	EMS	Catego OE-E		T O	P 0		C
PREA This s			with th	ne gen	eral cond	cept of	Solar	and Er	nergy St	torage Sy	0				3
PRER	EQU	ISITE	: Nil												
COUR	RSE O	BJEC	TIVE												
1.	To explain basics of solar photovoltaic systems and energy storage system														
2.	Т	To understand the concepts and various components of stand-alone system													
3.															
4.															
5.															
COUR	RSE O	UTCO	MES												
On th	ne succ	cessful	compl	etion (of the co	urse, s	tuder	nts will l	oe able	to				Unders	stand
CO1: I	Descril	oe the l	oasics (of sola	r system									Unders	stand
CO2:R	Recogn	ize the	conce	pts of	standalo	ne PV	syste	m.						Analy	ysis
CO3: I	Design	the gr	id con	nected	system	for va	rious	applicat	ions.					Analy	ysis
CO4: S	Select	the sui	table s	torage	system	for pa	rticula	ar applio	cations	•				Analy	ysis
CO5: F	Recogn	nize the	e vario	us app	lications	s of so	lar sys	stem.						Crea	ite
Mappi	ing wit	th prog	ramm	e outc	omes an	d prog	ramn	ne speci	fic outo	comes			•		
COS	PO1	PO2	PO3	PO ₄	PO ₅	PO6	PO ₇	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂	PSO ₃
CO1	S	M	-	-	M	S	S	M	-	-	L	-	M	-	M
CO ₂	S	S	-	-	M	S	S	M	-	-	L	-	L	-	L
CO ₃	S	S	L	-	S	S	S	M	-	-	M	-	M	L	L
CO ₄	S	M	L	M	S	S	M	M	-	-	M	-	M	-	-
CO ₅	S	M	L	M	S	S	M	L	L	-	M	-	M	-	M
S-STR	ONG ,	,M-MF	DIUM	,L-LO	W										

Introduction

Characteristics of sunlight: the sun and its radiation, Solar radiation, Direct and diffusion radiation, greenhouse effect, solar isolation data and estimation-semiconductors and P-N junctions: semiconductors and types, absorption of light, recombination and PN junctions –behavior of solar cells – cell properties: efficiency and losses, Top contact design, Laser grooved, Buried contact solar cell – PV cell interconnection: Module and circuit design, Environmental and thermal protection.

Stand-alone PV System

Solar modules – storage systems: Types, applications, requirements, efficiency, Lead acid batteries – power conditioning and regulation: Diodes, Regulators, Inverters- Balance of system components - protection – standalone PV systems design – sizing: Reliability maps, sizing for high reliability, existing methods.

Grid Connected PV Systems

PV systems in buildings – Utility applications for photo voltaic – design issues for central power stations – safety– Economic aspect – Efficiency and performance - International PV programs – Integration of PV and Wind –Indian Specific Standard for Integration.

Energy Storage Systems

Impact of intermittent generation: Wind, gas and coal integration, impacts of cycling, PSCO case studies – Battery energy storage – solar thermal energy storage – pumped hydroelectric energy storage.

Applications

Water pumping – battery chargers – solar car – direct-drive applications –Space – Telecommunications.

Total Hours = 45

Text book(s):

- 1. Solar Energy S.P. Sukhatme, Tata McGraw Hill, 2017.
- 2. Stuart R. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics", 2011.

Reference(s):

- 1. Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2017.
- 2. S. Sumathi, "Solar PV and Wind Energy Conversion Systems (Green Energy and Technology)", L. Ashok Kumar, P. Surekha, 2015.
- 3 https://nptel.ac.in/courses/112/105/112105051/
- 4 https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf

S.No	Name of the faculty	Designation	Department	Mail-id
1.	Mr.A.Balamurugan	AP	EEE	balamurugan@vmkvec.edu.in
2.	Mr.V.Rattan Kumar	AP(Gr-II)	EEE	rattankumar@avit.ac.in

			MET		uppic	C	ategor	y	L		T		P	Cre	dit
	Al	DDTTIV	EMAN	UFACT	URING		OE-EA		3		0		0		3
Prerequis	site:-Nil					•		•		•		•			
Course O	bjective														
1			-	rinciples, litive man			as of u	sage, po	ossibili	ties and	l limita	tions ar	nd the e	environ	mental
2	Select so		material	ls for deve	elopmen	tof p	arts usi	ng add	itive ma	anufact	uring v	vith sou	ind me	chanica	ıl
3	Select so	_	processo	es from va	arious m	etal a	additiv	e manu	facturir	ig proc	esses a	s per th	e produ	ıct	
4	manufac	cturing _]	parts	able para				iring an	nd post	process	sing tec	hnique	s for m	etal ado	ditive
5	Design	the part	s for me	etal additi	ve manu	factu	ıring								
Course O	utcomes:0	On the s	successi	ful compl	etion of	the	course	, stude	nts will	be ab	le to				
CO1.	Understan	d the ba	asic prir	nciples, ap	plicatio	ns an	nd limit	ations	metal a	dditive	manuf	acturing	g Un	derstan	d
CO2.	Understan additive m			suitable 1	materials	s fron	m the e	xisting	or deve	elop ne	w mate	rials fo	r Un	derstan	d
CO3.	Understan limitation		orking	principle	of variou	us me	ethods	in MAN	M and t	heir ap	plicatio	ons and	Und	erstand	
CO4.	Produce a technique		free MA	AM parts	with suit	table	materi	al selec	tion an	d post j	process	ing	App	ly	
CO5.	Understan MAM tec		_	nd optimi	zation te	echni	ques to	design	n and d	evelop	parts u	sing	Ap	ply	
Mapping	with Prog	ramme	Outco	mes and	Progran	nme	Specif	ic Outo	comes						
CO	PO1	PO2	PO3	PO4	PO5 F	PO6	PO7	PO8	PO9	PO1 0	POI 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO2	M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO3	M	-	-	-	M	-	M	-	-	-	-	L	L	-	M
CO4	M	-	-	-	M	-	M	-	-	-	-	L	L	-	M
CO5	M	-	-	-	M	-	M	-	-	-	-	L	L	-	M
S-Strong:	M-Mediu	m;L-Lo)W												

Syllabus		
Module 1	Introduction	9
	n to metal additive manufacturing – classification and challenges – applications- CAD for additive ts, CAD CAM software, modelling and data processing – STL format – slicing – design considerations – structure of the contract of the contr	_
Module 2	Materials and properties of AM printed parts	9
Equilibrium Phase diagra Methods of	ng of metallic materials - Conventional vs AM process - Solidification of Metals and Non-equilibrium phases for solidification for AM ms - Iron-Carbon - Aluminum alloy - Titanium alloy - Nickel alloy Powder Particles Production and Powder Properties - Wire Properties for Direct Energoproperties of AM printed parts	y Deposition -
Module 3	Basic processes in metal additive manufacturing	9
Basics of ele Powder feed	 Continuous vs pulsed laser - Laser types - Laser beam properties ctron beam - Electron beam powder bed fusion and mechanism ers and their classification - Delivery Nozzles - Powder bed delivery and spreading systemWir Devices - Print-heads 	e Fed Systems -
Module 4	AM process parameters	9
Parameters f Defects in A	ing Strategies and Parameters for PBF and DED - Powder Properties for PBF, DED, and BJ- As For PBF and DED - Geometry-Specific Parameters, Support Structures (PBF) M Printed Parts - Need of Post Processing - Need for Surface Finishing st Processing for MAM - Potential Hazards of Additive Manufacturing – economics of MAM	Ambient
Module 5	Design for Additive Manufacturing	9
application f Topology op Key characte	Is and principle -design techniques and steps - design optimization, material selection and con ield- Part decomposition and Decomposition methods of timization techniques - Overhangs, and Bridging and cavities in design eristics and considerations in topology optimization - Topology optimization under material unbility - Industry 4.0 future with AM	
TextBooks		
1	Iilewski, J.O., 2017. Additive manufacturing of metals. Cham: Springer International Publishin	g.
7.	alasubramanian, K.R. and Senthilkumar, V. eds., 2020. Additive Manufacturing Applications for omposites. IGI Global.	or Metals and
Referencel	Books	
1 L	each, R. and Carmignato, S. eds., 2020. Precision Metal Additive Manufacturing. CRC Press.	
2 G	ebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003	

3	Gibson, I., Rosen, D.W. Digital Manufacturing".		tive Manufacturing N	Methodologies: Rapid Prototyping to Direct										
4	Kamrani, A.K. and Nas	r, E.A., "Rapid Prototyp	oing: Theory and prac	etice", Springer, 2006.										
Course	CourseDesigners													
S.No	FacultyName	Designation	Department/ College	Emailid										
1	Mr.A.Elanthirayan													

SUSTAINABLE BUILT	CATEGORY	L	Т	P	CREDIT
ENVIRONMENT	OE-EA	3	0	0	3

PREAMBLE

Approaches towards energy saving methods through utilization of sustainable materials. Energy management by monitoring of CO2 consumption and emission in buildings.

PREREQUISITE NIL

COURSE OBJECTIVES

1	Explaining the role of sustainable architecture to avoid son erosion & polition control measures.	

- 2 Efficiency of waste management with respect to water balance and water efficiency.
- 3 Impartknowledgeongreenconceptsindesign,construction&operationofbuildings.
- Intending the exposure to the latest Green Building trends & technologies to the students.
- To learn about the importance and Need of Indoor air quality management.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

r	
CO1.Understand the importance of site selection in achieving sustainable environment.	Understand
CO2. Applying the efficient water balance concept to achieve the water efficiency.	Apply
CO3. Applying the energy efficiency methods to achieve energy efficiency in building.	Apply
CO4. Analyzing the sustainable building materials in achieving energy efficiency in building.	Analyze
CO5. Analyzing the Internal air quality with respect to the Indian Codes and its Standards. various expression systems.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	M	L	-	S	-	M	-	-	-	-	L	L	L
CO2	S	M	L	L	-	S	L	-	-	-	-	-	M	L	
CO3	S	M	M	L	-	S	-	-	-	-	-	-	S	L	
CO4	S	L	S	L	-	S	-	-	M	-	-	-	-	-	M
CO5	L	M	L	L	-	M	-	-	L	-	-	-		-	M

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I

INTRODUCTION TO GREENBUILDINGDESIGN:

Universal Design :Key accessibility issues and Design guidelines – Integrated Approach for Green Building design :Factors for Site selection, Understanding the importance of Site Ecology & Site Analysis - Microclimate: Factors affecting micro climate & heat Islands – Strategies to handle heat island in built environment, Designing Green Spaces and Enhancing Biodiversity inbuilt environment.

UNIT II

WATER RESOURCE AND WASTEWATER MANAGEMENT

Rain water harvesting and utilization, Ground water recharge techniques: Design considerations – Water Balance and approach for water efficiency: 3R Approach for water efficiency towards waste water management – Waste water treatment & reuse, waste water treatment technologies.

UNIT III

ENERGY EFFICEINECY IN SUSTAINABLE BUILDINGS

Introduction, Performance Evaluation and Approach for Energy Efficiency in Buildings – Energy Efficiency Standards & Codes:ECBC2017& EPI, ASHRAE90.1, ASHRAE62.1, ASHRAE 55,ASHARE 170, ISHRAE1001, Star labelling for appliances – Efficient Building Envelope: Heating loads in buildings ,Building orientation and form, Envelope Heat Transfer & Material Specifications.

UNIT IV

SUSTAINABLEBUILDINGMATERIALS

Attributes of Sustainable Building Materials: Recycled content, Regional material, Renewable material, Embodied energy, Embodied carbon, Material performance, Recyclability, Elimination of hazardous materials - Waste management during construction & post-occupancy: Segregation strategies, Types of waste management –organic, inorganic, e-waste, hazardous waste.

UNIT V

INDOORENVIRONMENTALQUALITY

Indoor Air quality: Codes and Standards, Fresh air requirements, Design considerations – Approach for improving-Indoor air quality: Measure store ducesick building syndrome, Demand control ventilation, CO2 monitoring in buildings, Air quality monitoring – Enhancing occupants 'Comfort, Health and Wellbeing: Thermal Comfort, Visual Comfort, Acoustics, Ergonomics, Olfactory Comfort.

TEXT BOOKS:

- 1. Guide on Green Built Environment, IGBC, 2021.
- 2. IGBC Green Homes rating system, IGBC, 2019.
- **3.** IGBC Green New Buildings rating system, IGBC, 2016.

REFERENCES:

- 1. ECBC, Bureau of Energy Efficiency, 2017.
- 2. National Building Code, Bureau of Indian Standards, Bureau of Indian Standards, 2016.
- 3. ASHRAE 90.1, 62.1, 55, ASHRAE, 2010.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.S.P.Sangeetha	Professor	Civil	sangeetha@avit.ac.in

													-	-	
İ				ADVAN	CED C	YBER	SECUR	ITY			Category	y L	T	P	Credit
			-				31				OE-EA	3	0	0	3
PREA	MBLE	1												1	
				er Secur	ity in re	al time a	nd to stu	ıdy tech	niques in	volved ir	ı it.				
	REQUIS														
	RSE OB														
1.											r security	threat lar	ndscape.		
2.							•		es and pe						
3.	To und	lerstand	the lega	I framew	vork tha	t exist ir	India fo	or cyber	crimes ar	nd penalt	ties and p	unishmen	its for su	ch crime	S
4.		•	-						nedia pla	tforms.					
5.	To und	erstand	the mair	n compo	nents of	f cyber s	ecurity p	olan							
	RSE OU														
			pletion of												
			nd the ba	asic term	inologie	s related	to cybe	er securit	ty and cui	rrent cyb	er securit	Understa	and		
threat la	andscap	e.													
CO2: A		complet	e u n d e 	rstan	ding o	of the cy	ber attad	cks that	target cor	mputers,	mobiles	Apply			
and pur	nishmen amework	ts for su	ich crime	es, It will	also exp	oose stu	dents to	limitatio	r crimes a ns of exis aspects re	sting IT A	ct,2000	Apply			
CO4: A	ble to g		nt into the		rotectio	n Bill,20	19 and c	data priv	acy and s	ecurity is	ssues	Apply			
			nd the ma	<u> </u>		-						Apply			
MAPI	PING W	ITH P	ROGRA	MME (OUTCO	MES A	ND PR	OGRAN	MME SP	ECIFIC	OUTCO	MES		•	
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO11	PO1	PSO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0		2		2	3
CO	M	M	M	M	-	-	-	-	-	-	-	-	M	M	М
CO	M	M	M	M	M	_	_	_	_	_	_	_	M	M	M
2	1/1	141	141	1/1	1/1								171	141	171
CO	M	M	S	M	M	-	-	-	-	-	-	-	M	М	M
3 CO	C	3.4	3.4	3.4									3.5	1	
4	S	M	М	M		-	-	-	-	-	-	-	M	M	S
CO 5	S	M	М	М	S	-	-	-	-	-	-	-	M	М	S
	ong; M-l	Medium	; L-Low	,	<u> </u>	1	<u>I</u>	<u>I</u>	1					1	<u>'</u>

Overview of Cyber security

9 hours

Cyber security increasing threat landscape, Cyber security terminologies- Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyberwarfare, Case Studies.

Cyber crimes 9 hours

Cyber crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/ credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cybersquatting, Pharming, Cyber espionage, Cryptojacking, Darknet- illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake newscyber crime against persons - cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.

Cyber Law 9 hours

Cyber crime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cyber crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.

Data Privacy and Data Security

9 hours

Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA)., Social media- data privacy and security issues.

Cyber security M a n a g e m e n t , Compliance and Governance

9 hours

Cyber security Plan- cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.

REFERENCES

- 1. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd.
- 2. Information Warfare and Security by Dorothy F. Denning, Addison Wesley.
- 3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.
- 4. Data Privacy Principles and Practice by Natraj Venkataramanan and Ashwin Shriram, CRC Press.
- 5. Information Security Governance, Guidance for Information Security Managers by W. KragBrothy, 1st Edition, Wiley Publication.
- 6. Auditing IT Infrastructures for Compliance By Martin Weiss, Michael G. Solomon, 2nd Edition, Jones Bartlett Learning.

COUR	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in									
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in									

WASTE TO ENERGY	Category	L	Т	P	Credit
	OE-EA	2	0	0	2

PREAMBLE

This course is to provide insights into waste management options by reducing the waste destined for disposal and encouraging the use of waste as a resource for alternate energy production.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To enable students to understand of the concept of Waste to Energy.
2	To link legal, technical and management principles for production of energy form waste.
3	To learn about the best available technologies for waste to energy.
4	To analyze of case studies for understanding success and failures.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

O1: Understand the knowledge about the operations of Waste to Energy Plants.								
O2: Analyse the various aspects of Waste to Energy Management Systems.	Analyze							
O3: Carry out Techno-economic feasibility for Waste to Energy Plants	Apply							
O4: Evaluate planning and operations of Waste to Energy plants.	Evaluate							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO ₃	PO ₄	PO ₅	PO6	PO ₇	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂	PSO ₃
CO1	M	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO ₂	M	M	L	L	-	M	-	-	-	-	-	-	L	ı	1
CO ₃	S	M	S	M	-	L	-	M	-	-	ı	-	M	L	1
CO ₄	S	M	S	-	L	-	-	-	-	-	-	-	M	L	-
CO ₅	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

The Principles of Waste Management and Waste Utilization. Waste Management Hierarchy and 3R Principle of Reduce, Reuse and Recycle. Waste as a Resource and Alternate Energy source.

WASTE SOURCES & CHARACTERIZATION

Waste production in different sectors such as domestic, industrial, agriculture, postconsumer, waste etc. Classification of waste – agro based, forest residues, domestic waste, industrial waste (hazardous and non-hazardous). Characterization of waste for energy utilization. Waste Selection criteria.

TECHNOLOGIES FOR WASTE TO ENERGY

Biochemical Conversion – Energy production from organic waste through anaerobic digestion and fermentation. Thermo-chemical Conversion – Combustion, Incineration and heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and other newer technologies.

WASTE TO ENERGY OPTIONS

Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to fuel

resources for other useful energy applications Energy from Plastic Wastes – Non-recyclable plastic wastes for energy recovery. Energy Recovery from wastes and optimization of its use, benchmarking and standardization. Energy Analysis.

CASE STUDIES - WASTE TO ENERGY PLANTS

Success/failures of waste to energy Global Best Practices in Waste to energy production distribution and use. Indian Scenario on Waste to Energy production distribution and use in India. Success and Failures of Indian Waste to Energy plants. Role of the Government in promoting 'Waste to Energy'. Waste activities – collection, segregation, transportation and storage requirements. Location and Siting of 'Waste to Energy' plants. Industry Specific Applications – In-house use – sugar, distillery, pharmaceuticals, Pulp and paper, refinery and petrochemical industry and any other industry. Centralized and Decentralized Energy production, distribution and use. Comparison of Centralized and decentralized systems and its operations.

EFERENCES

- 1. Lee, James M., "Biochemical Engineering." PHI, 1st Edition, 1992. Yeh W.K., Yang H.C., James R.M., "Enzyme Technologies: Metagenomics, Biocatalysis and Biosynsthesis", Wiley- Blackwell, 1st Edition, 2010. Blanch H.W., Clark D. S., "Biochemical Engineering", Marcel Dekker, Inc. 2nd Edition, 1997.
- 2. Palmer, Trevor. "Enzymes: Biochemistry, Biotechnology, Clinical Chemistry." 2nd Edition, East West Press, 2008.

Course	Course Designers													
S.No.	Name of the faculty	Designation	Department	Mail ID										
1.	Dr.R. Kirubakaran	Assistant Professor	-	kirubakaran@vmkvec.edu.in										
			Biotechnology											
2	Dr M Sridevi	Professor	Biotechnology	hodbte@vmkvec edu in										

	ENGLISH FOR RESEARCH PAPER	Category	L	Т	P	Credit
	TECHNICAL WRITING	AC	0	0	2	0
PREA	MBLE					
This	course is designed to improve the writing skills, level of readabilit	ty of the lear	ner and s	kills for	writing	the title.
PRERI	EQUISITE					
	Nil					
COUR	SE OBJECTIVES					
1	Understand that how to improve your writing skills and lev	el of readal	oility			
2	Learn about what to write in each section					
3	Understand the skills needed when writing a Title					
4	Ensure the good quality of paper at very first-time submissi	ion				
COUR	SE OUTCOMES					
On the	e successful completion of the course, students will be able to					
	Inderstand how to improve your writing skills with conciseneing redundancy	ess so as to a	nd	Under	stand	
	Classify the sections involved in research paper writing			Under	stand	
CO3.	Interpret the sequence of research findings with results			Apply		
CO4. U	Ise various paraphrasing method to provide good quality par	er at very f	irst-time	Apply		

submission

MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	PO2	P03	PO4	PO5	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PS 03
CO1	L	M	-	-	-	-	-	-	M	-	-	M	-	-	S
CO2	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S
CO3	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S
CO4	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S

SYLLABUS

Unit I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check, key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

Unit IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

Unit V

Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

Text Books/ References Books:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

S.No	Name of the Faculty	Designation	Department	Mail ID
1				

											L			L	
			DIS	SASTE	R MITI	GATIO	N AND)		Categ	gory L		Γ	Р	Credit
			MA	NAGE	MENT					AC	0		0	2	0
Pream	ıble														
															ct agains
							_					also dea	als with	the m	ethods o
		iriou	snazar	as suc	n tnat	tneir ir	npact	on con	nmunit	ies is rec	iucea.				
Prerec	quisite														
			NIL												
	e Outco														
1	To Uno	derst	and ba	sic coı	ncepts	in Disa	ster M	anage	ment						
2	To Uno	lerst	and De	efinitio	ns and	Termi	inologi	es use	d in Di	saster M	anage	ment			
3	To Uno	lerst	and th	e Chall	lenges	posed	by Disa	asters							
4	To unc	lerst	and Im	pacts	of Disa	sters									
	SE OUT		_												
On t	the succ	cessf	ul com	pletio	n of the	cours	e, stud	ents w	vill be a	ible to					
									-	ogical, C					
				-				gical, I	Mass M	Iovemen	t and	Land	Unders	tand	
Disas	sters, W	ınaa	ina wa	ter Dr	iven D	isaster	S.								
	Identif suggest		-				xisting	g build	ings fo	r Earthq	uake d	isaster	Unders	tand	
						ecauti	onary	measu	res and	d rehabil	itatior	1	Apply		
meas	sures fo	rEar	thquak	te disa	ster.								лрріу		
CO4.	Derive	the p	orotect	ion m	easure	s again	st floo	ds, cyc	clone, la	and slide	S		Apply		
CO5.	Unders	tand	l the ef	fects o	f disas	ters on	built s	structı	ires in	India			Unders	tand	
MADE	DINC W	ו עדו	DDACD	лммі	OUTC	OMEC	AND D	DACD	лмме	SPECIFIC	COUT	COMEC			
	PO1	PO	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10		PO12	PSO1	PSO	PSO3
603		2	1 03	1 04	103	1 00	107	100	109	1010	101.	1012	, 1301	2	1 303
CO1	M	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	M	L	L	-	M	-	-	-	-	-	-	L		-
CO3	S	M	S	M	- T	L	-	M	-	<u> </u>	-	-	M	L	-
CO4 CO5	S L	M L	3	- L	L			-			<u>-</u> -		M	L	
LUD			ium; L		_	Γ			Ī		-	_	և		Ţ

SYLLABUS

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards.

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management; Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for

relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, , Structural-nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders

TEXT BOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2.
 - 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN- 10:1259007367, ISBN-13: 978-1259007361]
 - 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
 - 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi. 2010.

REFERENCES:

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

Course Designers

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.i n

	VALUE EDUCATION	Category	L	T	P	Credit				
		AC	0	0	2	0				
PREA	MBLE	<u> </u>								
The	course highlights the importance of values and et	thics for human life and	d organi	zation.						
	EQUISITE									
Nil										
COUR	SE OBJECTIVES									
1	To understand value of education and self- deve	lopment								
2	To inculcate good values in students to make them patriotic with humanity									
3	To groom the personality with positive thinking with universal brotherhood and religious tolerance.									
4	To impart the value of true friendship and happi	iness								
5	To enhance the character and competence for de	eveloping into self-con	trol per	son						
COUR	SE OUTCOMES									
On the	e successful completion of the course, students wil	ll be able to								
CO1. I	dentify the value of education and self- developme	ent with work ethics		Re	emembe	er				
	Interpret sense of duties with good values in stud	ents to make them pat	riotic	Un	derstan	ıd				
with	humanity									
CO3.	Explain the integration, scientific attitude, overall	personality with labor	dignity	U	ndersta	ınd				
	Diagram the control of two of this second beautiful and			II	ndersta	ınd				
CO4. D	Discuss the value of true friendship and happiness			0	iiuci sta	iiiu				

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	P
															S
															0
															3
CO1	L	L	-	-	-	-	-	S	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	-	M	-	-	-	-	-	-	-
CO3	L	L	M	-	-	-	-	M	-	-	-	L	L	L	-
CO4	L	S	-	-	-	-	-	M	-	-	-	-	-	-	-
CO5	L	S	M	-	-	-	-	M	-	L	-	-	L	L	-

SYLLABUS

Unit I

Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non- moral valuation. Standards and principles, value judgements

Unit II

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration Truthfulness, Cleanliness, Honesty, Humanity. Power of faith, National Unity, Patriotism, Love for nature Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude, Positive Thinking. Integrity and discipline., Punctuality, Love and Kindness, avoid fault Thinking, Free from anger, Dignity of labor, Universal brotherhood and religious tolerance

Unit IV

True friendship, Happiness Vs suffering, love for truth, Aware of self-destructive habits, Association and Cooperation, doing best for saving nature

Unit V

Character and Competence –Holy books vs Blind faith, Self-management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of Women, all religions and same message, mind your Mind, Self-control, Honesty, Studying effectively

Text Books/ References Books:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford UniversityPress, New Delhi

S.No	Name of the Faculty	Designation	Department	Mail ID

	CONSTITUTION OF INDIA	tegory	L	Т	P	Credit					
		AC	0	0	2	0					
PREAM	BLE										
This c	course is designed to understand more about the historical ba	ackground	of the	constitu	tion ma	king and it					
importar	nce for building a democratic India. To acquire knowledge in stre	ngthening	of the o	constituti	onal ins	titutions lik					
CAG, Elec	ction Commission and UPSC for sustaining democracy.										
PRERE(QUISITE Nil										
COURSE	E OBJECTIVES										
1 (Inderstand the premises informing the twin themes of liberty	y and free	dom fr	om a civ	il rights	perspecti					
e I	To address the growth of Indian opinion regarding modern Indian intellectuals" constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian										
3 i	nationalism Fo address the role of socialism in India after the commencen ts mpact on the initial drafting of the Indian Constitution	nent of the	e Bolsh	evik Rev	olution	in 1917 a					
	E OUTCOMES										
On the s	uccessful completion of the course, students will be able to										
CO1. Des	scribe the history in formation of India constitution			Unde	stand						
CO2. Dis	cuss the Philosophy of the Indian Constitution, Preamble, Sal	lient Featı	ıres	Unde	stand						
CO3. Int	erpret the constitutional and fundamental Rights & Duties of	citizens		Apply							
	etch the Powers and Functions of various governing bodies										

Analyze

CO5. Contrast the Local Administration, District"s Administration head duties

MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	P
															S
															0
															3
CO1	L	M	-	-	-	-	-	-		-	-	M	-	-	S
CO2	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO3	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO4	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO5	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S

SYLLABUS

Unit I

History of Making of the Indian Constitution, History, Drafting Committee, (Composition & Working)

Unit II

Philosophy of the Indian Constitution, Preamble, Salient Features

Unit III

Contours of Constitutional Rights & Duties, Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties

Unit IV

Organs of Governance, Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

Unit V

Local Administration, District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Panchayati raj: Introduction, PRI: ZilaPachayat., Elected officials and their roles, CEO Zila Panchayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy, Election Commission: Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

Text Books/ References Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

	SE DESIGNERS	ln · ··	,	M (17D
S.No	Name of the Faculty	Designation	Department	Mail ID

	PEDAGOGY STUDIES	Category	L	Т	P	Credit
		AC	0	0	2	0
PREA	AMBLE	I				
The	e course is designed to provide pedagogical practices to	owards academic,	researc	h activit	ies and	profession
devel	lopments.					
PREF Nil	REQUISITE					
INII						
COUI	RSE OBJECTIVES					
1	To provide theories and methodologies related to cu	ırriculum developi	nent an	d resear	ch fran	nework
2	To familiarize with pedagogical practices in formala	nd informal classr	ooms in	develop	oing cou	intries
3	To identify evidence on the effectiveness of the pedag	gogical practices fo	or enhai	ncing tea	iching a	nd learning
4	To understand the learning and resource barriers w	hile handling large	classes	3		
5	To identify critical evidence gaps to guide the develo	pment				
COUF	RSE OUTCOMES					
On th	ne successful completion of the course, students will be	able to				
		um development a	ınd	Re	membe	r
CO1.I resea						
CO1.I resea frame	ework I.Interpret pedagogical practices in formaland informal ntries	classrooms in dev	eloping	Und	derstan	d
CO1.I resea frame CO2 cour CO3	Interpret pedagogical practices in formaland informal				derstan pply	d
CO1.I resea frame CO2 cour CO3 teac	I.Interpret pedagogical practices in formaland informal ntries I.Draw a chart on the effectiveness of the pedagogical pr	ractices for enhan		A		d

Analyze

CO5.Examine critical evidence gaps to guide the development

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	P
															S
															0
															3
CO1	L	L	-	-	-	-	-	-	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	L	M	-	-	-	-	-	-	-	-	L	L	L	-
CO4	L	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	L	S	M	-	-	-	-	-	-	L	-	-	L	L	-

SYLLABUS

Unit I

Introduction and Methodology, Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and searching.

Unit II

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries, Curriculum, Teacher education.

Unit III

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy, Theory of change, Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers" attitudes and beliefs and Pedagogic strategies.

Unit IV

Professional development: alignment with classroom practices and follow up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Text Books/ References Books:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245- 261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher educationresearch

4. /		er K, Pryor J, Westbr Africa: Does teache	ook J (2013) Improving	g teaching and learning ofbasic nternational JournalEducational
	SE DESIGNERS	<u></u>	,	
S.No	Name of the Faculty	Designation	Department	Mail ID

	PERSONALITY DEVELOPMENT	Category	L	T	P	Credit
	THROUGH LIFE ENLIGHTEN SKILLS	AC	0	0	2	0
PREA	MBLE					
The with	main objective of the course is to develop the personality an	nd achieve the high	nest goal	in life so	as to lea	ad the natio
manki	nd and prosperity					
PRER	EQUISITE Nil					
COUR	SE OBJECTIVES					
1	To learn to achieve the highest goal happily					
2	To become a person with stable mind, pleasing perso	nality and detern	nination			
3	To awaken wisdom in students					
COUR	SE OUTCOMES					
On the	e successful completion of the course, students will be a	able to				
CO1. (Classify the development of versatile personality of stud	lents		Unde	rstand	
CO2.	Extract the information from Bhagwad-Geeta to lead the peace and prosperity	nation and mank	kind with	Unde	rstand	
CO3.	Paraphrase the information from Neetishatakam to devel	op inter-persona	lity skill	s Unde	rstand	
				1		

MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	P
															S
															0
															3
CO1	L	M	-	-	-	-	-	-		-	-	-	-	-	S
CO2	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO3	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S
CO4	L	M	-	-	M	-	-	-	M	-	-	-	-	-	S

SYLLABUS

Unit I

Neetisatakam-Holistic development of personality, Verses- 19,20,21,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue)

Unit II

Approach to day to day work and duties, Shrimad BhagwadGeeta: Chapter 2-Verses 41, 47,48,Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,23, 35,Chapter 18-Verses 45, 46, 48.

Unit III

Statements of basic knowledge, Shrimad BhagwadGeeta: Chapter2-Verses 56, 62, 68, Chapter 12 -Verses 13.

14, 15, 16,17, 18, Personality of Role model.

Unit IV

Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39, Chapter18 – Verses 37,38,63

Unit V

Verses- 52,53,59 (dont"s), Verses- 71,73,75,78 (do"s)

Text Books/ References Books:

- 1. "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari"s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

S.No	Name of the Faculty	Designation	Department	Mail ID