

Faculty of Engineering and Technology

REGULATIONS 2021

Programme:

B.E / B.Tech.-ELECTRONICS AND COMMUNICATION ENGINEERING Part Time (3 1/2 Years)-7 Semesters

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VII)

VINAYAKA MISSION'S RESEARCH FOUNDATION DEEMED TO BE UNIVERSITY, SALEM CURRICULUM FOR REGULATION-2021 Credit Requirement for the Course Categories <u>DEPARTMENT OF ECE-(PART TIME)</u>

SI. No.	Category of Courses	Types of Courses	Suggested Breakup of Credits (min – max)
	Foundation Courses		18-24
A	a. Humanities an Management c	d Social Sciences including	9-12
	b. Basic Science (Maths, Physic	Courses cs & Chemistry)	9-12
В	Professional-Core Core	Durses	61
C.	Elective Courses		18-27
	a. Professional Elect	12-15	
	h On an Electives	Innovation, Entrepreneurship, Skill Development etc.	3-6
	b. Open Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	3-6
D	Project work		8
E	Induction training, In Traditional Knowledg Added Courses, NSS Student Clubs, Unnat	dian Constitution, Essence of Indian ge, Employability Enhancement ,Value , RRC, YRC, Sports and Games, z Bharat Abhiyan, Swachh Bharat etc.	Zero Credit Course (Minimum 2 courses to be completed other than Yoga and Meditation)
		Minimum Credits to be earned	105

B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING – SEMESTER I TO VII

A. Foundation Courses – (18-24)

Humanities and Social Sciences including Management Courses –Credits(9-12)													
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1		TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL				
2		ENGINEERING MANAGEMENT AND ETHICS	MANAG	FC-HS	3	0	0	3	NIL				
3		OPERATIONS MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL				
4		UNIVERSAL HUMAN VALUES- UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL				
Basic	Science C	Courses –Credits (9-12)		-	1	•							
1.		ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL				
2.		DIFFERENTIAL EQUATIONS ANDTRANSFORMS	MATH	FC-BS	2	1	0	3	ENGINEERI NG MATHEMAT ICS				
3.		SMART MATERIALS	РНҮ	FC-BS	3	0	0	3	NIL				
4.		ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL				

B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VII													
B. Pi	rofessiona	I-Core Courses (61)											
Professio	nal Core	Courses – Credits (61)			-	-	-	-					
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1		SEMICONDUCTOR DEVICES	ECE	CC	3	0	0	3	NIL				
2		ANALOG CIRCUITS	ECE	CC	3	0	0	3	SEMICONDUCTOR DEVICES				
3		LINEAR INTEGRATED CIRCUITS (THEORY AND PRACTICALS)	ECE	CC	2	0	2	3	SEMICONDUCTOR DEVICES				
4		SIGNALS AND SYSTEMS	ECE	CC	3	0	0	3	NIL				
5		DIGITAL CIRCUITS DESIGN	ECE	CC	3	0	0	3	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING				
6		CONTROL SYSTEMS	EEE	CC	3	0	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS				
7		MICROCONTROLLERS AND EMBEDDED SYSTEMS	ECE	CC	3	0	0	3	NIL				
8		CMOS DESIGN	ECE	CC	3	0	0	3	DIGITAL CIRCUITS DESIGN				
9		ANALOG AND DIGITAL COMMUNICATION (THEORY AND PRACTICALS)	ECE	CC	3	0	2	4	NIL				
10		MICROWAVE AND OPTICAL COMMUNICATION SYSTEMS	ECE	CC	3	0	0	3	NIL				
11		SIGNAL PROCESSING	ECE	CC	3	0	0	3	SIGNALS AND SYSTEMS				
12		PRINCIPLES OF COMPUTER COMMUNICATION	ECE	CC	3	0	0	3	NIL				
13		PRINCIPLES OF SENSORS AND DATA ACQUISITION	ECE	CC	3	0	0	3	NIL				
14		JAVA AND C# .NET APPLICATION	CSE	CC	3	0	0	3	NIL				

(Dr.P SELVAM)

		DEVELOPMENT													
15		ANTENNA AND WAVE								NII					
10		PROPAGATION	ECE	CC	3	0	0	3		NIL					
16		MEDICAL ELECTRONICS	ECE	CC	3	0	0	3		NIL					
17		SEMICONDUCTOR DEVICES LAB	ECE	CC	0	0	4	2		NIL					
18		DIGITAL CIRCUITS DESIGN LAB	ECE	CC	0	0	4	2		NIL					
19		ANALOG CIRCUITS LAB	ECE	CC	0	0	4	2		SEMICONDUCTOR DEVICES					
20		SIGNAL PROCESSING LAB	ECE	CC	0	0	4	2		SIGNALS AND SYSTEMS					
21		MICROCONTROLLERS AND EMBEDDED SYSTEMS LAB	ECE	CC	0	0	4	2		NIL					
22		CMOS DESIGN LAB	ECE	CC	0	0	4	2		NIL					
B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VII															
		DETAILS	S OF ELEC	CTIVE COU	RSES	5									
C. F	Elective Co	ourses-18-27													
Professi	Professional Elective courses Credits-(12-15)														
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Г		Р	С	PREREQUISITE					
1		COMPUTER VISION AND PATTERN RECOGNITION	ECE	EC-PS	3	()	0	3	NIL					
2		SPEECH AND AUDIO PROCESSING	ECE	EC-PS	3	()	0	3	Signal Processing					
3		INTRODUCTION TO MEMS	ECE	EC-PS	3	()	0	3	NIL					
4		INTERNET OF THINGS FOR ELECTRONICS	ECE	EC-PS	3	()	0	3	NIL					
5		ADAPTIVE SIGNAL PROCESSING	ECE	EC-PS	3	()	0	3	NIL					
6		SATELLITE COMMUNICATION	ECE	EC-PS	3	()	0	3	NIL					
7		WIRELESS AND MOBILE COMMUNICATION	ECE	EC-PS	3	()	0	3	Analog & Digital Communication					
8		WIRELESS SENSOR NETWORKS	ECE	EC-PS	3	()	0	3	Data Communication Networks					
9		HIGH SPEED ELECTRONICS	ECE	EC-PS	3	()	0	3	Semiconductor Devices					
10		WAVELET TRANSFORMS	ECE	EC-PS	3	()	0	3	Signal Processing					
11		NANO ELECTRONICS	ECE	EC-PS	3	()	0	3	NIL					
12		INFORMATION AND ERROR CONTROL CODING	ECE	EC-PS	3	()	0	3	Analog & Digital Communication					
13		COMMUNICATION NETWORK SECURITY	ECE	EC-PS	3	()	0	3	Data Communication Networks					
14		VIDEO PROCESSING	ECE	EC-PS	3	()	0	3	NIL					
15		DATA SCIENCE FOR COMMUNICATION NETWORKS	ECE	EC-PS	3	()	0	3	NIL					
16		PASSIVE NETWORK ANALYSIS AND SYNTHESIS	ECE	EC-PS	3	()	0	3	NIL					
17		IOT SYSTEM DESIGN AND APPLICATIONS	ECE	EC-PS	3	()	0	3	NIL					
18		SENSORS AND TRANSDUCERS FOR HEALTHCARE	ECE	EC-PS	3	()	0	3	NIL					
19		DIGITAL IMAGE PROCESSING	ECE	EC-PS	3	()	0	3	NIL					
20		PCB DESIGNING	ECE	EC-PS	3	()	0	3	NIL					
Open El	lectives –]	Electives from Innovation,	Entrepren	eurship, Skil	l Dev	elopi	nent	t etc	e. (3-	-6)					
1		LIFE SKILLS	MANAG	OE-IE	3	C		0	3	NIL					
1	Dr. R SELVERMIN														

							r	· · · · ·					
2	R	NTELLECTUAL PROPERTY	MANAG	OE-IE	3	0	0	3	NIL				
3	E A N	NGINEERING STARTUPS ND ENTREPRENEURIAL IANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL				
4	F	INANCE AND ACCOUNTING OR ENGINEERS	MANAG	OE-IE	3	0	0	3	NIL				
5		NNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL				
6	N A	IEW VENTURE PLANNING ND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL				
7	s	OCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL				
)pen Ele	ectives –Em	erging Areas like 3D Pri	inting, Ar	tificial Intellige	ence, I	ntern	et of	Thin	ngs etc. (3-6)				
1	В	BIOSENSORS AND	BME	OE-EA	3	0	0	3	NIL				
2	P II	RINCIPLES OF BIOMEDICAL NSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL				
3	F	UNDAMENTALS OF RTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL				
4		NTRODUCTION TO NTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL				
5	С	YBER SECURITY	CSE	OE-EA	3	0	0	3	NIL				
6		IUNICIPAL SOLID WASTE	CIVIL	OE-EA	3	0	0	3	NIL				
7		DISASTER MITIGATION AND	CIVIL	OE-EA	3	0	0	3	NIL				
8	S	REEN POWER GENERATION YSTEMS	EEE	OE-EA	3	0	0	3	NIL				
9	П А	NDUSTRIAL DRIVES AND UTOMATION	EEE	OE-EA	3	0	0	3	NIL				
10	3 A	D PRINTING AND ITS PPLICATIONS	MECH	OE-EA	3	0	0	3	NIL				
11	n	NDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL				
12	Π	NTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL				
13	F T	OOD AND NUTRITION ECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL				
14	B	BIOMOLECULES – TRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL				
15	Р	HARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL				
B.E./I	B.TECH. – E	LECTRONICS AND CO	MMUNICA	TION ENGIN	EERIN	[G - S]	EME	STEF	R I TO VII				
SL.	CODE	COURSE	OFFERIN	G CATEGORY	L	Т	Р	С	PREREQUISITE				
1.		PROJECT WORK	ECE	PI-P	0	0	16	8	NIL				
PROJECT WORK PI-P 0 0 16 8 NIL													
B.E./B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING - SEMESTER I TO VII													
В. Е. Ма	E./B.TECH.	– ELECTRONICS AND (ourses/Audit courses	COMMUN	ICATION ENG	SINEE	RING	- SEI	MES	IER I TO VII				
B. E. Ma	E./B.TECH. andatory Co	– ELECTRONICS AND O purses/Audit courses MANDATO	COMMUN RY COURS	ICATION ENG	TS)	RING	- SEI	MES	TER I TO VII				
B. E. Ma	E./B.TECH. andatory Co	– ELECTRONICS AND ourses/Audit courses MANDATO (NOT INCLUD	COMMUN RY COURS ED FOR CO OFFERING	ICATION ENG SES (NO CREDIT GPA CALCULAT	TS)	RING	- SE		PREREQUISITE				
B. E. Ma SL. NO 1	E./B.TECH. andatory Co CODE	- ELECTRONICS AND Courses/Audit courses MANDATO (NOT INCLUD) COURSE	COMMUN RY COURS ED FOR CO OFFERING DEPT.	ICATION ENG SES (NO CREDIT SPA CALCULAT CATEGORY	TS) TONS)	RING T	- SEI		PREREQUISITE				
B. E. Ma SL. NO 1	E./B.TECH. andatory Co CODE	- ELECTRONICS AND Courses/Audit courses MANDATO (NOT INCLUD) COURSE YOGA AND MEDITATION	COMMUN RY COURS ED FOR CO OFFERING DEPT. PHED	ICATION ENG SES (NO CREDIT SPA CALCULAT CATEGORY AC	INEE (S) (IONS) L 0	T 0	- SEI P 2	C 0	PREREQUISITE NIL				
B. E. Ma SL. NO 1	E./B.TECH. andatory Co CODE	- ELECTRONICS AND (ourses/Audit courses MANDATO (NOT INCLUD COURSE YOGA AND MEDITATION	COMMUN RY COURS ED FOR CO OFFERING DEPT. PHED ANY TWO OFFEPINC	ICATION ENG SES (NO CREDIT SPA CALCULAT CATEGORY AC D COURSES	INEE (S) (IONS) L 0	T 0	- SEI P 2		PREREQUISITE NIL PREREOUISITE				
B. E. Ma SL. NO 1	E./B.TECH. andatory Co CODE	- ELECTRONICS AND Courses/Audit courses MANDATO (NOT INCLUD COURSE YOGA AND MEDITATION	COMMUN RY COURS ED FOR CO OFFERING DEPT. PHED ANY TWO OFFERING DEPT.	ICATION ENG SES (NO CREDIT SPA CALCULAT CATEGORY AC O COURSES CATEGORY	INEE (S) (IONS) L 0	T T T	- SE! P 2	C C	PREREQUISITE NIL PREREQUISITE				

2.	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL
3.	NCC/NSS/RRC/YRC/STU DENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACTH BHARAT	GEN	AC	0	0	2	0	NIL
4.	SPORTS AND GAMES	PHED	AC	0	0	2	0	
5.	GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL

	TOTAL QUALITY	Category	L	Т	Р	Credit
	MANAGEMENT	FC-HS	3	0	0	3
PREAMBLE:						
Total Quality Manager	ment (TQM) is a management approac	ch describes to long-	-term s	uccess	throug	gh customer
satisfaction and, is an in processes.	tegrative philosophy of management for	continuously impro	ving th	e quali	ty of p	roducts and
PREREQUISITE: Nil						
COURSE OBJECTIVE	ES:					
1. To understand	d the introduction about Quality and Tota	al Quality Manageme	ent.			
2. To understand	the TQM principles.					
3. To understand	d the statistical process control					
4. To impart the	various TQM tools					
5. To understand	d the quality systems.					
COURSE OUTCOMES	S:					
After successful complet	tion of the course, students will be able t	0				
CO1: Understand the im	portance of quality and TQM at manage	rial level.		U	Inderst	and
CO2: Explain the require	ed tools to implement TQM.			A	pply	
CO3: Analyse various T	QM parameters with help of statistical to	pols.		A	nalysi	ng
CO4: Evaluating various	s TQM Techniques			E	valuate	5
CO5: Propose the Qualit	ty Management Systems in a different			A	pply	
organization environmen	nt					
MADDINC WIT	H PROCRAMME OUTCOMES AND		PECIE		TCO	MES

OUTCOMES MAI **JUMES AND** ľ **KUGKAMME SPECIFIC**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	L	L	L	L	L	L	L	L	М	L	L		
CO2	S	S	М	L	М	L	L	М	М	L	L	L		
CO3	S	S	S	М	S	М	L	М	М	L	L	М		
CO4	М	S	S	L	М	L	L	М	М	L	L	М		
CO5	S	S	S	L	М	М	S	М	М	S	М	S		

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management-Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers.

TQM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits. **TEXT BOOKS:**

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	asmanimba@gmail.com
2	B. Rajnarayanan	Assistant Professor	Management Studies	Rajsachin.narayanan@gmail.com

	ENC	GINE	ERIN	G MA	NAGE	MENT	MENT Category L T P Credit									
			AND	ETH	ICS			FC-I	HS	3	0	0	3			
PREAMBLE:	-															
Engineering manag	ement	pro	vides	tech	nologi	cal p	roblei	n-solvi	ng abi	lity of	engin	eering	and t	he		
organizational to ove	ersee th	he op	eratio	onal p	erforn	nance	ofcor	nplex e	enginee	ering er	nterpris	ses to E	Enginee	rs.		
Engineers require h	onesty	, imp	partia	lity, fa	airnes	s, and	l equi	ty, and	dedica	ation to	o the p	rotecti	on of t	he		
public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights													l duties	of		
the employees through basic ethics confronting individuals and organizations engaged. It also empha													mphasi	se		
values that are morally desirable in engineering practice and research. It allows them to understa													nd			
various occupational crimes and learn the moral leadership.																
PREREQUISITE: Not I	Require	ed					•									
COURSE OBJECTIVES	:															
1. To Understand the	principl	les of	plann	ing at	variou	s level	s of th	e organ	isation.							
2. To analyse and prac	tice the	e conc	cepts o	of orga	nizing	, staffii	ng to h	igher p	roducti	vity.						
3. To apply the conce	epts rel	lated	to di	rectin	g and	contr	olling									
4. To understand and	d apply	y the	case s	tudies	to pra	ctice c	ode of	ethics i	in organ	isation						
5. To apply the ethical	princip	oles ir	ı work	king en	viron	nent.										
COURSE OUTCOMES:																
After successful compl	letion o	of the o	course	e, stud	ents w	ill be a	ble to									
CO1: Understand the	importa	ance o	of plan	ning p	orincip	les in o	organi	zation				Und	erstand			
CO2: Apply the variou	is strate	egies	of org	anisin	g and s	taffing	g proce	ess.				A	pply			
CO3: Analyse various	leade	ership	skill	s and	contr	ol tec	hniqu	es for	shapin	g the		An	alyse			
organization.																
CO4: Understand and a	apply b	est et	hical p	oractic	es in o	rganis	ation					Ar	alyse			
CO5: Analyse and App	ly relev	vant ef	thical	praction	ces in e	engine	ering.					A	pply			
												-				
MAPPING WITH PR	OGRA	MME	2001	COM	ES AN	D PRO	JGRA	MME S	PECIF		COME	S				
COs PO1 PO2	P03 I	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3			
СО1 м м	М	L	S	М	М	L	S	S	S	S	-	-	-			
CO2 M L	L	-	М	М	М	L	М	S	М	М	-	-	-			
СОЗ М М	L	-	М	М	М	L	L	S	S	М	-	-	-			
CO4 L M	-	М	-	М	S	S	S	S	-	М	-	-	-			

М

S

S

S

S

-

М

S- Strong; M-Medium; L-Low

М

-

L

-

М

C05

-

-

-

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types

 Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational -Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computersand IT in Management control – Productivity problems and management – control and performance – directand preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering as Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', TataMcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004).

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

S. No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate Professor	Managemen tStudies	manickam@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Managemen tStudies	thangaraja@avit.ac.in

PREAMBLE FC-HS 3 0 0 3 PREAMBLE The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost-impressive and effective operations. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The course focuses on the basic strategy. Product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System. PREREQUISITE: Not Required COURSE OBJECTIVES 1 To understand the importance of Operations. 2 To Understand the importance of Job Design and their relationship towards Efficiency. 3 To understand the importance of Operations. 5 To inmart the Operation management Techniques to get rid of the Computer. COURSE OUTCOMES On the successful completion of the course, students will be able to COU - Understand the importance of Production Planning and Control. COU - Evaluate the Various Operation Management Techniques. COU - Evaluate the Various Operatio				OPERATIONS MANAGEMENT Category L T P Credit														
PREAMBLE The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost- impressive manner. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics include operations strategy, product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, product on ortol, materials management, inventory and quality management, JIT and Kanban System. PREREQUISITE: Not Required COURSE OBJECTIVES 1 To understand the Fundamentals of Operations. 2 To Understand the importance of Job Design and their relationship towards Efficiency. 3 To understand the importance of Operations Management. 4 To evaluate the material requirement with the techniques. 5 To impart the Operation of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion Mana											FC-H	S	3	0	0		3	
PREREQUISITE: Not Required COURSE OBJECTIVES 1 To understand the Fundamentals of Operations. 2 To Understand the importance of Job Design and their relationship towards Efficiency. 3 To understand the importance of Production, Planning and Control. 4 4 To evaluate the material requirement with the techniques. 5 To impart the Operation of the course, students will be able to COURSE OUTCOMES 0 Poerations Management. Understand CO1 – Understand the importance of Porduction Planning and Control. Understand CO1 – Understand the importance of Operations Management. Understand CO2 – Evaluating the various organisation and staffing functions Evaluate CO3 – Understand the Various Operation Management Techniques. Evaluate CO4 – Evaluate the Various Operation Management Techniques. Evaluate CO5 – Analyze and Evaluating the various Inventry ware Evaluate CO5 – Analyze and Evaluating the various and the inventory endower to take Competitive advantage. CO PO PSO PSO	PRE The techr of the quali on th topic layou mate	The contemporary uncertain business environment is forcing the organizations to adopt the latest tools, techniques and strategies for managing their resources in the most effective and efficient fashion. The topics of the course deals with the management of resources and activities that lead to production of goods of right quality, in right quantity, at right time and place in the most cost- impressive manner. The course focuses on the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics include operations strategy, product design and development, forecasting, facility planning and layout, aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System.																
COURSE OBJECTIVES 1 To understand the Fundamentals of Operations. 2 To Understand the importance of Job Design and their relationship towards Efficiency. 3 To understand the importance of Production, Planning and Control. 4 To evaluate the material requirement with the techniques. 5 To impart the Operation management Techniques to get rid of the Competitive advantage. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1 – Understand the importance of Operations Management. Understand CO2 – Evaluating the various organisation and staffing functions Evaluate CO3 – Understand the Importance of Production Planning and Control. Understand CO4 – Evaluate the Various Operation Management Techniques. Evaluate CO5 – Analyze and Evaluating the various Inventory Management Analyze COVECOMES On PO	PRE	PREREQUISITE: Not Required COURSE OBJECTIVES																
1 To understand the Fundamentals of Operations. 2 To Understand the importance of Production, Planning and Control. 3 To understand the importance of Production, Planning and Control. 4 To evaluate the material requirement with the techniques. 5 To impart the Operation management Techniques to get rid of the Competitive advantage. COURSE OUTCOMES On the successful completion of the course, students will be able to CO2 – Evaluating the various organisation and staffing functions Evaluate CO3 – Understand the Importance of Production Planning and Control. Understand CO3 – Understand the Importance of Production Planning and Control. CO4 – Evaluate the Various Operation Management Techniques. Evaluate CO5 – Analyze and Evaluating the various Inventory Management Techniques to ack competitive advantage. MAPPINE WITTENERATIVE VUEVENERATION Control Control Co PO	COURSE OBJECTIVES																	
2 To Understand the importance of Job Design and their relationship towards Efficiency. 3 To understand the importance of Production, Planning and Control. 4 To evaluate the material requirement with the techniques to get rid of the Competitive advantage. 5 To impart the Operation management Techniques to get rid of the Competitive advantage. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1 – Understand the importance of Operations Management. Understand CO2 – Evaluating the various organisation and staffing functions Evaluate CO3 – Understand the Importance of Production Planning and Control. Understand CO4 – Evaluate the Various Operation Management Techniques. Evaluate CO5 – Analyze and Evaluating the various Inventory Management COE COVES MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO S CO 1 CO CO CO </td <td>1</td> <td>To u</td> <td>ndersta</td> <td>and th</td> <td>e Funo</td> <td>lamen</td> <td>tals of</td> <td>Operation</td> <td>ations</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	To u	ndersta	and th	e Funo	lamen	tals of	Operation	ations	•								
3 To understand the importance of Production, Planning and Control. 4 To evaluate the material requirement with the techniques. 5 To impart the Operation management Techniques to get rid of the Competitive advantage. COURSE OUTCOMES On the successful completion of the course, students will be able to COULSE Understand the importance of Production Management. Understand COULES Understand the importance of Production Management. Understand COULDERstand the importance of Production Planning and Control. Understand CO2 – Evaluating the various organisation and staffing functions Evaluate CO3 – Understand the Importance of Production Planning and Control. Understand CO4 – Evaluate the Various Operation Management Techniques. Evaluate CO5 – Analyze and Evaluating the various Inventory Management To analyze MAPPING WITH PROFAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PO PO PO PO PO PO PO PSO PSO	2	ToU	Inderst	and th	ne imp	ortanc	e of Jo	ob Des	sign ai	nd thei	r relatio	nship (owar	ds E	fficienc	у.		
4 10 evaluate the material requirement with the techniques. 5 To impart the Operation management Techniques to get rid of the Competitive advantage. On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to CO1 – Understand the importance of Operations Management. Understand CO2 – Evaluating the various organisation and staffing functions Evaluate CO3 – Understand the Importance of Production Planning and Control. Understand CO4 – Evaluate the Various Operation Management Techniques. Co5 – Analyze and Evaluating the various Inventory Management Techniques to take Competitive advantage. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PO PO PO PO PO PO PO PSO PSO PSO S 1 2 3 4 5 6 7 8 9 10 11 12 PSO PSO PSO PSO PSO PSO PSO 2 PSO3 2 PSO3 2 PSO3 2	3	To u	ndersta	and th	e impo	ortance	$\frac{1}{2}$ of P1	oduct	ion, P	lanning	g and Co	ontrol.						
To impart the Operation management rechniques to get in or the completive advantage.COURSE OUTCOMESOn the successful completion of the course, students will be able to $COI - Understand the importance of Operations Management.UnderstandCO2 - Evaluating the various organisation and staffing functionsEvaluateCO3 - Understand the Importance of Production Planning and Control.UnderstandCO4 - Evaluate the Various Operation Management Techniques.EvaluateCO5 - Analyze and Evaluating the various Inventory ManagementAnalyzeRechniques to take Competitive advantage.MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOPOPOPOPOPOPOPOPOPOPO23456789101112PSO12PSO3COS123456789101112PSO12PSO3COSSSMMLLMMLLACOSSSMMLSMMLLLLCOSSSSMLLMMLLLCOSSSS<$	4		valuate	the Or	nateria	il requ	ireme	nt With	n the to	ecnniq	ues.	f tha C	omn	atitix	va advar	taga		
On the successful completion of the course, students will be able toCO1 - Understand the importance of Operations Management.UnderstandCO2 - Evaluating the various organisation and staffing functionsEvaluateCO3 - Understand the Importance of Production Planning and Control.UnderstandCO4 - Evaluate the Various Operation Management Techniques.EvaluateCO5 - Analyze and Evaluating the various Inventory ManagementTechniques.EvaluateCO5 - Analyze and Evaluating the various Inventory ManagementSecure VICOVES AND PROGRAMME SPECIFIC OUTCOVESCOPOPOPOPOPOPOPOPOPOPOCOSSSecure VICOVES AND PROGR	COI	5 To impart the Operation management Techniques to get rid of the Competitive advantage.																
CO1 – Understand the importance of Operations Management.UnderstandCO2 – Evaluating the various organisation and staffing functionsEvaluateCO3 – Understand the Importance of Production Planning and Control.UnderstandCO3 – Understand the Importance of Production Planning and Control.UnderstandCO4 – Evaluate the Various Operation Management Techniques.EvaluateCO5 – Analyze and Evaluating the various Inventory ManagementAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOPOPOPOPOPOS12SSCOPO	On th	ne suc	cessfu		oletion	of the	e cour	se, stu	dents	will be	able to							
CO2 – Evaluating the various organisation and staffing functionsEvaluateCO3 – Understand the Importance of Production Planning and Control.UnderstandCO4 – Evaluate the Various Operation Management Techniques.EvaluateCO5 – Analyze and Evaluating the various Inventory ManagementAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOPOPOPOPOPOCOPOPOPOPOPOPOPOPOPOPOPOCOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOSSSCOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO <th cols<="" td=""><td>CO1</td><td>– Une</td><td>derstan</td><td>nd the</td><td>impor</td><td>tance</td><td>of Ope</td><td>eration</td><td>ns Mar</td><td>nageme</td><td>ent.</td><td></td><td></td><td></td><td>Unde</td><td>rstand</td><td></td></th>	<td>CO1</td> <td>– Une</td> <td>derstan</td> <td>nd the</td> <td>impor</td> <td>tance</td> <td>of Ope</td> <td>eration</td> <td>ns Mar</td> <td>nageme</td> <td>ent.</td> <td></td> <td></td> <td></td> <td>Unde</td> <td>rstand</td> <td></td>	CO1	– Une	derstan	nd the	impor	tance	of Ope	eration	ns Mar	nageme	ent.				Unde	rstand	
CO3 - Understand the Importance of Production Planning and Control.UnderstandCO4 - Evaluate the Various Operation Management Techniques.EvaluateCO5 - Analyze and Evaluating the various Inventory Management Techniques to take Competitive advantage.Management Techniques.MAPPING WITH PROFERATION COLSPANIATION (CO)POPOPOPOPOPOCOPOPOPOPOPOPOCOPOPOPOPOPOPOPSO12COPO <t< td=""><td>CO2</td><td>– Eva</td><td>luating</td><td>g the v</td><td>various</td><td>s orgai</td><td>nisatic</td><td>on and</td><td>staffiı</td><td>ng funo</td><td>ctions</td><td></td><td></td><td></td><td>Eva</td><td>luate</td><td></td></t<>	CO2	– Eva	luating	g the v	various	s orgai	nisatic	on and	staffiı	ng funo	ctions				Eva	luate		
CO4 – Evaluate the Various Operation Management Techniques. Evaluate CO5 – Analyze and Evaluating the various Inventory Management Analyze MAPPING WITH PROFERAME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PO <td>CO3</td> <td>– Uno</td> <td>derstan</td> <td>nd the</td> <td>Impor</td> <td>tance</td> <td>of Pro</td> <td>ductio</td> <td>on Plar</td> <td>nning a</td> <td>and Con</td> <td>trol.</td> <td></td> <td></td> <td>Unde</td> <td>rstand</td> <td></td>	CO3	– Uno	derstan	nd the	Impor	tance	of Pro	ductio	on Plar	nning a	and Con	trol.			Unde	rstand		
CO5 - Analyze and Evaluating the various Inventory Management Techniques to take converting advantagement of the second decimal de	CO4	– Ev	aluate	the Va	arious	Opera	tion N	/lanag	ement	Techr	iques.				Eva	luate		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO PO PO<	CO5 Tech	– A nique	nalyze s to tał	e and ce Cor	Evalı npetiti	uating	the vantag	variou ge.	s Inv	entory	Manag	gement			Ana	ılyze		
CO PO PI PO PO PO PO PI PO PI PO PI PO PI PI <th< td=""><td>MAI</td><td>PPINO</td><td>G WIT</td><td>TH PR</td><td>ROGR</td><td>AMM</td><td>IE OI</td><td>JTCO</td><td>MES</td><td>AND</td><td>PROGE</td><td>RAMN</td><td>IE SI</td><td>PEC</td><td>IFIC O</td><td>UTCO</td><td>MES</td></th<>	MAI	PPINO	G WIT	TH PR	ROGR	AMM	IE OI	JTCO	MES	AND	PROGE	RAMN	IE SI	PEC	IFIC O	UTCO	MES	
S 1 2 3 4 5 6 7 8 9 10 11 12 1001 2 1001 1 12 1001 2 1001 2 1001 2 1001 2 1001 2 1001 1 12 1001 2 1001 2 1001 1 12 1001 2 1001 1 1001 2 1001 1 1001 2 1001 1 1001 2 1001 1 1001 1 1001 1 1001 1 1001 1 1001 </td <td>CO</td> <td>PO</td> <td>РО</td> <td>PO</td> <td>PO</td> <td>PO</td> <td>PO</td> <td>PO</td> <td>PO</td> <td>РО</td> <td>РО</td> <td>РО</td> <td>PC</td> <td>)</td> <td>PSO1</td> <td>PSO</td> <td>PSO3</td>	CO	PO	РО	PO	PO	PO	PO	PO	PO	РО	РО	РО	PC)	PSO1	PSO	PSO3	
CO S S L L S L M M L L M M	S CO	1	2	3	4	5	6	7	8	9	10	11	12	2	1001	2	1000	
CO 2 S S M M - L L M M L L M -	1	S	S	L	L	S	L	S	L	L	L	L	L		-	-	-	
CO 3 S S S S M L S M L L L L L -	$\begin{array}{c} \text{CO} \\ 2 \end{array}$	S	S	М	М	-	L	L	М	М	L	L	М	[-	-	-	
CO 4 M M S S M L L M M L L L L -	CO 3	S	S	S	S	S	М	L	S	М	L	L	L		-	-	-	
CO S S S M M S L M M S L - - - 5 S S S M M S L M M S L -	CO 4	М	М	S	S	М	L	L	М	М	L	L	L		-	-	-	
S- Strong; M-Medium; L-Low SYLLABUS	CO 5	CO S S S M M S L M S L -																
I SYLLABUS	S-St	S- Strong; M-Medium; L-Low																
UNIT- LINTRODUCTION TO OPERATIONS MANAGEMENT 9 Hours	SYL UNI	LABU T- I D	US NTRA	DUC	TION	тос)PER	ΑΤΙΟ	NS M	IANA	GEME	Л	9 HA	ure				

(Dr. P SELVAN)

Operations Management- Nature & Scope – Evolution of Operations Management – Types of Production System, Operations Strategy - Product Life Cycle- Value Engineering concepts - Make or Buy Decision-Recent Trends in Operations Management- Plant Capacity - Plant Location & Factors.

UNIT-II JOB DESIGN & MATERIAL HANDLING

Layout- Principles of Layout- Factory-Basic types of layout product layout, group technology layout, fixed position layout, Retail service layout. Principles of material handling-Material handling equipment. Jobdesign: Effective job design- Combining engineering and behavioral approaches, Work measurementmethod analysis- Ergonomics-Case studies.

UNIT- III PRODUCTION, PLANNING & CONTROL

Basic types of production- Interminent, Batch, continuous-Routing, Scheduling, Activating and Monitoring- Production Planning and Control, Process Planning, Aggregate Production Planning, Capacity Planning: Introduction, Capacity Planning

UNIT IV OPERATION TECHNIQUES

Project Scheduling, Network Diagrams, Critical Path Method (CPM), Critical Path Method: Problems, Critical Path Method. Program Evaluation and Review Technique (PERT), PERT Problems, PERT Problems, Time Cost Trade Off Production Control, Sequencing, Sequencing Problems-I, Sequencing Problems- II, Master Production Scheduling- Concept of Quality, Total Quality Management (TQM), Total Productive Maintenance (TPM), Statistical Quality Control (SOC), Six Sigma.

UNIT- V INVENTROY MANAGEMENT

Materials Management, Inventory Control, Economic Order Quantity (EOQ) Models, Economic Order Quantity (EOQ): Problems, Production Quantity- Just in Time (JIT), Kanban System, Materials Requirement Planning (MRP)-I, Materials Requirement Planning (MRP)-II, Enterprise Resource Planning (ERP).

Text Book:

- 1. Operation Management: K. N. Dervitsiotis, McGraw-Hill International Company.
- 2. Operations Management: R.S. Russell, and B.W. Taylor, Pearson Education
- 3. Industrial Engineering and Production Management: M. Telsang, S. Chand & amp; Company Ltd. **References:**
 - 1. The Encyclopedia of Operations Management: A Field Manual and Glossary of Operations Management ARTHUR V HILL 1st Edition.
 - 2. Handbook of Industrial Engineering: Technology and Operations Management, Gavriel Salvendy 3rd Edition.
 - 3. Quality and Operations Management: Revised Edition.
 - 4. Operations Management: Theory and Practice by Mahadevan
 - 5. Production and Operations Management by Panneerselvam. R.

COU	URSE DESIGNERS			
S. No	Name of the Faculty	Designation	Dept.	Mail ID
1	Dr. B.Rajnarayanan	Associate Professor	Management Studies	rajnarayanan@vmkvec.edu.in
2	Mr. T. Thangaraja	Associate Professor	Management Studies	thangaraja@avit.ac.in

9 Hours

9 Hours

9 Hours

9 Hours

Course Code	Course Title	Category	L	Т	Р	С
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC-HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and coexistence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours : 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COUF	COURSE DESIGNERS													
S.NO	COURSE	DESIGNATION	NAME OF	MAIL ID										
	INSTRUCTOR		THE											
			INSTITUTION											
1	Dr.S.P.Sangeetha	Vice	AVIT	sangeetha@avit.ac.in										
		Principal(Academics)												
2	Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin										
	Joseph			_										

ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

Nil COURCE ON IE CENTRO

COUF	KSE OBJECTIVES
1	To recall the advanced matrix knowledge to Engineering problems.
2	To equip themselves familiar with the functions of several variables.

To improve their ability in solving geometrical applications of differential calculus problems 3

4 To examine knowledge in multiple integrals.

5 To improve their ability in Vector calculus.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the concept of orthogonal reduction to diagonalise the given matrix	Apply
CO2. Find the radius of curvature, circle of curvature and centre of curvature for a given curve.	Understand
CO3. Classify the maxima and minima for a given function with several variables, through by finding stationary points	Analyse
CO4. Find double integral over general areas and triple integral over general volumes	Understand
CO5. Apply Gauss Divergence theorem for evaluating the surface integral.	Apply

CO5. Apply Gauss Divergence theorem for evaluating the surface integral.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	М	-	-	-	-	-	I	-	-	-	-	-	-
CO2	L	S	М	-	-	-	-	-	I	-	I	-	-	-	-
CO3	L	S	М	-	-	-	-	-	-	-	I	-	-	-	-
CO4	L	S	М	-	-	-		-	-	-	-	-	-	-	-
CO5	L	S	М	-	-	-	-	-	I	-	-	-	-	-	-
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

MATRICES:

Characteristic equation- Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

PARTIAL DERIVATIVES & DIFFERENTIAL CALCULUS:

Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method, Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature.

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples ofDouble and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals,Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. "Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I &II (10th Edition).

(COURSE	DESIGNERS			
	S.No	Name of the Faculty	Designation	Department	Mail ID
	1	Dr. A.K.Bhuvaneswari	Asst. Professor	Mathematics	bhuvaneswari@avit.ac.in
	2	Dr.G.Selvam	Asso. Professor	Mathematics	selvam@vmkvec.edu.in

DIFFERENTIAL EQUATIONS AND	Category	L	Т	Р	Credit
TRANSFORMS	FC-BS	2	1	0	3

PREAMBLE

A signal is said to be a continuous time signal if it is available at all instants of time. A real time naturally available signal is in the form of time domain. However, the analysis of a signal is far more convenient in the frequency domain. These are three important classes of transformation methods available for continuous time systems. They are Laplace Transform, Fourier series and Fourier Transform. Similarly, Z- transform plays an important role in analysis of linear discrete time signals. Transform techniques are very important tool in the analysis of signals. Also To expose the students to the basics of wavelet theory and to illustrate the use of wavelet processing in engineering fields.

PREREQUISITE

Engineering Mathematics

COUR	RSE OBJECTIVES								
1	1 Learn to use Fourier series to represent periodical physical phenomena in engineering analysis								
2	To understand how the Fourier series is extended to aperiodic signals in the form Fourier transf	òrm							
3	To understand the properties of Z-Transform and associating the knowledge of properties response to different operations on discrete signals.	s of ROC in							
4	To learn Laplace transform and it Inverse methods to solve differential transforms and integral	transforms							
5	To understand the terminology that are used in the wavelet's literature								
COUR	RSE OUTCOMES								
	On the successful completion of the course, students will be able to								
CO1.]	CO1. Explain fundamental understanding of Fourier series and be able to give Fourier expansions of Evaluate								
	a given function.								
CO2. 1	Demonstrate Fourier Transform as a tool for solving integral equations	Apply							
CO3. (Compute the Z transform of elementary sequences both from the definition and by using tables	Apply							
	and use the appropriate theorems to calculate Z transforms and inverse Z transforms. Select								
	and combine the necessary Z transform techniques to solve second-order ordinary difference								
CO4.	Calculate the Laplace transform of standard functions both from the definition and by using	Apply							
	tables. Select and use the appropriate shift theorems in finding Laplace and inverse Laplace								
	transforms. Understand the concept of Laplace transform and inverse Laplace transform of								
	various functions and its application to solve ordinary differential equations.								
CO5.U	Inderstand how to use the modern signal processing tools using signal spaces,	Apply							
ł	bases, operators and series expansions.								

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	-	-	-	М	-	-	-	L	-	-	-
CO2	S	S	S	S	-	-	-	М	I	-	-	М	-	-	-
CO3	S	S	S	S	-	-	-	М	I	-	I	М	-	-	-
CO4	S	S	S	S	-	-	-	М	I	-	-	М	-	-	-
CO5	S	S	S	S	-	-	-	М	-	-	-	М	-	-	-

Syllabus

FOURIER SERIES:

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS:

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS:

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

LAPLACE TRANSFORMS:

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

WAVELET TRANSFROMATION:

Classes of wavelets: Haar, Daubechies, bi-orthogonal. Continuous Wavelet Transform (CWT): CWT and its Properties, Discrete Wavelet Transform- Haar scaling function - Nested spaces - Wavelet function- Designing orthogonal wavelet systems: Daubechies – Coiflet - Symlet wavelet system coefficients- Signal decomposition using DWT.

TEXT BOOKS:

- 1. "Engineering mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr. A. Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr. A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai

(2013).

4. K. P. Soman, K. I. Ramachandran, "Insight into Wavelets: From Theory to Practice", Third Edition, PHI (2004).

REFERENCES:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 5. R. M. Rao and Ajit S. Bopardikar, "Wavelet Transform, Introduction to theory and Applications", Addison-Wesley (1998).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L. Tamilselvi	Professor	Mathematics	ltamilselvi@avit.ac.in
2	Dr. M. Vijayarakavan	Associate Professor	Mathematics	vijayarakavan@vmkvec.edu.in

	SMART MATERIALS	CATEGORY	L	Т	P	C				
	Total Contact Hours: 45									
	Prerequisite: N i l	FC-BS	3	0	0	3				
PREAMBLE										
Smart Materia	nart Materials gives an outlook about various types of materials having potential application in Engineering and									
Technology. Ir	n particular, Students learn about Properties of Crystalline I	Materials, Smart Mate	erials an	d Nanc	materia	lls, and				
their industrial	applications, characteristics and industrial applications of I	Magnetic and Superco	onductin	g mate	rials.					
COURSE OB	JECTIVES:									
1	To impart the basic properties of different materials.									
2	To understand the structure of crystalline materials.									
3	To understand the properties of smart materials and realize its industrial applications.									
4	To learn the synthesis of Nano materials and carbon nanotubes.									
5	To learn the properties, classification and relevant applications of magnetic materials.									
6	To understand the concept of superconductivity, propertie	es of super conductor	and thei	r indus	trial					
	applications.									
COURSE OU	TCOMES:									
After successf	ul completion of the course, learner will be able to									
CO1	understand the basic properties of various materials.				Under	rstand				
CO2	learn the structure of Crystalline Materials				Ap	ply				
CO3	gain the basic knowledge and recognize the applications of Smart Materials Apply									
CO4	get an exposure about the properties of Nano materials Apply									
CO5	gain the knowledge about the properties of magnetic materials and familiarize their Apply									
C06	applications.									
0.00	gain the knowledge about Superconducting materials Apply									

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO3	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO4	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO6	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-

S-strong, M-Medium, L-Low

	SYLLABUS												
UNIT: I		CRYSTALLINE MAT	TERIALS		9 Hours								
Unit cell number –	– Brava - packin	is lattice – Miller indice g factor for SC, BCC, FC	s – Calculation of numbe CC, HCP structures – dete	er of atoms per unit ermination of interp	cell – atomic radius – coordination lanar distance (d).								
UNIT: II	[SMART MATERIALS	8		9 Hours								
Shape Me advantage Transform	emory A es and o mer).	lloys (SMA) – Character disadvantages of SMA.	ristics and properties of S Metallic glasses – Prepa	MA, Application – aration, properties	SMA in Actuators and Blood clot filters, and industrial applications (Core of the								
UNIT: II	Ι	NANO MATERIALS			9 Hours								
Nanophas Carbon na	Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.												
UNIT: IV	V	MAGNETIC MATERIALS 9 Hours											
Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).													
UNIT: V	UNIT: VSUPER CONDUCTING MATERIALS9 Hours												
Supercon supercone Trains).	ducting ductors	phenomena – properti – High Tc Superconduc	es of superconductors – etors – Industrial Applica	Meissner effect	- isotope effect – Type I and Type II luctors (SQUID, Cryotrons and Maglev								
TEXT BO	OOKS												
1. I 2. 4	Palanis A.K. K	amy P.K. Materials S atiyar and C.K. Panc	Science. SCITECH Pr ley, Engineering Phys	ublishers, 2015. sics Theory and	Practical, Wiley Publisher, 2015.								
REFERE	ENCES		4										
1. 1	Pillai S	S.O., Solid State Phys	tics, 9 th Edition, New	Age Internation	al (P) Ltd., Publishers, 2020.								
2. 1	2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An												
	Introduction, 10 th Edition, Wiley Publisher, 2018.												
COURSE	E DESIG	GNERS											
Sl. No.	Na D C	ame of the Faculty	Designation	Department	Mail ID								
1.	Dr. G.	Suresn N Viswonoth	Associate Professor	Physics	suresn.pnysics@avit.ac.in								
3.	Dr. B.	Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phys@avit.ac.in								

		ENVIRONMENTAL SCIENCES	Category	L	Т	Р	Credit					
			FC-BS	3	0	0	3					
Environn sciences. conserving and its ma	Environmental science is an interdisciplinary field that integrates physical, chemical, biological, and atmospheric sciences. Environmental studies deals with the human relations to the environment and societal problems and conserving the environment for the future. Environmental engineering focuses on the various issues of environment and its management for sustainable development by improving the environmental quality in every aspect.											
PREREQ	PREREQUISITE											
COURSE	C OBJE	CCTIVES										
1	To inc resour	culcate the knowledge of significance of environmental studies rces.	s and cons	ervati	on of	the n	atural					
2	To ac	quire knowledge of ecosystem, biodiversity, it's threats and th	e need for	conse	ervatio	n						
3	To ga	in knowledge about environmental pollution, it's sources, effe	ects and co	ntrol 1	neasu	res						
4	To familiarize the legal provisions and the national and international concern for the protection of environment											
5	To be aware of the population on human health and environment, role of technology in monitoring human health and environment.											
COURSE	C OUTO	COMES										
On the suc	ccessfu	l completion of the course, students will be able to										
CO1. Und	lerstand	I the importance of environment and alternate energy resource	s Une	lersta	nd							
CO2. Init and biodiv	iate the versity	e awareness and recognize the social responsibility in ecosyste conservation	m Apj	ply								
CO3. To o the proble	develop ms	technologies to analyse the air, water and soil pollution and s	solve Ap	oly								
CO4. To e for a susta	CO4. To evaluate the social issues and apply suitable environmental regulations for a sustainable development Evaluate											
CO5. To i environme	CO5. To identify and analyse the urban problems, population on human health and Analyse environment											
MAPPIN	G WIT	TH PROGRAMME OUTCOMES AND PROGRAMME S	PECIFIC	OUT	СОМ	ES						

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	M	M	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	M	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-
S- Str	S- Strong; M-Medium; L-Low														

SYLLABUS

UNIT –I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems -Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizerpesticide problems, water logging, salinity, case studies - Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems - pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity - Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts - endangered and endemic species of India - Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT – III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation - rain water harvesting, watershed management -Resettlement and rehabilitation of people, case studies -Climate change - Global warming - Acid rain - Ozone depletion-Environment Protection Act - Air (Prevention and Control of Pollution) act - Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

6 hrs

6 hrs

6 hrs

6 hrs

6 hrs

- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE	COURSE DESIGNERS								
S.No.	Name of the Faculty	Mail ID							
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in							
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in							

	Category	L	Т	Р	Credit
SEMICONDUCTOR DEVICES	СС	3	0	0	3

PREAMBLE

The course is designed to teach the physical principles and operational characteristics of semiconductor devices with emphasis on metal-oxide systems, bipolar, high-electron mobility, and field-effect transistors. The course provides advanced background in solid state electronic devices and is intended to help students to develop their basic analytical skills and continue advanced research in the varied branches of semiconductor devices.

PRERQUISITE

NIL

COURSE OBJECTIVES

- 1 To emphasis the physics of semiconductors and the working of semiconductor devices with their applications.
- 2 To impart knowledge on working principle, configuration, operational characteristics and limitation of BJTs.
- 3 To understand the construction and Characteristics of JFETs and MOSFETs.
- 4 To familiarize the special semiconductor devices and understand their operational characteristics
- 5 To recognize and differentiate the power devices from others with reference to the power handling capacity

COURSE OUTCOMES

On the successful	completion of	the course, students	will be able to
	1	,	

CO1. Apply the concept of diode operation to construct the circuits for various applications	Apply
CO2. Investigate the different configurations and derive the device model using Pi and h	Apply
parameter models.	
CO3. Differentiate the constructional diagram and characteristic significances of JFET,	Analyze
DMOSFET and EMOSFET.	
CO4. Describe the principle and operations of various special semiconductor devices like	Analyze
Schottky barrier diode, varactor diode and tunnel diode etc.	
CO5. Identify a proper device by referring their specifications for any applications used in	Evaluate
power circuits and output stage of a system.	

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PS0 1	PS0 2	PS0 3
CO1	S	М	М	L	-	-	-	-	-	-	-	-	S	М	-
CO2	S	S	М	L	-	-	-	-	-	-	-	-	S	М	-
CO3	S	М	L	-	-	-	-	-	-	-	-	-	М	-	-
CO4	S	М	L	-	-	-	-	-	-	-	-	L	S	L	-
CO5	S	М	L	L	-	-	-	-	-	-	-	L	S	M	-
C Cta	an at M	Madin													

SYLLABUS

SEMICODUCTOR DEVICES AND ITS APPLICATIONS: Semiconductor materials - Ge, Si and GaAs- P type and N type materials - Semiconductor Diode - equivalent circuit - junction capacitance - switching characteristics, diode current equation- drift, diffusion current-Diode applications-Rectifiers-wave shaping circuits and voltage multipliers.

BIPOLAR JUNCTION TRANSISTORS: Transistor constructions – NPN - PNP Junctions - Early effect - Input and output characteristics of CE, CB and CC Configurations. Device Models - pi model and h parameter model - Multi emitter transistor.

JUNCTION FIELD EFFECT TRANSISTOTRS: Construction - operation of JFET - characteristics – pinch-off voltage and its significance - MOSFET characteristics - channel length modulation - DMOSFET-EMOSFET - equivalent circuit model

SPECIAL SEMICONDUCTOR DEVICES: Metal semiconductor junction - MESFET - Schottky barrier diode - Zener diode - varactor diode - Tunnel diode - Gallium arsenide diode - LASER .

POWER AND DISPLAY DEVICES: UJT, SCR, Diac, Triac - power BJT - MOSFET-DMOS - VMOS - Photo transistor – optocoupler - CCD - LCD – LED

Text Books:

1. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2013.

References:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 2010.
- 2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford Press, 2009.
- 3. B L Theraja, R S Sedha, "Principles of Electronic Devices and Circuits", S.Chand, 2004.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvaraju	Associate	ECE	selvaraju@vmkvec.edu.in

		Professor		
2	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in
3	Dr.C.Arunkumarmadhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in
4	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in

	ANALOG CIRCUITS	Category	L	Т	Р	Credit					
		CC	3	0	0	3					
PREAME	BLE	<u> </u>			1						
Analog circuits enable the students to have an insight knowledge on fundamentals of various electronic circuits.											
The designed course makes the students to work on the various applications of the electronic devices. This subject											
helps the students to design, model and develop rectifier circuits, amplifier circuits, oscillator circuits and many other											
real time application circuits											
PREREOUISITE											
Semiconductor Devices											
COURSE OBJECTIVES											
1 To understand the small signal BJT/FET Models.											
2 Iden	2 Identify the frequency response of BJT and FET.										
3 Apj	oly the basic concept and working of various types of feed	back amplifiers	and oscil	lators.							
4 To	understand the working different types of large signal amp	olifiers and tune	d amplifie	ers.							
5 To	learn about various compound configurations of multivibr	ators.									
COURSE	OUTCOMES										
On the suc	ccessful completion of the course, students will be able to										
CO1.Illust	rate the small signal models of BJT/FET amplifiers				App	oly					
CO2.Desig	gn an amplifier for a given frequency response				Appl	у					
CO3. Con	struct different oscillators, multivibrators & compound con	nfigurations and	1		Ap	ply					
feed	back amplifier circuits										
CO4. Ana	lyze various parameters of feedback amplifier (voltage ser	ies, voltage shu	nt,		Ana	lyze					
current ser	ies and current shunt) by using simulation tools										
CO5.Anal	yze the efficiency of large signal amplifiers and bandwidtl	h of tuned ampl	ifier by		Ana	lyze					
usin	g simulation tools										

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	M	-	-	-	-	-	-	M	S	Μ	-
CO2	S	S	S	М	M	-	-	-	-	-	-	M	S	Μ	М
CO3	S	S	S	M	M	-	-	-	-	-	-	M	S	М	М
CO4	S	S	S	М	M	-	-	-	-	-	-	M	S	М	М
CO5	S	S	S	S	M	-	-	-	-	-	-	M	S	Μ	М
C CL		Г М	т	Τ											

SYLLABUS

BIASING CIRCUITS AND SMALL SIGNAL MODELS

Overview of DC analysis of BJT circuits - Overview of BJT models - AC analysis of Common-Emitter BJT amplifier configuration using hybrid-π model - BJT current sources: Cascode current source, Widlar current source. Overview of FET DC circuit analysis - AC analysis of Common-Source MOSFET amplifier configuration - FET current sources: 2-transistor MOSFET current source - FET current sources: Cascode current mirror and Wilson current mirror.

BJT AND JFET FREQUENCY RESPONSE

BJT amplifiers: CE, CB and CC amplifiers, FET amplifiers: CS, CG and CD amplifiers –designing BJT & FET amplifier networks Frequency response: low frequency response of BJT with RL, Low frequency response of FET amplifiers – Miller effect capacitance – high frequency response of BJT and FET amplifiers, Multistage frequency effect.

FEEDBACK AMPLIFIERS AND OSCILLATOR CIRCUITS

Classification of Amplifiers, Feedback Concepts, Effect of Negative Feedbacks, Voltage Series Feedback, Current Series Feedback, Voltage Shunt Feedback and Current Shunt Feedback, Oscillator basics, Types of Oscillators-RC oscillator, LC Oscillator and Crystal Oscillator.

LARGE SIGNAL AMPLIFIERS AND TUNED AMPLIFIERS

Class A Large Signal amplifier, Second Order Distortion, Push –Pull Amplifier, Class B, Class AB amplifiers, Class C amplifiers, Tuned amplifiers– single tuned – double tuned – synchronously tuned amplifiers –Real Time Applications of amplifiers.

WAVE FILTERS

Filters: Classification of Filters, Passive filters, Low-Pass filters - Low-Pass R-C Filter Circuit - Low-Pass R-L Filter Circuit, High-Pass Filters - High-Pass R-C Filter Circuit - High-Pass R-L Filter Circuit, R-C Band-pass Filter - R-C Band-stop (or Band-Elimination) Filter

TEXT BOOKS:

- 1. JacobMillman, Christos CHalkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 4TH Edition, 2015.
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2013.

REFERENCE BOOKS:

1. Adel S Sedra, Kenneth C Smith, "Microelectronic Devices", Oxford University Press, 7th Edition, 2015.

2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5thEdition,2008. Jacob Millman, Christos C Halkias, Chetan D Parikh, "Integrated Electronics", Tata McGraw Hill, 2ndEdition, 2010.

COUR	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in										
2	Ms. R. Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in										

	LINEAR INTEGRATED CIRCUITS	Category	L	Т	Р	Credit				
	(THEORY AND PRACTICALS)	CC	2	0	2	3				
PREAM	BLE			11						
Linear Integrated circuits course is a design-oriented course aimed at understanding fabrication, parameters, and										
specifications of integrated circuits, MOSFETs, Op-Amps as well as their applications in the Analog domain. The										
designed course makes the students to work on the various applications of the Integrated Circuits. This subject helps										
the students to design, model and develop amplifier circuits, comparators, regulators, filters ,timer, D/A and A/D										
converters and PLL.										
PREREQUISITE										
Semiconductor Devices										
COURSE OBJECTIVES										
1 To Understand the different types of sources and basics of Integrated Circuits fabrication.										
2 To	2 To get familiarized with operational amplifiers and its Characteristics.									
3 T	o Construct various circuits using operational amplifier and	l analyze its pe	rformance	•						
4 T	o design and the working of regulators, filters and timers ci	rcuits.								
5 To	Understand the basic concepts of PLL, ADC and DAC.									
COURSI	E OUTCOMES									
On the su	ccessful completion of the course, students will be able to									
CO1. The	ability to understand the IC Technology and equipment used in	fabrication.			Unders	stand				
CO2. Ana	lyze the Operational Amplifier with its characteristics.				Analy	ze				
CO3. Des	ign and analyze the various applications of Operational An	nplifier.			Ana	lyze				
CO4. Des	ign and analyze regulators, filters and timers circuits.				Ana	lyze				
CO5.Disc	sussion of concepts of PLL and its applications, ADC and I	DAC.			Ana	lyze				

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	M	L	-	-	-	-	-	-	-	-	-	S	M	-
CO2	S	S	M	-	М	-	-	-	М	-	-	Μ	S	Μ	-
CO3	S	S	M	-	M	-	-	-	M	-	-	M	S	Μ	-
CO4	S	S	M	-	М	-	-	-	М	-	-	Μ	S	Μ	-
CO5	M	M	L	-	-	-	-	-	-	-	-	-	S	M	-
~ ~			-	-											

SYLLABUS

CIRCUIT CONFIGURATION FOR LINEAR ICs AND INTEGRATED CIRCUIT FABRICATION

Current mirror and current sources, Current sources as active loads, Voltage sources, Voltage References, BJT Differential amplifier with active loads, Basic Monolithic Integrated Circuits-Basic Planar Process-Transistors for monolithic circuits-Monolithic Diodes-Integrated Resistors-Integrated Capacitors and Inductors-Scale of Integration.

BASICS OF OPERATIONAL AMPLIFIER

Ideal Operational Amplifier - Operational Amplifier Internal Circuits – 741 op-amp and its features, modes of operationinverting, non-inverting, differential. Examples of IC Op Amps – DC Characteristics – AC Characteristics – PSPICE Simulation Tools- Experiments

OPERATIONAL AMPLIFIER LINEAR AND NON-LINEAR APPLICATIONS

Basic Op Amp Applications – Instrumentation Amplifiers – V to I and I to V Converters –Adder/ Sub tractor – Multiplier and Divider – Differentiator and Integrator – Sign Changer, Scale Changer, Precision rectifier, peak detector, clipper and clamper—Log/Antilog Amplifiers –Comparators-Waveform Generators, Design of Op-amp based ECG signal Acquisition, Conditioning and Processing-Experiments

REGULATORS, FILTERS AND TIMERS

Series Op Amp Regulators – IC Voltage Regulators – 723 General Purpose Regulators – Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. Timer – Description of Functional Diagram – Monostable and Astable Operation – Schmitt Trigger- Experiments

PLL, D/A AND A/D CONVERTERS

PLL – Basic Principles – Phase Detectors/ Comparators – Voltage Controlled Oscillator – Low Pass Filter — PLL Applications – D-A Converters & its type – A–D Converters & its type - Experiments

Text Books:

D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuits", New Age International Publishers, 5th Edition 2018.
 Jacob Millman, Chirstos C. Halkias, "Integrated Electronics", Tata Mc-GRAW Hill, Edition, 3rd Edition, 2010

Reference Books:

- 1. Robert F Coughlin, Fredrick F.Driscoll," Operational Amplifiers and Linerar Integrated Circuits", Phi Learning,6th Edition,2009.
- Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata Mc-GRAW Hill ,4th Edition, 2016.

COUR	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	R.Mohana Priya,	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in										
2.	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in										

SIGNALS AND SYSTEMS	Category	L	Т	Р	Credit
	CC	3	0	0	3

PREAMBLE

Signals and Systems arise in a wide variety of fields. These concepts and techniques associated with in areas of science and technology. Signals are functions of one or more independent variables contain information about the behavior or nature of some phenomenon. Signals vary continuous / discrete in time. Systems respond to particular signals by producing other signals (output) having some desired behavior. It introduces the students to analyze signals and systems and to design systems to enhance or restore signals that have been degraded in some way.

PREREQUISITE :NIL

COUF	RSE OI	BJEC	FIVES												
1	To un	dersta	nd the	various	classi	ficatio	ns of C	ontinu	ous tin	ne and D	iscrete t	ime Sigr	nals and	System	s.
2	To kn	low ab	out sig	nalsam	pling a	nd rec	onstruc	ction te	chniqu	es.					
3	To de	termin	e the c	haracte	eristics	of con	tinuou	s time	and di	screte ti	me LTI	systems	using s	tate varia	able
	formu	lations	s and e	quatior	IS.										
4	To in	npart tł	ne knov	wledge	in ana	lysis a	nd cha	racteri	zation	of the C	T and I	DT syste	ms thro	ugh Fou	rier
	transforms.														
5	To learn about the analysis and characterization of the DT system through Z Transforms.														
COURSE OUTCOMES															
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to)					
CO1. Classify the type of signals and systems.											Un	Understand			
CO2. Understand the signal sampling and reconstruction techniques. Understand															
CO3.E	Determi variable	ne the formu	charac lations	teristic and ec	s of con quation	ntinuou s.	us and	discret	e time	LTI sys	tems usi	ng state	Ap	ply	
CO4. /	Apply I	Fourier	conce	pts to a	nalyze	the co	ntinuo	us time	e and d	iscrete ti	ime syste	ems.	Ap	ply	
CO5. /	Apply 2	Z- trans	sform t	o analy	ze the	charac	teristic	es of di	screte-	time sys	tems.		An	alyze	
MAPH	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	М	М	L	-	-	-	-	-	-	-	_	-	S	М	-
CO2	S	М	М	-	М	-	-	-	М	-	-	М	S	М	-
CO3	S	М	М	-	М	-	-	-	Μ	-	-	М	S	М	-
CO4	S	М	М	-	М	-	-	-	Μ	-	-	М	S	М	-
CO5	S	Μ	Μ	-	Μ	-	-	-	Μ	-	-	M	S	М	-

SYLLABUS

INTRODUCTION TO SIGNALS AND SYSTEMS

Signals and systems as seen in everyday life, and in various branches of engineering and science. Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability. Examples.

SAMPLING AND RECONSTRUCTION

The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems.

BEHAVIOR OF CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS

Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.

FOURIER REPRESENTATION OF SIGNALS :

Representation of Fourier series, Continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum. Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform.

Z-TRANSFORMS :

Fundamental difference between continuous and discrete time signals, discrete time signal representation using complex exponential and sinusoidal components, Periodicity of discrete time using complex exponential signal, Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z- transform, properties of Z-transforms.

TEXT BOOKS:

- 1. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Pearson education , 2nd edition, 2007.
- 2. John G. Proakis and Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", Pearson Education, 4thEdition, 2007.

REFERENCE BOOKS:

- 1. B.P. Lathi, "Linear Systems & Signals", Oxford Press, Second Edition, 2009.
- 2. Rodger E Ziemer, William H. Tranter, D. Ronald Fannin, "Signals and Systems continuous and Discrete", Pearson Education, 4th Edition, 2009.
- 3. Douglas K Linder, "Introduction to Signals and Systems", Mc-Graw Hill, 1st Edition, 1999.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

			Category	L	Т	Р	Credit				
		DIGITAL CIRCUITS DESIGN	СС	3	0	0	3				
PREAMBLE											
One o	of the most in	nportant reasons for the unprecedented growth o	of Digital Elect	ronics a	and s	yste	ms is the				
adven	t of integrated	d circuits (ICs). Developments in the IC techno	logy have mad	de it po	ssible	e to	fabricate				
compl	ex digital cir	cuits such as microprocessors, memories and F	PGAs etc. Thi	s course	e pro	vide	s various				
metho	ds and technio	ques suitable for a variety of digital system design	applications.								
PREF	REQUISITE										
	Basics of Ele	ectrical and Electronics Engineering									
COU	RSE OBJEC	TIVES									
1	To understan	nd the various number systems and their conversion	ons.								
2	To learn the	Boolean expressions, Boolean postulates and Kar	naugh map met	thod to 1	reduc	e the					
3	To impart th	e design knowledge of various combinational log	ic circuits and s	sequenti	al cir	cuits	s.				
4	To understan	nd the basics of hardware descriptive language.									
5	To design th	e RTL for various logic circuits.									
COU	RSE OUTCO	DMES									
On the	e successful co	ompletion of the course, students will be able to									
CO1.	Explain the ba	sic principles of digital system, Logic gates and Boo	lean laws.			Und	lerstand				
CO2.	CO2. Simplify Boolean expression using K-Map techniques. Apply										
CO3.	CO3. Examine various Combinational circuits using logic gates. Apply										
CO4. Illustrate the operation of sequential circuits using Flip flops Analyze											
CO5.A	CO5.Analyze various digital circuits using HDL programming and Design various logic Analyze families.										

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PS
														02	O3
CO1	S	М	L	-	-	-	-	-	-	-	-	L	S	-	-
CO2	S	М	М	L	L	-	-	-	-	-	-	L	S	Μ	-
CO3	S	S	М	М	М	-	-	-	-	-	-	L	S	Μ	М
CO4	S	S	М	M	M	-	-	-	-	-	-	L	S	M	Μ
CO5	S	S	М	М	М	-	-	-	-	-	L	L	S	М	Μ

S- Strong; M-Medium; L-Low

SYLLABUS

Basics of digital system:

About Digital system, Analog versus Digital systems, Advantages of processing information in digital form, Number Systems-Binary, Octal, Decimal & Hexadecimal & its Conversion methods, Complement Arithmetic, Signed Binary Numbers, Binary Codes, Binary Storage and Registers and its types, Fixed-Function Logic Devices.

Boolean Algebra, Logic Gates & Gate –Level Minimization:

Introduction to Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable K- maps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Minimization Techniques for Boolean Expressions using Karnaugh Map and Quine McCluskey Tabular method, Hardware Description Language(HDL).

Combinational logic:

Introduction to Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder, Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers.

Synchronous Sequential Logic, Register & Counters:

Introduction to Sequential circuits, Storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits, state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters.

Design At the Digital Integrated Circuits & Register Transfer Level

Digital Integrated Circuits: Logic levels, propagation delay, power dissipation, fan-out and fan-in, noise margin, logic families and their characteristics-RTL, TTL, ECL, CMOS

Register Transfer Level Notation, Register Transfer Level In HDL, ASM, Sequential Binary Multiplier, Control Logic, HDL Description Of Binary Multiplier, Design With Multiplexers, Race Free Design, Latch Free Design.

Text books:

- 1. Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
- 2. John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall, 2005.

Reference Books:

- 1. Stephen D. Brown, and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design, 2nd Edition," McGraw Hill, June, 2007.
- 2. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.
- 3. Floyd T.L., "Digital Fundamentals", Charles E. Merrill publishing Company, 1982.
- 4. Tokheim R.L., "Digital Electronics Principles and Applications ", Tata McGraw Hill, 1999.
- 5. Jain R.P., "Modern Digital Electronics ", Tata McGraw Hill, 1999

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in
2	Dr. Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in

CONTROL SYSTEMS	Category	L	Т	Р	Credit
	CC	3	0	0	3

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

Differential Equations and Transforms

COURSE OBJECTIVES

1	Understand the feedback and feed-forward control; apply representations of controlsystems.														
2	To find time response of given control system model, various controllers design and simulation using MATLAB.														
3	To understand the frequency domain analysis, use of frequency response methods for open loop and closed loop control systems.														
4	To analyze the stability of systems using various methods and to designcompensators.														
5	To develop and analyze the state space models.														
COURS	E OUTCOMES														
On the successful completion of the course, students will be able to															
CO1	Find '	Find Transfer function of systems. Understand													
CO2	Find the time response of given control system model and to design a controller. Create														
CO3	Find	the fre	quency	y respo	nse of	control	syster	n mode	el using	g freque	ncy resp	ponse pl	ots.	Analyz	xe
CO4	Analy	yze the	e stabili	ity of tl	ne cont	rol sys	tem an	d desig	gn the s	suitable	comper	nsators.		Create	
CO5	Apply	y state	space	technic	lues to	model	contro	l syste	ms.					Evalua	te
MAPPIN	IG WI	TH P	ROGF	RAMM	E OU	TCOM	IES A	ND PR	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	М	-	-	-	-	-	М	М	S	М	-
CO2	S	M	-	М	S	-	-	М	-	-	-	М	S	М	S
CO3	S	M	-	М	S	-	-	-	-	-	-	М	S	M	-
CO4	S	M	-	M	S	-	М	-	-	-	М	M	S	M	S
CO5	S	M	-	М	S	L	L	-	М	-	М	М	S	М	-
S- Strong	S- Strong; M-Medium; L-Low														

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – classifications of control systems – Mechanical Translational and Mechanical Rotational Systems, Electrical analogy– Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, Frequency domain specifications, Correlation between time and frequency responses, Bode Plot, Polar Plot, ConstantM and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Guidelines for sketching root locus, Nyquist stability criterion. Cascade Lag compensation, cascade Lead compensation and cascade Lag-Lead compensation

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, Equivalence between transfer function and state variable representations, Digital control design using state feedback. Synchros – AC servomotors- DC Servo motors.

TEXT BOOKS

K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
 I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
 C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
 R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB Reference).
 M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008

6. Nise N.S., "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

1. Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.

- 2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.
- 3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/
- 4. Control Systems N. K. Sinha, New Age International (P) Limited Publishers.
- 5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

COURS	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	e-mail id								
1	D.SARANYA	Assistant Professor (Gr-II)	EEE	dsaranya@avit.ac.in								
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in								

MICROCONTROLLERS AND	Category	L	Т	Р	Credit
EMBEDDED SYSTEMS	CC	3	0	0	3

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development inVLSI technology, microcontrollers evolvewhichfunctionsimilartomicroprocessorsbutthey havemostoftheperipherals built on-chip. This course makes the students to be familiar with the architecture and programming ofMicrocontrollers.ThiscoursealsointroducesthearchitectureandhardwarefeaturesofPIC16F877andARM7(LPC2148)mi crocontrollers.

PREREQUISITE-Nil

COUR	COURSEOBJECTIVES														
1	1 Tolearntheconceptsofmicroprocessorsandknowledgeofinterfacingdevices.														
2	TostudytheArchitectureof8051microcontroller														
3	3 Todevelopskillinsimpleprogramwritingofmicrocontroller														
4	Tostudytheinterfacing and applications of microcontroller														
5	Tostudythe concepts of Embedded Systems.														
COUR	COURSEOUTCOMES														
Onthesuccessful completionofthecourse, studentswill beable to															
CO1.Ex	CO1.Explaintheconceptofmicroprocessorandinterfacingdevices. Understand														
CO2.Explainthearchitectureandfunctionof8051microcontroller Apply															
CO3.Designandimplementprogramson8051Microcontroller Analyze															
CO4.D	CO4.Designandimplementapplicationsusing8051Microcontroller Analyze														
CO5. E	CO5. Explainthearchitectureandfunction of Embedded Systems Apply														
MAPP	INGW	ITHPR	OGRA	MME	OUTCO	OMES	ANDPI	ROGR	AMMI	ESPECI	FICOUT	ГСОМЕ	ËS		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
															0
CO1	S	S	М		М							М	S	S	3 S
CO^2	5	5	S	_	M	_	_	_		_	_	M	5 S	M	M
CO_2	5	M	M	_	M	- M	_	_		_	_	M	5 S	S IVI	M
CO4	5 S	IVI S	M	_	M	M	_					M	5	S	M
CO5	<u>S</u>	M	S	M	M	M	_	_	-	_	-	M	S	M	M
S-Stron	ig;M-M	edium;I	L-Low	141	141	171						111		1 1 1	141

SYLLABUS INTEL8086MICROPROCESSOR&I/OINTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes –Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simpleprograms-ProgrammablePeripheralInterface8255–ProgrammableCommunicationInterface8251USART– ProgrammableInterruptController8259A–DirectMemoryAccessController8257-

ProgrammableIntervalTimer8253Keyboard/DisplayController8279.

INTEL8051MICROCONTROLLER

Introduction to 8bit microcontroller-architecture of 8051-Signal descriptions of 8051-Role of PC and DPTR-Flagsand PSW-CPU registers- Internal RAM & ROM-Special Function Register-Counter & Timers-Serial Communication.

ASSEMBLYLANGUAGEPROGRAMOFINTEL 8051

Interrupt-Addressing Mode-Data Transfer Instruction-Arithmetic Instruction-Logical Instruction-Call Instruction-I/O Port Programming.

INTERFACINGANDAPPLICATIONOFINTEL 8051

LCD Interfacing-A/D and D/A Interfacing-Sensor Interfacing-Relays and Opt isolators-Stepper Motor Interfacing-DCMotor Interfacing.

INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems –Structural units in Embedded processor, selection of processor & memory devices- DMA — Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging

Text Books:

- 1. MuhammadAliMazidiandJanicaGilliMazidi,The8051microcontrollerandembeddedsystems,PearsonEducation ,5thIndian reprint, 2003.
- 2. Frank D.Petruzella. "ProgrammableLogicControllers", McGraw-HillBook, Company, 1989
- 3. Raj Kamal, "Embedded Systems-Architecture, Programming and Design", TataMcGraw-Hill,2011.

Reference Books:

- 1. B.P.Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. EmbeddedControllerHandbook, IntelCorporation,USA.
- 3. MicrocontrollerHandBook, INTEL, 1984.
- 4. AjayV.Deshmukh,"Microcontrollers-Theoryandapplications", TataMcGraw-Hill, publisher, 2005.

COUI	COURSEDESIGNERS											
S.No.	Name of	Designation	Department	MailID								
	theFaculty											
1	Dr.R.Ramani	AssistantProfessor	ECE	ramani@vmkvec.edu.in								
2	Mr.G.Sureshkumar	AssistantProfessor	ECE	sureshkumar@vmkvec.edu.in								
3	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in								

CMOS DESIGN	Category	L	T	Р	Credit
	CC	3	0	0	3

This course deals comprehensively with all aspects of transistor level design of all the digital building blocks common to all CMOS microprocessors, DPSs, network processors, digital backend of all wireless systems etc. The focus will be on the transistor level design and will address all important issues related to size, speed and power consumption. The units are classified according to the important building and will introduce the principles and design methodology in terms of the dominant circuit choices, constraints and performance measures.

PREREQUISITE

Digital Circuits Design

COURSE OBJECTIVES																
1	To ur	ndersta	nd the	MOS t	ransist	or theo	ry, CM	IOS tec	chnolog	gies and	the Layo	ut.				
2	To ur	ndersta	nd the	concep	ts of d	esignin	ig com	binatio	nal and	l sequent	ial circu	it using	CMOS	logic		
	confi	guratio	n.	-		-	-			-		-		-		
3	To Lo	earn the	e desig	n of Cl	MOS L	ogic c	ircuits	and su	bsyster	ns.						
4	To ur	ndersta	nd the	concep	ts of V	HDL p	orograr	nming.								
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1. Understand the fundamentals of CMOS circuits and its characteristics Understand																
CO2. Design combinational logic circuits using different CMOS logic circuits Apply																
CO3. Design various sequential logic circuits and analyze its design methodology. Apply												CO3. Design various sequential logic circuits and analyze its design methodology. Apply				
CO4. 1	Execute	e systei	n level	l desigr	ı using	variou	is VLS	I syste	m com	ponents.		Apply	y			
CO5. I	Model	the sys	tem us	ing Ha	rdware	Descr	iption 1	Langua	ige and	apply co	oncepts	Apply	y			
and me	ethods	of digi	tal syst	tem des	sign teo	chnique	es throu	ugh exp	perime	nts						
MAPI	PING	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	ROG	RAMMI	E SPEC	FIC O	UTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS	
															03	
CO1	M	M	L	-	-	-	-	-	-	-	-	-	S	M	-	
CO2	S	S	M	-	M	-	-	-	M	-	-	Μ	S	M	-	
CO3	S	S	М	-	M	-	-	-	М	-	-	М	S	М	-	
CO4	S	S	М	-	M	-	-	-	М	-	-	М	S	М	-	
CO5	S	S	М	-	M	-	-	-	М	-	-	М	S	М	-	
S- Stro	ong; M	-Mediu	im; L-I	Low							· · ·		•			
CT IT T	ADIC															
SYLL	ABUS	TION	TO M	<u>ос т</u>		бтор	•									
INIK	υνυυ	TION	IUM	105 11	SAINS.	ISIUR	(

Review of MOS transistor models, CMOS Inverter Logic and its Fabrication, Transistor scaling, Stick diagram

and Layout Design rules. Delay model: RC Delay model, linear delay model, logical path efforts. Power, interconnect and Robustness in CMOS circuit layout.

COMBINATIONAL CIRCUIT DESIGN

Static CMOS design-complementary CMOS - static properties- complementary CMOS design, Power consumption in CMOS logic gates-dynamic or glitching transitions, Design techniques to reduce switching activity, Differential pass transistor logic, Dynamic CMOS design-Basic principles - Domino logic-optimization of Domino logic-NPCMOS-logic style selection.

SEQUENTIALCIRCUIT DESIGN

Static latches and registers - Bistability principle - multiplexer based latches-master slave edge triggered registers- non-ideal clock signals-low voltage static latches-static SR flip flop - Dynamic latches and registers C^2MOS register - Bistable sequential circuit-Schmitt trigger-mono stable -Astable -sequential circuit - choosing a clocking strategy.

DESIGN OF BUILDING BLOCKS AND SUB-SYSTEM

Multiplexers, Decoders, Comparators, Priority Encoders, Shift Registers, Arithmetic circuits, Ripple carry adder, Carry Look Ahead adder, High Speed adders, Multipliers, Physical design, Crosstalk, Floorplanning, Power and Clock distributions.

VERILOG HDL

VLSI design flow, Hierarchical modeling concepts, Basic Concepts: Data types , Modules and ports, Gate Level Modeling, Data Flow Modeling, Behavioral Modeling, Switch level Modeling, Task and Function

Text Books

- 1. N.Weste, D.Harris, Ayan Banerjee "CMOS VLSI Design", Third Edition, 2005.
- 2. Douglas A. Pucknell, Kamran Eshraghian "Basic VLSI Design", Third Edition, 2011, Prentice Hall of India.
- 3. Samir Palnitkar, "Verilog HDL Guide to Digital Design and synthesis", 2nd Edition, Pearson Education 2003.

Reference Books

- 1. Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India.
- 2. Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010 3rdEdition.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in								
2	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in								

			AN	IALO(COMI	G ANE MUNIO	DIGI	TAL)N		Ca	tegory	L	Т	Р		Credit	
			(THE	ORY A	ND P	RACT	ICAL	S)		CC	3	0	2		4	
PREA	MBLF	Ľ						/			1	1 1				
This co	ourse a	ims at	design	ing An	alog ar	nd Digi	tal cor	nmunic	ation s	systems	that are	used	for the	tran	smissio	n of
inform	ation f	rom so	urce to	o destir	nation.	A deta	iled qu	lantitati	ive fra	mework	for ana	log ar	d digi	tal t	ransmis	sion
techniq	ques is	addro	essed.	Practi	cal se	ssion (of this	s cours	e giv	es hand	ls on t	rainin	g to t	he	students	s in
underst	tanding	g the th	eory o	f comn	nunica	tions a	nd prac	cticing s	sessior	ns used i	n analog	g and	ligital	com	nmunica	tion
system	S.															
PRER	EQUI	SITE-														
			Nil													
COUR	COURSE OBJECTIVES															
1 T	1 To Familiarize students with the fundamentals of Analog and Digital Communication systems															
	1 10 1 annualize students with the fundamentals of Analog and Digital Communication systems.															
2 T	o learn	the ba	sic cor	cepts b	behind	the tra	nsmiss	ion and	recep	tion of A	Angle M	odula	tion			
3 T	3 To impart the knowledge about Analog to Digital Transition Systems & Information Theory															
4 T	4 To Analyze & design the performance of various digital carrier transmission.															
5 To	5 To Apply the knowledge of Digital Communication circuits in various fields.															
COUR	COURSE OUTCOMES															
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to)						
CO1.C	haracte	rize the	differe	ent analo	og mod	ulation	scheme	es in tim	e and				Apply	/		
frequen	cy dom	ains.														
CO2. I	Determ	ine the	minin	num nu	mber o	of bits p	ber syn	nbol rec	quired	to repres	sent		Apply	V		
the sou take pla	irce and	d the m er the c	naximu hanne	m rate	at whi	ch relia	ible co	mmuni	cation	can						
CO3.D	emons	trate th	ne conc	ept of	variou	s digita	l carrie	er modı	lation	and			Apply	/		
determ	ine the	ir error	r proba	bility.		•										
CO4.A	nalyze	the ma	ajor cla	assifica	tions o	f sprea	d spec	trum te	chniqu	ies			Analy	ze		
$\frac{1}{CO5}$	Simulat	e and a	analyze	e the ne	rform	ance of	variou	is Anal	00 & I	Digital			Analy	170		
Modula	ation s	chemes	11101 y Zv 5.	e une pe			variot	is / mar		Jigitui			1 mary			
MAPP	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND P	ROG	RAMM	E SPEC	CIFIC	OUT	COI	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSC	D1	PSO2	PS
	101	102	105		100	100	107	100	10)	1010	1011				1502	$\hat{0}$
																3
CO1	S	М	М	-	М	_	_	_	-	-	-	М	S		М	_
CO2	S	M	M	М	-	-	-	_	-	_	_	M	S		M	-
CO3	S	S	M	M	_	-	-	_	-	-	-	M	Š		M	-
CO4	S	М	Μ	M	L	_	_	_	-	-	-	L	S		-	М
CO5	S	М	L	-	S	_	_	_	М	М	-	L	S		М	L
S- Stro	ng; M-	Mediu	m; L-I	Low		I	1	I		1		1	~		_	
	6,		,													

(Dr. P SELVAN)

THEORY:

Amplitude Modulation Systems:

Amplitude Modulation-Expression for AM, Power relation, Double Side band Suppressed Carrier Modulation, Single side band Modulation, Vestigial Side band Modulation, AM Detectors, AM Transmitters & Receivers- Experiments

Angle Modulation - Frequency and Phase Modulation Systems :

Angle Modulation Systems: Expression for FM, Narrowband and wideband FM, Bandwidth of FM signal Generation and Demodulation of FM Signals, Phase Modulation systems, Comparison of AM & FM, FM Transmitters & Receivers.

Analog to Digital Transition Systems & Information Theory:

Pulse Amplitude Modulation, Pulse PositionModulation, Pulse Code Modulation, DPCM, Delta Modulation, Time Division Multiplexing. Uncertainty, Information and Entropy, source coding theorem, DiscreteMemory less channels, Mutual Information, Channel capacity, Channel coding theorem, Differential entropy, Information capacity theorem-Experiments

Baseband and Pass band transmission:

Inter Symbol Interference problem, Nyquist criterion, Raised cosine pulse, Binary Amplitude Shift Keying, Binary Phase Shift Keying, BinaryFrequency Shift Keying, Frequency Division Multiplexing, BER Analysis-Experiments

Spread Spectrum Modulation:

Pseudo noise sequences, Discrete sequence spreadspectrum with coherent BPSK, Signal space dimensionality and processing gain, Frequencyhop spread spectrum modulation.

Text Book

1. Simon Haykin and Michael Moher, "Communication systems" John Wiley & Sons, Fifth Edition, 2016.

Reference Books

1. Simon Haykin and Michael Moher, "An Introduction to Analog and Digital Communications", John Wiley&Sons, second Edition, 2006.

2. Martin S.Roden, "Analog and Digital Communication System", 3rd Edition, PHI, 2002

3. Wayne Tomasi, "Electronic Communication Systems: Fundamentals Through Advanced", PearsonEducation,2001.

4. Leon W. Couch II, "Digital and Analog Communication Systems", Prentice Hall, 1997

COUR	RSE DESIGNERS					
S.No.	Name of the Faculty	Designation	Department	Mail ID		
	_	_	-			
1	Dr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in		
	5					
2	Mr.Rajat Kumar	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in		
	Dwibedi					
3	Dr.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in		
	, j			• •		

MICROWAVE AND OPTICAL	Category	L	Т	Р	Credit
COMMUNICATION SYSTEMS	CC	3	0	0	3

Microwave pertains to the study and design of Microwave circuits, Components, and systems. Fundamental principles are applied to Analysis, Design and Measurement techniques in this field. This course makes the students to be familiar with the microwave measurements. Also to gain knowledge about different types of Optical Transmitters, Receivers, Emission and Detection techniques in Communication Systems.

PREREQUISITE

Nil

COUF	RSE OBJECTIVES									
1	To learn the terminology used in Microwave transmission system, Microwave compone	nts and their S-								
	Parameters and its application in various fields									
2	To learn the various Microwave sources, semiconductor devices and IC's.									
3	To measure different parameters at microwave frequencies									
4	4 To know the basics of solid state physics and understand the nature and characteristics of light And optical sources and amplifiers									
5	5 To learn the principle of Optical Transmitters and Receivers.									
COUF	RSE OUTCOMES									
On the	successful completion of the course, students will be able to									
CO1. 5	Summarize the principles of Microwaves and Fiber Optics in Communication System.	Understand								
CO2. I	Demonstrate the various Microwave Sources and Semiconductor Devices	Apply								
CO3. 1	CO3. Illustrate the different parameter measurements in Microwave Engineering. Apply									
CO4. (CO4. Outline the optical fibers and sources used for Communication System. Analyze									
CO5.A	CO5.Analyze the optical transmitters, receivers, detectors and amplifiers used for Analyze									
	Communication Systems.									

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	M	-	-	-	-	-	-	-	М	-	-	М	-	-
CO2	S	S	М	-	-	-	-	-	М	Μ	M	M	S	-	-
CO3	S	S	M	-	-	-	-	-	M	M	M	M	S	Μ	-
CO4	S	S	-	М	-	-	-	-	-	Μ	-	M	S	Μ	М
CO5	S	S	М	М	-	-	-	-	M	M	M	M	S	M	M
0 0			-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO MICROWAVES, COMPONENTS AND THEIR S-PARAMETERS

Microwave history, spectrum and band characteristics of microwaves-a typical microwave system. Applications of Microwaves: Traditional, industrial and biomedical fields, S-matrix – significance, formulation and properties. S-matrix representation of a multi port network, Waveguide Attenuators, Waveguide Multi port Junctions- E plane and H plane Tees, Magic Tee, and Hybrid Ring, Directional Couplers, Isolator, Circulator- S-matrix calculations.

MICROWAVE SOURCES-O AND M-TYPE TUBES, SEMICONDUCTOR DEVICES AND IC'S

Microwave tubes: O-type – Two cavity Klystron Amplifier, Reflex Klystron oscillator, M-type – cross-field effects, Magnetrons- types, HELIX TWT- types and characteristics of slow wave structures, structure of TWT and amplification process, Avalanche Transit Time Devices- principle of operation and characteristics of IMPATT and TRAPATT diodes, Schottky Barrier Diodes, IC'S:Monolithic Microwave Integrated Circuits (MMIC).

MICROWAVE MEASUREMENTS

Power, Frequency and impedance measurement at microwave frequency, Network Analyzers and measurement of scattering parameters, Spectrum Analyzer and measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure.

OPTICAL FIBER CHARACTERISTICS

Introduction to Optical Fiber Modes and Configurations, Single Mode Fibers and Graded- Index Fiber Structures, Fiber Materials, Attenuation- Absorption, Scattering Losses, Bending Losses, Core and Cladding Losses.

OPTICAL TRANSMITTERS AND RECEIVERS

Materials for optical sources, Light-Emitting Diodes, Semiconductor laser diodes, power-current characteristics, noise, direct and external modulation, Laser sources and transmitters for free space communication – Receivers - Principles of optical detection, spectral responsivity, PIN, APD, Preamplifier types, receiver noises.

Text Books:

- 1. SamualY.Liao, "Microwave Devices and Circuits", PHI, 3rd Edition, 2003.
- 2. Collin R.E., "Foundation of Microwave Engineering", McGraw Hill, 2nd Edition, 2009.
- 3. Keiser. G, "Optical fiber communications", 4th Edition Tata McGraw-Hill, New Delhi, 2008
- 4. Franz & Jain, "Optical communication, Systems and Components", Narosa Publications, New Delhi, 2000.

Reference Books:

- 1. Microwave Principles Herbert J.Reich, J.G.Skalnik, P.F.Ordung and H.L.Krauss, CBS Publishers and Distributors, New Delhi, 2004.
- 2. Peter A.Rizzi, "Microwave Engineering Passive Circuits", PHI Publications.
- 3. Chatterjee.R, "Elements of Microwave Engineering", Affiliated East-West Press Pvt. Ltd.
- 4. John Gowar, "Optical Communication Systems", 2nd Edition Prentice Hall, 1993.

5. Agrawal. G.P, "Fiber-Optic Communication Systems" 3rd Edition John Wiley & Sons, 2002.

COURSE DESIGNERS

0001				
S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
2.	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

SIGNAL PROCESSING	Category	L	Т	Р	Credit
	CC	3	0	0	3

Signal processing is an area of science and engineering which has developed very rapidly over past few decades. It is method of extracting information from the signal which, in turn depends upon type of the signal and nature of information it carriers. Digital signal processing has a tremendous growth in today's techniques and is applied almost in every field because off numerous advantages. In fact digital circuits do not depend upon precise values of digital signal. Also digital circuits are less sensitive to changes in components values, and temperature. In a digital processor any accuracy can be achieved by changing number of bits assigned for the coefficient.

PREREQUISITE												
Signals and Systems												
COURSE OBJECTIVES												
1 To learn the computation steps for the DFT and FFT algorithm.												
To acquire knowledge in various design and implementation methods for IIR and FIR filters and												
² realize the systems.												
3 To identify the coefficient effects in finite word length registers.												
4 To recognize the sampling rate conversion with filter design												
5 To study the TMS320C5X DSP processor architecture and their addressing modes.												
COURSE OUTCOMES												
On the successful completion of the course, students will be able to												
CO1. Compute DFT, FFT algorithms by using radix 2 DIT and DIF methods. Apply												
CO2. Design IIR digital filters in analog domain for given specifications and transforming to												
digital domain using transformation techniques and realize the filters in various ways.												
CO3. Design FIR filter in digital domain using Fourier series, frequency sampling and windowing												
Techniques	ргу											
CO4.Illustrate the issues of finite word length effects.	oply											
CO5.Designa linear phase filter for implementing sampling rate conversion and describe the	1											
TMS320C5X DSP processor architecture and their addressing modes.	ityze											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES												
COS DOL DOL DOL DOS DOC DOZ DOS DOL DOLL DOLL PSO PSO	PSO3											
COS PO1 PO2 PO3 PO4 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 1 2												
CO1 M M L	-											
CO2 S S M - M M M S M	-											
CO3 S S M - M M M S M												
CO4 S S M - M M M	-											
CO5 S S M - M -												
S- Strong; M-Medium; L-Low												
SYLLABUS												

INTRODUCTION

Discrete Time Signals & Sequences, conversion of continuous to discrete signal, Normalized Frequency, Linear Shift Invariant Systems, Stability, and Causality, linear differential equation to difference equation, Linear Constant Coefficient Difference Equations, Frequency Domain Representation of Discrete Time Signals and Systems.

DISCRETE FOURIER TRANSFORMS & FAST FOURIER TRANSFORMS:

Discrete Fourier series: Fourier Series, Fourier Transform, Laplace Transform and Z-Transform relation, DFS Representation of Periodic Sequences, Properties of Discrete Fourier Series.

DFT & FFT: Introduction to DFT, Efficient computation of DFT, properties of DFT, Linear Convolution of Sequences using DFT; FFT using DIT and DIF algorithms, Inverse FFT, Circular convolution.

DESIGN AND IMPLEMENTATION OF IIR FILTERS

Design of analog filters using Butterworth and Chebyshev approximations – IIR digital filter design from analog filter using impulse invariance technique and bilinear transformations-IIR Realizations.

DESIGN AND IMPLEMENTATION OF FIR FILTERS:

Linear phase response – Design techniques for FIR filters – Fourier series method and frequency sampling method –Design of Linear phase FIR filters using windows: Rectangular, Hanning and Hamming windows.

REALIZATION OF DIGITAL FILTERS:

Applications of Z – Transforms, Solution of Difference Equations of Digital Filters, System Function, Stability Criterion, Frequency Response of Stable Systems, Realization of Digital Filters – Direct, Canonic, Cascade and Parallel Forms.

FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS:

Fixed point arithmetic – effect of quantization of the input data due to Finite word length. Product round off – need for scaling – Zero input limit cycle oscillations - Limit cycle oscillations due to overflow of adders

TEXT BOOKS:

- 1. John .G. Proakis and Dimitris C. Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Fourth edition, 2007.
- 2. B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.
- 3. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Prentice Hall, Third Edition, 2009.

REFERENCE BOOKS:

- 1. Sanjit Mitra, "Digital Signal Processing A Computer based approach", Tata McGraw Hill, New Delhi, 2011.
- 2. M.H.Hayes, "Digital Signal Processing", Tata McGraw Hill, New Delhi, Edition, 2009.

COUP	KSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in
2.	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in

			PRIN	CIPL	ES OF	COMPU	U TER	Cate	egory		L	Т	TPCred003computer networks. T pred network archite etwork topologies, net els (OSI reference m MAN, WAN and With standardsstandardsstandardsstandardsunderstandApplyApplyApplyApplyApplyApplyCOUTCOMESPO 12PSO1PSO2 S </th <th>edit</th>	edit			
				COMN	MUNI	CATION	I	C	Category CC ts and fundam techniques in network conglayered network bes of network TCP/IP Network TCP/IP Network of TCP to compare with s of LAN tech ve QOS ntrols methods nic techniques GRAMME SI 8 PO9 P 1 - - - - - - - - - - - - -		3	0	0	3	3		
PREA	MBL	E															
This c	ourse i	s to pr	ovide s	tudents	s with a	n overvi	ew of the	concepts an	d fund	amen	tals of	f com	puter ne	tworks.	Topics		
to be	cover	red in	clude:	data	commu	unication	concepts	and tech	niques	in a	a lay	ered	networ	k archit	ecture,		
comm	unicati	ons sw	vitching	g and r	outing,	types of	communi	cation, netw	work co	onges	tion, 1	netwo	ork topol	ogies, n	etwork		
config	guration	n and	manag	gement,	netwo	ork mod	el compo	nents, laye	red ne	twork	mod	lels (OSI ref	erence	model,		
TCP/I	P netw	orking	g archit	ecture)	and th	eir proto	ocols, vario	ous types o	f netw	orks (LAN	, MA	N, WAI	V and W	reless		
netwo	rks) an	d their	[•] protoc	ols.													
PREF	REQUI	ISITE	-														
~ ~ ~ ~ ~	NIL																
COU	<u>RSE O</u>	BJEC	TIVES	<u>S</u>			10.97	1 1									
1	To un	dersta	nd the	differen	nt layer	$\frac{11}{11}$ s of ISO	/OSI mod	el and TCP	P/IP Ne	twork	IEEI	t stan	dards				
2	Toot	tain ki	nowled	ge abo	ut IP ac	Idressing	g methods										
3	Toot	tain ki	nowled	ge abo	$\frac{\text{ut QOS}}{1}$	b paramet	ters.	·									
4	To kn	low the	e functi	ons an	d cong	estion co	ntrol mech	$\frac{1}{1}$	СР								
<u>)</u>	To kn	low ab	out app	olicatio	n layer	and netv	vork secur	ıty									
	RSE O		<u>DMES</u>	·	.1	. 1		11 .									
On the	$\frac{1}{5}$ succe	ssful c	omplet	ion of	the cou	rse, stud	ents will b	e able to		<u>1 TC</u>							
COI.	Explan	n the n	etwork	s, topo	logies a	and layer	s of OSI n	nodel, comp	pare wi	th IC	P/IP		Uno	lerstand			
model	Classif			1 1 6	1		:	1 town on a f I		-1- <i>u</i> - 1		_					
CO2.		y error	contro	$\frac{1}{1}$ and $\frac{1}{1}$		ntrol tecr	iniques an	d types of I		cnnoi	ogies		F				
CO3.	Analyz	ze diffe	erent ro	uting a	lgorith	ms and n	nethods to	1mprove Q	OS				A	Apply			
CO4.	Summa	arize tł	ne trans	sport la	yer pro	tocols an	nd congest	ion controls	s metho	ods			A	Apply			
CO5.	Descril	be vari	ous app	plicatio	n layeı	services	and crypt	ographic te	chniqu	es			A	Apply			
MAP	PING	WITH	[PRO	GRAM	IME O	UTCON	IES AND	PROGRA	MME	SPE	CIFI	COU	TCOM	ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	М	-	S	-	-	-	-	-	-	-	-	-	S	-	_		
CO2	М	М	-	-	-	-	-	-	-	-	-	-	S	М	-		
CO3	Μ	-	S	S	-	-	-	-	-	-	-	-	S	-	-		
CO4	S	М	-	-	М	-	-	-	-	-	М	М	M S S -				
CO5	М	M	S	-	-	-	-	-	-	-	-	-	S	М	-		
S- Str	ong; M	-Medi	um; L-	Low													

(Dr.P SELVAN)

DATA COMMUNICATION

ISO reference model, Open system standard, Transmission of Digital Data – Electrical Interface, MODEMS, Line Configuration, Encoding and Decoding, Multiplexing, Error Detection and Correction (CRC).

DATA LINK CONTROL AND PROTOCOLS

Flow control and error control, stop and wait, Sliding windows, Automatic Repeat (ARQ), Asynchronous Protocols, - X MODEM, Y MODEM, Synchronous protocols – Character Oriented and Bit oriented protocols (HDLC).

LOCAL AREA NETWORKS

IEEE 802 standards, LLC, MAC layer protocols – CSMA/CD Ethernet, Token Bus, Token Ring, FDDI, Distributed Queue Dual Bus, Switched Multimega Bit Data Service

WIDE AREA NETWORKS

Circuit Switch packet Switch, Message Switching, X .25 Protocols, Architecture And Layers of Protocol, Frame Delay, ISDN and ATM Protocol, Internetworking Device, Repeater, Bridge, Routes and Gateways, Routing algorithms.

UPPER OSI LAYERS

Session layer protocols, Presentation layer – Data Security, Encryption/Decryption, Authentication, Data Composition, Application layer protocols – MHS, File transfer, Virtual terminal, CMIP.

Text Books:

- 1. Behrouz A. Fehrouzan, "Data communication & Networking", Mc-Graw Hill, 4th Edition, 2007.
- 2. Andrew S. Tanenbaum, "Computer Networks", Pearson Education India, 3rd Edition, 2010.

Reference Books:

- 1. William Stallings, "Data & Computer Communication", Pearson Education India, 8th Edition, 2007.
- Rarnier Handel, N.Huber, Schroder, "ATM Networks Concepts, Protocols Applications", Addison Welsey, 3rd Edition, 2009

COU	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Mr. Rajat Kumar Dwibedi	Assistant	ECE	rajatkumar.ece@avit,ac.in										
		Professor												
		(Gr-II)												
2	Dr I K Hema	Professor	FCF	hemalk@avit ac in										
2	DI.L.K.Hema	110103301	LUL	nemark@avit.ac.in										
2	Mr C Sunach Vuman	Aggistant	ECE	aureahlaurear ay in										
3	WIT.G.SuresinKumar	Assistant	ECE	suresnkumar@vmkvec.edu.m										
		Professor												

		DD	INCI		SOF	SENG	SODS	ANT		Catego	ory	L	ΓΡ		Credits		
				ATA	ACO	UISI	FION	ANL		CC		3	0 0		3		
PREA	MBI	LE			- (1			1	I	I			
To un	dersta	nd the	e Basi	ic con	cepts	of Se	nsors,	Tran	sduce	rs, Aqı	uatic S	Senso	rs- Data	Acquisit	tion Systems and		
Fiber Optic Measurements.																	
rke kevuisite: Nii																	
COURSEOBJECTIVES																	
1	1 To understand the Fundamentals of Sensors.																
2	To learn about the various Characteristics of Sensors and its construction.																
3	To l	earn a	about	the Co	onstru	iction	and C	harac	eterist	ics of '	Transo	lucers	5.				
4	To understand the Fundamentals of Data Acquisition Systems.																
5	To study the various Virtual Instrumentation Methods.																
Course Outcomes																	
On the successful completion of the course, students will be able to																	
C01.U	Under	stand	the F	undan	nental	s of S	ensors	5						Unde	rstand		
CO2.I	Design	1 vari	ous Se	ensors	s for r	equire	d app	licatio	ons.					Apply	у		
CO3.I	Design	n vario	ous T	ransdı	lcers	for th	e requ	ired a	pplica	ations.				Appl	y		
CO4.U	Jnder	stand	the fu	ındam	entals	s and	conce	pts of	Data	Acqui	sition	syste	m.	Unde	rstand		
CO5.H	Evalua	ate the	e vario	ous V	irtual	Instru	menta	ition 1	Devic	es.		•		Evalu	iate		
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES																	
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	DCO1	DEO2	DSO2		
COS	1	1 2 3 4 5 6 7 8 9 10 11 12 PSOI PSO2 PSO3															
CO1	L	-	-	-	-	-	-	-	-	-	-	-	M	-	-		
CO2	S	L	M	-	L	-	-	-	-	-	-	L	S	M	-		
CO3	Ĺ	S	M	-	L	-	M	-	-	-	-	L	S	<u> </u>			
CO4	S	S	S	-	M	M	M	-	-	-	-		M	M	-		
CO5	S	S	S	- T 1	M	Μ	Μ	Μ	-	-	-	L	S	M	M		
S- Strong;M - Medium;L- Low																	

SENSOR- FUNDAMENTALS AND CHARACTERISTICS

Sensors –Classifications- Performance ad Types, Error Analysis Characteristics – Electronics and Optical Properties of Semiconductor as Sensors, LED, Semiconductor LASERs, Fiber Optic Sensors, Thermal detectors, CCDs, Photo Diodes and Photoconductive Devices.

TRANSDUCERS

Classification of Transducers, Selecting a Transducer, Straingauges, Displacement Transducers, Hall effect, magneto resistive, magneto strictive sensors. Fiber optic liquid level sensing, Fabry Perot sensor, ultrasonic sensor, capacitive liquid level sensor.

FLOW, TEMPERATURE AND ACOUSTIC SENSORS

Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. Microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors-thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor. Acoustic sensors-microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electric microphone.

FUNDAMENTALS OF DATA ACQUISITION

Essentials of computer interfacing –configuration and structure –interface systems-interface bus. Signal amplifiers, analog filters, digital and pulse train conditioning, two-wire transmitter, and distributed I/O - high speed digital transmitter, noise reduction and isolation

VIRTUAL INSTRUMENTATION

Virtual instrument and traditional instrument, Hardware and software for virtual instrumentation, Virtual instrumentation for test, control, and design, Graphical system design, Graphical and textual programming.

Text Books:

- 1. Albert D. Helfrickand WilliamD. Cooper -Modern Electronic, Prentice Hall of India, 2008
- 2. JosephJ.Carr, Elements of Electronics Instrumentation and Measurement,2ndEdition Pearsoneducation,2009.
- 3. Ramon Pallas-Areny and John G Webster, Sensors and Signal Conditioning, 2012, 2nd ed., Wiley India Pvt. Ltd.

Reference Books:

- 1. Alan.S.Morris, Principles of Measurements and Instrumentation, Prentice Hall of India,2nd edn.,2003.
- 2. Ernest O. Doebelin, Measurement Systems-Application and Design-TataMcGraw-Hill-2004.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R.Karthikeyan	Assistant		
		Professor	ECE	rrmdkarthikeyan@avit.ac.in
		(Gr-II)		
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in

			JA	VA AN	D C#	.NET A	APPL	ICATI	ON	C	ategory	L	Т	Р	Credit
					DEVE	ELOPN	AENT	I			CC	3	0	0	3
PREAMBLE This course of study builds on the skills gained by students in Java Fundamentals and helps to advance Java programming skills. Students will design object-oriented applications with Java and will create Java programs using hands-on, engaging activities and an introduction to the .NET framework and enable the student to program in C#.															
PREREQUISITE NIL															
COU	COURSE OBJECTIVES														
1.	Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.														
2.	Understand fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries, etc.														
3.	To st	udy ba	sic and	advan	ced fea	tures o	f the C	C# lang	uage						
4.	To create form based and web based applications														
5.	5. To study the internals of the .NET framework														
COUH	COURSE OUTCOMES														
On suc	ccessfu	l com	oletion	of the c	course,	studen	ts will	be abl	e to						
CO1.Kr	nowled	ge of t	he strue	cture ar	nd mod	lel of tl	ne Java	a progr	ammin	ıg langu	age		Under	stand	
CO2.Us	se the J	ava pr	ogramn	ning la	nguage	e for va	rious p	orogran	nming	technol	ogies		Under	stand	
CO3. To	o learn	the ba	sics of	.net Fra	ame w	ork and	l C# la	nguage	e				Unde	erstand	
CO4. To	o learn	C# ele	ements	and OO	OPS co	ncepts							Ap	ply	
СО5. Т	o learn	interf	ace and	inherit	ance c	oncept	s in C#	‡ langu	age				Ana	alyze	
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1	S	M	М	-	S	-	-	-	-	-	-	-	S	M	-
CO2	S	M	M	-	М	_	-	-	-	-	-	-	M	M	M
CO3	S	M	М	М	М	-	-	-	-	-	-	-	M	-	-
CO4	S	М	М	L	L	-	-	-	-	-	-	-	Μ	M	М
CO5	S	M	S		M	-	-	-	-	-	-	-	M	M	M
S- Stro	S- Strong; M-Medium; L-Low														

BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalize method.

OBJECT ORIENTED CONCEPTS IN JAVA

Arrays – Strings - Packages – Java-Doc comments – Inheritance & its types – polymorphism – dynamic/ Static binding – final keyword – abstract classes – interfaces – Multi Threading – Exception handling – inner classes – proxies.

C# AND ITS FEATURES

Overview Of .Net-Advantages Of .Net Over Other Languages-Assemblies-.Net Architecture-The Role of C# In The .Net Enterprise Architecture-The Common Language Runtime-C# Basics-Objects And Types-Inheritance –Arrays

OBJECT ORIENTED ASPECTS OF C#:

Operators and Casts: Operators - Type Safety - Operator Overloading - User-Defined Casts. Delegates and Events: Delegates – Events. Strings and Regular Expressions: System. String -Regular Expressions. Collections: Collection Interfaces and Types – Lists - Queues – Stacks -Linked Lists - Sorted Lists – Dictionaries – Hash Set - Bit Arrays – Performance-Indexers

I/O AND NETWORK PROGRAMMING:

Tracing and events - threading and synchronization - .Net security - localization - Manipulating XML - Managing the file system - basic network programming.

TEXT BOOKS:

- 1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.
- 2. Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Professional C# 2008, Wiley Publishing, Inc., 2008. ISBN: 978-8-126-51627-8.

REFERENCES:

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.

- 3. Andrew Troelsen, "C# and the .NET Platform", A! Press, 2005.
- 4. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill, 2004.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Bharanidharan	Associate Professor	CSE	bharanidharan@ vmkvec.edu.in
2.	Mrs.V. Subhapriya	Assistant Professor	CSE	subhapriya@avit.ac.in

ANTENNA AND WAVE PROPAGATION	Category	L	Т	Р	Credit
	CC	3	0	0	3

In the era of multimedia, Internet, Web-world, Mobile and Bluetooth, communication is becoming wireless. Antennas are important component in making wireless communication a reality. This course is essential to understand the fundamental principles of Antenna theory and its parameters computation, and wave propagation with a lucid explanation of the basic concepts and equations.

PREREQUISITE

17ECCC08 - Electromagnetics and Transmission Lines & Waveguides

COURSE OBJECTIVES

1 T	o study the EM	theory and	radiation	fundamentals
-----	----------------	------------	-----------	--------------

- 2 To study about wire antenna and arrays
- To study about the aperture antennas 3
- To study about the antenna measurements 4
- 5 To study about the wave propagation

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.	Illustra	te the a	antenna	a paran	neters	like Ra	diated	electri	c and	magneti	c fields,	Apply			
Radiat	ion res	istance	, Apert	ure are	a, effe	ctive le	ength, (Gain ar	nd Dire	ctivity e	etc.				
CO2.	Apply	far fie	eld and	l polyr	omial	equati	ons t	o obta	in max	kima ,m	inim of	Apply			
radiation pattern for N point sources and construction of polynomial ,bi-nominal															
arrays respectively															
CO3.]	CO3. Design and interpret by choosing appropriate antenna for a given											Apply			
applic	ations (TV, ra	dar, wi	reless)											
CO4. Design dipole, Yagi and patch antennas for a given specification Apply											Apply				
CO5.	Analysi	is by d	etermin	ning the	e propa	gation	factor	s in va	rious le	evels of	ground,	Analyz	ze		
atmos	phere, i	onosph	nere wa	ve pro	pagatic	ons									
MAP	PING V	VITH	PROG	FRAM	ME O	UTCO	MES A	AND P	ROG	RAMM	E SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L	-	-	-	-	-	-	-	-	S	-	-
CO2	CO2 S - L L S									-					
CO3	S	М	М	L	-	-	-	-	-	-	-	-	S	М	-
CO4	S	Μ	М	М	L	-	-	-	-	-	-	L	S	М	-

S- Strong; M-Medium; L-Low

S

SYLLABUS

S

 $C\overline{O5}$

ELECTROMAGNETIC RADIATION AND ANTENNA BASICS

L

L

L

L

Review of electromagnetic theory: Vector potential, Solution of wave equation, retarded case, Hertizian dipole. Antenna characteristics: Radiation pattern, Beam solid angle, Directivity, Gain, Input impedance, Polarization, Bandwidth, Reciprocity, Equivalence of Radiation patterns, Effective aperture, Vector effective length.

L

L

Μ

М

POINT SOURCES AND THEIR ARRAYS

Μ

Wire antennas: Short dipole, Radiation resistance and Directivity, Half wave Dipole, Monopole, Small loop antennas. Antenna Arrays: Linear Array and Pattern Multiplication, Two-element Array, Uniform Array, Polynomial representation.

LOOP, SLOT and HORN ANTENNAS

Aperture Antennas: Magnetic Current and its fields, Uniqueness theorem, Field equivalence principle, Pattern properties, Slot antenna, Horn Antenna, Pyramidal Horn Antenna, Reflector Antenna-Flat reflector, Corner Reflector, Common curved reflector shapes, Lens Antenna.

SPECIAL ANTENNAS

Special Antennas: Long wire, V and Rhombic Antenna, Yagi-Uda Antenna, Helical Antenna- Axial mode helix, Normal mode helix, Biconical Antenna, Log periodic Dipole Array, Spiral Antenna, Micro strip Patch Antennas, RF antennas –Smart Antennas.

ANTENNA MEASUREMENTS

Antenna Measurements: Radiation Pattern measurement, Gain and Directivity Measurements, Anechoic Chamber measurement, 5G Antenna Performance.

RADIO WAVE PROPAGATION

Structure of atmosphere, Mode of propagation, Ground wave propagation, Reflection, diffraction, Ionospheric propagation, Electrical properties, Effects of Earths magnetic field. Friss formula and Channel Sounding Measurements – Base station and link budget problems. Wearable technology in Antenna.

TEXTBOOK:

1. John D.Kraus, Ronald J Marhefka and Ahmad S Khan, "Antennas and Wave Propagation", McGraw-Hill Education, 4ed, 2013.

REFERENCE BOOKS:

- 1. E.C.Jordan and Balmain, "Electromagnetic waves and Radiating Systems", Pearson Education / PHI, 2006.
- 2. A.R.Harish, M.Sachidanada, "Antennas and Wave propagation", Oxford University Press, 2007.
- 3. Constantine A. Balanis, Antenna Theory Analysis and Design, John Wiley, 2nd Edition, 2007.
- 4. R.E.Collins, "Antenna and Radio wave propagation", McGraw-Hill
- 5. W.L Stutzman and G.A. Thiele, "Antenna analysis and design", John Wiley, 2000.

COURSE	DESIGNERS
--------	-----------

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.N.Manikanda	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
	Devarajan			
4	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in

			N	1EDI	CAL	ELE	CTR	ONIC	CS		Ca	atego	ry	L	Т	Р	Cı	redit
												CC		3	0	0		3
PRE		BLE				1 41	1:		6 - 1	1 4.			1:		•	1 .1.		
10 f	паке	stude	nts to	unde	rstanc	the	appilo	cation	s or e	lectr	oni	cs in	diagr	iost	ic ai	na th	erap	eutic
PRE	CREO	UISI	TE: N	Nil														
COL			ECT	WES	I													
		, ODJ	knov	vleda	a ahor	it the	vario	us nh	veiala	nical	Ina	ramet	ere h	oth .	elect	rical	and	non-
1	el	o gam ectric	al and	the	meth	n the	of rec	ordin	σ and	also	r pa 5 th	e me	thod	of	tran	smitt	ino	these
	pa	arame	ters	a the	meen	045 (1100	orani	5 una	uist	<i>,</i>		liiou	01	u un	5111100		unese
2	T	To study about the various assist devices used in the hospitals																
3	Т	To gain knowledge about equipment used for physical medicine																
4	Т	o Knc	w abo	out Te	eleme	dicine	e prin	ciples	and a	oplic	catio	ons.						
5	Т	o Knc	w abo	out va	rious	recen	tly de	evelop	ed dia	gno	stic	and t	herap	eut	ic te	chnic	jues.	
CO	URSE	OUT	ΓCON	AES			-			-			_				_	
On t	he suo	ccessf	ul cor	npleti	ion of	the c	ourse	, stude	ents w	ill b	e at	ole to						
CO1	. Kno	ow the	e hum	an bo	ody el	ectro	- phy	siolog	gical p	arar	nete	ers an	d		Un	derct	and	
reco	rding	of bic	o-pote	ntials											UII	u c 150	unu	
CO2	CO2. Comprehend the non-electrical physiological parameters and																	
their	their measurement Appry																	
CO3	CO3. Interpret the various assist devices used in the hospitals viz. Analyze																	
pacemakers, denormators, dialyzers and ventilators																		
004	rinles	and r	netho	- piry: 4e	sical	meu	leme	meu	lous,	010	-lei	emeu	у		I	Apply	V	
CO5	Kno	w aho	netho	rent ti	rends	in me	dical	instru	menta	tion	1					Annly	J	
MA	PPIN	$\frac{\mathbf{G}}{\mathbf{W}}$	TH F		RAN	1ME		CON	IES A	ND	PR	OGR	AM	ME	SPE	CIF		
OU	ΓΟΟΝ	MES					001	001				001			~ 1		10	
C	DO	DO	Р	Р	PO	Р	Р	PO	Р	PO	1	PO	POI	1	PSC) P	SO	PSO
	PO	PO	0	0	5	0	0	8	0	0		11	2		1	2		3
05	1	2	3	4		6	7		9									
С	S	М	T	T	_	_	L _	_	_	_		_	_		S		_	_
01	5	191	Ľ	Ľ											5			
C	S	М	L	L	-	_	_	_	-	-		_	-		S		-	-
02	~														~			
C																		
03																_		
C	S	М	Μ	Μ	L	-	-	-	-	-		-	L		S]	М	-
04 C																		
05	S	S	Μ	L	L	L	L	L	L	-		-	L		S]	М	Μ
90	trong	М М	L Iadium	n·T T		1	1	I	1				1					<u> </u>
5-5	uong,	101-10	iculul.	u, L-I	_0 w													

ELECTRO-PHYSIOLOGY AND BIO-POTENTIAL RECORDING

Sources of bio medical signals, Bio-potentials, Biopotential electrodes, biological amplifiers, ECG, EEG, EMG, PCG, typical waveforms and signal characteristics

BIO-CHEMICAL AND NON ELECTRICAL PARAMETER MEASUREMENT

pH, PO2, PCO2, Colorimeter, Blood flow meter, Cardiac output, respiratory, blood pressure, temperature and pulse measurement, Blood Cell Counters.

ASSIST DEVICES

Cardiac pacemakers, DC Defibrillator, Dialyser, Ventilators, Magnetic Resonance Imaging Systems, Ultrasonic Imaging Systems.

PHYSICAL MEDICINE AND BIOTELEMETRY

Diathermies- Shortwave, ultrasonic and microwave type and their applications, Surgical Diathermy, Biotelemetry.

RECENT TRENDS IN MEDICAL INSTRUMENTATION

Telemedicine, Insulin Pumps, Radio pill, Endomicroscopy, Brain machine interface, Lab on a chip.

TEXTBOOK:

1. Leslie Cromwell, —Biomedical Instrumentation and Measurementl, Prentice Hall of India, New Delhi, 2007.

REFERENCE BOOKS:

- 1. Khandpur, R.S., —Handbook of Biomedical Instrumentation^{II}, TATA Mc Graw-Hill, New Delhi, 2003.
- 2. John G.Webster, —Medical Instrumentation Application and Design^{II}, 3rd Edition, Wiley India Edition, 2007
- 3. Joseph J.Carr and John M.Brown, —Introduction to Biomedical Equipment Technology, John Wiley and Sons, New York, 2004.

COUR	COURSE DESIGNERS													
S.	Name of the	Designation	Departme	Mail ID										
No.	Faculty		nt											
1	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in										
2	Mr. R. Karthikeyan	Associate Professor (Gr- II)	ECE	selvaraju@vmkvec.edu.in										
3	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in										

COURSE DESIGNERS

SEMICONDUCTOR DEVICES LAB CC 0<			GI			CTOI			LAD	(Category	L	T	Р	C	redit	
PREAMBLE To reinforce learning in the accompanying semiconductor devices course through hands-on experience by examining the electrical characteristics of various semiconductor devices, such as diodes, BJTs and FETs. To provide the student with the capability for performing various analysis of semiconductor devices. PREREQUISITE - Nil Nil COURSE OBJECTIVES 1 To emphasize the practical, hands-on component of various semiconductor devices 2 To study experimentally the characteristics of diodes, BJT's and FET's. 3 To evaluate the operational characteristics of semiconductor devices 4 To vorify practically the response of various special purpose electron devices 5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Identify various semiconductor devices for basic switching applications. Apply CO3. Apply the basic knowledge semiconductor devices for basic switching applications. Apply CO4. Sobserve and validate the functioning under simulated environment. Apply CO3. PO3 PO4			SI	EMICC	DNDU	CTOP	K DEV	ICES	LAB		CC	0	0	4		2	
Nil COURSE OBJECTIVES 1 To emphasize the practical, hands-on component of various semiconductor devices 2 To study experimentally the characteristics of diodes, BJT's and FET's. 3 To evaluate the operational characteristics of semiconductor devices 4 To verify practically the response of various special purpose electron devices 5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Identify various semiconductor devices for basic switching apply the basic knowledge semiconductor devices for basic switching apply Apply CO3. Apply the basic knowledge semiconductor devices for basic switching apply Apply CO4. Select a right semiconductor device for a given application. Apply COVECOMES COVECOMES Apply CO3. Apply the basic knowledge semiconductor devices for basic switching apply Apply CO4. Select a right Semiconductor device for a given application. Apply <td co<="" td=""><td>PREA To rei examin provid</td><td>MBLE inforce ning the e the s</td><td>learn e learn ne elec tudent</td><td>ing in trical o with th</td><td>the a charac ne cap</td><td>accom teristi ability</td><td>panyi cs of y for p</td><td>ing se vario perfor</td><td>emicor ous ser ming y</td><td>nduct micor variou</td><td>or devidenductor</td><td>ces cou devices sis of se</td><td>urse thr , such emicond</td><td>ough h as diod luctor d</td><td>ands-or es, BJT evices.</td><td>n experience by 's and FETs. To</td></td>	<td>PREA To rei examin provid</td> <td>MBLE inforce ning the e the s</td> <td>learn e learn ne elec tudent</td> <td>ing in trical o with th</td> <td>the a charac ne cap</td> <td>accom teristi ability</td> <td>panyi cs of y for p</td> <td>ing se vario perfor</td> <td>emicor ous ser ming y</td> <td>nduct micor variou</td> <td>or devidenductor</td> <td>ces cou devices sis of se</td> <td>urse thr , such emicond</td> <td>ough h as diod luctor d</td> <td>ands-or es, BJT evices.</td> <td>n experience by 's and FETs. To</td>	PREA To rei examin provid	MBLE inforce ning the e the s	learn e learn ne elec tudent	ing in trical o with th	the a charac ne cap	accom teristi ability	panyi cs of y for p	ing se vario perfor	emicor ous ser ming y	nduct micor variou	or devidenductor	ces cou devices sis of se	urse thr , such emicond	ough h as diod luctor d	ands-or es, BJT evices.	n experience by 's and FETs. To
Nil COURSE OBJECTIVES 1 To emphasize the practical, hands-on component of various semiconductor devices 2 To study experimentally the characteristics of diodes, BJT's and FET's. 3 To evaluate the operational characteristics of semiconductor devices 4 To verify practically the response of various special purpose electron devices 5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COURSE OUTCOMES On the successful completion of the course, students will be able to On the successful completion of the course, students engineering skills by way of breadboard circuit design with electronic devices and components. COU. Identify various semiconductor devices Apply CO3. Apply the basic knowledge semiconductor devices for basic switching applications. CO4. Select a right semiconductor device for a given application. Apply COURSENTIMENTIAL COURSENTIMENTIAL COURSENTIAL CO	PREF	REQUI	SITE –	1													
1To emphasize the practical, hands-on component of various semiconductor devices2To study experimentally the characteristics of diodes, BJT's and FET's.3To evaluate the operational characteristics of semiconductor devices4To verify practically the response of various special purpose electron devices5To provide students engineering skills by way of breadboard circuit design with electronic devices and components.COURSE OUTCOMESOn the successful completion of the course, students will be able toCO2. Interpret the characteristics of semiconductor devices for basic switching applications.ApplyCO2. Interpret the characteristics of semiconductor devices for basic switching applications.ApplyCO3. Apply the basic knowledge semiconductor devices for basic switching applications.CO4. Select a right semiconductor device for a given application.ApplyCO4. Select a right semiconductor device for a given application.ApplyCO4. Select a right semiconductor device for a given application.ApplyCO4. Select a right semiconductor device for a given application.ApplyCO2So MMCO3. Spile PO2PO3PO6PO7PO8PO9PO10PO11 <tr <td=""></tr>	COU	RSE OI	BJECT	N11 IVES													
2 To study experimentally the characteristics of diodes, BJT's and FET's. 3 To evaluate the operational characteristics of semiconductor devices 4 To verify practically the response of various special purpose electron devices 5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COURSE OUTCOMES On the successful completion of the course, students will be able to CO2. Interpret the characteristics of semiconductor devices for basic switching applications. Apply CO4. Select a right semiconductor device for a given application. Apply COES CO5. Observe and validate the functioning under simulated environment. Apply COES CO2 CO4. Select a right semiconductor device for a given application. Apply COS COMES COMES CO4. Select a right semiconductor devices for a given application. Apply CO5. Observe and validate the functioning under simulated environment. Analyze <td< td=""><td>1</td><td>To en</td><td>nphasiz</td><td>ze the p</td><td>oractic</td><td>al, ha</td><td>nds-o</td><td>n com</td><td>poner</td><td>nt of v</td><td>various s</td><td>semicor</td><td>ductor</td><td>devices</td><td></td><td></td></td<>	1	To en	nphasiz	ze the p	oractic	al, ha	nds-o	n com	poner	nt of v	various s	semicor	ductor	devices			
3 To evaluate the operational characteristics of semiconductor devices 4 To verify practically the response of various special purpose electron devices 5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Identify various semiconductor devices Apply CO2. Interpret the characteristics of semiconductor devices for basic switching applications. CO4. Select a right semiconductor device for a given application. Apply CO5. Observe and validate the functioning under simulated environment. Analyze COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M M - O O O PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M M - O O O PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M M - O O O O PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M M - O O O O PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 S M M M - O O O O O PO1 PO11 PO12 PS01 PS02 PS03 CO3 S M M M - O O O O M O M O M O O S O O O O O O O O	2	2 To study experimentally the characteristics of diodes, BJT's and FET's.															
4 To verify practically the response of various special purpose electron devices 5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COURSEOUTCOMES Apply On the successful completion of the course, students will be able to CO1. Identify various semiconductor devices. Apply CO2. Interpret the characteristics of semiconductor devices. Apply CO3. Apply the basic knowledge semiconductor devices. Apply CO5. Observent validate the functioning of the course students and complexity. Apply CO5. Observent validate the functioning of the course students and complexity. Apply CO5. Observent validate the functioning of the course students and complexity. Apply CO5. Observent validate the functioning of the course students and complexity. Apply CO5. Observent validate the functioning of the course students and complexity. Apply CO5. Observent validate the functioning of the course students and complexity. CO5. PO3	3	To evaluate the operational characteristics of semiconductor devices															
5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components. COUNCOMESENCE COUNCOMESENCE COI I dentify various semiconductor devices. Apply COI I dentify various semiconductor devices. Apply COI I dentify various semiconductor devices. Apply COI Semiconductor devices for basic switching applications. Apply COI Semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply COI Sect a right semiconductor device for a given application. Apply Sect apply Sect apply <th< td=""><td>4</td><td colspan="11">4 To verify practically the response of various special purpose electron devices</td></th<>	4	4 To verify practically the response of various special purpose electron devices															
COURSE OUTCOMES On the successful construction of the course, students will be able to CO1. Identify various semiconduction of the course, students will be able to CO2. Interpret the characteristics of semiconduction of the course. Apply CO2. Interpret the characteristics of semiconduction of the course. Apply CO3. Apply the basic knowledge semiconduction of the course. Apply CO4. Select a right semiconduction of the course. CO5. Observe and value the tructorist set to tructor set to tructor. Apply CO5. Observe and value the tructorist set to tructor. Apply CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. CO5. Observe and value the tructorist set to tructor. <td colspa<="" td=""><td>5</td><td colspan="11">5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components.</td></td>	<td>5</td> <td colspan="11">5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components.</td>	5	5 To provide students engineering skills by way of breadboard circuit design with electronic devices and components.														
On the successful completion of the course, students will be able to CO1. Identify various subjectives Apply CO2. Interpret the characteristics of semiconductor devices. Apply CO3. $Apply the basic knew the characteristics of semiconductor devices. Apply CO3. Apply the basic knew the characteristics of semiconductor devices. Apply CO4. Select a right variable basic knew the transmitteristic to the variable basic knew the transmitteristic tothe variable basic knew the variable basic knew the transmitterist$	COU	RSE O	UTCON	MES													
CO1. Identify various semiconductor devicesApplyCO2. Interpret the characteristics of semiconductor devices.ApplyCO3. Apply the basic knew ledge semiconductor devices for basic switching applications.ApplyCO4. Select a right semiconductor devices for basic switching application.ApplyCO5. Observention semiconductor devices for basic switching application.ApplyCO5. Observention semiconductor devices for basic switching application.ApplyCO5. Observention semiconductor devices for basic switching.ApplyCO5. Observention semiconductor devices for basic switching.ApplyCO6PO2PO3PO4PO <td colspa<="" td=""><td>On th</td><td>e succ</td><td>essful</td><td>comple</td><td>etion o</td><td>of the</td><td>course</td><td>e, stuc</td><td>lents v</td><td>will b</td><td>e able to</td><td>)</td><td></td><td></td><td></td><td></td></td>	<td>On th</td> <td>e succ</td> <td>essful</td> <td>comple</td> <td>etion o</td> <td>of the</td> <td>course</td> <td>e, stuc</td> <td>lents v</td> <td>will b</td> <td>e able to</td> <td>)</td> <td></td> <td></td> <td></td> <td></td>	On th	e succ	essful	comple	etion o	of the	course	e, stuc	lents v	will b	e able to)				
CO2. Interpret the characteristics of semiconductor devices.ApplyCO3. Apply the basic knowledge semiconductor devices for basic switching applications.ApplyCO4. Select a right semiconductor device for a given application.ApplyCO5. Select a right semiconductor device for a given application.ApplyCO5. Select a right semiconductor device for a given application.ApplyCO5. Select a right semiconductor device for a given application.ApplyCO5. Select a right semiconductor device for a given application.ApplyCO5. Select a right semiconductor device for a given application.ApplyCO5. Select a right semiconductor device for a given application.ApplyCO5. Select aright semiconductor device for a given application.ApplyApplyCO5. Select aright semiconductor device for a given application.Select aright semiconductor device for a given application.CO6. Select aright semiconductor device for a given application.ApplyApplyCO6. Select aright semiconductor device for a given application.Ap	C01	. Ident	ify var	ious se	micor	nducto	or dev	ices					A	Apply			
CO3. Apply the basic knowledge semiconductor devices for basic switching applications.ApplyCO4. Select a right semiconductor devices for a given application.ApplyCO4. Select a right semiconductor devices for a given application.ApplyCO5. Observe and validate the functioning under simulated environment.ApplyMAPPIVEMAPPIVECO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03CO1 S M M M colspan="6">Am colspan="6">ApplyCO2 S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03CO3 S M M M colspan="6">Am colspan="6">Am colspan="6">ApplyCO3 S M M M colspan="6">Am colspan="6">ApplyCO4 S M M M colspan="6">ApplyCO3 S M M M colspan="6">ApplyCO4 S M M M colspan="6">ApplyCO4 S M M M colspan="6">ApplyCO5 S M M M colspan="6">ApplyCO4 S M M M colspan="6">ApplyCO5 S M M M colspan="6">ApplyCO5 S M M M colspan="6">ApplyApplyApplyApplyApplyApplyApplyCO5 PO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03CO5 S M M M colspan="6">ApplyApplyApplyCO5 S M M M colspan="6">Apply <td>CO2</td> <td>. Interp</td> <td>pret the</td> <td>e chara</td> <td>cterist</td> <td>ics of</td> <td>semi</td> <td>condu</td> <td>ctor d</td> <td>evice</td> <td>s.</td> <td></td> <td>A</td> <td>Apply</td> <td></td> <td></td>	CO2	. Interp	pret the	e chara	cterist	ics of	semi	condu	ctor d	evice	s.		A	Apply			
CO4. Select a right semicoductor levels below of the semicoductor levels o	CO3 appli	. Apply cations	y the b s.	asic kr	owled	lge se	micor	nducto	or dev	ices f	or basic	switchi	ng A	Apply			
CO5. Observe and values between values	CO4	. Selec	t a rigł	nt semi	condu	ictor d	levice	for a	given	appli	ication.		A	Apply			
MAPPING WITH PROGRAMMENT SUPPORTED SUPPORTED SPECIFIC OUTONSCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03CO1SMMC-C-MC-MC-MC-SC-C-CO2SMMC-C-MC-MC-MC-SC-C-CO3SMMC-C-MC-MC-MC-SC-C-CO4SMMC-C-MC-MC-MC-SC-C-CO5SMMC-C-MC-MC-MC-SC-C-CO5SMMC-C-MC-MC-MC-SC-C-CO5SMMC-C-MC-MC-MC-SC-C-CO5SMMC-C-MC-MC-MC-SC-C-CO5SMMC-MC-MC-MC-SC-C-CO5SMMC-MC-MC-MC-SC-C-CO5SMMC-MC-M	CO5	. Obse	rve and	d valid	ate the	e func	tionin	g und	er sim	nulate	d enviro	nment.	A	Analyze			
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M - - M - M - M - S S - - - M - M - M - S S - - - - M	MAP	PING V	VITH I	PROGE	RAMM	IE OU	TCON	MES A	ND P	ROGI	RAMME	SPECI	FIC OU	TCOMI	ES	1	
CO1 S M M - M - M - M - S - - - CO2 S M M - - M - M - S - - - CO2 S M M - - M - M - S - - - CO3 S M M - - M - M - S - - - CO3 S M M - - M - M - M - M - S - - - CO4 S M M - - M - M - M - S - - - - - M - M - M - M - S - - - - - - M - M - M <td>COS</td> <td>PO1</td> <td>PO2</td> <td>PO3</td> <td>PO4</td> <td>PO5</td> <td>PO6</td> <td>PO7</td> <td>PO8</td> <td>PO9</td> <td>PO10</td> <td>PO11</td> <td>PO12</td> <td>PSO1</td> <td>PSO2</td> <td>PSO3</td>	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO2 S M M - M - M - M - S - - - CO3 S M M - - M - M - S - - - CO3 S M M - - M - M - S - - - CO4 S M M - - M - M - S - - - CO4 S M M - - M - M - M - S - - - CO5 S M M - - M - M - M - S - - -	CO1	S	М	М	-	-	-	М	-	М	-	М	-	S	-	-	
CO3 S M M - M - M - S - - - CO4 S M M - - M - M - S - - - - - M - M - S - - - - M - M - S - - - - - M - M - M - S - - - - M </td <td>CO2</td> <td>S</td> <td>М</td> <td>М</td> <td>-</td> <td>-</td> <td>-</td> <td>М</td> <td>-</td> <td>М</td> <td>-</td> <td>М</td> <td>-</td> <td>S</td> <td>-</td> <td>-</td>	CO2	S	М	М	-	-	-	М	-	М	-	М	-	S	-	-	
CO4 S M M - - M - M - S - - - - S - - - - M	CO3	S	М	М	-	-	-	М	-	М	-	М	-	S	-	-	
CO5 S M M M - M - M - S	CO4	S	M	M	-	-	-	М	-	M	-	М	-	S	-	-	
	CO5	S	M	M	-	-	-	М	-	М	-	М	-	S	-	-	

(Dr. P SELVANT)

List of Experiments

- 1. Half Wave Rectifier and Full Wave Rectifier
- 2. Clipper and Clamper
- 3. Input/output Characteristics of CE Amplifier
- 4. Input/output Characteristics of CC Amplifier
- 5. Transfer Characteristics of JFET
- 6. Voltage Regulator
- 7. Determination of the V-I Characteristics of UJT.
- 8. Determination of the V-I Characteristics of SCR.
- 9. Determination of the V-I Characteristics of DIAC
- 10. Determination of the V-I Characteristics of TRIAC

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.C.ArunkumarMad huvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

			D	IGITA	L CIR	CUITS	S DES	IGN I	AB	Ca	ntegory	1	T	Р	Credi
											CC	0	0	4	2
PREA	MBLE														
The	Course exp	plores	design	s with	combi	nation	al and	seque	ential le	ogic. St	udents v	work th	rough o	lesign	
ctivitie	s, which in	clude t	esting	and tr	oubles	hootin	g usin	g lab i	nstrun	nents as	well as	s simul	ation so	oftware	
PRER	QUISITE							-							
1	NIL														
COUR	SE OBJE	CTIV	ES												
1 Т	To impart k	nowle	dge an	d to ga	in exp	erienc	e in de	evelop	ing co	mplex	digital s	systems	5.		
2 Т	To learn ab	out des	sign ai	nd anal	ysis of	f seque	ential	circuit	s using	g flip fl	ops.				
3 Т	To Expose	studen	ts abo	ut desi	gn and	simu	lation	of log	ic circ	uits usi	ng HDI				
COUR	SE OUTC	COME	S												
On the	successful	comp	letion	of the	course	, stude	ents w	ill be a	able to)			-,		
CO1. U	Inderstand	the pri	nciple	s and r	nethod	ology	of dig	ital lo	gic des	sign at t	he gate	and	U	ndersta	ind
switch															
CO2. D	Demonstrate	e the va	arious	combi	nation	al logi	c circu	its by	using	discrete	compo	onents		Apply	v
CO3. A	nalyze dif	ferent	sequer	tial log	gic circ	uits b	y usin	g disci	ete co	mponer	ts.			Analy	ze
CO4. T	est the var	ious di	gital le	ogic ci	rcuits t	oy usir	ng sim	ulation	1 softw	vare.				Evalua	te
CO5. N	leasure and	d recor	d the	experin	nental	data fo	or vari	ous di	gital ci	ircuits.				Evalua	te
				1					0						
MAPPI	ING WITH	PRO	GRAM	IME O	UTCO	MES	AND 1	PROG	RAMN	ME SPE	CIFIC	OUTC	OMES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	-	-	Μ	-	-	L	-	-	-
CO2	S	-	-	-	S	-	-	-	М	-	-	L	S	-	-
CO3	S	М	М	M	M	-	-	-	М	-	-	L	-	-	-
204	S	М	-	-	M	-	-	-	М	-	-	L	М	Μ	Μ
CO5	S	М	-	-	M	-	-	-	М	-	-	L	-	Μ	-
S- Stror	ng; M-Medi	um; L-	Low												
List of	Experimen	ts													
Hardwa	re Experim	ents													
1.	Design a	and im	pleme	ntation	of Ad	lder ar	nd Sul	otracto	or usin	ıg basio	c logic	gates.			
2.	Design a	and imp	pleme	nt 4-bit	Parall	el Ado	der/ Su	ıbtract	or usin	ng IC 74	83				
3.	Design a	and imp	pleme	ntation	of BC	CD to 1	Excess	-3 co	de cor	nverter u	ising lo	gic gat	es		
4.	Design a	and im	pleme	ntation	of Bi	nary to	o Gray	code	conve	rter usii	ng logic	gates			
5.	Design a	and im	pleme	ntation	of 4 H	Bit Ma	gnituc	le con	parato	or using	logic g	gates			
6.	Design a	and im	pleme	ntation	of 4:1	l Multi	plexer	and	- 4 De	-Multip	lexer c	ircuit	s using	g logic	gates
7.	Design a	and im	pleme	ntation	of en	coder	and de	coder	using	logic g	ates		2		0
8	Design a	and im	nleme	ntation	of 3 h	nit svn	chrone		/down	counte	r				

- Realization of SR Flip Flop, D Flip Flop & T Flip Flop using logic gates. 9.
- 10. Implementation of SISO, SIPO, and PISO shift registers using flip flops.

- Software Experiments using HDL 1. Design and Simulation of Full adder circuit using Gate level modeling
- 2. Design and Simulation Up-Down counters using behavioural level modeling. COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mr.Rajat Kumar	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in

(Dr. PSELVAN)

ANALOG CIRCUITS LAB	Category	L	Т	Р	Credit
	СС	0	0	4	2
 -					

The goal of this lab is to supplement the theory course Analog Circuits. Students will gain experience in Analogcircuits design for given specification. They will analyze and test electronic circuits using simulation software and laboratory instruments.

PRERQUISITE

Semiconductor Devices

COU	COUDSEODIECTIVES														
COUL	SEO	SJECI	IVES												
1	To in	ipart th	ne desig	gn knov	wledge	of vario	ous sma	ll signa	l amplif	ier circu	its				
2	To de	esign th	ne feed	back ai	nplifier	and Os	scillator								
3	To st	udy the	e chara	cteristi	cs of Po	wer& [Funed a	mplifie	rs circu	its					
COU	COURSEOUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.I	CO1.Design&Simulation of Compound configurations of analog circuits. Apply														
CO2. 4	Apply t	he con	cepts o	of trans	istor bia	asing to	study t	he smal	l signal	behavio	r of	Apply			
BJT fo	or Amp	lificati	on												
CO3. 1	CO3. Design and infer the frequency response and bandwidth of Feedback Analyze														
amplif	amplifiers.														
CO4.I	CO4.Investigate the concepts of Power& Tuned amplifiers Analyze														
CO5.S	CO5.Simulate& Estimate the frequency of LC and RC Oscillators Evaluate														
MAPI	PINGV	VITH	PROG	RAMN	1EOUT	COM	ESANI	PROG	RAMN	AESPEC	CIFICO	UTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М	-	-	-	М	-	-	М	S	S	-
CO2	S	М	М	М	М	-	-	-	М	-	-	М	S	S	-
CO3	S	S	М	М	М	-	-	-	М	-	-	М	S	S	-
CO4	S	S	М	М	М	-	-	-	М	-	-	М	S	S	-
CO5	S	S	S	S	S	М	-	-	M	М	-	S	S	S	М
S-Stro	ng;M-N	Mediur	n;L-Lo	W	1	1	1	1	1	1	1		1	1	1

(Dr.PSELVAN)

1. Design, Simulation

 $and Hardware realization of {\tt Single Stage Common Emitter amplifier for given specification}$

- 2. Simulation&HardwarerealizationofFeedbackamplifiersanditsfrequencyanalysis
 - a) VoltageSeries
 - b) CurrentShunt
- 3. Design, Simulation and Hardware realization of Sinusoidal waveform generators.
 - a) RCOscillators
 - b) LCOscillators
- 4. DesignandsimulationofPoweramplifiers
- 5. FrequencyResponsecharacterizationofTunedamplifiercircuit.
 - a) SingleTuned
 - b) DoubleTuned
- 6. DesignandhardwarerealizationofMultistage Amplifierforgivenspecification
 - a) Cascade
 - b) Darlington
- 7. DesignandsimulationofDifferentialpair

circuit with active load and current references and its frequency analysis.

- 8. Design Clipping Circuits
- 9. Design Clamping Circuits
- 10. Design and simulate filters

a)Low Pass Filters

b)High Pass Filters

c) Band Pass Filters

COURSEDESIGNERS

S.No.	NameoftheFaculty	Designation	Department	MailID				
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in				
2	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in				

			SIC	GNAL]	PROC	ESSIN	IG LA	В		Catego	ry	L	T 1	P	Cr	edit			
										CC		0	0	4		2			
PREA The j and under algor	The purpose of this course is to give hands on training to the students in understanding the theory of signals and systems and practicing the algorithms used in digital signal processing. This will improve the understanding capability of the signal and system theory and simulation capability of the signal processing algorithms.																		
PREF	PREREQUISITE Signals and Systems																		
COU	COURSE OBJECTIVES																		
1	1 To generate the elementary signals/ waveforms.																		
2	2 To compute the convolution of signal.																		
3	3 To design different types of filters and obtain frequency response.																		
4	4 To compute magnitude and phase components using DFT.																		
COU	RSE O	UTCO	MES																
On the	e succes	ssful co	mpletio	n of th	e cours	se, stud	ents w	ill be a	ble to							-			
CO1.	Test 1 ation	he tim	e and f	requen	cy don	nain re	epresen	tation	of dis	crete ti	me sign	nals th	rough	1	Ana	lyze			
CO2.	Analyz	ze the ti	me and	freque	ncy do	main r	espons	e of dis	screte t	ime sys	tems th	rough			Ana	lyze			
simula	ation																		
CO3.	Analyz	e the ef	fects of	quanti	zation	error in	n the fi	lter coe	efficier	ts throu	ıgh sim	ulatior	ı		Ana	lyze			
CO4.	Develo	p FIR a	nd IIR	filter fo	or the s	pecific	ation d	erived	from t	he give	n proble	em and	1		Cre	eate			
simula	ate the f	requen	cy resp	onse.															
MAP	PING V	WITH	PROG	RAMN	IE OU	TCON	MES A	ND PH	ROGR	AMMI	E SPEC	CIFIC	OUT	CO	MES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	01	PSO	PSO3			
															2				
CO1	М	М	L	-	-	-	-	-	-	-	-	-	S	5	M	-			
CO2	S	S	M	-	М	-	-	-	М	-	-	M	S	5	<u>M</u> -				
CO3	S	S	M	-	M	-	-	-	M	-	-	M		<u>}</u>	M	-			
CU4 S Stm	$\frac{S}{M}$	S Modin		-	M	-	-	-	M	-	-	M		•	M	-			
s- su	ong, wi		ш, L-L(JW															
- 1. Generate different time signals and display the same.
- 2. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations
- 3. Compute the linear convolution of a signal using DFT.
- 4. Compute the circular convolution of a given signal.
- 5. To find DFT / IDFT of given DT Signal
- 6. To find Frequency Response of a given System given in Transfer Function/ Differential equation form.
- 7. Implementation of FFT of given Sequence
- 8. Implementation of LP FIR Filter for a given Sequence/Signal.
- 9. Implementation of HP IIR Filter for a given Sequence/Signal
- 10. Design analog Chebyshev filters and apply bilinear transformation
- 11. Design analog Butterworth filters and apply bilinear transformation
- 12. Design analog Chebyshev filters and apply impulse invariance transformation
- 13. Design analog Butterworth filters and apply impulse invariance transformation
- 14. Design FIR filters using Fourier series method and frequency sampling methods
- 15. Design FIR filters using Different windowing techniques
- 16. Effect of quantization.

COURSE DESIGNERS

0001														
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr.SitaDeviBharatula	Associate Professor	ECE	Sitadevi.ece@avit.ac.in										
2.	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in										

MICROCONTROLLERS AND EMBEDDED	Category	L	Т	Р	Credit
SYSTEMS LAB	CC	0	0	4	2

PREAMBLE

To provide the skill to design linear integrated circuits using op-amp and other special purpose circuits. Assembly language programming for microcontroller and interfacing peripheral devices with microcontroller is vital due to the persisting real time application scenarios. Hence exposure to interface ADCs, DACs with microprocessor and acquiring knowledge about the real time applications like stepper motor control, key board etc., is essential.

PREREQUISITE

Nil

COURSE OBJECTIVES								
1	1 To write the assembly language program for 8051 Microcontroller.							
2	To write the programs for communication between microcontroller and peripheral dev	vices						
3	3 To write the programs using ARM Processors							
4	To study one type of Real Time Operating Systems (RTOS)							
COUI	RSE OUTCOMES							
On the	On the successful completion of the course, students will be able to							
CO1.	Develop assembly language program for basic Arithmetic and Logical Operations	Analyze						
CO2.I	Develop assembly language program for basic applications like arithmetic operations, interrupt and UART, etc	Analyze						
CO3.	CO3. Apply the practical knowledge of Microcontroller in designing various Circuit Analyze							
CO4.]	CO4. Develop and execute program using ARM architecture. Analyze							
CO5.	CO5. Understand the concept of Real Time Operating Systems (RTOS) Analyze							

MAPE	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	-	-	-	M	-	L	-	M	-	M	-	-
CO2	М	L	-	-	-	-	M	-	L	-	M	-	M	-	-
CO3	M	L	-	-	-	-	M	-	M	-	M	-	M	-	-
CO4	М	L	-	-	-	-	M	-	М	-	M	-	M	-	-
CO5	М	L	-	-	-	-	M	-	М	-	M	-	M	-	-
0 0															

S- Strong; M-Medium; L-Low

SYLLABUS

LISTOFEXPERIMENTS:

MICROCONTROLLERSLAB

- 1. 8086&8051Assembly language program for Arithmetic Operations.
- 2. 8051Assembly language program for Logical, Interrupt & UART Operations.
- 3. Interfacing DAC to Microcontroller and generate Square, Triangular and Saw-tooth waveforms.
- 4. Interfacing ADC to Microcontroller.
- 5. Interfacing Stepper Motorto8051 and operate it in Clock wise and Anti-Clock wise directions.

EMBEDDED SYSTEMS LAB

- 1. Study of ARM Architecture.
- 2. Interfacing ADC and DAC.
- 3. Interfacing Real Time clock and Serial Port.
- 4. Interfacing Keyboard and LCD.
- 5. Study of one type of Real Time Operating Systems (RTOS)

REFERENCES

Laboratory Reference Manual.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in									
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in									
3	Ms.R.MohanaPriya	Assistant Professor(Gr-II)	ECE	mohanapriya@avit.ac.in									

		СМС	OS DES	SIGN I	LAB			Cate	gory	I		Т	Р	Cre	edit
								C	С	()	0	4	2	2
PREA	MBL	E - Th	is lab-	oriente	d cours	e will fe	ocus on	the des	sign of	large-sc	ale syst	em-on-a	-chip (S	SOC) so	lutions
within	field-	prograi	mmabl	e gate	arrays (FPGAs)	. Moder	n FPGA	densiti	ies and	commer	cially av	vailable	cores er	nable a
single	develo	per to	design	highly	comple	x system	ns within	n a singl	e FPGA						
PRER	PREREQUISITE - Nil														
COURSE OBJECTIVES															
1	To lea	arn Ha	rdware	Descri	ptive La	inguage	(Verilog	g/VHDL	L).						
2	To implement the designed logic circuits in FPGA device.														
3 To provide hands on design experience with professional design (EDA) platforms.															
COUI	COURSE OUTCOMES														
On the	e succe	ssful c	omplet	ion of 1	the cours	se, stude	nts will	be able	to						
CO1.	Design	n and s	imulati	ion of c	ligital lo	gic circu	uits							Apply	
CO2.	Design	n and i	mplem	ent the	combin	ational l	ogic cir	cuits in l	FPGA d	evice				Evalua	te
CO3. 2	Design	and in	npleme	ent seve	eral Sequ	uential c	ircuits i	n FPGA	device					Evalua	te
CO4.	Devel	op com	plex lo	ogic cir	cuits									Evalua	te
MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	L	-	М	-	-	-	-	М	М	S	L
CO2	S	М	S	L	М	-	-	-	-	-	-	М	М	L	-
CO3	S	S	S	S	L	-	М	-	-	-	L	М	S	S	L
CO4	S	Μ	L	L	L	-	-	-	-	-	-	М	М	L	-
S- Stre	S- Strong; M-Medium; L-Low														

List of Experiments

- 1. Implementation of Logic Gates –Data flow model and Behavioral model.
- 2. Design a Adders and Subtractor using VHDL/Verilog Language.
- 3. Design a Multiplier (4 Bit Min) VHDL Language.
- 4. Design and simulate a CMOS inverter using digital flow
- 5. Design a Sequential circuit -Flip-Flops using HDL.
- 6. Design and simulate a 4-bit synchronous counter using a Flip-Flops
- Design an ALU using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- Design a Universal Shift Register using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
- Design an Adder (Min 8 Bit) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA.
- 10. Stack and Queue Implementation using RAM.

COUL	COURSE DESIGNERS											
S.No	Name of faculty	Designation	Department	Mail ID								
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in								
2	Dr. Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in								

	COMPUTER VISION AND PATTERN RECOGNITION	Category	L	Т	Р	Credit
		EC-PS	3	0	0	3

PREAMBLE

Aim of computer vision and patter recognition is to analyze and interpret the environment available around us.

PRER	EQU	ISIT	E: Nil	l											
COUR	SE (OBJI	ECTIV	'ES											
1 T	'o une	dersta	and the	vario	us featu	ires of I	mage.								
2 T	o im	part k	knowle	dge or	n variou	is issues	s in the	design o	f compu	ater vision	n and obje	ct recogr	nition sy	vstems	
3 To impart knowledge on the concepts of pattern recognition.															
COURSE OUTCOMES															
On the	succ	essfu	l comp	oletion	of the	course,	student	s will be	able to						
CO1.Identify basic concepts, terminology, theories, models and methods in Apply															
the field of computer vision Apply															
CO2.Describe basic methods of computer vision related to multi-scale															
representation, edge detection and detection of other primitives, Apply															
CO3 Analyze and develop a design of a computer vision system for a															
specific problem Analyze															
CO4.Explain and distinguish procedures, methods and algorithms related															
to patte	ern re	ecogn	ition	C	1			U				A	nalyze		
CO5.E	valua	ate qu	ality o	f solu	tion of 1	the patte	ern reco	gnition	system			(Create		
MAPP	ING	WI	ГН PR	OGR	AMM	E OUT	COME	S AND I	PROGE	RAMME	SPECIFI	IC OUT	COMES	S	
	Р	Р	DO	DO							DO	DO	DSO	DSO	
COS	0	0	3		PO5	PO6	PO7	PO8	PO9	PO10	r0 11	12	1	2	PSO3
	1	2	5	-							11	12	1	2	
CO1	Μ	Μ	L	-	-	-	-	-	-	-	L	-	M	-	-
CO2	S	М	L	L	L	-	-	-	L	М	М	-	М	-	-
CO3	CO3 S S M S M M M M L S M -								-						
CO4	S	S	М	S	S	-	-	-	М	L	М	L	М	L	-
CO5	S	S	М	S	S	-	-	-	S	М	М	М	S	М	М
S- Stro	ng; N	M-Me	edium;	L-Lov	N	·	·		·	·		·	÷	·	
SYLL	ABU	S													

DIGITAL IMAGE FORMATION AND LOW-LEVEL PROCESSING

Overview and State-of-the-art, Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processing.

DEPTH ESTIMATION AND MULTI-CAMERA VIEWS

Perspective, Binocular Stereopsis: Camera and Epipolar Geometry; Homography, Rectification, DLT, RANSAC, 3-D reconstruction framework; Auto-calibration.

FEATURE EXTRACTION

Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.

BAYES DECISION THEORY

Minimum-error-rate classification, Classifiers, Discriminant functions, Decision surfaces, Normal density and discriminant functions, discrete features. Parameter Estimation Methods: Maximum-Likelihood estimation: Gaussian case; Maximum a Posteriori estimation; Bayesian estimation: Gaussian case.

UNSUPERVISED LEARNING AND CLUSTERING

Criterion functions for clustering; Algorithms for clustering: K-Means, Hierarchical and other methods; Cluster validation; Gaussian mixture models; Expectation-Maximization method for parameter estimation; Maximum entropy estimation.

REFERENCE BOOKS:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.
- 3. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.
- 4. R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, John Wiley, 2001
- 5. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009
- 6. C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

COURSE DES	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in								
2	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in								

			SPEECH AND AUDIO PROCESSING								Categor	y L	Т	Р	С	redit
				LLUII			0 1 100				EC-PS	3	0	0		3
PREA	MBLE	4														
The ai	m of th	ne Spe	ech an	d Aud	io Proc	essing	subje	ct is to	spread	ds acros	s a num	ber of f	ùndam	enta	l and	direct
applic	ation re	esearch	areas	incluc	ling, fo	or exai	nple, s	signal	process	sing for	separat	ion, rec	ognitio	n, tr	anscr	ription,
enhand	<u>cement,</u>	codin	g, synt	hesis a	s well a	as appl	ication	s to ad	vanced	fixed a	nd wirel	ess com	munica	tion	syste	ms.
PRER																
COUI	Signal Processing															
1	UNCE OBJECTIVES Understand the fundamental concept of mechanics of speech and audio processing															
2	To ob	tain a	thorous	oh und	erstand	ing of	the sta	tistical	natterr	n recoor	ition tec	hnology	at the	core	of	
2	conter	mporai	rv snee	ch and	audio	recogn	ition su	vstems	putterr	1100051		lillology	ut the	COLC	01	
3	To un	dersta	nd the	concep	ts of ti	me and	l freque	encv do	omain 1	nethods	for spee	ech proc	essing.			
4	To study various audio coding and transform coders.															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
C01.U	Jndersta	ands th	e speed	ch proc	luction	appara	atus an	d its m	odels			Under	stand			
CO2.	Estima	te the e	effect o	of the s	ignal re	epreser	tations	s on so	und qua	ality.		Under	stand			
CO3.E	Explain	the ma	in prin	ciples	of com	mon a	udio si	gnal pr	rocessir	ng opera	tions	Under	stand			
CO4.	Take in	to acc	ount th	ne prop	perties	of aco	ustic s	ignals	and hu	ıman he	aring in	Apply	r			
the des	sign of a	audio s	signal p	process	ing sys	stems.										
CO5. 1	Design	and In	pleme	nt algo	rithms	for pro	ocessin	g audio	o and sp	peech si	gnals	Analy	ze			
using	Mat lab															
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROGI	RAMM	E SPEC	IFIC O	UTCC	ME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	l PS	502	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	-	S	-		-
CO2	S	S	-	-	-	-	-	-	-	-	-	-	-	-		-
CO3	S	S	-	-	-	-	-	-	-	-	-	L	-	-		-
CO4	S	S	М	М	-	-	-	-	-	-	-	L	-	-		-
CO5	S S M M - - M - L L															
S-Stro	S- Strong; M-Medium; L-Low															

MECHANICS OF SPEECH AND AUDIO

Introduction - Review Of Signal Processing Theory-Speech production mechanism – Nature of Speech signal – Discrete time modelling of Speech production – Classification of Speech sounds – Phones – Phonemes – Phonetic and Phonemic alphabets – Articulatory features. Absolute Threshold of Hearing - Critical Bands- Simultaneous Masking, Masking-Asymmetry, and the Spread of Masking- Non simultaneous Masking - Perceptual Entropy -Basic measuring philosophy -Subjective versus objective perceptual testing - The perceptual audio quality measure (PAQM) - Cognitive effects in judging audio quality.

TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS

Introduction -Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters- Tree- Structured QMF and CQF M-band

Banks - Cosine Modulated "Pseudo QMF" M-band Banks - Cosine Modulated Perfect Reconstruction (PR) Mband Banks and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Preecho Control Strategies.

AUDIO CODING AND TRANSFORM CODERS

Lossless Audio Coding-Lossy Audio Coding- ISO-MPEG-1A,2A,2A Advanced, 4Audio Coding - Optimum Coding in the Frequency Domain - Perceptual Transform Coder -Brandenburg-Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding -Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization.

TIME AND FREQUENCY DOMAIN METHODS FOR SPEECH PROCESSING

Time domain parameters of Speech signal – Methods for extracting the parameters :Energy, Average Magnitude – Zero crossing Rate – Silence Discrimination using ZCR and energy Short Time Fourier analysis – Formant extraction – Pitch Extraction using time and frequency domain methods

LINEAR PREDICTIVE ANALYSIS OF SPEECH

Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlation method – Covariance method – Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm – lattice formation and solutions – Comparison of different methods – Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP.

Text Books:

- 1. Digital Audio Signal Processing, Second Edition, Udo Zölzer, A John Wiley& sons Ltd Publications
- 2. Applications of Digital Signal Processing to Audio And Acoustics Mark Kahrs, Karlheinz Brandenburg, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow.
- 3. Digital Processing of Speech signals L. R. Rabiner and R.W. Schaffer Prentice Hall 1978

Reference Books:

- 1. Roederer, The Physics and Psychophysics of Music: An Introduction, 1995, Springer-Verlag.
- 2. Olson, Music, Physics and Engineering, 1967, Dover Publications.
- 3. Gardner, The Virtual Acoustic Room, 1992, Master's Thesis, MIT Media Lab.

COUF	RSE DESIGNERS					
S.No.	Name of the	Designation	Department	Mail ID		
	Faculty	_	_			
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in		
2	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in		

			1	INTRO	ODUC'	TION	то м	EMS		(Category	y L	Т	Р	Cr	edit
					5200	11011	10101				EC-PS	3	0	0		3
PREA	MBLE	E														
The ob	ojective	e of thi	s cours	se is to	make	studen	ts to g	ain bas	sic kno	wledge	on over	view of	MEMS	6 (Mi	cro e	electro
Mecha	nical S	System) and v	arious	fabric	ation t	echniq	ues. T	his ena	bles the	em to de	sign, an	alysis,	fabri	catio	on and
testing	the M	EMS 1	based o	compo	nents.	And to	introc	luce th	e stude	ents for	various	opportu	nities	in the	eme	erging
field of	f MEM	IS.														
PRER	PREREQUISITE															
	NIL															
COUR	COURSE OBJECTIVES															
1	I Understand the fundamental concept of MEMS and study the essential material properties.															
2	To know the various fabrication and machining process of MEMS.															
3	Build	an und	derstan	ding of	fmicro	scale p	hysics	for use	e in des	signing l	MEMS a	pplicati	ons.			
4	To stu	udy vai	rious se	ensing	and tra	nsduct	ion tec	hnique	-	<u> </u>						
COUR	SE O	UTCO	MES													
On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to	1						
CO1.K	Lnow th	ne basio	cs of M	IEMS 1	fabricat	tion tec	chnolog	gies ar	ndPiezo	o resistai	nce	Under	stand			
Effect,	Piezoe	electric	ity, Pie	ezoresis	stive Se	ensor										
CO2.	Unders	standth	e Mech	nanics o	of Bea	m and	Diaph	ragm S	tructur	es		Under	stand			
CO3.	Use	mecha	nics p	rincipl	es and	l B	asic E	quation	ns for	Slide-f	ilm Air	Apply				
Dampi	ng, Co	uette-f	low Mo	odel, S	tokes-f	low M	odel.									
CO4.	Know	the cor	ncept of	f Electi	rostatic	Actua	tion					Analy	ze			
CO5.	Unders	stand th	ne appli	ication	s of M	EMS in	ı RF					Analy	ze			
MAPP	PING V	WITH	PROG	GRAM	ME O	UTCO	MES A	AND P	PROG	RAMM	E SPEC	IFIC O	UTCO	MES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSG	D2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	S	-		-
CO2	S	М	М	-	-	-	-	-	-	-	-	-	-	-		-
CO3	S	М	М	-	-	-	-	-	-	-	-	-	-	-		-
CO4	S	S	М	-	-	-	-	-	-	-	-	-	-	-		-
CO5	CO5 S S S M M M M - L -															
S- Stro	ng; M-	-Mediu	ım; L-I	LOW												

INTRODUCTION TO MEMS

MEMS fabrication technologies, Materials and substrates for MEMS, Process for Micromachining: Bulk Micromachining, Surface Micromachining, Characteristics, Sensors/Transducers, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.

MECHANICS OF BEAM AND DIAPHRAGM STRUCTURES

Hooke's Law, Stress and Strain of Beam Structures :Stress, Strain in a Bent Beam, Bending moment and the moment of Inertia, Displacement of Beam Structures Under Weight, Bending of Cantilever Beam Under Weight

AIR DAMPING

Drag Effect of a Fluid: Viscosity of a Fluid, Viscous Flow of a Fluid, Drag Force Damping, The Effects of Air Damping on Micro-Dynamics. Squeeze-film Air Damping: Reynold's Equations for Squeeze-film Air Damping, Damping of Perforated Thick Plates. Slide-film Air Damping: Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model.

ELECTROSTATIC ACTUATION

Electrostatic Force, Normal Force, Tangential Force, Fringe Effects, Electrostatic Driving of Mechanical Actuators: Parallel-plate Actuator, Capacitive sensors. Step and Alternative Voltage Driving: Step Voltage Driving, Negative Spring Effect and Vibration Frequency.

APPLICATIONS OF MEMS IN RF

MEMS Resonator Design Considerations, One-Port Micromechanical Resonator Modeling Vertical Displacement Two-Port Micro resonator Modeling, Micromechanical Resonator Limitations.

Text Books

- 1. G. K. Ananthasuresh, K. J. Viinoy, S. Gopalakrishnan, K. N. Bhat and V. K. Atre, "Micro and smart systems". Wiley India, 2010.
- 2. S. M. Sze, "Semiconductor Sensors", John Wiley & Sons Inc., Wiley Interscience Pub.
- 3. M. J. Usher, "Sensors and Transducers", Mc Millian Hampshire.

Reference Books

- 1. Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
- 2. Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000.
- 3. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu, "MEMS", Pearson education, 2007.

COUR	RSE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
2	Ms.R.Mohana	Assistant Professor	ECE	mohanapriya@avit.ac.in
	Priya	(Gr-II)		

		IN7 F	FERN OR E	ET C)F TH	HINGS	5	Cat	tegory	I	Ĺ	Т	Р	C	redit
			OR E	LEC	INOI	ucs		EC PS	-		3	0	0		3
PREAME	BLE	1										1	1		
The purpo sensors, ac automation	se of this ctuators, a n, transpor	course nd co tation	e is to ntrolle 1, heal	impa ers, au thcare	art kno nong e, indu	owledg other ' istry, e	e on Ir Things tc.) wi	nternet , IoT a th a foo	of Thin pplications on	ngs (Ic tions a wearat	oT), wh nd exa	nich rel mples etronice	lates to overvie s	the stu ew (bu	ıdy of ilding
PREREQ	UISITE -	-	ŕ												
		Ν	ïl												
COURSE	OBJECT	TIVES	5												
1	1 Understanding of IoT value chain structure (device, data cloud), application areas and technologies involved														
2	2 Understand IoT sensors and technological challenges faced by IoT devices, with a focus on IoT and M2M														
3	3 Market forecast for IoT devices with a focus on sensors														
4	Explore and learn about Internet of Things with the help of preparing projects designed for Raspberry Pi														
5	Raspberry Pi To study the advanced internet of things for electronics														
5	10 study	the a	uvanc	eu ini	ernet	or unn	gs 101 (electio	illes						
COURSE	OUTCO	MES													
On the suc	cessful co	mplet	tion of	f the c	course	, stude	nts wil	l be ab	le to						
CO1. Expl	lain the co	ncept	of Int	ternet	of Th	ings.								Unde	rstand
CO2. Expl	lain the IC	T Ser	nsors	Го Ар	pear									Apply	y
CO3. Desi	ign and im	pleme	ent of	techn	ologia	cal sen	sors							Analy	/ze
CO4. Desi	ign and im	pleme	ent ap	plicat	ions u	sing in	ternet	of thin	gs					Analy	/ze
CO5. Expl	lain the ad	vance	d inte	rnet c	of thin	gs used	d in dif	ferent	applica	ations.				Analy	/ze
MAPPIN	G WITH	PRO	GRAI	MME	OUT	COM	ES AN	ND PR	OGRA	MME	SPEC	CIFIC	OUTC	COME	S
COS	PO1	PO	PO	PO	PO	PO0	PO0	PO0	PO0	PO1	PO1	PO1	PSO	PSO	PSO
CO1	c	2 I	3 I	4	<u>)</u>	6	/	8	9	0	1	2 M	1	2	3
C01	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
CO2	S E	M	M		I.	M						M			
CO4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
CO5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
S- Strong;	M-Mediu	m; L-	Low	<u> </u>			<u> </u>	<u> </u>			<u> </u>	I	1	1	<u> </u>

INTRODUCTION

Internet of Things Promises-Definition-Scope-Sensors for IoT Applications-Structure of IoT-IoT Map Device

IoT AND M2M

Introduction, IoT Sensors –Description & Characteristics, M2M, difference between IoT and M2M, software defined networking (SDN) and network function virtualization (NFV) for IoT, basics of IoT system management with NETCONF-YANG.

IoT PHYSICAL SERVERS AND CLOUD OFFERINGS

Wireless Sensor Structure, Introduction to cloud storage models and communication APIs, WAMP –AutoBahn for IoT, Xively cloud for IoT, case studies illustrating IoT design –home automation, smart cities, smart environment.

IOT DEVELOPMENT EXAMPLES

ACOEM Eagle – EnOcean Push Button – NEST Sensor – Ninja Blocks - Focus on Wearable Electronics

PREPARING IOT PROJECTS

Creating the sensor project -Preparing Raspberry Pi -Clayster libraries -Hardware-Interacting with the hardware - Interfacing the hardware-Internal representation of sensor values -Persisting data -External representation of sensor values -Exporting sensor data -Creating the actuator project-Hardware -Interfacing the hardware -Creating a controller-Representing sensor values -Parsing sensor data -Calculating control states - Creating a camera -Hardware -Accessing the serial port on Raspberry Pi -Interfacing the hardware -Creating persistent default settings -Adding configurable properties -Persisting the settings -Working with the current settings -Initializing the camera

Text Books

- 1. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole Dévelopment Copyrights ,2014
- 2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015
- 3. Editors Ovidiu Vermesan Peter Friess,' Internet of Things From Research and Innovation to Market
- 4. Deployment', River Publishers, 2014
- 5. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

Reference Books

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on-Approach", VPT, 1stEdition, 2014

2.Matt Richardson, Shawn Wallace, "Getting Started with Raspberry Pi", O'Reilly (SPD), 3rdEdition, 2014.

COU	RSE DESIGNERS			
S.No	Name of Faculty	Designation	Department	Mail ID
1	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandrang@vmkvec.edu.in
2	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
3	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
4	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

(Dr.P SELVAN)

	ADAPTIVE SIGNAL PROCESSING Category L T P Credit												
		EC-PS	3	0	0	3							
PREA	MBLE												
An a	daptive Signal processing is an area of science and engineer	ing which has d	eveloped v	ery rap	idly. Tł	nis method							
of extr	acting information from the adaptive signal which, in tur	n depends upor	n type of	the sign	nal and	nature of							
inform	ation its carriers and adaptive Signal processing has a treme	endous growth i	n today's	techniqu	ues and	is applied							
almost	in every field because off numerous advantages.												
PRER Nil	REREQUISITE												
COUR	URSE OBJECTIVES To Interpret the computation steps for the Adaptive Systems												
1	To Interpret the computation steps for the Adaptive Systems												
2	To Interpret the computation steps for the Adaptive Systems To perform knowledge in various implementation Linear optimum filtering												
3	To Implement realization of LMS algorithm												
4	To Distinguish about the Kalman filtering various Methods												
5	To Develop the Complex-ValuedTechniques												
COUR	SE OUTCOMES												
On the	successful completion of the course, students will be able to												
CO1. E	Discuss about Adaptive Systems and its methods.			Unde	rstand								
CO2. I	lustrate and implementation methods for algorithm technique	es.		App	ly								
CO3. C	CO3. Classify and realize and based Forms on Linear optimum filtering. Apply												
CO4. P	redict the Kalman filtering various Methods. Predict			Ana	lyze								
CO5. A	appraise the sampling rate conversion Complex-ValuedTechn	iques.		Eval	uate								

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	-	-	-	-	-	-	М	-	-	-	-	-
CO2	S	М	L	-	-	-	-	-	-	М	-	-	-	-	-
CO3	S	М	L	-	-	-	I	-	I	М	-	-	-	-	-
CO4	S	М	М	-	-	-	-	-	-	L	-	-	-	-	-
CO5	S	S	S	М	-	М	I	-	I	S	-	-	-	I	-
~ ~	-		-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction To Adaptive Signal Processing

Adaptive Systems - Definition and characteristics – Properties - Applications and examples of an adaptive system. Stochastic Processes and Models: Characterization - Mean ergodic theorem - Correlation matrix - Stochastic models -Power spectral density - Properties of power spectral Density - Linear transformations - Power spectral estimation.

Wiener filters

Wiener filters - Linear optimum filtering - Minimum mean-square error - Wiener- Hop equations - Multiple linear regression model - Steepest-descent algorithm - Linear prediction - Forward linear prediction, Levinson-Durbin algorithm. Kalman filter - Extended kalman filter.

LMS Algorithm

Least-Mean-Square (LMS) adaptive filters - LMS algorithm, LMS adaptation algorithm - applications. Method of Least Squares - Data windowing, Normal equations and linear least square filters, Recursive least squares algorithm.

Kalman Filtering

Introduction to RLS Algorithm, Statement of Kalman filtering problem, The Innovation Process, Estimation of State using the Innovation Process- Expression of Kalman Gain, Filtering Examples using Kalman filtering.

Complex-Valued Adaptive Signal Processing

Optimization in the Complex Domain, Widely Linear Adaptive Filtering, Nonlinear Adaptive Filtering with Multilayer

Perceptrons, Complex Independent Component Analysis, Robust Estimation Techniques for Complex-Valued Random

Vectors: Statistical Characterization of Complex Random Vectors, Complex Elliptically Symmetric (CES) Distributions,

Tools to Compare Estimators, Scatter and Pseudo-Scatter Matrices Array Processing Examples, MVDR Beamformers Based

on M-Estimators

Text Books/ References Books:

- 1. SimonHaykins, "Adaptive Filter Theory", Pearson Education, Fifth Edition, 2013.
- 2.Tu⁻layAdalı, SimonHaykin," Adaptive Signal Processing", John Wiley & Sons
- 3.Todd K. Moon, Wynn C. Stirling, "Mathematical Methods and Algorithms for Signal Processing" Prentice Hall, First edition, 1999.
- 4. John. R. Triechler, C. Richard Johnson (Jr), Michael. G. Larimore, "Theory and Design of Adaptive Filters", Prentice Hall India Private Limited, 2004
- 5. Bernard Widrow and Samuel. D. Stearns, "Adaptive Signal Processing", Pearson Education, 2001.
- 6. Adaptivesignalprocessing-TheoryandApplications-S. ThomasAlexander, 1986, Springer-Verlag.

COUR	COURSE DESIGNERS													
S.NO	Name of the Faculty	Designation	Department	Mail ID										
1.	Dr.P.M.MURALI.	Assistant Professor	ECE	muralipm@vmkvec.edu.in										
2.	Dr. Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in										

				SAT	ELLI	ГЕ		Cate	gory		L	Т	Р	Cre	edit
			C	OMMU	UNICA	TION		EC	PS		3	0	0	3	;
PREA	MBL	E											1	1	
Electr	onics a	and Co	ommun	ication	n engin	neer ne	eds to	learn about	the bas	sics o	f vari	ous t	ypes of	Commur	nication
Syster	ns. Thi	s subje	ect also	deals	with S	bace &	Earth S	legment, Broa	adcastii	ng, Up	olink,	Down	link and	its servio	ces.
PREF	REQUI	SITE	- Nil												
COU	RSE O	BJEC	TIVES	5											
1	To ob	tain kr	nowled	ge on o	orbital	aspects	involve	ed in satellite	comm	unicat	tion.				
2	To ob	tain kr	nowled	ge on o	commu	nicatio	n establ	ishment in sa	tellite s	systen	ns.				
3	To un	dersta	nd the	space s	segmen	t and e	arth seg	ment.		2					
4	To ob	tain kr	nowled	ge on v	various	Satelli	te Acce	ss methodolo	gy						
5	To ob	tain kr	nowled	ge of E	Broadca	asting u	ising Sa	tellite	U 2						
COU	RSE O	UTCC	OMES												
On the	e succe	ssful c	omplet	ion of	the cou	ırse, stı	idents v	vill be able to							
CO1.E	Explain	the or	bital a	nd func	tional	princip	les of sa	atellite comm	unicati	ons sy	ystem		Une	derstand	
CO2.I	Design,	inter	pret ar	nd ider	ntify tl	he tech	nnologie	es for satelli	te con	nmuni	catior	1	/	Annly	
systen	ns												F	чрргу	
CO3.	Illustra	te the	design	of space	ce segn	nent an	d earth	segment					A	Apply	
CO4.	Demor	strate	the var	ious m	ethods	of sate	llite acc	cess.					A	Apply	
CO5.	Design	a vari	ous sat	ellite a	pplicat	ion.							A	Apply	
MAP	PING	WITH	PRO	GRAM	IME O	UTCC	OMES A	AND PROG	RAMN	IE SP	ECIF	FIC O	UTCON	1ES	
COS	DO1	DOJ			DO5	DO4		DO9	DOO	РО	PO	РО	DSO1	DSO2	
COS	POI	PO2	PO3	PO4	PO5	PUo	PO/	P08	PO9	10	11	12	PS01	PS02	PS03
CO1	S	М	-	-	-	-	-	-	-	-	-	-	М	-	-
CO2	S	S	Μ	L	Μ	-	L	-	L	-	-	-	S	М	-
CO3	S	S	М	L	L	-	-	_	-	-	-	L	S	-	-
CO4	S	М	L	-	М	-	-	_	-	-	-	L	S	S	-
CO5	S	S	М	М	S	-	L	-	М	-	Μ	Μ	S	S	-
S- Stre	ong; M	-Medi	um; L-	Low											
SYLI	ABUS														

SATELLITE ORBIT

Satellite orbits: Kepler's laws – Earth satellite orbiting satellite terms-Orbital elements – Orbital perturbations – Inclined Orbits – Sun synchronous orbit. **Constellation:** Geo stationary satellites – Non geostationary constellation – Launching of Geostationary satellites.

LINK DESIGN

EIRP – Transmission Losses – Power Budget equation – System Noise Carrier to noise ratio – Uplink – Downlink –Effects of rain – Inter modulation noise.

SPACE AND EARTH SEGMENT

Space Segment: Power Supply – Altitude control – Station keeping – Thermal Control – TT&C – Subsystems – Antenna subsystem – Transponders – Wideband Receiver. **Earth Segment:** receive only home TV system –

Community antenna TV system.

SATELLITE ACCESS

Single Access- Pre assigned FDMA – Demand Assigned FDMA – SPADE system- TWT amplifier operation – Downlink analysis – TDMA – reference bursts – Preamble – Postamble – Carrier recovery – Network synchronization – Pre assigned TDMA – Assigned –CDMA introduction.

BROADCAST AND SATELLITE APPLICATIONS

Broadcast: DBS – Orbital Spacings- Power ratings – Frequency and Polarization – Transponder Capacity – Bit rate – MPEG – Forward Error Correction. ODU-IDU – Downlink Analysis – Uplink – INTELSAT Series, INSAT, VSAT, GSM, GPS, INMARSAT, LEO, MEO, Satellite Navigational System. Differential GPS, Direct Broadcast satellites (DBS/DTH).

Text Books:

- 1. Dennis Roddy, "Satellite Communications", Tata Mc-Graw Hill Publications, 4th Edition, 2008.
- 2. Dennis Roddy, Satellite Communication, 4th Edition, Mc Graw Hill International, 2006.
- 3. Timothy,Pratt,Charles,W.Bostain,JeremyE.Allnutt,"SatelliteCommunication,2nd Edition, Wiley Publications,2002

Reference Books:

- 1. Madhavendra Richharia, Leslie David, "Satellite Systems for Personal Applications Concepts and Technology", Wiley-Blackwell, 2010.
- 2. Wilbur L.Prichard, Henry G. Suyerhood, Ropert A. Nelson, "Satellite Communication System Engineering", 2nd Edition, Pearson Education, 1993.
- **3.** Pratt, Timothy, Charles W. Bostian, "Satellite Communication", John Wiley and Sons, 2nd Edition, New York, 1986.
- 4. Bruce R. Elbert, The Satellite Communication Applications, Hand Book, Artech House Bostan London, 1997.

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.ac.in
2	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit,ac.in
3	Mr.Rajat Kumar Dwibedi	Assistant Professor (Gr-II)	ECE	rajatkumar.ece@ avit.ac.in

			WI	RELE	SS Al	ND M	OBII	LE	(Categor	y l	[]	ГР	Cre	dit
			(COMI	MUN	ICAT	ION			EC-PS	í	3 () 0	3	
PREA	MBL	E							l						
Wirele	ess and	Mobile	e Comn	nunicat	tion is	an eme	erging	techno	logy. I	t has be	come n	nuch n	nore sign	ificant i	n the
wake	of 5G.	This co	ourse ad	ddresse	es the f	undam	entals	of mo	bile co	mmunic	ation a	nd cov	ers radic	propag	ation
and f	ading 1	nodels,	funda	mental	s of c	ellular	comn	nunicat	ions, 1	nultiple	access	techn	ologies,	and va	rious
wirele	ess netw	orks, 1r	ncluding	g past a	nd futi	ire gen	eration	netwo	orks.						
PRFL	PEOIII	SITE													
	ALQUI		nalog a	and Dig	vital Co	mmun	ication	I							
		11	inurog u		,itur et			Ľ							
COU	RSE O	BJECT	IVES												
1	To u	ndersta	nd the c	cellular	fundai	nentals	s and d	ifferen	t types	of radio	propag	ation r	nodels.		
2	To s	tudy the	e systen	n archit	ecture	of 2G,	2.5 G	and 3C	j.						
3	To d	evelop	the con	cepts o	femer	ging te	chnolo	gies fo	r 4 G s	tandards	and be	yond			
COU	RSE O	UTCO	MES												
On the	e succes	ssful co	mpletio	n of th	e cours	e, stud	ents w	ill be a	ble to						
CO1.I	Explain	the cel	lular fu	ndamer	ntals an	d estin	nate th	e cover	age an	d capaci	ty of ce	llular s	systems.	Ap	ply
CO2.0	Classify	differe	ent types	s of pro	pagati	on moo	dels an	d analy	ze the	link bud	get.			Ap	ply
CO3.I	llustrat	e the f	undame	entals a	and sys	stem a	rchitec	ture of	GSM	, 2.5G,	IS-95,	Conce	pts of 3	G Ap	ply
techno	ologies	of UM	ΓS and	CDMA	2000.										
CO4.I	Elabora	te the p	rinciple	s of 3C	GPP LT	Έ								Ap	ply
CO5.I	dentify	the em	erging 1	technol	ogies f	or upc	oming	mobile	comm	unicatio	n syster	ns inc	uding 50	G Anal	yze
	-				-	-	-				•		-		-
MAP	PING V	WITH	PROG	RAMN	1E OU	TCON	AES A	ND PI	ROGR	AMME	SPECI	FIC C	OUTCON	AES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	I PSO2	2 PSO
															3
CO1	М	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	M	-	M	-	-	-	M	-	-	M	S	M	-
CO3	S	S	M	-	M	-	-	-	M	-	-	M	S	M	
CO4	S S	S	M	-	M	-	-	-	M	-	-	M	-	-	
	3	5		-	IVI	-	-	-	IVI	-	-	M	-	-	-
S- Str	S- Strong; M-Medium; L-Low														
ļ															

Fundamentals of Mobile Communication

Introduction to wireless communication: Mobile radio telephony, Examples of Wireless Communication Systems, Related design problems. The Cellular Concept System Design Fundamentals: Frequency Reuse, Channel Assignment Strategies, Interference and system Capacity, Trunking and Grade of Service, Improving

(Dr. P SELVAN)

Coverage and Capacity in Cellular Systems

Mobile Radio Propagation

Large scale fading:Free space propagation model, the three basic propagation mechanisms, reflection ,ground reflection(two-ray)model, diffraction, scattering, practical Link budget design using path loss models. Small scale fading: Small scale multipath propagation, parameters of mobile multipath channels, types of small-scale fading, Rayleigh and Ricean distributions.

2G Technologies

GSM:GSM Network architecture, GSM signaling protocol architecture, identifiers used in GSM system, GSM channels, framestructure for GSM, GSM speech coding, authentication and securityin GSM, GSM call procedures, GSM hand-off procedures, GSM services and features. GSM evolution: GPRS and EDGE-architecture, radios specifications, channels.IS-95:Architecture of CDMA system, CDMA air interface, power controlling CDMA system, power control, handoff, rake receiver

3G Technologies

UMTS: Objectives, standardization and releases, network architecture, air interface specifications, channels, security procedure, W-CDMA air interface, attributes of W-CDMA system, W-CDMA channels CDMA2000 cellular technologies: Forward and Reverse Channels, Handoff And Power Control.

4G/LTE Technologies

LTE system overview: Frequency bands and spectrum flexibility, network structure, protocol structure. Physical l layer: Frames, slots, and symbols, modulation, coding, multiple-antenna techniques .Logical and Physical Channels: Mapping of data onto (logical) sub-channels. Physical layer procedures: Establishing a connection, retransmissions and reliability, scheduling, power control, handover. Multi-antenna Techniques: Smart antennas, multiple input multiple output systems

Introduction to 5G:

Historical Trend of Wireless Communication, Evolution of LTE Technology to Beyond 4G, Intro. To 5G & RF Front-End, Building Blocks of 5G, 5GArchitecture, 5G for IoT Applications, 5G features and roadmap.

TEXT BOOKS:

- 1. Theodore S. Rappaport —wireless communications principles and practice, PEARSON, Second edition.
- 2. T L Singal —Wireless communications, Mc Graw Hill Education.
- 3. Andreas F. Molisch Wireless communications || WILEY INDIA PVT LTD, Second edition.
- 4. Jonathan Rodriguez Fundamentals of 5G Mobile Networks

REFERENCE BOOKS:

- 1. UpenaDalal —Wireless and Mobile CommunicationsI, Oxford university Press
- 2. Vijay K.Garg —Wireless Communications and Networking
- 3. Morgan-Kaufmann series in Networking-Elsevier

COUF	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.SitaDeviBharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in
2	Dr.C.ArunkumarMadh uvappan	Assistant Professor	ECE	arunkumarmadhvappan@vmkvec.edu.in

			V	WIRF	CLES	S SEN	SOR	2	C	ategory	L	Τ	Р		Credi	ts
				Ν	ETW	ORK	S		I	EC-PS	3	0	0		3	
PREA	MBI	LE				0						•.				
To un	iderst	and t	he fu	ndam	entals	of v	virele	ss ser	nsor ne	etworks	and	its app	licatio	on to	critical 1	eal time
PREF	REOI	ISIT	E٠													
1 1021	ωųι		D	ata C	ommı	inicat	ion N	etwor	ks							
COU	RSE (OBJE	CTI	VES												
1	Τοι	unders	stand	the co	ncept	s of s	ensor	netwo	orks.							
2	Τοι	unders	stand	the M	AC a	nd tra	nspor	t proto	ocols fo	or ADH	OC ne	etworks	5.			
3	To l	earn a	about	Wirel	ess se	nsor l	Netwo	ork an	d data	retrieva	l in W	SN.				
4	Τοι	unders	stand	the se	curity	of se	nsor r	netwo	rks.							
5	Τοι	unders	stand	and le	arn al	oout S	lensor	Netw	ork Pl	atforms	and T	ools.				
Cours	Course Outcomes															
On the	e succ	essfu	l com	pletio	n of tl	ne cou	ırse, s	tuden	ts will	be able	to					
CO1.	Enum	erate	the ba	asic o	perati	ng pro	ocedu	re of A	ADHO	C netwo	orks.			Un	derstand	
CO2.	To un	dersta	and ar	nd ana	lyze t	he de	ploye	d wire	eless se	ensor ne	tworks	5.		A	Analyze	
CO3.	Analy	ze the	e netv	vork a	bout i	ts dat	a tran	smiss	ion and	ł retriev	als in			A	nalvze	
wirele	ss net	work	S.								~				j -	
CO4. Netwo	Analy orks	ze the	e vari	ous cr	itical	routir	ig par	amete	ers of V	Vireless	Sensc	or		E	valuate	
CO5.	Unde	rstand	land	levelo	op the	secur	ity pr	otoco	ls of w	ireless r	networ	·ks.		Е	valuate	
MAP	PING	WIT	TH PF	ROGI	RAMI	ME O	UTC	OME	S ANI	D PRO	GRAN	AME S	PEC	FIC	OUTCO	MES
COS	РО	РО	PO	РО	РО	РО	РО	PO	РО	PO	РО	PO	D	SO1	DSO2	DSO2
005	1	2	3	4	5	6	7	8	9	10	11	12	Г	501	P302	F305
CO1	S	М	Μ	L	L	-	-	-	L	-	-	-		М	-	-
CO2	S	S	M	M	L	-	-	L	L	М	-	L		S	M	-
CO3	S	M	M		L	-	-	-	-	- T	-	L		M	-	-
CO4	<u>S</u>	S	S M	M	M	-	- т	- т	- \/	L	-	- \		<u>S</u> M	M	-
CU3 C C+	CO5 S S M M M - L L M M M M -															
	iong,	1vi -1	vicuit	uII, L	- LUV	v										

INTRODUCTION

Introduction to ADHOC/sensor networks: Key definitions of ADHOC/ sensor networks, unique constraints and challenges, advantages of ad-hoc/sensor network, driving applications, issues in ADHOC wireless networks, issues in design of sensor network, sensor network architecture, data dissemination and gathering.

(Dr. P SELVAN)

NETWORK PROTOCOLS

Issues in designing MAC protocols for adhoc wireless networks, design goals, classification of MAC protocols, MAC protocols for sensor network, location discovery, quality, other issues, S-MAC, IEEE 802.15.4 and Zig Bee, Dissemination protocol for large sensor network.

ROUTING PROTOCOLS

Issues in designing a routing protocol, classification of routing protocols, table-driven, on-demand, hybrid, flooding, hierarchical, and power aware routing protocols, Energy-efficient routing, Unicast, Broadcast and multicast, Geographic routing.

QOS AND ENERGY MANAGEMENT

Issues and Challenges in providing QoS, classifications, MAC, network layer solutions, QoS frameworks, need for energy management, classification, battery, transmission power, and system power management schemes.

SECURITY IN WSN

Security in Ad hoc Wireless Networks, Key Management, Secure Routing, Cooperation in MANETs, Intrusion Detection Systems. Sensor Network Platforms and Tools: Sensor Network Hardware, Sensor Network Programming Challenges, Node-Level Software Platforms.

REFERENCE BOOKS:

- 1. Adhoc Wireless Networks Architectures and Protocols, C.Siva Ram Murthy, B.S.Murthy, Pearson Education, 2004.
- 2. Holger Kerl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Network", John Wiley and Sons, 2005.
- 3. Feng Zhao, Leonidas Guibas, "Wireless Sensor Network", Elsevier, 1st Ed. 2004.
- 4. Kazem, Sohraby, Daniel Minoli, TaiebZanti, "Wireless Sensor Network: Technology, Protocols and Application", John Wiley and Sons 1st Ed., 2007.
- 5. Security in Ad hoc and Sensor Networks, Raheem Beyah, et al., World Scientific Publications / Cambridge University Press, 2010.

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandrang@vmkvec.edu.in

	HICH SPEED ELECTRONICS	L	Т	Р	Credit					
	mon si EED ELEC IKOMCS	EC-PS	3	0	0	3				
PREAN	ABLE.		_		-					
High	Speed Electronics helps the students to have a wide knowle	edge on high pe	erformance	e device	es in va	st range of				
applicat	ions. This course is designed to impart knowledge on high-si	need operation	and their l	imitatic	ons	C				
uppneut										
PRERE	QUISITE									
	Semiconductor Devices									
COURS	SE OBJECTIVES									
1 T	o Understand Important parameters governing the high-spee	d performance	of devices	s and cir	rcuits					
2 A	analyze and identify suitable materials for high-speed circuit	S.								
3 A	apply the basic concept of MOS devices.									
4 T	o understand the different types High speed devices & its pe	rformances.								
5 T	o learn about applications of High-Speed Circuits.									
COURS	SE OUTCOMES									
On the s	successful completion of the course, students will be able to									
CO1. Ut	nderstand the correlation between the parameters of devices	and circuits to i	identify		Under	stand				
the perfe	the performances.									
CO2. Ex	CO2. Explore the material properties used for high-speed devices Understand									
CO3. Co	CO3. Construct efficient source coding schemes based on the entropy of source and Apply probability of input variables.									
CO4. A	CO4. Apply the concepts of Advanced MOS devices to enhance the performance. Apply									
CO5.An	alyze of various applications of High-Speed Circuits				Ana	lyze				

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	Μ	S	Μ	-
CO2	S	S	S	М	М	-	-	-	-	-	-	Μ	S	Μ	М
CO3	S	S	S	М	М	-	-	-	-	-	-	Μ	S	Μ	М
CO4	S	S	S	М	М	-	-	-	-	-	-	Μ	S	Μ	М
CO5	S	S	S	S	М	-	-	-	-	_	-	M	S	M	М
~ ~	-		-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

PARAMETERS AND SILICON BASED MOSFET AND BJT CIRCUITS FOR HIGH SPEED OPERATION AND THEIR LIMITATIONS

Transit time of charge carriers, junction capacitances, ON-resistances and their dependence on the device geometry and size, carrier mobility, doping concentration and temperature. Contact resistance and interconnection/interlayer capacitances in the Integrated Electronic Circuits.

Emitter coupled Logic (ECL) and CMOS Logic circuits with scaled down devices. Silicon On Insulator (SOI) wafer preparation methods and SOI based devices and SOICMOS circuits for high-speed low power applications

MATERIALS PROPERTIES

Merits of III –V binary and ternary compound semiconductors (GaAs, InP, InGaAs, AlGaAs ETC.), silicon-germanium alloys and silicon carbide for high-speed devices, as compared to silicon-based devices. Brief outline of the crystal structure, dopants and electrical properties such as carrier mobility, velocity versus electric field characteristics of these materials. Material and device process technique with these III-V and IV – IV semiconductors.

MOS DEVICES & ADVANCEMENTS

Metal semiconductor contacts and Metal Insulator Semiconductor and MOS devices: Native oxides of Compound semiconductors for MOS devices and the interface state density related issues. Metal semiconductor contacts, Schottky barrier diode, Metal semiconductor Field Effect Transistors (MESFETs): Pinch off voltage and threshold voltage of MESFETs. D.C. characteristics and analysis of drain current. Velocity overshoot effects and the related advantages of GaAs, InP and GaN based devices for high-speed operation. Sub threshold characteristics, short channel effects and the performance of scaled down devices.

HIGH SPEED DEVICES

High Electron Mobility Transistors (HEMT): Hetero-junction devices. The generic Modulation Doped FET(MODFET) structure for high electron mobility realization. Principle of operation and the unique features of HEMT, In GaAs / InP HEMT structures: Hetero junction Bipolar transistors (HBTs): Principle of operation and the benefits of hetero junction BJT for high speed applications. GaAs and InP based HBT device structure and the surface passivation for stable high gain high frequency performance. SiGe HBTs and the concept of strained layer devices; High Frequency resonant – tunneling devices, Resonant-tunneling hot electron transistors.

HIGH SPEED CIRCUITS

GaAs Digital Integrated Circuits for high-speed operation- Direct Coupled Field Effect Transistor Logic (DCFL), Schottky Diode FET Logic (SDFL), Buffered FET Logic (BFL). GaAs FET Amplifiers. Monolithic Microwave

Integrated Circuits (MMICs). High Frequency resonant – tunneling devices. Resonant-tunneling hot electron transistors and circuits

Text Books:

- 1. C.Y. Chang, F. Kai, GaAs High-Speed Devices: Physics, Technology and Circuit Applications Wiley.
- 2. S.M. Sze, High Speed Semiconductor Devices, Wiley (1990) ISBN 0-471-62307-5.

Reference Books:

- 1. G.A. Armstrong, C.K. Maiti, TCAD for Si, SiGe and GaAs Integrated Circuits, The Institution of Engineering and Technology, London, United Kingdom, 2007, ISBN 978-0-86341-743-6.
- 2. David K. Ferry, Ed., Gallium Arsenide Technology, Howard W. Sams& Co., 1985.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in

	WAVELET TRANSFORM	Category	L	Т	Р	Credit				
		EC-PS	3	0	0	3				
PREAMBLE To understand the basics of different types of wavelets and its theory and to illustrate the use of wavelet processing in different applications										
PREREQUISITE – Signal Processing										
COURS	SE OBJECTIVES									
1 T	o learn the various wavelet transform and explain importance	e of it								
2 T	To gain knowledge of the different continuous and discrete wavelet transforms.									
3	To compute different alternative wavelet representation.									
4	To know the basics of lifting scheme and understand the diff	ferent methods.								
5 T	o learn the principle of Optical Transmitters and Receivers.									
COURS	SE OUTCOMES									
On the s	successful completion of the course, students will be able to									
CO1. Ut transform	nderstand wavelet basis and characterize continuous and disc ms in the field of Engineering.	crete wavelet			Und	erstand				
CO2. U	2. Understand multi resolution analysis and identify various wavelets and evaluate Understand their time- frequency properties.									
CO3. Illustrate the discrete wavelet transforms with multirate digital filters. Apply										
CO4. Or processi	CO4. Outline the computationally efficient wavelet-based methods for signal and image Analyze processing.									
CO5.An	alyze certain classes of wavelets and justify the basis of ansforms to different fields	the application	of wavel	et	A	nalyze				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	М	М	М	М	-	-
CO2	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ	-	-
CO3	S	S	М	-	-	-	-	-	-	-	Μ	Μ	Μ	М	-
CO4	S	S	М	М	-	-	-	-	М	М	М	М	S	М	М
CO5	S	S	М	М	М	-	-	-	М	M	Μ	Μ	S	M	М
S- Str	ong; N	I-Medi	ium; L	-Low											

Continuous Wavelet Transform

Introduction to Wavelet Transform - definition and properties ,Continuous time frequency representation of signals, Windowed Fourier Transform, Uncertainty Principle and time frequency tiling, Wavelets, specifications, admissibility conditions, Continuous wavelet transform, CWT as a correlation, CWT as an operator, Inverse CWT.

Discrete Wavelet Transform

Approximations of vectors in nested linear vector spaces, Example of an MRA, Formal definition of MRA, Construction of general orthonormal MRA, a Wavelet basis for MRA, Digital filtering interpretations- Decomposition and Reconstruction filters, examples of orthogonal basis generating wavelets, interpreting orthonormal MRA for Discrete time signals, Mallat algorithm.

Alternative wavelet representations

Biorthogonal Wavelets, biorthogonality in vector space, biorthogonal wavelet bases, signal representation using biorthogonal wavelet system, advantages of biorthogonal wavelets, biorthogonal analysis and synthesis, Filter bank implementation, Two dimensional Wavelets, filter bank implementation of two-dimensional wavelet transform.

Lifting scheme

Wavelet Transform using polyphase matrix factorization, Geometrical foundations of the lifting scheme, lifting scheme in the z- domain, mathematical preliminaries for polyphase factorization, Dealing with Signal Boundary.

Applications

Signal Compression – Image Compression techniques: EZW-SPHIT Coding Image denoising techniques- Noise estimation - Shrinkage rules - Shrinkage Functions - Edge detection and object Isolation, Image Fusion, and Object Detection. Curve and Surface Editing-Variation modeling and finite element method using wavelets.

Text Books:

1. Wavelet Transforms –Introduction and applications - Raguveer M. Rao and Ajit S. Bopardikar- - Pearson Education, 2008.

2. Insight into Wavelets from Theory to practice - K.P Soman, K. I. Ramachandran, PHI, 2006

3. Fundamentals of Wavelets: Thory, Algorithms and Applications- J C Goswamy and A K Chan, Wiley Inderscience Publications, John Wiley and Sons, 1999.

Reference Books:

1.A.Teolis, Computational Signal Processing with Wavelets, Birkhauser, 1998

- 2. R.M. Rao & A.S. Bopardikar, Wavelet Transforms, Addition Wesley, 1998.
- 3. J.C. Goswami & A.K. Chan, Fundamentals of Wavelets, John Wiley, 1999.
- 4. L.Prasad&S.S.Iyengar, Wavelet Analysis with Applications to Image Processing, CRC Press, 1997.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

				N	IANOE	LECTI	RONIC	S			Categor	y L	Т	P (Credit
				-				0			EC-PS	3	0	0	3
PREAMBLE This course is offered for students to gain the knowledge in Nanoelectronics and various Nanotechnologies															
PREREQUISITE															
NIL															
COUR	SE OB	JECTI	VES			-									
1	Tol	earn th	ne Func	lament	als of I	Vano e	lectron	ics.							
2		gain kr	nowledg	ge of th	ne silic	on MO	SFET	and Qu	lantum	Trans	sport Devi	ces.			
3		Know	basic c	oncept	s of var	10US N	anotec	chnolog	gy and	applic	ations of N	vano Ma	terials		
4		earn th	ne tabri	cation	of Car	bon Na	<u>notube</u>	es.	1 1						
5		study a	bout th	e Mole	ecular l	Electro	nics in	Nanot	echnol	ogy					
COUR	SE 00	<u>C 1</u>	<u>ES</u>	<u> </u>	1		1 /	.11 1	11 /						
On the	$\frac{1}{1}$ succes	sful co	ompleti	$\frac{100 \text{ of } t}{100 \text{ of } t}$	he cou	rse, stu	dents v	will be	able to)	1 1 . 1				
	Jnderst	and the	e basics	s of Na	no elec	tronics	s and q	uantun	n mech	anics	benind		Und	erstand	
CO2 E	Evoluin	the ee	noonta	of Sili	oon M(NEET	S auto	ntum ti	onanar	t davi	age and				
tunnel	ing effe	ets	ncepts	01 5110		JSFET	s, qua	iiiuiii u	anspor	t uevi	ces anu		Und	erstand	
$CO3 \Gamma$	ligenes	the tyr	hes of r	anotec	hnolog	w mol	ecular	techno	logy a	nd the					
prepar	ation o	f nano	materi	als	11110102	,y, 11101	coului		105y u				Und	erstand	
CO4.I	llustrate	e the sy	vnthesi	s. inter	connec	tions a	nd apr	licatio	ns of c	arbon	nano				
tubes.		· ···· ·	,	~,			•PP						A	pply	
CO5.E	Design a	and sin	nulate t	the circ	uits us	ing mo	lecular	r electr	onic de	evices	and			1	
discus	s their a	applica	tions in	n MEM	IS and	robots							A	ppiy	
MAPP	INGTH	I PRO	GRAM	ME OU	JTCON	1ES AN	ND PR	OGRA	MME S	SPECI	FIC OUTC	OMES			
COS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO	P011	P012	PSO1	PSO2	PSO3
										10					
C01	S	М	L	-	-	-	-	-	-	-	-	L	S	М	-
CO2	S	М	М	-	-	-	-	-	-	-	-	L	М	L	-
CO3	S	М	М	-	-	-	-	-		-	-	L	S		-
C04	S	S	М	-	М	-	-	-	L	-	-	L	S	М	-
CO5	5 S M M - M M M - M S M L									L					
S- Stro	ong; M-	Mediu	ım; L-L	JOW											

Fundamentals Of Nanoelectronics

Fundamentals of logic devices:- Requirements – dynamic properties – threshold gates; physical limits to computations; concepts of logic devices:- classifications – two terminal devices – field effect devices – coulomb blockade devices – spintronics – quantum cellular automata – quantum computing – DNA computer; performance of information processing systems;- basic binary operations, measure of performance processing capability of biological neurons – performance estimation for the human brain. Ultimate computation: - power dissipation limit – dissipation in reversible computation – the ultimate computer.

Silicon Mosfets& Quantum Transport Devices

Silicon MOSFETS - Novel materials and alternate concepts: - fundamentals of MOSFET Devices- scaling rules silicon-dioxide based gate dielectrics - metal gates - junctions & contacts - advanced MOSFET concepts. Quantum transport devices based on resonant tunneling, Electron tunneling - resonant tunneling diodes resonant tunneling devices; Single electron devices for logic applications: - Single electron devices – applications of single electron devices to logic circuits.

Introduction To Nanotechnology

Background to nanotechnology: Types of nanotechnology and nanomachines - periodic table - atomic structure molecules and phases - energy - molecular and atomic size - surface and dimensional space - top down and bottom up; Molecular Nanotechnology: Electron microscope - scanning electron microscope- atomic force microscope - scanning tunnelling microscope - nanomanipulator - nano tweezers - atom manipulation - nano dots - self-assembly - dip pen nanolithography. Nanomaterials: preparation- plasma arcing - chemical vapor deposition – sol-gels – electrodeposition – ball milling – applications of nanomaterials;

Carbon Nanotubes

Carbon Nanotube: Fullerenes - types of nano tubes - formation of nano tubes - assemblies - purification of carbon nanotubes - electronic properties - synthesis of carbon nanotubes - carbon nanotube interconnects carbon nanotube FETs – Nanotube for memory applications – prospects of all carbon nanotube nanoelectronics.

Molecular Electronics

Electrodes & contacts - functions - molecular electronic devices - first test systems - simulation and circuit design – fabrication; Future applications: MEMS – robots – random access memory – mass storage devices.

Text Books:

- 1. Michael Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse, "Nanotechnology: Basic Science and Emerging Technologies", Chapman & Hall / CRC, 2002
- 2. Rainer Waser (Ed.), "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices", Wiley-VCH, 20032. T. Pradeep, NANO:"The Essentials-Understanding Nanoscience and Nanotechnology", TMH, 2007

References:

- 1. T.Pradeep, "NANO: The Essentials–Understanding Nanoscience and Nanotechnology", TMH, 2007.
- 2. W. Ranier, "Nano Electronics and Information Technology", Wiley, (2003).
- 3. K.E. Drexler, "Nano systems", Wiley, (1992).
- 4. M.C. Petty, "Introduction to Molecular Electronics"1995.
- 5. Vladimir V. Mitin, Vieatcheslov A. Kochelap, Micheal A. Stroscio, Introduction to Nanoelectronics, Cambridge University Press, London, 2008

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in								
2	Mr.Rajat Kumar	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in								
	Dwibedi			_								

	INFORMATION AND ERROR CONTROL	Category	L	Т	Р	Credit			
	CODING	EC-PS	3	0	0	3			
PREAMB	LE								
Information & Error Control Coding enables the students to have an insight knowledge on fundamentals of									
Informatio	n Theory & Error control Codes. The designed cour	se makes the	students	to wor	k on th	ne various			
application	applications of the coding.								
PREREQUISITE									
Analog and Digital Communication									

COURSE OBJECTIVES	

1	Apply source coding procedure and calculate coding efficiency based on entropy and mutual information							
2	To carry out implementation of different source coding and channel coding algorithms							
3	Apply the basic concept of Error Control Codes							
4	To understand the different types of Error Correcting Codes							
5	To learn about various various applications of Error Control Codes							
COUF	RSE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1. I such as	Evaluate the information content in a discrete memoryless source through parameters s entropy and mutual information	Apply						
CO2. (Calculate channel capacity using Shannon's channel capacity theorem and construct efficient source coding schemes based on the entropy of source and probability of input variables	Apply						
CO3. I	CO3. Develop channel error control codes using BCH and RS algorithms Analyze							
CO4. I technic	CO4. Determine advanced Error correcting codes in both encoding and decoding Apply techniques							
CO5.A	analyze of various applications of Error Control Codes in data storage	Analyze						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	Μ	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	Μ	S	Μ	М
CO3	S	S	S	М	М	-	-	-	-	-	-	Μ	S	Μ	М
CO4	S	S	S	М	М	-	-	-	1	-	-	Μ	S	Μ	М
CO5	S	S	S	S	М	-	-	-	-	-	-	Μ	S	Μ	М

S- Strong; M-Medium; L-Low

SYLLABUS

INFORMATION THEORY AND SCHEMES FOR SOURCE CODING

Review of probability Theory - Random variables - Operations on single and multiple random variables-random process concept - Memoryless Finite Schemes- Self information measure - Entropy function - Conditional Entropies - Characteristics of Entropy function - Derivation of the noise characteristics of a channel - Mutual information - Redundancy - Efficiency and channel capacity - capacities of channels with symmetric noise structure.

CONTINUOUS CHANNELS

Definitions of different entropies - Mutual information - Maximization of the entropy of a continuous random variable -Entropy maximization problems - Channel capacity under the influence of additive white Gaussian Noise- Hartley Shannon's Law - Trade - off between Bandwidth and SNR - Comparison of different modulation methods- Information Capacity Theorem - Rate Distortion Theory.

ERROR CONTROL CODES

Hamming's single error correcting code - BCH codes - Reed-Solomon codes - Decoding BCH and RS codes - finding the Error Locator Polynomial - Non-binary BCH and RS Decoding - Erasure decoding for Non binary BCH and RS codes - Turbo codes - Encoding Parallel Concatenated codes - Turbo MAP decoding algorithm - BCJR algorithm - Log likelihood ratio decoding.

ERROR-CORRECTING CODES

Introduction - Linear Codes - Encoding and Decoding - Codes Derived from Hadamard Matrices, Cyclic Codes - Encoding and Decoding of Cyclic Codes - The Golay Code - Cyclic Redundancy Check Codes - Reed-Muller Codes, Convolutional Codes - The Viterbi Algorithm - Trellis Modulation

APPLICATIONS OF ERROR CONTROL CODES

Error control for computer main processor and control storages, Magnetic tapes, Magnetic Disks, Error control in IBM 3850 Mass Storage System, Other Data Storage Systems.

Text Books:

1. Roberto Togneri, Christopher J.S DeSilva, "Fundamentals of Information Theory and Coding Design", CRC press, 2003.

2. Shu Lin & Daniel Costello,"Error Control Coding Fundamentals and Applications", Prentice - Hill, 1983.

Reference Books:

1. Reza F M,"An Introduction to Information theory", McGraw Hill, 2000.

2. Thomas M Cover and Joy A Thomas, "Elements of Information Theory", Second Edition John Wiley, 2006.

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in							
2	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in							

	0	COMMUNICATION NETWORK						(Categor	y I	L T	P	Cre	dits	
		SECURITY							EC-PS	5 3	3 0	0	3	6	
PREAMBLE															
To introduce knowledge about the security issues in network and different algorithms used for digital															
data communication network.															
PREREQUISITE Data Communication Natworks															
COURSE OBJECTIVES															
	1 To understand the basic encryption standards														
1		To understand the advanced energy tion methodologies													
2		To understand the advanced encryption methodologies.													
3	T	To understand the knowledge of basic functioning of encryption algorithms.													
4	Te	To understand the concept of guided data security.													
5	5 To understand the functioning of wireless data security.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO 1. Understand the basic protocols in data security. Understand										d					
CO 2. A	pply	differer	nt enci	ryptio	n star	ndards	s in da	ata se	curity	.				Apply	
CO 3. D	esign	new al	gorith	ıms fo	or data	a secu	rity t	hroug	h mu	ltiple fu	nction	S.		Apply	
CO 4. D	esign	differe	nt sec	urity	practi	ice for	r data	com	munic	ation.				Apply	
CO 5. A	nalyz	the is	sues i	n wir	eless	securi	ity.							Analyze	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
000	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	DCO1	DCO2	DCO2
COS	1	2	3	4	5	6	7	8	9	10	11	12	PS01	PS02	PS03
CO1	М	L	-	-	-	L	-	-	-	-	-	-	М	М	-
CO2	S	S	L	-	-	L	-	-	-	-	-	L	S	М	-
CO3	L	S	S	S	-	L	I	S	L	-	-	Μ	S	S	-
CO4	Μ	S	S	-		L	-	S	S	-	-	L	М	-	М
CO5	L	L L M L S L - - L - - S M M -								-					
S – Strong; M – Medium; L – Low															

PHYSICAL NETWORK SECURITY & WEB SECURITY

Physical Layer Security - Copper Media, Optical Media, Wireless Media; Web Security Threats, Web Traffic Security Approaches; Overview of Secure Socket Layer and Transport Layer Security; Overview of Secure Electronic Transaction, Web and DNS security, Classical Ciphers: Services – Mechanisms and Attacks – OSI security Architecture – Model for Network Security – Classical Encryption Techniques – Symmetric Cipher Model – Substitution Techniques – Transposition Techniques – Rotor Machines– Stenography

PUBLIC KEY ENCRYPTION

Block Ciphers and Data Encryption Standard – Simplified DES – Block Cipher Principles, Data Encryption Standard – Strength of DES – Differential and Linear Crypt Analysis, Block Cipher Design Principles – Block Cipher Modes of Operation; Principles of Public Key Cryptosystems – RSA Algorithm, Key Management and other public key cryptosystems– Diffie–Hellman Key Exchange. Basics of ECC algorithm, Elliptic Curve Arithmetic – Elliptic Curve Cryptography.

ADVANCED ENCRYPTION STANDARD

Advanced Encryption Standard – Evaluation Criteria for AES, AES Cipher– Contemporary Symmetric Ciphers – Triple DES, Blowfish, RC5 – Characteristics of Advanced Symmetric Block Ciphers – RC4 Stream Cipher – Confidentiality using Symmetric Encryption – Placement of Encryption Function – Traffic Confidentiality – Key Distribution and Random Number Generation.

HASH & MAC FUNCTIONS

Message Authentication and Hash Functions – Authentication Requirements– Authentication Functions – Message Authentication Codes – Hash Functions and MACs; Hash Algorithms – MD5 Message Digest Algorithm, Secure Hash Algorithm RIPEMD 160, HMAC– Digital Signatures and Authentication Protocols – Digital Signature Standards.

NETWORK SECURITY PRACTICE

Authentication Applications – Kerberos – X.509 Authentication Service– Electronic Mail Security – Pretty Good Privacy – S/MIME– IP Security – IP Security Overview– IP Security Architecture – Authentication Header – Encapsulating Security Payload – Combining Security Associations – Web Security – Web Security Considerations – Secure Sockets Layer and Transport Layer Security – Secure Electronic Transaction. Wireless Network Security: Security Attack issues specific to Wireless systems: Worm hole, other attacks- Tunneling, Gray hole and Man-in-the-middle attack. Tunneling, DoS. WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor; Security issues & challenges in VANETs, Ad Hoc & Sensor networks, and IoT.

TEXT BOOKS:

- 1. William Stallings, "Network Security Essentials", 2nd edition, Prentice Hall of India New Delhi, 2004.
- 2. Charlie Kaufman, "Network Security Private Communication in Public World" 2nd edition, Prentice Hall of India New Delhi, 2004.

REFERENCE BOOKS:

- 1. William Stallings, "Cryptography and Network Security", 3rd edition, Prentice Hall of India, New Delhi, 2004.
- 2. R. K. Nichols and P. C. Lekkas," Wireless Security" Mc Graw Hill 2002.

COURS	E DESIGNER			
S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Dr. Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in
2.	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in

COURSE DESIGNER

				VIDE	O DD	OCE	SCINC	r		Categ	gory 1	L T	Р	Cr	edit
				VIDE	JUPK	UCE	5511VC	J		EC PS	-	3 0	0	3	
PREA To intro algorith and the digital	To introduce the fundamentals of digital video representation, filtering and compression, including popular algorithms for 2-D and 3-D motion estimation, object tracking, frame rate conversion, image enhancement, and the emerging international standards for image and video compression, with such applications as digital TV, web-based multimedia, videoconferencing, videophone and mobile image communications. PREREQUISITE – Nil														
COUR	SE OB	JECT	IVES												
1	Fo lear	n the b	basic c	oncep	ts of v	ideo p	rocess	ing							
2	Го prov	vide th	e visu	alizati	on of 1	relatio	nships	betwe	en spa	tial and	l freque	ency.			
3	3 To provide an idea of multimedia data														
4	4 To learn the basic concepts of coding systems														
5	5 To understand about the content dependent and scalable video coding techniques														
COUR	SE OI	UTCO	MES												
On the	succes	sful co	omplet	tion of	the co	ourse,	studen	ts will	be abl	e to					
CO1. A probler	Apply ns.	the k	nowle	dge ga	ained	during	g the	course	to so	lve vai	rious r	eal tim	eApply		
CO2. A applica	Apply tions	video	tracl	king a	lgoritł	nms f	or inte	elligen	t surv	eillance	e and	medica	alApply		
СОЗ. Г	Disting	uish va	arious	metho	dologi	ies for	motio	n estir	nation	using c	oding		Analy	ze	
CO4. A	nalyze	e to de	velop	new st	tate of	the ar	t imag	e and	video p	rocessi	ing met	thod.	Analy	ze	
CO5. A	nalyze	e to ch	oose r	ight se	ensor f	or the	right j	ob					Analy	ze	
MAPP	ING W	/ITH P	PROGI	RAMM	E OUI	ГСОМ	ES AN	D PRC	OGRAN	1ME SF	PECIFI	C OUT	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L	-	-	-	-	-	-	М	-	-	-
CO2	S	S	S	-	М	-	-	-	-	-	-	М	-	-	-
CO3	S	М	М	-	L	М	-	-	-	-	-	М	-	-	-
CO4	S	L	L	-	L	S	-	-	-	-	-	М	-	-	-
CO5	S	М	М	-	М	L	-	-	-	-	-	Μ	-	-	-
S-Str	ong; M	-Med	ium; L	L-Low											

(Dr. P SELVANT)

BASIC STEPS OF VIDEO PROCESSING

Analog video, Digital Video, Time varying Image Formation models: 3D motion models, Geometric Image formation, Photometric Image formation, sampling of video signals, filtering operations

FORMATION OF VIDEO PROCESSING

Video formation, perception and representation: Principle of color video, video cameras, video display, pinhole model, CAHV model, Camera motion, Shape model, motion model, Scene model, two-dimensional motion models. Three Dimensional Rigid Motion, Approximation of projective mapping.

2-D MOTION ESTIMATION

Optical flow, general methodologies, pixel-based motion estimation, Block matching algorithm, Mesh based motion Estimation, global Motion Estimation, Region based motion estimation, multi resolution motion estimation. Waveform based coding, Block based transform coding, predictive coding, Application of motion estimation in video coding.

MOTION ESTIMATION TECHNIQUES

Optical flow, motion representation, motion estimation criteria, optimization methods, pixel-based motion estimation, Block matching algorithm, gradient Based, Intensity matching, feature matching, frequency domain motion estimation, Depth from motion. Motion analysis applications: Video Summarization, video surveillance.

VIDEO COMPRESSION

Video compression techniques and standards – MPEG Video Coding I: MPEG – 1 and 2 – MPEG Video Coding II - MPEG – 4 and 7 – Motion estimation and compensation techniques – H.261 Standard – DVI technology – DVI real time compression – Packet Video.

TEXT BOOKS:

- 1. Yao Wang, Jorn O stermann, Ya-Qin Zhang, "Video Processing & Communication", Pearson Education - India, New Delhi, Prentice Hall, 2002.
- 2. Digital Video processing, A Murat Tekalp, Prentice Hall.

REFERENCES:

1. M. Tekalp, Digital Video Processing, Prentice Hall, 1995.

COUR	ISE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in
2	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in

COUDER DEGLENERS

			DATA	SCIE	INCE]	FOR C	COMM	IUNIC	ATION	[Categor	y L	Т	Р	Credit
					NE	TWO	RKS				EC-PS	3	0	0	3
PREA	MBL	E								•				•	
To int	roduce	e the	concep	ots of	comm	unicatio	on net	works,	in dep	th unde	rstanding	g of net	work	archite	cture of
differen	nt lay	ers of	data	comm	unicati	ons an	d its s	security	protoc	cols and	l implem	enting 1	the co	ncepts	through
simula	tions														
PRER	EQUI	SITE													
NIL															
COUR	COURSE OBJECTIVES														
1	Τοι	unders	tand th	e phys	ical lay	vers of	layered	l model	s.						
2	2 To be exposed to error detection/correction & medium access controls.														
3	To be familiar with Internet Protocols & current scenario														
4	To understand the concepts of Transport & Application layers.														
5 To be familiar with Network & Internet security.															
COUR	COURSE OUTCOMES														
On the	succe	ssful c	omplet	tion of	the cou	urse, st	udents	will be	able to						
CO1. I	Descrit	be the	basics	and wo	orking	of laye	red arc	hitectu	re				Unc	lerstand	
CO2.D	ifferei	ntiate o	differei	nt error	contro	ol, Link	contro	ol, acce	ss contr	ol and c	lifferent		٨	nnly	
LAN T	echno	logies	. Also	to eval	uate m	erits ar	d dem	erits					P	рргу	
CO3. U	Jse the	e role o	of prote	ocol to	design	it for a	approp	riate ro	uting m	echanis	n.		A	pply	
CO4.A	nalyze	e the v	arious	transpo	ort and	applica	ation la	ayer pro	otocols i	n real ti	me.		Aı	nalyze	
CO5. E	Explica	ate the	function	oning a	and me	thods o	f data	and net	work se	curity.			Aı	nalyze	
MAPP	PING Y	WITH	I PRO	GRAM	IME C)UTC(OMES	AND I	PROGE	RAMM	E SPECI	FIC OU	JTCO	MES	
COS	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO	PSO3
	1	2		_							_	-		2	
CO1	S	М	-	-	L	-	-	-	L	-	_	L	Μ	L	-
CO2	S	S	М	Μ	М	-	-	-	-	L	-	-	S	М	-
CO3	S	S	М	М	М	-	-	-	L	L	L	-	S	М	-
CO4	S	S	L	-	-	-	-	-	L	L	L	L	S	М	L
CO5	S	L	L	-	-	-	-	-	-	-	-	L	Μ	L	-
S- Stro	ng: M	-Medi	um: L-	Low									-		

Fundamental of Data communications and Physical Layer.

Data Communications-Networks & its types-Standards-Networks models –Protocol layering-TCP / IP protocol suite-OSI model. Digital to Digital conversion-Analog to Digital Conversion-Transmission Modes-Digital to Analog conversion- Analog to Analog Conversion-Multiplexing-Spread spectrum-Guided and Unguided Transmission media-Switching-Circuit switched networks-Packet switching-Structure of Switch.

Data Link Layer.

Link layer addressing.

Error Detection & Correction: Block coding-Cyclic codes-Checksum-Forward error correction. Data link control: DLC services-Data link layer protocols-HDLC-PPP. Medium Access Control: Random Access-Controlled access-Channelization. Available Protocols – Bluetooth – Bluetooth Low Energy – WiFi – 6LowPAN–Zigbee

Wired LANS: Ethernet protocol-Standard Ethernet-Fast Ethernet & Gigabit Ethernet. Wireless LANS: IEEE 802.11 project-WiMAX-Cellular Telephony-Satellite networks. Connecting devices, Virtual LANS.

Network Layer.

Network layer services-Packet switching-Performance-IPv4 Addresses. Internet Protocol, ICMPv4, Mobile IP. Unicast Routing: Routing algorithms-Unicast routing protocols. Multicast routing: Multicasting basis-Intra domain & Inter domain Multicast protocols, IGMP. Next Generation IP: IPv6 Addressing-IPv6 protocol-ICMPv6 protocol-Transition from IPv4 to IPv6.

Transport & Application Layer

Transport layer protocols-User Datagram Protocol-Transmission Control Protocol-SCTP. Client server programming-WWW & HTTP-FTP-Electronic mail-TELNET-SSH-DNS in the internet – Resolution- DNS Messages- Dynamic Domain Name System - SNMP-Compression- Multimedia Data & in the Internet- Real-Time Interactive protocol-P2P Networks-CHORD-PASTRY-KADEMLIA BITTORNET.

Network & Internet Security

Quality of Service: Data flow characteristics-Flow control to improve QoS-Integrated services Differentiated services. Cryptography: Introduction-Confidentiality-Other aspects of Security. Security In Networks: Threats in networks – Encryption – Virtual Private Networks – PKI – SSH – SSL – IPSec – Content Integrity – Access Controls – Wireless Security – Honeypots – Traffic Flow Security – Firewalls – Intrusion Detection Systems – Secure e-mail.

Text Books:

1. Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill, 2013

References:

- 1. 1. Andrew S. Tannenbaum, "Computer Networks", Pearson Education, Fifth Edition, 2011.
- 2. James F. Kurose, Keith W. Ross, "Computer Networking- A Top -Down Approach Featuring the Internet", Fifth Edition, Pearson Education, 2009.
- 3. Larry L. Peterson, Bruse S. Davie, "Computer Networks: A System Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.
- 4. Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2010.
- 5. Matt Bishop, "Introduction to Computer Security", Addison-Wesley, 2004.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
2	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in

PASSIVE NETWORK ANALYSIS A	ND Category	L	Т	Р	Credit
SYNTHESIS	EC-PS	3	0	0	3

PREAMBLE

A network refers to any interconnected set of objects. An 'electrical network' is an interconnection of electrical elements(Active and Passive)such as resistors, inductors, capacitors, transformers, diodes, sources, controlled sources and switches. Passive networks have interconnection of elements which cannot generate energy but can dissipate or stored energy. All electrical and electronic devices can be represented by electric circuits. So, formulation of equivalent circuit and the study of behavior of the devices such as filters and attenuators or networks is formulated by analyzing the equivalent circuit with network laws, theorem and graph theory.

PREREQUISITE

Nil

COUF	RSE OBJECTIVES							
1	To understand basic circuit concepts.							
2	To study networks and solution of DC and AC circuits.							
3	To understand series and parallel resonance concepts and analysis of coupled circuits							
4	To introduce different methods of circuit analysis using Network theorems, duality a	and topology.						
5	5 To understand transient analysis of RL, RC and RLC circuits with DC and sinusoidal excitations.							
COUF	COURSE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1. technic	Apply the knowledge of basic circuital law and simplify the network using reduction ques	Understand						
CO2.	Infer and analyze transient response, Steady state response, network functions	Apply						
CO3.	CO3. Analyze circuits using ideal passive elements and controlled sources Analyze							
CO4.	CO4. Synthesize one port and two port networks and devices Analyze							
CO5. I	CO5. Design of Constant K and m- derived Filter Network Analyze							

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	S	-	-	М	S	М	-
CO2	S	S	М	-	М	-	-	-	М	-	-	М	S	М	-
CO3	S	S	М	-	М	-	-	-	М	-	-	М	S	М	-
CO4	S	S	М	-	М	-	-	-	М	-	-	М	S	М	М
CO5	S	S	М	-	М	-	-	-	М	-	-	М	S	М	_
0 0			-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CIRCUIT ANALYSIS AND NETWORK TOPOLOGY

Ohm's Law – Kirchhoff's laws – Mesh current and node voltage method of analysis for D.C and A.C. circuits - Network terminology - Graph of a network - Incidence and reduced incidence matrices – Trees – Cut sets - Fundamental cut sets – Cut set matrix – Tie sets - Link currents and Tie set schedules -Twig voltages and Cut set schedules, Duality and dual networks.

NETWORK THEOREMS AND TRANSFORMATIONS

Network theorems - Superposition theorem, Thevenin's theorem, Norton's theorem, Reciprocity theorem, Millman's theorem, and Maximum power transfer theorem ,application of Network theorems - Network reduction: voltage and current division, source transformation – star delta conversion.

RESONANCE AND COUPLED CIRCUITS

Resonance - Series resonance - Parallel resonance - Variation of impedance with frequency -Variation in current through and voltage across L and C with frequency – Bandwidth - Q factor -Selectivity. Self inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of multi winding coupled circuits - Series, Parallel connection of coupled inductors - Single tuned and double tuned coupled circuits.

TRANSIENT ANALYSIS & TWO PORT NETWORKS AND SYNTHESIS

Transient response of RC, RL and RLC circuits to excitation by Step Signal, Impulse Signal and exponential sources -Complete response of RC, RL and RLC Circuits to sinusoidal excitation. Two port networks, Z parameters, Y parameters, Transmission (ABCD) parameters, Hybrid (H) Parameters, Interconnection of two port networks

PASSIVE FILTERS

Symmetrical properties of T and TT networks-Characteristic Impedance of Symmetrical Networks- Filter fundamentals – Design of filters; Constant K- Low Pass, High Pass, Band Pass& Band Elimination, m-Derived sections – Low Pass, High Pass & Composite Filter

TEXTBOOKS:

- 1. William H. Hayt, Jr. Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", McGraw Hill Science Engineering, Eighth Edition, 11th Reprint 2016.
- 2. Joseph Edminister and Mahmood Nahvi, "Electric Circuits", Schaum's Outline Series, Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 2016.
- 3. John D Ryder, "Networks, lines and fields", 2nd Edition, Prentice Hall India, 2010.

REFERENCEBOOKS:

- 1. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth Edition, McGraw Hill, 9th Reprint 2015.
- 2. A. Bruce Carlson," Circuits: Engineering Concepts and Analysis of Linear Electric Circuits", Cengage Learning, India Edition 2nd Indian Reprint 2009.
- 3. Allan H.Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage Learning, Fifth Edition, 1st Indian Reprint 2013.

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.C.Arunkumar Madhuvappan	Assistant Professor	ECE	arunkumarmadhuvappan@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

		IOT SYSTEM DESIGN ANDCategoryLTPCreditsAPPLICATIONSEC PS2003													
	DIF			API	LIC	AIIC	DNS			EC-PS		5	0 ()	3
PREAM This is a	BLE	aa ah	out th			diam	ofo	hight	into	actina .	with m	aanla	ith i	nformat	on avatoma
THIS IS a	cours	se ab	out in		v para	auigii Failt fa		bjects	s inter	acting v	and a	mia	, with I	mormat	ont systems,
and with	other	obje	<i>is.</i> 11	le cot	iise v	/111 10	cus o	ii crea	uive u	minking	and a	ppnea	ations de	evelopin	ent.
PRERE	PREREOUISITE														
Nil															
COURSE OBJECTIVES															
1 To understand IoT concepts, terminology, technology															
2	2 To learn about Smart Objects and IoT Architectures														
3	To	o intro	oduce	the c	oncep	ot of N	Л2М	(macł	nine to) machi	ne) wi	th ne	cessary	protocol	S
4	To	o intro	oduce	the P	ythor	1 Scri	oting	Lang	uage v	which is	used	in ma	iny IoT	devices	
5	To	o buil	d sim	ple Io	T Sys	stems	using	, Ardı	iino a	nd Rasp	berry	Pi.			
6	6 To learn about various IOT-related protocols														
7 To understand and develop IoT applications															
COURSE OUTCOMES															
On the su	iccess	ful co	omple	tion c	of the	cours	se, stu	dents	will b	be able t	0				
CO 1. T	o und	erstar	nd the	funda	amen	tals of	f IoT							Under	rstand
CO 2. T	o und	erstar	nd bas	ics of	IoT	syster	n Mai	nagen	nent a	nd an in	ıtrodu	ction		Δn	alv
to pythor	ı lang	uage												np	pry
CO 3. To	o apply	y the	suitab	ole Io	Г con	ımuni	ication	n prot	ocols	to diffe	rent			Ap	ply
application	ons														
CO 4. T	o be a	ble to	o desig	gn and	d dev	elop a	in IoT	`syste	em					Ap	ply
CO 5. T	o anal	yze t	he rea	l time	e IoT	appli	cation	S						Ana	lyze
MAPPIN	NG W	ITH	PRO	GRA	MM	E OU	TCO	MES	AND	PROC	GRAN	1ME	SPECI	FIC OU	TCOMES
	DO	Р	DO	DO	DO	DO	DO	DO	DO	DO	DO	Р	DCO		
COS	PO	0	PO	PO	PO	PO	PO	PO	PO	PO	PO	0	PSO	PSO2	PSO3
000	1	2	3	4	5	6	7	8	9	10	11	12	1	1001	1200
CO1	М	L	-	-	-	L	-	-	-	_	-	-	М	М	-
CO2	S	S	L	-	-	L	-	-	-	-	-	L	S	М	-
CO3	L	S	S	S	-	L	-	S	L	-	-	М	S	S	-
CO4	М	S	S	-	-	L	-	S	S	-	-	L	М	-	М
CO5	L	L	Μ	L	S	L	-	-	L	-	-	S	М	М	-
S – Stror	ıg; M	– Me	dium	; L – I	Low										
OVT T A															

FUNDAMENTALS OF IoT

Evolution of Internet of Things – Enabling Technologies – Technologies that led to evolution of IOT, IOT and SCADA, IOT and M2M, IOT and Big Data, IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT models – Functional blocks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart Objects

IoT and M2M

Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER INTRODUCTION TO PYTHON

Language features of Python, Data types, data structures, Control of flow, functions, modules,

packaging, file handling, data/time operations, classes, Exception handling Python packages – JSON, XML, HTTP Lib, URL Lib, SMTP Lib

IoT PROTOCOLS

IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and LoRa WAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks – Application Transport Methods: Supervisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQTT

IOT SYSTEMS DESIGN AND DEVELOPMENT

Design Methodology – Embedded computing logic – Microcontroller, System on Chips – IoT system building blocks – Arduino – Board details, IDE programming – Raspberry Pi – Interfaces and Raspberry Pi with Python Programming.

IoT APPLICATIONS

Lighting as a service (case study), Intelligent Traffic systems (case study), Smart Parking (case study), Smart water management (case study), IOT for smart cities (case study), IOT in Indian Scenario: IOT and Aadhaar, IOT for health services, IOT for rural empowerment.

TEXT BOOKS:

- David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017
- 2. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547
- 3. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

REFERENCE BOOKS:

- 1. ArshdeepBahga, Vijay Madisetti, —Internet of Things A hands-on approach, Universities Press, 2015
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things Key applications and Protocols, Wiley, 2012 (for Unit 2).
- 3. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Aves and. David Boyle, "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier, 2014.
- 4. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Things, Springer, 2011.
- 5. Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.

COURS	DESIGNER			
S.No	Name of the Faculty	Designation	Dept	Mail ID
1	Dr. Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in
2.	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekar@vmkvec.edu.in

COURSE DESIGNER

SENSORS AND TRANSDUCERS FOR	Category	L	Т	Р	Credit
HEALTHCARE	EC-PS	3	0	0	3

PREAMBLE

Sensors & transducers for healthcare course presents an overview of sensors and transducers of different types that have been proven in medical and home environments as being helpful in Quality of Life enhancement. Also emphasizes the need Home care.

PREREQUISITE:

NIL

COUF	RSE OBJECTIVES									
1	To Understand the basic concepts of sensors, sensor principles and its classification.									
2	To use the basic concepts of transducers, electrodes and its classification.									
3	To Study the cardiac, respiratory and muscular physiological systems and several other inst	ruments for healthcare.								
4	4 To outline the various biological components using biosensors.									
5	5 To emphasize the need for home medicare system and provide the advance medical technology in home medicare.									
COUF	COURSE OUTCOMES									
On the	successful completion of the course, students will be able to									
CO1. 0	Quantify the specification and characteristics of sensors	Understand								
CO2. I	Describe the working principles of transducers.	Understand								
CO3. I	Develop the knowledge for implementing different types of physiological parameter	Apply								
1	neasurement using appropriate sensors.									
CO4. /	CO4. Analyze the biological components using biosensors in various applications. Analyze									
CO5.A	CO5.Analyze the skills required for home Medicare for the elderly, the children and digital Analyze									
t	echnical advancements with home Medicare.									

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	S	S	-	-	-	-	-	-	-	S	Μ	-
CO2	М	L	-	М	-	М	-	-	L	-	-	Μ	-	Μ	-
CO3	S	S	М	М	L	М	I	М	М	Μ	-	S	Μ	Μ	S
CO4	S	S	L	S	-	S	М	М	S	-	-	S	S	Μ	М
CO5	S	S	М	М	L	М	-	М	М	Μ	-	S	Μ	Μ	S
0 0		r	-	-											

S- Strong; M-Medium; L-Low

SYLLABUS

SENSOR FUNDAMENTALS AND SENSOR PRINCIPLES

Sensor Classification, Performance and Types, Electric charge, field and potentials, capacitor and dielectric constant, magnetism, Induction, resistance, Seebeck, peltier and thermal effects, Heat transfer, light and ultrasonic.

TRANSDUCERS AND ITS CLASSIFICATION

General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer, Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIOMEDICAL SENSORS AND PHYSICAL SENSORS IN BIOMEDICINE

Introduction to Biomedical Sensors-Classification-Temperature measurement: core temperature,-surface temperatureinvasive. Blood flow measurement: skin blood- hot film anemometer- Doppler sonography- electromagnetic sensor blood pressure measurement: noninvasive- hemodynamic invasive, Spirometry- sensors for pressure pulses and movement- ocular pressure sensor- acoustic sensors in hearing aid, tactile sensors for artificial limbs, sensors in ophthalmoscopy.

BIOSENSORS AND ITS APPLICATION

Biological elements, Immobilization of biological components, Chemical Biosensor, electrochemical sensor, chemical fibro sensors, blood glucose sensors, non-invasive blood gas monitoring, UREASE biosensor.

MEDICAL INSTRUMENTS AT HOME AND DIGITAL HOME CARE

Spectrophotometer, colorimeter, flame photometer, auto-analyzer, Medical devices at home and its implementation, Infant monitors, Medical alert services, Activity monitors, Home medicare management by videophone, Continuous home care through wireless bio-signal monitoring system Smart Wearables in Healthcare.

Text Books:

 Jacob Fraden, "Hand book of modern sensors: Physics design and applications", Springer, 2003, 3rdedition, AIP press
 J. G. Webster, J. G. Webster, "Medical Instrumentation; Application and Design", John Wiley & Sons, Inc., New York, 4th Edition, 2015.

3. Robyn Rice, "Home care nursing practice: Concepts and Application", Elsevier, 4th Edition, 2006.

4. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.

Reference Books:

- 1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 3 rd edition, 2014.
- 2. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.

COUR	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	R.Mohana Priya,	Assistant Professor(Gr-II),	ECE	mohanapriya@avit.ac.in										
2.	Dr.P.M.Murali	Assistant Professor	ECE	muralipm@vmkvec.edu.in										

				DIGIT	I. IM	AGE F	PROCI	ESSIN	G		Catego	ry I		Т	Р	C	redit
			-						0		EC-PS	5 3	3	0	0		3
PRI Dig: know com	PREAMBLE Digital Image Processing has applications in all walks of present-day digital life. The student stands to gain knowledge of the basics of images, acquisition of images, enhancement of images, restoration of images, compression of images for efficient storage and transmission, color image processing, image segmentation and morphological image processing.																
PRE	EREQU	ISITE:		<u>, source</u>													
	Nil COURSE OBJECTIVES																
COL	JRSE O	BJECT		(1	. 1 1	· 1 ·		1.			1.	4	•				
1	To ur	idersta	nd the m	nathema	tics bei	$\frac{1}{1}$	lage sa	mpling	g, quan	tization a	ind image	transt	orn	$\frac{ns}{1}$		-	1
2	2 To understand different filtering techniques both in the frequency domain as well as the time domain and analyze them																
3	To ur	ndersta	nd noise	e remova	l and o	other re	storatio	on tech	niques	and app	ly them.						
4	To ur	ndersta	nd and a	pply mu	ılti reso	olution	techni	ques fo	or imag	e compre	ession						
5	To ur	ndersta	nd morp	hologic	al repre	esentati	on, im	age seg	gmenta	tion and	representa	ation					
COL	JRSE O	UTCO	MES				1 .	.11.1	11 .								
On	On the successful completion of the course, students will be able to																
freq	CO1. Understand the mathematics behind image acquisition, sampling and transforms and frequency domain Understand													tand			
CO2	2. Unde	erstand	the cond	cepts of	filterin	g in tin	ne dom	nain							Ut	nders	tand
CO	3. Appl	y the e	ffect of	different	filters	on ren	noving	differe	ent nois	ses						App	ly
CO4	4. Appl	y the d	ifferent	multi re	solutio	n techn	iques a	and mo	orpholo	gical rep	resentatio	n,				App	ly
CO	5. Appl	y imag	e segme	ntation	echniq	ues for	segme	enting	objects	in given	images					App	ly
MA	PPING	WITH	I PROGI	RAMME	OUTO	COMES	S AND	PROG	RAMM	IE SPEC	IFIC OUT	COME	ES				
С	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO	PS	502	PSO3
Ο																	
S	C	М	М	r						S		M					
01	3	11/1	IVI	L	-	-	-	-	-	3	-	IVI		-		-	-
C	S	-	-	-	-	-	-	-	-	-	-	М		-		-	-
<u>C</u>	_	S			_	_	_	_	_			M				_	
03		5										101					
C 04	S	М	-	-	-	-	-	-	-	-	-	M		-		-	-
C 05	S	S	М	L	-	-	-	-	S	S	-	M		-		-	-
S-S	trong;	M-Mee	dium; L-	Low					1								

(Dr. P SELVAN)

Introduction and Image transforms

Origin of digital image processes – Fundamental steps in digital image processing – Components of an image processing system – Elements of visual perception – Image sensing and acquisition – Image sampling and quantization – Basic relationships between pixels – Introduction to mathematical tools used in digital image processing – Fields that use digital image processing. Transforms for Image processing - Discrete Fourier transform – Discrete Cosine transform – Haar transform – Hadamard transform – Walsh transform.

Intensity transformations & Filtering

Basic intensity transformation functions – Histogram processing – Fundamentals of spatial filtering – Smoothing spatial filters – Fuzzy techniques for intensity transformations and spatial filtering

Basics of filtering in frequency transforms – Image smoothing using frequency domain filters - Image sharpening using frequency domain filters.

Image Restoration & Color Image Processing

Image restoration model – Noise parameters – Restoration in the presence of noise only –spatial filtering –Periodic noise reduction by frequency domain filtering – Degrading functions- Estimating the degradation function – Inverse filtering – Wiener filtering – Constrained least square filtering – Geometric mean filtering – Image reconstruction from projections

Color fundamentals – Color models – Pseudo color image processing – Color transformations – Color image Smoothing and sharpening – Color image segmentation – Noise in color images – Color image compression

Wavelets and Multi resolution processing & Image Compression

Background – Multi resolution expansion – Wavelet transform in one dimension – Fast wavelet transform – Wavelet transform in two dimensions- Wavelet packets

Image compression models – Huffman coding – Arithmetic coding – LZW coding – Run length coding – Bit plane coding – Block transform coding – Predictive coding – Wavelet coding

Morphological Processing, Segmentation & Representation

Morphological Processing - Erosion and dilation - Opening and closing – Basic morphological operations – Grey scale morphology. Image Segmentation - Point, Line and Edge detection – Thresholding – Region based segmentation – segmentation using morphological watersheds – use of motion in segmentation. Image Representation – Boundary descriptors – Regional descriptors

TEXT BOOKS:

1) "Digital Image Processing", Rafael C Gonzalez & Richard E Woods, Pearson Education International, Third Edition, 2008, ISBN 0-13-168728-x, 978-0-13-168728-8

2) "Fundamentals of Digital Image Processing", A.K. Jain, PHI, 1995.

REFERENCE BOOKS:

1) Digital Image Processing, Bernd Jahne, Springer -Verlag, Fifth Edition, 2002, ISBN 3-540 - 67754 - 2

2) The Essential Guide to Image Processing", Al Bowik, 2009, Elsevier Inc, ISBN 978-0-12-374457-9

3) S. Jayarman, S. Esakkirajan and T. Veerakumar, "Digital Image Processing", Tata McGraw Hill, 2010.

COURSE DESIGNERS										
S.NO	Name of the Faculty	Designation	Department	Email id						
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in						
2	Dr. Sita Devi Bharatula	Associate Professor	ECE	sitadevi.ece@avit.ac.in						

EC-PS 3 0 0 3 PREAMBLE Printed circuit boards are inarguably one of the most influential inventions of the 20 th century. Nearly every piece of technology today uses at least one of these devices, and they have played roles in historically significant events like world war II and space travels. To gain an appreciation for PCB technology, let's look at several significant moments in the history of circuit boards. PREREQUISITE NIL COURSE OBJECTIVES 1 To Understand the need for PCB and SMD. 2 To learn planning and PCB design consideration. 3 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to COL Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. Understand CO2. Interpret varies techniques used in Etching and Multi-layer Boards COL Apply						PCB I	DESIG	NING				Categor	y L	T		P C	redit	
PREAMBLE Printed circuit boards are inarguably one of the most influential inventions of the 20 th century. Nearly every piece of technology today uses at least one of these devices, and they have played roles in historically significant events like world war II and space travels. To gain an appreciation for PCB technology, let's look at several significant moments in the history of circuit boards. PREREQUISITE NIL COURSE OBJECTIVES 1 To Understand the need for PCB and SMD. 2 To learn planning and PCB design consideration. 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to COL Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply COURSE OUTCOMES COURSE OUTCOMES Apply <td co<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>EC-PS</th><th>3</th><th>0</th><th></th><th>0</th><th>3</th></td>	<th></th> <th>EC-PS</th> <th>3</th> <th>0</th> <th></th> <th>0</th> <th>3</th>												EC-PS	3	0		0	3
Printed circuit boards are inarguably one of the most influential inventions of the 20 th century. Nearly every piece of technology today uses at least one of these devices, and they have played roles in historically significant events like world war II and space travels. To gain an appreciation for PCB technology, let's look at several significant moments in the history of circuit boards. PREREQUISITE NIL COURSE OBJECTIVES 1 To Understand the need for PCB and SMD. 2 To learn planning and PCB design consideration. 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES 01. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply CO5. Solderi	PREA	MBL	E															
PREREQUISITE NIL COURSE OBJECTIVES 1 To Understand the need for PCB and SMD. 2 To learn planning and PCB design consideration. 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES 0 nthe successful completion of the course, students will be able to CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply CO5. Soldering PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 3 - - - - - - - -<	Printed circuit boards are inarguably one of the most influential inventions of the 20 th century. Nearly every piece of technology today uses at least one of these devices, and they have played roles in historically significant events like world war II and space travels. To gain an appreciation for PCB technology, let's look at several significant moments in the history of circuit boards.																	
COURSE OBJECTIVES 1 To Understand the need for PCB and SMD. 2 To learn planning and PCB design consideration. 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES 01 Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand C02. Interpret varies planning and PCB design consideration. Understand C03. Prepare PCB for any specific applications, using Artwork generations Apply C04. Interpret varies techniques used in Etching and Multi-layer Boards Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C063 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL																	
1 To Understand the need for PCB and SMD. 2 To learn planning and PCB design consideration. 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to CO2. Interpret varies planning and PCB design consideration. Understand C03. Prepare PCB for any specific applications, using Artwork generations Apply C04. Interpret varies techniques used in Etching and Multi-layer Boards Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C06 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 3 C01 S M L -	COURSE OBJECTIVES																	
2 To learn planning and PCB design consideration. 3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to C01. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand C02. Interpret varies planning and PCB design consideration. Understand C03. Prepare PCB for any specific applications, using Artwork generations Apply C04. Interpret varies techniques used in Etching and Multi-layer Boards Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C05. Soldering process of PCB and components Assembling rules on PCB. Apply C05. Soldering Process of PCB and components Assembling rules on PCB. Apply C05. Soldering Process of PCB and components Assembling rules on PCB. Apply C05. Soldering Process of PCB PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 3 3 3	1	1 To Understand the need for PCB and SMD.																
3 To obtain knowledge in Artwork generation and Printing process. 4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply COMES CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply COMES QUIDES CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply COMES QUIDES Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply COS PO1<	2	2 To learn planning and PCB design consideration.																
4 To obtain knowledge in Etchingand Multi-layer Boards 5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply COMES Quiderstand CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 </td <td>3</td> <td colspan="12">To obtain knowledge in Artwork generation and Printing process.</td>	3	To obtain knowledge in Artwork generation and Printing process.																
5 ToLearn Soldering Process of PCB and components Assembling Techniques. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 3 CO1 S M L -	4	To obtain knowledge in Etchingand Multi-layer Boards																
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 3 CO1 S M L - <t< td=""><td>5</td><td>ToLe</td><td>arn So</td><td>ldering</td><td>Proces</td><td>ss of P</td><td>CB and</td><td>l comp</td><td>onents</td><td>Assen</td><td>nbling T</td><td>echniqu</td><td>es.</td><td></td><td></td><td></td><td></td></t<>	5	ToLe	arn So	ldering	Proces	ss of P	CB and	l comp	onents	Assen	nbling T	echniqu	es.					
On the successful completion of the course, students will be able to CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO1 CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 3 CO1 S M L -	COUI	RSE O	UTCO	MES														
CO1. Appreciate the necessity and evolution of PCB, types and classes of PCB. Understand CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 3 CO1 S M L -	On the	e succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)							
CO2. Interpret varies planning and PCB design consideration. Understand CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES OUTCOMES CO3. P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS0 3 CO1 S M L - <td>CO1. 4</td> <td>Apprec</td> <td>iate the</td> <td>e neces</td> <td>sity an</td> <td>d evolu</td> <td>ition of</td> <td>f PCB,</td> <td>types</td> <td>and cla</td> <td>sses of]</td> <td>PCB.</td> <td></td> <td>Unde</td> <td>ersta</td> <td>ind</td> <td></td>	CO1. 4	Apprec	iate the	e neces	sity an	d evolu	ition of	f PCB,	types	and cla	sses of]	PCB.		Unde	ersta	ind		
CO3. Prepare PCB for any specific applications, using Artwork generations Apply CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Apply CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 3 CO1 S M L -	CO2.]	Interpre	et varie	s planı	ning an	d PCB	design	o consi	deratio	n.				Unde	ersta	ind		
CO4. Interpret varies techniques used in Etching and Multi-layer Boards Apply CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 S M L - - - - - - - -	CO3.]	Prepare	PCB	for any	specif	ic appli	ication	s, usin	g Artw	ork gei	neration	S		Appl	у			
CO5. Soldering process of PCB and components Assembling rules on PCB. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS03 PS04 PS04 PS04 PS04 PS05 PS05 <t< td=""><td>CO4.]</td><td>Interpre</td><td>et varie</td><td>s techr</td><td>niques</td><td>used in</td><td>Etchir</td><td>ng and</td><td>Multi-</td><td>layer B</td><td>oards</td><td></td><td></td><td>Appl</td><td>у</td><td></td><td></td></t<>	CO4.]	Interpre	et varie	s techr	niques	used in	Etchir	ng and	Multi-	layer B	oards			Appl	у			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS0CO1SML	CO5. 5	Solderi	ng pro	cess of	PCB a	nd con	nponen	ts Ass	emblin	g rules	on PCE	8.		Appl	у			
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M L -	MAPI	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC	OUT	COI	MES		
CO1 S M L - - - - - - 3 CO1 S M L - - - - - S - <td>COS</td> <td>PO1</td> <td>PO2</td> <td>PO3</td> <td>PO4</td> <td>PO5</td> <td>PO6</td> <td>PO7</td> <td>PO8</td> <td>PO9</td> <td>PO10</td> <td>PO11</td> <td>PO12</td> <td>PS</td> <td>01</td> <td>PSO2</td> <td>PSO</td>	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO	
CO1 S M L S																	3	
	CO1	S	М	L	-	-	-	-	-	-	-	-	-		5	-	-	
CO2 S M L S	CO2	S	Μ	L	-	-	-	-	-	-	-	-	-	,	5	-	-	
<u>CO3 S M M - M M M S M L</u>	CO3	S	M	M	-	M	-	-	-	M	-	-	M		5	M	L	
<u>CO4 S M M - M M M S M L</u>	<u>CO4</u>	S	M	M	-	M	-	-	-	M	-	-	M		5	M		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>CO5</u>	S M	M		-	М	-	-		Μ	-	-	Μ		5	Μ	L	

BASICS OF PRINTED CIRCUIT BOARDS AND COMPONENTS: Classification of Printed Circuit Boards: Single-sided Printed Circuit Boards, Double-sided Printed Circuit Boards, Multi-layer Boards, Rigid and Flexible Printed Circuit Boards - Manufacturing of Basic Printed Circuit Boards: Single-sided Boards, Double-sided Plated Through-holes - Standards on Printed Circuit Boards. Surface Mount Devices: Surface Mount Devices, Surface Mounting Semiconductor Packages, Packaging of Passive Components as SMDs - Heat Sinks – Transformer- Relays – Connectors.

PLANNING AND DESIGN: General PCB Design Considerations - Mechanical Design Considerations -

Electrical Design Considerations - Conductor Patterns - Component Placement Rules -Fabrication and Assembly Considerations - Environmental Factors -Cooling Requirements and Packaging Density.

ARTWORK GENERATION AND PRINTING PROCESS:

Basic Approach to Manual Artwork -General Design Guidelines for Artwork Preparation- Automated Artwork Generation - Computer- Aided Design (CAD) - Manual versus Automation in PCB Design - PCB Design Checklist - Laminate Surface Preparation - Screen Printing - Printing Process.

ETCHING AND MULTI-LAYER BOARDS:

Etching solutions and chemistry, etching arrangements, Etching parameters, equipment's and techniques, Problems in etching. Multi-layer Boards: Interconnection Techniques - Materials for Multi-layer Boards - Design Features of Multi-layer Boards: Mechanical Design Considerations, Electrical Design Considerations -Fabrication Process for Multi-layer Boards

SOLDERING AND ASSEMBLY TECHNIQUES:

Theory of soldering, soldering variables, soldering materials, Soldering and brazing, soldering tools and other hand soldering tools, PCB assembly process: Leaded Through-hole Assembly, Surface Mount Assembly, Mass Soldering: Dip Soldering, Drag Soldering, Health and Safety Aspects.

Text Books

1. Printed Circuit Boards: Design, Fabrication, Assembly and Testing by RS Khandpur, Tata McGraw Hill Education Pvt Ltd., New Delhi, 2018.

Reference Books

- 1. Printed Circuit Boards: Design, Fabrication, and Assembly (McGraw-Hill Electronic Engineering-2006) by Raghbir Singh Khandpur
- 2. Electronic Product Design Volume-I by S D Mehta, S Chand Publications

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.SureshKumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in
2	MrG.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in
3	Mr.Rajat Kumar	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
	Dwibedi			

	INTE	ELLEC	TUAL	PROPI	ERTY		Cate	gory	L]	r]	P C	redit	
		Ι	RIGHT	ſS			OE -IE		3	()	0	3	
PREAMBI To introduc developmen	E e funda t and m	amental nanagen	aspects nent of	s of Inte innovati	ellectua ive pro	l prop jects ir	erty Rig 1 indust	ghts to ries.	students	who are	e going	to play a	a major r	ole in
PRE-REQU	UISITE	E–Nil												
COURSEO	BJEC	TIVES												
1 To dis	ssemina	ite know	ledge	on paten	its, pate	ent regi	ime in I	ndia ar	nd abroad	l and reg	gistratior	n aspects		
2 To dis	ssemina	ite know	ledge	on copy	rights a	and its	related	rights a	and regis	tration a	spects			
3 To dis	seminat	te know	ledge o	on trader	narks a	and reg	istration	n aspec	ts					
4 To dis	ssemina	ate kno	wledge	on De	esign,	Geogr	aphical	Indica	ation (G	I), Plan	t Varie	ty and	Layout	Design
Protect	tion and	their r	egistrat	tion aspe	ects	7 4 4		·	- IDD					
5 TO awa	are abo		nt trenc	is in IPF	c and C	JOVI. SI	teps in i	osterin	g IPR					
COURSEO	UTCO	OMES												
Onthesucces	ssful co	mpletio	noftheo	course, s	student	swill b	eable to)						
CO1.The st	udents	once the	ey com	plete th	eir aca	demic	project	s, shall	get an a	idequate	knowle	dge Un	derstand	
on patent an	d copy	right for	their i	nnovativ	ve resea	arch w	orks.							
CO2.Comp	rehend	the appl	licable	source,	scope a	and lin	nitations	s of Int	ellectual	Property	y within	the App	oly	
purview of e	enginee	ring do	main.											
CO3. Know	vledge	and con	npeten	ce relate	ed exp	osure	to the	various	s Legal	issues p	ertaining	g to Ana	alyze	
Intellectual	Propert	y Right	s with t	the utilit	y in en	igineer	ing pers	spective	es.					
CO4. Enabl	e the s	tudents	to hav	e a dire	ect exp	erience	e of ver	nture c	reation t	hrough a	a facilita	ated Ana	alyze	
learning env	vironme	ent											_	
CO5. It allo	ows stu	dents to	b learn	and app	ply the	e latest	metho	dology	, framew	orks an	d tools	that Ap	ply	
entrepreneu	rs use to	o succee	ed in re	al life.										
MAPPING	WITH	PROG	RAMN	1EOUT	COMI	ESANI	DPROC	GRAM	MESPE	CIFICO	DUTCO	MES		
COS P	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
														03
CO1 M	S	М	_	S	S	L	-	_	_	_	M	S	S	S
CO2 L	L	S	-	S	S	L	-	-	-	-	M	S	M	L
CO3 L	М	М	-	S	М	М	-	-	-	-	М	S	L	М
CO4 L	S	М	-	М	М	М	-	-	-	-	М	S	S	М
CO5 L	М	S	Μ	М	М	-	-	-	-	-	М	S	М	М
S-Strong;M	-Mediu	m;L-Lo	W											

(Dr. P SELVANT)

SYLLABUS Introduction:

Introduction – Invention and Creativity – Intellectual Property (IP) – Importance – Protection of IPR – Basic types of property (i. Movable Property ii. Immovable Property and iii. Intellectual Property)

Trade Marks:

IP – Patents – Copyrights and related rights – Trade Marks and rights arising from Trademark registration – Definitions – Industrial Designs and Integrated circuits – Protection of Geographical Indications at national and International levels – Application Procedures.

Industrial Design, Copy Right&Intellectual property and cyberspace:

International convention relating to Intellectual Property – Establishment of WIPO – Mission and Activities – History – General Agreement on Trade and Tariff (GATT).

Trademarks:

Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks – Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

IPR Legislations and Case Studies:

Indian Position Vs WTO and Strategies – Indian IPR legislations – commitments to WTO-Patent Ordinance and the Bill – Draft of a national Intellectual Property Policy – Present against unfair competition.

Case Studies on – Patents (Basumatirice, turmeric, Neem, etc.) – Copyright and related rights – Trade Marks – Industrial design and Integrated circuits – Geographic indications – Protection against unfair competition.

ТЕХТВООК

1. Subbaram N.R. "Handbook of Indian Patent Law and Practice ", S. Viswanathan(Printers and Publishers) Pvt. Ltd., 1998.

REFERENCES

1. Eli Whitney, United States Patent Number: 72X, Cotton Gin, March 14, 1794.

2. Intellectual Property Today: Volume 8, No. 5, May 2001, [www.iptoday.com].

COU	RSEDESIGNERS			
S.No.	Name of theFaculty	Designation	Department	Mail Id
1.	Mr. J. Vijay	Asst. Professor Gr. II	ECE	vijay.ece@avit.ac.in
2.	Dr.T.Sheela	Asso.Professor	ECE	sheela@vmkvec.edu.in

ENGINEERING STARTUPS AND	Category	L	Т	Р	Credit
ENTREPRENEURIAL MANAGEMENT	OE-IE	3	0	0	3

PREAMBLE:

A startup is a company initiated by individual creator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: Nil

COURSE OBJECTIVES:

- 1. To understand the Startups Management basics and its components.
- 2. To impart the startups fund management practices
- 3. To inculcate the various kinds of stocks and employment considerations in startups.
- 4. To inculcate the importance of intellectual property rights and its procedures.
- 5. Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.

COURSE OUTCOMES:

After successful completion of the course, students will be able to	
CO1: Explain the concept of engineering startups, objectives and functions and its	Understand
components.	
CO2: Analyze the startups funding issues and remuneration practices in startups business.	Apply
CO3: Analyze the various kinds of stocks and employment opportunities consideration in	Apply
startups business.	
CO4: Compare and contrast the different forms of intellectual property protection in terms of	Apply
their key differences and similarities.	
CO5: Explore the entrepreneurial mindset and culture that has been developing in	Apply
companies of all sizes and industries.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	М	-	-	-	-	М	S	S	-	М	-	-			
CO2	S	S	S	М	М	М	-	-	-	-	-	-			
CO3	S	S	S	М	М	М	-	-	-	-	-	-			
CO4	S	S	S	М	М	М	-	-	-	-	-	-			
CO5	S	S	S	М	М	М	-	-	-	-	-	-			
S- Stron	S- Strong; M-Medium; L-Low														

Elements of a successful Start up:

Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices:

Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – Employment Contracts.

Stock Ownership & startup Employment Considerations:

Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance.

Protecting Intellectual Property: Protecting your intellectual property:

Copyrights - patents-Trade secrets - Trademarks - The Legal Form of your Startup: Corporation - Partnership - Limited Liability Company - Sole Proprietorship - Making the startup decision: commitment - Leaving a current employer - stay fit.

Entrepreneurship:

Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

Text Book:

1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, Professional Publications.inc

2. Donald F Kuratko, "Entreprenuership – Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.

2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. EDII "Faulty and External Experts – A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

Course Designers:

	8			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. G. Palaniappan	Asso. Professor	Management Studies	Palani.sunn@gmail.com
2.	Dr. G. Murugesan	Professor	Management Studies	selvasahana.m@gmail.com

FI	NANCE AND ACCOUNTING	Category	L	Т	Р	Credit
FO	DR ENGINEERS	OE-IE	3	0	0	3

PREAMBLE:

Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.

2. To apply the various methods to claim depreciation.

3. To practice fundamental investment decision through capital budgeting techniques.

4. To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.

5. To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

 COURSE OUTCOMES:

 After successful completion of the course, students will be able to

 CO1: Understand the importance of recording, book keeping and reporting of the business transaction.
 Understand

 CO2: Identify and Apply suitable method for charging depreciation on fixed assets.
 Apply

 CO3: Analyse the various methods of capital budgeting techniques for investment decision.
 Apply

 CO4: Justify the scope of cost-volume-profit analysis, standard costing, and marginal costing techniques for decision making.
 Analyse

 CO5: Estimation of working capital requirements of the organization.
 Evaluate

 MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
 Evaluate

CO											-	- •	1001	1001	1000
	l -	-	М	L	S	М	-	S	-	М	М	L	М	L	М
CO	L	-	-	L	М	-	L	L	-	-	L	М	L	L	-
CO2	_	М	-	М	L	-	-	L	S	М	-	L	-	L	М
CO	L	L	-	S	-	-	L	-	-	L	М	L	М	L	М
CO	L	-	L	S	L	-	-	М	М	L	-	L	М	М	-

Introduction: Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions – Double entry system – Preparation of journal, ledger and Trial balance – Final Accounts.

Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Financial statement analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

Marginal Costing: Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi.S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.

 Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

00016				
S.No	Name of the Faculty	Designation	Department	Mail ID
~	1 000109	2 0019-0010	2	
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2	Dr. Daiachlumar	A agistant Drofoggar	Managament Studiag	Daiash mha Qavit aa in
2	Dr. Rajesnkumar	Assistant Professor	Management Studies	Kajesn.mba@avit.ac.in

COURSE DESIGNERS:

		INNOV	VATIO	N, PRO	DUCT			Cat	ogowy	Т	Т	D	Cradit
		DEVE	LOPM	ENT A	ND			Ca	legory	L	1	Γ	Creuit
		COMN	AERCI	ALIZA	TION			0	E-IE	3	0	0	3
PREAN	IBLE												
commer	cializati	on of in	novatio	on and n	ew prod	ducts in	fast-pa	ced, high	i-tech marl	kets and mate	chingt	echno	ological
innovati	on to m	arket op	oportuni	ities.									
PRERE	QUISI	TE - No	ot Requi	ired									
COURS	E OBJ	ECTIV	'ES										
To make students understand multiple-perspective approach in organization to capture knowledge													
1	and creativity to develop successful products and services for Volatile, Uncertain, Complex and Ambiguous (VLICA) world												
1	1 Ambiguous (VUCA) world.												
2	2 Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of society in general and markets in particular which focus on commercialization.												
3	Improved understanding of organizational best practices to transform exciting technology into												
5	Critics	ally asse	$\frac{1}{2}$ ss and $\frac{1}{2}$	evaluate	innova	ation no	licies au	nd practi	ces in orga	nizations est	peciall	v fro	na
4	cultural and leadership point of view.												
5	Expla	in why i	innovati	ion ises	sential t	o organ	izationa	al strateg	y – especia	lly in a glob	al env	ironn	nent.
COUR	SE OU	тсом	IES										
On the	success	ful com	pletion	of the c	course, s	students	will be	able to					
CO1: U	Underst	and the	role of	innovat	ion in g	aining a	and main	ntaining	competitiv	e advantage		Uno	derstand
CO2: In	ntegrate	the inn	ovation	basis a	nd its ro	ole in de	ecision 1	making e	especially u	under uncerta	ainty	Ар	oly
CO3: A	nalyze	busines	s challe	nges in	volving	innova	tion ma	nagemer	nt			Ар	oly
CO4: H	Iaving p	oroblem	solving	g ability	– solvi	ng socia	al issues	s and bus	iness prob	lems		Ар	oly
CO5: C	Comprel	nend the	e differe	ent sour	ces of ir	nnovatio	on					Ар	oly
MAPP	ING W	TTH P	ROGR	AMME	OUTO	COMES	S AND]	PROGR	AMME S	PECIFIC O	UTC	OME	S
	Р	Р	Р	Р	Р	Р	Р	PO					
COs	01	O2	03	O4	05	O6	07	8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	S	S	М	М	М	-	-	-	-	-		-
CO4	S	S	S	М	М	М	-	-	-	-	-		-
CO5	S	S	S	М	М	М	-	-	-	-	-		-

S- Strong; M-Medium; L-Low

Pre-launch, during launch and Post launch

preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing **The Product offer** Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating

Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, OxfordUniversity Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product DevelopmentEssentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1stedition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, SystemsSolutions Press

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

NEW VENTURE PLANNING AND Category L T P	Credit												
MANAGEMENT OE-IE 3 0 0	3												
PREAMBLE													
Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a newventure	:												
and creation of a business plan													
PREREQUISITE - Not Required													
COURSE OBJECTIVES													
1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environm	nent.												
2 Information and understanding necessary to launch and grow an entrepreneurial venture.													
3 A realistic preview of owning and operating an entrepreneurial venture.													
An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.													
The opportunity to develop a business plan.													
COURSE OUTCOMES													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to													
CO1: Explain the concept of new venture planning, objectives and functions and its Under	erstand												
CO2: Analyze the business plan issues and remuneration practices in startups business. Appl	ly												
CO3: Explore an entrepreneurial idea to the point where you can intelligently and decide	1												
COA: Compare and contrast the different forms entropropertial environment in terms of their	ly												
key differences and similarities.	lv												
CO5: Explore the business plan and business model canvas for your idea.	lv												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES	5												
P P P P P P PO													
COs O1 O2 O3 O4 O5 O6 O7 8 PO9 PO10 PO11	P012												
CO1 M M S S - M -	-												
CO2 S S M M -	-												
CO3 S S M M -	-												
CO4 S S M M -	-												
CO5 S S M M -	-												
S- Strong; M-Medium; L-Low													

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising -

How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis -Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan -Elements of a business plan - Harvest strategy -Form of business organization - Legal acts governing businesses in India.

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning ShopTitan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, GameChangers, and Challengers, Hoboken, NJ: John Wiley & Sons **Reference Books:**

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy;

Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

COURSE DESIGNERS:

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

								Ca	tegory	L	Т	P	Credit	
		SO	CIAL I	ENTRE	EPREN	EURSH	HP	0	E-IE	3	0	0	3	
PREAN	IBLE													
Social er	ntrepren	eurship	involv	es the ci	reativity	y, imagi	nation a	and inno	vation ofter	n associated	with			
entrepre	neurshi	p												
PRERE	QUIST	I E –												
Not Req	uired													
COURS	SE OBJ	ECTIV	'ES											
	To pr	ovide s	tudents	with a	worki	ng knov	vledge	of the c	oncepts, o	pportunities	and o	challe	enges of	
1	social	entrepr	eneursh	1p.	1		1.:	:	·	4:			1 : - 1	
2	10 de	monstra (eg. hi	tte the r	ole of s	inner c	itrepren	eursnip	in creat	ing innova	tive respons	ses to c	critica	al social	
	To en	gage in	a colla	borativ	e learni	ng proc	ess to	develop	a better un	derstanding	of the	e con	text and	
3	domai	n of soc	cial entr	epreneu	ırship.	01		F		0				
	To he	lp prepa	ire you	persona	lly and	professi	ionally	for mean	ningful emp	oloyment by	reflect	ting c	on the	
4	1ssues of social entrepreneurship. Engage with a diverse group of social entrepreneurs													
5 Engage with a diverse group of social entrepreneurs.														
COUR	SE OU	тсом	IES											
On the	success	ful com	nletion	of the c	course	students	will be	e able to						
CO1: E	Explain	the cond	cept soc	ial entr	epreneu	rship ar	nd disti	nguish its	s elements	from across	a			
continu	um of c	organiza	ational s	tructure	es from	tradition	nal non	profits to	social ent	erprises to				
traditio	nal for	profits		- 1			<u> </u>	· · ·	• •			Un	derstand	
CO2: A	Analyze	the ope	erations	of a hur	nan ser	vice org	anizati	on using	social entr	epreneurial		An	nly	
$CO3 \cdot A$	Annly th	e Socia	l y asses l Rusine	siliciti a	lel Cany	vas and	lean sta	rtun met	hods for n	annino		Ар	JIY	
develo	ping, tes	sting, la	unching	g and ev	valuatin	g social	change	e venture	S.	unning,		Ap	ply	
CO4: 0	Compare	e fundin	ig option	ns for so	ocial ch	ange ve	ntures.					Ap	ply	
CO5: 7	The outc	omes o	fsocial	entrepro	eneursh	ip are fo	ocused	on addre	ssing persi	stent social				
probler	ns parti	cularly	to those	who a	re marg	inalized	or poo	r.				Ap	ply	
MAPP	<u>'ING W</u>	ITH P	ROGR.	AMME	OUTO	COMES	S AND	PROGR	RAMME S	PECIFIC C	DUTC	OMF	28	
	P O1	P	P O2	P	P	P	P	PO	DOA	DO10	DO	. 1 1	D012	
		02	03	04	05	<u> </u>	07	8	P09	POIU	PO	11	P012	
	M	-	-	- M	- M	M	5	5	-	M	-	•	-	
	5	5	5	M	M	M	-	-	-	-	-	-	-	
	0 0	5 C	0 0	IVI M	IVI M	IVI M	-	-	-	-	-	•	-	
C04	<u> </u>	5 C	<u> </u>	M	M	M	-	-	-	-		-	-	
S- Stron	<u></u> १७: M-N	<u> </u>	<u>լ ծ</u> ի: Լ-Լա	W IVI	IVI	IVI	-	-	-	-	-	•	-	
SYLLA	BUS:		,0	••										
Social e	ntrepre	eneursh	i p – dir	nensior	ns of so	cial entr	epreneu	urship –	social char	nge theories	– equi	libriu	im and	

(Dr. P SELVANT)

complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs

- sustainability of MFI - Self Help Groups- successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement

- pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, EdwardElgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007).

Entrepreneurship in the Social Sector(ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

- 3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship:
- A critique and futuredirections.

COURSE DESIGNERS

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone

Needs to Know, OxfordUniversity Press, 2010.

	 0.1	0	14	n	•	
0001			•			

S.No	Name of the faculty	Designation	Department	E-Mail Id
1			Management Studies	
2			Management Studies	

BIOSENSORS AND TRANSDUCERS											Categor	y L	Т	P C	Credit
			Ľ	DIUSE	ISOKS	AND	IKANS	SDUCE	LK5		OE-EA	. 3	0	0	3
PREAD The con used for princip	MBLE urse is d or the de les of bi	lesigne tection osenso	d to ma 1 of an rs that a	ike the analyte are curr	student . The re ently de	acquire elation eployed	e conce betwee in the	ptual ki n senso clinical	nowledg or conce side are	ge of the epts and e introdu	transduce biologica ced.	ers and l l concep	piologio ots is h	cal comp ighlighte	oonents ed. The
PRER	PREREQUISITE – Nil														
COURSE OBJECTIVES															
1	To use the basic concepts of transducers, electrodes and its classification.														
2	To discuss the various types of electrodes.														
3	To determine the recording of biological components.														
4	To employ the knowledge in electrochemical and optical biosensors.														
5	5 To outline the various biological components using biosensors.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	Descrit	be the v	working	g princij	oles of t	transdu	cers.						Unde	erstand	
CO2.	Explain	n the va	arious t	ypes of	electro	des.							Unde	erstand	
CO3.	Utilize	variou	s FET s	sensors	for reco	ording o	of biolo	gical co	ompone	nts.			App	y	
CO4.	Disting	uish va	arious b	oiosensc	ors like	electro	chemica	al and o	ptical b	oiosensor	S.		Anal	yze	
CO5.	Analyz	e the b	oilogic	al comp	onents	using b	oiosenso	ors in va	arious a	pplicatio	ns.		Anal	yze	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S	L	S		S	М	М	S			М	М	М	S
CO5	S	S	L	S		S	М	М	S			S	М	М	S
S- Strop	ng; M-M	ledium	n; L-Lov	W						1	. L				•

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

(Dr. P SELVAN)

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in								
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in								
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in								
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in								

PRINCIPLES OF BIOMEDICAL INSTRUMENTATION

Р

0

PREAMBLE

To enable the students to develop knowledge of principles, design and applications of the Biomedical Instruments.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To know about bioelectric signals, electrodes and its types.
2	To know the various Biopotential recording methods.
3	To study about patient monitoring concept and various Physiological measurements methods.
4	To study the principle of operation blood flow meter, blood cells counter.
5	To study about bio chemical measurements and details the concept of biotelemetry and patient safety.
COUD	SE OUTCOMES

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the different Bio signal or biopotential.	Understand
CO2. Discuss the working principles of diagnostic and therapeutic equipments.	Understand
CO3. Examine the various instruments like as ECG, EMG, EEG, X-ray machine.	Apply
CO4. Illustrate medical instruments based on principles and application used in hospital.	Analyze
CO5. Analyze and calibrate fundamental biomedical instrumentation used in hospital.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	S	М	М	М	L			L	S	L		S	М	S	S
CO5	S	S	М	М	L	М		L	S	L		S	М	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in							
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in							
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in							
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in							

COURSE DESIGNERS

	Category	L	Т	Р	Credit
FUNDAMENTALS OF ARTIFICIAL					
 INTELLIGENCE	OE-EA	3	0	0	3

PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Game playing. Thus, this syllabus focuses on to know about AI and its concepts.

PRERE	PREREQUISITE :NIL														
COURS	SE OBJ	ECTIV	'ES												
1	1. To introduce the basic principles, techniques, and applications of Artificial Intelligence.														
2	To have knowledge of generic problem-solving methods in Artificial Intelligence														
2.	To have knowledge of generic problem-solving methods in Artificial Intelligence.														
3.	To design software agents to solve a problem.														
4.	Apply the knowledge of algorithms to solve arithmetic problems.														
5.	Assemb	ole an et	fficient	code fo	r engin	eering p	oroblem	IS.							
COURSE OUTCOMES															
On the	success	ful com	pletion	of the	course,	student	s will b	e able t	0						
CO1 1															
COI: . I	dentify	the diffe	erent ag	gent and	its type	es to sol	ve the	problem	ıs			Understa	nd		
CO2: kı	now abc	out the p	oroblem	solving	g techni	que in A	Artificia	al Intell	igence.			Apply			
CO3: C	onstruct	t the nor	rmal for	rm and	represei	nt the k	nowled	ge.				Apply			
CO4 : to	know a	bout ex	tensior	of con	dition p	robabil	ity and	how to	apply ii	n the rea	ll time				
environi	nent.											Apply			
CO5: T	o lean a	bout Int	formati	on Retr	eval an	d Speed	ch Reco	gnition				Understa	nd		
MAPP	ING W	ITH P	ROGR	AMMI	C OUT	COME	S AND	PROG	RAMN	AE SPF	CIFIC C	DUTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	-	-	-	-	-	-	М	S	М	М
C05	S	М	М	М	М	-	-		-	-	-	М	S	М	-
S-Stro	ong; M-	Mediu	m; L-L	ow											

INTRODUCTION

What is AI? - AI Problems - What is an AI technique - Defining the problem as a state space search - Production system - Production system - Characteristics - Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test - Hill Climbing - Best first Search - Problem Reduction - Constraints satisfaction - Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching

GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education. 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID											
1	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in											
2	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in											
												· · · · ·			
-------------------	--	---	--	---	--	--	---	--	--	---	--	---	--	---	--
										Category	v L	Т	P (Credit	
	IN	TROD	UCTIO	ON TO	INTEI	RNET (OF								
	T	HINGS							O	E-EA	3	0	0	3	
	LT for		1 . 1 . 4		1.4	1 .		T4	••	1 1	:		1.1	L 41	
tion to	101 10f	statist	ical dat	a manı	pulation	n and a	nalysis.	It was	inspirec	i by and	is most	compati	ble wit	n the	
	age. TE														
QUISI	IĽ														
COURSE OBJECTIVES															
To lea	rn Intro	oduction	n to Io7	Γ.											
To Stı	ıdv met	hodolo	gy of Ic	T.											
						1.7									
To De	evelop I	ol app	ication	s using	Arduin	o and Ir	ntel Edi	tion.							
SE OU	TCOM	IES													
success	sful con	pletion	of the	course,	student	s will b	e able t	0							
o Unde	rstand t	he basi	cs in In	troducti	ion to I	oT in te	erms of	constru	cts, cont	rol	Underst	and			
nts, stri	ng lunc	uons									Underst	anu			
o Unde	erstand t	the use	of Intro	duction	to IoT	fundar	nentals.				Underst	and & A	pply		
earn to	apply I	ntroduc	tion to	IoT for	Comm	unicati	ng Sequ	uential l	Process		Underst	and & A	pply		
ble to a	apprecia	ate and	apply th	ne Intro	duction	to IoT	from a	statistic	cal persp	ective	Underst	and & A	apply		
1	inter a dara	tion to		• • 11 • • • •							I In damat	and Q. A	<u></u>		
INC W	Introduc /ITH P	ROCR		Tantenge	25 COMF	S AND	PROC	PAM	ME SPE	CIFIC (and & P MES	рргу		
PO1	PO2			PO5			PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO	
<u>s</u>	102 S	105 M	M	103 I	S	5	100 M	10) S	IUIU	s s	1012	1501 S	1502 M	150	
6	5	141	141		5	6	141	5		6	M	M	M		
М	S	М	М	М	S	S	М	S	М	М	-	M	-	S	
											М	M	S	M	
S	S	S	S	М	S	S	S	S	М	S	S	М	М	М	
ng; M-	Mediu	m; L-L	ow				1		1			1			
	IBLE tion to il langu QUISI SE OB To lea To Stu To De SE OU success o Unde earn to ble to a o learn 1 ING W PO1 S M M S mg; M-	IN TI IBLE tion to IoT for 1 language. QUISITE SE OBJECTI To learn Intro To Develop I SE OUTCON SE OUTCON Successful con o Understand to nts, string func o Understand to nts, string func o Understand to earn to apply I ble to apprecia o learn Introduc ING WITH P PO1 PO2 S S M S m; M-Mediu	INTROD IBLE tion to IoT for statistical language. QUISITE SE OBJECTIVES To learn Introduction To Study methodolog To Develop IoT appl SE OUTCOMES successful completion o Understand the basis o Understand the use of earn to apply Introduce ble to appreciate and a plearn Introduction to ING WITH PROGR PO1 PO2 PO3 S S S S S S PO3 S S S S S S S S S S S S S	INTRODUCTION THINGS IBLE tion to IoT for statistical data al language. QUISITE SE OBJECTIVES To learn Introduction to IoT To Study methodology of Io To Develop IoT applications SE OUTCOMES Successful completion of the o Understand the basics in In nts, string functions o Understand the use of Intro earn to apply Introduction to ble to appreciate and apply the o learn Introduction to IoT Cl ING WITH PROGRAMMI PO1 PO2 PO3 PO4 S S M M M S M M	INTRODUCTION TO THINGS IBLE tion to IoT for statistical data maniful language. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using SE OUTCOMES successful completion of the course, o Understand the basics in Introduction to string functions o Understand the use of Introduction to IoT for the course of th	INTRODUCTION TO INTER THINGS IBLE tion to IoT for statistical data manipulation al language. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduin SE OUTCOMES successful completion of the course, student o Understand the basics in Introduction to Io nts, string functions o Understand the use of Introduction to IoT earn to apply Introduction to IoT for Comm ble to appreciate and apply the Introduction o learn Introduction to IoT Challenges ING WITH PROGRAMME OUTCOME PO1 PO2 PO3 PO4 PO5 PO6 S S M M L S M S M M M M M M S M M M M S M M M M M S M M M M M S M M M M M M M M S M M M M M M M M M M M M M M M M M M M	INTRODUCTION TO INTERNET O THINGS BLE tion to IoT for statistical data manipulation and a a language. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Ir SE OUTCOMES successful completion of the course, students will b o Understand the basics in Introduction to IoT in tents, string functions o Understand the use of Introduction to IoT fundar earn to apply Introduction to IoT for Communicati ble to appreciate and apply the Introduction to IoT o learn Introduction to IoT Challenges ING WITH PROGRAMME OUTCOMES AND PO1 PO2 PO3 PO4 PO5 PO6 PO7 S S M M L S S M M M L S S M S M M M S S M S S S S S S M S S Ng; M-Medium; L-Low	INTRODUCTION TO INTERNET OF THINGS IBLE tion to IoT for statistical data manipulation and analysis. I language. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Intel Edir SE OUTCOMES successful completion of the course, students will be able t o Understand the basics in Introduction to IoT in terms of nts, string functions o Understand the use of Introduction to IoT fundamentals. earn to apply Introduction to IoT for Communicating Sequ ble to appreciate and apply the Introduction to IoT from a o learn Introduction to IoT Challenges ING WITH PROGRAMME OUTCOMES AND PROC PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 S S M M L S S M M S M M M S S M M S M M M S S M M S M M M S S M S S S S M S S S ng; M-Medium; L-Low	INTRODUCTION TO INTERNET OF THINGS IBLE tion to IoT for statistical data manipulation and analysis. It was al language. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Intel Edition. SE OUTCOMES successful completion of the course, students will be able to o Understand the basics in Introduction to IoT in terms of construints, string functions o Understand the use of Introduction to IoT fundamentals. earn to apply Introduction to IoT for Communicating Sequential I ble to appreciate and apply the Introduction to IoT from a statistic clearn Introduction to IoT Challenges ING WITH PROGRAMME OUTCOMES AND PROGRAMI PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 S S M M L S S M S M S M M M S S M S S S S M S S S S	INTRODUCTION TO INTERNET OF OI INTRODUCTION TO INTERNET OF TO INTERNET OF OU BLE INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF OU SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Intel Edition. SE OUTCOMES successful completion of the course, students will be able to 0 Understand the basics in Introduction to IoT fundamentals. earn to apply Introduction to IoT for Communicating Sequential Process ING WITH PROGRAMME OUT COMES AND PROGRAMME SPE PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 S S M M M M M M M M M M M M	Categor: INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF ODEEA BED QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Intel Edition. SE OUTCOMES successful completion of the course, students will be able to o Understand the basics in Introduction to IoT in terms of constructs, control nts, string functions o Understand the use of Introduction to IoT fundamentals. earn to apply Introduction to IoT for Communicating Sequential Process ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OF POI PO1 PO1	Category L INTRODUCTION TO INTERNET OF Category L INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF DELE tion to IoT for statistical data manipulation and analysis. It was inspired by and is most all anguage. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Intel Edition. SE OUTCOMES successful completion of the course, students will be able to o Understand the basics in Introduction to IoT fundamentals. Underst. o Understand the use of Introduction to IoT fundamentals. Underst. o Understand the use of Introduction to IoT for Communicating Sequential Process Underst. ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES ING WITH PROGRAMME OUT COMES AND PROGRAMME SPECIFIC OUTCOMES ING WITH PROGRAMME OUT COMES AND PROGRAMME SPECIFIC OUTCOMES ING WITH PROGRAMME OUT COMES AND PROGRAMME SPECIFIC OUTCOMES ING WITH PROGRAMME OUT COMES AND PROGRAMME SPECIFIC OUTCOMES	Category L T INTRODUCTION TO INTERNET OF INTRODUCTION TO INTERNET OF DELE Category L T IBLE tion to IoT for statistical data manipulation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatination and analysis. It was inspired by and is most compatination and analysis. It was inspired by and is most compatilation and analysis. It was inspired by and is most compatible. To Develop IoT applications using Arduino and Intel Edition. Se OUTCOMES Successful completion of the course, students will be able to Outderstand the basics in Introduction to IoT fundamentals. Understand & A	Category L T P O INTRODUCTION TO INTERNET OF IBLE Correct and provide the main public of the course, students and analysis. It was inspired by and is most compatible with a language. QUISITE SE OBJECTIVES To learn Introduction to IoT. To Study methodology of IoT. To Develop IoT applications using Arduino and Intel Edition. SE OUTCOMES successful completion of the course, students will be able to o Understand the basics in Introduction to IoT fundamentals. Understand Apply o Understand the use of Introduction to IoT fundamentals. Understand & Apply Outperstand the use of Introduction to IoT for Communicating Sequential Process Understand & Apply Indextand & Apply Interduction to IoT for Communicating Sequential Process Understand & Apply Indextand & Apply INDEXTIVES INDEXTIVE <td col<="" td=""></td>	

SYLLABUS UNIT I –INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"

2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

										Catego	orv	L	Т	Р	Cre dit	
				CYBE	CR SEC	CURIT	ſΥ		Ē	OE-EA		3	0	0	3	
PREAM	1BLF	C		-						-			-	-		
To unde	rstan	d the	need for	Cyber	Secur	ity in r	eal tim	e and t	o study	v technic	ques invo	olved in i	t.			
PRERE		SITE	: NIL													
		BJEC				1 60	1 0	•,	1.							
1.	101	under	stand th	e runda	amenta	IS OF C	yber S	ecurity	and iss	sues						
2.		To apply various crivacy and security														
3 .	108	To apply various privacy and security														
4.	To study E-Commerce and digital payments															
COURS	$\mathbf{E} \mathbf{O}$		OMES	ic secui	ny asp			5 Com	Juter al							
On the s	ucces	sful o	complet	ion of t	he cou	rse, stu	idents v	will be	able to)						
CO1: A	ble to	unde	erstand	the con	llenges	Unders	tand									
associate	ed wi	th it.										Apply				
how rep	Able to ort th	o und e crir	lerstand nes thro	the cyt ugh av:	ber crir ailable	nes, the platfoi	eir nati rms and	ire, leg d proce	al reme dures	edies an	d as to					
CO3: A	ble to	appi derst	eciate v	arious	privacy	y and s	ecurity	conce	rns on o	online S	locial	Apply				
underlyi	ng le	gal as	spects ar	nd best	practic	ces for	the use	of Soc	cial me	dia plati	forms.					
CO4: A payment	ble to ts.	unde	erstand t	he basi	c conc	epts re	lated to	o E-Co	mmerc	e and di	gital	Apply				
CO5: A	ble to	o und	erstand	the bas	ic secu	urity as	pects r	elated t	to Com	puter ar	nd	Apply				
Mobiles	INC	WIT	U DDA	CDAN	AME (OMES		DDOC	TD A MA	IF SDF		UTCO)ME	'S	
WIAFF	DIN	**11		GNAN											<u>о</u> Р	
	Р	Р	Р	Р	Р	Р	Р	Р	Р						S	
	0	0	0	0	0	0	0	0	0	PO	PO1	PO1	PS	PS	3 O	
COs	1	2	3	4	5	6	7	8	9	10	1	2	01	0	2 3	
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	Ν	1 M	
CO2	М	М	М	М	М	-	-	-	-	_	-	-	М	Ν	1 M	
CO3	М	М	S	М	М	-	-	-	-	-	-	-	М	Ν	1 M	
CO4	S	М	М	М		-	-		-	_	-	-	М	Ν	1 S	
CO5	S	М	М	М	S	-	-	-	-	-	-	-	М	Ν	1 S	
S- Stron	ng; M	-Me	dium; L	-Low												
SYLLA	BUS															

(Dr. P SELVAN)

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi , Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y, TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7.

Fundamentals of Network Security by E. Maiwald, McGraw Hill

COUF	RSE DESIGNERS				
S.	Name of the				
No.	Faculty	Designation	Department	Mail ID	

9 hours

9 hours

9 hours

		Assistant professor G-		
1	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in
	Mr. B.			sundharamurthy@vmkvec.edu.i
2	Sundharamurthy	Assistant Professor	CSE	n

		N	ALINI	CIPAL	SOI	ID W	/ AST	ГMA	NAG	FMF	'NT	Cate	gory	L	Т	Р	Credit
		1	10101		SOL		AST		IIIAU			OE	-EA	3	0	0	3
PRE	AM	BLE															
The	prim	ary g	goal o	f solid	wast	e ma	nagem	nent i	s redu	icing	and e	elimina	ating a	adverse	imp	oacts (of waste
mate	rials	on h	uman	health a	and th	e env	ironm	ent to	supp	ort ec	onomi	ic deve	elopm	ent and	supe	erior q	uality of
life	life																
PRE	-RE	QUIS	SITE -	- Nil													
COL	JRSF	E OB	JECT	IVES													
1	To	make	e the s	tudents	conv	ersan	t with	the ty	ypes, a	source	es, ger	neratio	on, sto	rage, co	llect	ion, t	ransport,
	pro	cessii	ng and	dispos	al of 1	nunic	ipal s	olid w	vaste								
2	The	stud	ent is	expecte	ed to k	now	about	the va	arious	effec	ts and	dispo	sal opt	tions for	the	muni	cipal
	soli	d wa	ste.														
3	to io	denti	fy any	potent	ial en	viron	menta	al imp	acts fi	rom tl	ne ger	eratio	on of w	aste at	the	site;	
4	То і	ntro	duce a	nd awa	ire stu	idents	s to re	al cor	ncerns	ofer	iviron	ment a	and its	sustair	abili	ity	
5	The	stud	lent is	expect	ed to	know	the tr	reatm	ent ai	nd dis	posal	of was	ste and	d harm	ful ir	npact	S
COU	JRSE	E OU	TCO	MES													
Upor	1 con	npleti	ion of	this cou	ırse, t	he stu	ident v	will be	e able	to							
CO	1 l	under	rstandi	ng of tl	he nat	ure ar	nd cha	racter	istics	ofmu	inicipa	al solie	d wast	es and t	he	Um	loratord
0.	1	regula	atory r	requirer	nents	regar	ding n	nunic	ipal so	olid w	aste m	nanage	ement.			Unc	lerstand
CO:	2 1	Redu	ction,	reuse a	nd rec	cyclin	g of w	vaste								Unc	lerstand
CO	2 8	abilit	y to p	lan and	l desi	gn sy	stems	for s	torage	, coll	ection	, trans	sport,	process	ing		maler
0.	5 8	and d	isposa	l of mu	inicipa	al soli	d was	te.	-				_	-	_	F	тррту
co.	, l	know	vledge	e on th	e issi	les o	n soli	id wa	iste n	nanag	emen	t fror	n an i	ntegrat	ed		
0:	4	and h	nolisti	c persp	oectiv	e, as	well	as in	the lo	cal a	nd int	ernati	ional o	context		F	ppiy
CO:	5]	Desig	gn and	d opera	tion	of sar	nitarv	land	fill.							Unc	lerstand
MA	PPIN	IG W		PROG	RAM	ME (DUTC	OMI	ES AN	D PF	ROGR	AMN	IE SP	ECIFI	C O I	UTCO	OMES
COS		PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	Р	SO	PSO
		01	02	03	04	05	06	07	08	09	10	11	12	01	()2	03
CO:	1	L							L								
CO:	2		S	L						М							
CO:	3	L				Μ		Μ				L					
CO:	4	М	L	М							L						
CO:	5	S	L							L		S					
S-S	STRC	NG.	M – N	MEDIU	M an	dL-	LOW										
SYL	LAB	US		-													
SOU	RCF	ES Al	ND Cl	HARA	CTE	RIST	ICS										
Sour	ces a	nd ty	pes of	munic	ipal so	olid w	astes-	Publ	ic hea	lth an	d envi	ronme	ental ir	npacts of	of im	prope	er
dispo	osal c	of sol	id was	stes- sa	mplin	g and	chara	cteriz	ation	of wa	stes -	factor	s affec	ting wa	ste g	genera	tion rate
and	and characteristics - Elements of integrated solid waste management – Requirements and salient features																
of Solid waste management rules (2016) Role of public and NGO"s- Public Private participation -																	
Elements of Municipal Solid Waste Management Plan.																	
SOU	RCF	ERE	DUCI	TION,	WAS	TE S	TOR	AGE	AND	REC	YCLI	NG	-			-	
Wast	te Ma	anage	ement	Hierard	chy -	Redu	ction,	Reus	e and	Recy	cling	- sour	ce red	uction	of w	aste -	- On-site
stora	ge m	etho	ds – E	ffect of	f stora	ige, m	nateria	ls use	ed for	conta	iners	– segr	egatio	n of sol	id w	vastes	- Public
healt	h an	d eco	onomi	c aspec	ets of	open	stora	ige –	case	studie	es unc	ler In	dian c	onditio	ns –	Recy	cling of
Plast	ics a	nd Co	onstrue	ction/D	<u>em</u> oli	tion v	<u>vast</u> es	•									
COL	LEC	TION	N ANI	TRA1	NSFE	R OF	WAS	TES	-	-	-	-	-			-	
Meth	nods	of Re	esident	tial and	com	merci	al was	ste co	llectic	on – C	Collect	ion ve	ehicles	– Man	pow	er –C	ollection
route	routes – Analysis of waste collection systems; Transfer stations –location, operation and maintenance;																

(Dr. P.SELVAM)

options under Indian conditions - Field problems- solving.

PROCESSING OF WASTES

Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

WASTE DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment

TEXT BOOK (S)

1. illiam A. Worrell, P. Aarne Vesilind (2012) Solid Waste Engineering, Cengage Learning, 2012.

2. John Pitchel (2014), Waste Management Practices-Municipal, Hazardous and industrial – CRC Press, Taylor and Francis, New York.

3.George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-Hill Publishers, 2002. **REFERENCE BOOKS**

1.CPHEEO (2014), "Manual on Municipal Solid waste management, Central Public Health

and Environmental Engineering Organisation, Government of India, New Delhi.

2 George Tchobanoglous and Frank Kreith (2002).Handbook of Solid waste management, McGraw Hill, New York.

3.R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes – problems and Solutions", Lewis Publishers, 1997.

S.No.	Name of the Faculty	Designation	Department	E-Mail ID
1	Mr.C.Kathirvel	Asso. Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in
2				

			DIC					ID		Catego	orv	L	Т	Р	Credit
			DIS MA	SASTE NAGE	R MIT MENT	IGATI	ON AN	ND		OE-EA		3	0	0	3
Preamble	;													-	
This c structures hazards s	course s, and such th	deals Haza at the	with th rd Asse eir impa	ne varic essment act on c	ous disa proced	sters an ure in I iities is	d to exp ndia. T reduced	pose the his cou l.	e student rse also	ts about th deals with	ne meas	sures, it	s effect ag of mitigat	gainst bui ing variou	lt 15
Prerequis	site														
NIL															
Course O	utcom	ies													
1 To	o Unde	erstan	d basic	concep	ots in D	isaster l	Manage	ement							
2 To	o Unde	erstan	d Defir	nitions	and Ter	minolo	gies use	ed in Di	saster N	lanageme	nt				
3 To	o Unde	erstan	d the C	Challeng	ges pose	d by D	isasters								
4 To	o unde	rstan	d Impac	cts of D	isasters										
COURS	E OU'	TCO	MES												
On the	succes	ssful nd th	comple	tion of	the cou	rse, stu	dents w	rill be al	ble to	l and Mari	ina				
Disasters	Atm	osnha	rio Dia	asters	Goologi	ister viz	nga Moy	iogicai,	and Lon	d Disastar	ne Win	d	TT 1		
ond Wate	o, Auno or Driv	ospile	icostoro	asiers, v	Geologi	ical, Mic	155 10101	ement		iu Disastei	15, W III	u	Understa	ind	
CO2. Ide	entify t	he po	tential	deficie	ncies of	existin	g build	ings for	Earthqu	uake disas	ter and		Understa	ind	
suggest s	uitable	e rem	edial m	neasures	5.		-	-	_						
CO3.Der	ive the	e guid	le lines	for the	precau	tionary	measur	es and	rehabilit	ation mea	sures fo	or	Apply		
Earthqua	ke dis	aster.			<u> </u>	-									
CO4. Det	rive th	e pro	tection	measu	es agai	nst floo	ds, cyc	lone, la	nd slide	S			Apply		
CO5. Un	dersta	nd the	e effect	s of dis	asters o	n built	structur	es in Ir	ndia				Understa	ind	
MAPPIN	NG W	ITH	PROG	RAMN	1E OU	тсом	ES AN	D PRC	OGRAM	IME SPE	CIFIC	OUT	COMES		
COS P	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10 I	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	М	М	L	L	-	М	-	-	-	-	-	-	L	-	-
CO3	S	М	S	М	-	L	-	М	-	-	-	-	М	L	-
CO4	S	M	S	- T	L	-	-	-	-	-	-	-	М	L	-
S- Strong	г у М-М	L /Iediu	- m· L_L	OW	-	-	_	-	-	-	-	_	L	-	

Course Designers

SYLLABUS

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXT BOOKS:

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

REFERENCES:

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in

GREEN POWER GENERATION SYSTEMS	Category	L	Т	Р	Credit
	OE-EA	3	0	0	3

PREAMBLE

The course presents the various sources of renewable energy including wind, solar, and biomass as potential sources of energy and investigates the contribution they can make to the energy profile of the nation. The technology used to harness these resources will be presented. Discussions of economic, environment, politics and social policy are integral components of the course.

PREREQUISITE: NIL

COU	RSE OB	JECTI	VES												
1	Understa	ind the	nexus be	etween	energy	, envirc	onment,	and sust	ainable	developr	nent				
2	Apprecia	ate ener	gy ecosy	stems	and its	impact	on env	ironment							
3	Learn ba	sics of	various	types of	f renew	able ar	nd clear	n energy t	echnolo	gies					
4	Serve as bridge to advanced courses in renewable energy														
COU	RSE OU	тсом	ES												
On th	e success	ful com	pletion	of the c	ourse,	student	s will b	e able to							
CO1:	Explain	renewal	ole energ	gy sour	ces & s	ystems	•						J	Jndersta	nd
CO2:	Apply e	enginee	ring tecl	hniques	to bu	ild sol	ar, wir	nd, tidal,	geother	mal, bio	ofuel, fu	iel cell,		A 1	
Hydr	ogen, and	sterling	g engine											Арріу	
CO3:	Analyze	and ev	valuate t	he imp	lication	of rer	newable	e energy.	Concep	ots in sol	lving nu	merical		A 1	
probl	ems perta	ining to	o solar ra	diation	geome	etry and	l wind o	energy sy	stems.					Analyz	3
CO4:	Demonst	rate sel	f -learni	ng capa	bility t	o desig	n & est	ablish rei	newable	energy	systems.			Analyz	e
CO5:	Conduct	experi	ments to	o asses	s the p	perform	ance o	f solar P	V, sola	r therma	l and b	iodiesel		A 1	
syste	ms													Apply	
MAP	PING W	TTH P	ROGRA	MME	OUT	COME	S AND	PROGR	RAMMI	E SPEC	FIC OU	UTCOM	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	М	-	-
CO2	S	М	S	L	М	-	L	М	-	М	-	-	-	-	-
CO3	S	-	-	-	М	-	-	М	М	-	-	-	L	-	-

L

L

L

-

Μ

L

-

-

-

-

М

-

М

-

-

-

М

-

-

L

-

-

-

-

_

М

-

S- Strong; M-Medium; L-Low

-

М

-

S

S

S

CO4

CO5

CO6

-

L

-

М

М

М

-

-

-

-

S

-

(Dr.PSELVAM)

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

		IND	USTR	RIAL I	ORIVI	ES AN	D AU	ТОМ	ATIO	N		Categor	y l	[_	Т	Р	C
												OE-EA	A Í	3	0	0	3
Preamble	è																
To introdu	uce for	Indatio	on on t	he prin	ciples	of dri	ves &	autom	ation a	and the	ir elem	ents with	n the ir	npl	emen	tatio	n.
PREREC	QUISIT	Г Е : N	IL														
COURSE	E OBJ	ECTIV	VES														
1		To e	xplore	the va	rious	AC,DO	C & Sp	becial 1	Machin	ne Driv	ves for	industria	ıl Appl	ica	tion		
2		To s	tudy a	bout th	e vari	ous Op	oen loc	op and	closed	l loop c	control	schemes	s for dr	ive	s		
3		To k	now a	bout h	ardwa	re imp	lement	tation	of the o	control	lers us	ing PLC					
4		To s	tudy tł	ne cono	cepts o	of Dist	ributed	l Conti	rol Sys	tem							
5		To understand the implementation of SCADA and DCS															
COURSE	E OUT	COM	ES														
On succe	ssful c	omple	tion o	f the c	ourse,	the st	udent	s will	be abl	e to							
СО	1	To u chara	underst acterist	and w ics and	orking selecti	princi on crite	ples o eria.	f vario	ous typ	pes of	motor	s, differe	ences,		Unde	rstar	nd
CO	2	To a conc	apply the the transformed end of the tension of tensi	he kno various	wledge s indus	e in se trial ap	election plication	of m	otors,	heating	effect	s and bra	aking		Aŗ	ply	
CO	3	To ex	xplain (control	metho	ds of sp	becial d	lrives							Unde	rstan	nd
CO	4	To c prob	arry ou lems in	it prog indust	rammiı ries.	ng usir	ig PLC	and u	se of v	arious	PLCs	to Autom	ation		Unde	rstar	nd
CO	5	To d comp	iscuss plex au	supervi tomatic	sory con areas	ontrol a s	and dat	a acqu	isition	method	l and u	se the sar	ne in		Unde	rstar	nd
CO	5	To u devic	ndersta	ind and	l use lo contro	ogical of the second	elemen mmuni	ts and cation	use of aspects	Human of Aut	Mach	ine Interfa n	acing		Unde	rstar	nd
Mapping	with P	rogran	nme ou	itcome	s and	Progra	mme S	Specifi	c Outc	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1]	PSO2	PS	803
CO1	S	S	L	-		S	S	-		L	-	-	-	T	-		L
CO2	М	_	М	-	S	L	М	-	М	L	-	-	L		-		-
CO3	М	-	М	-	S	L	М	-		L	-	-	-		М		-

(Dr. P SELVAN)

CO4	S	-	S	-	S	М	М	L	-	L	М	-	-	-	L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-	L	М

INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 1. 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008

REFERENCES

- 1. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

		31) PRI	NTIN	IG A	ND IT	ГS	Ca	tegory		L	Т	Р		Credit	
				AP	PLIC	ATIC	DNS	0	E-EA		3	0	0		3	
Prea The selecti enviro	mble course on of nment	e is de mate	signe rial a	d to in and e	npart quipn	know nent a	rledge and de	and sk evelop	ills relate a produ	d to ict	o 3D p using	rinting this	g techno techniq	ologies, ue in	Industry 4.0	
Prere	equisit	e – N	IL													
Cour	se Ob	jectiv	'e													
1	To dis	cuss t	he ba	sic co	oncep	ts and	proce	dure fo	llowed in	n 3E) print	ing m	ethods			
2	То со	nstruc	t a CA	AD m	odel	for a 1	equire	ed prod	uct							
3	To ide	ntify	the us	e of d	liffere	ent ma	terial	and sup	port stru	ctui	res					
4	To exp	perime	ent wi	ith dif	feren	t 3d p	rinting	proces	SS							
5	To ide	ntify	the de	efects.												
Cour	se Ou	tcome	es: O	n the	succ	essful	comp	letion	of the co	ours	se, stu	Idents	will be	e able t	0	
CO1.	Den	Demonstrate the various 3D Printing methods Understand														
CO2.	Develop CAD Models ,Import and Export CAD data and generate Apply .STL file.															
CO3.	Sele	ect a sj	pecifi	c mat	erial f	for the	e given	applic	ation.				Apply			
CO4.	Select a 3D printing process for an application.								Apply							
CO5.	Able	e to id	entify	the I	Produ	ct def	ects at	fter pos	st process	sing			Apply			
Map	oing w	vith P	rogra	mme	Out	come	s and	Progra	amme Sj	peci	ific O	utcon	ies			
		РО	PO	PO	РО	PO	РО	РО	РО	P O	PO1	PO1	PSO	PSO	PSO	
CO	PO1	2	3	4	5	6	7	8	9	1	1	2	1	2	3	
CO1	M	L	-	-	-	-	-	-	-	-	-	-	M	-	-	
CO2	S	S	M	-	М	-	-	-	-	-	-	-	M	-	-	
CO3	Μ	Μ	L	L	L	-	-	-	-	-	-	-	М	-	-	
CO4	S	М	_	-	Μ	-	-	-	-	-	-	-	М	-	-	
CO5	Μ	S	Μ	Μ	-	-	-	-	-	-	-	-	L	-	L	
S- St	rong;	M-M	ediun	n; L-	Low											
SYLL	ABUS	•														

(Dr.P SELVAN)

3D PRINTING & CAD FOR ADDITIVE MANUFACTURING (7 Hrs.)

Introduction, Process, Classification, Advantages, Additive V/s Conventional Manufacturing processes, Applications. CAD Data formats, Data translation, Data loss, STL format.

ADDITIVE MANUFACTURING TECHNIQUES (12Hrs.)

Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process parameter, Process Selection for various applications. Additive Manufacturing Application Domains: Aerospace, Electronics, HealthCare, Defence, Automotive, Construction, Food Processing, Machine Tools

MATERIALS (8 Hrs.)

Polymers, Metals, Non-Metals, Ceramics. Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties. Support Materials

ADDITIVE MANUFACTURING EQUIPMENT (10 Hrs.)

Process Equipment- Design and process parameters, Governing Bonding Mechanism Common faults and troubleshooting, Process Design

POST PROCESSING & PRODUCT QUALITY (8 Hrs.)

Post Processing Requirement and Techniques, Product Quality Inspection and testing, Defects and their causes

Text Books

1	Lan Gibson, David Prototyping to Dir	d W. Rosen and B rect Digital Manuf	rent Stucker, "Addit facturing", Springer,	tive Manufacturing Technologies:Rapid 2010.										
2	Khanna Editorial	, "3D Printing and	l Design", Khanna P	ublishing House, Delhi.										
Refer	ence Books	nce Books												
1	CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.													
2	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011.													
3	J.D. Majumdar an Material Science,	d I. Manna, "Lase 2013.	r-Assisted Fabricatio	on of Materials", Springer Series in										
Cours	se Designers													
S.No	Faculty Name	Designation	Department/Na Email id											
1	L.Prabhu D. S. Mech / AVIT <u>prabhu@</u> avit.ac.in													

Alternative NPTEL/SWAYAM Course:

Professor

S. No.	NPTEL Course Name	Instructor	Host Institute
1	Rapid Manufacturing	Dr. Amandeep Singh,	IIT Kanpur
		Prof. J. Ramkumar	

	Category	L	Т	Р	Credit
INTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3

PREAMBLE

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To understand the different types and differences between existing energy resources.
2	To understand the improcurement utilization and their impacts on society and environment
2	
	To gain knowledge about the existing different biofuels and the methods of production from different
3	sources
4	To introduce the techonologies involved in the production, characterization of biofuels
	To impacrt the knowledge and applications of biofuel in various sectors and their beneficial aspects to the
5	society.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

COL	Indor	stand	tha av	ictino	and	mara	ina hi	010000	to one	routo	hnolo	ion			Domomhor
COI.	Under	stand	the ex	Isting	, and e	merg	ing bi	omass	s to ene	igy let	moiog	gies			Remember
CO2.	Under	stand	the co	ncept	of 1 st	gener	ation,	, 2 nd g	enerati	on and	advan	ce biof	uels		Understand
CO3. 4	CO3. Appraise the techno-economic analyses of biofuel conversion technologies														Understand
CO4.	CO4. To articulate the concept of a biorefinery system and be able to develop major unit														
anarat	onerations of an integrated biorefinery														Apply
operat	operations of an integrated biorefinery														Арріу
CO5.]	CO5. Illustrate the environmental implications														Apply
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC O														JTCOMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
CO2	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L
CO3	S	М	-	М	-	М	-	L	L	-	-	-	S	-	L
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	М
CO5	-	-	-	-	-	-	-	S	М	-	-	-	-	-	L
S-Str	ong: N	M-Me	dium	: L-L	ow	•		•	•	•				•	•

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1.Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech,2011

COURS	COURSE DESIGNERS												
	Name of the												
S.No	Faculty	Designation	Department	Mail ID									
		Assistant Professor –											
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in									
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in									

	С	ategor	y	L	Т	Р	0	credit				
INDUSTRIAL ROBOTICS	Ol	E-EA		3	0	0		3				
Preamble	_	-	-		-	_						
Theobjectiveofthiscourseistoimpartknowledged	ibouti	industi	rialro	botsfoi	rtheirco	ontrolai	nddesig	jn.				
Prerequisite :												
CourseObjective												
	e e e fe e l											
2	esoiro	bots										
TolearnaboutRobot kinematicsanddynamics												
3 Tolearndifferent typesofsensorsusedinrobotsan	ditscor	ntrol										
4												
Tounderstandthedifferenttypesofactuationsyste	msuse	dinrobo	ots									
5 TounderstandtherobotcontrolSystems program	minaa	frahate	andita	Applica	tions							
	migo	1100015	anuns	приса								
CourseOutcomes:On thesuccessfulcompletio	nofth	ecours	e,stu	lentsw	illbeab	leto						
CO1. Understandthebasicconfigurationsandking	1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand											
CO2. Solveproblemsofrobotkinematicsanddyr	CO2. Solveproblemsofrobotkinematicsanddynamics Apply											
CO3. Understandthedifferenttypesofsensorsus	edinro msuse	botsys ed inro	stemsa bots	andthei	ra	Unde	rstand					
CO4. Understandandapplicationsofthedifferen robot systems	t type	s ofact	uators	susedin	l	Unde	rstand					
CO5. Understandthe Dahet Angliegtions in such	.:	-1.1-				Unda						
ManningwithProgrammeOutcomesandProgram	nous I amme	<u>ieias</u> Snecif	ïcOut	comes	1	Unde	rstand					
		peen	ne o u	POIL	, DO10	DCO1	D GO2	DECO				
CO POI PO2 PO3 PO4 PO5 PO6 PO7	P08	PO9	POI0	POII	POIZ	PSOI	PS02	PS03				
CO1 S M L L -	-	-	-	-	-	S	-	L				
CO2 S S M M - M -	-	-	-	-	-	S	-	L				
CO3 S M M M - M -	-	-	-	-	-	S	-	L				
CO4 S S M M - L -	_	_	-	-	-	s	-	L				
CO5 S S L S - S -	-	_	-	-	_	S	_	L				
S-Strong:M-Medium:L-Low	1					1 ~~	1					

(Dr. P SELVAN)

INTRODUCTIONTOROBOTICS

Introduction to Automation and Robotics- Basic concepts, Need, Law, History, Anatomy, specificationsclassification, present and future applications. Components of the Industrial Robotics: common types of arms. Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

ROBOT ARM KINEMATICS

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

ROBOTACTUATIONSYSTEMS

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

ROBOTAPPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading- Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. ApplicationsinMedical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

TextBooks

1	Saha.S.K"	Introductiont	oRobotics.2	ndEdition	McGraw	-HillHighe	rEducation.	NewDelhi	.2014.
-					,				9-0

- 2 MikellPGroover,NicholasGOdrey,MitchelWeiss,Roger NNagel,AshishDutta,"IndustrialRobotics, TechnologyprogrammingandApplications",McGrawHill,2012.
- 3 MittalR.K.andNagrathI.J., "RoboticsandControl", TataMcGrawHill.

ReferenceBooks

- 1 Ghosal, A., "Robotics", Oxford, NewDelhi, 2006.
- 2 NikuSaeedB., "IntroductiontoRobotics:Analysis,Systems,Applications",PHI,NewDelhi.
- 3 SteveHeath, "EmbeddedSystemDesign", 2ndEdition, Newnes, Burlington, 2003
- MerzoukiR.,SamantarayA.K.,PhathakP.M.andBouamamaB.Ould,"IntelligentMechatronicSystem:Modeling,
 ControlandDiagnosis",Springer.

CourseDesigners

S.No	FacultyName	Designation	Department/ Nameofthe College	Emailid				
1	P.KUMARAN	AP-II	MECH/AVIT	kumaranp@avit.ac.in				

							-		(Categor	y	L	Т	P C	Credit
		FC TE	DOD A CHN	AND N OLO(UTRI GY	TION				OE-E	A	3	0	0 3	
PREA	MBLE	2													
The co	ourse a	ims to	enabl	le the s	studen	ts to u	nders	tand tł	ne phys	sicoche	mical, 1	nutritio	nal, mic	robiolo	gical and
sensor	y aspe	cts, T	o fam	iliariz	e the	studer	nts abo	out the	e proce	essing a	ind pre	servatio	on techr	niques.	To emphasize
the im	portan	ce of t	food s	afety,	food o	quality	, food	l plant	sani	tation, f	food la	ws and	regulat	ions, fo	od engineering
and packaging in food industry.															
PREREQUISITE – NIL															
COURSE OBJECTIVES															
1 1	1 /	1.1	. 1.	· .	1		. 1		1.4	1 .			11. 1	• ,	
	ndersta	ind the	e tradit	ion foc	od proe	cessing	g techr	iiques	and the	basics	concept	t of food	1 bioche	mistry	
2 De	emonst	trate th	ne proc	<u>luct de</u>	velop	nent te	<u>chniq</u>	ue, qu	ality an	d contai	minant	check			
3 10	o articu	ilate th	ieir tec	hnical	know	ledge	for inc	lustria	l purpo	se					
4 D	escribe	natio	nal foo	od laws	s and s	tandar	ds								
5 La	aws and	d quali	ities of	fstand	ard for	food	produc	ets							
COUR	SE O	UTCC	OMES												
After th	ne succ	essful	comp	letion	of the	course	, learn	er will	be abl	e to					
CO1: F	Recall t	he pro	cessin	g tech	niques	practi	ced in	olden	days ai	nd the b	iologica	al proce	SS	ŀ	Remember
CO2. I	llustrat ninant	e the r	nethoo	is for a	ınımal	produ	ct dev	elopm	ent, qua	ality con	trol and	d also so	creen the	e I	Inderstand
CO3.T	ransfer	the te	chniqu	ues in s	scaling	gup for	r indus	strial n	eeds					A	Apply
CO4. I	Interpro	et and	Troub	leshoo	t instru	uments	s to ma	aintain	accura	cv				A	Apply
CO5. I	Develo	o stand	lards f	or foo	d addit	ives				-				A	Apply
MADD				CDAN			OME	C ANI		CDAM		DECIEI		COME	<u></u>
MAPP	ING V	VIIH	PRO	GKAN	INE (JUIC	UME	5 AN	<u>J PRO</u>	GKAN	IVIE SI	ECIFI		COME	8
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	M	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	M S	8	M	L	-	-	-	-	-	-	-	<u>M</u>	L c	-
C04	IVI	<u>5</u> S	5 S	M	L M	-	-	-	-	-	_	- M	<u>s</u> I	S S	-
S- Stro	S- Strong; M-Medium; L-Low														
SYLLABUS															
INTRO	ODUC	TION	TOF	TOOD	вют	ECHI	NOLC	O GY							

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

1. Potter, Norman. M. Food Science, 5th Ed. Springer US

2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.

3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

									Categ	gory	L	Т]	Р	Credit		
		BIOM	IOLE	CULI	ES-		MON										
PREA	MBL	$\frac{SIRU}{E}$		KE AI	ND FU	JNCI	IUN	0	E-EA		3	0		0	3		
							2				0		_				
Biomo	olecule	s like	carbol	hydrat	es, pro	oteins,	fat ar	e vital	compc	onents o	f any li f sielen	iving sy	stem. B	asic	ronogg		
about	about hygiene.																
PRER	PREREQUISITE NIL																
COURSE OBJECTIVES																	
1	To g	ive an	overv	view of	f impo	rtance	e of bi	omolec	ules.								
2	To e	laborat	te the s	structu	re of p	rotein	s and 1	nucleic	acids a	and its ro	ole in di	isease.					
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology.																
4	To enumerate the role of lipids and their cellular function in physiology and pathology.																
5	To l	oriefly	chole	sterol	and its	s role	in dise	eases.		•	·		•				
COUI	RSE C	UTC	OME	S													
After t	the suc	cessfu	ıl com	pletio	n of th	e cou	rse, lea	arner w	ill be a	able to							
CO1.]	Relate	the ba	isics o	f biom	nolecu	les in	and ar	ound h	im				Und	erstan	d		
CO2.	Under	stand t	he str	ucture	of bio	molec	cules s	uch as	protei	ns and r	nucleic	acids	Und	erstan	d		
CO3.]	Discov	ver the	role c	of carb	ohydr	ates in	healt	hy and	diseas	sed conc	litions		App	ly			
CO4.]	Relate	disfur	nction	ing of	lipids	with c	lisease	e					Ana	lyse			
CO5.	Critici	ze the	role o	f chole	esterol	in dis	seases						Eval	luate			
MAP	PING	WITH	I PRO)GRA	MMI	E OUT	FCON	AES AI	ND PH	ROGRA	AMME	SPEC	IFIC O	UTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	M	M	L S	-	-	M	-	-	-	-	-	-	-		-		
CO3	M	L	M	М	-	S	-	-	-	-	-	-	- <u>L</u> -				
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L M M				
CO5	S	-	L	L	-	М	-	-	-	-	-	S	S	М	-		
S- Str	ong; N	A-Mee	lium;	L-Lo	W												

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

S.No	Name of the			
	Faculty	Designation	Department	Mail ID

	Dr.P.David		Pharmaceutical	
1	Annaraj	Assistant professor	Engineering	davidannaraj@vmkvec.edu.in
			Pharmaceutical	
2	Ms.S.Sowmiya	Assistant Professor	Engineering	sowmiya.vmkvec@vmrf.edu.in

(Dr. P SELVAN)

			Category	L	Т	Р	Credit					
		PHARMACOGENOMICS	OE-EA	3	0	0	3					
PRI	EAMBLE		1	1 -	-	-	1 -					
Dhai	macogenomi	s involves the study of the relationship betw	veen an individ	lual's of	enetic r	nakei	up and his					
orh	er response to	a drug Dharmacogenetics a component of	nharmacagana	mice is	the stu	idy o	f the					
relat	tionshin hetwe	a drug. I narmacogenetics, a component of	pharmacogene	111105, 15	the ste	iuy 0	i uic					
PREREOUISITE - NII												
PKEKEQUISTTE - NIL COURSE OBJECTIVES												
Discuss about the basic knowledge about pharmacogenomics and drug design using genomic												
	applications for drug action and toxicity											
1	applications for drug action and toxicity.											
	Perform how	individualization of drug therapy can be ac	hieved based o	n a pers	son's ge	enetio	e makeup					
2	while reducing unwanted drug effects.											
	Outling the Dharmagaganamias studies on how genetic differences between individuals are effect											
	responses to	various drugs			ii v iuua		I alloct					
3		various drugs.										
4	Formulate or	n medicine skills acquired by the student an	d his action in	differen	it patho	logie	es					
	Develop acq	uire knowledge about the influence of genet	ic alterations o	n the th	erapeut	ic ef	fect and					
c	adverse react	tions of the drugs, from a perspective of ind	ividualized the	rapy.	1							
3				1.								
CO	URSE OUTC	OMES										
• 0												
After the successful completion of the course, learner will be able to												
CO	Recognize th	e effect of genetic differences between indi	viduals in the o	outcome	of 1	Reme	ember					
CO2	2. Describe the	e role of single nucleotide polymorphism as	a biomarker fo	or the	1	Unde	rstand					
<u>C</u> O3	3. Utilize and 1	manage the new genomics based tools as the	ey become avai	lable as	1	Unde	rstand					
CO4	. Examine the a	applications of genomics principles in drug action	on and toxicolog	gy		Analy	yze					
CO5	CO5. Validation of case studies related to pharmacogenomics Analyze											

MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L	
CO2	М	Μ	Μ	Μ	L	-	-	-	Μ	-	L	L	L	L	-
CO3	S	S	S	S	L	-	I	-	Μ	-	L	L	L	L	-
CO4	Μ	Μ	Μ	Μ	Μ	-	I	-	S	-	L	L	М	L	-
CO5	L	L	L	L	S	-	-	-	Μ	-	М	М	S	М	-
S-St	S- Strong: M-Medium: L-Low														

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in

the ligand binding pocket.

PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

S.No.	Name of the Faculty	Designation	Department	Mail ID			
			Pharmaceutical				
1	Ms. R. Jaishri	Assistant Professor	Engineering	jaishri@vmkvec.edu.in			

PROJECT WORK	Category	L	Т	Р	Credit
	PI-P	0	0	16	8

PREAMBLE

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE

Nil

COURSE OBJECTIVES								
1	To provide learners with the opportunity to apply the knowledge and skills acquired ir	their courses to a specific						
	problem or issue.							
2	To allow learners to extend their academic experience into areas of personal interest, v	working with new ideas,						
	issues, organizations, and individuals.							
3	To encourage learners to think critically and creatively about academic, professional, o	or social issues and to						
	further develop their analytical and ethical leadership skills necessary to address and h	elp solve these issues.						
4	To provide learners with the opportunity to refine research skills and demonstrate thei	r proficiency in written &						
	oral communication skills.							
5	To take on the challenges of teamwork, prepare a presentation in a professional manne	er, and document all						
	aspects of design work.							
COUF	RSE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1.	Apply the knowledge and skills acquired in their courses to a specific problem or	Apply						
issue.								
CO2. I ideas is	Extend their academic experience into areas of personal interest, working with new	Analyze						
CO3	Think critically and creatively about academic professional or social issues and to	Analyze						
further	develop their analytical and ethical leadership skills necessary to address and help	1 11141 / 20						
solve th	eseissues.							
CO4.	Refine research skills and demonstrate their proficiency in written & oral	Evaluate						
comm	unication skills							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	Μ	М	М	М	М	М	М	М	М	М	М	Μ	М
CO2	S	М	М	М	М	М	М	М	М	Μ	Μ	Μ	М	Μ	М
CO3	М	М	М	М	М	М	М	М	М	Μ	Μ	Μ	Μ	Μ	М
CO4	S	М	М	М	М	М	М	М	М	Μ	Μ	Μ	М	Μ	М
S- Stro	S- Strong: M-Medium: L-Low														

S- Strong; M-Mealum

SYLLABUS

- The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;
- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of the report.
- 17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in
2	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in

Course Code	Course Title	Category	L	Т	Р	С
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES:

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, Sundra Yoga Therapy, Asana Publications, 2009

REFERENCES:

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, *A Primer of Yoga Theory*, Dhivyananda Creations,2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC		0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

UNIT II -Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III – Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

1. https://www.constitution.org/cons/india/const.html

2. http://www.legislative.gov.in/constitution-of-india

3. https://www.sci.gov.in/constitution

4. <u>https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of</u> india/ Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND ADJUDICATORY	SCHOOL OF INDIA
		PROCESS	UNIVERSITY

COURSE DESIGNER							
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID			
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.com			

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	AC	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I: Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2: Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3: Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4: Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5: Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK
Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
 "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

Sı	ıbject		Gender Equity and Law								Categor y	L	Т	Р	Cr	edit
Code				(Con	ımon	1 to all Bra		nches)			AC	0	0	2		0
Gender Equity is the provision of fairness and justice in the distribution of benefits and																
responsibilities between Men, Women, Transgender, and Gender non-binary individuals. Gender																
equity is important because, historically, societies around the world have deemed females,																
transgender people, and no binary people as "weaker" or less important than males. Gender																
equity emphasizes respecting individuals without discrimination, regardless of their gender.																
There are legal provisions that address issues like inequalities that limit a person's ability to																
access opportunities to achieve better health, education, and economic opportunity based on their																
gender.																
PREREQUISITE: NIL																
COURSE OBJECTIVES																
To sensitize the students regarding the issues of gender and the gender inequalities																
1	pi	prevalent in society.														
2	T	To raise and develop social consciousness about gender equity among the students.														
2	Т	To build a dialogue and bring a fresh perspective on transgender and gender non-														
3	conforming individuals.															
4	Т	To create awareness among the students and to help them face gender stereotype issues.														
-	Т	To help the students understand the various legal provisions that are available in our														
S society.																
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1.Understand the importance of gender equity Understand																
CO2.Initiate the awareness and recognize the social responsibility																
with regards to gender equity. Apply																
CO3.To develop a sense of inclusiveness and tolerance towards																
various genders without any discrimination. Apply																
CO4	CO4. To evaluate the social issues and apply suitable gender-															
related regulations for inclusive living.																
CO5	CO5.To identify and analyze the existing gender inequality															
problems faced in various institutions.																
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC																
OUTCOMES																
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO12	PS	0	PSO	PS
OS	1	2	3	4	5	6	7	8	9	0	1	1012	1		2	03
	S	М	L	-	-	S	S	S	-	-	-	S	-		-	-
			-										+	-		
$\frac{1}{2}$	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-		-	-
CO	C	T	1.4			C	C	C				0	1			
3	8	L	M	-	-	8	8	8	-	-	-	8	-		-	-
CO	S	S	S	T	_	S	S	S	_	-	_	S	_		_	-
4		5	5		_	5	5	5	_	-		5				-
5	S	S	S	М	-	S	S	S	-	-	-	S	-		-	-

(Dr. P SELVAN)

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT –I INTRODUCTION TO GENDER AND SEX

6hrs

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – Gender Stereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT –II - GENDER BIAS

6 hrs

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And

Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

6 hrs

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – Gender Sensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

6 hrs

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The Immoral Traffic Prevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

6hrs

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books

(2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur,2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE DESIGNERS

COURSE DESIGNERS						
S.No.	Name of the Faculty	Mail ID				
1.	Gnana Sanga Mithra.S	sangamithra@avil.edu.in				
2.	Aarthy.G	aarthy@avil.edu.in				