

Faculty of Engineering and Technology

REGULATIONS 2021

Programme:

B.E. – MECHATRONICS

Full Time (4 Years)

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VIII)

DEPARTMENT OF MECHATRONICS

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

-9-1- d-=+

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Mechatronics Engineering programme will be able to:

SI. No.	Description
PSO 1	Have a strong foundation in science and focus in mechanical, electronics, control, software and computer engineering, and a solid command of the newest technologies.
PSO 2	Be able to design, analyze, and test "intelligent" products and processes that incorporate appropriate computing tools, sensors, and actuators.
PSO 3	Be able to work efficiently in multidisciplinary teams.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

SI. No.	Description
PEO1	The Programme will prepare graduates to synergistically integrate mechanical engineering with electronic and intelligent computer control in the design and manufacture of industrial products and processes.
PEO2	The Programme will prepare graduates with strong team skills to solve multidisciplinary problems using Mechatronics approach.
PEO3	The Programme will prepare graduates with an understanding of their ethical and social responsibility.

-9-1- d-=+

VINAYAKA MISSION'S RESEARCH FOUNDATION (DEEMED TO BE UNIVERSITY), SALEM

DEPARTMENT OF MECHATRONICS

CURRICULUM FOR REGULATION-2021

Credit Requirement for the Course Categories

SI. No.	Category of Courses	1	Types of Courses	Suggested Breakup of Credits (min-max)				
1.		Humanities and S Management Cou	ocial Sciences including	9 – 12				
2.	A. Foundation	Basic Science Co	urses	18 – 25				
3.	Courses	18 – 24						
4.	B. Professional	Core Courses	48 – 54					
		Professional Elec	Professional Electives					
		6						
5.	C. Elective		Innovation, Entrepreneurship, Skill Development etc.	6 – 9				
	Courses	Open Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	6 – 9				
	D. Courses for	Project Work	8					
C	D. Courses for Presentation of	Mini Project	3					
0.	related to the	Seminar	1					
	specialization	Internship in Indu	stry or Elsewhere	3				
7.	**E. Mandatory Courses	Yoga and Meditat Essence of Indiar Constitution, NCC Unnat Bharat Abh Games	Yoga and Meditation, Gender Equity and Law, Essence of Indian Traditional Knowledge, Indian Constitution, NCC/NSS/ RRC/ YRC/ Student Clubs/ Unnat Bharat Abhiyan/Swachh Bharat , Sports and Games					
	Minir	num Credits to b	e earned	160				
** Th	ne credits earned in categ	ory 'E' Courses will n	ot be counted in CGPA calculation for aw	arding of the degree.				

- p-1- d-=+

CURRICULUM

B.E - MECHATRONICS

SEMESTER I TO VIII

- p-1- d-=+

B.E. - MECHATRONICS - SEMESTER I TO VIII

	A. Foundation Courses											
Hur	nanities and	Social Sciences including Man	agement Cour	ses – Credi [:]	ts (9-	12)						
SL. NO	COURSE CODDE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE			
1.		TECHNICAL ENGLISH	ENG	FC-HS	3	0	0	3	NIL			
2.		BUSINESS ENGLISH	ENG	FC-HS	3	0	0	3	NIL			
3.		ENGLISH LANGUAGE LAB	ENG	FC-HS	0	0	4	2	NIL			
4.		TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL			
5.		PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB	ENG	FC-HS	0	0	2	1	NIL			
6.		UNIVERSAL HUMAN VALUES - UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL			
Basic Science Courses – Credits (18-25)												
1.		ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL			
2.		PHYSICAL SCIENCES	PHY & CHEM	FC-BS	4	0	0	4	NIL			
3.		DIFFERENTIAL EQUATIONS AND TRANSFORMS	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATICS			
4.		SMART MATERIALS AND NANO TECHNOLOGY	PHY	FC-BS	3	0	0	3	PHYSICAL SCIENCES			
5.		PARTIAL DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA	MATH	FC-BS	2	1	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS			
6.		NUMERICAL METHODS	MATH	FC-BS	2	1	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS			
7.		MATHEMATICAL AND STATISTICAL TOOL FOR RESEARCH	MATH	FC-BS	2	1	0	3	NIL			
8.		NON-DESTRUCTIVE TESTING OF MATERIALS	PHY	FC-BS	3	0	0	3	NIL			
9.		ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL			
10.		PHYSICAL SCIENCES LAB	PHY & CHEM	FC-BS	0	0	4	2	NIL			
En	ngineering So	cience courses including Worksh	nop, Drawing, B Credits – (18-24	asics of Ele	ctrica	l/Me	chan	ical/	Computer etc.,			
1		FOUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
2		BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC-ES	4	0	0	4	NIL			

-9-1- d-=+

3	PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL
4	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC-ES	4	0	0	4	NIL
5	ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	0	0	6	3	NIL
6	PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL
7	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE & ECE	FC-ES	0	0	4	2	NIL
8	ENGINEERING SKILLS PRACTICALS LAB	CIVIL & MECH	FC-ES	0	0	4	2	NIL

	B.E. – MECHATRONICS – SEMESTER I TO VIII											
	B. Professional											
Core Courses – Credits (48-54)												
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Ρ	с	PREREQUISITE			
1.		BASIC CONCEPTS OF MECHATRONICS	MECHT	СС	3	0	0	3	NIL			
2.		ELECTRICAL MACHINERY (THEORY AND PRACTICALS)	EEE	СС	3	0	2	4	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING			
3.		SEMICONDUCTOR DEVICES AND CIRCUITS	ECE	СС	3	0	0	3	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING			
4.		FLUID MECHANICS AND STRENGTH OF MATERIALS	CIVIL	CC	3	0	0	3	NIL			
5.		ANALOG AND DIGITAL CIRCUITS (THEORY AND PRACTICALS)	ECE	СС	3	0	2	4	SEMICONDUCTOR DEVICES AND CIRCUITS			
6.		SENSORS AND ELECTRONIC MEASUREMENTS	ECE	CC	3	0	0	3	NIL			
7.		CONTROL SYSTEMS	EEE	СС	3	0	0	3	DIFFERENTIAL EQUATIONS AND TRANSFORMS			
8.		DESIGN OF MACHINE ELEMENTS	MECH	СС	2	1	0	3	NIL			
9.		MICROCONTROLLERS AND EMBEDDED SYSTEMS	ECE	CC	3	0	0	3	ANALOG AND DIGITAL CIRCUITS			
10.		COMPUTER INTEGRATED MANUFACTURING (THEORY AND PRACTICALS)	MECH	СС	3	0	2	4	NIL			
11.		ROBOTICS AND AUTOMATION	ECE	СС	3	0	0	3	NIL			
12.		POWER ELECTRONICS AND DRIVES (THEORY AND PRACTICALS)	EEE	СС	3	0	2	4	SEMICONDUCTOR DEVICES AND CIRCUITS			

-9-1- d-=+

13.	PROGRAMMABLE LOGIC CONTROLLERS (THEORY AND PRACTICALS)	MECHT	СС	3	0	2	4	NIL
14.	FLUID MECHANICS AND STRENGTH OF MATERIALS LAB	CIVIL	СС	0	0	4	2	NIL
15.	SENSORS AND ELECTRONIC MEASUREMENTS LAB	ECE	СС	0	0	4	2	NIL
16.	CONTROL SYSTEMS LAB	EEE	СС	0	0	4	2	NIL
17.	MICROCONTROLLERS AND EMBEDDED SYSTEMS LAB	ECE	СС	0	0	4	2	NIL
18.	ROBOTICS LAB	ECE	СС	0	0	4	2	NIL

	B.E. – MECHATRONICS – SEMESTER I TO VIII											
	C. Elective Courses											
	Professional Elective - Credits(12)											
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE			
1.		ELECTRIC VEHICLES	EEE	EC-PS	3	0	0	3	NIL			
2.		INTRODUCTION TO MEMS	ECE	EC-PS	3	0	0	3	NIL			
3.		NANO ELECTRONICS	ECE	EC-PS	3	0	0	3	NIL			
4.		POWER CONVERTERS ANALYSIS AND DESIGN	EEE	EC-PS	3	0	0	3	NIL			
5.		ETHICAL HACKING	CSE	EC-PS	3	0	0	3	NIL			
6.		CLOUD COMPUTING	CSE	EC-PS	3	0	0	3	NIL			
7.		SENSORS AND TRANSDUCERS FOR HEALTHCARE	ECE	EC-PS	3	0	0	3	NIL			
8.		VIRTUAL INSTRUMENTATION	EEE	EC-PS	3	0	0	3	NIL			
9.		HYDRAULICS AND PNEUMATICS SYSTEMS	MECH	EC-PS	3	0	0	3	NIL			
10.		DESIGN FOR MANUFACTURING AND ASSEMBLY	MECH	EC-PS	3	0	0	3	NIL			
11.		INDUSTRIAL SAFETY	MECH	EC-PS	3	0	0	3	NIL			
12.		PRODUCT DEVELOPMENT	MECH	EC-PS	3	0	0	3	NIL			
13.		DESIGN FOR QUALITY	MECH	EC-PS	3	0	0	3	NIL			
14.		MODERN MANUFACTURING METHODS	MECH	EC-PS	3	0	0	3	NIL			

-9-1- d-=+

	Industry Designed/ Industry Supported/ Industry Offered/ Industry Sponsored Courses - (6)										
SL. NO	COURSE CODE	COURSE	OFFERING INDUSTRY	CATEGORY	L	Т	Ρ	С	PREREQUISITE		
1.		BUSINESS INTELLIGENCE AND ITS APPLICATIONS	INFOSYS	EC-IE	3	0	0	3	NIL		
2.		LEARNING IT ESSENTIALS BY DOING	INFOSYS	EC-IE	3	0	0	3	NIL		
3.		MATH MODELLING AND CONTROL SYSTEMS (THEORY AND PRACTICALS)	REYNLAB	EC-IE	2	0	2	3	NIL		
4.		ELECTRIC AND HYBRID ELECTRIC VEHICLES (THEORY AND PRACTICALS)	REYNLAB	EC-IE	2	0	2	3	NIL		

	Open Courses – Innovation, Entrepreneurship, Skill Development etc Credits (6-9)										
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE		
1.		INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL		
2.		NEW VENTURE PLANNING AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL		
3.		SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL		
4.		ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL		
5.		INTELLECTUAL PROPERTY RIGHTS	MANAG	OE - IE	3	0	0	3	NIL		
6.		LIFE SKILLS	MANAG	OE-IE	3	0	0	3	NIL		

-g-1.-d-=+

	Open Courses – Electives from other Technical and /or Emerging Courses Credits (6-9)										
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE		
1.		PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL		
2.		BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL		
3.		INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL		
4.		FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL		
5.		DISASTER RISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL		
6.		MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL		
7.		FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL		
8.		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL		
9.		CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL		
10.		DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL		
11.		INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL		
12.		3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL		
13.		INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL		
14.		BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL		
15.		PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL		

	B.E. – MECHATRONICS – SEMESTER I TO VIII													
	Project work, Seminar and Internship in Industry or elsewhere Credits - (15)													
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE					
1.		PROJECT WORK	MECT	PI-P	0	0	16	8	NIL					
2.		MINI PROJECT	MECT	PI-M	0	0	6	3	NIL					
3.		SEMINAR	MECT	PI-S	0	0	2	1	NIL					
4.		INTERNSHIP	MECT	PI-IT	3 Weeks			3	NIL					

-9-1- d-=+

	MANDATORY COURSES (NO CREDITS) (NOT INCLUDED FOR CGPA CALCULATIONS)													
SL. NO	COURSE CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE					
1.		YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL					
	ANY TWO OF THE FOLLOWING COURSES													
2.		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL					
3.		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL					
4.		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL					
5.		NCC/NSS/RRC/YRC/STUDENT CLUBS/UNNAT BHARAT ABHIYAN/ SWACTH BHARAT	GEN	AC	0	0	2	0	NIL					
6.		SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL					

-9-1- d-=+

TECHNICAL ENGLISH	Category	L	Т	Р	Credit
	FC - HS	3	0	0	3

PREAMBLE

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To en	able stu	dents to	o devel	op LSR	W skill	s in En	glish. (I	Listenin	g, Speak	ing, Re	ading, and	Writing	.)	
2	To ma	ake ther	n beco	me effe	ctive co	ommun	icators								
3	To en	sure that	t learne	ers use	Electro	onic me	dia mat	erials fo	or devel	oping la	nguage				
4	To aid	l the stu	idents v	vith em	ployabi	ility ski	lls.								
5	To develop the students communication skills in formal and informal situations														
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	studen	ts will ł	be able t	to						
CO1. L	isten, r	ememb	er and r	respond	to othe	ers in di	fferent	scenari	0			Remembe	er		
CO2. 1	Underst	and an	d spea	k fluer	tly and	d corre	ctly wi	ith corr	ect pro	onunciati	on in	Understan	nd		
differen	nt situat	ion.													
CO3. T	'o make	the stu	dents e	xperts i	n profe	ssional	writing					Apply			
CO4 7	Fo make	e the stu	idents i	n profi	cient te	chnical	commu	inicator				Apply			
CO5 To	o make	the stud	lents re	cognize	e the ro	le of teo	chnical	writing	in their	careers	in	Analyze			
busines	s, techr	nical an	d scient			COME				ME ODE	CIEIC				
MAPP	ING W	TIHP	RUGR		LOUI	COME	25 AND	PROC	FRAM	VIE SPE	CIFIC	OUICON	VIES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				L	L	Μ	Μ	Μ		S		S	S		S
CO2							L			S		S	Μ		S
CO3				L				L				L	Μ	M	
CO4	L					Μ		L	Μ	S	L	S	S	M	S
CO5	Μ		L	S								S	Μ		S
S- Stro	ng; M-N	Medium	i; L-Lo	W											

- p-1- d-=+

SYLLABUS SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms -Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks, New Norms) - Extempore.

SPEAKING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

English as language of Opportunity and Employability- Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming-Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation – Technical Jargons

TECHNICAL WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae.

ТЕХТВООК

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

Course Designers:

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

	0	
S.No.	Name of the Faculty	Mail ID
1.	Dr. Jennifer G Joseph, Prof. and Head, H&S	jennifer@avit.ac.in
2	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in

\$-1.- d-=+

			BUS	INESS	ENGI	JSH					Categ	ory	L	Т	Р	Cre	dit
											HS	S	3	0	0	3	
PREAMBLE Language is one of the most valued possessions of men. It acts as a repository of wisdom. Among all other languages English, the international language plays a vital role as a propeller for the advancement of knowledge in different fields and as a telescope to view the dream of the future.																	
PREREQUISITE: NIL																	
COURSE OBJECTIVES																	
1	To in	npart ar	nd enha	nce corj	porate c	commu	nication	1.									
2	To er	able le	arners t	o devel	op pres	entatio	n skills										
3	To b	uild coi	nfidence	e in lear	mers to	use En	glish in	Busine	ess cont	ext							
4	To make them experts in professional writing																
5 To equip students with employability and job searching skills																	
COUR	SE OU	TCOM	IES														
On the	success	ful con	npletion	of the	course,	student	ts will t	be able t	0								
CO1. C	Commur	nicate w	vith a ra	nge of f	formal a	and info	ormal c	ontext				Unde	erstan	ıd			
CO2. (demonst	trate int	eraction	n skills	and cor	nsider h	ow ow	n comm	unicati	on is adj	usted	App	ly				
CO3. U	Jse strer	ngthene	d oral a	nd writ	ten skil	ls in the	e busine	ess cont	ext			App	lv				
		0										11	-				
CO4. C	Create in	iterest i	n a topi	c by ex	ploring	though	ts and i	deas				App	ly				
COS. F	lave be	tter per	Torman	ce in th	e art of						CIEIC	App		/FC			
MAPP	ING W	IIHP	KUGK	AWIWI		COME	5 AND	PROC	JKAWI	VIE SPE	CIFIC	001		162			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PS	02	PS O3
CO1	Μ		L		L	S	S		Μ	S			S	S			
CO2		Μ	S	Μ		Μ	Μ		L	S			S	Μ			
CO3	L	Μ				Μ		L		S	L]	Μ		Ν	M	
CO4		L	Μ	Μ			L	Μ	Μ	S	L]	Μ	Μ			Μ
CO5		L		Μ		L	L			S			S	Μ	Ν	N	S
S- Stro	ng; M-N	Aedium	n; L-Lov	W													

SYLLABUS

Basics of Language and Listening Skills: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business

SPEAKING SKILLS AND READING SKILLS: Extempore, Listening to TED Talks and discussion on the topic heard, Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Understanding Ideas and making Inferences— FAQs –

- p-1- d-=+

E - Mail Netiquette - Sample E – mails , Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions

CORPORATE COMMUNICATION: What is Corporate Communication? Types of Office communications - Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences

WRITING SKILLS Technical Articles – Written communication Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

ТЕХТВООК

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Jennifer G Joseph	Professor & Head	English	jennifer@avit.ac.in
2	Dr. P. Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

\$-1.- d-=+

			-	ENGL	ISH L	ANGU	AGE	LAB	0	ategor	y L	T	P 4	Cr	edit	
PREA Englis practic	PREAMBLE English Language Laboratory provides technological support to students. It acts as a platform for learning, practicing and producing language skills through interactive lessons and communicative mode of teaching.															
PRER	PREREQUISITE: NIL															
COURSE OBJECTIVES																
1 To understand communication nuisances in the corporate sector. 2 To understand the rate of mother tenens in general leaves a leave in the corporate sector.																
2 To understand the role of mother tongue in second language learning and to avoid interference of mother tongue.																
3	To in	prove	the ora	al skills	of the	studen	ts con	nmunic	ate effe	ectively	through	n differen	t activi	ties		
4	To un	dersta	nd and	apply	the tele	phone	etique	tte								
5	5 Case study to understand the practical aspects of communication															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1.	CO1. Give best performance in group discussion and interview Understand															
CO2.]	Best pe	rforma	nce in	the art	of con	versati	on and	l public	speaki	ng.		Apply				
CO3. (Give be	tter jo	b oppo	rtunitie	s in co	rporate	e comp	anies				Apply				
CO4. visual	Better experie	unders ence an	standin 1d grou	g of r	ities	s of E	nglish	langua	age thi	ough a	udio-	Apply				
CO5.	Speakii	ng skil	ls with	clarity	and c	onfide	nce wl	hich in	turn ei	nhances	their	Apply				
emplo	yability	SK111S			MEO		MES		DOCI		E SDE4			MES		
							DO		NUG							DCC2
COS	POI	PO2	PO 3	PO4	POS	PO6	РО 7	PO8	PO9	POIO	1	PO12		PSC	D2	PSO3
CO1		S	М	S		L			S	S	М					М
CO2	М								М	S		М	М		+	М
CO3	М									S		М				М
CO4	М									М			M		+	М
CO5	М			S						М			M			S
S- Stro	S- Strong; M-Medium; L-Low															

SYLLABUS

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group

- p-1- d-=+

wise, Individual. Role Play

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette.

MODULE V: Case study of Etiquette in different scenario.

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Jennifer G Joseph,	Prof. and Head, H&S	English	jennifer@avit.ac.in
2	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

- p-1- d-=+

TOTAL QUALITY	Category	L	Т	Р	Credit
MANAGEMENT	FC - HS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	-
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-	
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М	
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L	
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-	
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М	
S- Strong; M-Medium; L-Low																

\$-1.- d-=+

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts-Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - **OC curve** - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

COURSE DESIGNERS:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

_					
	S.No	Name of the	Designation	Department	Mail ID
		Faculty	8	I	

\$-1- d-=+

1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

-g-1.- d-=+

3412	1H82		PROF	FESSIC)NAL	COMN	IUNIC	CATIO	N ANI)	Catego	ry L	Т	Р	Cı	redit
0.112	PERSONALITY DEVELOPMENT HSS 0 0 2 1 To develop students with good presentation and writing skills (Professionally & technically). Articulate and															
То	develo	p stud	ents wi	th good	d prese	ntatior	and w	riting	skills (Professi	onally &	technic	cally).	Artic	ulate	and
en	enunciate words and sentences clearly and effectively. Develop proper listening skills. Understand different															
wr	writing techniques and styles based on the communication being used.															
PREREQUISITE																
NIL COURSE OBJECTIVES																
COURSE OBJECTIVES 1 To develop communication and personality skills																
$\frac{1}{2}$	To in	prove	Aptitu	de skill	n anu	to im	anty si	alf_lea	rnina /	receard	hing ahil	ities pr	ecentat	ions	kille	87
2	To improve Aptitude skills, train to improve self-learning / researching abilities, presentation skills & technical writing															
3	3 To improve students employability skills.															
4	To de	velop	profess	ional v	vith ide	alistic	, practi	cal and	l moral	values.						
5	To pr	oduce	cover l	etters.	resume	s and	iob apr	olicatio	n strate	egies.						
COU	RSE O	UTCO	MES	,			11			0						
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to)						
CO1.	Improv	ve com	munica	ation ar	nd pers	onality	skills.				A	Apply				
CO2. 1	Demon	strate e	effectiv	e use o	of team	work s	kills ar	nd pres	entatio	n skills	to A	Apply				
compl	ete give	en task	s.													
CO3. 5	Speak v	vith cla	arity an	d conf	idence	thereb	y enha	ncing e	employ	ability s	kills A	Apply				
of the	student	s.														
CO4.]	Have ba	alanceo	d value	system	n that c	an be p	practice	ed for e	enhanc	ed	A	Apply				
profes	<u>sional l</u>	ite.	1	1	1			• ,	•, ,•			T 1 /	1			
CO5. 1	Improv			llary an	nd use		n appro	opriate	situatio			Understa			C	
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	SO2	PSO3
COI	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
CO_2	$\frac{102}{103} \mathbf{M} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{S} \mathbf{M} \mathbf{-} \mathbf{-} \mathbf{-} \mathbf{M} \mathbf{N} $															
CO_{4}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
C04	S	-	-	-	-	-	-	-	- M	- S	-	- M				
S- Stro	ong: M.	Mediu	<u>-</u> im: L ₋ I	-0W	-	-	-		TAT	6	-	TAT	1			
SYLL	SYLLABUS															

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication, Barriers and Filters in Listening Skill, Active and Passive listening, exposure to English language through various activities and maintaining a vocabulary dairy improving confidence in Language usage using activities,

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

-9-1- d-=+

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

UNIT IV. SPEAKING SKILLS AND ESSENCE OF SOFT SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation, Time management, Team work skills, Leadership skills, Adaptability and bettering oneself, Persuasion skills.

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria& Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw – Hill.

Course	Course Designers:								
COUR	SE DESIGNERS								
S.No.	Name of the Faculty	Mail ID							
1.	Dr. Jennifer G Joseph, Prof. and Head	jennifer@avit.ac.in							
2.	Dr. P.Saradha, Associate Professor	saradhap@vmkvec.edu.in							

- p-1- d-=+

Course Code	Course Title	Category	L	Т	Р	С
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC - HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. - Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body-Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours : 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

- p-1- d-=+

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COU	COURSE DESIGNERS											
S.NO	COURSE	DESIGNATION	NAME OF	MAIL ID								
	INSTRUCTOR		THE									
			INSTITUTION									
1	Dr.S.P.Sangeetha	Vice	AVIT	sangeetha@avit.ac.in								
		Principal(Academics)										
2	Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin								
	Joseph			_								

-g-1.-d-=+

ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

NIL

COUR	SE O	BJECT	FIVES												
1	1 To recall the advanced matrix knowledge to Engineering problems.														
2	To eq	uip the	emselve	es fami	liar wi	th the f	functio	ns of s	everal	variable	s.				
3	3 To improve their ability in solving geometrical applications of differential calculus problems														
4	4 To examine knowledge in multiple integrals.														
5	To improve their ability in Vector calculus.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. A	apply the	he con	cept of	orthog	onal re	eductio	n to di	agonali	se the	given m	atrix			Apply	
CO2. F	ind the	e radius	s of cur	vature	, circle	of cur	vature	and cer	ntre of	curvatu	re for a	given cu	rve.	Apply	
CO3. (finding	Classif statio	y the m nary po	naxima pints	and m	inima	for a gi	ven fu	nction	with se	everal va	riables,	through	by	Apply	
CO4. I	Find do	ouble in	ntegral	over g	eneral	areas a	nd trip	le integ	gral ov	er gener	al volun	nes		Apply	
CO5. <i>A</i>	Apply	Gauss]	Diverg	ence th	leorem	for eva	aluatin	g the s	urface	integral.				Apply	
MAPP	ING V	WITH	PROG	GRAM	ME O	UTCO	MES .	AND P	ROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PSO3
CO1	S	S	М					L				М			
CO2 S S M L M															
CO3 S S M L M															
CO4	CO4 S S M L M														
CO5	S	S	Μ					L				М			
S- Stro	S- Strong; M-Medium; L-Low														

\$-1.- d-=+

SYLLABUS

MATRICES:

Characteristic equation- Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES :

Curvature - Cartesian and Parametric Co-ordinates - Centre and radius of curvature - Circle of curvature.

Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method,

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

(COURSE	DESIGNERS	_	_	
	S.No	Name of the Faculty	Designation	Department	Mail ID
	1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics	bhuvaneswari@avit.ac.in
	2	Dr.G.Selvam	Associate Professor	Mathematics	selvam@vmkvec.edu.in

- p-1- d-=+

PHYSICAL SCIENCES -	Category	L	Т	Р	Credit
Part A: ENGINEERING PHYSICS	FC-BS	2	0	0	2

PREAMBLE

Engineering Physics is the study of advanced physics concepts and their applications in various technological and engineering domains. Understanding the concepts of laser, types of lasers, the propagation of light through fibers, applications of optical fibers in communication, production and applications of ultrasonics will help an engineer to analyze, design and to fabricate various conceptual based devices.

PREREQUISITE : NIL															
COUR	SE OB	JECTI	VES												
1	To recall the properties of laser and to explain principles of laser														
2	To ass	sess the	applica	ations o	f laser										
3	To detail the principles of fiber optics														
4	To study the applications of fiber optics														
5	To ex	plain va	arious to	echniqu	les used	l in Non	-destru	ctive te	sting						
COUR	SE OU	тсом	IES												
On th	e succe	essful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1.	Unders	stand tl	he princ	ciples la	iser, fib	er optic	s and u	ltrasoni	ics				Underst	and	
CO2.	Unders	stand th	e const	ruction	of lase	r, fiber o	optic ar	nd ultra	sonic ec	quipment	s		Underst	and	
CO3.	Demon device	nstrate s	the wo	rking o	of laser	, fiber	optic a	and ulti	rasonic	based c	omponer	nts and	Apply		
CO4.	Interpr	et the p	otentia	l applic	ations o	of laser,	fiber o	ptics an	nd ultras	sonics in	various	fields	Apply		
CO5.	Differe device	entiate s.	the wo	rking n	nodes o	of vario	ous type	es of la	aser, fił	per optic	and ult	rasonic	Analyze	;	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М									М	М		М
CO2	2 S L M M														
CO3	S			M			M					M	M		
CO4	S	М		M	M	S	M					M	S		М
CO5	05 S M M M M														
S- Strot	Strong: M Medium: I Low														

-9-1- d-=+

-P-1- d-=7

Unit: I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

SYLLABUS

Unit: II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

Unit: III

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOKS

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

9 hours

9 hours

9 hours

PHYSICAL SCIENCES PART-B	Category	L	Т	P	Credit
- ENGINEERING	FC-BS	2	0	0	2
CHEMISTRY					
(Common to all Branches)					

PREAMBLE

The objective of this course is to better understand the basic concepts of chemistry and its applications in diverse engineering domains. It also imparts knowledge on the properties of water and its treatment methods, Electrochemistry, corrosion and batteries, properties of fuel and combustion. This course also provides an idea to select the material for various engineering applications and their characterization.

PREREQUISITE

NIL

COU	RSE O	вјест	IVES												
1	To Pro	ovide th	ne know	vledge o	n water	treatm	ent.								
2	To exp	plain at	out the	import	ance of	electro	chemist	ry, mec	hanism	of diff	erent co	prrosion	and prin	nciple a	nd
	worki	working of batteries.													
3	To explain different types of fuel, properties and its important features.														
COU	COURSE OUTCOMES														
On the	e succes	ssful co	mpletic	on of the	e course	e, studei	nts will	be able	to und	erstand					
CO1.	Estin	nate the	e hardno	ess of w	ater Ap	ply and	l Identif	y suital	ole wate	er treatn	nent me	thods.	App	ly	
CO2.	Desci	Describe terms involved in electrochemistry, the control methods of corrosion and Analyse													
	worki	working of energy storage devices.													
GOO	XX 1														
CO3.	Unde	rstand t	he qual	lity of fi	iels froi	m its pr	operties	s and th	e impoi	tant tea	tures of	t fuels	Ana	lyse	
MADI	DINC W	/ITH D		MME	OUTCO	MES A	ND PP		MMF S	PFCIFI		COME			
COS	PO1	PO2		PO4	PO5	PO6	PO7		PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	L	-	M	S	M	-	-	-	M	M	M	M
	-														
CO2	S	S	L	L	-	S	S	S	-	-	-	S	М	L	М
CO3	S	Μ	Μ	L	L	L	М	м	-	-	-	S	-	М	Μ

S- Strong; M-Medium; L-Low

Syllabus UNIT – I: WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

\$-1- d-=+

9hrs

UNIT - II: ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - Galvanic cell-Electrochemical cell representation - EMF series and its significance. Corrosion – Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries, Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

UNIT – III FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values- theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

TEXTBOOK

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

REFERENCES

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers:

N	ame of the Faculty	Mail ID
D	r. A.R. Sasieekumar	sasieekhumar@vmkvec.edu.in
D	r. R. Nagalakshmi	nagalakshmi.chemistry@avit.ac.in

\$-1.- d-=+

9hrs

9hrs

DIFFERENTIAL EQUATIONS AND	Category	L	Т	Р	Credit
TRANSFORMS	FC-BS	2	1	0	3

PREAMBLE

A signal is said to be a continuous time signal if it is available at all instants of time. A real time naturally available signal is in the form of time domain. However, the analysis of a signal is far more convenient in the frequency domain. These are three important classes of transformation methods available for continuous time systems. They are Laplace Transform, Fourier series and Fourier Transform. Similarly, Z- transform plays an important role in analysis of linear discrete time signals. Transform techniques are very important tool in the analysis of signals. Also To expose the students to the basics of wavelet theory and to illustrate the use of wavelet processing in engineering fields.

PREREQUISITE

Engineering Mathematics

COUR	SE O	BJEC	FIVES												
1	Learn	to use	Fourie	er serie	s to rep	oresent	period	lical ph	nysical	phenom	ena in e	ngineeri	ing anal	ysis	
2	To ur	dersta	nd how	the Fo	ourier s	eries is	s exten	ded to	aperio	lic signa	als in the	e form F	ourier tr	ansform	l
3	3 To understand the properties of Z-Transform and associating the knowledge of properties of ROC in response to different operations on discrete signals.														
4	To lea	arn Lap	place tr	ansfor	m and	it Inver	rse met	thods to	o solve	differer	ntial tran	sforms	and inte	gral tran	sforms
5	To ur	dersta	nd the	termine	ology t	hat are	used i	n the w	vavelet	's literat	ure				
COUR	SE O	UTCO	MES												
	On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	idents v	will be	able to					
CO1. Explain fundamental understanding of Fourier series and be able to give Fourier expansions of Apply a given function.															
CO2. Demonstrate Fourier Transform as a tool for solving integral equations Apply															
CO3. S	Solve d	lifferen	ice equ	ations	by usir	ng Z tra	nsform	n techn	iques.	•					Apply
CO4.	Under: functio	stand ons and	the contract the c	ncept olicatio	of Lap n to so	lace ti lve ord	ransfor linary o	m and differer	l inver ntial eq	se Lapl uations.	ace trar	nsform	of varic	ous	Apply
CO5.L	Underst bases, c	and h	low to ors and	o use series	the 1 expans	nodern ions.	n sign	al pro	ocessing	g tools	using	signal	spaces	,	Apply
MAPP	ING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	М			-	L				М			
CO2	S	М	S	М				L				Μ			
CO3	S	М	S	Μ				L				Μ			
CO4	S	М	S	Μ				L				Μ			
CO5	S	Μ	S	Μ				L				Μ			
S- Stro	ong; M	[-Medi	ium; L	-Low											

- p-1- d-=+

Syllabus

FOURIER SERIES:

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

FOURIER TRANSFORMS:

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS:

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

LAPLACE TRANSFORMS:

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions-Inverse Laplace transform – Convolution theorem – -Solution of linear ODE of second order with constant coefficients.

WAVELET TRANSFROMATION:

Classes of wavelets: Haar, Daubechies, bi-orthogonal. Continuous Wavelet Transform (CWT): CWT and its Properties, Discrete Wavelet Transform- Haar scaling function - Nested spaces - Wavelet function- Designing orthogonal wavelet systems: Daubechies – Coiflet - Symlet wavelet system coefficients- Signal decomposition using DWT.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. K. P. Soman, K. I. Ramachandran, "Insight into Wavelets: From Theory to Practice", Third Edition, PHI (2004).

REFERENCES:

- 1. "Engineering mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr. A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- **3.** R. M. Rao and Ajit S. Bopardikar, "Wavelet Transform, Introduction to theory and Applications", Addison-Wesley (1998).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Departmen t	Mail ID
1	Dr. L. Tamilselvi	Professor	Mathematic s	ltamilselvi@avit.ac.in
2	Dr. M. Vijayarakavan	Associate Professor	Mathematic s	vijayarakavan@vmkvec.edu.in

- p-1- d-=+

		SMART MATERIALS AND	Category	L	Т	Р	С	
		NANOTECHNOLOGY						
		Total Contact Hours: 45						
		Prerequisite: Physical Sciences	FC-BS	3	0	0	3	
Pream	ıble:							
This s	yllabus e	enables the students to learn the applications of smart mat	erials and uses of vari	ous sm	art eng	gineer	ing	
device	s. The s	syllabus also discusses about the nanomaterials, the	ir unique properties	and a	pplica	tions	s in	
variou	ıs fields	•						
Cours	e Objec	tives:						
1	Gain tl	he knowledge about the concepts of smart systems and var	rious smart materials.					
2	Realiz	e about the smart sensor materials which are used for Indu	strial Applications.					
3	Unders	stand about the Industrial application oriented Smart mater	rials'Actuators.					
4	To learn the properties and classifications and importance of Nanomaterials							
-	TT 1		1.1	1				
5	Unders	stand the characteristic features of materials at nanoscale	and their potential app	licatioi	ıs			
COS	Cours	e Outcomes: On the successful completion of the course,	students will					
CO1	1 Learn the smart-properties of various functional materials Learn							
CO2	2understand the applications of different smart materials as sensorsUnderstand							
	1			TT 1	4 1			
03	unders	tand the applications of different smart materials as actuat	ors	Under	stand			
CO4	Gather	r knowledge on unique properties of nanomaterials		Learn				
COS	Line of	Nenometerials for industrial applications		Acqui	r 0			
		Inanomaterials for industrial applications		Acqui	re			
CO6	Gain k	nowledge about nanomaterials in health care industry						

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO1															
	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO2															
	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO3															
	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO4															
	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO5															
	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-
CO6															

S – strong, M- Medium, L - Low

-9-1- d-=+

Syllabus

UNIT: I

Overview of Smart Materials: Introduction to Smart materials -piezoelectric materials - piezoelectricity magnetostriction materials - magnetostriction effect- shape memory alloys (SMA) - photoelastic materials photoelasticity.

UNIT: II

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors - stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

UNIT: III

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators -Industrial Applications: robotic artificial muscles, materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

UNIT: IV

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

UNIT: V

Selected Applications of Nanomaterials: Medical diagnostics - nanomedicine - targeted drug delivery -Biosensors; Information storage - nanocomputer - molecular switch - single electron transistors; design and fabrication of MEMS and NEMS devices.

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-Interscience Inc., Publication, 1st Edition, 2020.
- 4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY INDIA 2014.

REFERENCE BOOKS

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.
- 3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.
- 4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.

COURSE DESIGNERS

	SE DESIGNERS					
S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics	Dhanalakshmi.phy@avit.ac.in		
2	Dr G. SURESH	Asso. Professor	Physics	suresh.physics@avit.ac.in		
3	Dr. R. N. VISWANATH	Professor	Physics	rnviswanath@avit.ac.in		

\$-1.- d-=+

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

AND LINEAR ALGEBRA FC- BS 2 1 0 3 PREAMBLE										
PREAMBLE										
PREAMBLE										
of the application of partial differential equations. The course also gives the opportunity to the learner to understand										
linear algebra and its application to engineering.										
PREREQUISITE Differential Equations and Transforms										
COURSE OBJECTIVES										
1 Familiarize themselves with the functions of a variety of variables.										
2 To familiar with applications of partial differential equations										
3 To have the knowledge of vector space & subspaces										
4 To have an idea of inner product spaces over the field of complex numbers										
5 Understand linear transformation and its properties										
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
CO1. Form the partial differential equations and find its solutions Apply										
CO2. Apply the partial differential equations in a vibration of strings; heat-passing a rod and two-										
CO3. Understand the concept of vector space & subspace and to find the dimension of a vector Apply										
CO4. Understand inner product space concepts and apply the concept in various linear system										
related problems.										
CO5. Compute the linear transformations and find matrices of general linear transformations Apply										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03										
CO1 S S M L L M										
CO2 S S M L L M										
CO3 S S M L L M										
CO4 S S M L L M										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
S- Strong; M-Medium; L-Low										

-9-1- d-=+

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS:

Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:

Method of separation of variables – Solutions of one-dimensional wave equation and one-dimensional heat equation – Steady state solution of two-dimensional heat equation – Fourier series solutions in Cartesian coordinates

VECTOR SPACES:

Vectors in two-dimensional space and n dimensional space, subspaces and spanning sets properties of vector space, Linear combination of vectors, Linear independence and dependence of vectors, basis and dimension

INNER PRODUCT SPACES:

Inner product, norms - Gram Schmidt orthogonalization process - Adjoint of linear operations -Least square approximation

LINEAR TRANSFORMATION:

Linear transformations, linear operators, Properties of Linear Transformation, Algebra of Linear transformation, Matrix Representation of linear transformation, Linear map Associated with Linear Transformation

TEXT BOOKS:

1. Grewal, B.S., "Higher Engineering Mathematics", 35th Edition, Khanna Publishers, Delhi (2012).

2. Kennath M. Hoffman and Ray Kunze, "Linear Algebra", 2nd Edition, Pearson India Publishing, New Delhi, (2015).

REFERENCES:

- 1. Dr.A. Singaravelu, "Linear Algebra and Partial Differential Equations", Meenakshi Agencies, Chennai (2019).
- 2. Kreyszig, E., "Advanced Engineering Mathematics", (8th Edition), John Wiley and Sons, (Asia) Pvt. Ltd., Singapore (2012).
- 3. Dr.Gunadhar Paria, "Linear Algebra", New Central Book Agency (P) Ltd (2012).

COURSE DESIGNERS

1Mrs.V.T.LakshmiAssociate ProfessorMathematics Lakshmivt@vm	ail ID
	nkvec.edu.in
2 Ms. S.Sarala Associate Professor Mathematics <u>sarala@avit.ac.</u>	. <u>in</u>

- p-1- - -===
| | | | | NU | MERIC | CAL M | етно | DS | | Categ | gory | L | Т | Р | Credit |
|---|--|-------------------|-----------|----------|----------|----------|-----------|--------------------|--------------------|-----------|----------------------|---------------------|------------------------|----------|-------------|
| | | | | | | | | | | FC- | BS | 2 | 1 | 0 | 3 |
| PREA | MBLE | | | | | | | | | | | | | | |
| This co | ourse a | ims at | develo | ping th | e abilit | y to fo | rmulate | e an en | igineeri | ng probl | em in a | mathem | natical fo | rm appro | opriate for |
| subseq | t needs | mputat
to knov | v suffic | ient nu | merical | metho | ds and t | ppropri
technia | ate nun
ues for | solving | pproacn.
engineer | An und
ing probl | ler gradu
lems such | ate of E | c or steady |
| state pi | oblems | , vibrat | ion or s | tability | probler | ns and | initial v | alue or | transie | nt proble | ms etc. | 01 | | | 5 |
| PRER | EQUIS | ITE | | | | | | | | | | | | | |
| 1.Diffe | rential | Equatio | ons and | Transfo | orms | | | | | | | | | | |
| COUR | SE OB | JECTI | VES | | | | | | | | | | | | |
| 1 | To fai | niliar v | with nur | nerical | solutior | n of equ | ations | | | | | | | | |
| 2 To be get exposed to finite differences and interpolation | | | | | | | | | | | | | | | |
| 3 | To be | thorou | gh with | the nu | nerical | Differe | ntiatior | n and in | tegratio | n | | | | | |
| 4 | To fir | id nume | erical so | olutions | of ordi | nary di | fferenti | al equat | tions | | | | | | |
| 5 | 5 To find numerical solutions of partial differential equations | | | | | | | | | | | | | | |
| COUR | COURSE OUTCOMES | | | | | | | | | | | | | | |
| On the | On the successful completion of the course, students will be able to | | | | | | | | | | | | | | |
| CO1. 5 | Solve th | ne syste | m of li | near alg | gebraic | equatio | ns and | single | non lin | ear equat | ions aris | sing in th | ne field o | f | 7 |
| | Engine | ering. | | | | | | | | | | | | Appr | Ý |
| CO2. <i>A</i> | Apply n | nethods | to find | intermo | ediate n | umeric | al value | e & poly | ynomial | of nume | rical dat | a. | | Appl | Į |
| CO3 . <i>A</i> | Apply n | nethods | to find | integra | tion, de | rivative | es of on | e and ty | vo varia | able func | tions. | | | Appl | Į |
| CO4. S | Solve th | e initia | l value j | problen | ns using | g single | step an | d multi | step me | thods. | | | | Appl | Į |
| CO5. S | Solve th | e bound | dary val | lue prob | olems u | sing fin | ite diffe | erence 1 | nethods | 5. | | | | Appl | 1 |
| MAPP | 'ING W | ITH P | ROGR | AMM | E OUT | COME | S AND | PROG | GRAM | ME SPE | CIFIC | OUTCO | MES | | |
| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1 | S | S | M | L | | | L | | | | | M | | | |
| CO2 | S | S | M | L | | | L | | | | | М | | | |
| CO3 | S | S | M | L | | | L | | | | | М | | | |
| CO4 | S | S | M | М | | | L | | | | | М | | | |
| CO5 | S | S | M | М | | | L | | | | | М | | | |
| S- Stro | ong; M- | Mediu | m; L-L | ow | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| SYLL | ABUS | | | | | | | | | | | | | | |

-\$-1- d-=+

SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations – Fixed point iteration method – Newton Raphson method – Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel – Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS:

Finite diference methods for solving second order two point linear boundary value problems – Finite diference techniques for the solution of two dimensional Laplace's and Poison's equations on rectangular domain - One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods - One dimensional wave equation by explicit method.

TEXT BOOKS:

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- 2. S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

REFERENCES:

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill. (New York) (2015).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Gayathri	Assistant Professor	Mathematics	gayathri@avit.ac.in
2	Dr. M.Vijayarakavan	Associate Professor	Mathematics	vijayarakavan@vmkvec.edu.in

- p-1- d-=+

MATHEMATICAL AND STATISTICAL	Category	L	Т	Р	Credit
TOOLS FOR RESEARCH	FC-BS	2	1	0	3

PREAMBLE: Optimization techniques helps in solving problems in different environments that need decisions like, replacement, Sequencing and Network problems. Probabilistic and statistical analysis is mostly used in varied applications in Engineering and Science. Statistical method introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests

PRERI	PREREQUISITE - Nil														
COUR	SE OB	JECTI	VES												
1	To be progr	e thoro ammin	ough w 1g mod	ith line el	ar pro	gramm	ing pr	oblem	and fo	rmulate	a real v	world pi	roblem a	is a mat	hematical
2	Math	ematic	al mod	els for	analys	is of re	al prot	olems i	n Oper	ations R	esearch				
3 To acquire skills in handling techniques of PERT, CPM and sequencing model to perform operation among various alternatives.															
4 To get the knowledge on concepts of random variables and distributions with respect to how they are applied to statistical data															
5	5 To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the measurements made on the sample.														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1,Formulate the Linear programming problem. Conceptualize the feasible region. Solve the Apply LPP with two variables using graphical method and by simplex method															
CO2. E	Be able	e to sol	lve sim	ple pro	blems	of repl	aceme	nt and	sequen	cing mo	odel			Appl	у
CO3. A	Able to	Solve	netwoi	k prob	lems u	sing Cl	PM, PI	ERT te	chniqu	es				Appl	у
CO4. Senginee	Select a pring pro	an app oblem	ropriate	e proba	bility d	listribut	ion to	determ	nine the	e probab	ility fun	ction fo	r solving	Appl	у
CO5. A	apply th	ne conce	epts of]	large/sn	nall san	ple tes	ts into 1	eal life	proble	ns				Appl	у
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	М	L			М				М			
CO2	S	S	L	М	L			М				М			
CO3	S	S	L	M	L			M				М			
CO4	S	S	M	M	L			M				M			
CO5	S	S	M	M	L			M				M			
S- Stro	S- Strong; M-Medium; L-Low														

- p-1- d-=+

LINEAR MODELS: Mathematical Formulation of Linear programming problems- applications & limitations – Graphical method - Simplex method – Big M method

SEQUENCING AND REPLACEMENT MODELS: Scheduling – processing n jobs through two machines, processing n jobs through three machines, processing n jobs through m machines. Replacement Models: Replacement of Items due to deterioration with and without time value of Money, Group replacement policy.

NETWORK MODELS: Basic terminologies, constructing a project network, network computations in CPM and PERT.

PROBABILITY AND RANDOM VARIABLES: Probability concepts - Random variables - Discrete and continuous random variables - Expectation - Variance - Standard Distributions: Binomial, Poisson, Normal, Uniform and Exponential

TESTING OF HYPOTHESIS: Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attribute - Analysis of Variance

TEXT BOOKS:

- 1. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics", 11th extensively revised edition, S. Chand & Sons (2015).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).
- 3. H.A.Taha, "Operations Research: An Introduction", 7th Edition, Prentice Hall of India (2002).

REFERENCES:

- 1. Miller, "Probability and Statistics for Engineers", Freund-Hall, Prentice India Ltd. (2009).
- 2. Sundarasen.V, Ganapathy Subramaniyam, K.S, Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai (2013).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi.

COURSE DESIGNERS												
S. No	Name of the Faculty	Designation	Department	Mail ID								
1	Mrs.V.T.Lakshmi	Associate Professor	Mathematics	lakshmivt@vmkvec.edu.in								
2	Ms. S.Sarala	Associate Professor	Mathematics	sarala@avit.ac.in								

\$-1.- d-=+

		NON-DESTRUCTIVE TESTING OF	Category	L	Т	Р	Credit				
		MATERIALS	FC-BS	3	0	0	3				
PREA	MBLE			1	1						
Nonde qualitie time in	estructive es of a ma product of	testing is a wide group of analysis/techniques used aterial without causing damage. The nondestructive evaluation, troubleshooting, and research.	d in science and in testing is highly	ndustries to valuable an	evaluate d can sav	the prope re both mo	rties and oney and				
PRER	EQUISI	ГЕ:									
COUR	RSE OBJ	ECTIVES									
1	1 To understand the principles of visual inspection										
2	To know	w about the procedure followed in liquid penetrant m	nethod								
3	To learn	n the magnetic particle testing									
4	To know	w about in radiographic testing									
5	To learn	n about ultrasonic testing									
COUR	RSE OUT	COMES									
On the	he success	sful completion of the course, students will be able to)								
CO1.	Choose	the NDT methods as per the conditions of the materi	als under study		Underst	and					
CO2.	CO2. Identify the defects by visual inspection methods Apply										
CO3.	CO3. Locate the surface defects using LPT and Magnetic particle inspection Apply										
CO4.	Identify	the internal defects using X ray radiography and Ult	rasonic flaw detec	tor	Apply						
CO5.	Inspect 1	the defects using various techniques			Analyze	9					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S			М	М							М			
CO2	S			М	М							М		S	S
CO3	S	М	М	М	М							М		S	S
CO4	S	S	М	М	М							М		М	М
CO5	S	S	S	М	М							M		М	М

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT: I

9 hours

OVERVIEW OF NDT & VISUAL INSPECTION: Inspection of materials for defects and characterization - Non-Destructive versus Destructive Tests - different NDT methods and selection criteria for inspection - Visual Testing: Principle and conditions - Equipments and accessories: borescope, flexible fiber optic borescope, endoscopes or endoprobes, video imagescope - confocal laser scanning microscopy - optical coherence tomography - laser thermography. Visual inspection applied to construction materials

- p-1- d-=+

- p-1- d-=+

UNIT: II

LIQUID PENETRANT TESTING: Liquid penetrant testing: Introduction - Principle and equipments - test procedure cleaning methods - interpretation of test results - characteristics and types of penetrants - developers - safety precautions, advantages and limitations - High temperature penetrant testing - Low temperature penetrant testing - Industrial applications of LPT.

UNIT: III

MAGNETIC PARTICLE TESTING: Principle of magnetic particle testing - different methods to generate magnetic fields - magnetic particle testing equipment - magnetic particle testing procedures method of De-magnetization - advantages and limitations - codes and standard for MPI - magnetic particle test for welding, valves, crank shafts, etc.

UNIT: IV

RADIOGRAPHIC TESTING: X-ray radiography principle, equipment & methodology - Types of industrial radiation sources and application - Radiographic exposure factors and technique - Gama ray and X- ray equipment - Precautions against radiation hazards - applications of industrial radiography

UNIT: V

9 hours ULTRASONIC TESTING: Principle: Interaction of ultrasonic waves with matter - instrumentation - ultrasonic probes and types - ultrasonic testing methods and modes - data presentation: A-scan, B-scan and C-scan - advantages and limitations determination of thickness of samples and defects in welded products.

TEXT BOOKS

- 1. Jean-Paul Balayssac and Vincent Garnier, "Non-destructive Test and Evaluation of Civil Engineering Structures", ISTE Press Ltd - Elsevier Inc., 2017.
- 2. Prasad J, Nair C G K, Non-destructive Testing and Evaluation of Materials, Tata McGraw Hill Education Private Limited, 2011(Second Edition)
- 3. Carles J Hellier, Handbook of Nondestructive Evaluation, McGraw-Hill, 2013

REFERENCE BOOKS:

- 1. Nathan Ida and Norbert Meyendorf, "Handbook of Advanced Nondestructive Evaluation", Springer Int. Publishing Agency, 2019.
- 2. Baldev Raj, T.Jayakumar, M.Thavasimuthu, "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 3. Evgency N. Barkanov and Ivan A. Parinov, "Non-destructive Testing and Repair of Pipelines, Springer Int. Publishing Agency, 2018.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. B. Dhanalakshmi	Asso.Prof.	Physics	Dhanalakshmi.phy@avit.ac.in
2	Dr G. Suresh	Asso. Professor	Physics	Suresh.physics@avit.ac.in
3	Dr. R. N. Viswanath	Professor	Physics	rnviswanath@avit.ac.in

9 hours

9 hours

9 hours

	ENVIRONMENTAL	Category	L	Т	Р	Credit					
	(Common to All Branches)	FC-BS	3	0	0	3					
Environmen atmospheric societal prob the various i environmenta	tal science is an <u>interdisciplinary field</u> <u>sciences.</u> Environmental studies deals lems and conserving the environment for ssues of environment and its managem al quality in every aspect.	that integrates physical, with the human relation or the future. Environmer nent for sustainable deve	chemic ns to th ntal eng lopmen	al, bid le env ineerin t by i	ologic ironm ng foc mprov	al, <u>and</u> ent and cuses on ving the					
PREREQUI	PREREQUISITE NIL COURSE OBJECTIVES										
COURSE OBJECTIVES											
1 To inculcate the knowledge of significance of environmental studies and conservation of the natural resources.											
2 Te	o acquire knowledge of ecosystem, biod	iversity, it's threats and th	ne need	for co	onserva	ation					
3 To	3 To gain knowledge about environmental pollution, it's sources, effects and control measures										
4 To pr	To familiarize the legal provisions and the national and international concern for the protection of environment										
5 Te m	o be aware of the population on human h onitoring human health and environmen	nealth and environment, realth and environment, realth	ole of te	echnol	ogy ir	1					
COURSE O	UTCOMES										
On the succe	ssful completion of the course, students	will be able to									
CO1. Under resources	stand the importance of environmen	t and alternate energy	Under	stand							
CO2. Initiate ecosystem ar	e the awareness and recognize the social ad biodiversity conservation	responsibility in	Apply	,							
CO3. To dev solve the pro	elop technologies to analyse the air, wat blems	er and soil pollution and	Apply	,							
CO4. To eva regulations fo	luate the social issues and apply suitable or a sustainable development	e environmental	Evalua	ate							
CO5. To iden health and en	CO5. To identify and analyse the urban problems, population on human Analyse health and environment										

-9-1- d-=+

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
S	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	_
a a.		1.1.1	1•	тт											

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT -- I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and overexploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT –II ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids-Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT –III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

6 hrs

Sustainable Development- Water conservation – rain water harvesting, watershed management - Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in

-P-1- 2-=7

environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE	COURSE DESIGNERS									
S.No.	Name of the Faculty	Mail ID								
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in								
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in								

-F-1- d-=+

PHYSICAL SCIENCES LAB: PART A – REAL	Category	L	Т	Р	Credit
AND VIRTUAL LAB IN PHYSICS	FC-BS	0	0	2	1

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL															
COUR	SE OB	JECTI	VES												
1	To im	part bas	sic skill	s in tak	ing read	ding wi	th preci	sion of	physics	s experin	nents				
2	To inc	culcate	the hab	it of ha	ndling e	equipme	ents app	propriat	ely						
3	To ga	in the k	nowled	ge of p	racticin	g exper	iments	through	n virtual	laborato	ory.				
4	4 To know the importance of units														
5 To obtain results with accuracy															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	CO1. Recognize the importance of units while performing the experiments, calculating the physical parameters and obtaining results														
CO2.	D2. Operate the equipments with precision Apply														
CO3.	D3. Practice to handle the equipments in a systematic manner Apply														
CO4.	O4. Demonstrate the experiments through virtual laboratory Apply														
CO5.	Calcul	ate the	result w	ith acc	uracy								Analyze	e	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	S													
CO2	S	S	М	М	S				М			М	M		М
CO3	S														
CO4	S	S	М	М	S							S	M		М
CO5	S	S													
S- Strong; M-Medium; L-Low															
SYLL 1.	S- Strong; M-Medium; L-Low SYLLABUS 1 Voung's modulus of a bar - Non-uniform bending														

- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- Wavelength of spectral lines grating Spectrometer 6.
- Thickness of a wire Air wedge Method 7.

\$-1.- d-=+

- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A - Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka

Mission's Research Foundation (Deemed to be University), Salem.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

-9-1- d-=+

				P	HYSIC	CAL S	CIENO	CES			Categ	orv	L	Т	Р	C	redit			
		F	PART	B - EN	GINE	ERIN	G CHE	EMIST	RY L	AB						Credit 1 stry. It also nd batteries dy gives the needed for				
				(C	ommo	n to Al	ll Bran	ches)			FC- I	BS	0	0	2		1			
Engine helps study idea a our fas	eering the stu- gives c bout ha st grow	Chemi dents lear ba irdness ing lif	istry L to unde asic app s and it e style.	ab exp erstand plicatic ts disac	erimer the ap on orier lvantag	nts exp oplication nted kr ges. No	lains t ions of nowled ow-a-da	he bas Engir ge abo ays the	ics and neering ut elec practi	d essent Chemis trochem cal and	ials of stry. Th istry. W handlin	Engin le elec Vater t lg of e	eer ctro ech ech	ing Cl des, C nology pment	nemi ell a / stuo s are	stry. nd ba dy gi neec	It also atteries ves the led for			
PREF	PREREQUISITE NIL																			
COUI	NIL COURSE OBJECTIVES																			
1	To impart basic skills in Chemistry so that the student will understand the engineering concept.																			
2	To in	inculcate the knowledge of water and electrochemistry.																		
3	To lay foundation for practical applications of chemistry in engineering aspects.																			
COUI	DURSE OUTCOMES																			
On the	On the successful completion of the course, students will be able to																			
CO1.	Unders	tand th	ne basio	<u>skills</u>	for his	her fu	ture st	udies.				Unde	rsta	nd						
CO2 A	Analyze	the w	ater co	mpreh	ensive	y.	•					Apply	/							
CO3.	Apply 1	the pra	ictical I	cnowle	dge in	engine	ering a	spects				Apply	/							
MAP	PING V	WITH	PRO	GRAM	IME O	UTCO	DMES	AND	PROG	RAMM	IE SPE	CIFI	C 0	UTC	DMF	ËS				
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO	l PS	502	PSO3			
CO1	S	М	М	-	L	М	М	S	-	-	-	M	[-		-	-			
CO2	S	M	М	-	L	М	М	L	-	-	-	M	[-		-	-			
CO3	S	S	М	-	L	M	М	M	-	-	-	M	[
S- Stro	ong; M	-Medi	um; L-	Low																
1. Deta 2. Esti 3. Aci 4. Esti 5. Det 6. Esti 7. Esti 8.Estin TEXT 1. Eng	 Determination of Hardness by EDTA method Estimation of Hydrochloric acid by conductometric method Acid Base titration by pH method Estimation of Ferrous ion by Potentiometric method Determination of Dissolved oxygen by Winkler's method Estimation of Sodium by Flame photometer Estimation of Copper from Copper Ore Solution Estimation of Iron by Spectrophotometer TEXT BOOK: Engineering Chemistry Lab Manual by VMU. 																			
S No	S No Name of the Faculty Mail ID																			
1.	Dr.R.	Nagal	akshmi	i				nag	alakshr	ni.chem	istry@a	avit.ac	.in							

-\$-1- d-=+

	2 A.	Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in	
--	------	-------------------	--------------------------------	--

-\$-1- d-=+

FOUNDATIONS OF COMPUTING AND	Category	L	Т	Р	Credit
PROGRAMMING(THEORY + PRACTICALS)	FC - ES	2	0	2	3

PREAMBLE

This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles programming languages. Studying the fundamentals database languages, commands and internet basics.

PRERQUISITE – Nil

COURSE OBJECTIVES

1	To provide basic knowledge of hardware components of computers and classifications.
2	To introduce and demonstrate various Operating System functions and software. Software application packages.
3	To study Principles of programming and applications of programming.
4	To learn about various Database Management Systems languages and commands used.
5	To learn basics of Internet and Web services.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. To understand the Basic knowledge on computer hardware and its functions.	Understand
CO2. To get knowledge of Fundamentals of various Operating System functions and soft	Understand
wares.	
CO3.To Understand the principles of programming and categories of programming	Apply
languages.	
CO4.To demonstrates Database Management Systems languages and their	Apply
classifications.	11 2
CO5.To understands and demonstrates the Internet Basics.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	S	М	-
CO2	S	M	М	-	M	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	-	M	-	-	-	-	-	-	-	S	-	М
CO4	S	S	S	-	S	-	-	-	-	-	-	-	S	М	М
CO5	S	М	М	-	М	-	-	-	-	-	-	S	S	М	М

S- Strong; M-Medium; L-Low

- p-1- d-=+

Introduction to computers:

Characteristics of computers, Classification of Digital Computer Systems: Microcomputers, Minicomputers, Mainframes, Supercomputers. Anatomy of Computer: Introduction, Functions & Components of a Computer, Central Processing Unit, Microprocessor, Storage units, Input and output Devices. How CPU and memory works. Program execution with illustrative examples.

Lab Component- PC Assembly,

Operating System Fundamentals:

Operating Systems: Introduction, Functions of an operating System, Classification of Operating Systems, System programs, Application programs, Utilities, The Unix Operating System, Basic Unix commands, Booting,

Lab Component-, Basic unix commands

Introduction to Principles of programming

Introduction to Programming , Programming Domain : Scientific Application , Business Applications, Artificial Intelligence, Systems Programming , Web Software Categories of Programming Languages: Machine Level Languages, Assembly Level Languages , High Level Languages , Problem solving using Algorithms and Flowcharts

Introduction to Database Management Systems

Database, DBMS, Why Database -File system vs DBMS, Database applications, Database users, Introduction to SQL, Data types, Classification of SQL-DDL with constraints, DML, DCL, TCL Lab Component Create: Table and column level constraints- Primary key, Foreign key, Null/ Not null, Unique, Default. Check, Alter, Drop, Insert, Update, Delete, Truncate, Select: using WHERE, AND, OR, IN, NOT IN

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet, Internet Service Providers, and Domain Name System.

Web Basics Introduction to web, web browsers, http/https, URL, HTML, CSS

Lab Component -HTML & CSS, web Browsing, Emails, Searching

TEXT BOOKS:

1. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014 REFERENCES:

1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta.

Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

\$-1.- d-=+

COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in									
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in									

-9-1- d-=+

		BA	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING											Т	Р	C	Credit
			A. 1	BASIC		CTRIC	CAL E	NGIN	EERIN	NG	FC- I	ES	2	0	0		2
PREA It is a discus engine	PREAMBLE It is a preliminary course which highlights the basic concepts and outline of Electrical engineering. The concepts discussed herein are projected to deliver explanation on basic electrical engineering for beginners of all engineering graduates.																
PRER	PREREQUISITE – Nil																
COUI	COURSE OBJECTIVES																
1	1 To explain the basic laws used in Electrical circuits and various types of measuring instruments.																
2	2 To explain the different components and function of electrical dc and ac machines.																
3	3 To understand the fundamentals of safety procedures, Earthing and Power system.																
COUI	COURSE OUTCOMES																
On the successful completion of the course, students will be able to																	
CO1: 1	CO1: Explain the electrical quantities and basic laws of electrical engineering. Remember																
CO2: 1	CO2: Demonstrate Ohm's and Faraday's Law. Apply																
CO3: 1	Descri	be the	basic c	oncept	s of m	easurin	g instr	uments	5.				Un	dersta	nd		
CO4:	Expla	in the o	operati	on of e	lectrica	al macł	ninerie	s and it	ts appli	cations.			Un	dersta	nd		
CO5: 1	Explai	n the e	lectrica	al safet	y and p	protecti	ive dev	vices.					Un	dersta	nd		
CO6: of con	Compa ventio	are the nal and	variou l non-c	s types onvent	s electr tional s	ical po ources	wer ge	eneratio	on syste	ems by	applicat	tion	Ana	alyze			
MAP	PING	WITH	PRO	GRAN	IME C	OUTCO	OMES	AND	PROG	RAMN	AE SPE	CIFI	CC	DUTC	COMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 F	PSO1	PSC	02	PSO3
CO1	S	М	-	-	М	L	-	-	-	L	М	L		S	М		L
CO2	S	М	М	L	М	-	-	-	S	М	М	L		S	L		-
CO3	S	М	М	М	М	-	-	-	-	L	М	L		S	М		L
CO4	S	М	L	L	М	L	-	-	-	L	М	L		S	L		-
CO5	S	М	L	-	М	S	-	-	-	L	L	L		-	-		-
CO6	S	М	-	-	М	L	S	L	-	L	L	L		М	L		М
S- Stro	ong: M	[-Medi	um: L-	Low													

-g-1- d-=+

SYLLABUS ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis-Power and Power factor – Single phase and Three phase balanced circuits -Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical &Electronics Engineering", Second Edition, PHI Learning, 2007.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu. in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

COURSE DESIGNERS

		BA	ASICS	OF EL	ECTRI ENGI	ICAL A	AND EI ING	LECTI	RONIC	s c	ategory	L	TI	e C	redit
			B. BA	SIC EI	LECTR	ONIC	S ENG	INEEF	RING]	FC- ES	2	0 0)	2
PREA The co engine transis etc. It o PRER	The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, de-multiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems. PRERQUISITE – Nil														
COUR	COURSE OBJECTIVES														
1 To learn and identify various active and passive components and their working principles.															
2 To understand the number conversion systems and working Principles of logic gates.															
3 To learn the digital logic principles and realize adders, multiplexer, etc.,															
4	4 To understand the application-oriented concepts in the Various communication systems.														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. Interpret working principle and application of various active and passive understand															
electronic components like resistors, capacitors, inductors, diodes and transistors. CO2. Construct the rectifier, Clipper, Clamper, regulator circuits and explore their Apply															
operati	operations. Apply														
operati	ions.											Apply			
CO4.	Desigr data inp	1 adder ut.	s, Mul	tiplexer	, De-M	fultiple	xer, En	icoder,	Decode	er circuit	ts for	Apply			
CO5. applica system	Expose ation-or as.	e the iented g	workin gadgets	g prine like the	ciples e UHD	of mo , OLEE	dern t), HDR	echnolo and va	ogies in rious co	n devel ommunic	oping cation	Understa	nd		
MAPF	PING W	VITH P	ROGF	RAMM	E OUT	COM	ES ANI	D PRO	GRAM	ME SPI	ECIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
CO5	CO5 S M L L S - L													L	
S- Stro	S- Strong; M-Medium; L-Low														
	S- Strong; M-Medium; L-Low														

-g-1.- d-=+

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM ,PCM,DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela,"Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in										
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in										
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in										
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in										

- p-1- d-=+

			PYTH	ION PI	ROGR	AMMI	NG	CATEGORY			L	T	Р	CRE	DIT
			(THE	ORY +	PRAC	TICA	LS)		FC-	ES	2	0	2	-	3
PREA	MBLE														
The pu	irpose o	of this c	course	is to int	roduce	Python	, a rema	arkably	v power	ful dyna	mic pro	ogrammi	ng langu	lage to	write
code fo	or diffei	rent op	erating	system	is along	g with a	pplicati	on dor	nain. P	ython has	s evolve	ed on mo	ore popu	lar and	1
powerf	powerful open source programming tool PRERQUISITE														
PRER NIL	rkekuusite NIL Course oriectives														
COUR	COURSE OBJECTIVES														
1	1 To provide basic knowledge on Python programming concepts. 2 To introduce different methods in list string, tuple dictionary and sets														
2	2 To introduce different methods in list, string, tuple, dictionary and sets.														
3	3 To compute different programs using python control statements.														
4	4 To learn about different functions in python.														
5	5 To compute the exception handling functions, file concepts and CSV and JSON.														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. Learn python statements, comments and indentation, tokens, input and output Understand															
methods using various example programs.															
CO2. Apply the different methods involved in List, String, Tuples and Dictionary. Apply															
CO3. 1	Jesign s	solutio	ns for c	complex	x progr	ams usi	ng decis	sion m	akıng a	nd loopi	ng	Apply.			
statem	ents.	C				1 /1	4 1	.1 1	1 1 1		1	A 1			
CO4.A	tors	e runc	tion pro	ograms	with al	I the co	ncepts I	ike lar	nbda, d	lecorator	s and	Apply.			
genera	$\frac{1018}{7000000000000000000000000000000000000$	a tha a	voontic	n hand	ling pr	aroma	file.cor	noont r	rogrom	na and		Apply			
unders	tand the		ents of	CSV ar	nng pro M ISOI	v N	, me coi	licept p	nogran	is allu		Арріу			
MAPP	PING V	VITH	PROG	RAMN	IE OU	TCON	IES AN	D PR	OGRA	MME S	PECIF	IC OUT	COMF	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
	1.01	1.52					107	1.00		1010	1.011	1012	1.501	02	
CO1	S	М	М	М	M	-	-	-	-	-	-	-	М	М	М
CO2	S	М	М	М	M	-	-	-	-	-	-	-	S	М	М
CO3	M	S	S	S	M	-	-	-	-	-	-	-	M	М	М
CO4	S	S	S	S	M	-	-	-	-	-	-	-	S	S	М
CO5	S	М	M	M	M	-	-	-	-	-	-	-	S	М	М
S- Stro	S- Strong; M-Medium; L-Low														

-9-1- d-=+

1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-else-if-else-Nested if iterative control structures-while loop, for loop and range.

4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators. **5 EXCEPTION HANDLING**

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

\$-1- d-=7

COUF	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Dr.V.Amirthalingam	Assistant Professor	CSE	amirthalingam@vmkvec.edu.in

-9-1- d-=+

	BASICS OF CIVIL AND														
				Μ	BAS IECHA	NICA	F CIVI LENGI	L ANL INEER) ING	0	Category	L	Т	Р	Credit
			PAR	T-A B	ASICS	OF CI	VIL EI	NGINE	ERINO	.		2	0	0	2
				(0	Commo	n to Al	l Branc	ches)			C-ES	2	0	0	2
PREA	MBLE									·			-		
	Objective of this course is to provide an insight and inculcate the essentials of Civil Engineering discipline to the students of all branches of Engineering.														
PRER	REREQUISITE-NIL														
COU	URSEOBJECTIVES														
1	To understand the basic concepts of surveying and apply in practical problems														
2	To study in detail different types of construction materials.														
3	3 To impart basic knowledge about building components.														
COUH	RSE OU	U TCO	MES												
On t	he succ	essful o	complet	ion of t	he cour	se, stud	ents wi	ll be ab	le to						
CO1.A	n abili	ty to ap	ply con	cepts of	f Surve	ying on	practic	al appli	cations	•				Apply	
CO2. 1	Explain	differe	ent types	s of buil	ldings, l	building	g comp	onents,	buildin	g materia	als and bu	ilding		Remem	ber
constru	uction.														
CO3.E	xpalin	the ess	entials of	of comp	onents	of a bui	lding a	nd appl	ication	of load o	on it			Underst	tand
MAPI	PING V	VITH	PROGI	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	ME SPI	ECIFIC C	DUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2	PSO3
COL	T	M		S	T		М	M	I	T			M	M	M
CO^2	S	M	L	-	M	S	-	-	-	-		-	M	-	-
CO3	S	M	L	S	M	S	_		M		_	_	-	S	
S-Stro	S M L S M S - - - - - S - - S -														

SURVEYING

Objects-types-classification-principles-measurementsofdistances-angles-levelling-determination of areas- illustrative examples.

CIVIL ENGINEERING MATERIALS

Bricks -stones-sand -cement -concrete mix design and Quantity computation-steel sections.

BUILDING COMPONENTS AND STRUCTURES:

FOUNDATIONS: Types, Safe Bearing capacity of Soil-Requirement of good foundations.

SUPERSTRUCTURE: Brick Masonry-Stone Masonry-Beams -Columns -Lintels-Roofing-Flooring-Plastering-Mechanics - Internal and External Forces - Load Transformation Mechanism in Structural Elements- Stress - Strain -Elasticity - Types of Bridges and Dams - Basics of Interior Design and Landscaping-Water Supply-Sources and Quality of Water—Rain water harvesting—Introduction to highway and railway.

TEXTBOOKS:

- 1. Basic Civil and Mechanical Engineering, VMU, (2017). CompanyLtd., NewDelhi, 2009.
- 2. Basic Civil and Mechanical Engineering, M.Prabakaran, S.P.Sangeetha, Vemuri Lakshminarayana, Maruthi Publishers, 2017.

P-l-d-=7 Ltd., 2009 puse, 2022.

Ltd., 2009.

3. Reinforced Concrete Structures B.C.Punmia, Vol.1&2,-Laxmi Publications, Delhi, 2004.

REFERENCES:

- 1. Ramamrutham S., "Basic Civil En
- 2. Rangwala S.C and Dalal K.B, Bui

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Dept/College	MailID
1	S.Supriya	Assist.Professor	Civil/VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst.Professor	Civil/AVIT	suriya@avit.ac.in

-g-1.-d-=+

								Catego	rv	L	т	P Credit								
				BASICS F	5 OF MI Engini	ECHANIC EERING	CAL	FC (F	s)	2	0	 								
Preaml	ble			-				FC (E	5)	2	U	U	<u>2</u>							
This co	ourse	provides	a prelin	ninarv kı	nowledg	e of the ap	nlicat	tions of r	nechani	cal engi	neering	in our da	av to day	life						
Prerec	quisit	e-NIL		iiiidi y iti	ie meag		piieu			eur engi			ay to day							
Cours	seOb	jective																		
1		To dem	onstrate	e the pr	inciples	of casting	g and	l metal j	oining	process	es in m	anufact	uring							
2		Underst	tand the	e import	ance an	d uses of	IC E	ngines.	workin	g princi	iples of	IC Eng	ines.							
3		Compre	ehend tł	ne work	ing and	use of va	rious	s power	plants	81	1	0								
	5 Comprehend the working and use of various power plants																			
Cours	ourse Outcomes: On the successful completion of the course, students will be able to																			
CO1.		manufa	cturing									Apply								
CO2.		Demons	strate th	ne opera	ition of	automotiv	/e en	gines an	id impo	ortant		Apply								
CO3		Underst	tanding	the con	structio	n and the	worl	king prin eneratio	nciple o	of		Unders	tand							
005.		convent	lionar a	nu non	eonven	tionui pov		eneratio				Chacis	unu							
Mappi	ng wi	th Progra	amme O	utcomes	s and Pr	ogramme S	Speci	fic Outco	omes											
												PO1	PSO							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	2	1	PSO2	PSO3					
CO1	S	M	S	L	М	-	-	-	-	-	-	-	-	-	-					
CO2	S	М	М	L	L	-	-	-	-	-	-	-	-	-	-					
CO3	S	М	М	L	L	-	-	-	-	-	-	-	-	-	-					
S-Stro	ng; M	-Mediun	n; L-Lov	W																

-g-1- d-=+

BASIC MANUFACTURING PROCESSES

Casting process-Introduction, Principle, Advantages, casting defects Forging process-introduction, forging, rolling, drawing, extrusion Welding process- introduction, principle, types-Gas and arc welding

IC ENGINES

The Importance and uses of Engines-Definition, Classification-I C & E C Engines- two stroke engines - four stroke engines - various parts and functions of I C engines-working of two stroke petrol engine and diesel engine with line sketches - working of four stroke petrol and diesel engines with line sketches - Comparison between two stroke and four stroke engines -S I and C I engines.

POWER PLANT ENGINEERING

Classification of power plants- Working of power plant with line Sketches-Steam power plant-Hydro- electric power plant - Diesel power plant -Nuclear power plant- merits and demerits. Nonconventional energy power plants – solar- wind-tidal- geo thermal, with line sketches- merits & demerits of various non conventional power plants

Text l	Books													
1	Power plant Engineering, by G.R Nagpal													
- -	Internal combusti	on Engines h	u Conecen											
4														
3	Workshop technology vol1, by S K Hajra Choudhury													
Refer	ence Books													
1	Production techno	ology, by P.C	Sharma											
2	Thermal Engineer	ring by R.S.K	hurumi											
3	Power plant Engi	neering, by R	.K Bansal											
Cours	se Designers													
		Designatio	Department/Name of the											
SI.No	Faculty Name	n	College	Emailid										
1	R.MAHESH AP(G-II) MECH/AVIT mahesh@avit.ac.in													

\$-1- d-==

		ENGINEERING GRAPHICS Category L T												Р	Cr	edit
		A	ND DI	ESIGN					F	C- ES	0		0	6		3
Pream	ble											•	ľ	•		
Engine	ering	Graph	ics is	referred	as	langua	ge of	engin	eers. A	An engii	neer no	eeds t	o un	derst	and	the
physica	al geor	netry o	of any	object the	hrou	gh its	orthog	graphic	or pio	ctorial p	rojecti	ons. T	he ki	nowl	edg	e on
engine	ering g	graphic	es is e	ssential	in p	roposi	ng nev	v proč	luct th	rough d	rawing	s and	inter	rpret	ing	data
from ex	xisting	drawi	ngs. T	his cours	se de	eals wi	th orth	ograp	hic and	d pictoria	al proj	ection	s, sec	ction	al v	iews
and dev	velopm	nent of	surfac	es.												
Prerequisite																
NIL C																
Course	Course Objective															
1	To implement the orthographic projections of points, straight lines, plane surfaces and solids.															
2	To construct the orthographic projections of sectioned solids and true shape of the sections.															
3	To develop lateral surfaces of the uncut and cut solids.															
4	To draw the pictorial projections (isometric and perspective) of simple solids.															
5 To draw the orthographic views from the given pictorial view.																
Course Outcomes: On the successful completion of the course, students will be able to																
COL	Exec	ute in	the f	orm of	draw	ving o	f the	orthog	raphic	project	ions o	f poir	nts,	App	oly	
COI.	straig	ght line	es, plai	ne surfac	es a	nd soli	ds.	_	_			_			-	
CO2	Dem	onstrat	te in	the form	n o	f drav	ving c	of the	ortho	graphic	projec	ctions	of	App	oly	
CO2.	sectio	oned so	olids a	nd true s	hape	e of the	e secti	ons.								
CO3.	Deve	lop lat	eral su	urfaces o	f the	solid	section	n and o	cut sec	tion of s	olids.			App	oly	
CO4.	Draw	the p	ictoria	l projecti	ions	(isom	etric ai	nd pers	spectiv	e) of sin	nple sc	olids.		App	oly	
CO5.	Draw	the of	rthogra	aphic vie	ws f	from th	ne give	en picto	orial vi	iew.				App	oly	
Маррі	ng wit	h Pro	gramr	ne Outc	ome	s and	Progr	amme	Speci	fic Out	comes		I			
					Р		3				PO1	PO1	PSC) P	50	PSO
CO	PO1	PO2	PO3	PO4	0	PO6	PO7	PO8	PO9	PO10	1	2	1		2	3
CO1	S	S	L	S	L								L			
CO2	S	S	L	S	L								L			
CO3	S	S	L	S	L								L			
CO4	S	М	L	S	S								L			
CO5	S	S	L	S	L								L			
S- Stro	S- Strong: M-Medium: L-Low															
	3/		/													

Syllabus

PLANE CURVES AND DIMENSIONING

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Dimensioning. Projection of points.

PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section.

Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ORTHOGRAPHIC VIEWS AND ISOMETRIC VIEWS – First angle projection – layout views – Representation of Three Dimensional objects -multiple views from pictorial views of objects.

- p-1- d-=+

Princip	inciples of isometric View – isometric scale – Principles of isometric projection – isometric scale –												
Isometr	ric projections of simple sol	ids and truncated	d solids – Prisms, pyr	amids, cylinders, cones.									
INTRO	DDUCTION TO AUTO C	AD											
Introdu	ction to Auto CAD- Basic i	introduction and	operational instruction	ons of various commands in									
AutoC	AD.												
Limit S	System- Tolerance, Limits, I	Deviation, Actua	l Deviation, Upper D	eviation, Lower Deviation,									
Allowa	owance.												
Prepara	paration of manual parts drawing and assembled sectional views from orthographic part drawings,												
Text B	Books												
1	Natarajan K V, "Engineer	ring Graphics", '	Tata McGraw-Hill P	ublishing Company Ltd. New									
1	Delhi.												
2	K.Venugopal and V.Prab	hu Raja, "Engin	eering Graphics", N	ew Age International Private									
2	Limited.												
3	K.R.Gopalakrishna"Engin	eering Drawing'	' (Vol. I & II), Subha	s Publications, 2014.									
4	Bhatt-N.D"Machine Dra	wing"-Published	by R.C.Patel- Charts	star Book Stall- Anand-									
7	India- 2003												
Refere	nce Books												
1	N.D. Bhat and V.M. Panc	hal, Engineering	Graphics, Charotar P	Publishers 2013									
2	E. Finkelstein, "AutoCAI	O 2007 Bible", W	Viley Publishing Inc.,	2007									
3	R.K. Dhawan, "A text boo	ok of Engineering	g Drawing", S. Chand	l Publishers, Delhi,2010.									
4	DhananjayA.Jolhe, "Engin	neering Drawing	with an Introduction	to AutoCAD", Tata McGraw									
4	Hill Publishing Company	Limited, 2008.											
5	G.S. Phull and H.S.Sandh	u, "Engineering	Graphics", Wiley Pul	plications, 2014.									
Course	e Designers												
S.No	Faculty Name	Designation	Dept / College	Email id									
1	Dr. S. Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in									
2	Dr. N.RajanProfessorMech / VMKVECrajan@vmkvec.edu.in												

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute	Duriation
1.	Engineering Graphics and Design	Prof. Naresh Varma Datla,	IIT Delhi	12 weeks
		Prof. S. R. Kale		
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and Computer Graphics	Prof. Rajaram Lakkaraju	IIT Kharagpur	12 weeks

-g-1.- d-=+

PROGRAMMING FOR PROBLEM SOLVING	Category	L	Т	Р	Credit
	FC- ES	3	0	0	3

PREAMBLE

The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

PREREQUISITE-NIL

COUR	JURSEOBJECTIVES														
1.	To ga	in basi	c know	ledge a	about si	mple a	lgorith	ms for	arithmo	etic and	logical	problems.			
2.	To le	arn ho	w to wi	rite a pi	rogram	, syntax	x and lo	ogical e	errors.						
3.	To un	derstar	nd how	to dec	ompose	e a prob	olem in	to func	tions a	nd synth	esize a	complete	progran	1.	
COUR	SEOU	гсом	ES												
On the	success	ful con	npletior	n of the	course,	studen	ts will	be able	to						
CO1: I	O1: Formulate simple algorithms for arithmetic and logical problems. Understand														
CO2: 7	2: Test and execute the programs and correct syntax and logical errors Apply														
CO3: I	3: Implement conditional branching, iteration and recursion. Apply														
CO4: I	O4: Decompose a problem into functions and synthesize a complete program. Analze														
CO5: U program	D5: Use arrays, pointers, strings and structures to formulate algorithms and Apply ograms														
MAPP	INGW	ITHPF	ROGRA	AMME	OUTC	OMES	ANDP	ROGR	AMM	ESPECI	FICOU	JTCOMES	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	5 S M M M M M S														
S-Stror	ng; M-N	/ledium	; L-Lov	N											

- p-1- d-=+

UNIT – I: INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

UNIT – II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators, bitwise and conditional operators-special operators- operator precedence and associativity- evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

UNIT – III: ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arraysinitialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms-Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functionscall by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

UNIT - IV: STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functionsstring handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of Pointers- functions returning pointers,-Dynamic memory allocation

UNIT – V: STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structures structures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

Course	Designers:							
S.No.	Name of the Faculty	Designation	Department	MailID				
1.	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in				
2.	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in				

\$-1.- d-=+

			BASI	C ELE	ECTRICAL AND ELECTRONICS ENGINEERING LAB ELECTRICAL ENGINEERING							gory	L	Т	Р	Credit
			A. B	ASIC I								ES	0	0	2	1
PREA It is a l types o	MBLE aborate of earthi	ory cou ng met	rse whi hods.	ch fami	iliarizes	the ba	sic elec	etrical w	viring, 1	neasurer	nent of	f elec	etrical	quanti	ties and	1 various
PRER	QUISI	TE – N	IIL													
COUR	SE OF	BJECT	IVES													
1	To le	arn the	resider	ntial wir	ring and	l variou	ıs types	ofelec	trical w	viring.						
2	To measure the various electrical quantities.															
3	To know the necessity and types of earthing and measurement of earth resistance.															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO 1: 1	Implem	ent the	variou	s types	of elect	rical w	iring.					App	oly			
CO 2:]	O 2: Measure the fundamental parameters of AC circuits. Analyze															
CO 3:]	CO 3: Measure the earth resistance of various electrical machineries. Apply															
MAPP	ING V	VITH I	PROGI	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	IME SP	ECIFI	C OI	UTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	D12	PSO1	PSO	2 PSO3
CO1	S	М	L		S								L	М	L	
CO2	S	М	S	S					М				M	М	L	
CO3	L	S	L		S					L			L	М	L	
S- Stro	ng; M-	Mediur	n; L-Lo) W								-				
LIST (OF EX	PERIN	/ /ENTS	\$												
1. R 2. F 3. St 4. M 5. M 6. T REFE 1. L	 LIST OF EXPERIMENTS Residential house wiring using switches, fuse, indicator, lamp and energy meter. Fluorescent lamp wiring. Stair case wiring. Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit. Measurement of energy using single phase energy meter. Types of wiring, Joints and Measurement of resistance to earth of an electrical equipment. REFERENCES Laboratory Reference Manual 															
COUR S No	SE DE	SIGN me of t	ERS bo Foc			Do	signati	on		Dono	rtmont	+		M	ail ID	
1	Dr. R	. Deva	rajan	uity	Profes	sor	SIGHAU	UII		EEE/VI	MKVE		devar	ajan@y	mkvec	.edu.in
2	Dr. G	. Rama	ıkrishna	prabu	Assoc	iate Pro	ofessor			EEE/VI	MKVE		ramal .edu.i	krishna n	prabu@	vmkvec
3	Ms. D	. Saran	ya		Assist	ant Pro	fessor ((Gr-II)		EEE/	AVIT		dsara	nya@a	vit.ac.iı	ı
4	Mr. S.	Prakas	sh		Assist	ant Pro	fessor (Gr-II)		EEE/	AVIT	:	sprak	ash@a	vit.ac.ir	ı

-\$-1- d-=+

		ENGINEERING SKILLS PRACTICES LAB PART B - BASIC ELECTRONICS ENGINEERINGCategoryIFC- ES0										L	ΤΙ	P C	redit
												0	0 2	2	1
PREA This co electro	PREAMBLE This course is to provide a practical knowledge in Basic Electronics Engineering. It starts with familiarization of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects														ects
PRER	QUISI	ΓE – N	il												
COUR	SE OB	JECT	IVES												
1	To far	niliariz	e the el	ectronic	c compo	onents,	basic el	ectroni	c equip	ments an	d solderi	ng techn	iques.		
2	To study the characteristics of Diodes, BJT and FET.														
3	To understand the principles of various digital logic gates.														
4	To understand the concept of basic modulation techniques														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. F	CO1. Familiarize with the fundamentals of soldering techniques. Understand														
CO2. C	CO2. Construct experiments for PN and Zener diode characteristics also determine diode forward and reverse resistance														
CO3. 0	Constru	ct clipp	er and c	clamper	circuit	and ve	rify the	ir volta	ge level	S		Ap	ply		
CO4. (Constru	ct and j	ustify o	peration	n simpl	e voltag	ge regul	ator for	given	Zener die	ode	Ap	ply		
CO5. \	/erify tl	he truth	tables	and cha	racteris	tics of	logic ga	ates (Al	ND, OR	, NOT,		Ap	plv		
	NAND,	NOR,	XOR).												
MAPP	ING W		ROGR				LS ANI		GRAM	ME SPE			DECI	Daoa	DGOO
COS	POI	PO2	PO3	PO4	P05	PO6	PO/	PO8	P09	POIO	POIT	POIZ	PSOI	PSO2	PS03
COI	S	M	-	-	-	-	-	-		-	-	-	M	-	-
CO2	S	М	M	M	-	-	M	-	L	-	-	L	-	M	-
CO3	S	М	M	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	M	-	-
CO5	S	М	-	-	-	-	-	-	L	L	-	L	S	-	L
S- Stro	ng; M-l	Mediun	n; L-Lo	w								<u> </u>	<u>I</u>	1	

Syllabus

LIST OF EXPERIMENTS

1. Practicing of Soldering and Desoldering.

2. Characteristics of PN junction Diode and find the forward and reverse resistance

-g-1.- d-=+

3. Construct and Study simple clipper and clamper circuits

- 4. Characteristics of Zener diode and determine the break down voltage and diode resistance
- 5. Construct and Study simple voltage regulator using zener diode
- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

COURSE DESIGNERS

0001								
S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in				
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in				
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in				
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in				

-9-1- d-=+

		ENGINEERING SKILLS PRACTICE								Catego	ry	L	Т	Р	Credit
		ENGINEERING (Common toAll Branches)										0	0	2	1
PREA Engine ontrain and rei	PREAMBLE EngineeringSkillsPracticeisahands- ontrainingpracticetoMechanical,CivilandMechatronicsEngineeringstudents.Itdealswithfitting,carpentry,sheetmetal and relatedexercises.Also,it willinducethehabit ofselectingright tools, planningthejobanditsexecution														
PRER	REQU	ISITE	150/100 41												
	DSEU	BIEC	FIVES												
1 Tounderstandthebasicconceptsofbuildingcomponents. 2 Toimport hogia Impulled peak out Plumuing and Computer surgices															
2 Toimpart basic knowledgeaboutPlumping and Carpentry works.															
COURSEOUTCOMES															
Onthesuccessfulcompletionofthecourse, students will beable to															
CO1.F	Prepar	ethedif	ferentty	pesoffi	tting a	nd plun	nbing l	ines.					Apply		
CO2.Preparethedifferenttypesofjointsusingwoodenmaterial Apply											Apply				
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O	S PS 2 O3
CO1	S	L	L	L	L	L	L	L	L	L	L	L	-		S -
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L		- M
S-Stro	ng; M	-Mediu	ım; L-L	ow											
SYLL Buildi 1. Plumb 2. 3. 4. Carpe 5. 6. TEXT 1.1	ABUS ings: Stuc bing a Stuc hous Prep Han entryu Stuc Han Stuc Basicc	S lyofplu nd Car ly of pi scholdf waration ds on E usingPo ly of th ds-on-e K	mbingar <u>pentry</u> peline jo ittings. ofplum exercise <u>owerToo</u> e joints exercise	ndcarpo <u>Work</u> binglin on Der b lsonly in roof :Wood	entryco <u>s:</u> s locat esketch monstr : s, door work,jo anual b	ompone ion and hesforv ationof s, wind ointsby	entsofre I functi vatersu Plumb lows an sawing	esidentia ions: val pplyand ingrequi nd furnit g,planniu ofCivil	alandin lves, taj lsewage irement ture. ngandet Engine	dustrial ps, coup eworks. sofhigh- utting. eering, V	building lings, u -risebui /MRF.	gs,Safe nions, 1 ldings.	tyaspe	cts. rs, ell	oows in
COU	RSED	ESIGN	IERS							-					
S.N	No	Nam	eoftheF	aculty		Desigr	nation	Na	meofth	e Colleg	ge		Ma D	ilI	
1		M.Sent	hilkuma	ar		Asst.Pr	ofessor	C C	ivil/ VI	MKVEC	s	enthilk	umar@	vmk	vec.edu.in
2		Dr.D.S	.Vijayar	1	As	sst.Prof	essor	Civil	/AVIT		vij	ayan@	avit.ac	in.	

-\$-1.-d-=+

		EN	GINEI	ERING	G SKI	LLS P	RACT	ICE	Cate	gory	L	Т	Р	Cred	it
			B. B	ASIC ENG	IC MECHANICAL NGINEERING							0	2	1	
Prea Work carpe tools,	mble cshop entry, , plani	is a han foundry ning the	ds-on t and w ob and	raining relding l its ex	g pract relate	tice to ed exer n.	Mecha rcises.	nical Also,	Engine it will	eering induc	studer the	nts. It o habit	leals wi	th fittin ting rig	g, ht
Prer	equisi	te –NIL													
Cour	se Ol	jective													
1	То р	erform t	he prac	tice in	differ	ent typ	bes of f	itting	process	ses.					
2	То е	Γο executive joints using wooden materials.													
3	Тоа	pply in c	lepth k	nowle	dge in	metal	joining	proce	esses.						
4	Tod	To demonstrate the pattern using foundry processes													
т С	100			patter											_
Cour	·se Oi	itcomes:	On th	ie succ	esstul	comp	letion	of the	cours	e, stud	lents v	vill be	able to		
CO1.	Pe	Perform the different types of fitting using MS plate. Apply													r
CO2.	Pr	actice the	e diffei	ent ty	pes of	joints	using w	voodei	n mater	rial				Apply	,
CO3.	De	emonstra	te the o	differe	nt type	es of jo	ints in	metal	by Arc	e Weld	ling			Apply	r
CO4.	Ut	ilize the	differe	ent type	es of g	reen sa	and mo	uld						Apply	,
Man	ning v	vith Pro	gramr	ne Ou	tcome	s and	Progra	mme	Specif	ïc Ou	tcome	s			_
	PC		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
$\frac{col}{col}$	1	102	3 I	4	5	6	7	8	9 M	10	11	12	1 T	2	03
$\frac{CO1}{CO2}$		-		-	-	-	-	-	M	-	-	-		-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	-	L	-	-	-	-	-	M	-	-	-	L	-	-
S- St	rong;	M-Med	ium; I	L-Low											
Sylla	bus														
LIST	OF	EXPERI	MEN	ГS											_
Tee	Fitti			- ~											
Vee -	- Fitti	ig 1g													
Prepa	aration	of a mo	uld for	a sing	gle piec	ce patt	ern								
Prepa	aration	of a mo	uld for	a spli	t piece	patter	'n								
Dove	Lap. Tail	Joint in C	Carpent Carnen	1y trv											
Lap J	oint –	Weldin	g	5											
Butt.	Joint -	- Weldin	g												

-g-1- d-=+
Text B	Text Books											
1	BASIC MECH	ANICAL ENGIN	EERING, LAB MANUAI									
Refere	Reference Books											
1	K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai											
2	NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida											
Course	e Designers											
S.No	Faculty Name	Designation	Department / Name of the College	Email id								
1	V K Krishnan	Associate Professor	Mech / VMKVEC	vkkrishnan@vmkvec.edu.in								
2	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.								

-9-1- d-=+

						_			С	ategory	L	T)	Credit	
		Basi	ic Con	cepts o	of Mec	hatro	nics		(CC	3	0) 3		
PREAM	1BLE	1											I		
This cou	irse is	introd	uce the	e desig	n proce	ess that	is cha	racteriz	zed by	synergis	tic integ	gration	of mec	nanisms,	
sensors,	actua	tors an	d cont	rol to p	erform	comp	lex tas	ks in a	hypoth	netical er	vironm	ent. N	lechatro	nics syster	n
design m	nakes	possib	le to u	ndersta	and the	basic o	lesign	process	s invol	ved in m	echatro	nics, s	election	of sensors	5
and actu	ators,	the in	terface	issues	and co	mmun	ication	proble	ems. D	esign of	a mobil	e robo	ot is intro	duced in t	his
subject t	to illus	strate t	he con	cepts.											
PRERE	QUIS	STE -N	NIL												
COURS	SE OE	BJECT	TIVES												
1 7	To un	derstar	nd the	workin	g of th	e vario	us Mee	chatron	ic com	ponents	•				
2 7	To un	derstar	nd the	knowle	dge in	port co	ompon	ents us	ed in s	ystem m	odeling				
3 7	To gai	in abou	ut Gene	eralized	d Mech	atronio	s Desi	gn Pro	cess.						
4	To lea	rn the	interfa	cing of	f pneur	natic s	ystem v	with PI	LC and	in turn	design a	syste	m.		
5 7	To rea	alize th	e role	of piez	o elect	ric sen	sors an	d actua	ators in	various	applica	tions			
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Apply the knowledge of PLC and different mechatronic components to design a Understand															
system															
CO2. Ar	nalyse	the di	fferent	system	ns and	their m	nechani	isms.							
CO3. De	evelop	the v	alue of	team v	work b	y perfo	rming	in sma	ll grou	ps and ii	mprove	the	App	ly	
commun	nicatio	on skill	ls thou	gh repo	ort writ	ing/lab	record	ls.			_				
CO4.Exp	plain	the des	sign pro	ocess i	nvolve	d in me	echatro	nics					Und	erstand	
CO5. Se	elect th	ne sens	sor and	Actua	tor for	a Mecl	natroni	c appli	cation				App	ly	
CO6 De	velop	a Mec	hatron	ic prod	luct for	the gi	ven pro	oblem					App	ly	
MAPPI	NG V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROG	RAMM	E SPEC	IFIC	OUTC	OMES	
COS I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSO	1 PSO2	PS
															03
CO1 S	S	М	М	М	-	-	-	-	-	-	-	L	M	-	-
CO2 S	S	M	М	L	-	-	-	-	-	-	-	L	S	M	-
CO3 S	S	M	М	-	-	-	-	-	-	-	-	L	S	M	M
CO4 1	M	-	L	М	S	-	L	М	-	-	-	L	М	S	
CO5 S	S	-	L	-	M	-	-	-	S	S	М	L	-	S	M
CO6 5	CO6 S S M M M M M - M M														
S- Strong; M-Medium; L-Low															
SYLLA	BUS														

Introduction to Systems And Design

Mechatronic elements – Integrated design issue in mechatronic – mechatronic key element, mechatronics approach – control program control – adaptive control and distributed system – Design process – Type of design – Integrated product design – Mechanism, load condition design and flexibility – structures – man machine interface, industrial design and ergonomics, information transfer, safety.

Control and Drives

Control Parts – Electro hydraulic control devices, electro pneumatic proportional controls – Rotational drives – Pneumatic motors: continuous and limited rotation – Hydraulic motor: continuous and limited rotation – Motion convertors, fixed ratio, invariant n

Q-1- d-=+

Real Time Interfacing

interfacing system – Introduction, Elements of a data acquisition and Control system, overview of I/O process, installation of I/O card and software – Installation of the application software – over framing.

Case Studies – I

Case studies on data attainment – Testing of transportation bridge surface materials – Transducer calibration system for Automotive application – strain gauge weighing system – solenoid force – Displacement calibration system – Rotary optical encoder – controlling temperature of a hot/cold reservoir – sensors for condition monitoring – mechatronic control in automated manufacturing

Case Studies – II

Case studies on data attainment and Control – thermal cycle fatigue of a ceramic plate – pH control system. Deicing temperature control system – skip control of a CD player – Auto focus Camera. Case studies on design of mechatronic product – pick and place robot – car park barriers – car engine management – Barcode reader.

Text Books

1. Bolton (2015), "Mechatronics – Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Limited, ISBN - 9781292076683.

2. Devdas Shetty, Richard A. Kolkm (2010), "Mechatronics System Design", Cengage Learning, ISBN - 9781439061992.

Reference Books

1. Brian Morriss (1994), "Automated Manufacturing Systems – Actuators Controls, Sensors and Robotics", McGraw-Hill Inc., ISBN - 9780028023311.

2. Bradley, D. Dawson, N.C. Burd and A.J. Loader (1993), "Mechatronics: Electronics in products and Processes", CRC Press, ISBN – 9780748757428.

\$-1- d-=+

COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.K.Boopathy	Asso.Prof	EEE/AVIT	boopathy@avit.ac.in									
2	Dr.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in									

-g-1- d-=+

	ELECTRICAL MACHINERY									Catego	ory L	Т	P C	Credit	
				(TH	EORY	' & PR	ACTI	CALS)		CC	3	0	2	4
PREAM	IBLE This s and ti	s cours	e is co mer.	ncerne	d with	the co	nstruct	tions, c	haracte	eristics	and appl	ication	s of va	rious el	ectrical
PRERE	QUISI	TE			1 0 51		•								
COURS	E OB.	Bas ECTI	$\frac{10 \text{ of } \text{E}}{\text{VES}}$	lectric	al & El	lectron	ics Eng	gineerii	ıg						
1	Tog	ain kn	owledg	ge abou	it the w	orking	; princi	ple, co	nstruct	tion, app	olications	s of DC	C mach	ines	
2	2 To familiarize construction, operation, testing of transformers.														
3	To g	ain kn	owledg	ge abou	it the co	onstruc	ction, o	peratio	on and	applicat	ions of I	nductio	on mac	hines	
4	To g	ain kn	owledg	ge abou	it const	truction	n, princ	ciple of	operat	tion and	perform	ance o	f Alter	nators.	
5	5 To understand the construction, operation of special machines.														
COURSE OUTCOMES															
On the s	uccessf	ful con	npletio	n of th	e cours	e, stud	ents w	ill be a	ble to						
CO1	Expla mach	ain th ines	e con	structio	on, cha	aracter	istics	and aj	oplicat	ions of	DC		Unde	rstand	
CO2	Expla	ain the	funda	mental	s and o	peratic	on of T	ransfor	mer				Unc	lerstand	
CO3	Expla	ain the	types	and op	eration	ofind	uction	motor					Unde	rstand	
CO4	Ident	ify the	parts a	and per	forma	nce of a	alterna	tors					Und	erstand	
CO5	CO5 Explain the construction, and operation of special Machines Understand														
MAPPI	NG W	ITH P	ROGI	RAMN	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	M	M	-	L	-	-	-	M	M	L	S	M	-
CO2	M	S	-	L	L	-	-	L	L	-	S	-	S	M	-
CO3	M	М	M	S	-	-	-	-	-	L	-	L	S	M	-
CO4	S	S	-	M	M	M	L	L	L	-	S	-	S	M	-

-\$-1- d-=+

CO5	S	М	М	М	-	-	-	-	-	L	-	L	-	М	-
0 0		r 1 [.]	тт												

S- Strong; M-Medium; L-Low

SYLLABUS

D.C GENERATORS AND DC MOTORS

Principle of operation of DC Machines- EMF equation – Types of generators – Magnetization and load characteristics of DC generators, DC Motors – Types of DC Motors – Characteristics of DC motors – 3-point starters for DC shunt motor – Losses and efficiency – Swinburne's test – Speed control of DC shunt motor – Flux and Armature voltage control methods.

TRANSFORMERS

Principle of operation of single phase transformer – types – Constructional features – Phasor diagram on No Load and Load – Equivalent circuit, Losses and Efficiency of transformer and Regulation – OC and SC tests – Predetermination of efficiency and regulation.

THREE PHASE INDUCTION MOTOR

Principle of operation of three-phase induction motors – Slip ring and Squirrel cage motors – Slip-Torque characteristics – Efficiency calculation – Starting methods.

ALTERNATORS

Alternators – Constructional features – Principle of operation – Types - EMF Equation – Distribution and Coil span factors – Predetermination of regulation by Synchronous Impedance Method – OC and SC tests.

SPECIAL MOTORS

Principle of operation - Synchronous reluctance motor - Stepper Motors - Switched reluctance motor-AC servomotor-AC tachometers- Shaded pole motors-Capacitor motors – Characteristics

PRACTICE

Experiment on Shunt Motor, Series Motor, Transformer, Induction Motor, Generator

TEXT BOOKS

1. "Introduction to Electrical Engineering "- M.S Naidu and S. Kamakshaiah, TMH Publ.1995

- 2." Basic Electrical Engineering" T.K. Nagasarkar and M. S. Sukhija, Oxford University Press, 2005
- 3. "Electrical Machines" Er. R.K. Rajput, Laxmi Publications, 5th Edition 2016

REFERENCES

- 1. "Theory and Problems of basic electrical engineering" I.J. Nagarath and D.P Kothari, PHI Publications 2016
- 2. "Principles of Electrical Engineering "- V.K Mehta, S. Chand Publications.2008

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-Mail ID									
1	D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in									
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in									

\$-1.- d-=7

SEMICONDUCTOR DEVICES AND CIRCUITS	Category	L	Т	Р	Credit
	CC	3	0	0	3

This is an introduction course to semiconductor devices. The course begins with a discussion on how electron energy bands are formed in semiconductors. It examines the principles and operations of essential semiconductor devices used in today's electronics: diodes, light emitters, bipolar junction transistors and MOSFETs. It includes analysis of small signal model and large signal model of the devices which is the prerequisite for next level courses. This subject helps the students to design, model and develop amplifier circuits, Oscillator circuits, Tuned amplifiers and many other real time application circuits.

PREREQUISITE

Basics of Electrical and Electronics Engineering

COURSE OBJECTIVES									
1	To understand the small signal BJT/FET Models.								
2	Identify the frequency response of BJT and FET.								
3	Apply the basic concept and working of various types of feedback amplifiers and osci	llators.							
4	To understand the working different types of large signal amplifiers.								
5	5 To learn about various types of tuned amplifiers								
COUR	COURSE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1. I voltage	Determine various factors for HWR, FWR and construct Clipper, Clamper and e regulator circuits	Apply							
CO2.D	etermine the characteristics and parameters of BJT and FET in various configuration	Apply							
CO3. I	CO3. Design the voltage divider bias for BJT, FET and justify stability factors. Apply								
CO4. <i>A</i>	CO4. Analyze various parameters of feedback amplifier (voltage series, voltage shunt, Analyze								
current	current series and current shunt) by using simulation tools.								
CO5.A	CO5.Analyze the efficiency of large signal amplifiers and bandwidth of tuned amplifier by Analyze								
ι	using simulation tools.								

- p-1- d-=+

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	М	М	-	_
CO2	S	М	М	М	-	-	-	-	-	-	-	М	М	-	-
CO3	S	S	М	М	-	-	-	-	-	-	-	М	S	L	L
CO4	CO4 S S M M M M S M L														
CO5	S	M	M	M	М	-	-	-	-	-	-	М	S	M	L
S-Str	ong; M	I-Medi	um; L	-Low											

SYLLABUS

SEMICONDUCTOR DIODE AND ITS APPLICATIONS

PN Junction Diode –, Zener Diode- Characteristics -equivalent circuits, Diode current Equation, Light-Emitting Diodes, Half-Wave Rectification, Full-Wave Rectification, Bridge Rectifier, Voltage regulator- Line and Load regulation, Clipper, Clamper, Voltage-Multiplier Circuits,

TRANSISTORS & SPECIAL DEVICES

Transistor: Construction, Transistor Operation and characteristics- CE, CB, CC Configuration -Characteristics of JFETs, Transfer Characteristics, Depletion-Type MOSFET, Enhancement-Type MOSFET. Special Devices: SCR, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFET.

BIASING CIRCUITS & SMALL SIGNAL ANALYSIS

BJT Biasing : Fixed Bias Configurations, Emitter Bias Configuration, Voltage Divider Bias - AC /DC Load line-Operating Point -, Hybrid Equivalent model, stability factor, Small Signal Analysis of CE Amplifier. FET Biasing : Fixed bias, Self bias and Voltage divider bias, FET amplifiers – small signal model and Configurations using multisim simulation tool.

FEEDBACK AMPLIFIERS

Concept of feedback – effects of negative feedback- Input impedance- output impedance, voltage gain, current gain, Types of feedback amplifier-Voltage and Current Series, Voltage and Current Shunt, Gain Bandwidth Product.

POWER AMPLIFIERS & TUNED AMPLIFIERS

Power Amplifier : Class A, Push –Pull Amplifier-Class B, Class C & D amplifiers, Amplifier Distortion, Amplifier Efficiency. Tuned amplifiers: Single tuned, Double tuned, Synchronous tuned amplifiers –Stability of Tuned Amplifiers using multisim simulation tool.

TEXT BOOKS:

1.Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4hEdition, 2015. 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11thEdition, 2013

REFERENCE BOOKS:

David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition,2008.
 D.Roychoudhury and shailB.Jain, —Linear Integrated circuits||, 4th edition, New Age International Pvt.Ltd, 2014.

3. Thomas L. Floyd, "Electronic Devices", 9th edition, Pearson Education, 2011.

\$-1.- d-==

COUR	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1.	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in									
2.	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in									

-g-1.-d-=+

		1	FLUID	MECH	HANIC MAT	S AND	STRE	NGTH	Categ	ory L		Т	Р	Credit	
					IVIA I	CNIAL	20			CC	C	3	0	0	3
PREA	MBLE														
The air Princip	n of the les of fl	course uid stat	is to ur tics and	nderstar dynam	nd the contraction ics.	oncepts	of stre	ss and s	strain and	d their u	ises, to u	nderstar	nd the pro	operties of	fluid,
PRER	EQUIS	ITE – 1	NIL												
COUR	SE OB	JECTI	VES												
1	1 To understand basic mechanical forces acting on rigid and deformable bodies. 2 To be a force of the dimension of the acting of the dimension of the d														
2	To draw shear force and bending moment diagram for various types of beams. To form 1 floating moment diagram for various types of beams.														
3	To for	m defle	ection e	quation	s of bea	ams an	d colun	nns for	different	t end con	nditions.				
4	To understand fluid property and flow characteristics.														
5	5 To understand flow dynamics and measurement.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	Compu [.] ts, Com	te resul pute si	tant, res mple sti	solve se resses a	everal co nd strai	oncurre ns	nt force	es and a	lso to ap	ply equ	ilibrium		Apply		
Co2.	Practice	e shear	force an	nd bend	ling mo	ment co	omputat	tions an	d constr	uct shea	r force a	nd	Apply		
bending	g mome	nt diag	rams	~ .											
Co3. E	valuati	on of be	eam def	lection	and slo	$\frac{\text{pe}}{\alpha \cdot 1}$		1 1	11	1 1 .			Apply	1	
Co4. L	Determini	ne the v	variation	1 of pre	ssure in	fluid a	t rest ar	nd calcu	ilate the	hydrost	atic force	es	Understa	and	
CO5	Disting	uish be	tween v	various	types of	f flows	and der	ive the	continui	ity equa	tion for		Apply		
compre	essible a	nd inco	mpress	sible flo	W										
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROC	GRAMN	AE SPE	CIFIC (OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	М	L	-	-	-	-	-	L	L	-	-
CO2	S	М	М	L	L	L	-	-	-	-	-	М	L	-	М
CO3	S	М	М	L	L	L	-	-	-	-	-	L	-	L	-
CO4	S	S	S	М	L	L	-	L	-	-	L	М	-	-	-
CO5	CO5 M M M L L M L M L M -														
S- Stro	ng; M-N	Aedium	n; L-Lov	W											

Syllabus

STRESS- STRAIN AND DEFORMATION OF SOLIDS

Properties of material, Concept of Stress and Strain, Hook's Law, Stress Strain Diagram for structural steel and Non-ferrous materials. Poisson's Ratio & principles of superposition, Total elongation of tapering bars of circular and rectangular cross-sections. Elongation due to self-weight, volumetric strain. Expression for Volumetric strain, Elastic constants, relationship among elastic constants, compound bars Rigid and Deformable bodies – Strength- Stiffness and Stability – Stresses;

Tensile- Compressive and Shear – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads. **BEAMS - LOADS AND STRESSES**

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever- Simply supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Shear stresses in beams.

- p-1- d-=+

DEFLECTION OF BEAMS

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: Double integration method- Macaulay Method- and Moment-area Method –Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns – Introduction to curved beams.

FLUID PROPERTY AND FLOW CHARACTERISTICS

Surface tension – Capillarity – Viscosity – Newton's law – Fluid pressure and pressure head - Fluid velocity – Uniform and steady flow – Reynolds number - Classification as laminar and turbulent flow – Continuity equation.

FLOW DYNAMICS AND MEASUREMENT IN PIPE NETWORKS

Euler's and Bernoulli's Equations - Manometer, Venturi meter and orifice meter - Pressure losses along the flow -

Categorisation into minor losses - Flow through circular pipes – Statement of Darcy – Weisbach equation – Friction factor – Pipes in series and parallel - Hydraulic gradient

Text Books

1. R. K. Rajput, 'Strength of Materials (Mechanics of Solids)', S. Chand & Company Ltd., 2003.

2. R.K., Bansal, A text book on Fluid Mechanics & Hydraulic Mechanics, - M/s. Lakshmi Publications (P) Ltd, 2004. Reference Books

- 1. Ryder G.H- "Strength of Materials"- Macmillan India Ltd.- Third Edition- 2007
- 2. K. L. Kumar, 'Engineering Fluid Mechanics', S. Chand & Company Ltd., 2002.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr.R.Divahar Asso. Professor		Civil / AVIT	divahar.civil@avit.ac.in

- p-1- d-=+

ANALOG AND DIGITAL CIRCUITS	Category	L	Т	Р	Credit
(Theory and Practicals)	CC	3	0	2	4

One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent of integrated circuits(ICs).Developments in the IC technology have made it possible to fabricate complex digital circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques suitable for a variety of digital system design applications.

PREREQUISITE

Semiconductor Devices And Circuits

COUI	COURSE OBJECTIVES							
1	To understand the small signal BJT/FET Models							
2	2 To learn about various compound configurations of multivibrators							
3	3 To impart the design knowledge of various combinational logic circuits and sequential circuits							
4	To understand the basics of hardware descriptive language							
5	To design the various sequential logic circuits							
COUI	COURSE OUTCOMES							
On the	On the successful completion of the course, students will be able to							
CO1. oscilla	Apply the basic concept and working of various types offeedback amplifiers and tors.	Apply						
CO2.]	Design different multivibrators & compound Configurations Circuits.	Apply						
CO3.	CO3. Apply the principles of Boolean algebra to manipulate and minimize logicexpressions Apply							
CO4. D	CO4. Design various combinational logic circuits (adder, subtractor, multiplexer and coders, Analyze							
etc.,)								
CO5.I	Design various sequential circuits using flip flops (counters, shift registers, etc.,)	Analyze						

-g-1.- d-=+

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	М	-	-	-	-	-	-	-	-	М	М	-	_
CO2	S	M	М	М	-	-	-	-	-	-	-	М	М	L	-
CO3	S	M	М	М	Μ	-	-	-	-	-	-	М	S	M	-
CO4	S	S	М	Μ	-	-	-	-	-	-	-	М	S	M	-
CO5	S	S	М	S	-	-	-	-	-	-	-	М	S	M	L
a a.			•	-											

S- Strong; M-Medium; L-Low

SYLLABUS

OSCILLATOR CIRCUITS

Concept of feedback – effects of negative feedback-Barkhausen Criterion – Oscillator Circuits: Oscillator Principles – LC oscillators – Hartley oscillator, Colpitts Oscillator, Clapp Oscillator, RC Phase shift oscillators, Sweep oscillator-Wein Bridge Oscillator-Crystal oscillators - Demonstration With Relevant Experiments

COMPOUND CONFIGURATIONS AND MULTIVIBRATORS

Introduction, Cascade Connection, Cascode Connection, Darlington Connection, Differential Amplifier Circuit, CMRR, Schmitt Trigger. Multivirators- Astable – bistable – Monostable-- Demonstration With Relevant Experiments

BOOLEAN ALGEBRA, LOGIC GATES & GATE –LEVEL MINIMIZATION:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable Kmaps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL)- - Demonstration With Relevant Experiments

COMBINATIONAL LOGIC

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder,

Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers-- Demonstration With Relevant Experiments

SYNCHRONOUS SEQUENTIAL LOGIC, REGISTER & COUNTERS

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters-- Demonstration With Relevant Experiments

Text Books:

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,4thEdition, 2015.
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11thEdition, 2013
- Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
 John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall,2005.

Reference Books:

1. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.

\$-1- d-=

2. D.Roy choudhury and shail B.Jain, -Linear Integrated circuits, 4th edition, New Age International Pvt.Ltd, 2014.

3. Thomas L. Floyd, "Electronic De Vranesic, "Fundamentals of Digital Logi , 2011. Stephen D. Brown, and Zvonko IcGraw Hill, June, 2007.

4. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.

COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID					
1	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in					
2.	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in					

-9-1- d-=+

		SENSORS AND ELECTRONIC MEASUREMENT						NTS .	Categor	y L	Т	P C	Credit		
			ENSU	NG ANI	JELL			LASUI		115	CC	3	0	0	3
PREAD The comeasur The electron be	PREAMBLE The course is designed with the introduction of electronic instrumentation and with an overview of Electronic measurement principles, the physical principles and electrical characteristics for several common instrument transducers. The electronic signal-conditioning circuits required to convert the electrical changes in the transducers to signal which can be interpreted accurately by a microprocessor or embedded controller, are analyzed and designed.														
PREREQUISITE – Nil															
COURSE OBJECTIVES															
1	1 To understand the measuring methods and instruments of electrical quantities.														
2	To unc	lerstanc	l, desigr	1 aspect	s and pe	erforma	nce crite	erion of	measuri	ing instru	ments.				
3	To und	lerstanc	l the wo	orking p	rinciple	of vario	ous tran	sducers.							
4	To aware the students about the different types of sensors.														
5 To understand about Data aquisitions.															
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1.	Unders	tand op	eration	of diffe	rent ins	trument	s • • •						Unde	erstand	
CO2.	Disting	uish be	tween t	he analo	og and d	ligital m	neters						Unde	erstand	
CO3.	Identify	y the in	dustrial	and lab	oratory	applicat	tions of	instrum	ents				Appl	у	
CO4.	Perfor	m expe	riments	to deter	mine va	arious ty	pes of o	errors in	measur	ements •)		Anal	yze	
CO5.	Practic	e for d	esign of	testing	and me	asuring	set up f	or elect	ronic sy	stems			Anal	yze	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	M L M M L M										М		М		
CO3	S M L S S M M M M M M										M	М			
CO4	S	S	L	S		S	М	М	S			М	S	M	М
CO5	S	S	L	S		S	М	M	S			S	S	М	М
S- Stro	ng; M-N	/ledium	n; L-Lov	W	I						ı – – – – – –		1	1	1

SYLLABUS

INTRODUCTION:

Basics of Measurements: Accuracy, Precision, resolution, reliability, repeatability, validity, Errors and their analysis, Standards of measurement. Bridge Measurement: DC bridges- wheatstone bridge, AC bridges – Kelvin, Hay, Maxwell, Schering and Wien bridges, Wagner ground Connection. Electronic Instruments for Measuring Basic Parameters: Amplified DC meter, AC Voltmeter, True- RMS responding Voltmeter, Electronic multi-meter, Digital voltmeter,

- p-1. - d-=+

Vector Voltmeter.

DISPLAY AND RECORDING DEVICES

Oscilloscopes: Cathode Ray Tube, Vertical and Horizontal Deflection Systems, Delay lines, Probes and Transducers, Specification of an Oscilloscope. Oscilloscope measurement Techniques, Special Oscilloscopes – Storage Oscilloscope, Sampling Oscilloscope. Signal Generators: Sine wave generator, Frequency – Synthesized Signal Generator, Sweep frequency Generator. Pulse and square wave generators. Function Generators.

SIGNAL PROCESSING:

Signal Analysis: Wave Analyzer, Spectrum Analyzer. Frequency Counters: Simple Frequency Counter; Measurement errors; extending frequency range of counters Transducers: Types, Strain Gages, Displacement Transducers.

PHOTOELECTRIC AND PIEZOELECTRIC SENSORS

Phototube, scintillation counter, Photo Multiplier Tube (PMT), photovoltaic, Photo conductive cells, photo diodes, phototransistor, comparison of photoelectric transducers, spectrophotometric applications of photo electric transducers. Piezoelectric active transducer and biomedical applications as pressure and Ultrasound transducer.

DATA ACQUISITION TECHNIQUES:

Digital Data Acquisition System: Interfacing transducers to Electronics Control and Measuring System. Instrumentation Amplifier, Isolation Amplifier. An Introduction to Computer-Controlled Test Systems.IEEE-488 GPIB Bus

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Modern Electronics Instrumentation & Measurement Techniques, by Albert D.Helstrick and William D.Cooper, Pearson Education. Selected portion from Ch.1, 5-13.
- 3. Elements of Electronics Instrumentation and Measurement-3rd Edition by Joshph J.Carr.Pearson Education. Selected portion from Ch.1,2,4,7,8,9,13,14,18,23 and 25.

Reference Books : 3. Electronics Instruments and Instrumentation Technology – Anand, PHI 4. Doebelin, E.O., Measurement systems, McGraw Hill, Fourth edition, Singapore, 1990.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.Lakshmi Shree B	Assistant Professor	BME	Lakshmishree.bme@avit.ac.in

- p-1- d-=+

CONTROL SYSTEMS	Category	L	Т	Р	Credit
CONTROL STOTEMS	CC	3	0	0	3

This course shall introduce the analysis and regulation of the output behaviors of dynamical systems subject to input signals. The course focuses primarily on using Laplace and frequency-domain techniques. The course will be useful for students from major streams of engineering to build foundations of time/frequency analysis of systems as well as the feedback control of such systems. At the end of this course, one should possess in-depth knowledge of concepts from classical control theory, understand the concept of transfer function and use it for obtaining system response, analyze dynamic systems for their stability and performance, and design controllers (such as Proportional-Integral-Derivative) based on stability and performance requirements.

PREREQUISITE

Differential Equations and Transforms

COURS	E OBJ	ECTI	VES												
1	Unde	Understand the feedback and feed-forward control; apply representations of control systems.													
2	To find time response of given control system model, various controllers design and simulation using MATLAB.														
3	To understand the frequency domain analysis, use of frequency response methods for open loop and closed loop control systems.														
4	To ar	nalyze	the sta	bility o	of syste	ems usi	ng var	ious m	ethods	and to c	lesign c	compens	ators.		
5	To de	evelop	and ar	nalyze	the stat	e spac	e mode	els.							
COURS	E OUT	ГСОМ	IES												
On the su	he successful completion of the course, students will be able to														
CO1	Find '	Transf	er func	tion of	f syster	ns.								Unders	stand
CO2	Find	the tin	ne resp	onse o	f giver	o contro	ol syste	em moo	del and	l to desig	gn a coi	ntroller.		Create	
CO3	Find	the fre	quency	/ respo	nse of	control	l syster	n mode	el using	g freque	ncy res	ponse p	lots.	Analyz	ze
CO4	Analy	yze the	stabili	ity of t	he con	trol sys	stem ar	nd desig	gn the	suitable	compe	nsators.		Create	
CO5	Apply	y state	space	technic	ques to	model	contro	ol syste	ms.					Evalua	te
MAPPIN	IG WI	TH P	ROGF	RAMM	IE OU	TCOM	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	М	-	-	-	-	-	М	М	S	М	-
CO2	S	Μ	-	Μ	S	-	-	Μ	-	-	-	Μ	S	М	S
CO3	S	M	-	M	S	-	-	-	-	-	-	M	S	M	-
CO4	S	<u>S M - M S - M M M S M S</u>													
CO5	<u>S M - M S L L - M - M M S M -</u>														
S- Strong	S- Strong; M-Medium; L-Low														

- for- 1- ===

SYLLABUS

INTRODUCTION TO CONTROL SYSTEMS

Basic elements in control systems – classifications of control systems – Mechanical Translational and Mechanical Rotational Systems, Electrical analogy– Transfer function – Block diagram reduction techniques – Signal flow graphs.

TIME RESPONSE ANALYSIS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control. Design and Simulation of time domain analysis using MATLAB.

FREQUENCY DOMAIN ANALYSIS

Frequency response analysis, Frequency domain specifications, Correlation between time and frequency responses, Bode Plot, Polar Plot, Constant M and N circles, Nichols chart, Design and Simulation of frequency domain analysis using MATLAB.

STABILITY ANALYSIS AND COMPENSATOR DESIGN

Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis, Introduction to Root-Locus Techniques, Guidelines for sketching root locus, Nyquist stability criterion. Cascade Lag compensation, cascade Lead compensation and cascade Lag-Lead compensation

STATE VARIABLE ANALYSIS, AND APPLICATION OF CONTROL SYSTEMS

Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, Equivalence between transfer function and state variable representations, Digital control design using state feedback. Synchros – AC servomotors- DC Servo motors.

TEXT BOOKS

K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003.
 I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.
 C.J.Chesmond. "Basic Control System Technology", Viva low priced student edition, 1998.
 R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley, 1995 (MATLAB Reference).
 M. Gopal, "Control Systems: Principles and Design", 3rd Edition, McGraw, Hill, 2008
 Nise N.S, "Control Systems Engineering", 6th Edition, Wiley India, 2016.

REFERENCES

1. Benjamin C Kuo, "Automatic Control system", Prentice Hall of India Private Ltd., New Delhi, 2009.

2. R.C. Dorf and R.H. Bishop, "Modern Control Systems", 12th Edition, Prentice, Hall, 2010.

3. http://www.mathworks.com/access/helpdesk/help/toolbox/control/

4. Control Systems - N. K. Sinha, New Age International (P) Limited Publishers.

5. S.N.Sivanandam, S.N.Deepa, Control System Engineering using Mat Lab, 2nd Edition, Vikas Publishing, 2012.

COURS	COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	e-mail id							
1	D.SARANYA	Assistant Professor	EEE / AVIT	dsaranya@avit.ac.in							
		(Gr-II)									
2	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in							

\$-1.- d-=+

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength – rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF BOLTED AND WELDED JOINTS

Threaded fasteners – Design of bolted joints – Design of welded Joints for pressure vessels and structures-Theory of Bolted joints

DESIGN OF SPRINGS

Design of helical, leaf and torsional springs under constant loads and varying loads.

DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types – Design of journal bearings calculation ofbearing dimensions- Design of flywheels involving stresses in rim and arm.

Text Books

- 1. Design of Machine Elements-V.B.Bhandari
- 2. Mechanical Engineering Design: Joseph E Shigley and Charles R. Mischke

Reference Books

- 1. Machine Design: Robert L.Norton, Pearson Education, 2001
- 2. Design of Machine Elements-M.F.SPotts, T.E.Shoup, pearsonEdn, 2006.
- 3. Fundamentals of Machine component Design-Robert C.Juvinall, Wiley India Pvt.Ltd, 3rdEdn, 2007.
- 4. Design Data PSG College of Technology, DPV Printers, Coimbatore, 2012.
- 5. P.C.Sharma&D.K.Aggarwal, A Text Book of Machine Design, S.K.Kataria& Sons, New Delhi, 12th edition, 2012 .

Alternative NPTEL/SWAYAM Course – Nil

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
	-	-	-	-

Course	Course Designers									
S.No	Faculty Name	Designation	Department/Name of the College	Email id						
1	R.Venkatesh	Assistant Professor	MECH/VMKVEC	venkatesh@vmkvec.edu.in						
2	J. Senthil	Associate Professor	MECH/AVIT	jsenthil@avit.ac.in						

- p-1- d-=+

	ENGINEERING	Category	L	Т	Р	Credit
	METROLOGY AND MEASUREMENTS (Theory and Practicals)	CC	3	0	2	4
reamble						•

The aim of the subject is to provide basic knowledge in instrumentation and measurements. Familiarization with basic concepts and different instrumentation and measurement strategies being usedin practice.

Prerequisite NIL

Cours	e Ob	ject	tive	S	

1	To appl	To apply the fundamentals of basic engineering measurement system.													
2	To und	erstanc	d the v	variou	s instr	ument	s used :	for lin	ear, a	ngular	measu	rement	, form		
2	measur	ement	and s	urface	e finis	h									
	To appl	y the l	knowl	edge	of diff	erent r	neasuri	ng ins	strume	ents lik	e linea	r, angu	lar		
3	measurement, form measurement and surface finish														
	To understand the principle, concepts, applications and advancements of temperature, pressure														
4	4 and flow measurements														
	To use information to classifications, working and processes of optical measuring														
5	instruments, also to acquire the data and store in computer														
Course	e Outco	Dutcomes: On the successful completion of the course, students will be able to													
	Explain the sensitivity of the instruments by evaluating the error in														
CO1	1.measurementsUnderstand														
	Dise	cuss th	e wor	king	orinci	ole and	l usage	ofva	rious i	nstrum	ents u	sed for			
CO2	. line	ar, ang	gular r	neasu	remer	it, forn	n meas	ureme	ent and	l surfac	e finis	h	1	Underst	and
	Den	nonstra	ate the	e vari	ous se	tups us	sed for	measi	uring l	linear,					
CO3	. ang	ular m	easure	ement	, form	i measi	uremen	t and	surfac	e finisl	n			Appl	у
	Det	ermine	e the a	pprop	oriate i	instrun	nents fo	or tem	peratu	re, pre	ssure a	ind			
CO4	. flov	v meas	urem	ents						· 1				Appl	у
	Exp	lain th	e app	licatio	on orie	ented k	nowled	lge in	the us	se of					•
CO5	. opti	cal me	easurii	ng ins	trume	nts		0					1	Underst	and
Mapp	ing wit	th Pro	gram	me O	utcon	nes an	d Prog	ramn	ne Spe	ecific (Jutcon	nes			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

S

S

S

S

L

S

Μ

Μ

Μ

Μ

S

L

L

L

SYLLABUS

CO2

CO3

CO4

CO5

BASIC PRINCIPLES & LINEAR / ANGULAR MEASUREMENT

_

_

_

_

Basic principles of measurement - Generalized measuring system - Characteristics of measuring instruments, Static and Dynamic characteristics - Precision, Accuracy, Sensitivity, Repeatability, Reproducibility, Linearity, Errors -sources of error, classification and elimination of error-Calibration. Linear and angular Measurements: Vernier – Micrometer - Slip gauges and classification - Optical flats - Limit gauges - Comparators: Mechanical - Pneumatic and Electrical types applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker - Taper measurements.

_

_

_

_

-

_

_

_

_

_

_

_

L

L

L

_

_

_

DISPLACEMENT, SPEED & ACCELERATION / VIBRATIONMEASUREMENT

Q-1- d-=+

MICROCONTROLLERS AND	Category	L	Т	Р	Credit
EMBEDDED SYSTEMS	CC	3	0	0	3

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development inVLSI technology, microcontrollers evolvewhichfunctionsimilartomicroprocessorsbutthey havemostoftheperipherals built on-chip. This course makes the students to be familiar with the architecture and programming ofMicrocontrollers.ThiscoursealsointroducesthearchitectureandhardwarefeaturesofPIC16F877andARM7(LPC2148)mi crocontrollers.

PRER	EQUIS	ITE–Ni	il												
COUR	SEOB.	JECTIV	VES												
1	Tolea	rntheco	nceptso	fmicroj	process	orsandl	knowle	dgeofin	terfacii	ngdevice	s.				
2	Tostu	dytheA	rchitect	ureof80	51mic	rocontr	oller								
3	Todevelopskillinsimpleprogramwritingofmicrocontroller														
4	Tostuc	lytheint	erfacing	g andap	plicatio	onsofm	icrocon	troller							
5	Tostuc	lythe co	oncepts	of Emb	edded	System	s.								
COUR	SEOU	ГСОМ	ES												
Onthes	uccessf	ul comp	oletiono	fthecou	rse, stu	dentsw	ill beat	ole to							
CO1.E	xplainth	neconce	ptofmic	roproce	essoran	dinterfa	acingde	vices.					Unc	lerstand	
CO2.E	xplainth	earchite	ecturear	dfunct	ionof8()51mic	rocontr	oller					App	oly	
CO3.D	3.Designandimplementprogramson8051Microcontroller Analyze														
CO4.D	esignan	dimpler	nentapp	olication	nsusing	,8051M	licroco	ntroller					Ana	ılyze	
CO5. E	Explaint	hearchit	tecturea	ndfunct	tionof I	Embedd	led Sys	tems					App	oly	
MAPP	INGW	ITHPR	OGRA	MME	DUTC	OMES	ANDP	ROGR	AMMI	ESPECI	FICOU	ГСОМІ	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
															0
<u> </u>	C	0			м							M	0	C	3
001	S	S	M	-	M	-	-	-	-	-	-	M	S	S	8
CO2	S	S	S	-	M	-	-	-	-	-	-	M	S	M	M
CO3	S	M	M	-	M	M	-	-	-	-	-	M	S	S	M
CO4	S	S	M	-	M	M	-	-	-	-	-	M	S	S	M
CO5	S	M	S	М	M	M	-	-	-	-	-	M	S	M	M
S-Stron	ng:M-M	edium:	L-Low												

- p-1- d-=+

SYLLABUS INTEL8086MICROPROCESSOR&I/OINTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes –Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simpleprograms-ProgrammablePeripheralInterface8255–ProgrammableCommunicationInterface8251USART– ProgrammableInterruptController8259A–DirectMemoryAccessController8257-

Programmable Interval Timer 8253 Keyboard/Display Controller 8279.

INTEL8051MICROCONTROLLER

Introduction to 8bit microcontroller-architecture of 8051-Signal descriptions of 8051-Role of PC and DPTR-Flagsand PSW-CPU registers- Internal RAM & ROM-Special Function Register-Counter & Timers-Serial Communication.

ASSEMBLYLANGUAGEPROGRAMOFINTEL 8051

Interrupt-Addressing Mode-Data Transfer Instruction-Arithmetic Instruction-Logical Instruction-Call Instruction-I/O Port Programming.

INTERFACINGANDAPPLICATIONOFINTEL 8051

LCD Interfacing-A/D and D/A Interfacing-Sensor Interfacing-Relays and Opt isolators-Stepper Motor Interfacing-DCMotor Interfacing.

INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems –Structural units in Embedded processor, selection of processor & memory devices- DMA — Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging

Text Books:

- 1. MuhammadAliMazidiandJanicaGilliMazidi,The8051microcontrollerandembeddedsystems,PearsonEducation ,5thIndian reprint, 2003.
- 2. Frank D.Petruzella. "ProgrammableLogicControllers", McGraw-HillBook, Company, 1989
- 3. Raj Kamal, "Embedded Systems-Architecture, Programming and Design", TataMcGraw-Hill,2011.

Reference Books:

- 1. B.P.Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. EmbeddedControllerHandbook, IntelCorporation,USA.
- 3. MicrocontrollerHandBook, INTEL, 1984.
- 4. AjayV.Deshmukh,"Microcontrollers-Theoryandapplications", TataMcGraw-Hill, publisher, 2005.

\$-1.- d-=+

COUI	RSEDESIGNERS			
S.No.	Name of	Designation	Department	MailID
	theFaculty			
1	Dr.R.Ramani	AssistantProfessor	ECE	ramani@vmkvec.edu.in
2	Mr.G.Sureshkumar	AssistantProfessor	ECE	sureshkumar@vmkvec.edu.in
3	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in

-g-1.-d-=+

	COMPUTER	Category	L	Т	Р	Credit
	INTEGRATED MANUFACTURING					
	(Theory and Practicals)	CC	3	0	2	4
Preamble	·· · ·					
The students con	npleting this course are expected	l to understa	and the nat	ure and	l role of con	nputers in
manufacturing.	The course includes computer aid	ded design,	fundament	als of (CNC machir	nes,
programming of	CNC machines, group technolog	gy, compute	er aided pro	ocess p	lanning tech	iniques,
shop floor contr	ol and flexible manufacturing sys	stems. It exp	poses the s	tudents	to various of	current
trends followed	in the industries	-				
Prerequisite						
NIL						
Course Objecti	VAS					

Course Objectives

1 Demonstrate basics of CAD/CAM/CIM concepts.

2 To apply geometric modelling techniques and various graphics standards in CAD.

3 Illustrate with tooling and fixtures in CNC programming and machining.

4 Demonstrate part programs and group technology techniques.

5 Discuss latest advances in the manufacturing perspectives.

5 0	5 Diseuss latest advances in the manufacturing perspectives.														
Course	Course Outcomes: On the successful completion of the course, students will be able to														
CO1	Unde	rstand	basic	conc	ept of	CAD	CAM/	CIM					Uno	derstand	1
	Utiliz	e CAD	stand	ards f	or geoi	metrica	l model	ling. I	Demor	nstrate	Solid n	nodelli	ng		
CO2	techn	iques.											Apj	oly	
CO3	Interp	nterpret and demonstrate complex programs for CNC machining centers Apply													
	Apply group technology concept in manufacturing product. Make use of														
CO4	FEA	EA concept for analysis. Apply													
	Expla	Explain FMS and CIM wheel for manufacturing industry, discuss the latest													
CO5	advar	nces in	the n	nanuf	acturi	ng pers	spective	es.	_	-			App	oly	
Mappi	ng wit	h Pro	gram	me O	utcon	nes an	d Prog	ramn	ne Sp	ecific (<u>)utcon</u>	ies			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	М	Μ	-	-	-	-	-	-	-	L	Μ	-	-
CO2	S	Μ	М	Μ	-	-	-	-	-	-	-	L	Μ	-	-
CO3	S	Μ	Μ	Μ	-	-	-	-	-	-	-	L	Μ	-	-
CO4	S	М	Μ	Μ	-	-	-	-	-	-	-	L	Μ	-	-
CO5	S	S M M M L M													
S- Strong	; M-Me	edium;	L-Lov	v			_								

SYLLABUS

INTRODUCTION

Definition and scope of CAD/CAM- Computers in industrial manufacturing, design process-Computer Aided Design (CAD)-Computer Aided Manufacturing (CAM)-Computer Integrated Manufacturing (CIM) - Introduction to Computer graphics -Raster scan graphics-Co-ordinate systems.

GRAPHICS AND COMPUTING STANDARDS

Data base for graphic modeling-transformation geometry-3D transformations –Clipping-hidden line removal-Colour-shading-Standardization in graphics- Open GL Data Exchange standards – IGES, STEP - Graphic Kernal system (GKS). Geometric construction methods-Constraint based modeling- Wireframe, Surface and Solid – Parametric representation of curves, solids & surfaces.

\$-1- d-=+

CNC MACHINE TOOLS

Introduction to NC, CNC, DNC - Manual part Programming – Computer Assisted Part Programming – Examples using NC codes- Adaptive Control – Canned cycles and subroutines – CAD/ CAM approach to NC part programming – APT language, machining from 3D models.

GROUP TECHNOLOGY & FEA CONCEPTS

Group technology-coding-Production flow analysis-computer part- programming-CAPP implementation techniques. Nodes -Meshing – Pre and Post processing – Modal analysis – Stress analysis – Steady state and Transient analysis.

AUTOMATED MANUFACTURING SYSTEMS

Flexible Manufacturing systems (FMS) – the FMS concepts – transfer systems – head changing FMS – Introduction to Rapid prototyping, Knowledge Based Engineering, Virtual Reality, Augmented Reality –automated guided vehicle-Robots-automated storage and retrieval systems - computer aided quality control-CMM-Non contact inspection methods.

LIST OF EXPERIMENTS

- 1. 2D Geometry Splines
- 2. Surface Modelling NURBS
- 3. Solid Modelling-CSG, Brep.
- 4. Preparing solid models for analysis-Neutral files
- 5. Real time component analysis-STRESS, STRAIN Analysis.
- 6. Model analysis of different structures.
- 7. Tolerance analysis of any mechanical component.
- 8. CNC Milling program involving linear motion and circular interpolation
- 9. CNC Milling program involving contour motion and canned cycles
- 10. CNC Milling program involving Pocket milling.
- 11. CNC Turning program involving turning and facing
- 12. CNC Turning program involving Step turning, Taper turning and Grooving
- 13. CNC Turning program involving Fixed/Canned cycles& Thread cutting cycles
- 14. Diagnosis and trouble shooting in CNC machine
- 15. Route sheet generation using CAM software.
- 16. Generation of CNC programming and machining using Master Cam/Edge Cam.

Text Books

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated
- 2. Radhakrishnan P, Subramanyan.S. andRaju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.
- 3. P.N.Rao, CAD/CAM: Principles and Applications-3rd Edition, Tata McGraw Hill, India, 2010.

Reference Books

- 1. Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill.
- 2. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International
- 3. David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.
- 4. Roger Hanman "Computer Integrated Manufacturing", Addison Wesley
- 5. Viswanathan.N, Narahari.Y "Performance Modeling& Automated Manufacturing systems" Prentice hall of indiapvt. Ltd.

Alternative NPTEL/SWAYAM Course

S.No	NPTEL /SWAYAM Course Name	Instructor	Host Institution	Duration
		Prof. J. Ramkumar,		
1	Computer Integrated Manufacturing	Prof. Amandeep Singh	IIT Kanpur	12 weeks

\$-1.- d-=+

Course	e Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Dr.L.Prabhu	Associate Professor	MECH/ AVIT	prabhu@avit.ac.in
		Assistant Professor-		
2	S.Prakash	II	MECH/ AVIT	prakash@avit.ac.in
3	M.Saravanan	Associate Professor	MECH/VMKVEC	saravanan@vmkvec.edu.in

-9-1- d-=+

ROBOTICS AND AUTOMATION	Category	L	Т	Р	Credit
	СС	3	0	0	3

Robotics is the applied science of motion control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications). Robotics, sensors, actuators and controller technologies are continuously improving and evolving synergistically. In the 20th century, engineers have mastered almost all forms of motion control and have proven that robots and machines can perform almost any job that is considered too heavy, too tiring, too boring or too dangerous and harmful for human beings. This course supports the students to design and develop multi-DOF manipulator and wheeled mobile robot.

PREREQUISITE -

COU	RSE O	BJEC	TIVES	5											
1	To U	ndersta	nd the	actuate	ors use	d in rob	otic mar	nipulator	s and in	dicate th	neir adva	antages	and limi	tations.	
2	To ap robot	ply the	e forwa	rd kine	ematic	model o	f multi-	degree o	of freedo	om to dev	velop a	robot arı	n and w	heeled	
3	To ap	ply a s	tatic fo	orce and	d dynai	mic mod	lel of tw	o degre	es of fre	edom to	develop	o robot a	ırm		
4	To ap kinen	ply a s	tep-by- onstrain	-step pi nts	rocedu	re for th	e genera	ation a c	ubic pol	ynomial	trajecto	ory for a	joint wi	th specif	fied
5	5 To apply and develop a program for point-to-point applications														
COU	COURSE OUTCOMES														
On the	e succe	essful c	omplet	ion of	the cou	urse, stu	dents wi	ill be abl	le to						
CO1.	CO1. Describe the working of the subsystems of robotic manipulator and wheeled mobile robot Understand														
CO2.	CO2. Develop the forward kinematic model of multi-degree of freedom (DOF) manipulator and Apply inverse kinematic model of two and three degrees of freedom planar robot arm and wheeled robot														
CO3.	Develo	op the s	static fo	orce an	d dyna	mic moo	del of tw	vo degre	es of fre	edom pl	lanar rol	oot arm		Ap	ply
CO4.	Genera kinerr	ate a tra natic co	ajectory	y in joi its of n	nt spac nulti-de	e using gree of	polynor freedon	nial and 1 (DOF)	trigono manipu	metric fi lator	unctions	with gi	ven	Ap	ply
CO5.]	Develo alletizi	op a off ing, som	fline ro rting ar	bot pro 1d insp	ogram f	for point of work	t-to-poir -parts	nt applic	ations su	uch as pi	ick and	place,		Ap	ply
MAP	PING	WITH	PRO	GRAM	IME C	UTCO	MES A	ND PRO	OGRAN	AME SI	PECIFI	C OUT	COMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	L	-	S	М	
CO2	S	L	Μ	-	-	-	-	-	-	-	М	-	S	М	
CO3	S	L	Μ	-	-	-	-	-	-	-	М	-	S	М	
CO4	S	L	Μ	-	-	-	-	-	-	-	Μ	-	S	М	

\$-1.- d-=+

CO5	S	L	М	-	-	-	-	-	-	-	М	-	S	М	
S- Str	ong; M	-Medi	um; L-	Low											

SYLLABUS

Introduction to Robotics. Mechanical structure: Robot Configuration - Robot Anatomy, Sub-systems/ Elements of Industrial Robot - Performance characteristics of industrial Robots. Mobile robot locomotion: Introduction, key issues for locomotion, wheeled locomotion-wheel design, geometry, stability and controllability. Applications - Progressive advancement in Robots – Point to point and continuous motion applications - Mobile manipulators and its applications.

Kinematic model - Forward Kinematics for two DOF manipulator – Algebraic method, Mechanical structure and notations, Coordinate frames, Description of objects in space, Transformation of vectors, Fundamental rotation matrices (principal axes and fixed angle rotation) Description of links and joints, Denavit- Hartenberg (DH) notation, Forward Kinematics for multi-Degrees of Freedom (DOF) manipulator. Inverse kinematics of 2R, 3R manipulator - Manipulator workspace. Mobile Robot kinematics: kinematic model and constraints, Mobile robot workspace-motion control.

Static model: Differential relationship - Velocity analysis – Jacobian matrix – Determination of forces and equivalent torques for joints of two link planar robot arm. Dynamic model: Euler –Lagrangian formulation - Forward and inverse dynamic model for two DOF planar manipulator. Applications of Fuzzy Logic and Neural network in Robot Control, Neural controllers, Implementation of Fuzzy controllers

Trajectory planning: Definitions and planning tasks, Joint space techniques – Motion profiles – Cubic polynomial, Linear Segmented Parabolic Blends and cycloidal motion - Cartesian space techniques. Navigation: Graph search and potential field path planning - navigation architecture - offline and online planning.

AI And Other Research Trends In Robotics- Application of Machine learning - AI, Expert systems; Tele-robotics and Virtual Reality, Micro & Nanorobots, Unmanned vehicles, Cognitive robotics, Evolutionary robotics, Humanoids.

TEXTBOOKS

- 1. S.K.Saha, "Introduction to Robotics", Second Edition, McGraw Hill Education (India) Private Limited, 2014.
- 2. Roland Siegwart and Illah R.Nourbakhsh, "Introduction to Autonomous Mobile Robots", Prentice Hall of India (P) Ltd., 2005.

REFERENCE BOOKS

- 1. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotics: Modelling, Planning and Control", First Edition, Springer-Verlag London, 2009
- 2. K.S. Fu, R.C Gonzalez and C.S. Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Editions, 2008.
- 3. John J.Craig, "Introduction to Robotics, Mechanics and Control", Third Edition, Pearson Education, 2005.
- 4. Mark W.Spong, M.Vidyasagar, "Robot Dynamics and Control", Wiley India, 2009.
- 5. George A. Bekey, "Autonomous Robots From Biological Inspiration to Implementation and Control", MIT Press, 2005.
- 6. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and

\$-1.- d-=+

Sebastian Thrun, "Principles of Robot Motion – Theory, Algorithms and Implementation", MIT Press, 2005.

- 7. Mikell P. Groover, Mitchell Weiss, Roger N.Nagel and Nicholas G. Odrey, "Industrial Robotics Technology, Programming and Applications" Tata McGraw-Hill, 2008.
- 8. Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 9. P.A. Janakiraman, "Robotics and Image Processing", Tata McGraw-Hill, 1995.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2.	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in

-9-1- d-=+

POWER ELECTRONICSAND DRIVES	Category	L	Т	Р
(THEORY & PRACTICALS)	CC	3	0	2

Power electronics involves the study of electronic circuits intended to control the flow of electrical energy. It do processing and control of 'raw' electrical power from anelectrical source such as an AC mains supply, a bat photovoltaic array, or a windturbine into a form and quality suitable for a particular electrical load. It is an enablin with a very wide range of applications. Electric Drives, both ac and dc types, come in many shapes and arestandardized versions for general-purpose applications. Others are intended for specifictasks. In any case, moto selected to satisfy the dynamic requirements of themachines on which they are applied without exceeding temperature. To acquire the practical knowledge in power electronic devices and converters.

r r	
PRERE	CQUISITE: SemiconductorDevices and Circuits
COURS	SEOBJECTIVES
1	Togetanoverviewofdifferenttypesofpowersemiconductordevices and their switching characteristics.
2	Tounderstandtheoperation, characteristics and performance parameters of controlled rectifiers.
3	Tostudytheoperation, switchingtechniques and basics topologies of DC-DC switching regulators.
4	TostudytheoperationofACvoltagecontroller and tolearn thedifferentmodulationtechniquesinverters.
5	To employ the solid states peed control techniques for DC drives for efficient control.
6	Toemploysolidstatespeedcontroltechniquesfor ACdrivesforproficientandlosslesscontrol.
7	To Analyze the performance of semiconductor devices and converters through experiments.

COURSEOUTCOMES

Onthesuccessful completionofthecourse, students will be able to

	CO1	:Defi	ne
--	-----	-------	----

Re semiconductorphysicstothepropertiesofrealpowersemiconductordevicesanddifferentiatefromlowpowerdevices. CO2: Implement rectifiers and inverters for the given application

CO3: Implement DC-DC converters and AC-AC converter for the given application

CO4: suitablemotordrive U Interpret theconceptsofanelectricaldrivesystemandchoosea fordifferentapplications&Explain the basics and advantages of electric drives.

CO5: Appraise the conventional speed control methods of AC motors withstartingandbrakingmethods. Ana CO6: Validate the proficient control of AC and DC drives by utilize the power electronic sconcepts. Eva

Å

C07: Analyze the performance of semiconductor devices and converters by conducting suitable

experiments.

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMME SPECIFICOUTCOMES

											-	-		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC
CO1	S	M	S	M	S	L	M	-	L	L	S	М	L	S
CO2	S	S	S	M	М	L	M	-	L	М	S	М	М	S
CO3	S	S	S	M	М	L	M	-	L	L	S	М	М	S
CO4	S	S	S	S	S	M	M	-	M	L	S	М	L	Μ
CO5	S	S	S	M	S	М	М	-	L	M	S	М	L	S

Q-1- d-=+

CO6	S	S	S	S	S	M	M	-	M	M	S	M	L	S
C07	S	M	L	L	M	-	-	-	S	-	М	-	-	S
S-Stron	g;M-M	ledium;	L-Low-	-										

SYLLABUS

POWERSEMI-CONDUCTOR DEVICES

Overviewofswitchingdevices - Principles of operation, Characteristics, Protection and Gate dri ofPowerDiode,PowerTransistor,MOSFET,IGBT,SCR andTRIAC - Design of filters.

RECTIFIERS& CHOPPERS

Singlephaseandthreephase rectifiers - Dualconverters.BasicPrinciplesofChoppers-Stepdownandstepupchopper-Timeratiocontrolandcurrentlimitcontrol-Buck,Boost,Buck-Boostconverters.

INVERTERS & AC-ACCONVERTERS

Singlephaseandthreephase[120°&180° mode] Voltage Sourceinverters–Current SourceInverters - Regeneration i - PWMtechniques–SinglephaseandthreephaseACvoltagecontrollers –singlephaseandthreephasecycloconv Cycloconverter Control Scheme.

ELECTRICALDRIVES

General electric drive system - Classification and TypesofElectricalDrives –Factorsinfluencingtheselection drives– Torque-speed characteristics of motors- heating andcoolingcurves–classesofduty–Selection of motor p simpleproblems.

SOLIDSTATEDRIVES

Advantagesofsolidstatedrives–Speed control methods of DCmotorsusingrectifiersandchoppers–Speed controlofinductionmotorbyStator Voltage control, Voltage / Frequency control -Slippowerrecoverysystems.

PRACTICE

CharacteristicsofSCR, MOSFET and IGBT. ConverterfedDC MotorDrive.InverterfedInductionMotorDrive

TEXTBOOKS:

1. RashidM.H., "PowerElectronicsCircuits, Devices and Applications", PrenticeHallIndia, 3rdEdition, NewDelhi, 200-2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications, Second edition, 2002.

REFERENCES:

- 1. Cyril.W.Lander,"PowerElectronics",McGraw HillInternational, ThirdEdition, 1993.
- 2. P.S.Bimbra"PowerElectronics", KhannaPublishers, thirdEdition2003.
- 3. PhilipT.Krein, "ElementsofPowerElectronics"OxfordUniversityPress,2004Edition.
- 4. N.K.De., P.K.Sen"ElectricDrives", PrenticeHall, Firstedition 1999.
- 5. Pillai, S.K., "A FirstcourseonElectricalDrives", WileyEasternLtd., New Delhi, 1982

COUR	SEDESIGNERS			
S.No.	Nameof the Faculty	Designation	Department	MailID
1	Dr. R. Sankarganesh	AssociateProfessor	EEE/VMKVEC	sankarganesh@vmkv
2	Mr.N.P.Gopinath	Assistant Professor(Gr-II)	EEE/AVIT	Gopinathnp@avit.ac.i

\$-1.- d-=+

17MTCC01	PROGRAMMABLE LOGIC	Category	L	Т	Р	Credit
	CONTROLLERS (THEORY & PRACTICALS)	CC	3	0	2	4

Programmable Logic Controllers is the applied science of automatic control for multi-axis manipulators and is a large subset of the field of "Mechatronics" (Mechanical, Electronic and Software engineering for product or systems development, particularly for motion control applications) Mode of operation and programming of a Programmable Logic Controller (PLC), Characteristics of a PLC (synchronous, asynchronous), Analysis of the process schematic Statement of the interlocking functions and the safety requirements Creating of a control system function chart. Selection of the necessary hardware units, Programming, Simulation, Start-up procedure, testing.

PRER	EQUI	SITE -													
COUI	RSE O	BJECT	TIVES												
1	To Ur	ndersta	nd the]	PLC us	sed in a	utomati	c contr	ol syste	ems I / (O and in	dicate th	neir adva	intages a	nd limita	ations.
2	То ар	ply the	contro	l progi	ammin	g the de	evices a	nd mod	les of o	peration					
3	To ap	ply a E	lectron	nagnet	ic Cont	rol Rela	iys, Ma	nually	Operate	ed Switc	hes.				
4	To de	sign Ti	mer an	d coun	ter circ	uit.									
5	To ap	ply and	l devel	op a pr	ogrami	mable co	ontrol d	levice f	or poin	t-to-poir	nt applic	ations			
COUI	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of t	he cour	se, stud	ents wi	ll be ab	le to						
CO1.	CO1. Describe the working of the Programmable Logic Controllers operations Understand														
CO2. Apply the programming in ladder diagram design Apply															
CO3. 1	CO3. Develop the design in timer and counter circuits. Apply														
CO4.	Genera	te a Da	ta Tran	sfer O	peratio	ns and I	Data Co	mpare	Instruc	tions				Ana	lyze
CO5.	Develo	p a PLO	C prog	am for	point-	to-point	applica	ations s	uch as	pick and	l place,			An	alyze
P	alletizi	ng, sort	ting an	d inspe	ction o	of work-	parts.								
MAP	PING V	WITH	PROG	RAM	ME O	UTCON	IES AI	ND PR	OGRA	MME S	SPECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	L	M	-	L	-	-	-	-	-	-	-	S	-	-
CO3	S	L	M	-	-	M	-	-	-	-	-	Μ	S	M	-
CO4	S	S	L	-	Μ	-	-	-	-	-	-	M	S	M	-
CO5	S	S	S	M	S	M	S	L	S	S	M	M	S	M	M
S- Strong; M-Medium; L-Low															
SYLL	ABUS														

- p-1- d-=+

INTRODUCTION TO PLC:

Introduction, Parts of a PLC, Principles of Operation, Modifying the Operation, PLCs versus Computers, PLC Size and Application. The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O Specifications, The Central Processing Unit (CPU), Memory Design, Memory Types, Programming Terminal Devices.

PLC PROGRAMMING LANGUAGES :

Processor Memory Organization, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Entering the Ladder Diagram, Modes of Operation. Electromagnetic Control Relays, Contactors, Motor Starters, Manually Operated Switches, Mechanically Operated Switches, Sensors, Output Control Devices, Seal-In Circuits, Latching Relays, Converting Relay Schematics into PLC Ladder Programs, Writing a Ladder Logic Program Directly from a Narrative Description.

TIMERS AND COUNTERS :

Mechanical Timing Relays, Timer Instructions, On-Delay Timer Instruction, Off-Delay Timer Instruction, Retentive Timer, Cascading Timers. Counter Instructions, Up-Counter, Down-Counter, Cascading Counters, Incremental Encoder-Counter Applications, Combining Counter and Timer Functions.

PLC INSTRUCTIONS :

Data Manipulation, Data Transfer Operations, Data Compare Instructions, Data Manipulation Programs, Numerical Data I/O Interfaces, Closed-Loop Control. Math Instructions, Addition Instruction, Subtraction Instruction, Multiplication Instruction, Division Instruction, Other Word-Level Math Instructions, File Arithmetic Operations.

PLC AUTOMATION :

Types of Processes, Structure of Control Systems, On/Off Control, PID Control, Motion Control, Data Communications, Supervisory Control and Data Acquisition (SCADA).

PLC PRACTICE :

Hydrometer rotation with Timer & speed control, ON / OFF Control using PID, Simulation of basic PLC programs using PLC simulator.

TEXTBOOKS

1. Frank D.Petruzella,"Programmable Logic Controllers", McGraw-Hill Companies, Third edition, March2004

2. Charles H. Roth, Jr "Fundamentals of Logic Design ", Fourth Edition, Jaico Publishing house, 1999.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Email ID
1	Dr. L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

\$-1- d-=+

		I	FLUID	MECH	IANIC 1ater	S AND	STRE	NGTH	OF	Catego	ory L	,	Т	Р	Credit
				1	IATEN		LAD			CC	0		0	4	2
PREA	MBLE														
The ain	n of the	subject	t is to p	rovide	make th	e stude	nts to u	ndersta	nd the b	asic mec	hanism	of Flui	ds and str	ength of	
materia	ls.														
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB.	JECTI	VES												
1	To une	derstan	d the co	oncepts	of fluid	mecha	nics								
2	To get	hands	on expe	erience	to cond	uct test	ing of r	nateria	ls.						
3	To per	form o	peration	ns in hy	draulic	machir	neries a	nd test	various	materials	5.				
COUR	SE OU	тсом	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	be able	to						
CO1.	Measur	e the flo	ow in p	ipe sect	tion using	ng orifi	cemeter	and ve	enturime	ter and c	lischarge	e in	Apply		
channe	ls using	notche	S												
Co2.	Determ	ine the	major a	ind min	or losse	es in pip	bes						Apply		
Co3. E	Determin	ne the b	ehavior	of stru	ctural e	lement	s, such	as bars,	beams	and sprin	ngs subje	ected	Apply		
to tensi	$\frac{\text{on, com}}{\text{INC}}$	pressic	n, shea	r, bend	ing, and	l torsion	$\frac{1}{5}$ by me	ans of o	experim	ents			MEC		
MAPP	ING W		KUGK			COME	5 AND		JKANIN	IE SPE	CIFIC		JNIES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	-	-	-	Μ	-	-	-	M	L	L	-
CO2	S	М	Μ	L	-	-	-	Μ	-	-	-	M	L	-	М
CO3	Μ	М	М	М		L		М	L	Μ	М	L	-	L	-
S- Strop	ng; M-N	/ledium	; L-Lov	N											
Syllabı	15														

List of Experiments

- 1. A comparative analysis of Coefficient of discharge using Orifice meter & venturimeter.
- 2. Determination of pipe loses(major & minor).
- 3. Determination of Tensile strength and Compression strength on a given specimen.
- 4. Determination of shear strength of Mild steel and Aluminium rods
- 5. Determination of Torsional strength of mild steel rod
- 6. Determination of Impact strength
- 7. Conduct of Hardness test on metals Brinell and Rockwell Hardness.
- 8. Conduct of Deflection test on beams

Text Books

1. Fluid mechanics and strength of materials lab manual', Department of Civil engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

- p-1- d-=+

Reference Books

1. Modi P.N and Seth S.M, "Hydraulics and Fluid Mechanics Including Hydraulic Machines" Standard Book House" New Delhi, 20thEdition 2015.

2. Bansal R.K, "Fluid Mechanics and Hydraulic Machines" Laxmi Publications, New Delhi, 2015.

3. Rajput. R.K, "A Text book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company, New Delhi, 2011.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

-9-1- d-=+

SENSORS AND	Category	L	Т	Р	Credit	
ELECTRONIC MEASUREMENTS	CC	0	0	4	2	
LAB						

Preamble

This course provides comprehensive idea about working operation of various types of sensors used to measure various physical quantities. measurement techniques to assess the quality of processes, components, systems..

Prerequisite

Nil

Instructional Objective

1	Uses 1	Uses technical knowledge, design methodology, and appropriate design tools and														
1	related	related resources.														
2	Distin	Distinguishes between different design steps and carries out steps;														
	Analy	Analyzes/evaluates progress of design.														
3	Stude	Student will learn the different kind of measurements ie: Displacement, speed,														
-	tempe	temperature.														
4	To learn the measurement of capacitance & inductance.															
5	5 Student will learn the signal conditional circuits ie: Analog to Digital converter.															
Course Outcomes: On the successful completion of the course, students will be able																
to																
COL	Sele	Select appropriate transducer to measure given parameters.												Apply		
CO2	Con	Construct a proper AC/ DC bridges for measurement of R, L & C.												Apply		
									<u> </u>							
CO3	Analyze the characteristics of strain gauges.											Anal	yse			
Mapping with Programme Outcomes and Programme Specific Outcomes																
													DC			
CO	PO			PO	PO	PO			PO	PO		PO	PS Ol	PS 02	PS	
<u>CO1</u>		2	3	4))	6	/	8	9	10	11	12 M		02	03	
	8	M	M	-	M	-	-	-	M	-	-	M	8	S	M	
CO2	S	S	M	M	М	-	-	-	М	-	-	M	S	S	-	
CO3	S	M	M	-	M	-	-	-	M	-	-	M	S	S	M	
1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	

S- Strong; M-Medium; L-Low

-9-1- d-=+
Syllabus

List of Experiments

- 1. Speed measurement using Photoelectric tachometer
- 2. Digital transducer shaft angle encoder
- 3. Strain gauge characteristics.
- 4. Torque measurement
- 5. Displacement measurement using potentiometric transducer.
- 6. Measurement of Temperature using RTD.
- 7. Measurement of temperature using Thermocouple.
- 8. Measurement of Capacitance using Schering bridge.
- 9. Measurement of Resistance using Wein bridge.
- 10. Measurement of Inductance using Anderson bridge.

		0	0	
Refer	ence Books			
1	Laboratory reference	e manual		
Cours	e Designers			
S.No	Faculty Name	Designation	Department	Email id
1	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in
2	Mr. P. Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

-g-1.- d-=+

															
				CO	NTRO	L SYS	TEMS	5 LAB			Catego	ry L	Т	P (Credit
						_ /0 _ /0					CC	0	0	4	2
PREAM oscillosc and bea advanced	BLE C ope, di m con l contr	ontrol gital n ntrol, ol sys	System nulti-m magne stems	ms sim leter, P etic-lev via dif	ulation ID trai vitation ferent	n Lab o ners, co traine compu	consist ontrol rs. Th iter too	s of m system nis lat ols suc	ultiple traine alsc h as N	workstars and store of a workstars and store o	ations, e tand alor s the inc B and Si	ach ec ne inve lustrial imulinl	uipped erted-po imple <.	with a endulum mentatio	n 1, ball 2n of
PRERE	QUISI	TE				-									
COURS	E OBJ	ECTI	VES												
1	Image: To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response														
2	To assess the system performance using time domain analysis and methods for improving it														
3	To assess the system performance using frequency domain analysis and techniques for improving the performance														
4	To design various controllers and compensators to improve system performance														
COURS	E OUT	ГСОМ	IES												
On the su	uccessf	ùl con	npletion	n of the	e cours	e, stud	ents w	ill be al	ble to						
CO1	How a con	to imp pensa	prove th tor for	ne syste a spec	em per ific apj	formar plicatic	nce by a	selectir	ng a su	itable co	ontroller	and/or	Un	derstand	1
CO2	Apply system	y vario m perf	ous tim òrman	e doma ce	ain and	freque	ency do	omain t	echniq	ues to a	ssess the	¢	Ap	ply	
CO3	Apply system	y vario ms, ele	ous con ectrical	trol str drives	ategies etc)	s to dif	ferent a	applica	tions(e	example	: Power		An	alyze	
CO4	Test s and a	system pplica	tions o	ollabili f state	ty and space 1	observ eprese	ability ntation	using s to var	state sp ious sy	oace repr vstems	resentati	on	An Cre	alyze ar ate	d
MAPPIN	NG WI	TH P	ROGE	RAMM	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCC	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	M	S	-	-	-	M	L	-	L	S	M	S
CO2	S	S	L	М	S	-	-	L	Μ	L	М	-	S	Μ	-
CO3	S	S	S	М	S	-	L	-	М	L	-	М	S	М	S
CO4	S	S	-	М	S	L	-	-	М	L	-	М	S	M	М
S- Strong	g; M-M	ledium	n; L-Lo	W							II				

LIST OF EXPERIMENTS

- 1. Transfer function of self and separately excited DC Generator.
- 2. Transfer function of Armature and Field controlled DC Motor.
- 3. Transfer function of AC Servomotor.

- for- 1- - - = 7

- 4. Frequency response of Lag, Lead & Lag Lead networks.
- 5. Characteristics of Synchronous transmitter and Receiver.
- 6. Transfer function of Ward Leonard method of speed control of DC motor.
- 7. Study of P, PI and PID Controllers (First Order).
- 8. Simulate DC Position Control system and obtain its step response
- 9. Analog and simulation of type -0 and type -1 systems
- 10. Stability analysis of Linear Systems
- 11. Simulation of first order systems using MATLAB/ SCILAB
- 12. Simulation of second order systems using MATLAB/ SCILAB

COURSE DESIGNERS

counsi				
S.No.	Name of the Faculty	Designation	Department	e-mail id
1.	R. SATHISH	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
2.	D.SARANYA	Assistant Professor GR-II	EEE / AVIT	dsaranya@avit.ac.in

-g-1- d-=+

	MICROCONTROLLERS AND EMBEDDED	Т	Р	Credit									
	SYSTEMS LAB	0	4	2									
PREA	MBLE	1	I			1							
То р	rovide the skill to design linear integrated circuits using op-	amp and other	special pu	irpose c	ircuits.	Assembly							
languag	ge programming for microcontroller and interfacing peripher	al devices wit	n microcor	ntroller	is vital	due to the							
persisti	ng real time application scenarios. Hence exposure to interf	face ADCs, DA	Cs with mi	croproce	essor an	d acquiring							
knowledge about the real time applications like stepper motor control, key board etc., is essential.													
PRER	PREREQUISITE Nil												
COUR	COURSE OBJECTIVES												
1	To write the assembly language program for 8051 Microconti	roller.											
2	Γο write the programs for communication between microcont	troller and perij	pheral devi	ices									
3	To write the programs using ARM Processors												
4	To study one type of Real Time Operating Systems (RTOS)												
COUR	SE OUTCOMES												
On the	successful completion of the course, students will be able to												
CO1. I	Develop assembly language program for basic Arithmetic and	Logical Operat	ions		Anal	yze							
CO2.D	evelop assembly language program for basic applica operations, interrupt and UART, etc	tions like ar	ithmetic		Analy	ze							
CO3. 4	CO3. Apply the practical knowledge of Microcontroller in designing various Circuit Analyze												
СО4. Г	CO4. Develop and execute program using ARM architecture. Analyze												
CO5. U	Inderstand the concept of Real Time Operating Systems (RTC	OS)			Ana	lyze							

-g-1- - -==

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L	-	-	-	-	M	-	L	-	M	-	M	-	-
CO2	M	L	-	-	-	-	M	-	L	-	M	-	M	-	-
CO3	M	L	-	-	-	-	M	-	M	-	M	-	M	-	-
CO4	M	L	-	-	-	-	M	-	M	-	M	-	M	-	-
CO5	M	L	-	-	-	-	M	-	M	-	M	-	M	-	-
0 04		т ъ	т	т.											

S- Strong; M-Medium; L-Low

SYLLABUS

LISTOFEXPERIMENTS:

MICROCONTROLLERSLAB

- 1. 8086&8051Assembly language program for Arithmetic Operations.
- 2. 8051Assembly language program for Logical, Interrupt & UART Operations.
- 3. Interfacing DAC to Microcontroller and generate Square, Triangular and Saw-tooth waveforms.
- 4. Interfacing ADC to Microcontroller.
- 5. Interfacing Stepper Motorto8051 and operate it in Clock wise and Anti-Clock wise directions.

EMBEDDED SYSTEMS LAB

- 1. Study of ARM Architecture.
- 2. Interfacing ADC and DAC.
- 3. Interfacing Real Time clock and Serial Port.
- 4. Interfacing Keyboard and LCD.
- 5. Study of one type of Real Time Operating Systems (RTOS)

REFERENCES

Laboratory Reference Manual.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
3	Ms.R.MohanaPriya	Assistant Professor(Gr-II)	ECE	mohanapriya@avit.ac.in

\$-1- d-=+

		ROBOTICS LAB									tegory	L	T	Р	Credit
				ROBOTICS LAB3 yCC									0	4	2
PREA	MBLE														
	• .1		•							1 · 1	.11 00	. 1	1 1	. 11	1 1
Roboti	cs 1s th	e pron	unent	compoi	$\frac{1}{1}$	manuf		ng auto	omatior	1 which	will affe	ect hum	an labo	or at all	levels,
from u		d work	ters to \cdot	profess	sional e	nginee	rs and	mana	gers of	produc	tion. Fut	ure rot	oots ma	y appli	cations
outside	e of the	factor	y in ba	nks, res	staurant	ts, and	even h	nomes.							
PRER	QUISI	TE													
COURSE OBJECTIVES															
1	1 To introduce different types of robotics and demonstrate them to identify different parts and components														
2	To write programming for simple operations like pick and place, rotoxim etc.														
3	To pr	actice	with th	e simul	ation fi	om sir	nple to	$\frac{1}{1}$ six as	kis robo	ot.					
COUR	RSE OUTCOMES														
On the	e successful completion of the course, students will be able to														
CO1.In	I.Implement the programming and control of robots Apply														
CO2.P	CO2.Predict the Path and trajectory planning for given environment Apply														
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
	DOI	DOO	DOA	DOL	DOF	DOG	D -	DOO	DOO	DO10	DOIL	DO10	DG 0 1	Daoa	Daoa
COS	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POIT	PO12	PSOI	PSO2	PSO3
CO1	S	М	М	М	L	-	-	-	М	-	L	L	S	M	M
CO2	S	S	S	М	М	М	-	-	М	-	М	М	S	M	M
S- Stro	ng; M-	Mediu	m; L-L	LOW											
List of	Exper	iment	5												
1)	Study	of diff	erent t	ypes of	robots	based	on con	ifigura	tion an	d applic	ation.				
2)	Study	of diff	erent t	ype of l	inks an	d joint	s used	in rob	ots	22					
3)	Study	of con	nponen	ts of ro	bots wi	ith driv	e syste	em and	d end ef	ffectors.					
4)	Simula	ation o	f Forw	ard and	l Invers	e Kine	matics	s using	, Robo	Analyze	r.				
5)	Simula	ation o	t Work	space A	Analysi	is of a	$b ax_{1s}$	robot.							
6)	Forwa	rd and	invers	e kinen	hatics u	Ising Q	Bot 2	• • • •		1			1 1 .1	1'	
	verine		of tran	storma	.10n (PC	osition	and or	ientati	(on) with	in respec	t to grip	per and	i world	coordi	nate
8)	Fstime	1 ation of	faccur	acy re	neatahi	lity and	1 resol	ution							
	6) Estimation of accuracy, repetitionity and resolution.														
COUR	RSE DE	ESIGN	ERS												
S.No	Name	of The	e Facul	ty I	Designa	tion		Ľ	Departm	nent	Em	nail.ID			
1	Dr. L.	K. He	ma	I	Professo	or & H	ead	E	CE		her	nalk@a	avit.ac.i	n	
2	Dr.P.I	M.Mura	ali	A	Associa	te Prof	essor	E	CE		mı	iralipm	i@vmk	vec.ed	lu.in

-9-1- d-=+

				EL	ECTR	RIC VI	EHICI	LES		(Category	' L	Т	Р	Cı	redit
											EC- PS	3	0	0		3
PRE This	AMBLE course in	troduc	es the f	fundam	ental o	concep	ts, prir	nciples, a	analysis	and des	sign of h	ybrid,	electr	ic v	vehicles	5.
PRE	REQUIS	SITE:	Basic	Electri	cal &	Electro	onics E	Ingineer	ing.							
COU	COURSE OBJECTIVES															
1	To unde	rstand	the bas	ic con	cepts a	nd dyn	amics	of electr	ric vehic	les.						
2	To fami	liarize	and des	sign of	batter	y back	up.									
3	To analy	ze the	charac	teristic	s of di	fferent	types	of DC &	AC Mo	otors.						
4	To unde	rstand	differe	nt type	s of po	ower tra	ansmis	sion cor	nfigurati	on, clut	ch and b	oraking	<u>g</u> .			
5	To study	y abou	t hybrid	electr	ic vehi	cles.										
COU	IRSE OU	JTCO	MES													
On th	ne succes	sful co	ompletio	on of th	$\frac{1}{1}$	se, stu	$\frac{dents}{1}$	will be a	ble to					TT	1 4	1
	CO1: Describe the basic concepts of electric vehicles. Understand															
CO2: Design the propulsion system for electric vehicles. Evaluate																
CO3	: Explain	the co	onstruct	ion, ch	aracter	istics a	and app	plication	of batte	eries.					Analyz	e
CO4	Elucida	te perf	ormanc	e chara	acterist	tics of	DC&A	C electr	rical mad	chines.					Analyz	e
CO5	Design	the dri	ve train	mode	l for el	ectric	vehicle	es.]	Evaluat	te
CO6	: Describ	e abou	t the va	rious t	ypes a	nd con	figurat	tion of h	ybrid ele	ectric vo	ehicle.				Apply	
MAI	PPING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND PH	ROGRA	MME	SPECI	FIC O	UTC	ON	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
CO2	S	М	S	L	М	-	L	M	-	-	-	-	-		-	-
CO3	S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO4	S	-	-	-	М	-	-	-	-	-	-	-	-		-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	-		-	-
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-		-	-
S- St	S- Strong; M-Medium; L-Low															

-\$-1.- d-=+

ELECTRIC VEHICLES

Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design.

BATTERY

Basics – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines.

ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing. Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

HYBRID ELECTRIC VEHICLES

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "*Electric Vehicle Battery Systems*", Newnes, 2000 .http://nptel.ac.in/courses/108103009

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in
		Professor		

\$-1.- d-=+

				INTRO		TION	том	EMS			Category	y L	Т	P (Credit
					JDUC		10 11				EC-PS	3	0	0	3
PREA	MBLE	E											II.		
The ol	bjective	e of thi	s cours	se is to	make	studen	ts to g	ain bas	sic kno	wledge	on overv	view of	MEMS	(Micro	electro
Mecha	nical S	System) and v	various	fabric	ation t	echniq	ues. T	his ena	bles the	em to de	sign, an	alysis,	fabricat	ion and
testing	, the M	EMS	based (compo	nents.	And to	intro	luce th	e stude	ents for	various	opportu	nities	in the en	nerging
field o	f MEM	[S.													
PRER	EQUI	SITE													
	NIL														
COU	RSE OI	BJEC	FIVES												
1	Understand the fundamental concept of MEMS and study the essential material properties.														
2	To know the various fabrication and machining process of MEMS.														
3	Build	an une	lerstan	ding of	fmicro	scale p	hysics	for use	e in des	signing	MEMS a	pplication	ons.		
4	To stu	ıdy va	rious se	ensing	and tra	nsduct	ion tec	hnique	•						
COU	RSE OI	UTCO	MES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1.K	Know th	ne basi	cs of M	IEMS 1	fabricat	tion tec	chnolog	gies ar	ndPiezo	o resista	nce	Under	stand		
Effect	, Piezoe	electric	ity, Pie	ezoresi	stive Se	ensor									
CO2.	Unders	standth	e Mecl	nanics	of Bea	m and	Diaph	ragm S	tructur	es		Under	stand		
CO3.	Use	mecha	nics p	rincipl	es and	l B	asic E	quation	ns for	Slide-f	ilm Air	Apply			
Damp	ing, Co	uette-f	low M	odel, S	tokes-f	low M	odel.								
CO4.	Know	the cor	ncept of	f Electi	ostatic	Actua	tion					Analy	ze		
CO5.	Unders	stand th	ie appl	ication	s of M	EMS in	n RF					Analy	ze		
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO	PO4	PO5	PO6	PO	PO8	PO9	PO1	PO11	PO12	PSO1	PSO2	PSO3
			3				7			0					
CO1	S	L	-	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	М	Μ	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	М	М	-	-	-	-	-	-	-	-	-	-	-	-
CO4	S	S	М	-	-	-	-	-	-	-	-	-	-	-	-
CO5	S	S	S	М	М	-	-	-	М	-	-	М	-	L	-
S- Stro	ong; M-	Mediu	m; L-I	Low										-	

INTRODUCTION TO MEMS

MEMS fabrication technologies, Materials and substrates for MEMS, Process for Micromachining: Bulk Micromachining, Surface Micromachining, Characteristics, Sensors/Transducers, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.

MECHANICS OF BEAM AND DIAPHRAGM STRUCTURES

Hooke's Law, Stress and Strain of Beam Structures :Stress, Strain in a Bent Beam, Bending moment and the moment of Inertia, Displacement of Beam Structures Under Weight, Bending of Cantilever Beam Under Weight

- p-1- d-=+

AIR DAMPING

Drag Effect of a Fluid: Viscosity of a Fluid, Viscous Flow of a Fluid, Drag Force Damping, The Effects of Air Damping on Micro-Dynamics. Squeeze-film Air Damping: Reynold's Equations for Squeeze-film Air Damping, Damping of Perforated Thick Plates. Slide-film Air Damping: Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model.

ELECTROSTATIC ACTUATION

Electrostatic Force, Normal Force, Tangential Force, Fringe Effects, Electrostatic Driving of Mechanical Actuators: Parallel-plate Actuator, Capacitive sensors. Step and Alternative Voltage Driving: Step Voltage Driving, Negative Spring Effect and Vibration Frequency.

APPLICATIONS OF MEMS IN RF

MEMS Resonator Design Considerations, One-Port Micromechanical Resonator Modeling Vertical Displacement Two-Port Micro resonator Modeling, Micromechanical Resonator Limitations.

Text Books

- 1. G. K. Ananthasuresh, K. J. Viinoy, S. Gopalakrishnan, K. N. Bhat and V.K. Atre, "Micro and smart systems". Wiley India, 2010.
- 2. S. M. Sze, "Semiconductor Sensors", John Wiley & Sons Inc., Wiley Interscience Pub.
- 3. M. J. Usher, "Sensors and Transducers", Mc Millian Hampshire.

Reference Books

- 1. Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
- 2. Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000.
- 3. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu,"MEMS", Pearson education, 2007.

COUR	RSE DESIGNERS			
S.No	Name of the	Designation	Department	Mail ID
•	Faculty			
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
2	Ms.R.Mohana	Assistant Professor	ECE	mohanapriya@avit.ac.in
	Priya	(Gr-II)		

\$-1.- d-=+

				N	ANO F	LECT	RONIC	S			Categor	y L	Т	P C	redit
											EC-PS	3	0	0	3
PREA	MBLE	•													
This c	ourse is	offere	ed for s	tudents	s to gai	n the k	nowlee	dge in]	Nanoel	ectror	nics and va	rious Na	notecl	nologies	1
PRER	EQUIS	ITE													
	-	N	IL												
COUR	SE OB	JECTIV	VES												
1	Tol	earn th	ne Func	lament	als of l	Vano e	lectron	ics.							
2	То g	gain kn	owled	ge of tl	ne silic	on MO	SFET	and Qu	iantum	Trans	sport Devi	ces.			
3	Tol	Know 1	basic c	oncept	s of va	ious N	anotec	hnolog	gy and a	applic	ations of N	lano Ma	terials		
4	Tol	earn th	ne fabri	cation	of Car	bon Na	inotube	es.							
5	Tos	study a	bout th	e Mole	ecular l	Electro	nics in	Nanot	echnol	ogy					
COUR	SE OU	тсом	ES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to)					
CO1.U	Jnderst	and the	e basics	s of Na	no elec	tronics	s and q	uantun	1 mech	anics	behind		Und	erstand	
nanoel	ectroni	cs												erstand	
CO2.E	Explain ing effe	the con	ncepts	of Silic	con MO	DSFET	S, qua	ntum tr	anspor	t devi	ces and		Und	erstand	
CO3.	Discuss	the tyr	bes of r	anotec	hnolog	v. mol	ecular	techno	logy a	nd the					
prepar	ation of	f nano	materi	als.		, y , mei			105j u				Und	erstand	
CO4.I	llustrate	e the sy	ynthesi	s, inter	connec	tions a	nd app	olication	ns of ca	arbon	nano		٨	nnly	
tubes.														рргу	
CO5.E	Design a	and sin	nulate t	the circ	uits us	ing mo	lecular	r electr	onic de	evicesa	and		Δ	nnly	
discus	s their a	applica	tions in	n MEM	IS and	robots							1	.ppiy	
MAPP	PINGTH	I PRO	GRAM	ME OU	JTCON	IES AN	ND PR	OGRA	MME S	SPECI	FIC OUTC	OMES		_	
COS	P01	<i>P02</i>	<i>P03</i>	<i>P04</i>	P05	P06	<i>P07</i>	<i>P08</i>	P09	PO	P011	P012	PSO1	PSO2	PSO3
										10					
CO1	S	М	L	-	-	-	-	-	-	-	-	L	S	Μ	-
СО2	S	М	М	-	-	-	-	-	-	-	-	L	М	L	-
СОЗ	S	М	М	-	-	-	-	-		-	-	L	S		-
СО4	S	S	М	-	М	-	-	-	L	-	-	L	S	Μ	-
СО5	S	М	М	-	М	-	-	-	М	-	-	М	S	Μ	L
S- Stro	ong: M-	Mediu	m; L-L	ow –											

Fundamentals Of Nanoelectronics

Fundamentals of logic devices:- Requirements – dynamic properties – threshold gates; physical limits to computations; concepts of logic devices:- classifications – two terminal devices – field effect devices – coulomb blockade devices – spintronics – quantum cellular automata – quantum computing – DNA computer; performance of information processing systems;- basic binary operations, measure of performance processing capability of biological neurons – performance estimation for the human brain. Ultimate computation: - power dissipation limit – dissipation in reversible computation – the ultimate computer.

Silicon Mosfets& Quantum Transport Devices

\$-1- d-=+

Silicon MOSFETS - Novel materials and alternate concepts:- fundamentals of MOSFET Devices- scaling rules – silicon-dioxide based gate dielectrics – metal gates – junctions & contacts – advanced MOSFET concepts. Quantum transport devices based on resonant tunneling, Electron tunneling – resonant tunneling diodes – resonant tunneling devices; Single electron devices for logic applications: - Single electron devices – applications of single electron devices to logic circuits.

Introduction To Nanotechnology

Background to nanotechnology: Types of nanotechnology and nanomachines – periodic table – atomic structure – molecules and phases – energy – molecular and atomic size – surface and dimensional space – top down and bottom up; Molecular Nanotechnology: Electron microscope – scanning electron microscope – atomic force microscope – scanning tunnelling microscope – nanomanipulator – nano tweezers – atom manipulation – nano dots – self-assembly – dip pen nanolithography. Nanomaterials: preparation– plasma arcing – chemical vapor deposition – sol-gels – electrodeposition – ball milling – applications of nanomaterials;

Carbon Nanotubes

Carbon Nanotube: Fullerenes - types of nano tubes – formation of nano tubes – assemblies – purification of carbon nanotubes – electronic properties – synthesis of carbon nanotubes – carbon nanotube interconnects – carbon nanotube FETs – Nanotube for memory applications – prospects of all carbon nanotube nanoelectronics.

Molecular Electronics

Electrodes & contacts – functions – molecular electronic devices – first test systems – simulation and circuit design – fabrication; Future applications: MEMS – robots – random access memory – mass storage devices.

Text Books:

- 1. Michael Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse, "Nanotechnology: Basic Science and Emerging Technologies", Chapman & Hall / CRC, 2002
- 2. Rainer Waser (Ed.), "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices", Wiley-VCH, 20032. T. Pradeep, NANO: "The Essentials–Understanding Nanoscience and Nanotechnology", TMH, 2007

References:

- 1. T.Pradeep, "NANO: The Essentials–Understanding Nanoscience and Nanotechnology", TMH, 2007.
- 2. W. Ranier, "Nano Electronics and Information Technology", Wiley, (2003).
- 3. K.E. Drexler, "Nano systems", Wiley, (1992).
- 4. M.C. Petty, "Introduction to Molecular Electronics"1995.
- 5. Vladimir V. Mitin, Vieatcheslov A. Kochelap, Micheal A. Stroscio, Introduction to Nanoelectronics, Cambridge University Press, London, 2008

COORS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
2	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr.R.Ramani Mr.Rajat Kumar Dwibedi	Assistant Professor Assistant Professor	ECE	ramani@vmkvec.edu.ii rajatkumar.ece@avit.ac

COURSE DESIGNERS

- p-1- d-=+

			Pow	er Con	verter	s Anal	lysis aı	nd De	sign		Category	L	T	P C	redit
											EC-PS	3	0	0	3
PREAMBLE															
To Gi	To Give an Introduction to The Recent Developments in The Power Electronics Converters. This Course														
Introd	oduces the Advanced Power Converters Such as Isolated Dc-Dc Converter, Reactive Elements. It Also														
Deals	with T	he Syn	chrono	ous Rec	tifiers	and Ca	ascadeo	d Boos	st Con	verters	5.				
PRER NIL	QUIS	ITE													
COUI	RSE OBJECTIVES														
1	Acqu acqui	ire a ba re the a	sic und bility to	erstand select	ing of v and des	arious j sign sui	power o table ci	conver rcuit.	ter mo	dules u	sed to build	a power	electron	ics syste	em and
2	To in	To impart knowledge on the design of different components for Power converter Systems.													
3	To learn the switching losses of various triggering techniques														
4	To understand the designing concept of various types of chopper and rectifier														
5	To in	npart kr	nowledg	ge on th	e desigi	n of clo	sed-loo	p com	pensat	ors for	DC-DC Con	verter			
	RSE O	UTCO	OMES												
On the	succes	sful cor	npletion	n of the	course,	, studen	ts will	be able	e to						
1. Sele the Swit	ct Powe	er Semi	conduc	tor Swi	tches fo	or Powe	er Electi	ronic c	onvert	ers and	calculate Lo	osses in	Ren	nember	
2. App	ly the n	need and	d worki	ng of ar	n Isolate	ed DC-]	DC Coi	nverter	for rea	al-time	application.		App	ly	
3. Imp	lement	the Des	ign Rea	active c	ompone	ents for	Power	Electro	onic C	onverte	ers.		Ana	lysis	
4. Dev	elop a l	Model t	he DC-	DC Cor	nverter	Using s	state Sp	ace Te	chniqu	le.			Imp	lement	
5. Mod	odelling of Design compensator for DC-DC Converters. Apply														
MAPI	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	Μ	М	-		-	-	-	-	Μ	S	M	M
CO3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	M
CO4	S	Μ	М	L	L	-	-	-	-	-	-	L	S	М	-

S- Strong; M-Medium; L-Low Syllabus

S

М

М

М

S

CO5

- p-1. - d-=+

-

-

_

_

-

-

L

S

М

М

TRIGGERING LOSS CALCULATION

Survey of devices: Diode, Thyristor, BJT, IGBT, MOSFET and TRIAC-Realization of Semiconductor switch for one quadrant operation, Current bidirectional operation, Voltage bidirectional operation,

four quadrant operation- Thermal Design of Power Switching Devices-Estimation of loss in switch: Conduction Loss Switching Loss -Blocking Loss- Transistor Switching with Clamped Inductive Load.

ISOLATED CHOPPER CONVERTER

Need for Isolated Converters-Operation and Derivation of Voltage equation: Forward Converter-Fly back converter Push pull converter-Half Bridge and Full Bridge Converter.

DESIGN OF REACTIVE ELEMENTS IN POWER ELECTRONIC SYSTEMS:

Introduction-Design of Inductor: Material Constraint-Design Relationships-Design Steps-Design of Transformer: Design Equations-Design Steps-Different Types of Capacitors for Power Electronics Applications-Related problems on design of Inductor and Transformer and Evaluation of loss in capacitor

DC-DC CONVERTER DYNAMICS

Small Signal Analysis of Converter-State Space Averaging Technique-Steps involved in state space averagingDerivation of Transfer function of Ideal buck, boost converter using state space averaging- Converter Non Idealities.

COMPENSATOR DESIGN AND CURRENT MODE CONTROL

Closed loop requirements-Compensator structure-Design of compensator-Introduction of Current Mode Control Block diagram of Current Mode Control-Advantages of Current Mode control

TEXT BOOKS:

- Ned Mohan, Undeland and Robbin, "Power Electronics: converters, Application and 1. design" John Wiley and sons.Inc,New York,2002.
- 2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, New Delhi, 2010.

	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Departme	Mail ID									
			nt										
1	Dr.K.Boopathy	Associate Professor	EEE/AVIT	boopathyk@avit.ac.in									
2	Dr. R. Devarajan	Professor	EEE/ VMKVEC	devarajan@vmkvec.edu.in									
4													

\$-1.- d-=+

17C	SEC09			ETH	IICAL I	HACKI	NG			(Category	L	Т	Р	Credit
PREAN	EC-PS 3 0 0 REAMBLE analyze the basic concerts of accurity and basicing process														3
To anal	yze the b	oasic cor	ncepts of	security	y and ha	cking pr	ocess								
PRERE	QUISI	ГЕ													
NIL	DSE OD IECTIVES														
COUR	SE OBJ	ECIIV	ES .												
1	To understand the basic concepts in ethical hacking														
2	To identify vulnerabilities using ethical hacking techniques														
3	To understand security in web applications														
4	To unc	lerstand	various	types of	vulnera	bilities i	n wirele	ess netw	orks						
5	To dis	cuss abo	ut secur	ity tools	and its a	applicati	ons								
COURS	RSE OUTCOMES														
On the s	successfi	ul compl	letion of	the cou	rse, stud	ents will	l be able	e to							
CO1: To	o Unders	stand bas	sics in et	hical ha	cking							Understa	nd		
CO2: To	o apply l	nacking	techniqu	les in rea	al time p	roblems						Apply			
СО3: То	o apply S	Security	Features	s in web	applicat	tions						Apply			
СО4: То	o unders	tand and	l apply s	ecurity f	eatures	in wirele	ess netw	orks				Understa	nd and	Apply	
CO5: To	apply i	nformat	ion secu	rity feat	ures in r	eal time						Apply			
MAPPI	NG ŴI	TH PRO	OGRAN	IME O	UTCON	IES AN	D PRO	GRAM	ME SPI	ECIFIC (DUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	M	M									L	L			
				-								T		_	
CO2	Μ	M		L											
CO3	М	М	L	L		М									
CO4	М	S	L			L				L		М			
C05	5 M L M M L														
S- Stror)σ∙ M-M	edium: 1	-Low												

INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HACKINGTECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

-

WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

Q-1- d-=+

WIRELESSNETWORKHACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

Text	Books
1	The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy Book by Patrick Engebretson
2	Hacking: Be a Hacker with Ethics Book by Harsh Bothra
Refer	rence Books
1	The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws Book by DafyddStuttard and Marcus Pinto
2	Hacking: Computer Hacking Beginners Guide How to Hack Book by Alan T. Norman

Course	e Designers			
S.No	Faculty Name	Designation	Dept / College	Email id
1	S.Leelavathy	Assistant Professor	CSE/ AVIT	leelavathy@avit.ac.in
2	Dr.R.Bharanidharan	Assistant Professor	CSE/VMKVEC	bharanidharan@vmkvec.edu.in

- p-1- d-=+

				CL	OUD C		Category	L	Т	Р	Credit				
													0	0	3
PREA	MBLE		1 41		:	4			41		11	I	11		
	y and ur			oncepts	in clou	a comp	uting a	nd appi	y them	practica	IIy.				
PRER	EQUIS	ITE N	IL												
COUR	OURSE OBJECTIVES														
1.	1. To understand cloud computing concepts.														
2.	To stud	ly vario	us clou	d servic	es.										
3.	To app	ly cloud	l compu	iting in	collabo	oration v	with oth	ner serv	ices.						
4.	To App	oly clou	ıd comp	outing s	ervices										
5.	To app	ly cloud	l compu	iting on	line.										
COUR	SE OU	TCON	1ES												
On the	On the successful completion of the course, students will be able to														
CO1: A	ble to U	Understa	and basi	ics in C	loud Co	omputin	ıg						Unde	rstand	
CO2 : A	Able to a	apply cl	oud coi	nputing	g concep	ots in re	al time						Ap	ply	
СОЗ: А	ble to d	evelop	cloud c	omputi	ng proje	ects							Ap	ply	
CO4 : A	ble to a	pply clo	oud serv	vices									Ap	ply	
CO5: A	Able to a	collaboi	ate clo	ud servi	ces wit	h other	applica	tions					Ap	ply	
MAPP	PING W	/ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPI	ECIFIC O	UTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	M
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	M
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	s
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
S- Stro	ng; M-l	Medium	n; L-Lo	W	1	I	I	1	1	1		1	1	-1	

-9-1- d-=+

INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage –Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

TEXT BOOKS

1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

REFERENCES

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	T.Geetha	Assistant professor	CSE	geetha_kcs@yahoo.com

\$-1- d-=+

SENSORS & TRANSDUCERS FOR	Category	L	Т	Р	Credit
HEALTHCARE	EC-PS	3	0	0	3

PREAMBLE

Sensors & transducers for healthcare course presents an overview of sensors and transducers of different types that have been proven in medical and home environments as being helpful in Quality of Life enhancement. Also emphasizes the need Home care.

PRER	EQUISITE:								
	NIL								
COUL	OSE OBJECTIVES								
1	To Understand the basic concepts of sensors, sensor principles and its classification.								
2	To use the basic concepts of transducers, electrodes and its classification.								
3	To Study the cardiac, respiratory and muscular physiological systems and several other ins	truments for healthcare.							
4	To outline the various biological components using biosensors.								
5	5 To emphasize the need for home medicare system and provide the advance medical technology in home medicare.								
COU	RSE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1. 0	Quantify the specification and characteristics of sensors	Understand							
CO2. 1	Describe the working principles of transducers.	Understand							
CO3.]	CO3. Develop the knowledge for implementing different types of physiological parameter Apply								
measurement using appropriate sensors.									
CO4. /	CO4. Analyze the biological components using biosensors in various applications. Analyze								
CO5.A	nalyze the skills required for home Medicare for the elderly, the children and digital	Analyze							
1	echnical advancements with home Medicare.								

-9-1- d-=+

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	S	S	-	-	-	-	-	-	-	S	М	-
CO2	M	L	-	М	-	М	-	-	L	-	-	М	-	М	-
CO3	S	S	M	Μ	L	М	-	Μ	М	М	-	S	М	Μ	S
CO4	S	S	L	S	-	S	М	Μ	S	-	-	S	S	Μ	М
CO5	S	S	Μ	М	L	М	-	М	М	Μ	-	S	М	M	S
CO4 CO5	S S	S S	L M	S M	- L	S M	M -	M M	S M	- M	-	S S	S M	M M	M S

S- Strong; M-Medium; L-Low

SYLLABUS

SENSOR FUNDAMENTALS AND SENSOR PRINCIPLES

Sensor Classification, Performance and Types, Electric charge, field and potentials, capacitor and dielectric constant, magnetism, Induction, resistance, Seebeck, peltier and thermal effects, Heat transfer, light and ultrasonic.

TRANSDUCERS AND ITS CLASSIFICATION

General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer, Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIOMEDICAL SENSORS AND PHYSICAL SENSORS IN BIOMEDICINE

Introduction to Biomedical Sensors-Classification-Temperature measurement: core temperature,-surface temperatureinvasive. Blood flow measurement: skin blood- hot film anemometer- Doppler sonography- electromagnetic sensor blood pressure measurement: noninvasive- hemodynamic invasive, Spirometry- sensors for pressure pulses and movement- ocular pressure sensor- acoustic sensors in hearing aid, tactile sensors for artificial limbs, sensors in ophthalmoscopy.

BIOSENSORS AND ITS APPLICATION

Biological elements, Immobilization of biological components, Chemical Biosensor, electrochemical sensor, chemical fibro sensors, blood glucose sensors, non-invasive blood gas monitoring, UREASE biosensor.

MEDICAL INSTRUMENTS AT HOME AND DIGITAL HOME CARE

Spectrophotometer, colorimeter, flame photometer, auto-analyzer, Medical devices at home and its implementation, Infant monitors, Medical alert services, Activity monitors, Home medicare management by videophone, Continuous home care through wireless bio-signal monitoring system Smart Wearables in Healthcare.

Text Books:

1. Jacob Fraden, "Hand book of modern sensors: Physics design and applications", Springer, 2003, 3rdedition, AIP press 2. J. G. Webster, J. G. Webster, "Medical Instrumentation; Application and Design", John Wiley & Sons, Inc., New York, 4th Edition, 2015.

3. Robyn Rice, "Home care nursing practice: Concepts and Application", Elsevier, 4th Edition, 2006.

4. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.

Reference Books:

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 3 rd edition, 2014.

2. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.

\$-1.- d-=+

COUR	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	R.Mohana Priya,	Assistant Professor(Gr-II),	ECE	mohanapriya@avit.ac.in
2.	Dr.P.M.Murali	Assistant Professor	ECE	muralipm@vmkvec.edu.in

-9-1- d-=+

VIRTUAL INSTRUMENTATION	Categor y	L	Т	Р	Credit
	EC-PS	3	0	0	3

PREAMBLE

A virtual instrument consists of an industry-standard computer or workstation equipped with powerful application software, cost-effective hardware such as plug-in boards, and driver software, which together perform the functions of traditional instruments.

PREREQUISITE

COUR	RSE O	BJEC	FIVES												
1	Revie	ew bacl	kgroun	d infor	mation	requir	red for	studyiı	ng virti	ual instru	umentati	ion.			
2	Study	the ba	isic bui	ilding b	olocks	of DA	Q in vi	rtual in	strume	entation.					
3	Study	the va	rious t	echniq	ues of	interfa	cing of	extern	al inst	ruments	of PC.				
4	Study	the va	rious g	graphic	al prog	grammi	ng env	vironme	ents in	virtual i	nstrume	ntatio	n		
5	Study	a few	applic	ations	in virtu	al inst	rument	ation							
COUR	RSE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	ourse, s	student	s will t	be able	to					
CO1: F	Review	the stu	udy of	signal	time do	omain	and AC	C/DC c	onvert	ers.			Remembe	r	
CO2: 7	The con	ncepts	of oper	ration c	of virtu	al instr	ument	ation a	nd clas	sificatio	n.		Understan	d	
CO3:C	lassify	and de	esign o	f interf	acing (of exte	rnal ins	strume	nts				Evaluator		
CO4: A	Apply 1	the con	cepts c	of grapl	nical p	rogram	ming.						Apply		
CO5: .	Analyz	ze the	tools a	and sin	nple aj	pplicat	ions in	syste	ms for	Fourier	r transfo	orm	Analyze		
Power	spectr	um cor	relation	n wind	owing	and filt	tering 1	tools.							
MAPP	PING	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS	РО	PO2	РО	PO4	РО	PO6	РО	PO8	PO	PO10	PO11	PO1	PSO1	PSO2	PSO3
	1		3		5		7		9			2			
CO1	S	M		L	S	M	L	M	S				M		
CO2	S	S	М		S	М	L	М	S		М			S	
CO3	S					М	L	М	S	L			М		L
CO4	S		S	L	S	M	L	M	S					L	

- P-1- d-=+

CO5				L	S	L	S	М	L	
										l
S- Stro	ng; M-	Mediu	ım; L-I	Low					•	

REVIEW OF DIGITAL INSTRUMENTATION

Representation of analog signals in the digital domain - Review of quantization in amplitude and time axes, sample and hold, sampling theorem, ADC and DAC.

FUNDAMENTALS OF VIRTUAL INSTRUMENTATION

Concept of virtual instrumentation - PC based data acquisition - Typical on board DAQ card - Resolution and sampling frequency - Multiplexing of analog inputs - Single-ended and differential inputs - Different strategies for sampling of multi-channel analog inputs. Concept of universal DAQ card - Use of timer-counter and analog outputs on the universal DAQ card.

CLUSTER OF INSTRUMENTS IN VI SYSTEM

Interfacing of external instruments to a PC - RS232, RS 422, RS 485and USB standards - IEEE 488 standard - ISO-OSI model for serial bus - Introduction to bus protocols of MOD bus and CAN bus.

GRAPHICAL PROGRAMMING ENVIRONMENT IN VI

Concepts of graphical programming - Lab-view software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart Oscilloscopic types - Loops - Case and sequence structures - Types of data - Arrays - Formulae nodes -Local and global variables String and file I/O.

ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI

Fourier transform - Power spectrum - Correlation - Windowing and filtering tools - Simple temperature indicator - ON/OFF controller - P-I-D controller - CRO emulation - Simulation of a simple second order system - Generation of HTML page.

TOTAL HOURS: 45

TEXT BOOKS

1. S. Gupta and J.P Gupta, 'PC Interfacing for Data Acquisition and Process Control', Instrument society of America, 1994.

2. Peter W. Gofton, 'Understanding Serial Communications', Sybex International. 3. Robert H. Bishop, 'Learning with Lab-view', Prentice Hall, 2003.

REFERENCE BOOKS

1. Kevin James, 'PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control', Newness, 2000.

2. Gary W. Johnson, Richard Jennings, 'Lab-view Graphical Programming', McGraw Hill Professional Publishing, 2001.

COURSE DESIGNERS S.No Name of the Faculty Designation Department Mail ID . 1 Dr. K.Boopathy Professor EEE boobathyk@avit.ac.in

\$-1.- d-=+

	Category	L	Т	Р	Credit
PNEUMATIC SYSTEMS	EC-PS	3	0	0	3

PREAMBLE

Today, Industries are increasingly demanding process automation in all sectors. Automation results into better quality, increased production and reduced costs. The controlling parameters like motion, Speed, Position and torque are paramount in raising productivity and quality and reducing energy and equipment costs in all industries. Electric drives share most of industrial machine control applications. The variable speed drives which controls speed of a.c/d.c motors are indispensable controlling elements in automation systems. Such drives contain various high performance motors, power electronic converters and digital control systems. With wide options which are open to engineers for selecting proper drive system, one can look forward for a highly efficient and reliable drive for every application in industry.

PREREQUISITE

NIL

COURS	SE OBJ	ЕСТГ	VES													
1	To un	derstar	nd abou	ut basi	cs of fl	uid po	wer sy	stems	fundaı	nental	s.					
2	To ac	quire k	nowle	dge ab	out co	mpone	nts use	ed in h	ydrauli	ic and	pneum	atic s	systems.			
3	To fai	niliariz	ze aboi	it the	variou	s types	s of val	ves an	d actu	ators.			-			
4	To de	sign hy	/drauli	c circu	its for	differe	ent app	olicatio	ns.							
5	To de	sign pr	neumat	ic circ	uits fo	r diffei	ent ap	plicati	ons.							
Course	Outcor	nes Or	the s	uccess	ful coi	npleti	on of t	he cou	irse, st	tudent	s will	be ab	le to			
CO1. applica	Understa ation.	and the	e differ	ent dri	ve sys	tems a	nd ider	ntify w	hich is	suitat	ole for	speci	fic	Unde	rstand	1
CO2.	Understa	and the	e worki	ng of o	liffere	nt com	ponen	ts in fl	uid po [,]	wer sy	stem.			Ur	nderst	and
CO3.	Understa l compo	and abo nents.	out the	utiliza	tion o	f cylin	ders, a	ccumu	lators,	valves	s and v	variou	S	Ur	nderst	and
CO4 .]	Design a	ı feasit	ole hyd	raulic	circuit	for a g	given a	pplica	tion.						Appl	y
CO5	Design a	ı feasil	ole nne	umatic	circui	it for a	given	applic	ation						Annl	v
MAPPI	ING WI	TH PI	ROGR	AMM	E OU	TCO	MES A	ND P	ROGI	RAMN	1E SP	ECII	FIC OU	TCO	MES	5
cos	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PS	02	PSO 3
CO1	S	М	М	L	М	_	_	_	_	_	-	_	L	_		_
CO2	S	М	М	L	М	-	-	-	-	-	-	_	L	-		-
CO3	S	М	М	L	М	_	_	_	_	_	_	_	L			-
CO4	S	S	S	М	L	Μ	-	-	-	-	_		L			-
CO5	S	S	S	М	L	М	-	-	-	-	_	_	L	_		-
S Strop	na. M N	Andiur		0111												

S- Strong; M-Medium; L-Low

\$-1.- d-=+

FLUID POWER SYSTEMS AND FUNDAMENTALS

Introduction to fluid power, Advantages and Applications of fluid power system. Basic Laws in Fluid power system, Types of fluid power systems, Properties of fluids – General types of fluids – Fluid power symbols. Basic Laws in Fluid power system. Low cost automation.

HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps– Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler VALVES AND ACTUATORS

Construction of Control Components: Director control valve - 3/2 way valve, 4/2 way valve,

Shuttle valve, check valve – pressure control valve –pressure reducing valve, sequence valve-Flow control valve. Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits -Press – Planer.

DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

Text Books:

- 1. Anthony Esposito "Fluid Power with Applications"- Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls"- TMH 2011.
- 3. Andrew Parr "Hydraulics and Pneumatics "- Jaico Publishing House

Reference Books:

- 1. Thomson, "Introduction to Fluid power"- Prentice Hall 2004.
- 2. Majumdar S.R. "Oil Hydraulics Principles and maintenance"- Tata McGraw-Hill.
- 3. Majumdar S.R. "Pneumatic systems Principles and maintenance"- Tata McGraw Hill.

Course Designers

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.S.Natarajan	Asso.Prof	MECH/ VMKVEC	natarajanshree@gmail.com

\$-1.- d-=+

DES	SIGN	FOR	MANI	UFAC	TURI	NG	Ca	tegory	L		T	Р	Credit
ANI	D ASS	SEMB	LY					EC-PS	3		0	0	3
PRE	EAMI	BLE: 7	Γo intr	oduce	the co	ncepts	s of aı	itomatio	on in V	arious	Indust	rial app	lications
PRE	EREQ		re - n										
	U KSE inders	tand ro	botics	v ES s based	indus	strial a	utom	ation					
ToI	dentif	y the v	arious	auton	nated	assem	bly sy	stems					
Tod	levelo	p auto:	mated	materi	al har	ndling	and s	torage s	system				
To i	dentif	y the v	various	autom	nated i	inspec	tion a	nd testi	ng met	hods.			
Tob	ouild t	he auto	omated	l manu	factur	ring sy	stems	5.					
CO	URSE	OUT	COM	ES									
On t	he suc	ccessfi	ul com	pletion	of th	e cour	se, sti	idents v	vill be	able to)		
Un	dersta	nd the	qualit	y aspe	cts of	design	n for r	nanufac	ture a	nd asse	mbly.	Under	stand
Ap	ply Bo	oothro	yd met	thod of	f DFM	1 for p	roduc	t desigr	n and a	ssemb	ly.	Apply	r
Ap	ply th	e conc	ept of	DFM 1	for cas	sting,	weldi	ng, forn	ning ar	nd asse	mbly.	Apply	r
Ide	ntify 1	the des	sign fa	ctors a	nd pro	ocesse	s as p	er custo	mer sp	ecifica	ations.	Apply	r
Ap	ply th	e DFM	1 meth	od for	a give	en pro	duct.					Apply	r
MA OU	PPIN ГСОМ	G WI MES	ГН РЕ	ROGR	AMN	1E OU	UTCC	OMES A	AND P	ROG	RAMN	1E SPF	CIFIC
PO	PO	PO	PO	PO	РО	PO	PO	PO	PO1	PO	PSO		
2	3	4	5	6	7	8	9	10	1	12	1	PSO	2 PSO3
M	-	-	S	-	-	-	-	-	-	-	M	-	-
S	М	-	M	-	-	-	-	-	-	-	L	-	L
S	М	L	М	-	-	-	-	-	-	-	M	-	M
М	М	L	L	M	-	-	-	-	-	-	M	-	M
М	L	L	L	-	-	-	-	-	-	-	M	-	L
S- S	trong	; M-M	lediun	n; L-L	ow								
SVI	LAR	US											
Intr	oduct	tion to	DFM	, DFM	[A: (9	Hrs.)							
How	/ Doe	es DF	MA V	Vork?.	Reas	sons	for N	ot Imr	lemen	ting T	DFMA.	What	Are the
Adv	antage	es of A	Applyi	ng DF	MA I	During	, Prod	uct Des	sign?,	Typica	l DFM	A Case	e Studies,

Overall Impact of DFMA on Industry.

-9-1- d-=+

High speed Automatic Assembly & Robot Assembly: (9 Hrs.)

Design of Parts for High-Speed Feeding and Orienting, Additional Feeding Difficulties, High-Speed Automatic Insertion, General Rules for Product Design for Automation, Design of Parts for Feeding and Orienting, Product Design for Robot Assembly.

Design for Machining and Injection Molding: (9 Hrs.)

Machining Using Single-Point & Multi point cutting tools, Choice of Work Material, Shape of Work Material, Machining Basic Component Shapes, Cost Estimating for Machined Components, Injection Molding Materials, The Molding Cycle, Injection Molding Systems, Molding Machine Size, Molding Cycle Time, Estimation of the Optimum Number of Cavities, Design Guidelines.

Design for Sheet Metal working & Die Casting: (9 Hrs.)

Dedicated Dies and Press-working, Press Selection, Turret Press working, Press Brake Operations, Design Rules, The Die Casting Cycle, Auxiliary Equipment for Automation, Determination of the Optimum Number of Cavities, Determination of Appropriate Machine Size, Die Casting Cycle Time Estimation, Die Cost Estimation, Design Principles.

Design for Assembly Automation:

Fundamentals of automated assembly systems, System configurations, parts delivery system at workstations, various escapement and placement devices used in automated *assembly* systems, Quantitative analysis of Assembly systems, Multi station assembly systems, single station assembly lines.

(9 Hrs.)

TEXT BOOKS:

Geoffrey Boothroyd, Assembly Automation and Product Design, Marcel Dekker Inc., NY, 3rd Edition,2010.

Geoffrey Boothroyd, Hand Book of Product Design, Marcel Dekker Inc., NY, 1992.

REFERENCES:

. GeofferyBoothroyd, Peter Dewhurst and Winston Knight, A, "Product Design for Manufacture and Assembly", CRC Press, 2011.

.KarlUlrich,T, Steven Eppinger, D, "Product Design and Development", McGrawHill, 2015.

COURSE DESIGNERS

Name of the Faculty	Designation	Department / Name of the College	Mail ID
R.PRAVEEN	Assistant Professor G-II	Mechanical, AVIT	Praveen@avit.ac.in

- p-1- d-=+

				INDI	ISTR	IAT.	SAFF	ту	Ca	itegor	y	L	Т	Р		Cre	edit
							JAI L	11		EC-PS		3	0	0			3
Prea To f	amb amil	le iarize	with s	afety	issues	s in de	sign, l	handl	ing ar	nd indu	ıstrial	enviro	nmer	nt			
Prei NIL	equ	isite															
Cou	rse (Object	tive														
1	То	study	about	safet	y man	agem	ent an	d und	lerstar	nd all t	he saf	ety asp	oects	thorou	ghly	у.	
2	To	be averation	ware of dif	of the	e vari t tvpe	ious s s of m	safety nachin	proc	edure	s and	preca	ution	to be	e follo	wea	d durir	ig the
3	To equ	be th	oroug its and	shly e mate	equipp erials	oed wused f	vith su for ind	ufficie ustria	ent kr il safe	nowlec ty.	lge of	hand	ling	the di	ffer	ent typ	oes of
4	To due	be ha	ving s	sufficies and	ient k moni	nowle toring	edge a	nd sh alth a	aring spects	of ex	pertise	e for e	merg	ency s	situa	tions a	rising
5	То	be aw	are of	the v	arious	s laws	regard	ding l	nealth	issues	and s	afety c	of per	sonals	•		
Cou	rse (Outco	mes: (On th	e suc	cessfu	ıl com	pletio	on of	the co	urse,	studen	its wi	ill be a	ble	to	
CO1	•	Ident and r	ify ma	aterial	ls for	indust rtv rel	rial ap	plica	tions	based	on mi	crostru	cture		ndei	rstand	
CO2		Selec	t suita alline	able st mater	trengt tral	hening	g mec	hanisi	m and	l its eff	fects f	or a		U	ndei	rstand	
CO3		Ident mech indus	ify he anical	at trea l prop	atmen erties	t meth of ma	nods an aterials	nd su s for a	rface applic	treatm ations	ents to in eng	o impro gineeri	ove ng	A	pply	I	
CO4		To m vario	akes a us ma	an ana terial	alysis s.	of the	forma	ation	and e	ffects o	of cor	osion	on	A	naly	ze	
CO5	5.	Perfo real-t fabrio	orm testime a cation	sting a pplica techr	and m ations. aiques	echan Selec	iical p ct adva	roper anced	ties ev mate	valuati rials a	on of and var	materia ious	als fo	or A	naly	ze	
Map	pin	g with	Prog	ramn	ne Ou	tcom	es and	l Pro	gram	me Sp	ecific	Outco	omes				
CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	2 PS	501	PSO2	PSO3
CC	01	М	L	L	L	L								ľ	M		
CC	02	М	L	L	L	L								ľ	M		
CC	03	S	S	S	S	S									S		
CC	04	S	М	М	М	М								ľ	M		
CC	05	S	S	S	S	S								ľ	M		
S- St	rong	; M-Me	dium;	L-Lov	V					·t				1			
	• • •																
SYL	LA	BUS								25							

-9-1- d-=+

UNIT I - SAFETY MANAGEMENT

Evaluation of modern safety concepts - Safety management functions – safety organization, safety department – safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity.

UNIT II: OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation – electroplating-hot bending pipes -Safety in welding and cutting. Cold-metal Operation – Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting –shot blasting, grinding, painting - power press and other machines

UNIT III: SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals - Industrial fires and prevention - Road safety - highway and urban safety – Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

UNIT IV: ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programs -Specific hazard control strategies - HAZOP - Training and development of employees - First Aid- Fire fighting devices - Accident reporting, Investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention – Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian Boiler act - The environmental protection act - Electricity act - Explosive act.

Text	Books
1	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House
2	John Ridley

Reference Books

Accident Prevention Manual for Industrial Operations", N.S.C.Chicago, 1982

Course Designers

1

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S.DURAITHILAGAR	ASSO.PRO F	MECH/VMKVEC	duraithilagar@vmkvec.edu.in
2	J.RABI	ASSO.PRO F	MECH/VMKVEC	jrabi@vmkvec.edu.in

-P-1- -===

			р	RODI	ІСТ Г	DEVE	LOPM	ENT	Ca	ategor	y	L	Т	Р	Cre	edit
				NOD						EC-PS		3	0	0	Í	3
Prea The f	mble	e s of Pr	oduct	Desig	n and	Devel	onment	t is in	teorati	on of t	the mai	·keting	design	and mar	ulfactur	ino
funct	ions	of the	e firm	in crea	ating a	new p	product		legiali			Ketting,	design,		luluctui	mg
Prer NIL	equi	site														
Cour	rse O)bject	ive													
1	Une	dersta	nding	the as	pects	of proc	duct pla	anning	g and o	develo	pment					
2	То	under	stand	the cu	stome	r needs	S									
3	Cor	ncept	genera	ation a	nd ind	lustrial	l needs									
4	Cor	ncept	selecti	on an	d meth	od of	selectio	on								
5	Inte	ellectu	al pro	perty												
Cour	rse O	Outcor	nes: (On the	e succe	essful	comple	etion	of the	cours	e, stud	ents wi	ill be abl	e to		
CO1.	. 1	Under	stand	the ba	sic co	ncept o	of proc	luct p	lannin	ig and	develo	pment		Under	stand	
CO2.		Under	rstand	the cu	stome	r requi	irement	ts and	l speci	ficatio	n of th	e produ	ıct	Apply		
CO3.		Apply	the co	oncept	t of de	sign aı	nd man	ufact	uring t	to deve	elop ne	w produ	uct	Apply		
CO4.		Apply	the ag	ppropi	riate co	oncept	require	ed for	new p	produc	t devel	opment	ţ	Apply		
CO5.	· 1	Analy patent	ze the ing pr	produ ocedu	ict elei re	ments,	scope,	oper	ating p	proced	ure and	loutline	e for	Analy	ze	
Map	ping	with	Prog	ramm	e Out	comes	and P	rogra	amme	Specif	fic Out	comes		1		
СО		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO	1	S				L	L	М						L		
CO2	2	S	М	L	L	М	М							L		
CO	3	S	L	М										L		
CO4	4	S	М	S	М	М	М							L		
CO	5	S	М	S	S									L		
S- St	rong	g; M-N	Mediu	m; L-	Low		·									<u> </u>
SYL	LAB	SUS														

-\$-1- d-=+

INTRODUCTION AND PRODUCT PLANNING AND PROJECT SELECTION

Significance of product design, product design and development process, sequential engineering design method, the challenges of product development, Identifying opportunities evaluate and prioritize projects, allocation of resources

IDENTIFYING CUSTOMER NEEDS AND PRODUCT SPECIFICATIONS

Interpret raw data in terms of customers need, organize needs in hierarchy and establish the relative importance of needs., Establish target specifications, setting final specifications

CONCEPT GENERATION AND INDUSTRIAL DESIGN

Activities of concept generation, clarifying problem, search both internally and externally, explore the output, Assessing need for industrial design, industrial design process, management, assessing quality of industrial design

CONCEPT SELECTION

Overview, concept screening and concept scoring, Concept and Idea generation - methods of selection. - Activities of concept generation, clarifying problem, search both internally and externally

INTELLECTUAL PROPERTY

Elements and outline, patenting procedures, claim procedure, Design for Environment: Impact, regulations from government, ISO system and IPR.

Text Books

1 Ulrich K. T, Eppinger S.D and Anita Goyal, "Product Design and Development", Tata McGraw Hill, 2009.

Reference Books

1 Otto K, and Wood K, "Product Design", Pearson Education, 2001.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	P.KUMARAN	ASST. PROF –GR- II	Mech / AVIT	Kumaranp@avit.ac.in
2	R.PRAVEEN	ASST. PROF –GR- II	Mech / AVIT	praveen@avit.ac.in

- p-1- d-=+

			DESIG	SIGN FOF	ROU	ALITY	7	Ca	tegory			ľ	Р	C	-
			2201	01110			-	EC-	PS	3		0	0	3	
PREA	PREAMBLE														
This c	his course reviews the statistical techniques, designing various experiments and special experiments and ptimization techniques														
PREF	REQU	ISITE:	NIL												-
COUI	RSE O	BJECT	IVES												-
1 To know about Design principles and analysis of statistical techniques															
2 To Understand single factor & multi factorial experiments 3 To know about factorial designs													-		
													-		
4	To k	now ab	out the	Select	ion of	orthogo	onal arr	ays							-
5	Prin	ciples o	of robus	st desig	n										
COUI	RSE O	UTCO	MES												-
On the	the successful completion of the course, students will be able to														-
The va	ne various statistical techniques Understand														-
CO2.	CO2. design single factor & multi factorial experiments Apply														-
CO3.	CO3. special designs in factorial experiments Apply														-
CO4 .	To de	esign o	rthogor	nal exp	erimer	nts					A	nalyze			-
CO5.	To de	esign ro	obust d	esign a	and ho	w to op	otimize	those	data		A	nalyze			-
Allalyze														-	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PSO2	PSO
CO1	S	S	S	M	Μ	M							L		
CO2	S	S	S	M	М	M		<u> </u>					L		
CO3	S	S	S	Μ	М	Μ							L		
CO4	S	S	S	М	М	Μ		<u> </u>					L		
CO5	S	S	S	M	M	M							L		
	CO5 S S M M M													•	1

-9-1- d-=+

INTRODUCTION

Perception of quality, Taguchi's definition of quality – quality loss function, Planning of experiments,

design principles, terminology, normal probability plot, Analysis of variance, Linear regression models.

FACTORIAL EXPERIMENTS

Design and analysis of single factor and multi-factor experiments, tests on means, EMS rules

SPECIAL DESIGNS

2 K Factorial designs, Fractional factorial designs, Nested designs, Blocking and Confounding.

ORTHOGONAL EXPERIMENTS

Selection of orthogonal arrays (OA's), OA designs, conduct of OA experiments, data collection and

analysis of simple experiments, Modification of orthogonal arrays

ROBUST DESIGN

Variability due to noise factors, Product and process design, Principles of robust design, objective

functions in robust design - S/N ratios, Inner and outer OA experiments, optimization using S/N ratios,

fraction defective analysis, case studies

Text Books:

- 1. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012
- 2. Douglas C Montgomery, " Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference:

- 1. Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New Age International Publishers, 2010
- 2. Nicolo Belavendram, "Quality by design" Taguchi techniques for Industrial experimentation, Prentice Hall.

Course Designer

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com

- p-1- d-=+

		M	MODERN MANUFA METHODS		ACTU	JRING	Cate	egory	L		T	Р	Cro	edit	
			METHODS					EC	-PS	3		0	0	•	3
Preamble This course aims to teach the physics, modelling, and mathematical inferences of variousadvanced manufacturing processes used in industries for making products. Thestudents will get complete knowledge of the unconventional processes in terms of aspects stated above.															
Prerequisite - NIL															
Course Objective															
1	To discuss the basic concepts various unconventional machining processes														
2	To Demonstrate the Mechanical energy basedunconventional machining processes.														
3	To Demonstrate the Electrical energy based unconventional machining processes.														
4	To Der	nonstra	ate the	Chem	ical &	Elect	ro-Chem	ical er	nergy b	asedun	conven	tional	machinir	ng proce	esses.
5	To Der	nonstra	ate the	Therr	nal en	ergy ba	ased unco	onven	tional 1	nachin	ing pro	cesses	•		
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	Disc	uss the	e basic	conce	epts va	rious u	inconven	tional	machi	ning pı	ocesses	5	Understa	ind	
CO2.	2. Demonstrate the Mechanical energy based unconventional machining Apply processes.														
CO3.	Dem proc	ionstra esses.	te the	Electri	ical en	ergy b	ased unc	onven	tional	machin	ing		Apply		
CO4.	Dem	onstra	te the onal n	Chemi nachin	ical & ing pro	Electrocesse	o-Chemi s.	cal en	ergy ba	ased			Apply		
CO5.	Dem proc	ionstra esses.	te the	Therm	al ene	rgy ba	sed unco	onventi	ional n	nachini	ng		Apply		
Map	ping wit	th Pro	gramr	ne Ou	tcome	es and	Program	nme S	pecifi	c Outco	omes	ľ			
СО	PO1	PO	PO	PO	РО	РО	PO7	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
		2	3	4	5	6		8	9	0	1	2	1	2	3
CO1	M	L	-	-	-	М	S	-	-	-	-	M	M	-	М
CO2	M	L	-	-	-	М	S	-	-	-	-	M	M	-	М
CO3	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
CO4	М	L	-	-	-	М	S	-	-	-	-	M	М	-	М
CO5	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
S- St	rong; M	[-Medi	ium; I	L-Low											

-9-1- d-=+

INTRODUCTION

Unconventional machining Process - Need - classification - Brief overview-merits - demerits-Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits–Wire cut EDM – working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants-Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

Text Books

1	Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd.										
2	P.K.Mishra, "Non Conventional Machining " The Institution of Engineers (India) Text Books: Series.										
Reference Books											
1	Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., NewYork										
2	Pandey P.C. and Sh	an H.S. "Modern Ma	achining Processes" Ta	ata McGraw-Hill, New Delhi.							
3	Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., New Delhi, 8th Edition.										
Course	e Designers										
S.No	Faculty Name Designation		Department/Name of the College	Email id							
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in							
2											

\$-1.- d-=+

			BUSINESS INTELLI					AND	ITS		Categor	y L	Т	Р	Credit
					APPLICATION						EC- IE	3	0	0	3
PREA	PREAMBLE														
Business Intelligence (BI) refers to the tools, technologies, applications and practices used to collect, integrate, analyze,															
and present an organization's raw data in order to create insignitul and actionable business information in Data mining.															
PRER	PREREQUISITE – NIL														
COUR	COURSE OBJECTIVES														
1	To Introduce students to various business intelligence concepts														
2	To learn the concepts of data integration used to develop intelligent systems for decision support														
3	To introduce visualization tool for prepare the enterprise reporting														
4	To lea	rn anal	ytical c	ompon	ents and	d techn	ologies	used to	create	dashboa	rds and s	corecard	ls, data/1	text/Web	mining
1	To gai	ds n new	insights	s into or	ganizat	tional o	peration	ns in im	plemen	tation of	svstems	for Busi	ness Int	elligence	e (BI)
		TCON			0		1		1		5			0	
	SE UU		1ES	6.4		. 1	1	11 11							
On the successful completion of the course, students will be able to															
CO1. Learn about the concepts of OLTP and OLAP for BI infrastructure development															
formula	date and	an unde solve re	erstandi elevant	ng of he problen	ns and l	ness pr how the	ey use a	nals car	to sup	port decis	sion mak	s to ing	Anal	yze	
CO3. A	Apply Cl	lusterin	ıg, Assc	ociation	and Cl	assifica	tion tec	hnique	s for Da	ta Integr	ation		Appl	У	
CO4. /	Assess I	BI tools	to solv	e probl	ems, iss	sues, an	d trend	s using	predict	ive analy	sis		Appl	у	
CO5. I	Develop	system	ns to m	easure,	monito	r and p	redict t	he ente	rprise v	ariables	and perf	ormance	Appl	у	
MAPP	ING W	TTH P	ROGR		E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	-	-	-	-	-	-	M	S	M	M
CO2	S	М	L	-	M	-	-	-	-	-	-	M	S	M	M
CO3	S	M	L		M							M	S	M	M
	5										_		5		
CO4	S	М	L	-	M	-	-	-	-	-	-	M	S	M	M
CO5	S	М	L	-	M	-	-	-	-	-	-	M	S	M	M
S- Stro	ng; M-N	Aedium	n; L-Lo	W											

- p-1. - d-=+
INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1.Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in			
2.	Mrs. S. Leelavathy	Assistant Professor(G-II)	CSE	leelavathy@avit.edu.in			

- p-1- d-=+

LEARNING IT ESSENTIALS BY DOING	Category	L	Т	Р	Credit
	EC- IE	3	0	0	3

PREAMBLE

The proposed elective course exposes the non-CS/IT students to IT Essentials. The core modules of this Elective includes programming, Database and web Technology amongst other related topics. This course refers to the basic tools and technologies for the right type of website development and enable student to create simple web applications

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To learn about the essentials of Information Technology								
2	To get an idea about the scripting languages.								
3	To get an idea about the internet protocols								
COUR	COURSE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1 U	Inderstand the networking concept internet protocols, network routing	Understand							
CO2. U	CO2. Understand the fundamentals of web applications and its modeling Understand								

 CO3. Understand and learn the scripting languages with design of web applications
 Understand

 CO4. Analyze the process of mobile communication and network technologies
 Analyze

CO5. Build simple interactive applications, database applications and multimedia applications.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

					-										
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
001	S	M	M	M	-	-	-	-	-	-	-	M	S	M	M
000															
02	S	M	M	M	-	-	-	-	-	-	-	М	S	-	Μ
CO3	S	м	м	м								м	S	м	м
	5	IVI	IVI	111	-	-	-	-	-	-	-	IVI	5	IVI	IVI
CO4															
	M	M	M	M	M	-	-	-	-	-	-	M	S	M	-
COF															
	М	M	M	M	S	-	-	-	-	-	-	М	-	M	M
S- Stro	ong; M-	Mediur	n; L-Lo	OW											

- p-1- d-=+

SYLLABUS

Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

Client server computing

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI, 1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

\$-1.- d-=+

			ЛАТЦ	ΙΜΟΙ		INC A	2. CON	мтрл		STEM	G	Catego	ry L	T	Р	C
			ΊΑΙΠ		THEC	DRY AND	PRACT	ICALS)		5 I E.WI		EC- IE	2	0	2	3
Preamble	e										·		·			
This cou	rse int	roduce	es Matl	hemati	cal mo	odeling	imple	mentai	tion in	contro	l syster	m .				
PREREQUISITE : Nil																
COURSE	E OBJI	ECTI	VES													
1 To present a clear exposition of the classical methods of control system modelling, and basic principles of frequency and time domain design techniques																
2		To t	teach the practical control system design with realistic system specifications													
3		Und	Inderstand the concept of stability using various stability criteria													
COURSE	e out	СОМ	COMES													
On succe	ssful c	omple	etion o	f the c	ourse	, the st	tudent	ts will	be abl	e to						
СО	1	Dev	velop n	nathem	natical	model	s of en	gineer	ing sys	stems				Und	ersta	nd
CO	2	Abl	e to de	esign co	ontrol	strateg	ies for	engin	eering	system	IS			Understand		
СО	3	Dev	velop p	lant m	odels f	for eva	luating	g contr	ol strat	egies				Understand		and
СО	4	Dev	velop N	/IL an	d HIL	testing	g frame	eworks	s and a	nalyse	results			Ana	lyze	
C0 :	5	Gai	n profi	ciency	in use	e tools	like M	ATLA	B/ Sin	nulink				A	pply	ý
Mapping	with P	rogran	nme ou	ıtcome	s and	Progra	mme	Specif	ic Out	comes			·			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2]	PSO3
CO1	S	M L M - M S - M - S M									M		М			
CO2	М	L	М	М	_	-	-	-	-	-	-	-	М	-		-
CO3	S	М	S	L	-	-	-	S	M	-	_	-	S	M		-
CO4	М	М	L	S	-	-	-	M	-	-	М	М	S	M		-
CO5	S	S	5 M M M S S -										-			

-g-1- - -=+

SYLLABUS

INTRODUCTION TO MATH MODELLING

Need for Math Modelling – Transfer Functions - Steps to Build Transfer Functions. Modelling: Electrical & Electronic systems, Electromechanical systems, Hydraulic systems, Thermal systems - Control Systems in simple terms - Natural behaviour of a system - Controlled behaviour of a system

BUILDING A SIMPLE CONTROL SYSTEM

Input and Response of a system - Identifying control inputs - Types of controllers - Types of Systems based on number of I/O - Types of Systems based on I/O relationship - Time-Variant & In-Variant systems LTI Systems Behaviour - Practical example for controlling system behaviour

SIGNALS & BUILDING A SIMPLE CONTROL SYSTEM

Introduction to Signals - Signal Processing - Signal Noise- Conditioners - First order system and its response -Second order system and its response - Solution to the differential equations - Introduction to frequency domain – Convolution - Impulse response

FREQUENCY ANALYSIS & FEEDBACK SYSTEM

Bode plot - Laplace transform - Initial value theorem - Final value theorem - Zeros and poles - Closed Loop Control System – Air-Fuel Control – SI Engines, Closed Loop Control System – Air – Fuel Control – CI Engines - Data Driven vs Mathematical Models, Data Extraction Methods – Testing vs Simulation

STABILITY ANALYSIS & CONTROLLER DESIGN

Routh stability criterion - Nyquist plot – Linearization - Pole placement - Root locus Observability - Robust control – LQR - Observer design and State-estimator - Cascade control

HIL TESTING

HIL Testing fundamentals, applications and use cases - Developing HIL testing frame-work for control strategy evaluation - Automating HIL Test Scripts – Pass / Fail Scenarios

TEXTBOOK

- 1. U Kiencke, L Nielsen, "Automotive Control Systems for Engine, Driveline, and Vehicle", Springer
- 2. John B Heywood, "Internal Combustion Engine Fundamentals", McGraw-Hill, Inc

REFERENCES

- 1. Graham C Goodwin "Control System Design"
- 2. John R Fanchi "Math Refresher for Scientists and Engineers"
- 3. William, B. Ribbens, Understanding Automotive electronics, ButterWorth Heinemann 1998.
- 4. Robert N. Brandy, Automotive computers and Digital Instrumentation, Prentice Hall Eaglewood Cliffs, New Jersey, 1988

\$-1.- d-=+

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	S.Prakash	AP(Gr-IIP	EEE	sprakash@avit.ac.in
2	Mr. P. Loganathan	AP	EEE/ VMKVEC	loganathan@vmkvec.edu.in

62

-g-1.- d-=+

PREA					()	Шесен	IC	Vehicle.		alego	I y	L			cuit
PREA	MDI			RACIICAL	.5)					EC- II	Ξ	2	0 2		3
This co deepe progro	ourse r into am.	prese the v	ents the j arious a	fundam spects c	ental ia of hybrid	leas, prir d and ele	nciple: ectric	s, analy: drive tr	sis an ain sı	d desi uch as	gn of h their d	nybrid config	and elec uration v	tric veh vith Ma	icles. tlab
PRER	EQUI	SITE	Nil												
COUR	SE OI	BJEC	ΓIVES												
1	To D	iscuss	differei	nt energ	y stora	ge techn	ologie	es used j	for hy	vbrid e	lectric	vehic	cles and t	heir cor	ntrol
2	<u>To le</u>	arn t	he desig	n and se	elect EV	<u> </u>	сотро	onents k	pased	on des	sign re	quire	ments.		
3	To u	nders	tand the	e model	-based	developi itical ma	ment i dollin	ISING M.	ATLA	BSIM	ulink s				
5	To le	arn (arry ou	j unu m t model:	hased i	ralihrati	on ha	у 0ј ЕП sed on e	v unc missi	i unive ions re	s. auirei	nents			
6	To ki	10W G	bout va	rious El	ectrica	l propuls	sion sy	stem		0115 1 0	quirei	nento			
COUR	SE O	UTCC	MES				y								
On the	e succ	essful	comple	tion of t	the cour	rse, stude	ents w	vill be al	ble to						
CO1 -l	Develo	op the	electric	c propul	sion un	it and its	s conti	rol for a	ipplic	ation	of elec	tric v	ehicles.	Ap	ply
СО2 -	Analy	vze di	fferent p	oower c	onverte	r topolo	gy use	ed for el	ectric	c vehic	le app	licatio	on.	Imple	ement
СОЗ –	Use ti	he en	ergy on	board e	ffective	ly								Reme	ember
СО4 -	Creat	te the	simulat	e and o	bserve t	the beha	vior o	fEV						Ар	ply
СО5 -	Unde	rstan	d varioı	ıs comp	onents	that mal	ke up	a EV / F	HEV v	ehicle.				Ар	ply
CO6- 1 hybric HEVs.	Interp 1 vehi	ret w cle co	orking onfigura	of differ tion, pe	rent cor rforma	nfigurati nce ana	ions oj lysis a	f electri Ind Ene	c veh rgy N	icles a Ianag	nd its ement	comp strat	oonents, egies in	And	lyze
MAPF	PING	WITH	I PROG	RAMMI	E OUTC	COMES A	AND P	ROGR	MM	E SPE	CIFIC	OUTO	COMES		
COS	РО 1	РО 2	РО 3	PO 4	PO 5	<i>PO</i> 6	<i>PO</i> 7	РО 8	РО 9	PO 10	PO 11	P0 12	PSO1	PSO 2	PSO3
C01	L	М	L	М	М	-	L	М	S	L	-	-	S		-
СО2	-	L	М	L	-	S	-	М	М	-	S	-	-	М	_
СОЗ	М	S	-	S	-	L	L	L	-	М	-	-	-	L	-
<i>CO</i> 4	L	L	М	S	-	L		М	М	L	L	S	М	М	М
C05	М	М	L	М	S	-	L	М	-	М		L	М	-	М
<i>CO6</i>	L	L	М	-	L		L	S	М	-	L		L	L	L
S- Stre	ong; N	1- <u>M</u> ec	lium; L-	Low			I		I	I					I
SYLL/	ABUS														
1	Inter	duat	ion to II	ubrid 0	Floats	ovohiala									

-9-1- d-=+

- 2. Principles of Electric Machines
- 3. Power electronics and Motor control
- 4. Energy storage system and Fuel cell vehicles
- 5. Transmissions and Alternate storage systems
- 6. Energy Management and Model based development
- 7. Integration of Subsystems

References

- 1. Electric and Hybrid Vehicles: Design Fundamentals, Husain Iqbal.
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Chris Mi and M. Abul Masrur.
- 3. Electric and Hybrid Vehicles, by Tom Denton
- 4. Electric Vehicle Technology Explained, 2ed (WSE), James Larminie
- 5. Introduction to Hybrid Vehicle System Modeling and Control, Wei Liu.
- 6. Hybrid, Electric, and Fuel-Cell Vehicles, Jack Erjavec.

\$-1.- d-=+

			INNOV DEV	ATIO	N, PRC	DUCT		Cat	egory	L	Т	Р	Credit
			COMN	AERCI		ATION		0	E-IE	3	0	0	3
PREA	MBLE							I			11		I
com	nerciali	zation o	of innov	ation a	nd new	products	s in fast	t-paced,	high-tech 1	markets and	match	ing	
techr	nologica	ıl innov	ation to	market	opport	unities.							
PRER	EQUIS	ITE - N	IIL										
COUR	COURSE OBJECTIVES												
1 To make students understand multiple-perspective approach in organization to capture knowledge and creativity to develop successful products and services for Volatile, Uncertain, Complex and													
	Ambiguous (VUCA) world.												
2	Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of society in general and markets in particular which focus on commercialization												
3	society in general and markets in particular which focus on commercialization Improved understanding of organizational best practices to transform exciting technology into												
5	successful products and services												
4	4 Critically assess and evaluate innovation policies and practices in organizations especially from a												
cultural and leadership point of view													
5	Expla	in why	Innovati	on ises	sential 1	to organi	zationa	al strateg	y – especia	ally in a glob	bal env	ronr	nent
COUR	SE OU	ТСОМ	ES										
On the	success	ful com	pletion	of the c	course,	students	will be	e able to					
CO1: 1	Underst	and the	role of	innovat	ion in g	gaining a	nd mai	ntaining	competitiv	ve advantage	;	Uno	derstand
CO2: In	ntegrate	the inn	ovation	basis a	nd its r	ole in de	cision	making o	especially	under uncert	ainty	App	oly
CO3: A	nalyze	busines	s challe	nges in	volving	g innovat	tion ma	inagemei	nt			App	ply
CO4: H	laving p	oroblem	solving	g ability	– solvi	ing socia	l issue	s and bus	siness prob	olems		App	oly
CO5: C	Comprel	nend the	e differe	nt sour	ces of in	nnovatio	n					App	ply
MAPP	ING W	ITH P	ROGR	AMME	OUTO	COMES	AND	PROGR	AMME S	PECIFIC O	OUTC	OMF	ËS
COs	Р	Р	Р	Р	Р	Р	Р	РО	PO9	PO10	PO	11	P012
	01 02 03 04 05 06 07 8												
CO1	М	-	-	-	-	M	S	S	-	М	-		-
CO2	S	S	S	М	M	M	-	-	-	-	-		-
CO3	S	S	S	М	M	M	-	-	-	-	-		-
CO4	S	S	S	М	M	M	-	-	-	-	-		-
CO5	S	S	S	М	M	M	-	-	-	-	-		_
S- Stro	ng: M-N	Medium	: L-Lov	v									

-g-1- d-=+

Pre-launch, during launch and Post launch preparations;

SYLLABUS:

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

Reference Books:

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1- d-=+

		NEV	V VEN	TURE	PLAN	NING A	ND	Cat	egory	L	Т	Р	Credit
			Μ	IANAG	EMEN	T		Ol	E- IE	3	0	0	3
PREA	MBLE	1						1		L			
Cont	empora	ry meth	ods and	l best pi	actices	for the	entrepro	eneur to	plan, launc	h, and opera	ite a no	ew	
venti	ire and	creation		isiness	plan								
PRER			lot Req	uirea									
COUR	SE OB	JECTT	VES										
1	An op	portunit	y for se	elf-analy	ysis, and	d how th	nis relat	es to suc	cess in an	entrepreneu	rial en	viron	ment.
2	Inform	nation a	nd unde	erstandi	ng nece	ssary to	launch	and gro	w an entre	preneurial ve	enture.		
3	A realistic preview of owning and operating an entrepreneurial venture.												
4	An entrepreneur must understand the diversity, emotional involvement, and workload necessary to												
5	succeed. The opportunity to develop a business plan												
COUR	I ne opportunity to develop a business plan.												
On the successful completion of the course, students will be able to													
CO1: E	CO1: Explain the concept of new venture planning, objectives and functions and its Understand												
CO2: A	nalyze	the bus	iness pl	an issu	es and 1	remuner	ration p	ractices i	in startups	business.		App	oly
CO3: E	xplore	an entre	preneu	rial idea	to the	point w	here yo	u can int	elligently a	and decide		App	ply
whether	r to "go	tor it''	or not.	ha diffa	rant for	maantr	opropoli	rial anzi	ronmont in	torms of the		Δ.m	-1 ₁
kev dif	ferences	s and si	nilaritie	es.			epreneu				-11	App	JIY
CO5: E	xplore	the busi	ness pla	an and ł	ousiness	s model	canvas	for your	idea.			App	oly
MAPP	ING W	ITH P	ROGR	AMME	OUTO	COMES	S AND	PROGR	AMME S	PECIFIC C	OUTC	OMF	S
COs	Р	Р	Р	Р	Р	Р	Р	PO	PO9	PO10	PO	11	P012
	01	02	03	04	05	06	07	8					
CO1	М	-	-	-	-	M	S	S	-	М	-		-
CO2	S	S	S	M	M	M	-	-	-	-	-		-
CO3	S	S	S	M	M	M	-	-	-	-	-		-
CO4	S	S	S	M	M	M	-	-	-	-	-		-
CO5	S	S	S	М	M	M	-	-	-	-	-		-
S- Stroi	ng; M-N	viedium	; L-Lov	V									
SYLLA	SYLLABUS: STARTING NEW VENTURE: Opportunity identification Search for new ideas Sources of innovative												
SIAN				ve. op	Portum	ly fuenti	incation			acas - Sourc	U S 01 1	11100	

-9-1- d-=+

ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

- p-1- d-=+

		50	CIAL I	INTE	DDFN	FUDSH	TD	Cat	egory	L	Т	Р	Credit
		50				LUNSI		Ol	E- IE	3	0	0	3
PREA	MBLE	I											
Socia	al entre	preneurs	ship inv	olves th	ne creati	ivity, im	aginati	on and ii	nnovation	often associa	ited w	ith	
entre	preneui	ship.											
PRER	EQUIS	ITE - N	lil										
COUR	SE OB	JECTI	VES										
1	To pro entrep	ovide sto reneurs	udents v hip	vith a w	vorking	knowled	dge of t	the conce	epts, oppor	tunities and	challe	nges	of social
2	To de	monstra	te the r	ole of s	social e	ntrepren	eurship	in creat	ting innova	ative respons	ses to	critic	al social
	needs	(e.g., h	unger, p	overty,	inner c	ity educ	ation, g	global wa	arming, etc	<u>.</u>			
3	To en domai	gage in n of soc	a colla a colla	borativ eprenei	e learni 1rship	ng proc	ess to	develop	a better ur	nderstanding	of th	e con	itext and
4	To he	lp prepa	re you j	persona	lly and	professi	onally	for mean	ingful em	ployment by	reflec	ting o	on the
	issues	of socia	al entrep	oreneur	ship.								
5	Engag	e with a	a divers	e group	of soci	al entrep	oreneur	S					
COUR	SE OU	тсом	ES										
On the	success	ful com	pletion	of the o	course,	students	will be	e able to					
CO1: E	Explain	the cond	cept soc	ial entr	epreneu	rship an	d distir	nguish its	s elements	from across	a	Un	derstand
continu	um of o	organiza	tional s	tructure	es from	traditior	nal non	profits to	o social ent	erprises to			
traditio	nal for	profits		0 1		•	• .•	•	• 1	• 1			1
CO2: A	Analyze	the ope	rations	of a hui	man ser	vice org	anizatio	on using	social enti	epreneurial		Ap	ply
$CO3 \cdot A$	uon and	e Socia	y asses	sment a	inu ulag del Cam	1000000000000000000000000000000000000	DOIS. Iean sta	rtun met	thods for n	lanning		Δη	nly
develor	ning, tes	sting la	unching	and ev	valuating	g social	change	ventures	s.	laining,			pry
CO4: (Compare	e fundin	g option	ns for s	ocial ch	ange vei	ntures.					Ap	ply
CO5: 1	The outc	omes o	f social	entrepr	eneursh	ip are fo	cused	on addre	ssing persi	stent social		Ap	plv
probler	ns parti	cularly	to those	who a	re marg	inalized	or poor	r.	61				
MAPP	ING W	TTH P	ROGR	AMMF	COUT(COMES	AND	PROGR	AMME S	PECIFIC C	OUTC	OMI	ES
COa					-	D	D	DO	DOA	DO10	DO		D013
	Р	P	Р	Р	P	Y	r	PO	PO9	POIO	PO	11	PUIZ
	P 01	P 02	P 03	P 04	P 05	Р 06	P 07	PO 8	PO9	POI0	PO	11	PUIZ
CO1	Р 01 М	P 02 -	P 03 -	P 04 -	P 05 -	Р 06 М	P 07 S	8 S	-	РО10 М	- PO		- P012
CO3 CO1 CO2	Р 01 М S	P 02 - S	P 03 - S	Р 04 - М	Р 05 - М	Р 06 М М	P 07 S	PO 8 S -	- -	M -	- PO		- -
CO1 CO2 CO3	P 01 M S S	P 02 - S S	P O3 - S S	Р 04 - М М	Р 05 - М М	Р 06 М М М	P 07 S -	PO 8 S -	- - -	PO10 M - -			- - -

-9-1- d-=+

CO5	S	S	S	М	М	М	-	-	-	-	-	-
S- Strop	ng; M-N	Aedium	; L-Lov	v								

SYLLABUS:

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture sustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

\$-1.- d-=+

AND ENTREPRENEURIAL MANAGEMENTOE-IE3003PREAMBLE:A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.PREREQUISITE: NiiCOURSE OBJECTIVES:1. To understand the basies of Startups Management and components.2. To analyze the startups fund management practices3. To practice the various kinds of stocks and employment considerations in startups.4. To apply the importance of intellectual property rights and its procedures.5. To explore the entreprencurial mindset and culture.COURSE OUTCOMES:After successful completion of the course, students will be able toCOURSE OUTCOMES:AnalyseCO2: Analyze the various kinds of stocks and employment oportunities and functions and its components.UnderstandCOURSE COUTCOMES:AnalyseCOURSE out completion of the course, students will be able toCOURSE COUTCOMES:AnalyseCOURSE out constant the various forms of intellectual property protection and practice.AnalyseCOURSE Course and contrast the various forms of intellectual property protection and practice.Analyse </th <th>17MBHS</th> <th>01</th> <th></th> <th>ENG</th> <th>INEE</th> <th>RING</th> <th>STAF</th> <th>RTUP</th> <th>S</th> <th>Categ</th> <th>jory</th> <th>L</th> <th>Т</th> <th>Р</th> <th>Credit</th> <th></th>	17MBHS	01		ENG	INEE	RING	STAF	RTUP	S	Categ	jory	L	Т	Р	Credit	
PREAMBLE: A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: Nil				AND	ENT MAN	REPR [AGE]	ENEU MENT	JRIAI F		OE-	IE	3	0	0	3	
A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: Nil COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: Andre startups funding issues and remuneration practices in startups business. Analyze the startups funding issues and remuneration practices in startups business. CO1: Explain the concept of cngincering startups, objectives and functions and its components. Understand CO2: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO3: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse	PREAMBLE:															
scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: NI COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. CO3: Analyze the various forms of intellectual property protection and practice. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO3: P03 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03	A startup mean	is con	npany	initiat	ted by	indiv	idual i	innova	tor or	entrep	reneurs	to sea	rch for	a rep	eatable ar	ıd
a viable business model to meet a marketplace needs or wants in an optimum manner. PREREQUISITE: Nil COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO3: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 S S M M M M L - - - M M L - CO3	scalable busine	ess mo	del. N	lore sp	pecific	ally, a	startu	p is a 1	newly	emerge	d busin	ess ven	ture that	t aims	s to develo	эр
PREREQUISITE: Nil COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to COURSE OUTCOMES: Analyze the startups funding issues and remuneration practices in startups business. CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO4: For po3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 S S M M M M L - - - M M L - CO3 S S M M M M C - -	a viable busine	ss mo	del to	meet a	a mark	etplac	e need	s or w	ants in	an opti	mum n	nanner.				
COURSE OBJECTIVES: 1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. M M - M L L CO3 P01 P02 P03 P06 P07 P08 P09	PREREQUISIT	ГЕ: Ni	l													
1. To understand the basics of Startups Management and components. 2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO4 PO1 PO2 PO3 PO4 PO7 PO8 PO9 PO1 PO1 PO2 PS03 PC4 PC PC7 PC8 PO PO1 PO1 PC2 PS03 CO1 M - </td <td>COURSE OBJ</td> <td>ECTIV</td> <td>VES:</td> <td></td>	COURSE OBJ	ECTIV	VES:													
2. To analyze the startups fund management practices 3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03 CO4: PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS03	1. To u	unders	stand	the bas	ics of	Startu	ps Ma	nagem	ent an	d comp	onents.					
3. To practice the various kinds of stocks and employment considerations in startups. 4. To apply the importance of intellectual property rights and its procedures. 5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2: S S M M M M L - - - M L L - CO3: S S S M M M M C - - - - M L - - - M	2. To a	analyz	the the	startup	s func	l mana	gemer	nt prac	tices							
4. To apply the importance of intellectual property rights and its procedures.5. To explore the entrepreneurial mindset and culture.COURSE OUTCOMES:After successful completion of the course, students will be able toCO1: Explain the concept of engineering startups, objectives and functions and its components.UnderstandCO2: Analyze the startups funding issues and remuneration practices in startups business.AnalyseCO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business.AnalyseCO4: Compare and contrast the various forms of intellectual property protection and practice.AnalyseCO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.EvaluatesCO3P01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03CO1MMMS-MLLLLCO2SSMMMMLLLLCO3SSSMMMMMMMM	3. To j	practic	ce the	variou	s kind	s of st	ocks a	nd em	ploym	ent con	siderati	ons in s	startups.			
5. To explore the entrepreneurial mindset and culture. COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P02 PS02 PS03 CO1 M - - - M L L L CO3 S S M M L - - M L - CO4 S S M	4. To a	apply	the in	portar	nce of	intelle	ctual p	oropert	y right	ts and it	s proce	dures.				
COURSE OUTCOMES: After successful completion of the course, students will be able to CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 S S M M S - M - L L CO2 S S M M L - - - M L - CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates Evaluates CO1 M - - M M L L L CO2 S	5. To e	explor	e the	entrep	reneur	ial mir	ndset a	nd cul	ture.							
After successful completion of the course, students will be able toCO1:Explain the concept of engineering startups, objectives and functions and its components.UnderstandCO2:Analyze the startups funding issues and remuneration practices in startups business.AnalyseCO3:Analyze the various kinds of stocks and employment opportunities and consideration in startups business.AnalyseCO4:Compare and contrast the various forms of intellectual property protection and practice.AnalyseCO5:Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.EvaluatesCO5P01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03CO1MMMS-MMLCO3SSMMMML-MCO4SSSMMMMLL-CO5:Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.EvaluatesEvaluatesCO5P01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03CO5SSMMMMML-	COURSE OUT	COM	ES:													
C01: Explain the concept of engineering startups, objectives and functions and its components. Understand C02: Analyze the startups funding issues and remuneration practices in startups business. Analyse C03: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse C04: Compare and contrast the various forms of intellectual property protection and practice. Analyse C05: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates C08 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C01 M - - M M S - M L - C02 S S M M M - - - M L - C03 S S M M M - - - M L - C04 S S M M M - - - M L - M <t< td=""><td>After successful</td><td>l comp</td><td>oletion</td><td>of the</td><td>cours</td><td>e, stud</td><td>ents wi</td><td>ill be a</td><td>ble to</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	After successful	l comp	oletion	of the	cours	e, stud	ents wi	ill be a	ble to							
CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO4: Os P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 M - - M M S - M M - - M L - CO2 S S M M M - - - M L - CO3 S S M M M - - - M L - CO3 S S M M M - - - M L - CO3 S S M M	CO1: Explain	the co	oncept	of eng	gineeri	ng stai	tups, o	objecti	ves an	d funct	ions and	d its co	mponen	its.	Understan	d
CO3: Analyze the various kinds of stocks and employment opportunities and consideration in startups business. Analyse CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO1 M - - M M S - M - L L CO2 S S M M L - - - M L - CO3 S S S M M M - - - M L - CO3 S S S M M - - - M A - - M - - - M - - - M - - - M - - - M - - - M - - - - M - - - - M - - - - -	CO2: Analyze	the st	artups	s fundi	ng issi	ues and	d remu	inerati	on pra	ctices in	n startuj	os busii	ness.		Analyse	
startups business. CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates CO5: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - M M S - M L L - CO2 S S M M M - - - M L - CO3 S S M M M - - - M L - CO4 S S M M - - - M L - CO3 S S M M - - - M L - CO4 S S S M M - - - M L - CO5 S S - M M - - - -	CO3: Analyze	the va	arious	kinds	of sto	cks an	d emp	loyme	nt opp	ortuniti	es and c	conside	ration in	1	Analyse	
CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 P01 P02 P03 P04 P05 P06 P07 P08 P09 P01 PO1 PSO2 PSO3 CO5 PO1 PO2 PO3 P06 P07 P08 P09 P011 PO12 PSO2 PSO3 CO1 M - M M C PSO1 PSO2 PSO3 CO2 S S M M C M C C M C <th colspan="6"Colspan="6"Colspan="6"Colspan="6"Colspan="6"Colspan="6</td> <td>startups busines</td> <td>ss.</td> <td></td>	startups busines	ss.														
CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries. Evaluates MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - M M S - M - L L CO2 S S M M M - - - M L - CO2 S S M M M - - - M - L L CO2 S S M M M - - - M L - - M L - M - M - M - M - M - M - - M - - M - - M - - M M <td< td=""><td>CO4: Compa</td><td>re and</td><td>l contr</td><td>rast the</td><td>e vario</td><td>us for</td><td>ns of i</td><td>intelled</td><td>ctual p</td><td>roperty</td><td>protect</td><td>ion and</td><td>l practic</td><td>e.</td><td>Analyse</td><td></td></td<>	CO4: Compa	re and	l contr	rast the	e vario	us for	ns of i	intelled	ctual p	roperty	protect	ion and	l practic	e.	Analyse	
companies of all sizes and industries. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Cos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 M - - M M S - M - M - L L CO2 S S M M M - - - M L - CO3 S S M M M - - - M L - CO4 S S S M M M - - - M M M CO5 S S S M M M - - - M	CO5: Explore	the er	trepre	eneuria	l mino	lset an	d cultı	ure tha	t has b	een dev	veloping	g in			Evaluates	
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - - M M S - M - M - L L CO2 S S M M L - - M - - M - - M L - - M - - M - - M - - M - - M - - - M - - M - - - M - - - M L - - - M L - - - M M - - - - M L - M - - M - - M - <td>compani</td> <td>ies of</td> <td>all siz</td> <td>es and</td> <td>indus</td> <td>tries.</td> <td></td>	compani	ies of	all siz	es and	indus	tries.										
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M - - - M M S - M - M - L L CO2 S S M M L - - - M L - - M - IL L - CO2 S S M M M L - - - M IL - - - M L - - - M L - M - - M IL - M - - M - - M - - M - - M - - M - - M - - M -	MAPPING	G WIT	TH PR	ROGR	AMM	E OU	TCON	MES A	ND P	ROGR	AMM	E SPEC	CIFIC	OUT	COMES	
CO1 M - - - M M S - M - M - L L L CO2 S S M M M L - - - M - M - L L - CO2 S S M M M L - - - M L L - CO3 S S S M M M - - - M L L - CO3 S S S M M M - - - M L - M CO4 S S S M M M - - - M M M CO5 S S - M M M - - - M M	COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO2 S S M M M L - - - - M L L - CO3 S S S M M M - - - - M L L - CO3 S S S M M M - - - M L L - CO4 S S S M M M - - - M L - M CO4 S S S M M M - - - M M A CO5 S S - M M M - - - M M M	CO1 M	-	-	-	_	М	М	S	_	M	_	М	-	L	L	
CO3 S S M M M - - - - M L - M CO4 S S S M M M - - - - M L - M CO4 S S S M M M - - - M L - M CO5 S S - M M - - - - M M M	CO2 S	S	М	М	М	L	-	-	-	-	_	М	L	L	-	
CO4 S S M M M - - - - M - M L CO5 S S - M M M - - - M - M L	CO3 S	S	S	М	М	М	-	-	-	-	-	М	L	-	M	
CO5 S S - M M - - - - M M M	CO4 S	S	S	М	М	М	-	-	-	-	-	М	-	M	L	
	CO5 S	S	-	М	М	М	-	-	-	-	-	М	М	M	М	

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan -

-9-1- d-=+

specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

\$-1.- d-=+

	INTELLECTUALPROPERTY	Category	L	Т	Р	Credit
	RIGHTS	OE-IE	3	0	0	3
PREAMBLE: The course	e is designed to introduce fundamental as	pects of Intellectu	al prop	berty R	ights to	o students
who are going to play a m	ajor role in development and manageme	nt of innovative pr	ojects	in indu	stries.	
PREREQUISITE: Nil						
COURSE OBJECTIVES	5:					
1. To introduce fur	idamental aspects of Intellectual prope	rty Rights				
2. To disseminate l	knowledge on patents and copyrights					
3. To disseminate l	knowledge on trademarks, Design and	Geographical Ind	dicatio	on (GI)	,	
4. To disseminate l	knowledge onPlant Variet, Layout Des	ign Protection ar	nd crea	ite awa	arenes	s about
current trends in	IPR					
5. To disseminate l	knowledge onLegislation of IPRs and A	Alternate Dispute	e Reso	lution		
COURSE OUTCOMES						
After successful complet	ion of the course, students will be able t	0				
CO1: Understand the imp	portant of intellectual property rights					Understand
CO2: Apply for the pater	ts					Apply
CO3: Understand and ap	ply for the copyrights					Understand
CO4: Understand the im	portant of trademarks					Apply
CO5: Appreciate the imp	portance of IPR and its related issues					Understand
MAPPING WITH P	ROGRAMME OUTCOMES AND	PROGRAMME	SPEC	CIFIC	OUT	COMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	М	-
CO2	L	S	S	M	М	L	-	-	-	-	-	L	М	L	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	L	-
CO4	L	S	S	S	M	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	M	-	L	-	-	-	-	-	L	М	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Unit 1 - Overview of Intellectual Property

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in

- p-1- d-=+

abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intelectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intelectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT - V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act,

Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

Text Books:

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., &Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	P. S. Balaganapathy	Associate Professor	Management	dydirectormanagementstudies@avit.ac.in
2	A. Mani	Associate Professor	Management	mani@vmkvec.edu.in

- p-1- d-=+

					PRI	NCIPI	LES O	F			Categor	y L	T	Р	(
				т	BI(NSTP	OMED	ICAL	ION			OE-EA	A 3	0	0	
PREA	MBLE			1	11311	UNILI	IAI								
Toenab	lethestu	identsto	odevelo	pknowl	edgeof	principl	es,desi	gnandaj	pplicati	onsof the	Biomedi	cal Instr	uments	•	
PRER	EQUIS	ITE–N	IL												
COUR	SEOBJ	ECTI	VES												
1	Tokno	wabou	tbioeled	etricsig	nals,ele	ctrodes	anditsty	/pes.							
2	Tokno	wtheva	ariousB	iopoten	tialreco	ording n	nethods							-	
3	Tostu	dyabou	tpatient	monito	ringcon	ceptand	lvariou	sPhysic	logical	measurer	nentsmet	hods.			
4	Tostu	dythepr	rinciple	ofopera	tionblo	odflowı	meter,b	loodcel	lscount	er.					
5	Tostu	dyabou	tbioche	micalm	easurer	nentsan	ddetail	sthecon	ceptoft	oioteleme	tryandpa	tientsafe	ety.		
COUR	SEOU	ГСОМ	ES												
Onthes	uccessf	ulcomp	letiono	fthecou	rse,stud	lentswil	llbeable	eto							
CO1.	Explain	thediffe	erent Bi	osignal	or biop	otential							Und	ersta	ınd
CO2.	Discuss	thewor	kingpri	ncipleso	ofdiagn	osticano	ltherap	euticeq	uipmen	ts.			Und	ersta	ınd
CO3.]	Examin	ethevar	iousins	trument	slikeas	ECG,E	MG,EE	G,X-ra	y mach	ine.			App	ly	
CO4.]	[llustrat	emedic	alinstru	mentsb	asedonj	principl	esanda	pplicati	onused	in hospita	al.		Ana	lyze	
CO5.	Analyze	andcal	ibratefu	Indame	ntalbior	nedical	instrum	entatio	nusedin	hospital			Ana	lyze	
MAPP	INGW	ITHPR	ROGRA	MME	OUTC	OMES	ANDP	ROGR	AMME	ESPECII	FIC OUT	COME	S		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02
CO1	М			-								L	М	-	
CO2	М								L			L	М	-	
CO3	S	S	М	S	М				М			М	М	1	M
CO4	S	М	М	М	L			L	S	L		S	M	5	S
CO5	S	S	М	М	L	М		L	S	L		S	M	;	S
S-Stror	ng:M-M	edium:	L-Low												-

SYLLABUS

BIOELECTRICSIGNALSANDELECTRODES

Basicmedicalinstrumentationsystem,OriginofBioelectricPotential,Recordingelectrodes–ElectrodeTissueinterface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jel creams, Microelectrodes.

BIOAMPLIFIERANDBIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, I Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENTMONITORINGSYSTEMANDNONELECTRICALPARAMETERS MEASUREMENTS System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood

- p-1- d-=+

measurement, Measurement of temperature, Respiration ratemeasurement, cardiacoutput measurement, Measurement or rate, Plethysmography technique.

BLOODFLOWMETERS, BLOODCELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of bloo Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO-CHEMICALMEASUREMENTSANDBIOTELEMETRYANDPATIENTSAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-a Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. KhandpurR.S, **"Hand-bookofBiomedicalInstrumentation"**, TataMcGrawHill, 2ndEdition, 2003.
- 2. LeslieCromwell, FredWeibellJ, ErichPfeiffer. A, "BiomedicalInstrumentation and Measurements", Prentic

India, 2nd Edition, 1997.

REFERENCES:

1. JohnG.Webster, "MedicalInstrumentationapplicationanddesign", JohnWiley, 3rdEdition, 1997. Carr, Joseph J, Brown, John. M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York Edition, 1997.

S.No.	Nameofthe Faculty	Designation	Department	Mail ID
1	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	AssistantProfessor(Gr-II)	BME	prabhakaran.bme@avit.a
3	Mrs.S.Vaishnodevi	AssistantProfessor	BME	vaishnodevi@vmkvec.ed
4	Ms.LakshmiShree	AssistantProfessor	BME	lakshmishree.bme@avit.

			Category	L	Т	Р	Credit	
--	--	--	----------	---	---	---	--------	--

- p-1- d-=+

]	BIOSE	NSOR	SAND	FRANS	SDUCE	RS		OE-H	EA 3	0	0	3
PREA The co compo highlig	PREAMBLE The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.														
PRER	EQUIS	SITE-N	Jil												
COUR	RSEOB	JECTI	VES												
1	Touse	ethebas	icconce	ptsoftra	ansduce	ers,elec	trodes a	andits c	lassific	ation.					
2	Todis	cussthe	evariou	s typeso	of electr	odes.									
3	Todet	ermine	thereco	ordingo	fbiologi	ical con	nponen	ts.							
4	Toem	ploythe	eknowl	edgeine	electroc	hemica	landop	ticalbio	sensors						
5	Toout	tlinethe	various	biologi	calcom	ponent	susing	biosens	ors.						
COUR	RSEOU	TCOM	IES												
Onthes	successi	fulcom	pletion	oftheco	urse,stu	dentsw	illbeab	leto							
CO1 .I	Describ	ethewo	rkingpı	rinciple	s of trai	nsducer	s.						Und	erstand	
CO2.	Explair	thevar	ious typ	besof el	ectrode	s.							Und	erstand	
CO3.	Utilize	various	FETser	isorsfor	recordi	ngofbio	ologica	lcompo	nents.				App	ly	
CO4.	Disting	uishva	riousbio	osensor	slikeele	ctroche	emicala	ndoptic	albiose	ensors.			Ana	yze	
C05.	Analyz	ethebio	logical	compoi	nentsus	ingbios	ensorsi	nvariou	ıs appli	cations.			Ana	yze	
MAPP	PINGW	ITHP	ROGR	AMMI	EOUTO	COME	SANDI	PROG	RAMM	IESPEC	IFIC O	UTCON	/IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	M	М	М
CO4	S	S	L	S		S	М	М	S			М	M	М	S
CO5	S	S	L	S		S	М	М	S			S	M	M	S

S-Strong;M-Medium;L-Low

SYLLABUS

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezoresistive transducers, photoelectric transducers.

BIOPOTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemicalelectrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor,

- p-1- d-=+

chemical fibro sensors.

APPLICATIONSOFBIOSENSORS:

Bananatrode, bloodglucoses ensors, noninvasive bloodg as monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S.Kalsi, "ElectronicInstrumentation & Measurement", TataMcGrawHILL, 1995.
 - 2. BrainREggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
 - 3. Shakthichatterjee, "BiomedicalInstrumentation", CengageLearning, 2013.
- 4. JohnGWebster, "MedicalInstrumentation: Application and design", JohnWileyPublications, 2001.

REFERENCES:

1. K.Sawhney, "Acoursein Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.

2. JohnPBentley, "**PrinciplesofMeasurementSystems**", 3rdEdition, PearsonEducationAsia, (2000Indianreprint). GeddesandBaker, "**PrinciplesofAppliedBiomedicalInstrumentation**", 3rdEdition, JohnWileyPublications, 2008.

	SEDESIGNERS			
S.No.	Nameofthe Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor&Head	BME	hemalk@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mr.V.Prabhakaran	AssistantProfessor(Gr-II)	BME	Prabhakaran.bme@avit.
4	Mrs.S.Vaishnodevi	AssistantProfessor	BME	vaishnodevi@vmkvec.e

- p-1- d-=+

		Category	L	Т	Р	Credit
	INTRODUCTION TO BIOFUELS	OE-EA	3	0	0	3
DDFAMBIE						

PREAMBLE

CO5

_

-

-

-

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE – NIL

COURSE OBJECTIVES

1 ′	To unde	erstand	d the o	differe	ent typ	es an	d diffe	erence	es betw	een ex	isting e	energy	resourc	es.	
2	Fo unde	rstand	l the in	mproc	ureme	ent, ut	ilizati	on an	d their	impact	ts on so	ociety a	and env	ironm	ent
,	To gain	knov	vledge	e aboi	it the	exist	ing di	fferer	nt biofi	iels an	d the	method	ls of pr	oduct	ion from different
3	sources		U				U						I		
4	To intro	duce	the te	chono	logies	invo	lved in	n the p	produc	tion, cł	naracte	rizatioi	n of bio	fuels	
,	To impa	acrt th	e kno	wledg	e and	appli	cation	s of b	iofuel	in vario	ous sec	tors ar	nd their	benef	icial aspects to the
5	society.			C		11									I
	•														
COU	J RSE C	DUTC	OME	ES											
1 ft o	n tha an		1.00	am lati	an afi	h	1	مسم		a abla	ta				
Alle	r the suc	cessi	ui cor	npieti	on or i	ne co	urse, I	learne	r will t	be able	10				
001	T T 1	. 1	.1	• .•	1		• • •				1 1				
COI	. Under	stand	the ex	listing	and e	merg	ing bi	omass	s to ene	ergy tec	chnolog	gies			Remember
CO2	. Under	stand	the co	oncept	of 1^{st}	gener	ation,	2 nd g	enerati	on and	advan	ce biof	uels		Understand
CO3	. Appra	ise the	e tech	no-eco	onomi	c anal	vses o	ofbio	fuel co	nversio	n tech	nologie	es		Understand
CO4	. To art	iculate	the c	oncep	tofa	bioref	inery	syster	n and t	be able	to dev	elop m	ajor un	it	
opera	ations o	f an ir	ntegra	ted bi	orefin	ery	2	5				1	5		Apply
CO5	. Illustra	ate th	e envi	ironm	ental i	mplic	ations	5							Apply
MA	PPING	WIT	H PR	OGR	AMM		JTCO	MES	AND	PROC	GRAM	ME SI	PECIFI		UTCOMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
CO2	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L
CO3	S	М	-	Μ	-	М	-	L	L	-	-	-	S	-	L
CO4	-	S	Μ	-	М	L	L	-	-	-	-	-	-	S	М

\$-1- d-=+

М

-

-

-

-

_

L

S

-

-

-

S- Strong; M-Medium; L-Low SYLLABUS

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

1.Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech,2011

COURS	COURSE DESIGNERS												
	Name of the												
S.No	Faculty	Designation	Department	Mail ID									
		Assistant Professor –											
1	Dr.A.Balachandar	Gr-II	Biotechnology	balachandar.biotech@avit.ac.in									
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in									

\$-1- d-=+

										Categor	·y	L	Т	Р	Credit
		FC TE	OD A	ND N OLO(IUTRI GY	TION				OE-E	A	3	0	0	3
PREA	MBLE														
The co	urse ai	ims to	enabl	e the s	studen	ts to u	nderst	tand th	ne nhvs	vicoche	mical r	nutritio	nal mic	robio	logical and
sensor	v aspe	ets. T	o fam	iliariz	the	studer	nts abo	out the	e proce	essing a	nd pre	servatio	on techt	niques	. To emphasize
the im	portanc	ce of t	food s	afetv.	food o	uality	. food	l plant	sani	tation.	food lav	ws and	regulat	ions.	food engineering
and pa	ckagin	g in f	ood in	dustry	7.	1 2	,	1		,			0	,	0 0
PRER	EQUIS	SITE -	- NIL		·										
COUR	RSE OF	BJEC	FIVES	8											
1 U	ndersta	nd the	tradit	ion foo	od proe	cessing	g techr	iaues	and the	basics	concept	of foo	d bioche	mistry	,
2 D	emonst	rate th	e proc	luct de	velon	nent te	chnia		ality an	d contai	minant	check			
3 T	o articu	late th	eir tec	hnical	know	ledge	for inc	lustria	l purpo	se	IIIIiaiii				
4 D	escribe	natio	nal foc	od laws	s and s	tandar	ds		• •						
5 L	aws and	1 quali	ties of	stand	ard for	food	produc	ets							
COUR	RSE OU	UTCO	MES	build	<u>uru 101</u>	1004	biodad								
After t	he succ	essful	comp	letion	of the	course	. learn	er will	l be abl	e to					
C01· F	Recall t	he nro	ressin	σ tech	niques	practi	ced in	olden	davs at	nd the b	iologics	1 proce	22		Remember
CO2. I	llustrat	e the r	nethod	ls for a	nimal	produ	ct deve	elopme	ent, qua	ality cor	trol and	i also s	creen the	e	Remember
contam	ninant	the to	ahaian		aalina		n in dus	teriol en	aada						Understand
0.1	ransier	the te	cnniqi	les in s	scanng	g up 10	r indus	strial n	eeas						Аррту
CO4. 1	Interpre	et and	Troub	leshoo	ot instru	uments	s to ma	aintain	accura	cy					Apply
CO5. I	Develop	o stanc	lards f	or foo	d addit	ives									Apply
MAPP	PING V	VITH	PRO	GRAN	AME (OUTC	OME	S ANI	D PRO	GRAM	ME SI	PECIF	IC OUT	COM	ES
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	М	S	М	L	-	-	-	-	-	-	-	М	L	-
CO4	М	S	S	М	L	-	-	-	-	-	-	-	S	S	-
CO5	- ng: M	S Madi-	S	M	М	-	-	-	-	-	-	М	L	S	-
s-suo	ng; M-	wiedit	ші; L-	LOW											
SYLL	ABUS														
INTRO	ODUC'	TION	TO F	TOOD	BIOT	ECHI	NOLC	G Y							

-9-1- d-=+

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY:

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers.

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

\$-1- d-=+

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

-9-1- d-=+

								Ca	tegor	y	L	Т		Р	Cre	edit
			DISA MAN	STER	RISK IENT				OE – EA		3	0	()		3
PREA	MBLI	E													<u></u>	
PRER	EQUI	SITE														
NIL																
COU	RSEC	BJEC	ΓIVES													
	1	Tostudy	vabout tł	neDisast	erManaş	gement	Cycles	5								
	2	ToStud	yaboutth	neDisast	erComm	nunitya	ndplan	ning								
	3	ToUnde	erstandth	neChalle	ngespos	edbyD	isaster	stothed	commu	inity						
	4	Tostudy	vaboutco	pingcor	nceptsfor	rbothna	turalaı	nd mar	nmadeo	disaste	rs					
	5	Tostuc	lvabouts	<u>r</u> enath	eningtec	hnique	eforetr	uctural	andno	nstruct	turalm	easure	c			
			MES	suchgun	miguee	iiiique	5101501			nstruc	urann	casure	3			
Onthes	UCCESS	sfulcom	pletion	ofthe co	ourse.st	udents	willbe	able t	0							
CO1. U	ndersta	indingD	isasters,	man-ma	deHazaı	dsand	Vulner	abilitie	s			Ur	derstand	landA	pply	
CO2. U:	ndersta	indingdi	saster m	anagem	entmech	anism						Ap	ply			
СО3 То	gainkn	owledge	eabout o	organizat	tionsinvo	olvedin	disaste	ercom	nunity			Ap	ply			
СО4.То	obuilds	killstore	espondto	odisaster	s							Ap	ply			
CO5 U ¹	ndersta	Indingca	nacityhi	uildinge	oncents	andnla	nningo	fdisasi	terman	ageme	onts	IIr	derstand	landA	nnlv	
MADD		WITUI		DAMM	FOUT	COM	FS AN	INDD		AMN	IFSDI				991 <u>9</u> 168	
		vv 1 1 1 1 1	KUGI				LS AI		UGK	PO1	PO	PO		PS	PS	PS
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	11	12	PSO1	02	03	04
CO1	L	L	L	L	L	L	М	L	L	М	L	М	М	L	L	М
CO2	М	М	L	L	М	L	S	L	L	М	М	S	S	L	L	S
CO3	S	М	L	L	М	L	М	L	L	М	S	S	М	L	L	s
CO4	м	М	L	L	м	L	М	L	L	s	s	S	S	L	L	м
CO5	c	S	T	т	c	Т	<u>د</u>	т	<u>-</u>	5	<u></u>	м	~ C	 T	т	s
S-Stro	ng;M·	-Mediu	m;L-L	OW	5	L	5		L	3	11/1	11/1	5	L	L	5

-9-1- d-=+

SYLLABUS UNITIINTRODUCTION

Overview of Disaster Management – Distinguishing between an emergency and a Disaster situation.Disaster Management Cycle – Disaster management Act and Policy in India; Organisational structurefordisastermanagementinIndia;Preparationofstateanddistrictdisastermanagementplans-

PhaseI: Mitigation, and strategies; hazard Identification and vulnerability analysis. Disaster Mitigation

andInfrastructure,impactofdisastersondevelopmentprogrammes,vulnerabilitiescausedbydevelopment, developingadraftcountry-leveldisasteranddevelopmentpolicyPhaseII:Preparedness, Disaster Risk Reduction(DRR), Emergency Operation Plan (EOP) Phases III and IV:Response and recovery, Response aims, Response Activities, Modern and traditional responses todisasters,DisasterRecovery,andPlan

UNITII DISASTERPLANNING

DisasterPlanning-DisasterResponsePersonnelandduties,CommunityMitigationGoals,Pre-

DisasterMitigationPlan,PersonnelTraining,VolunteerAssistance,School-

based Programmes, Hazardous Materials, Ways of storing and safely handling hazardous materials, Coping with Exposure

UNITIIIDISASTERCOMMUNITY

Disaster Community-Community-based Initiatives in Disaster management, need for Community-Based Approach, categories of involved organizations: Government, Nongovernment organizations(NGOs), Regional AndInternational Organizations, Panchayaths, Community Workers, NationalAnd Local Disaster Managers, Policy Makers, Grass-Roots Workers, Methods Of Dissemination OfInformation, Community-Based Action Plan, Advantages/Disadvantages Of The Community BasedApproach

UNITIV COPINGWITHDISASTER

Coping Strategies; alternative adjustment processes - Changing Concepts of disaster management - IndustrialSafetyPlan;Safetynormsand survivalkits-Massmediaand disastermanagement

UNITV CAPACITYBUILDING

Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity forReducing Risk - Counter-Disaster Resources and their utility in Disaster Management - LegislativeSupportatthestate and nationallevels

TEXTBOOKS:

- 1. ManualonDisaster Management, NationalDisasterManagement, AgencyGovtofIndia.
- 2. Ayaz,."DisasterManagement:ThroughtheNewMillennium",AnmolPublications.(2009)
- Dave, P.K.. "Emergency MedicalServicesandDisasterManagement: AHolisticApproach", NewDelhi: JaypeeBrothersMedi calPublishers(P)Ltd., 2009
- 4. Disaster ManagementbyMrinaliniPandeyWiley2014.
- 5. Goel, S. L., "DisasterManagement", NewDelhi:Deep&DeepPublicationPvt. Ltd., 2008

REFERENCEBOOKS:

- 1. Narayan, B."DisasterManagement", NewDelhi: A.P.H. PublishingCorporation, 2009
- 2. Kumar, N.: "DisasterManagement". NewDelhi: AlfaPublications., 2009
- 3. Ghosh,G.K., "DisasterManagement", New Delhi: A.P.HPublishingCorporation.

\$-1- d-=+

S.No	NameoftheFaculty	Designation	Nameofthe College	MailID
		AssistantPr		
1	MrsJ.Srija	ofessor-I	AVIT	srija.civil@avit.ac.in

-9-1- d-=+

															1
										Cate	gory	L	Т	Р	Credit
		MU	NICIP	AL SO	LID W	ASTE	MANA	GEM	ENT	OE-	EA	3	0	0	3
Pream	ble									1	Ļ		1		
	Stru	cture is	an arra	angeme	nt and	organiz	ation o	f interr	elated e	elements	in a ma	terial ol	oject or s	ystem, or	the
object	or sy	stem so	o organ	ized. M	laterial	structu	res incl	lude m	an-made	e objects	s such as	s buildi	ngs and 1	nachines	and
natura	l objec	ts such	as biol	ogical c	organisn	ns, min	erals an	d chem	nicals.						
Prereg	uisite			-	-										
	Nil														
Course	Obje	ctives													
1.	The	on-site/	off-site	proces	sing of	the sam	e and t	he disp	osal met	hods.					
2.	The st	tudent i	s expec	ted to k	now ab	out the	various	effects	s and dis	sposal op	otions for	the mu	nicipal so	lid waste	
3.	The c	ollectio	n and s	upply o	f water										
4.	The o	ffsite p	rocessir	ng invol	ved in s	site									
Course	Outco	omes													
On the	succes	sful cor	npletion	n of the	course,	studen	ts will	be able	to						
CO1.	To kn	iow abc	out the t	ypes of	waste	& Sour	ces						Analyze		
CO2 .	To St	udy the	on site	Storag	e & Pro	cessing	,						Apply		
CO3.	To stu	udy abo	out the c	ollectio	on & tra	ansfer 1	the was	te					Apply		
CO4.	To St	udy the	proces	s of off	site pro	cessing	ŗ						Apply		
CO5.	To kn	ow abo	ut the se	olid wa	ste disp	osal							Apply		
Марр	ing wi	th Prog	gramm	e Outco	omes ai	nd Prog	gramm	e Speci	ific Out	comes		L			
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	POS	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		102	105	104	105	100	107	100	10)	1010		1012		1502	1505
CO1	S	M		-	-	-	-	-	-	-	-	-		- -	S
CO3	5	M		5 6	-	-	-	-	-	-	-	-		M	5
CO4	S S	M	M	M	-	-	-	-	_	-	_	-		M	S
CO5	s	M	M	-	-	_	_	_	_	-	-	L		-	s
S- Str	ong; M	-Mediu	ım; L-L	ow	I		I	1			I			1	1

-9-1- d-=+

Syllabus

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITE STORAGE & PROCESSING

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions-cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

Text Books

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste

Management", Springer, 1994.

3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

Reference Books

- R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997, Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.
- Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002), Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9, Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development.
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

\$-1.- d-=+

	Category	L	Т	Р	Credit
FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	OF-EA	3	0	0	3
		5	U	U	5

PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Game playing. Thus, this syllabus focuses on to know about AI and its concepts.

PRERE	PREREQUISITE :NIL														
COURS	SE OBJ	ECTIV	'ES												
1	Tointre	duce th	e basia	nrincin	les tecl	miques	andar	mlicati	one of A	rtificio	Intellige	nce			
<u> </u>	To have				<u>105, 100</u>	innques	, anu ap	he de in		intificia.	l'ann an				
2.	1 o nave	e knowi	eage of	generic	c proble	m-solv	ing met	noas in	Artific	ial Intel	ligence.				
3.	To desi	gn softv	ware ag	ents to s	solve a	problen	n.								
4.	Apply t	he knov	vledge	of algor	ithms t	o solve	arithme	etic prol	blems.						
5.	Assemł	ole an et	fficient	code fo	r engin	eering p	oroblem	ıs.							
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the o	course,	student	s will b	e able t	0			•			
CO1: . I	CO1: Identify the different agent and its types to solve the problems														
CO2: ki	now abc	out the p	roblem	solving	g techni	que in A	Artificia	al Intell	igence.			Apply			
CO3: C	onstruct	the nor	rmal for	rm and 1	represei	nt the k	nowled	ge.				Apply			
CO4 : to	know a	bout ex	tension	of con	dition p	robabil	ity and	how to	apply ii	n the rea	ıl time				
environ	nent.											Apply			
CO5: T	o lean a'	bout Inf	formati	on Retri	ieval an	d Speed	ch Reco	gnition				Understa	nd		
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	RAMN	AE SPE	CIFIC C	UTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	-	_	_	_	-	-	М	S	М	М
CO5	CO5 S M M M M M S M -														
S-Stro	ong; M-	Mediu	m; L-L	ow											

-9-1- d-=+

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DES	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in										
2	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in										

\$-1.- d-=+

													г				
											Category	L	т	P C	redit		
		IN	TROD	UCTIO	ON TO	INTE	RNET	OF									
		TI	HINGS							0	EEA	3	0	0	3		
PREAN	IBLE																
Introduc	tion to	IoT for	statist	ical dat	a manij	oulation	n and a	nalysis.	It was	inspire	1 by and	is most	compat	ible with	n the		
statistica	al langu	age.															
PRERE NIL	QUISI	IE															
COUR	SE OB	JECTI	VES														
1	To lea	To learn Introduction to IoT.															
2	To Sti	Study methodology of IoT.															
3	To De	velop I	oT app	lication	s using	Arduin	o and Ir	ntel Edi	tion								
GOUD				incution.	o uom <u>o</u>	11144111	o una n										
COUR	SE OU		<u>IES</u>	0.1													
On the	success	tul con	pletion	$\frac{1}{2}$ of the $\frac{1}{2}$	course,	student	<u>s will b</u> aT in ta	e able t	0	ata aant	no1						
stateme	COT: I o Understand the basics in Introduction to ToT in terms of constructs, control statements, string functions												Understand				
СО2: Т	CO2: To Understand the use of Introduction to IoT fundamentals												Understand & Apply				
C03· I	earn to	apply I	ntroduc	tion to	IoT for	Comm	unicati	ng Segi	iential I	Drocess		Understand & Apply					
005.1		appiy I.	mouue		101 101	Comm	lumeati	ng Sequ		100035							
CO4: <i>A</i>	CO4: Able to appreciate and apply the Introduction to IoT from a statistical perspective												Understand & Apply				
СО5 То	CO5 To learn Introduction to IoT Challenges												Understand & Apply				
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAM	ME SPE	CIFIC C	DUTCO	MES				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	S	S	M	М	L	S	S	Μ	S	L	S	-	S	M	S		
CO2	1.5	G				C	6		G			Μ	M	M	S		
CO3	M	S	M	M	М	S	S	M	S	M	M	-	M	-	<u>S</u>		
CO4	9		0		м	C	9	0	0		0	<u>M</u>	M		<u>M</u>		
CU5 S-Stre	<u>δ</u>	S Medin	<u> S</u> m• I ₋I		М	8	8	8	8	M	S	8	M	М	M		
5-500	ng, w -	1viculu	111, L/-L	10 11													

-9-1- d-=+
SYLLABUS UNIT I –INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

UNIT II- IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network **UNIT III – Network & Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination UNIT IV – Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

UNIT V – Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"

2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COUR	COURSE DESIGNERS									
S. No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in						
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in						

\$-1.- d-=+

										Catego	rv	L	т	Р	Cre dit
				CYBE	R SEC	CURIT	ГY		-	OE-EA	- <u>,</u>	3	0	0	3
PREAN	ÍBLE	E		-											
To unde	rstan	d the r	need for	Cyber	Secur	ity in r	eal tim	e and t	o study	technic	ues invo	olved in it	t.		
PRERE		SITE	: NIL	1											
		RIFC	IIVES) 		la of C	- ih an C								
1.		unders			imenta	15 01 C	yber So		and iss	sues					
2.		study ·	various	cyber	crimes	and leg	gai ren	leales							
<u> </u>	To study E Commerce and digital payments														
4.	To study the basic security aspects related to Computer and Mobiles														
COURS	SE O)MES	ie seeur	ny asp		iatea te) Com			105				
On the s	ucces	ssful c	omplet	ion of t	he cou	rse, stu	idents v	will be	able to						
CO1: Able to understand the concept of Cyber security and issues and challenge										llenges	Unders	tand			
CO2: Able to understand the cyber crimes, their nature, legal remedies and as to									d as to	Apply					
how rep	ort th	e crim	es thro	ugh ava	ailable	platfor	ms and	1 proce	dures						
CO3: A media an	ble to nd un	appro dersta	eciate v nd the i	arious reportin reportin	privacy ng proc practic	y and s edure (ecurity of inap	concer propria	rns on o ate cont gial me	online S tent, dia platt	ocial	Apply			
CO4: A	ble to	unde	rstand t	he basi	c conc	epts re	lated to) E-Co	mmerc	e and di	gital	Apply			
payment	ts.											Apply			
CO5: A	ble to	o unde	erstand	the bas	ic secu	irity as	pects re	elated t	o Com	puter ar	ıd	Аррту			
MAPP	ING	WIT	H PRO	GRAN	AME (OMES		PROC	RAM	AF SPF	L CIFIC O	UTCO) MF	S
1717 11 1		****													P
	Р	Р	Р	Р	Р	Р	Р	Р	Р						S
60	0	0	0	0	O	0	0	0	0	PO	PO1	PO1	PS	PS O	3 0
COs	1	2	3	4	5	6	7	8	9	10	1	2	01	0	2 3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	Ν	1 M
CO2	М	М	М	М	М	_	-		_	-	-	-	М	N	1 M
CO3	М	М	s	М	М	-	-	-	-	-	-	-	М	Ν	1 M
CO4	s	М	М	М		-	-	-	-	_	-	-	М	N	1 S
CO5	S M M M S M M S														
S- Stror	ng; M	[-Med	ium; L	-Low											
SYLLA	BUS														

-9-1- d-=+

INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

SOCIAL MEDIA OVERVIEW AND SECURITY

9 hours

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

E - C O M M E R C E AND DIGITAL PAYMENTS

9 hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

DIGITAL DEVICES S E C U R I T Y, TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by E. Maiwald, McGraw Hill

COURSE DESIGNERS									
S.	Name of the								
No.	Faculty	Designation	Department	Mail ID					
		Assistant professor G-							
1	Dr.R.Jaichandran	II	CSE	rjaichandran@avit.ac.in					

\$-1.- d-=+

9 hours

2	Mr. B. Sundharamurthy	Aggistant Professor	CSE	sundharamurthy@vmkvec.edu.i
4	Sundharannuruny	Assistant Professor	CSE	11

-g-1- d-=+

DESIGN OF ELECTRONIC	Category	L	Т	Р	Credit
EQUIPMENT	OE-EA	3	0	0	3

PREAMBLE

The objective of this course is to sensitise a registrant to various aspects of an electronics product. Specifically on non-Electrical aspects like mechanical design and detailing. Starting from a need translated into specifications, leading to design and prototyping and ending up in a manufacturable physical prototype.

PREREQUISITE - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES

To understand the various Concept of Industrial Design process. 1

2 To apply the basic Concept of electronic Product designs methodology.

- 3 *To classify the Concept of Ergonomics & aesthetics in product design.*
- 4 To understand the Knowledge regarding the design of product packaging and working environment.
- 5 To understand the Knowledge of different industrial standard and value analysis.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Visualize the concept for product design with respect to ergonomics and aesthetics.	Remember					
CO2. Analyze, design and implement control panels of electronic equipment						
CO3. Apply creativity in the design of system by formulating architecture with proper placement of						
components.						
CO4. Apply the concept of visual communication techniques in product design.	Apply					
CO5. Apply the process of value analysis in existing product.	Apply					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P01	<i>P02</i>	<i>P03</i>	<i>P04</i>	P05	P06	P07	P08	<i>P09</i>	P010	P011	P012	PSO1	PSO2	PSO3
CO1	М	L	-	-	S	-	-	L	М	L	-	-	S	-	-
СО2	М	L	-	M	S	-	-	L	М	L	-	-	S	-	-
СОЗ	М	L	-	M	S	-	-	L	М	L	-	L	S	-	М
<i>CO</i> 4	S	М	L	-	S	-	-	L	М	L	-	L	S	М	М
СО5	S	М	L	-	S	-	-	M	L	L	-	L	S	М	М
C Charles		N/ - J													

S- Strong; M-Medium; L-Low

SYLLABUS

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and devel

Product planning: Defining the task

 P
 Image: Strain storming documentation.

 P
 Image: Strain storming documentation.

 Image: Strain storming documentation.
 Image: Strain storming documentation.

 Image: Strain storming documentatin storming documentating storming documentation.

ies, brainstorming documentation.

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial

Design and Engineering Design ", Council, London and Springer Verlag, 1983

COUR	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in									
2	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in									
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in									

\$-1.- d-=+

INTRODUCTION TO INDUSTRY 4.0 AND	Category	L	Т	Р	Credit
INDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

Basic knowledge of computer and internet

COURSE OBJECTIVES

- 1 Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- 3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- ⁴ *IIoT links the automation system with enterprise, planning and product lifecycle.*

⁵ Real case studies

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply & Analyzing the transformation of industrial process by various	Analyze
techniques.	
CO2. Evaluate the transformation technologies are considered to be the	Apply
different drivers.	
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise,	Analyze
planning and product life cycle	
CO5. Analyze of various Real time case studies.	Analyze

\$-1- d-=+

MAPPIN	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO	<i>P02</i>	<i>P03</i>	РО	PO	PSO1	PSO	PS							
	1			4	5	6	7	8	9	10	11	12		2	0
															3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
СО2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
СО5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S- Stron	g; M-Med	ium; L-I	Low												

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIOT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, and Industrial IoT-Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

COURSE DESIGNERS

1-1- d-===

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. L.K.Hema	Professor &Head	ECE	hodece@avit.ac.in		
2	Dr.T.Muthumanickam	Professor& Head	ECE	hodece@vmkvec.edu.in		

-9-1- d-=+

		31) PR	INTI	NG A	AND I	ITS	Cate	gory	L		T	Р	Cr	edit
			AP	PLIC	CATI	ONS		OE-I	EA	3		0	0		3
Prean The co applica	n ble urse is tions.	design	ed to	impar	t knov	vledge	and sk	cills rela	ated to	3D pri	nting to	echnolo	ogies its	s type	
Preree	quisite	– NI	L												
Cours	e Obj	ective													
1	To Kno	ow the	impo	rtance	of 3I) print	ing in I	Manufa	cturing	5					
2	To kno	ow abo	ut Va	t Phot	o Poly	meriz	ation 8	& Mater	ial Jett	ing.					
3	To kno	w abo	ut bin	ıder je	etting	mate	rial ext	trusion	& she	eet lam	inatio	n			
4	To kno	w abo	ut the	meth	ods f	or po	wder b	ed fusi	on &	direct	energy	v depo	sition.		
5	To kno	w abo	ut the	appli	cation	s of 31	D Print	ing.							
Cour	rse Ou	tcome	es: O	n the	succ	essful	l comp	oletion	of th	e cour	se, sti	idents	will b	e able	to
CO1.	. Importance of 3D printing in Manufacturing Remember														
CO2.	2. Vat Photo Polymerization & Material Jetting. Understand														
CO3.	Bind	er jetti	ng m	ateria	ıl extı	rusion	& she	et lam	ination	n		1	Unders	tand	
CO4.	Powe	ler bed	d fusi	on &	direc	t ener	gy dep	position	1.			1	Unders	tand	
CO5.	Appli	cation	s of 3	D Prir	nting.							1	Unders	tand	
Map	ping w	vith P	rogra	amme	e Out	tcome	es and	Progr	amm	e Spec	cific O	utcon	ies		
	PO	РО	PO	РО	PO	PO	РО	РО	РО	PO1	PO1	PO1	PSO	DSO2	
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	PS02	PSO3
CO1	M	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	M	L	M	-	S	М	М	-	-	-	-	-	М	M-	М
CO3	М	L	M	-	S	М	М	-	-	-	-	-	М	M-	М
CO4	M	L	М	_	S	М	М	-	-	-	_	-	М	M-	Μ
CO5	M	L	L	-	-	-	-	-	-	-	-	-			
S- Str	ong; N	A-Me	dium	; L-I	JOW										

-\$-1- d-=+

INTRODUCTION

Need - Development of AM systems – AM process chain -Classification of AM processes- Applications-Advantages of AM and Types of materials for AM.Introduction to STL format, Pre & Post-processing of STL files, Various slicing methods, Part orientation and support generation, Support structure design, Tool path generation

VAT PHOTO POLYMERIZATION & MATERIAL JETTING

Vat Photo polymerization - Stereo lithography process, working principle, advantages and disadvantages, Material Jetting - process, working principle, advantages and disadvantages.

BINDER JETTING-MATERIAL EXTRUSION & SHEET LAMINATION

Binder Jetting- process, working principle, advantages and disadvantages. Material Extrusion –Fused Deposition Modeling process, working principle, advantages and disadvantages. Sheet Lamination – Laminated Object Manufacturing process, working principle, advantages and disadvantages.

POWDER BED FUSION & DIRECT ENERGY DEPOSITION

Powder Bed Fusion – Selective Laser Sintering process, working principle, advantages and disadvantages, Direct Energy Deposition- process, working principle, advantages and disadvantages.

APPLICATIONS OF 3D PRINTING

Applications for 3D Printing - Use of 3D Printing-Limitations of 3D Printing and Further Development of Medical 3D Printing Applications. Use of Multiple Materials in 3D Printing-Embedded Component 3D Printing, Commercial Applications Using Multiple Materials, Future Directions, Business Opportunities and Future Directions.

l ext B	OOKS												
1	Ian Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, NY, 2015.												
2	Venuvinod, Patri K., & Business Media, 20	and Weiyin Ma. Rapid pr 013.	ototyping: laser-based and	other technologies. Springer Science									
Refer	ence Books												
1	Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.												
2	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.												
3	Kumar, L. Jyothish, I technologies. Singapo	Pulak M. Pandey, and Dav pre: Springer, 2019.	vid Ian Wimpenny, eds. 3D	printing and additive manufacturing									
Cours	se Designers												
Sl.No	o Faculty Name Designation Department/ Na me of the college Email id												
1	S.Kalyanakumar	Assistant Professor	Mech / AVIT	kalyanakumar@avit.ac.in									

\$-1.- d-=+

INDUSTRIAL ROBOTICS OE-EA 3 0 0 3 Preamble 'heobjectiveofthiscourseistoimpartknowledgeaboutindustrialrobotsfortheircontrolanddesign. Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots -
Preamble "heobjectiveofthiscourseistoimpartknowledgeaboutindustrialrobotsfortheircontrolanddesign. Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandthebasicconfigurationsandkinematicsystemsofrobots CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofsensorsusedinrobotsystemsandtheira cobt systems CO4. Understandthedifferenttypesofsensorsusedinrobots
heobjectiveofthiscourseistoimpärtknowledgeaboutindustrialrobotsfortheircontrolanddesign. Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandtheobot controlSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
Prerequisite : NIL CourseObjective 1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 3 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 Tounderstandtheobot controlSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferent typesofsensorsusedinrobots systemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
CourseObjective 1 Tointroducebasicconcepts, parts of robots and types of robots 2 TolearnaboutRobot kinematics and dynamics 3 Tolearndifferent types of sensors used in robots and its control 4 Tounderstand the different types of actuation system sused in robots 5 Tounderstand the robot control Systems, programming of robots and its Applications. Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic configurations and kinematic systems of robots Understand CO2. Solve problems of robot kinematics and dynamics Apply CO3. Understand the different types of sensors used in robots Understand CO4. Understand adapplications of the different types of actuators used in robots Understand CO4. Understand adapplication softhe different types of actuators used in robots Understand
1 Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotssystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
Tointroducebasicconcepts,partsofrobotsandtypesofrobots 2 3 3 TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
TolearnaboutRobot kinematicsanddynamics 3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robots Understand
3 Tolearndifferent typesofsensorsusedinrobotsanditscontrol 4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robots Understand
4 Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 TounderstandtherobotcontrolSystems,programmingofrobotsanditsApplications. CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin Understand
Tounderstandthedifferenttypesofactuationsystemsusedinrobots 5 7 </td
Course Outcomes: On thesuccess fulcompletion of the course, students will be ableto CO1. Understand the basic configurations and kinematic systems of robots Understand CO2. Solve problems of robot kinematics and dynamics Apply CO3. Understand the different types of sensors used in robots Understand CO4. Understand and applications of the different types of actuators used in robots Understand
Tounderstandinfereocoteonirolsystems, programming on ocotstandins, ppreditions. CourseOutcomes: On thesuccessful completion of the course, students will be able to CO1. Understand the basic configurations and kinematic systems of robots Understand CO2. Solve problems of robot kinematics and dynamics Apply CO3. Understand the different types of sensors used in robot systems and the ira pplications, different types of control systems used in robot systems Understand CO4. Understand and application softhe different types of actuators used in robot systems Understand
CourseOutcomes:On thesuccessfulcompletionofthecourse,studentswillbeableto CO1. Understandthebasicconfigurationsandkinematicsystemsofrobots Understand CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types ofactuatorsusedin robot systems Understand
CO1.UnderstandthebasicconfigurationsandkinematicsystemsofrobotsUnderstandCO2.SolveproblemsofrobotkinematicsanddynamicsApplyCO3.Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobotsUnderstandCO4.Understandandapplicationsofthedifferent types ofactuatorsusedin robot systemsUnderstand
CO2. Solveproblemsofrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robot systems Understand
CO2. Solveproblemsolrobotkinematicsanddynamics Apply CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robot systems Understand
CO3. Understandthedifferenttypesofsensorsusedinrobotsystemsandtheira pplications,different typesofcontrolsystemsused inrobots Understand CO4. Understandandapplicationsofthedifferent types of actuatorsusedin robot systems Understand
CO4. Understandandapplicationsofthedifferent types of actuators used in Understand
robot systems Understand
CO5. Understandthe RobotApplications in various fields Understand
Image:
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03
COI 5 M L L 5 - L
CO2 S S M M - M S - L
CO3 S M M M - M S - L
CO4 S S M M - L - - - - - - S - L
CO5 S S L S - S S - L

-\$-1- d-=+

INTRODUCTIONTOROBOTICS

Introduction to Automation and Robotics- Basic concepts, Need, Law, History, Anatomy, specificationsclassification, present and future applications. Components of the Industrial Robotics: common types of arms. Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

ROBOT ARM KINEMATICS

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

ROBOTACTUATIONSYSTEMS

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

ROBOTAPPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading- Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. ApplicationsinMedical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

TextBooks

1	Saha,S.K.,"I	ntroductiontoR	obotics,2ndEc	lition,McGrav	w-HillHigherEo	lucation,New	Delhi,2014.
			/	/	U		/

- 2 MikellPGroover,NicholasGOdrey,MitchelWeiss,Roger NNagel,AshishDutta,"IndustrialRobotics, TechnologyprogrammingandApplications",McGrawHill,2012.
- 3 MittalR.K.andNagrathI.J., "RoboticsandControl", TataMcGrawHill.

ReferenceBooks

- 1 Ghosal, A., "Robotics", Oxford, NewDelhi, 2006.
- 2 NikuSaeedB., "IntroductiontoRobotics:Analysis,Systems,Applications",PHI,NewDelhi.
- ³ SteveHeath, "EmbeddedSystemDesign", 2ndEdition, Newnes, Burlington, 2003
- MerzoukiR.,SamantarayA.K.,PhathakP.M.andBouamamaB.Ould,"IntelligentMechatronicSystem:Modeling, ControlandDiagnosis",Springer.

CourseDesigners

S.No	FacultyName	Designation	Department/ Nameofthe College	Emailid
1	P.KUMARAN	AP-II	MECH/AVIT	kumaranp@avit.ac.in

\$-1.- d-=+

BIOMOLECULES -	Category	L	Т	Р	С
STRUCTURE, FUNCTION IN HEALTH AND DISEASE	OE-EA	3	0	0	3

PREAMBLE

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

PREREQUISITE NIL

COURSE OBJECTIVES

1	To give an overview of importance of biomolecules
2	To elaborate the structure of proteins and nucleic acids and its role in disease.
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology
4	To enumerate the role of lipids and their cellular function in physiology and pathology.

5 To briefly cholesterol and its role in diseases

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. I	O1. Relate the basics of biomolecules in and around him														Understand			
CO2. U	O2. Understand the structure of biomolecules such as proteins and nucleic acids																	
CO3. I	CO3. Discover the role of carbohydrates in healthy and diseased conditions														Apply			
CO4. Relate disfunctioning of lipids with disease Analyse																		
CO5. Criticize the role of cholesterol in diseases. Eval													Evaluate					
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFI												IFIC O	UTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-			
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-			
CO3	M	L	М	М	-	S	-	-	-	-	-	-	-	L	-			
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М			
CO5	S	-	L	L	-	М	-	-	-	-	-	S	S	М	-			
S- Stro	ong; M	-Medi	um; L	L-Low				•	·	•			•	•				

- p-1- d-=+

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and nonessential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

COURSE DESIGNERS

S.No	Name of the	Designation	Department	Mail ID
•	Faculty			

\$-1.- d-=+

1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in
2	Ms.S.Sowmiy a	Assistant Professor	Pharmaceutical Engineering	sowmiya.vmkvec@vmrf.edu.in

-9-1- d-=+

				PHAR	MAC	OCF	NOM	ICS		Cat	egory	L	Т	P	Cr	edit
						UUL				OF	C-EA	3	0	0		3
PRF	EAMBLE											1				
Phar	macogene	omics	invol	ves the	e stud	y of t	he rel	ations	hip be	etween	an indi	vidual's	s genet	tic m	akeup	p and
his c	or her resp	onse	to a di	rug. Pl	narma	cogen	etics,	a com	ponei	nt of pl	narmaco	genomi	ics, is t	the st	udy c	of the
relat	relationship between a single gene and its response to a drug.															
PRF	PREREQUISITE - NIL															
COURSE OBJECTIVES																
1	Discuss a	about 1	the ba	sic kno	owledg	ge abo	out ph	armac	ogeno	mics a	nd drug	design	using g	genor	nic	
	applications for drug action and toxicity.															
2	Perform	how in	ndivid	ualiza	tion of	f drug	thera	py can	be ac	chieved	l based o	on a per	son's g	geneti	c ma	keup
	while reducing unwanted drug effects.															
3	Outline the Pharmacogenomics studies on how genetic differences between individuals can affect															
	responses to various drugs.															
4	4 Formulate on medicine skills acquired by the student and his action in different pathologies															
5	Develop	acquii	re kno	wledg	e aboi	it the	influe	nce of	genet	tic alter	rations o	on the th	nerapet	itic et	ffect	and
	adverse r	reactio	ons of	the dru	ıgs, fr	om a j	perspe	ective	of ind	ividual	ized the	erapy.				
CO	URSE OU	TCO	MES													
Afte	r the succ	essful	comp	letion	of the	cours	se, lear	mer w	ill be	able to						
CO1	.Recogniz	ze the	effect	of gei	netic d	liffere	nces b	etwee	n indi	ividual	s in the	outcom	e of 1	Reme	mbei	r
drug	therapy a	$\frac{1}{2}$ nd in	drug e	efficac	y and	toxici	ty. do no	lumor	mhian		hiomor	kar for	tha	Undo	raton	4
nred	iction of r	ick th	ioronal		spons	and	nrogn	osis of	fmali	ananci		KCI IUI	uic	Unuc	Istan	u
CO^{2}	Utilize :	and m	anage	the n	ew ge	nomi	rs has	ed too	$\frac{1}{1}$ as	they be	ecome a	vailable	e as 1	Unde	rstan	
well	as make h	oest tro	eatme	nt cho	ices.		00000	cu 100	15 45	uney of		, and the		enae	Istan	4
CO4	. Examine	the app	plicatio	ons of	genom	ics pri	inciple	s in dru	ug acti	on and	toxicolo	gу		Analy	/ze	
CO5	. Validatio	n of ca	se stud	lies rel	ated to	pharn	nacoge	nomic	s					Analy	/ze	
MA	PPING W	ITH	PRO	GRAN	IME	OUT	COM	ES AN	ND PI	ROGR	AMME	E SPEC	IFIC (COM	TES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L		
CO2	M	M	M	M	L	-	-	-	M	-	L	L	L	L		-

-9-1- d-=+

CO4	М	М	М	M	M	-	-	-	S	-	L	L	Μ	L	-
CO5	L	L	L	L	S	-	-	-	М	-	М	Μ	S	М	-
0 0															

S- Strong; M-Medium; L-Low

SYLLABUS

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs,

chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- 1. Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

COURSE DESIGNERS							
S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in			

- p-1- d-=+

PROJECT WORK	Categor y	L	Т	Р	Credit
	PI-P	0	0	16	8

PREAMBLE

The project provides learners with the opportunity to explore a problem or issue of particular personal or professional interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the learner's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems. This final project affirms learners' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.

PREREQUISITE -- Nil

COURSE OBJECTIVES

1	To provide learners with the opportunity to apply the knowledge and skills acquired in their courses to a specific problem or issue.
2	To allow learners to extend their academic experience into areas of personal interest,
	working with new ideas, issues, organizations, and individuals.
	To encourage learners to think critically and creatively about academic, professional,
3	or social issues and to further develop their analytical and ethical leadership skills
	necessary to address and help solve these issues.
1	To provide learners with the opportunity to refine research skills and demonstrate their
4	proficiency in written & oral communication skills.
5	To take on the challenges of teamwork, prepare a presentation in a professional
3	manner, and document all aspects of design work.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the knowledge and skills acquired in their courses to a specific problem or issue.	Apply
CO2. Extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.	Analyze
CO3. Think critically and creatively about academic, professional, or social issues and to furtherdevelop their analytical and ethical leadership skills necessary to address and help solve these sues.	Create
CO4. Refine research skills and demonstrate their proficiency in written & oral	Evaluate

- p-1- d-=+

communication skills.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO'S	PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	PO 7	Р О 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	S	L	L	Μ	M	-	-	-	М	M	-	Μ	Μ	М	-
CO2	M	M	Μ	Μ	L	-	-	-	Μ	L	-	Μ	Μ	М	М
CO3	S	S	Μ	Μ	-	-	-	L	-	L	S	Μ	S	S	-
CO4	S	M	Μ	M	-	-	-	L	-	L	М	М	S	S	-
0 0		1 1 1	1.	тт											

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. The project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the learners to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering.
- 2. Each student must register to the project course related to his or her program
- 3. Project course consists of one semester and would be allowed to register only during the final year of study.
- 4. Project may be initiated during the pre-final semester but will be assessed and credits transferred only during the last semester of study, upon completion of all other degree requirements. Generally the undergraduate project is a team based one.
- 5. Each team in the major course will consist of maximum of 5 learners.
- 6. Each project will be assigned a faculty, who will act as the supervisor.
- 7. The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability.
- 8. Each group must document and implement a management structure. Group leadership roles must be clearly identified including who has responsibility for monitoring project deliverables and group coordination.
- 9. A group project may be interdisciplinary, with learners enrolled in different engineering degrees, or in Engineering plus other faculties such as Management, Medical and Health Sciences, Science and Humanities.
- 10. Each student team is expected to maintain a log book that would normally be used to serve as a record of the way in which the project progressed during the course of the session.
- 11. Salient points discussed at meetings with the supervisor (i.e., suggestions for further meetings, changes to experimental procedures) should be recorded by the student in order to provide a basis for subsequent work.
- 12. The logbook may be formally assessed;

\$-1- d-=+

- 13. The contribution of each individual team member will be clearly identified and the weightage of this component will be explicitly considered while assessing the work done.
- 14. A project report is to be submitted on the topic which will be evaluated during the final review.
- 15. Assessment components will be as spelt out in the regulations.
- 16. The department will announce a marking scheme for awarding marks for the different sections of the report.
- 17. The project report must possess substantial technical depth and require the learners to exercise analytical, evaluation and design skills at the appropriate level.

	SE DESIGNERS			
S.No	Name of the Faculty	Designation Department		Mail ID
1	Dr.R.Devarajan	Professor	EEE/VMKVEC	<u>deverajan@vmkvec.edu.</u> <u>in</u>
2	Dr. L.Chitra	Asso. Prof.	EEE/AVIT	chitra@avit.ac.in

COURSE DESIGNERS

- p-1- d-==

				NAINI				Cate	egory]	Ĺ	Т	Р	Cre	edit
				WIIN	IPRU	JECI		PI	-M		0	0	6	2	3
PRE	PREAMBLETo obtain hands-on experience in converting a small novel idea / technique into														
a wo	orking	g mo	del /	prote	otype	involvi	ing n	nulti-d	isciplin	ary sl	cills ar	nd / o	r knov	wledge	and
WORK	$rac{11}{11}$	n at te	am.	NII											
	IDSE	<u>10151</u> 1017	IE-	INII IVF(2										
	To		ntuali	7e a r	ovel i	dea / te	chnio	me int	o a pro	duct					
2	App	ly the	e acqu	ired l	cnowl	edge to	carry	out a	capsto	ne pro	ject hav	ving su	ıbstant	ial	
	mul	tidisc	iplina	ry co	mpone	ent	5		1	1.	,	0			
3	Τοι	inder	stand	the m	anage	ement te	echnic	jues of	f imple	mentir	ng a pro	oject			
4	To t	ake o	n the	challe	enges	of team	work	, prepa	are a pr	esenta	tion in	a prof	ession	al man	ner,
COI			ment	an asj	pects (of desig	n wo	rĸ							
	JKSE	.00		MES	•	2.1									
On t	he suc	ccessi	tul co	mplet	tion of	the cou	urse, s	studen	ts will	be able	e to				
CO1	. Apj	ply tł	ne kn	owled	lge ai	nd skill	ls acc	quired	in the	ir cou	rses to	a spo	ecific	Ap	ply
prob	lem o	r issu	le.	• 1	1	1 1						• • 1	•	1	
Subs	.App tantia	ly the	e acq tidisc	luired inlina	Knov rv cor	vleage nnonen	to ca if	arry c	out a c	capstor	ne proj	ject h	aving	Ap	ply
CO3	Tak	e the	chall	enges	s of te	amwor	k. pre	epare a	nrese	ntatior	n in a r	profess	ional	Ana	luze
man	ner, a	nd do	cume	ent all	aspec	ts of de	esign v	work	* prese				ionai		1y2C
CO4	. Exp	lain d	lesign	think	ting pi	ractices	and t	their a	pplicati	ons				Cre	eate
MA	PPIN	GW	ITH	PRO	GRAN	AME C)UTC	COME	S ANI) PRC	GRA	MME	SPEC	IFIC	
OUT	ICO	MES													
CO	Р	Р	Р	Р	PO	PO	РО	PO	PO0	РО	PO1	PO	PS	PS	PS
S	01	02	03	04	5	06	07	08	9	10	1	12	01	02	03
$\begin{vmatrix} co \\ 1 \end{vmatrix}$	S	М	Μ	Μ	L	-	-	-	М	М	-	М	М	М	М
CO 2	S	L	L	М	М	-	-	-	М	М	-	М	М	М	-
$\begin{array}{ c c }\hline CO\\ 3\end{array}$	М	М	М	М	L	-	-	-	М	L	-	М	М	М	М
CO 4	S	S	М	М	-	-	-	L	-	L	S	М	S	М	-
S- St	trong:	M-N	Iediu	; L-	Low	· · · · ·									

-9-1- d-=+

Norms

- > Each student must register to the project course related to his or her program
- Mini Project course consists of one semester and would be allowed to register only during the final year of study.
- Minor design project identification, the objective and methodology and expected outcome of the proposed work.
- > Presentation of the proposed work design, implementation and partial result
- Presentation of complete project work with results and discussion Demonstration of project work
- Minor Project Report

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Dept	Mail ID						
1	Dr.R.Devarajan	Professor	EEE	<u>deverajan@vmkvec.edu.i</u> <u>n</u>						
2	Dr. L.Chitra	Asso. Prof.	EEE	<u>chitra@avit.ac.in</u>						

- p-1- d-==

Course Code	Course Title	Category	L	Т	Р	С
	YOGA AND MEDITATION	AC	0	0	2	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya,Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES :

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, *Sundra Yoga Therapy*, Asana Publications, 2009 **REFERENCES:**

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

- p-1- d-=+

Subject Code		Category	L	Т	Р	Credit
	Gender Equity and Law					
	(Common to all Branches)	AC	0	0	2	0

Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males. Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To sensitize the students regarding the issues of gender and thegender inequalities prevalent in society.
2	To raise and develop social consciousness about gender equity among thestudents.
3	To build a dialogueand bring a fresh perspective on transgender and gender non-conforming individuals.
4	To create awareness among the students and to help them face gender stereotype issues.
5	To help the studentsunderstand the various legal provisions that are available in our society.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the importance of gender equity	Understand
CO2.Initiate the awareness and recognize the social responsibility with regards to gender equity.	Apply
CO3.To develop a sense of inclusiveness and tolerance towards various genders without any discrimination.	Apply
CO4. To evaluate the social issues and apply suitable gender-related regulations for inclusive living.	Evaluate
CO5.To identify and analyze the existing gender inequality problems faced in various institutions.	Analyse
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECI	FIC OUTCOMES

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03																
	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

- p-1- - -===

CO1	S	Μ	L	_	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	M	-	S	S	S	-	-	-	S	-	-	-
S_ Str	S- Strong: M-Modium: L-Low														

UNIT –I INTRODUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT –II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

Q-1- d-=+

6 hrs

6hrs

6hrs

6 hrs

6 hrs

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, andExploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE DESIGNERS								
S.No.	Name of the Faculty	Mail ID						
	Gnana Sanga Mithra.S							
1		sangamithra@avil.edu.in						
	Aarthy.G							
2		aarthy@avil.edu.in						

\$-1.- d-=+

Course Code	Course Title	Category	L	Т	Р	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE					
		AC	0	0	2	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation

and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

-9-1- d-=+

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha UNIT III –Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayat, Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

Total Hours: 30 hours

Software/Learning Websites:

1. https://www.constitution.org/cons/india/const.html

2. http://www.legislative.gov.in/constitution-of-india

3. <u>https://www.sci.gov.in/constitution</u>

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW SCHOOL OF
		ADMINISTRATIVE AND ADJUDICATORY	INDIA UNIVERSITY
		PROCESS	

COURSE DESIGNER									
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID					
1	Dr.Sudheer	Professor	AV School of Law	Sudheersurya18@gmail.com					

\$-1.- d-=+