

VINAYAKA MISSIONS UNIVERSITY

SALEM, TAMILNADU, INDIA

FACULTY OF ENGINEERING AND TECHNOLOGY

REGULATIONS - 2016

FROM
I TO VI SEMESTERS
FOR

M.E. POWER SYSTEMS ENGINEERING (PART TIME)

<u>VINAYAKA MISSIONS UNIVERSITY, SALEM</u> <u>M.E. POWER SYSTEMS ENGINEERING (PART-TIME)</u>

<u>REGULATION – 2015 - CURRICULUM</u>

YEAR-I

<u>SEMESTER – I</u>

Sl.No.	Course Title	L	T	P	C
1.	Applied Mathematics for Electrical Engineers	3	1	0	1
	(Common to M.E – PSE & PED)	3		U	7
2	Power Electronics in Power Systems	3	0	0	3
3	Elective – I	3	0	0	3
	TOTAL	9	1	0	10

<u>SEMESTER – II</u>

Sl.No.	Course Title	L	T	P	C
1.	Power System Control	3	0	0	3
2.	Transients in Power System	3	0	0	3
3.	Elective – II	3	0	0	3
4.	Power System Simulation – I Lab	0	0	3	2
	TOTAL	9	0	0	11

YEAR-II

<u>SEMESTER – III</u>

Sl.No.	Course Title	L	T	P	C
1.	Power System Analysis	3	1	0	4
2.	Power System Protection	3	0	0	3
3.	Elective –III	3	0	0	3
4.	Power System Simulation – II Lab	0	0	3	2
	TOTAL	9	1	3	12

$\underline{SEMESTER-IV}$

Sl.No.	Course Title	L	T	P	С
1.	Power System Operation	3	1	0	4
2	High Voltage Switch gear	3	1	0	4
3	Elective -IV	3	0	0	3
	TOTAL	9	1	0	11

YEAR-III

$\underline{SEMESTER-V}$

Sl.No.	Course Title	L	T	P	C
1.	Elective -V	3	0	0	3
2	Elective –VI	3	0	0	3
3	Elective -VII	3	0	0	3
4	Project Work- Phase -I	0	0	12	6
	TOTAL	9	0	12	15

<u>SEMESTER – VI</u>

Sl.No.	Course Title	L	T	P	C
1	Project Work - Phase -II	0	0	24	12
	TOTAL	0	0	24	12

TOTAL CREDITS: 71

LIST OF ELECTIVES

Sl.No.	Course Title	L	T	P	C
1.	Power System Dynamics	3	0	0	3
2.	Soft Computing Techniques	3	0	0	3
3.	Modelling and Analysis of Electrical Machines	3	0	0	3
4.	EHV Power Transmission	3	0	0	3
5.	Optimal Control Filtering	3	0	0	3
6.	Power Quality	3	0	0	3
7.	Power System Restructuring and Deregulation	3	0	0	3
8.	Advanced Digital Signal Processing	3	0	0	3
9.	Control System Design	3	0	0	3
10.	Special Electrical Machines	3	0	0	3
11.	Advanced Power System Dynamics	3	0	0	3
12.	System Identification and Adaptive Control	3	0	0	3
13.	Industrial Power System Analysis and Design	3	0	0	3
14.	High Voltage Direct Current Transmission	3	0	0	3
15.	Wind Energy Conversion Systems	3	0	0	3
16.	Power Electronics for Renewable Energy	3	0	0	3
17.	Applications of MEMS Technology	3	0	0	3
18.	Flexible AC Transmission System	3	0	0	3
19.	Digital Signal Processing	3	0	0	3
20.	Artificial Intelligence Applications to Power Systems	3	0	0	3
21.	Intelligent Control	3	0	0	3
22.	Computer Networks Engineering	3	0	0	3

SYLLABUS

YEAR	SEMESTER	TITLE OF PAPER	L	T	C				
I	I	APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS (Common to M.E – PSE & PED)	3	1	4				
AIM	The aim of this course is to introduce students to the types of problems encountered in matrix theory, to provide techniques to analyze and solve these problems, and to provide examples of where these techniques are used in practice.								
OBJECTIVE	to electrical substitution to electrical substitution Understate probability. Understate understate processes.	and the concept of probability space, and differe	nt inter cools of	pretation multiva	ns of riate				

UNIT I - ADVANCED MATRIX THEORY

9

Matrix norms – Jordan canonical form – Generalised eigenvectors – Singular value decomposition – Pseudo inverse – Least square approximations – QR algorithm.

UNIT II - CALCULUS OF VARIATIONS

9

Variation and its properties – Euler's equation – Functionals dependent on first and higher order derivatives – Functionals dependent on functions of several independent variables – Some applications – Direct methods: Ritz and Kantorovich methods.

UNIT III - LINEAR PROGRAMMING

9

Basic concepts – Graphical and Simplex methods –Transportation problem – Assignment problem.

UNIT IV - DYNAMIC PROGRAMMING

0

Elements of the dynamic programming model – optimality principle – Examples of dynamic programming models and their solutions.

UNIT V - RANDOM PROCESSES

9

Classification – Stationary random processes – Auto Correlation – Cross Correlations – Power spectral density – Linear system with random input – Gaussian Process.

L = 45 : T = 15: Total Hours=60

- 1.Lewis.D.W., Matrix Theory, Allied Publishers, Chennai 1995.
- 2.Bronson, R, Matrix Operations, Schaums outline Series, McGraw Hill, New York. 1989.
- 3. Elsgoltis, "Differential Equations and Calculus of Variations", MIR Publishers, Moscow (1970)
- 4. Gupta. A.S., Calculus of Variations with Applications, Prentice Hall of India, New Delhi, 1999.
- 5. Taha, H.A., "Operations research An Introduction", Mac Millan publishing Co., (1982).
- 6.Gupta, P.K.and Hira, D.S., "Operations Research", S.Chand & Co., New Delhi, (1999).
- 7.Ochi, M.K. "Applied Probability and Stochastic Processes", John Wiley & Sons (1992).
- 8.Peebles Jr., P.Z., "Probability Random Variables and Random Signal Principles", McGraw Hill Inc., (1993).

YEAR	SEMESTER	TITLE OF PAPER	L	T	С
I	I	POWER ELECTRONICS IN POWER SYSTEMS	3	0	3
AIM	To Study about	the various power electronics devices used	in pow	er syste	ems.
OBJECTIVE	electro To Stud To Stud To Stud To Und FACT	ly about the basic concept of different types onics devices. It about the converters used in R, RL and RI by about the voltage and current sources invelerstand the concept of static reactive power of S Technology. It about the basics of power quality.	LE load	ds.	in

UNIT I - INTRODUCTION

q

Basic Concept of Power Electronics, Different types of Power Electronic Devices – Diodes, Transistors and SCR, MOSFET, IGBT and GTO's.

UNIT II - AC TO DC CONVERTERS

9

Single Phase and three phase bridge rectifiers, half controlled and Fully Controlled Converters with R, RL, AND RLE loads. Free Wheeling Diodes, Dual Converter, Sequence Control of Converters – inverter operation, Input Harmonics and Out put Ripple, Smoothing Inductance – Power Factor Improvement effect of source impedance, Overlap, Inverter limit.

UNIT III - DC TO AC CONVERTERS

9

General Topology of single Phase and three phase voltage source and current source inverters- Need for feedback diodes in anti parallel with switches – Multi Quadrant Chopper viewed as a single phase inverter- Configuration of Single phase voltage source inverter: Half and Full bridge, Selection of Switching Frequency and Switching Device. Voltage Control and PWM strategies.

UNIT IV - STATIC REACTIVE POWER COMPENSATION

9

Shunt Reactive Power Compensation – Fixed Capacitor Banks, Switched Capacitors, Static Reactor Compensator, Thyristor Controlled Shunt Reactors (TCR) – Thyristor Controlled Transformer - FACTS Technology-Applications of static thyristor Controlled Shunt Compensators for load compensation ,Static Var Systems for Voltage Control, Power Factor Control and Harmonic Control of Converter Fed Systems.

UNIT V - POWER QUALITY

0

Power Quality – Terms and Definitions – Transients – Impulsive and Oscillatory Transients – Harmonic Distortion – Harmonic Indices – Total Harmonic Distortion – Total Demand Distortion-Locating Harmonic Sources Harmonic s from commercial and industrial Loads –Devices for Controlling Harmonics Passive and Active Filters -Harmonic Filter Design-

Total Hours = 45

- 1. N.Mohan, T.M. Undeland and W.P.Robbins, Power Electronics: Converter, Applications and Design , John Wiley and Sons , 1989.
- 2. M.H.Rashid, Power Electronics, Prentice Hall of India, 1994.
- 3. B.K.Bose ,Power Electronics and A.C. Drives , Prentice Hall ,1986.
- 4. Roger C.Dugan, Mark .F. Mc Granaghan, Surya Santaso, H.Wayne Beaty, "Electrical Power Systems Quality", Second Edition, Mc Graw Hill, 2002.
- 5. T.J.E. Miller, Static Reactive Power Compensation, John Wiley and Sons, Newyork, 1982.
- 6. Mohan Mathur.R., Rajiv.K.Varma, "Thyristor Based FACTS controllers for Electrical Transmission Systems", IEEE press .1999.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C		
I	II	POWER SYSTEM CONTROL	3	0	3		
AIM	To Study about the control of generation and voltages in power system.						
OBJECTIVE	of AVR loops,	the fundamentals of speed governing in gent system operating states of security control, power system control under deregulated env	concep	ots of sta	_		

1. AUTOMATIC GENERATION CONTROL

9

Fundamentals of speed governing - control of generating unit Power output - composite regulating characteristic of Power Systems - Response rates of turbine - governing systems - fundamentals of automatic generation control - Implementation of AGC -development of state variable model for a two area Power System for use in simulation of AGC. Underfrequency Load Shedding and computation of settings for underfrequency relays.

2. REACTIVE POWER AND VOLTAGE CONTROL

9

Modelling of AVR loops: Components – stability compensation - Production and absorption of reactive Power – methods of voltage control - shunt reactors – shunt capacitors – series capacitors – synchronous condensers – static var systems – Principle of transmission system compensation – modeling of reactive compensating devices – Application of tap changing transformers to transmission systems – distribution system voltage regulation – modeling of transformer ULTC control systems.

3. SECURITY CONTOL OF POWER SYSTEMS

9

System operating states by security control functions – monitoring, evaluation of system state by contingency analysis – corrective controls (Preventive, emergency and restorative) - Energy control center – SCADA system – functions – monitoring, data acquisition and controls – EMS system.

4. STATE ESTIMATION

Q

Maximum likelihood Weighted Least - Squares Estimation :- Concepts - matrix formulation - Example for Weighted Least - Squares state estimation ; State estimation of an AC network: development of method , Typical results of state estimation on an AC network, State Estimation by Orthogonal Decomposition algorithm - Introduction to Advanced topics : Detection and Identification of Bad Measurements , Estimation of Quantities Not Being Measured , Network Observability and Pseudomeasurements - Application of Power Systems State Estimation .

5. POWER SYTEM CONTROL UNDER DEREGULATED ENVIRONMENT

9

New system structures under competition – Classification of operational tasks in today's power industry – Temporal decomposition within the real time operation – classification of operational tasks in the competitive industry – meeting predicted demand in today's industry – meeting demand in the new industry – balancing supply and demand in real time - Load frequency control under deregulated environment.

Total Hours = 45

- 1. Elgerd O.I, "Electric Energy System Theory an Introduction" Tata McGraw Hill, New Delhi 2002.
- 2. Kundur .P; "Power System Stability and Control" EPRI Publications, California, 1994.
- 3. Allen J. Wood and Bruce .F. Woolenberg, "Power Generation Operation and Control", John Wiley & sons New York, 1996.
- 4.Mahalanabis A.K., Kothari. D.P. and Ahson.S.I., "Computer Aided Power System Analysis and Control", Tata McGraw Hill publishing Ltd , 1984.
- 5.Marija Ilic, F.Galiana, L.Fink, "Power System Restructuring: Engineering and Economics" Kluwer Academic Publishers, 2000.
- 6. Vaibhav Donde, M.A. Pai & Ian A.Hiskens "Simulation & Optimization in an AGC system after deregulation" IEEE transactions on Power Systems Vol:16, No.3, Aug 2001.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
I	II	TRANSIENTS IN POWER SYSTEMS	3	0	3			
AIM	To Study abou	To Study about the concepts of transients in power system.						
OBJECTIVE	concepts of sw	the concepts of lightning surges and effect of the vitching surges, computation of transmission in a of insulation co ordination and case studies using the transients.	con	versi	on			

1.INTRODUCTION AND LIGHTNING SURGES

9

Review of various types of power system transients – effect of transients on power systems- relevance of the study and computation of power system transients. Electrification of thunderclouds – lightning current stages – lightning current parameters and their values – stroke to tower and midspan – induced lightning surges.

2. SWITCHING SURGES

9

Closing and reclosing of lines – load rejection – fault initiation – fault clearing – short line faults – FerroResonance – isolator switching surges – temporary over voltages – surges on an integrated systems – switching – harmonics.

3. COMPUTATION OF TRANSIENTS IN CONVERSION EQUIPMENT

9

Traveling wave method – Beweley's Lattice diagram – analysis in time and frequency domain – eigenvalue approach – Z-transform.

4. INSULATION CO ORDINATION

9

Over voltage protective devices – shielding wires, rods gaps, surge diverters, principles of insulation coordination – recent advancements in insulation coordination – Design of EHV system – Insulation coordination as applied to transformer, substations.

5. CASE STUDIES-SIMULATION OF ELECTROMAGNETIC TRANSIENTS

9

- (i) Energisation of a single phase 0.95 pf load from a non ideal source and a realistic line representation.
- (ii) Energisation of a single phase 15 mile long line from an ideal voltage source (equivalent- Π) lumped and distributed parameter representation.
- (iii) Energisation of a 3 phase, 15 mile distributed parameter line connected to a transformer and RL load, (three phase closure simulations).
- (iv) Same as above but only one phase closed.
- (v) Energisation of a 120 mile transposed line from an ideal voltage source.(Adequate model needed)

Total Hours = 45

- 1. Allan Greenwood, "Electrical Transients in Power Systems", Willey Interscience, New York, 1971.
- 2. Klaus Ragaller, "Surges in High Voltage Networks", Plenum Press, New York, 1980.
- 3. Diesendorf, W., "Over Voltage on High Voltage Systems", Renselaer Bookstore, Troy New York, 1971.
- 4. Peterson, H.A., "Transient in Power Systems", Dover Publication, New York, 1963.
- 5. Rakosh das Begamudre, "Extra High Voltage AC Transmission Engineering", Wiley Eastern Ltd, New Delhi, 1990.
- 6. C.S.Indulkar, DP Kothari, "Power System Transients" A Statistical approach, Prentice Hall 1996.

YEAR	SEMESTER	TITLE OF PAPER	P	T	C		
I	II	POWERSYSTEM SIMULATION – I LAB	3	0	2		
AIM	To study about the concepts of power system simulation laboratory.						
OBJECTIVE	formatic To obta Raphso	pute the parameters and modeling of transmission on of bus admittance and bus impedance matrices in the solutions of power flow using Gauss seidel n method and Fast decoupled method. in the symmetrical fault and unsymmetrical fault	metho	od,Newt	con-		

- 1. Computation of parameters and modeling of transmission lines.
- 2. Formation of bus admittance and bus impedance matrices and solution of networks.
- 3. Solution of power flow using Gauss Seidel method.
- 4. Solution of power flow using Newton Raphson method.
- 5. Solution of power flow using fast decoupled method.
- **6.** Symmetrical fault analysis.
- 7. Unsymmetrical fault analysis.

Total Hours = 45

YEAR	SEMESTER	TITLE OF PAPER	\mathbf{L}	T	C			
II	III	POWER SYSTEM ANALYSIS	3	1	4			
AIM	The aim is to introduce the study of power system analysis in planning and operation of power system.							
OBJECTIVE	power systems To under Gauss seidel m method. To und Unbala To unde	erstand the concepts of Sparse matrix technique, optimal ordering schemes and gauss eliminaterstand the designing of new power system tethod, Newton Raphson method and Fast Deterstand the concepts of fault analysis unneed Faults. In the concepts of optimal power flow. It is a stand the concept of voltage stability and stand.	tion men and ecoupled	ethods. concept ed load alanced	s of flow			

UNIT I - SOLUTION TECHNIQUE

9

Sparse Matrix techniques for large scale power systems: Optimal ordering schemes for preserving sparsity. Flexible packed storage scheme for storing matrix as compact arrays; Factorization by Bifactorization and Gauss elimination methods; Repeat solution using Left and Right factors and L and U matrices.

UNIT II - POWER FLOW ANALYSIS

q

Power flow model in real variable form; Newton's method for solution; Adjustment of P-V buses; Fast Decoupled Power Flow method; Sensitivity factors for P-V bus adjustment; Net Interchange power control in Multi-area power flow analysis: Assessment of Available Transfer Capability (ATC) using Power Flow method; Continuation Power Flow method.

UNIT III - SHORT CIRCUIT ANALYSIS

9

Review of fault calculations using sequence networks for different types of faults. Bus impedance matrix (Z_{BUS}) construction using Building Algorithm for lines with mutual coupling; Simple numerical problems. Computer method for fault analysis using Z_{BUS} and sequence components. Derivation of equations for bus voltages, fault current and line currents, both in 012 frame and abc frame using Thevenin's Equivalent and Z_{BUS} matrix for different faults.

UNIT IV - OPTIMAL POWER FLOW

o

Introduction: Solution of Optimal Power Flow (OPF) – The gradient method, Newton's method, Linear Sensitivity Analysis; LP methods – with real power variables only – LP method with AC power flow variables and detailed cost functions; Security constrained Optimal Power Flow; Interior point algorithm; Bus Incremental costs.

UNIT V - VOLTAGE STABILITY ANALYSIS, STEADY-STATE

9

Transmission system aspects: SLIB system, maximum deliverable power, power-voltage relationship, generator reactive power requirement, network versus load P-V characteristics, Instability scenario, effect of compensation and series, shunt, SVC, V-Q curves, effect of adjustable transformer ratios.

L=45 T=15 TOTAL = 60

- 1. Stagg G W., El. Abiad A.H. "Computer Methods in Power System Analysis", McGraw Hill, 1968.
- 2. Elgerd O.I., "Electrical Energy Systems Theory An Introduction", Tata McGraw, 2002.
- 3. Kundur.P., "P.S. Stability and Control", McGraw Hill, 1994.
- 4. T.V. Cutsem and C.Vournas," Voltage Stability of Electric Power Systems", Kluwer Publishers, 1998.
- 5. A.J.Wood and B.F.Wollenberg,"Power Generation Operation and Control", John Wiley and sons, New York, 1996.

YEAR	SEMESTER	TITLE OF PAPER	L	T	С			
II	III	POWER SYSTEM PROTECTION	3	0	3			
AIM	To study about Relays.	To study about the protection of various power systems and construction of protective Relays.						
OBJECTIVE	> To Und > To Stud > To Stud system	erstand the concept of protective relay and its terestand about the Protection of Power Apparatus ly about Protection of Transmission lines. It about the placement of reactor, booster and concepts of Digital protection.			wer			

UNIT I - INTRODUCTION

9

General philosophy of protection – Characteristic function of protective relays – basic relay elements and relay terminology – basic construction of static relays – non-critical switching circuits.

UNIT II - PROTECTION OF POWER APPARATUS

9

Protection of generators stator phase fault protection —loss of excitation protection, generator offline protection — Transformer protection — factors affecting differential protection — magnetizing inrush current — Application and connection of transformer differential relays — transformers over current protection — Example motor protection.

UNIT III - PROTECTION OF TRANSMISSION SYSTEMS

9

Bus protection – typical bus arrangements – transformer – bus combination – bus differential systems-line protection – classification of lines and feeders – Techniques applicable for line protection – distance protection for phase faults – Fault resistance and relaying – long line protection – Backup remote local and Breaker failure.

UNIT IV - PROTECTION OF REACTORS, BOOSTERS & CAPACITORS

9

Placement of reactors in power system – Types of reactor – reactor rating application and protection – booster in the power system – transformer tap changing – protection of boosters – capacitors in an interconnected power system – series – shunt – series shunt connections – protection of capacitors.

UNIT V - DIGITAL PROTECTION

9

Digital signal processing – Digital filtering in protection relays – digital data transmission – Numeric relay hardware – relay algorithms – distance relays – direction comparison relays – differential relays – software considerations – numeric relay testing – concepts of modern coordinated control system.

Total Hours = 45

- 1. Stanley H. Horowitz (Ed), "Protecting relaying for power systems", IEEE Press, 1980.
- 2. Y.G. Paithankar and S.R Bhide, "Fundamentals of Power System Protection", Prentice -Hall of India, 2003
- 3. Y.G. Paithankar, "Principles of Power System Protection", Marcel Dekker Inc., 1998.
- 4. P.Kundur, "Power System Stability and Control", McGraw-Hill, 1993.
- 5. Badri Ram and D.N. Vishwakarma, "Power System Protection and Switchgear", Tata McGraw-Hill Publishing Company, 2002.
- 6. J.L.Blackburn, "Power System Protection: Principles and Applications", Marcel Dekker, New York, 1998

YEAR	SEMESTER	TITLE OF PAPER	P	T	C			
II	III	POWER SYSTEM SIMULATION – II LAB	0	3	2			
AIM	To study abo	To study about the concepts of power system simulation laboratory.						
OBJECTIVE	analysis using E To stuce method	dy about the Contingency analysis, Smales, transient stability analysis, analysis of MTP. Ity about the economic dispatch, Unit com, co ordination of over current and distance rely about the concept of induction motor starting.	f switch nmitmerelays.	ching su	urge			

LIST OF EXPERIMENTS

- 1. Contingency analysis: Generator shift factors and line outage distribution factors
- 2. Small signal stability analysis: SMIB and Multi machine configuration
- 3. Transient stability analysis of Multi machine configuration
- 4. Economic dispatch with line flow constraints
- 5. Unit commitment: Priority-list schemes and dynamic programming
- 6. Co-ordination of over current and distance relays for radial line protection
- 7. Induction motor starting analysis
- 8. Analysis of switching surge using EMTP.

Total Hours = 45

YEAR	SEMESTER	TITLE OF PAPER	L	T	С	
II	IV	POWER SYSTEM OPERATION	3	1	4	
AIM	To study about the operation of power system mainly in thermal and hydro power plant.					
OBJECTIVE	unit commit	t the concepts and its operation of load for ment, generation scheduling of thermal sy al system and inter change of power and e	ystem a	and		

1.LOAD FORECASTING

Introduction - Estimation of Average and trend terms - Estimation of periodic components -Estimation of Stochastic components: Time series approach – Auto-Regressive Model, Auto-Regressive Moving - Average Models - Kalman Filtering Approach - On- line techniques for non stationary load prediction.

2.UNIT COMMITMENT

Constraints in unit commitment - Spinning reserve, thermal unit constraints, other constraints -Solution using Priority List method, Dynamic programming method - Forward DP approach , Lagrangian relaxation method – adjusting λ .

3. GENERATION SCHEDULING - THERMAL SYSTEM

9

The Economic dispatch problem – Thermal system dispatching with networklosses considered – The Lambda -iteration method - Gradient method ofeconomic dispatch - economic dispatch with Piecewise Linear cost functions-economic dispatch using dynamic programming – transmission system effects -A two generator system, coordination equations, incremental losses and penalty factors.

4. GENERATION SCHEDULING – HYDRO THERMAL SYSTEMS

9

Long Range Hydro - Scheduling - Short Range Hydro Scheduling - Hydro Electric plant models -Scheduling problems - The Short term Hydothermal Scheduling problem - Short term hydro-Hydro units in series (hydraulically coupled) – Pumped –Storage scheduling: A Gradient Approach-Hydro- Scheduling with a λ - γ iteration – Dynamic programming solution to the Hydro Thermal scheduling problem.

INTERCHANGE OF POWER AND ENERGY

9

Economy interchange between interconnected utilities – interchange evaluation with unit commitment - Multiple - utility interchange transactions - Power Pools: The Energy Broker system, Allocating pool savings - Transmission Effects and Issues: Transfer limitations, wheeling, rates for transmission services in multiparty utility transactions – Transactions involving Nonutility Parties.

Total Hours = 45

- 1. Allen J. Wood and Bruce F Wollenberg, "Power Generation, Operation and Control", John Wiley and sons, Newyork, 1996.
- 2.A.K.Mahalanabis, D.P.Kothari, S.I.Ahson, "Computer Aided Power System Analysis and Control", Tata Mcgraw Hill Publishing Co. Ltd., NewDelhi 1988.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C		
II	IV	HIGH VOLTAGE SWITCH GEAR	3	1	4		
AIM	To study abs	To study about the constructions and operation of high voltage switchgear.					
OBJECTIVE	termino rating o	erstand the concepts of operations of switch logy in circuit interruption, short circuit of circuit breakeras, classification of circuit breakers.	calcu	lations	and		

Insulation of switchgear - rated and tested voltage coordination between inner and external insulation. Insulation clearances in air, oil SF_6 and vacuum, bushing insulation, solid insulating materials – dielectric and mechanical strength consideration.

2. CIRCUIT INTERRUPTION

10

Switchgear terminology – Arc characteristics – direct and alternating current interruption – arc quenching phenomena – computer simulation of arc models – transient re-striking voltage – RRRV-recovery voltage-current chopping-capacitive current breaking-auto re-closing.

3. SHORT CIRCUIT CALCULATIONS AND RATING OF CIRCUI BREAKERS

10

Types of faults in power systems-short circuit current and short circuit MVA calculations for different types of faults-rating of circuit breakers – symmetrical and asymmetrical ratings.

4. CIRCUIT BREAKERS

10

Classification of circuit breakers-design, construction and operating principles of bulk oil, minimum oil, airblast, SF_6 and vacuum circuit breakers – Comparison of different types of circuit breakers.

5. TESTING OF CIRCUIT BREAKERS

8

Type tests and routine tests – short circuit testing-synthetic testing of circuit breakers-recent advancements in high voltage circuit breakers-diagnosis.

Total Hours = 45

- 1. Chunikhin, A. and Zhavoronkov, M., "High Voltage Switchgear Analysis and Design", Mir Publishers, Moscow, 1989.
- 2. Kuffel, E., Zaengl, W.S., and Kuffel J., High Voltage Engineering Fundamentals, Newness, Second Edition, Butterworth-Heinemann Publishers, New Delhi, 2000
- 3. Flursscheim, C.H. (Editor), Power circuit breaker-theory and design, IEE Monograph Series 17, Peter Peregrinus Ltd., Southgate House, Stevenage, Herts, SC1 1HQ, England, 1977.
- 4. Ananthakrishnan S and Guruprasad K.P., Transient Recovery Voltage and Circuit Breakers, Tata McGraw-Hill Publishing Compa ny Ltd., New Delhi, 1999.
- 5. IEEE Standard Collection, Surge Protectino C62, 1995 Editions, (Institute of Electrical and Electronics Engineers, Inc.), USA.
- 6. Funio Nakanishi, Switching Phenomena in high voltage circuit breakers, Marcel Dekker Inc., New York, 1991.

YEAR	SEMESTER	TITLE OF PAPER	L	P	C			
III	V	PROJECT WORK PHASE - I	0	12	6			
OBJECTIVE	to carry out the texposure to the	To impart the practical knowledge to the students and also to make them to carry out the technical procedures in their project work. To provide an exposure to the students to refer, read and review the research articles, journals and conference proceedings relevant to their project work and						
	placing this as th	neir beginning stage for their final prese	entatio	n				
METHODOLOGY	of three men Problem sho Students hat Report has a Preliminary	of three members one of which should be the guide Problem should be selected Students have to collect about 20 papers related to their work Report has to be prepared by the students as per the format Preliminary implementation can be done if possible						

YEAR	SEMESTER	TITLE OF PAPER	L	P	C		
III	VI	PROJECT WORK PHASE - II	0	24	12		
OBJECTIVE	This enables and strengthens the students to carry out the project own and to implement their innovative ideas to forefront the ris and to retrieve the hazards by adopting suitable ass methodologies and stating it to global.						
METHODOLOGY	of three mem Each review Attendance is review for So They should Final review of three mem include one e	shave to be conducted by the committed bers one of which should be the guide has to be evaluated for 400 marks. It is compulsory for all reviews. If a stude time valid reason, one or more chance is publish the paper preferably in the journal bedone by the committee that considers one of which should be the guide external expert Examiner within the collection of the submitted by the students around the submitted the submitted by the students around the submitted by the students around the submitted t	ent fails may be rnals/c nsists o (if pos llege).	s to atter given. onferen of minin	nd ces. num		

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
		POWER SYSTEM DYNAMICS	3	0	3			
AIM	_	Γο Study about the Various Power Systems Dynamics Devices Used in Power Systems.						
OBJECTIVE	 Discuss for pow To stud system To stud 	ride an understanding of the advanced conce the basic definitions, concepts and tools for er system y the modeling of synchronous machines & y the analysis of small signal stability with c y the analysis of small signal stability without	stabili speed	ty studi governi lers	es			

1. SYNCHRONOUS MACHINE MODELLING

9

Schematic Diagram, Physical Description: armature and field structure, machines with multiple pole pairs, mmf waveforms, direct and quadrature axes, Mathematical Description of a Synchronous Machine: Basic equations of a synchronous machine: stator circuit equations, stator self, stator mutual and stator to rotor mutual inductances, dq0 Transformation: flux linkage and voltage equations for stator and rotor in dq0 coordinates, electrical power and torque, physical interpretation of dq0 transformation, Per Unit Representations: L_{ad} -reciprocal per unit system and that from power-invariant form of Park's transformation; Equivalent Circuits for direct and quadrature axes, Steady-state Analysis: Voltage, current and flux-linkage relationships, Phasor representation, Rotor angle, Steady-state equivalent circuit, Computation of steady-state values, Equations of Motion: Swing Equation, calculation of inertia constant, Representation in system studies, Synchronous Machine Representation in Stability Studies: Simplifications for large-scale studies: Neglect of stator $p\Psi$ terms and speed variations, Simplified model with amortisseurs neglected: two-axis model with amortisseur windings neglected, classical model.

2. MODELLING OF EXCITATION AND SPEED GOVERNING SYSTEMS 9

Excitation System Requirements; Elements of an Excitation System; Types of Excitation System; Control and protective functions; IEEE (1992) block diagram for simulation of excitation systems. Turbine and Governing System Modelling: Functional Block Diagram of Power Generation and Control, Schematic of a hydroelectric plant, classical transfer function of a hydraulic turbine (no derivation), special characteristic of hydraulic turbine, electrical analogue of hydraulic turbine, Governor for Hydraulic Turbine: Requirement for a transient droop, Block diagram of governor with transient droop compensation, Steam turbine modelling: Single reheat tandem compounded type only and IEEE block diagram for dynamic simulation; generic speed-governing system model for normal speed/load control function.

3. SMALL-SIGNAL STABILITY ANALYSIS WITHOUT CONTROLLERS 9

Classification of Stability, Basic Concepts and Definitions: Rotor angle stability, The Stability Phenomena. Fundamental Concepts of Stability of Dynamic Systems: State-space representation, stability of dynamic system, Linearisation, Eigen properties of the state matrix: Eigen values and eigenvectors, modal matrices, eigen value and stability, mode shape and participation factor. Single-Machine Infinite Bus (SMIB) Configuration: Classical Machine Model stability analysis with

numerical example, Effects of Field Circuit Dynamics: synchronous machine, network and linearised system equations, block diagram representation with K-constants; expression for K-constants (no derivation), effect of field flux variation on system stability: analysis with numerical example,

4. SMALL-SIGNAL STABILITY ANALYSIS WITH CONTROLLERS 9

Effects Of Excitation System: Equations with definitions of appropriate K-constants and simple thyristor excitation system and AVR, block diagram with the excitation system, analysis of effect of AVR on synchronizing and damping components using a numerical example, Power System Stabiliser: Block diagram with AVR and PSS, Illustration of principle of PSS application with numerical example, Block diagram of PSS with description, system state matrix including PSS, analysis of stability with numerical a example. Multi-Machine Configuration: Equations in a common reference frame, equations in individual machine rotor coordinates, illustration of formation of system state matrix for a two-machine system with classical models for synchronous machines, illustration of stability analysis using a numerical example. Principle behind small-signal stability improvement methods: delta-omega and delta P-omega stabilizers.

5. ENHANCEMENT OF SMALL SIGNAL STABILITY

9

Power System Stabilizer – Stabilizer based on shaft speed signal (delta omega) – Delta –P-Omega stabilizer-Frequency-based stabilizers – Digital Stabilizer – Excitation control design – Exciter gain – Phase lead compensation – Stabilizing signal washout stabilizer gain – Stabilizer limits

Total Hours = 45

- 1. P. Kundur, "Power System Stability and Control", McGraw-Hill, 1993.
- 2. IEEE Committee Report, "Dynamic Models for Steam and Hydro Turbines in Power System Studies", IEEE Trans., Vol.PAS-92, pp 1904-1915, November/December, 1973. on Turbine-Governor Model.
- 3. P.M Anderson and A.A Fouad, "Power System Control and Stability", Iowa State University Press, Ames, Iowa, 1978.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
		SOFT COMPUTING TECHNIQUES	3	0	3			
AIM	To study about	To study about the concepts of Soft Computing Techniques.						
OBJECTIVE	➤ To Stud ➤ To Und	erstand about the intelligent control and also by about the concepts of Artificial Neural Net erstand about the Fuzzy Logic System, Genet application to power system optimization pr	tworks.	orithm a	ınd			

Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI approach. Knowledge representation. Expert systems.

2.ARTIFICIAL NEURAL NETWORKS

9

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron. Learning and Training the neural network. Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations. Hopfield network, Self-organizing network and Recurrent network. Neural Network based controller

3. FUZZY LOGIC SYSTEM

9

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Self-organizing fuzzy logic control. Fuzzy logic control for nonlinear time-delay system.

4. GENETIC ALGORITHM

9

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and anD-colony search techniques for solving optimization problems.

5. APPLICATIONS 9

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox. Stability analysis of Neural-Network interconnection systems. Implementation of fuzzy logic controller using Matlab fuzzy-logic toolbox. Stability analysis of fuzzy control systems.

Total Hours = 45

- 1. Jacek.M.Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, 1999.
- 2. KOSKO,B. "Neural Networks And Fuzzy Systems", Prentice-Hall of India Pvt. Ltd., 1994.
- 3. KLIR G.J. & FOLGER T.A. "Fuzzy sets, uncertainty and Information", Prentice-Hall of India Pvt. Ltd., 1993.
- 4. Zimmerman H.J. "Fuzzy set theory-and its Applications"-Kluwer Academic Publishers, 1994.
- 5. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
		MODELLING AND ANALYSIS OF ELECTRICAL MACHINES	3	0	3			
AIM	To study about	o study about the concepts of Modelling & Analysis of Machines						
OBJECTIVE	To study	rstand about Modelling of DC Machines about the Modelling of Induction Machines the various controlling techniques of Induction	n Mach	ines				

UNIT - I MODELING OF DC MACHINES

(9)

Equivalent circuit and Electro magnetic torque-Electromechanical modeling-Field excitation: separate, shunt, series and compound excitation-commutator action. Effect of armature mmf-Analytical fundamentals: Electric circuit aspects-magnetic circuit aspects-inter poles.

UNIT - II DYNAMIC MODELING OF INDUCTION MACHINES

(9)

Equivalent circuits- steady state performance equations-Dynamic modeling of induction machines: Real time model of a two phase induction machines, Three phase to two phase transformation-Electromagnetic torque-generalized model in arbitrary reference frames-stator reference frames model-rotor reference frames model-synchronously rotating reference frame model.

UNIT - III PHASE CONTROLLED AND FREQUENCY CONTROLLED INDUCTION MACHINES

Stator voltage control: Steady state analysis-approximate analysis-slip power recovery scheme: principle of operation-steady state analysis range of slip equivalent circuit-performance-static scherbius drive. Constant Volts/Hz controls implementation-steady state performance-dynamic simulation. PWM Voltages: Generation-machine model-steady state performance.

UNIT - IV VECTOR CONTROLLED INDUCTION MACHINES

(9)

(9)

Principle of vector control-direct vector control: flux and torque processor-DVC in stator reference frames with space vector modulation. Indirect vector control scheme: Derivation and implementation. Flux weakening operation: principle-flux weakening in stator flux linkage and rotor flux linkage.

UNIT - V SPECIAL MACHINES

(9)

Permanent magnet and characteristics-synchronous machines with PMs: Machine configuration-flux density distribution-types of PMSM-Variable Reluctance Machines: Basics-analysis-practical configuration-circuit wave forms for torque production stepping motors.

Total Hours = 45

- 1 R.Krishnan."Electric motor & Drives: Modeling, Analysis and Control", Prentice Hall of India, 2001.
- 2 Charles kingsley, Jr., A.E.Fityzgerald, Stephen D.Umans "Electric Machinery", Tata McGraw Hill, Sixth Edition, 2002.
- 3 Miller, T.J.E. "Brushless permanent magnet and reluctance motor drives", Oxford, 2005.
- 4 C.V.Jones, "The Unified Theory of ElectricalMachines:, Butterworth, London, 1967
- P.S.Bhimbra, "Generalised theory of electrical machines", Khanna Publishers
- 5 P.S.Bhimbra, "Generalised theory of electrical machines", Khanna Publishers, 4thEdition, 1993.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C				
		EHV POWER TRANSMISSION	3	0	3				
AIM	To Study aboutransmission.	Study about the importance and its use of Extra high voltage in power asmission.							
OBJECTIVE	power f To Obt on line To Stu conduct To Stuc Interfer	ly about the Power losses and audible losse ence. erstand the concept of electrostatic field of	e and tage g	capacita gradient also R	ance of adio				

Standard Transmission Voltages – Average Values of Line Parameters – Power Handling Capacity and Line Loss – Costs of Transmission Lines and Equipment – Mechanical Considerations in Line Performance.

2. CALCULATION OF LINE PARAMETERS

8

Calculation of Resistance, Inductance and Capacitance – Calculation of sequence inductances and capacitances – Line parameters for Modes of propagation.

3. VOLTAGE GRADIENTS OF CONDUCTORS

9

Charge-Potential Relations for Multi-conductor lines – Surface Voltage Gradient on Conductors – Gradient Factors and their use – Distribution of Voltage Gradient on Sub conductors of Bundle - Voltage Gradients on Conductors in the Presence of Ground Wires on Towers.

4. CORONA EFFECTS

12

Power losses and audible losses: I^2R Loss and Corona Loss -Attenuation of Traveling Waves Due to Corona Loss - Audible Noise Generation and Characteristics - Limits for Audible Noise - Day-Night Equivalent Noise Level.

Radio Interference: corona pulse generation and properties - Limits for Radio Interference Fields - The CIGRE Formula - The RI Excitation Function - Measurement of RI, RIV and Excitation Function - Design of Filter.

5. ELECTROSTATIC FIELD OF EHV LINES

10

Capacitance of Long Object - Calculation of Electrostatic Field of AC Lines Effect of High Field on Humans, Animals, and Plants - Meters and Measurement of Electrostatic Fields - Electrostatic Induction in Unenergised Circuit of a D/C Line - Induced Voltages in Insulated Ground Wires - Electromagnetic Interference.

Total Hours = 45

REFERENCE

1.Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age International Pvt. Ltd., 1990, Second Edition.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
		OPTIMAL CONTROL AND FILTERING	3	0	3			
AIM	The aim is to in	The aim is to introduce about the Optimal control and Filtering.						
OBJECTIVE	formula To unde To unde	y about the Statement of optimal control problem, Fation and also State inequality constraints. erstand about the LQ control problems and Dynamic erstand about the Numerical Techniques for optimal imation, Kalman Filter and its properties.	e progra	amming				

Statement of optimal control problem – Problem formulation and forms of optimal Control – Selection of performance measures. Necessary conditions for optimal control – Pontryagin's minimum principle – State inequality constraints – Minimum time problem.

2. LQ CONTROL PROBLEMS AND DYNAMIC PROGRAMMING

Linear optimal regulator problem – Matrix Riccatti equation and solution method – Choice of weighting matrices – Steady state properties of optimal regulator – Linear tracking problem – LQG problem – Computational procedure for solving optimal control problems – Characteristics of dynamic programming solution – Dynamic programming application to discrete and continuous systems – Hamilton Jacobi Bellman equation.

3. NUMERICAL TECHNIQUES FOR OPTIMAL CONTROL

9

Numerical solution of 2-point boundary value problem by steepest descent and Fletcher Powell method solution of Ricatti equation by negative exponential and interactive Methods

4. FILTERING AND ESTIMATION

Q

Filtering – Linear system and estimation – System noise smoothing and prediction – Gauss Markov discrete time model – Estimation criteria – Minimum variance estimation – Least square estimation – Recursive estimation.

5. KALMAN FILTER AND PROPERTIES

9

Filter problem and properties – Linear estimator property of Kalman Filter – Time invariance and asymptotic stability of filters – Time filtered estimates and signal to noise ratio improvement – Extended Kalman filter.

Total Hours = 45

- 1. KiRk D.E., 'Optimal Control Theory An introduction', Prentice hall, N.J., 1970.
- 2. Sage, A.P., 'Optimum System Control', Prentice Hall N.H., 1968.
- 3. Anderson, BD.O. and Moore J.B., 'Optimal Filtering', Prentice hall Inc., N.J., 1979.
- 4. S.M. Bozic, "Digital and Kalman Filtering", Edward Arnould, London, 1979.
- 5. Astrom, K.J., "Introduction to Stochastic Control Theory", Academic Press, Inc, N.Y., 1970.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C
		POWER QUALITY	3	0	3
AIM	To Study about	t the concepts of Power Quality.			
OBJECTIVE	Quality imbalar > To Un Analysi	nderstand about the Characterisation of Short duration and long duration voltage vace, Voltage fluctuations. derstand about the Non-Linear loads, Mais Methods, Analysis and Conventional Maio Power Quality improvement.	ariatio Measur	ens, Vol	tage and

Introduction – Characterisation of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards.

2. NON-LINEAR LOADS

9

Single phase static and rotating AC/DC converters, Three phase static AC/DC converters, Battery chargers, Arc furnaces, Fluorescent lighting, pulse modulated devices, Adjustable speed drives.

3. MEASUREMENT AND ANALYSIS METHODS

9

Voltage, Current, Power and Energy measurements, power factor measurements and definitions, event recorders, Measurement Error – Analysis: Analysis in the periodic steady state, Time domain methods, Frequency domain methods: Laplace's, Fourier and Hartley transform – The Walsh Transform – Wavelet Transform.

4. ANALYSIS AND CONVENTIONAL MITIGATION METHODS

9

Analysis of power outages, Analysis of unbalance: Symmetrical components of phasor quantities, Instantaneous symmetrical components, Instantaneous real and reactive powers, Analysis of distortion: On–line extraction of fundamental sequence components from measured samples – Harmonic indices – Analysis of voltage sag: Detorit Edison sag score, Voltage sag energy, Voltage Sag Lost Energy Index (VSLEI)- Analysis of voltage flicker, Reduced duration and customer impact of outages, Classical load balancing problem: Open loop balancing, Closed loop balancing, current balancing, Harmonic reduction, Voltage sag reduction.

5. POWER QUALITY IMPROVEMENT

9

Utility-Customer interface –Harmonic filters: passive, Active and hybrid filters –Custom power devices: Network reconfiguring Devices, Load compensation using DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC –control strategies: P-Q theory, Synchronous detection method – Custom power park –Status of application of custom power devices.

Total Hours = 45

TEXT BOOKS

1.Arindam Ghosh "Power Quality Enhancement Using Custom Power Devices", Kluwer Academic Publishers, 2002

- 2.G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition)
- 3. Power Quality R.C. Duggan
- 4. Power system harmonics –A.J. Arrillga
- 5. Power electronic converter harmonics Derek A. Paice

YEAR	SEMESTER	TITLE OF PAPER	L	T	С			
		ADVANCED DIGITAL SIGNAL PROCESSING	3	0	3			
AIM		o enumerating the theoretical and practical aspects of modern signal occessing in digital environment.						
OBJECTIVE	process > To stud	ride an understanding of the advanced concering in digital. y the Estimation, Prediction Techniques, Digor, Application of DSP and also implementa	gital Si	gnal				

9

Mathematical description of change of sampling rate – Interpolation and Decimation, Filter implementation for sampling rate conversion – direct form FIR structures, DTFT, FFT, Wavelet transform and filter bank implementation of wavelet expansion of signals

2. ESTIMATION AND PREDICTION TECHNIQUES

9

Discrete Random Processes – Ensemble averages, Stationary processes, Autocorrelation and Auto covariance matrices. Parseval's Theorem, Wiener-Khintchine Relation – Power Spectral Density. AR, MA, ARMA model based spectral estimation. Parameter Estimation, Linear prediction – Forward and backward predictions, Least mean squared error criterion – Wiener filter for filtering and prediction, Discrete Kalman filter.

3. DIGITAL SIGNAL PROCESSOR

9

Basic Architecture – Computational building blocks, MAC, Bus Architecture and memory, Data Addressing, Parallelism and pipelining, Parallel I/O interface, Memory Interface, Interrupt, DMA.

4. APPLICATION OF DSP

9

Design of Decimation and Interpolation Filter, FFT Algorithm, PID Controller, Application for Serial Interfacing, DSP based Power Meter, Position control.

5. VLSI IMPLEMENTATION

9

Basics on DSP sytem architecture design using VHDL programming, Mapping of DSP algorithm onto hardware, Realisation of MAC & Filter structure.

Total Hours = 45

- 1. Bernard Widrow, Samuel D. Stearns, "Adaptive Signal Processing", Pearson Education, third edition, 2004.
- 2. Dionitris G. Manolakis, Vinay K. Ingle, Stepen M. Kogon, "Statistical & Adaptive signal processing, spectral estimation, signal modeling, Adaptive filtering & Array processing", McGraw-Hill International edition 2000.
- 3. Monson H. Hayes, "Statistical Digital Signal Processing and Modelling", John Wiley and Sons, Inc..
- 4. John G. Proaks, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Education 2002.
- 5. S. Salivahanan, A. Vallavaraj and C. Gnanapriya "Digital Signal Processing", TMH,2000.
- 6. Avatar Sing, S. Srinivasan, "Digital Signal Processing- Implementation using DSP Microprocessors with Examples from TMS320C54xx", Thomson India, 2004.
- 7. Lars Wanhammer, "DSP Integrated Circuits", Academic press, 1999, New York.
- 8. Ashok Ambardar,"Digital Signal Processing: A Modern Introduction", Thomson India edition, 2007.
- 9. Lars Wanhammer, "DSP Integrated Circuits", Academic press, 1999, New York.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
		CONTROL SYSTEM DESIGN	3	0	3			
AIM		To enumerating the theoretical and practical aspects of Control System Design						
OBJECTIVE	control To stud To stud To stud	y the conventional design methods in the casystem design y the design in discrete domain y the analysis in optimal control y the discrete state variable design in control y the state estimation design and problem in	l syste	m desig				

1. CONVENTIONAL DESIGN METHODS

Design specifications- PID controllers and compensators- Root locus based design- Bode based design-Design examples

2. DESIGN IN DISCRETE DOMAIN

9

Sample and Hold-Digital equivalents-Impulse and step invariant transformations-Methods of discretisation-Effect of sampling- Direct discrete design – discrete root locus Design examples

3. OPTIMAL CONTROL

9

Formation of optimal control problems-results of Calculus of variations- Hamiltonian formulation-solution of optimal control problems- Evaluation of Riccati's equation State and output Regulator problems-Design examples

4. DISCRETE STATE VARIABLE DESIGN

9

Discrete pole placement- state and output feedback-estimated state feedback-discrete optimal control- dynamic programming-Design examples

5. STATE ESTIMATION

9

State Estimation Problem -State estimation- Luenberger's observer-noise characteristics- Kalman-Bucy filter-Separation Theorem-Controller Design-Wiener filter-Design examples.

Total Hours = 45

REFERENCES

- 1. M. Gopal "Modern control system Theory" New Age International, 2005.
- 2. Benjamin C. Kuo "Digital control systems", Oxford University Press, 2004.
- 3. G. F. Franklin, J. D. Powell and A. E. Naeini "Feedback Control of Dynamic Systems", PHI (Pearson), 2002.
- 4. Graham C. Goodwin, Stefan F. Graebe and Mario E. Salgado "Control system Design", PHI (Pearson), 2003.
- 5. G. F. Franklin, J. D. Powell and M Workman, "Digital Control of Dynamic Systems", PHI (Pearson), 2002.
- 6. B.D.O. Anderson and J.B. Moore., 'Optimal Filtering', Prentice hall Inc., N.J., 1979.
- 7. Loan D. Landau, Gianluca Zito," Digital Control Systems, Design, Identification and Implementation", Springer, 2006.

9

YEAR	SEMESTER	TITLE OF PAPER	\mathbf{L}	T	C
		SPECIAL ELECTRICAL MACHINES	3	0	3
AIM	To Study about	the Special Electrical Machines.			
OBJECTIVE	Synchro To Und operatio To Und of Perm	erstand about the Operating principle and Phonous Reluctance motors. erstand about the Constructional features and on of Stepping motors, Switched Reluctance erstand about the Principle of operation and anent Magnet synchronous motors and student Magnet brushless DC motors.	d princ motors Phason	riple of s. diagra	

1. SYNCHRONOUS RELUCTANCE MOTORS

9

Constructional features: axial and radial air gap Motors. Operating principle, reluctance torque – phasor diagram, motor characteristics – Linear induction machines.

2. STEPPING MOTORS

9

Constructional features, principle of operation, modes of excitation torque production in Variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive systems and circuit for open loop control, Closed loop control of stepping motor.

3. SWITCHED RELUTANCE MOTORS

9

Constructional features-principle of operation-Torque equation-Power Controllers-Characteristics and control Microprocessor based controller.

4. PERMANENT MAGNET SYNCHRONOUS MOTORS

0

Principle of operation, EMF, power input and torque expressions, Phasor diagram, Power controllers, Torque speed characteristics, Self control, Vector control, Current control schemes.

5. PERMANENT MAGNET BRUSHLESS DC MOTORS

9

Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor, Square wave permanent magnet brushless motor drives, Torque and emf equation, Torque-speed characteristics, Controllers-Microprocessor based controller.

Total Hours = 45

TEXT BOOKS

- 1. Miller, T.J.E. "Brushless permanent magnet and reluctance motor drives", Clarendon Press, Oxford, 1989.
- 2. Kenjo, T, "Stepping motors and their microprocessor control", Clarendon Press, Oxford, 1989.
- 3. LIM

- 1. Kenjo, T and Naganori, S "Permanent Magnet and brushless DC motors", Clarendon Press, Oxford, 1989.
- 2. Kenjo, T. Power Electronics for the microprocessor Age, 1989.
- 3. B.K. Bose, "Modern Power Electronics & AC drives"
- 4. R.Krishnan, "Electric Motor Drives Modeling, Analysis and Control", Prentice-Hall of India Pvt. Ltd., New Delhi, 2003

YEAR	SEMESTER	TITLE OF PAPER	L	T	C		
		ADVANCED POWER SYSTEM DYNAMICS	3	0	3		
AIM	To Study about	Γο Study about the Various advanced Power Systems Dynamics in Power Systems					
OBJECTIVE	dynam To study To study To study To study Enhance	ovide an understanding of the advanced concepts ics ly the transient stability analysis in power system ady the analysis of sub synchronous oscillation& nce (SSR) ly the analysis of transmission, generation and load aspectment Of Transient Stability And Counter Meanonous resonance	subsy	snchror voltage	nous		

1. TRANSIENT STABILITY ANALYSIS [1,2,3]

9

Review of numerical integration methods: Euler and Fourth Order Runge-Kutta methods, Numerical stability and implicit methods, Simulation of Power System Dynamic response: Structure of Power system Model, Synchronous machine representation: equations of motion, rotor circuit equations, stator voltage equations, Thevenin's and Norton's equivalent circuits, Excitation system representation, Transmission network and load representation, Overall system equations and their solution: Partitioned – Explicit and Simultaneous-implicit approaches, treatment of discontinuities, Simplified Transient Stability Simulation using implicit integration method.

2. SUBSYNCHRONOUS OSCILLATIONS [1]

9

Introduction – Turbine Generator Torsional Characteristics: Shaft system model – Examples of torsional characteristics – Torsional Interaction with Power System Controls: Interaction with generator excitation controls – Interaction with speed governors – Interaction with nearby DC converters.

3. SUBSYSNCHRONOUS RESONANCE (SSR) [1,4]

9

Subsysnchronous Resonance (SSR): Characteristics of series –Compensated transmission systems – Self-excitation due to induction generator effect – Torsional interaction resulting in SSR – Analytical Methods – Numerical examples illustrating instability of subsynchronous oscillations – Impact of Network-Switching Disturbances: Steady-state switching – Successive network-Switching disturbances – Torsional Interaction Between Closely Coupled Units; time-domain simulation of subsynchronous resonance – EMTP with detailed synchronous machine model

4. TRANSMISSION, GENERATION AND LOAD ASPECTS OF VOLTAGE STABILITY ANALYSIS [5]

9

Review of transmission aspects – Generation Aspects: Review of synchronous machine theory – Voltage and frequency controllers – Limiting devices affecting voltage stability – Voltage-reactive power characteristics of synchronous generators – Capability curves – Effect of machine limitation on deliverable power – Load Aspects – Voltage dependence of loads – Load restoration dynamics – Induction motors – Load tap changers – Thermostatic load recovery – General aggregate load models.

5. ENHANCEMENT OF TRANSIENT STABILITY AND COUNTER MEASURES

FOR SUB SYNCHRONOUS RESONANCE [1]

9

Principle behind transient stability enhancement methods: high-speed fault clearing, reduction of transmission system reactance, regulated shunt compensation, dynamic braking, reactor switching, independent pole-operation of circuit-breakers, single-pole switching, fast-valving, high-speed excitation systems; NGH damper scheme.

- 1. P. Kundur, Power System Stability and Control, McGraw-Hill, 1993.
- 2. H.W. Dommel and N.Sato, "Fast Transient Stability Solutions," IEEE Trans., Vol. PAS-91, pp, 1643-1650, July/August 1972.
- 3. AU Power Lab Laboratory Manuals, Anna University, pp: 7-1 to 7-12, May 2004.
- 4. H. W. Dommel, EMTP THEORY BOOK, Microtran Power System Analysis Corporation, Second Edition, 1996.
- 5. T.V. Cutsem and C.Vournas, "Voltage Stability of Electric Power Systems", Kluwer publishers,1998.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C				
		SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL	3	0	3				
AIM	To Study about	Study about the system identification and adaptive control							
OBJECTIVE	adaptive To stud To stud To stud	ride an models for identification in various system identicle control y the analysis in non-parametric and parametric identific y the analysis in non-linear identification and model va y the analysis of adaptive control and adaptation technic y the case studies in system identification and adaptive	ication lidatio ques	n					

1.MODELS FOR INDENTIFICATION

9

Models of LTI systems: Linear Models-State space Models-OE model- Model sets, Structures and Identifiability-Models for Time-varying and Non-linear systems: Models with Nonlinearities – Non-linear state-space models-Black box models, Fuzzy models.

2.NON-PARAMETRIC AND PARAMETRIC IDENTIFICATION

9

Transient response and Correlation Analysis – Frequency response analysis – Spectral Analysis – Least Square – Recursive Least Square – Forgetting factor- Maximum Likelihood – Instrumental Variable methods.

3.NON-LINEAR IDENTIFICATION AND MODEL VALIDATION

9

Open and closed loop identification: Approaches – Direct and indirect identification – Joint input-output identification – Non-linear system identification – Wiener models – Power series expansions - State estimation techniques – Non linear identification using Neural Network and Fuzzy Logic.

4. ADAPTIVE COTROL AND ADAPTATION TECHNIQUES

9

Introduction – Uses – Auto tuning – Self Tuning Regulators (STR) – Model Reference Adaptive Control (MRAC) – Types of STR and MRAC – Different approaches to self-tuning regulators – Stochastic Adaptive control – Gain Scheduling.

5.CASE STUDIES 9

Inverted Pendulum, Robot arm, process control application: heat exchanger, Distillation column, application to power system, Ship steering control.

Total Hours = 45

- 1. Ljung," System Identification Theory for the User", PHI, 1987.
- 2. Torsten Soderstrom, Petre Stoica, "System Identification", prentice Hall \ (UK) Ltd,1989.
 - 3. Astrom and Wittenmark," Adaptive Control", PHI
 - 4. William S. Levine, "Control Hand Book".
 - 5. Narendra and Annasamy," Stable Adaptive Control Systems, Prentice Hall, 1989.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C				
		INDUSTRIAL POWER SYSTEM ANALYSIS AND DESIGN	3	0	3				
AIM	To study abou	To study about the industrial power system analysis and design.							
OBJECTIVE	correcti	erstand about the motor starting studies, povon studies. y the harmonic analysis, flicker analysis and							

1. MOTOR STARTING STUDIES

9

Introduction-Evaluation Criteria-Starting Methods-System Data-Voltage Drop Calculations-Calculation of Acceleration time-Motor Starting with Limited-Capacity Generators-Computer-Aided Analysis-Conclusions.

2. POWER FACTOR CORRECTION STUDIES

Introduction-System Description and Modeling-Acceptance Criteria-Frequency Scan Analysis-Voltage Magnification Analysis-Sustained Overvoltages-Switching Surge Analysis-Back-to-Back Switching-Summary and Conclusions.

3. HARMONIC ANALYSIS

9

Harmonic Sources-System Response to Harmonics-System Model for Computer-Aided Analysis-Acceptance Criteria-Harmonic Filters-Harmonic Evaluation-Case Study-Summary and Conclusions.

4. FLICKER ANALYSIS

9

Sources of Flicker-Flicker Analysis-Flicker Criteria-Data for Flicker analysis- Case Study-Arc Furnace Load-Minimizing the Flicker Effects-Summary.

5. GROUND GRID ANALYSIS

9

Introduction-Acceptance Criteria-Ground Grid Calculations-Computer-Aided Analysis - Improving the Performance of the Grounding Grids-Conclusions.

Total Hours = 45

REFERENCES

1. Ramasamy Natarajan, "Computer-Aided Power System Analysis", Marcel Dekker Inc., 2002.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C			
		HIGH VOLTAGE DIRECT	3	0	3			
		CURRENT TRANSMISSION						
AIM	To Study abou	To Study about the needs of high voltage direct current transmission in						
Allvi	todays							
OBJECTIVE	technology, and	the concepts and its importance of DC powerlysis of HVDC converters, Converters and Inics and filters and simulation of HVDC systems.	HVDC					

1. DC POWER TRANSMISSION TECHNOLOGY

9

Introduction-comparison of AC and DC transmission application of DC transmission – description of DC transmission system planning for HVDC transmission-modern trends in DC transmission.

2. ANALYSIS OF HVDC CONVERTERS

9

Pulse number, choice of converter configuration-simplified analysis of Graetz circuit-converter bridge characteristics – characteristics of a twelve pulse converter-detailed analysis of converters.

3. CONVERTER AND HVDC SYSTEM CONTROL

9

General principles of DC link control-converter control characteristics-system control hierarchy-firing angle control-current and extinction angle control-starting and stopping of DC link-power control-higher level controllers-telecommunication requirements.

4. HARMONICS AND FILTERS

9

Introduction-generation of harmonics-design of AC filters-DC filters-carrier frequency and RI noise.

5. SIMULATION OF HVDC SYSTEMS

9

Introduction-system simulation: Philosophy and tools-HVDC system simulation-modeling of HVDC systems for digital dynamic simulation.

Total Hours = 45

- **1.** Padiyar, K.R., "HVDC Power Transmission System", Wiley Eastern Limited, New Delhi 1990. First edition.
- 2. Edward Wilson Kimbark, "Direct Current Transmission", Vol. I, Wiley interscience, New York, London, Sydney, 1971
- 3. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering" New Age International (P) Ltd., New Delhi, 1990.
- 4. Arrillaga, J., "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C				
		WIND ENERGY CONVERSION SYSTEMS	3	0	3				
AIM	To Study about	To Study about basic concept in wind energy conversion system							
OBJECTIVE	To studTo studTo stud	ly about concept in wind energy conversion system y the analysis in wind turbines y the analysis of Fixed Speed System in WECS y the variable speed system in WECS y the analysis in grid connected system	l						

Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-Power coefficient-Sabinin's theory-Aerodynamics of Wind turbine

2. WIND TURBINES 9

HAWT-VAWT-Power developed-Thrust-Efficiency-Rotor selection-Rotor design considerations-Tip speed ratio-No. of Blades-Blade profile-Power Regulation-yaw control-Pitch angle control-stall control-Schemes for maximum power extraction.

3. FIXED SPEED SYSTEMS

9

Generating Systems- Constant speed constant frequency systems -Choice of Generators-Deciding factors-Synchronous Generator-Squirrel Cage Induction Generator- Model of Wind Speed- Model wind turbine rotor - Drive Train model-Generator model for Steady state and Transient stability analysis.

4. VARIABLE SPEED SYSTEMS

9

Need of variable speed systems-Power-wind speed characteristics-Variable speed constant frequency systems synchronous generator- DFIG- PMSG -Variable speed generators modeling - Variable speed variable frequency schemes.

5. GRID CONNECTED SYSTEMS

9

Stand alone and Grid Connected WECS system-Grid connection Issues-Machine side & Grid side controllers-WECS in various countries

Total Hours = 45

- 1. L.L.Freris "Wind Energy conversion Systems", Prentice Hall, 1990
- 2. Ion Boldea, "Variable speed generators", Taylor & Francis group, 2006.
- 3. E.W.Golding "The generation of Electricity by wind power", Redwood burn Ltd., Trowbridge,1976.
- 4. 4.S.Heir "Grid Integration of WECS", Wiley 1998.

YEAR	SEMESTER	TITLE OF PAPER		T	C
		POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	3	0	3
AIM	To Study about	power electronic for renewable energy systems	em		
OBJECTIVE	To stud conversTo studTo stud	ly about basic concept in renewable energy y the analysis in electrical machines for rene ion y the analysis of power converter y the analysis in variable wind and PV systey the analysis in hybrid renewable energy sy	ewable em		

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

2. ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION 9

Review of reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

3. POWER CONVERTERS

9

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing

Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

4. ANALYSIS OF WIND AND PV SYSTEMS

9

Stand alone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG and SCIG Based WECS-Grid Integrated solar system

5. HYBRID RENEWABLE ENERGY SYSTEMS

9

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV-Maximum Power Point Tracking (MPPT).

Total Hours = 45

- 1. Rashid .M. H "power electronics Hand book", Academic press, 2001.
- 2. Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993.
- 3. Rai. G.D," Solar energy utilization", Khanna publishes, 1993.
- 4. Gray, L. Johnson, "Wind energy system", prentice hall linc, 1995.
- 5. Non-conventional Energy sources B.H.Khan Tata McGraw-hill Publishing Company, New Delhi.

YEAR	SEMESTER	TITLE OF PAPER		L	T	C
		APPLICATIONS OF TECHNOLOGY	MEMS	3	0	3
AIM	To Study about	the Applications of MEMS Techn	nology.			
OBJECTIVE	and Ele To stud Sensing	lerstand about the concepts of Moctro-Mechanical. Ity about the Electrostatic Sensor and Actuation ,PieZoelectric Sendies of MEMS Technology.	rs and Ac	tuatio	n, Thei	rmal

1. MEMS: MICRO-FABRICATION, MATERIALS AND ELECTRO-MECHANICAL CONCEPTS

Overview of micro fabrication – Silicon and other material based fabrication processes – Concepts: Conductivity of semiconductors-Crystal planes and orientation-stress and strain-flexural beam bending analysis-torsional deflections-Intrinsic stress- resonant frequency and quality factor.

2. ELECTROSTATIC SENSORS AND ACTUATION

9

9

Principle, material, design and fabrication of parallel plate capacitors as electrostatic sensors and actuators-Applications

3. THERMAL SENSING AND ACTUATION

9

Principle, material, design and fabrication of thermal couples, thermal bimorph sensors, thermal resistor sensors-Applications.

4. PIEZOELECTRIC SENSING AND ACTUATION

9

Piezoelectric effect-cantilever piezo electric actuator model-properties of piezoelectric materials-Applications.

5. CASE STUDIES 9

Piezoresistive sensors, Magnetic actuation, Micro fluidics applications, Medical applications, Optical MEMS.

Total Hours = 45

- 1. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
- 2. Marc Madou, "Fundamentals of microfabrication", CRC Press, 1997.
- 3. Boston, "Micromachined Transducers Sourcebook", WCB McGraw Hill, 1998.
- 4. M.H.Bao "Micromechanical transducers : Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C
		FLEXIBLE AC TRANSMISSION SYSTEMS	3	0	3
AIM	To understand	I the use of thyristors in flexible AC transmi	ssion s	ystems.	
OBJECTIVE	and co scheme	ly the operations and control of thyristors incepts of static VAR compensator, sers, Unified power flow control, Design of Fratic VAR compensation.	ies co	mpensa	tion

9

FACTS-a toolkit, Basic concepts of Static VAR compensator, Resonance damper, Thyristor controlled series capacitor, Static condenser, Phase angle regulator, and other controllers.

2. SERIES COMPENSATION SCHEMES

9

Sub-Synchronous resonance, Torsional interaction, torsional torque, Compensation of conventional, ASC, NGH damping schemes, Modelling and control of thyristor controlled series compensators.

3. UNIFIED POWER FLOW CONTROL

9

Introduction, Implementation of power flow control using conventional thyristors, Unified power flow concept, Implementation of unified power flow controller.

4. DESIGN OF FACTS CONTROLLERS

9

Approximate multi-model decomposition, Variable structure FACTS controllers for Power system transient stability, Non-linear variable-structure control, variable structure series capacitor control, and variable structure resistor control.

5. STATIC VAR COMPENSATION

q

Basic concepts, Thyristor controlled reactor (TCR), Thyristors switched reactor (TSR), Thyristor switched capacitor (TSC), saturated reactor (SR), Fixed Capacitor (FC).

Total Hours = 45

- 1. Narin G.Hingorani, "Flexible AC Transmission", IEEE Spectrum, April 1993, pp 40-45.
- 2. Narin G. Hingorani, "High Power Electronics and Flexible AC Transmission Systems" IEEE High Power Engineering Review, 1998.
- 3. Narin G.Hingorani, "Power Electronics in Electric Utilities: Role of Power Electronics in future power systems", Proc. of IEEE, Vol.76, no.4, April 1988.
- 4. Einar V.Larsen, Juan J. Sanchez-Gasca, Joe H.Chow, "Concepts for design of FACTS Controllers to damp power swings", IEEE Trans On Power Systems, Vol.10, No.2, May 1995.
- 5. Gyugyi L., "Unified power flow control concept for flexible AC transmission", IEEE Proc-C Vol.139, No.4, July 1992.

YEAR	SEMESTE	TITLE OF PAPER	L	T	C	
	R					
		DIGITAL SIGNAL PROCESSING	3	0	3	
AIM	To Study about the concepts of digital signal processing.					
OBJECTIVE	 To understand the operation of discrete time signal and system , Fourier and structure realization , filters , multistage representation and Digital signal processor. 					

1. DISCRETE TIME SIGNALS AND SYSTEMS

9

Representation of discrete time signal – classifications – Discrete time – system – Basic operations on sequence – linear – Time invariant – causal – stable – solution to difference equation – convolution sum – correlation – Discrete time Fourier series – Discrete time Fourier transform.

2. FOURIER AND STRUCTURE REALIZATION

9

Discrete Fourier transform – properties – Fast Fourier transform – Z-transform – structure realization – Direct form – lattice structure for FIR filter – Lattice structure for IIR Filter

3.FILTERS 9

FIR Filter – windowing technique – optimum equiripple linear phase FIR filter – IIR filter – Bilinear transformation technique – impulse invariance method – Butterworth filter – Tchebyshev filter.

4.MULTISTAGE REPRESENTATION

9

Sampling of band pass signal – antialiasing filter – Decimation by a n integer factor – interpolation by an integer factor – sampling rate conversion – implementation of digital filter banks – sub-band coding – Quadrature mirror filter – A/D conversion – Quantization – coding – D/A conversion – Introduction to wavelets.

5.DIGITAL SIGNAL PROCESSORS

9

Fundamentals of fixed point DSP architecture – Fixed point number representation and computation – Fundamentals of floating point DSP architecture – floating point number representation and computation – study of TMS 320 C 50 processor – Basic programming – addition – subtraction – multiplication – convolution – correlation – study of TMS 320 C 54 processor – Basic programming – addition – subtraction – multiplication – convolution – correlation.

Total Hours = 45

- 1. John G.Proakis, Dimitris G.Manolakis, "Digital Signal Processing: Principles, Algorithms and Applications", PHI.
- 2. S.Salivahanan, A.Vallavaraj and C.Gnanapriya "Digital Signal Processing", TMH, 2000.
- 3. A.V. Oppenheim and R.W.Schafer, Englewood "Digital Signal Processing", Prentice-Hall, Inc., 1975.
- 4. Rabiner and Gold, "Theory and Application of Digital Signal Processing", A comprehensive, Industrial Strength DSP reference book.
- 6. B.Venkatramani & M.Bhaskar, "Digital Signal Processors Architecture, Programming and Applications", TMH, 2002.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C
		ARTIFICIAL INTELLIGENCE			
		APPLICATION TO POWER	3	0	3
		SYSTEMS			
AIM	To Study about the Artificial Intelligence application to Power Systems.				
	➤ To Understand about the Introduction of Neural networks.				
	To Understand about the Application of Neural networks to Power System problems, Application of Fuzzy logic to Power Systems,				
OBJECTIVE					
	Genetic Algorithm and its applications to power systems.				

1. INTRODUCTION TO NEURAL NETWORKS

9

Basics of ANN-Perceptron-Delta learning rule –Back Propagation Algorithm-Multilayer Feed forward network-Memory models-Bi-directional associative memory-Hopfield network

2. APPLICATIONS TO POWER SYSTEM PROBLEMS

9

Application of Neural Networks to load forecasting, Contingency Analysis-VAR control, Economic Load Dispatch.

3. INTRODUCTION TO FUZZY LOGIC

9

Crispness-Vagueness-Fuzziness-Uncertainty-Fuzzy set theory Fuzzy sets-Fuzzy set operations-fuzzy measures-fuzzy relations-fuzzy function. Structure of fuzzy logic controller- fuzzification models-data base-rule base-inference engine defuzzification module.

4. APPLICATIONS TO POWER SYSTEMS

9

Decision making in Power system Control through fuzzy set theory-Use of fuzzy set LP in Power systems scheduling problems-Fuzzy logic based power system stabilizer.

models of

5. GENETIC ALGORITHM AND ITS APPLICATIONS TO POWER SYSTEMS 9

Introduction – Simple Genetic Algorithm – Reproduction,. Crossover, Mutation, Advanced Operators in Genetic Search – Applications to voltage Control and Stability Studies.

Total Hours = 45

- 1. James.A.Freeman and B.M.Skapura "Neural Networks, Algorithms Applications and Programming techniques"- Addison Wesley,1990.
- 2. George Klir and Tina Folger,.A., "Fuzzy sets, Uncertainty and Information", Prentice Hall of India Pvt.Ltd.,1993.
- 3. Zimmerman, H.J. "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers, 1994.
- 4. IEEE tutorial on "Application of Neural Network to Power Systems", 1996
- 5. Loi Lei Lai, "Intelligent System Applications in Power Engineering", John Wiley and Sons Ltd., 1998.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C		
		INTELLIGENT CONTROL	3	0	3		
AIM	The aim is to introduce about the Intelligent control.						
OBJECTIVE	➤ To Stud ➤ To Und	 To Understand about the intelligent control and also AI approach. To Study about the concepts of Artificial Neural Networks. To Understand about the Fuzzy Logic System, Genetic Algorithm and also GA application to power system optimization problem. 					

Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI approach. Knowledge representation. Expert systems.

2.ARTIFICIAL NEURAL NETWORKS

9

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron. Learning and Training the neural network. Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations. Hopfield network, Self-organizing network and Recurrent network. Neural Network based controller

3. GENETIC ALGORITHM

9

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems.

4. FUZZY LOGIC SYSTEM

9

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Self-organizing fuzzy logic control. Fuzzy logic control for nonlinear time-delay system.

5. APPLICATIONS 9

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox.

Stability analysis of Neural-Network interconnection systems. Implementation of fuzzy logic controller using Matlab fuzzy-logic toolbox. Stability analysis of fuzzy control systems.

Total Hours = 45

- 1. Jacek.M.Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing House, 1999.
- 2. KOSKO,B. "Neural Networks And Fuzzy Systems", Prentice-Hall of India Pvt. Ltd., 1994.
- 3. KLIR G.J. & FOLGER T.A. "Fuzzy sets, uncertainty and Information", Prentice- Hall of India Pvt. Ltd., 1993.
- 4. Zimmerman H.J. "Fuzzy set theory-and its Applications"-Kluwer Academic Publishers, 1994.
- 5. Driankov, Hellendroon, "Introduction to Fuzzy Control", Narosa Publishers.

YEAR	SEMESTER	TITLE OF PAPER	L	T	C		
		COMPUTER NETWORK ENGINEERING	3	0	3		
AIM	To Study about the Computer Network Engineering.						
OBJECTIVE	To Ur Internet	 To discuss about the Protocols and Architecture. To Understand the concepts of Network Access Protocol, Internetworking Transport protocol, Overview of Routing techniques, Presentation/Application Protocols and also Network Management. 					

1. PROTOCOLS AND ARCHITECTURES

10

Protocols-layered approach-OSI model-DoD model-Hierarchical Approach-Local Network Technology- Bus/Tree topology-Ring topology-medium access protocols -Details of IEEE 802 standards.

2. NETWORK ACCESS PROTOCOL & INTERNETWORKING

Q

Circuit Switched Network Access-Packet Switched Network Access-Broadcast Network Access-Principle of Internetworking-Bridges, Gateways-X, 75-internet protocols-ISO Internet protocol standard.

3. TRANSPORT PROTOCOL & ROUTING TECHNIQUES

9

Transport Service protocol Mechanisms-Network Service-Transport standards-Internet Transport protocols-Wireless UDP-Overview of routing techniques.

4. PRESENTATION/APPLICATION PROTOCOLS

Q

File Transfer Protocols-World Wide Web-Electronic Mail-Overview of ISDN-ISDN Protocols.

5. NETWORK MANAGEMENT

Q

Architecture of network management-Fault management-Congestion Control Algorithms Security Management.

Total Hours = 45

TEXT BOOKS

- 1. Stallings, "Data and Computer Communication", Maxwell and Macmillan, 1988.
- 2. Andrew Tannenbaum S., "Computer Networks", 3rd Edition, Prentice Hall of India, 1997.

- 1. Stallings, "Data and Computer Communication: Architectures, Protocols and Standards", IEEE Computer Society, 1987.
- 2. Kernel Texpian A.S., "Communication Network Management", Prentice Hall, 1992.
- 3. "Network Management", Standards, Uylers Black, McGraw Hill, 1995.
- 4. Commer and Stevens, "Internetworking with TCP/IP Vol.III: Client Server Programming and application", Prentice Hall, USA, 1994.