

#### (AICTE APPROVED AND NAAC ACCREDITED)

### Faculty of Engineering and Technology

DEPARTMENT OF COMPUER SCIENCE AND ENGINEERING 2017 REGULATION

### **Programme:**

B.E / B.Tech - ARTIFICIAL INTELLIGENCE & DATA SCIENCE Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS)
CURRICULUM AND SYLLABUS

(Semester I to VIII)

### **Credit Requirement for the Course Categories**

| Sl.<br>No.     | Category of Courses                                                                        | Credits to be<br>earned<br>Min. |
|----------------|--------------------------------------------------------------------------------------------|---------------------------------|
|                | A. Foundation Courses (FC)                                                                 | 65                              |
| 01             | i. Humanities and Sciences (English and Management Courses)                                | 12                              |
|                | ii. Basic Sciences (Maths, Physics and Chemistry Courses)                                  | 24                              |
|                | iii. Engineering Sciences (Basic Engineering Courses)                                      | 29                              |
| 02             | B. Core courses (CC) relevant to the chosen Programme of                                   | 49                              |
| <br>           | study.                                                                                     |                                 |
|                | C. Elective Courses (EC)                                                                   | 30                              |
| 03             | i. Programme Specific (Class Room or Online)                                               | 18                              |
| l              | ii. Open Elective (Class Room or Online)                                                   | 12                              |
|                | D. Project + Internship + Industry Electives (P + I + I)                                   | 15                              |
| 04             | i. Project                                                                                 | 9                               |
| U <del>4</del> | ii. Internship                                                                             | 3                               |
|                | iii. Industry Supported Courses                                                            | 3                               |
|                | *E. Employability Enhancement Courses + Co - Curricular Courses + Extra Curricular Courses | 9                               |
|                | i. Employability Enhancement Courses (Personality                                          | 3                               |
| 0.7            | Development Training, Participation in Seminars,                                           |                                 |
| 05             | Professional Practices, Summer Project, Case Study etc.)                                   |                                 |
|                | ii. Co - Curricular Courses (NCC, NSS, Sports, Games, Drills                               | 3                               |
|                | and Physical Exercises)                                                                    |                                 |
| l              | iii. Extra Curricular Courses (MOOCS / SWAYAM / NPTEL / )                                  | 3                               |
|                | **F. Mandatory Non Credit Courses                                                          |                                 |
| 06             | (Induction training, Environmental Sciences, Indian Constitution,                          | Non Credit                      |
| 00             | Essence of Indian Knowledge Tradition)                                                     |                                 |
|                | Minimum Credits to be earned                                                               | 159                             |

<sup>\*</sup> Mandatory, Credits would be mentioned in Mark sheets but not included for CGPA Calculations. For overall CGPA calculations, a student has to earn minimum 159 credits in Categories A to D.

<sup>\*\*</sup> Mandatory Non Credit Courses, shall not be considered for eligibility criterion prescribed for promotion, award of class, calculation of CGPA, However a pass in the above course is mandatory for the completion of the program and award of degree.

### **CURRICULUM**

#### **B.E / B.Tech. - ARTIFICIAL INTELLIGENCE & DATA SCIENCE**

### SEMESTER I TO VIII

## B.E/B.TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE SEMESTER I TO VIII

#### CATEGORY A – FOUNDATION COURSES - HSS, BS AND ES COURSES - CREDITS (65)

|           | (i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (12) |                                                                                                 |                        |              |         |          |         |   |                            |  |  |  |
|-----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|--------------|---------|----------|---------|---|----------------------------|--|--|--|
| SL.<br>NO | CODE                                                                         | COURSE                                                                                          | OFFERING<br>DEPT.      | CATEGOR<br>Y | L       | T        | P       | C | PREREQUISITE               |  |  |  |
| 1.        | 17EGHS01                                                                     | TECHNICAL ENGLISH                                                                               | ENGLISH                | FC (HSS)     | 3       | 0        | 0       | 3 | NIL                        |  |  |  |
| 2.        | 17EGHS02                                                                     | ENGLISH LANGUAGE<br>LAB                                                                         | ENGLISH                | FC (HSS)     | 0       | 0        | 4       | 2 | NIL                        |  |  |  |
| 3.        | 17EGHS81                                                                     | BUSINESS ENGLISH                                                                                | ENGLISH                | FC (HSS)     | 3       | 0        | 0       | 3 | NIL                        |  |  |  |
| 4.        | 17MBHS01                                                                     | ENGINEERING STARTUPS<br>AND ENTREPRENEURIAL<br>MANAGEMENT                                       | MANAGEMENT             | FC (HSS)     | 3       | 0        | 0       | 3 | NIL                        |  |  |  |
| 5.        | 17EGHS82                                                                     | PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT                                          | ENGLISH                | FC (HSS)     | 0       | 0        | 2       | 1 | NIL                        |  |  |  |
| 6.        | 17YMHS82                                                                     | YOGA AND MEDITATION                                                                             | PHYSICAL<br>EDUCATION  | FC (HSS)     | 0       | 0        | 4       | 2 | NIL                        |  |  |  |
|           | ı                                                                            | (iii) BASIC SCIENCES                                                                            |                        | ING COURSES  | ) - CRE | EDITS (2 | 24)     |   |                            |  |  |  |
| 1.        | 17MABS01                                                                     | ENGINEERING<br>MATHEMATICS                                                                      | MATHEMATICS            | FC (BS)      | 2       | 2        | 0       | 3 | NIL                        |  |  |  |
| 2.        | 17MABS09                                                                     | MATHEMATICS FOR COMPUTER ENGINEERS                                                              | MATHEMATICS            | FC (BS)      | 2       | 2        | 0       | 3 | NIL                        |  |  |  |
| 3.        | 17MABS14                                                                     | NUMERICAL METHODS AND NUMBER THEORY                                                             | MATHEMATICS            | FC (BS)      | 2       | 2        | 0       | 3 | NIL                        |  |  |  |
| 4.        | 17MABS15                                                                     | PROBABILITY AND QUEUING THEORY                                                                  | MATHEMATCS             | FC (BS)      | 2       | 2        | 0       | 3 | NIL                        |  |  |  |
| 5.        | 17MABS22                                                                     | MATHEMATICS FOR MACHINE LEARNING                                                                | MATHEMATCS             | FC (BS)      | 2       | 2        | 0       | 3 | ENGINEERING<br>MATHEMATICS |  |  |  |
| 6.        | 17MABS23                                                                     | MATHEMATICS FOR DATA SCIENCE                                                                    | MATHEMATCS             | FC (BS)      | 2       | 2        | 0       | 3 | ENGINEERING<br>MATHEMATICS |  |  |  |
| 7.        | 17MABS24                                                                     | STATISTICAL<br>FOUNDATION                                                                       | MATHEMATCS             | FC (BS)      | 2       | 2        | 0       | 3 | ENGINEERING<br>MATHEMATICS |  |  |  |
| 8.        | 17PCBS02                                                                     | PHYSICAL SCIENCES PART A. ENGINEERING PHYSICS PART B. ENGINEERING CHEMISTRY                     | PHYSICS &<br>CHEMISTRY | FC (BS)      | 4       | 0        | 0       | 4 | NIL                        |  |  |  |
| 9.        | 17PHBS05                                                                     | SMART MATERIALS                                                                                 | PHYSICS                | FC (BS)      | 3       | 0        | 0       | 3 | NIL                        |  |  |  |
| 10.       | 17PCBS81                                                                     | PHYSICAL SCIENCES LAB PART A. REAL AND VIRTUAL LAB IN PHYSICS PART B. ENGINEERING CHEMISTRY LAB | PHYSICS &<br>CHEMISTRY | FC (BS)      | 0       | 0        | 4       | 2 | NIL                        |  |  |  |
|           |                                                                              | (iii) ENGINEERING SCIEN                                                                         | ICES (BASIC ENGIN      | EERING COU   | RSES) - | CREDI    | TS (29) |   |                            |  |  |  |
| 1.        | 17EEES03                                                                     | BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING A. BASIC                                       | EEE & ECE              | FC(ES)       | 4       | 0        | 0       | 4 | NIL                        |  |  |  |
|           | <u> </u>                                                                     | _1                                                                                              | <u> </u>               | <u> </u>     | l       | <u> </u> | l       | l | L                          |  |  |  |

|     |            | ELECTRICAL                          |              |         |   |   |       |   |      |
|-----|------------|-------------------------------------|--------------|---------|---|---|-------|---|------|
|     |            | ENGINEERING                         |              |         |   |   |       |   |      |
|     |            | B. BASIC                            |              |         |   |   |       |   |      |
|     |            | ELECTRONICS                         |              |         |   |   |       |   |      |
|     |            | ENGINEERING                         |              |         |   |   |       |   |      |
|     |            | BASICS OF CIVIL AND                 |              |         |   |   |       |   |      |
| 2.  | 17CMES02   | MECHANICAL                          | CIVIL & MECH | FC(ES)  | 4 | 0 | 0     | 4 | NIL  |
|     |            | ENGINEERING                         |              |         |   |   |       |   |      |
| 3.  |            | ESSENTIALS OF                       | COF          |         | 2 |   |       | 2 |      |
| 3.  | 17CSES01   | COMPUTING                           | CSE          | FC(ES)  | 3 | 0 | 0     | 3 | NIL  |
| 4.  | 17CCEC05   | PROGRAMMING IN                      | CSE          | EC(EC)  | 3 | 0 | 0     | 3 | NIII |
|     | 17CSES05   | PYTHON                              | CSL          | FC(ES)  |   |   |       |   | NIL  |
| 5.  | 17CSES83   | PROGRAMMING IN                      | CSE          | FC(ES)  | 0 | 0 | 4     | 2 | NIL  |
|     | 1/CSE303   | PYTHON LAB                          | COL          | rc(ES)  |   |   | ·<br> |   | MIL  |
|     |            | ENGINEERING SKILLS                  |              |         |   |   | _     |   |      |
|     |            | PRACTICES LAB                       |              |         |   |   |       |   |      |
| 6.  | 17EEES82   | A. BASIC ELECTRICAL                 | EEE & ECE    | FC(ES)  | 0 | 0 | 4     | 2 | NIL  |
|     |            | ENGINEERING  P. PASIC ELECTRONICS   |              | ` ′     |   |   |       |   |      |
|     |            | B. BASIC ELECTRONICS<br>ENGINEERING |              |         |   |   |       |   |      |
|     |            | ENGINEERING SKILLS                  |              |         |   |   |       |   |      |
|     |            | PRACTICE LAB                        |              |         |   |   |       |   |      |
| 7.  |            | A.BASIC CIVIL                       |              |         |   |   |       |   |      |
| /.  | 17CMES81   | ENGINEERING                         | CIVIL & MECH | FC(ES)  | 0 | 0 | 4     | 2 | NIL  |
|     |            | B.BASIC MECHANICAL                  |              |         |   |   |       |   |      |
|     |            | ENGINEERING                         |              |         |   |   |       |   |      |
|     |            |                                     |              |         |   |   | _     |   |      |
| 8.  | 17MEES84   | ENGINEERING GRAPHICS                | MECH         | FC(ES)  | 1 | 0 | 4     | 3 | NIL  |
|     | 1/1VICE504 | (THEORY + PRACTICE)                 |              | rc(ES)  | 1 |   |       |   | MIL  |
|     |            |                                     |              |         |   |   |       |   |      |
|     |            |                                     |              |         |   |   |       |   |      |
| 9.  | 1700E007   | PROGRAMMING IN C                    | CSE          | EC/EC)  | 3 | 0 | 0     | 3 | NIL  |
|     | 17CSES06   |                                     | CDE          | FC(ES)  | ] |   |       | , | NIL  |
|     |            |                                     |              |         |   |   |       |   |      |
|     |            |                                     |              |         |   |   |       |   |      |
| 10. | 17CSES85   | PROGRAMMING IN C LAB                | CSE          | FC(ES)  | 0 | 0 | 4     | 2 | NIL  |
|     | 1.13200    |                                     |              | I C(EG) |   |   |       |   |      |
|     |            |                                     |              |         |   |   |       |   |      |

# B.E/ B.TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE SEMESTER I TO VIII CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (49)

|        |          | 00112 00011828 112          |                   |          |   |   |   | ( | /            |
|--------|----------|-----------------------------|-------------------|----------|---|---|---|---|--------------|
| SL. NO | CODE     | COURSE                      | OFFERING<br>DEPT. | CATEGORY | L | Т | P | С | PREREQUISITE |
| 1.     | 17CSCC01 | DATA STRUCTURES             | CSE               | CC       | 3 | 0 | 0 | 3 | NIL          |
| 2.     | 17CSCC20 | DATA STRUCTURES<br>LAB      | CSE               | CC       | 0 | 0 | 4 | 2 | NIL          |
| 3.     | 17CSCC04 | COMPUTER<br>ARCHITECTURE    | CSE               | CC       | 3 | 0 | 0 | 3 | NIL          |
| 4.     | 17CSCC02 | OBJECT ORIENTED PROGRAMMING | CSE               | CC       | 3 | 0 | 0 | 3 | NIL          |

| 5.  | 17CSCC21 | OBJECT ORIENTED<br>PROGRAMMING LAB                                    | CSE | CC | 0 | 0 | 4 | 2 | NIL                              |
|-----|----------|-----------------------------------------------------------------------|-----|----|---|---|---|---|----------------------------------|
| 6.  | 17CSCC06 | DESIGN AND<br>ANALYSIS OF<br>ALGORITHM                                | CSE | CC | 3 | 0 | 0 | 3 | DATA<br>STRUCTURES               |
| 7.  | 17CSCC23 | ALGORITHM LAB                                                         | CSE | CC | 0 | 0 | 4 | 2 | DATA<br>STRUCTURES               |
| 8.  | 17AICC01 | PROBLEM SOLVING<br>USING PYTHON<br>PROGRAMMING<br>(Theory + Practice) | CSE | CC | 3 | 0 | 2 | 4 | NIL                              |
| 9.  | 17CSCC03 | DATABASE<br>MANAGEMENT<br>SYSTEM                                      | CSE | CC | 3 | 0 | 0 | 3 | NIL                              |
| 10. | 17CSCC22 | DATABASE<br>MANAGEMENT<br>SYSTEM LAB                                  | CSE | CC | 0 | 0 | 4 | 2 | NIL                              |
| 11. | 17CSCC09 | JAVA PROGRAMING                                                       | CSE | CC | 3 | 0 | 0 | 3 | NIL                              |
| 12. | 17CSCC26 | JAVA PROGRAMING<br>LAB                                                | CSE | CC | 0 | 0 | 4 | 2 | NIL                              |
| 13. | 17CSCC07 | OPERATING SYSTEM                                                      | CSE | CC | 3 | 0 | 0 | 3 | NIL                              |
| 14. | 17CSCC24 | OPERATING SYSTEM<br>LAB                                               | CSE | CC | 0 | 0 | 4 | 2 | NIL                              |
| 15. | 17CSCC08 | COMPUTER<br>NETWORKS                                                  | CSE | CC | 3 | 0 | 0 | 3 | NIL                              |
| 16. | 17CSCC25 | COMPUTER<br>NETWORKS LAB                                              | CSE | CC | 0 | 0 | 4 | 2 | NIL                              |
| 17. | 17CSCC18 | RICH INTERNET<br>APPLICATION                                          | CSE | CC | 3 | 0 | 0 | 3 | JAVA<br>PROGRAMMING              |
| 18. | 17CSCC31 | RICH INTERNET<br>APPLICATION<br>DEVELOPMENT LAB                       | CSE | CC | 0 | 0 | 4 | 2 | JAVA<br>PROGRAMMING<br>LAB       |
| 19. | 17CSCC16 | CLOUD COMPUTING                                                       | CSE | CC | 3 | 0 | 0 | 3 | COMPUTER<br>NETWORKS             |
| 20. | 17AICC02 | INFORMATION<br>SECURITY                                               | CSE | CC | 3 | 0 | 0 | 3 | COMPUTER<br>NETWORKS             |
| 21. | 17CSCC15 | C# AND .NET<br>APPLICATION<br>DEVELOPMENT                             | CSE | CC | 3 | 0 | 0 | 3 | JAVA<br>PROGRAMMING              |
| 22. | 17CSCC30 | C# AND .NET<br>APPLICATION<br>DEVELOPMENT LAB                         | CSE | CC | 0 | 0 | 4 | 2 | JAVA<br>PROGRAMMING              |
| 23. | 17AICC03 | UNIX INTERNALS<br>(Theory + Practice)                                 | CSE | CC | 3 | 0 | 2 | 4 | NIL                              |
| 24. | 17CSCC14 | ARTIFICIAL<br>INTELLIGENCE                                            | CSE | CC | 3 | 0 | 0 | 3 | NIL                              |
| 25. | 17AICC04 | ARTIFICIAL<br>INTELLIGENCE LAB                                        | CSE | CC | 0 | 0 | 4 | 2 | NIL                              |
| 26. | 17CSEC27 | SOFT COMPUTING                                                        | CSE | CC | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |
| 27. | 17AICC05 | MACHINE LEARNING                                                      | CSE | CC | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |
| 28. | 17AICC06 | MACHINE LEARNING<br>LAB                                               | CSE | CC | 0 | 0 | 4 | 2 | ARTIFICIAL<br>INTELLIGENCE       |
| 29. | 17AICC07 | DEEP LEARNING                                                         | CSE | CC | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |
| 30. | 17AICC08 | DEEP LEARNING LAB                                                     | CSE | CC | 0 | 0 | 4 | 2 | ARTIFICIAL<br>INTELLIGENCE       |
| 31. | 17CSCC13 | DATA WAREHOUSING<br>AND DATA MINING                                   | CSE | CC | 3 | 0 | 0 | 3 | DATABASE<br>MANAGEMENT<br>SYSTEM |
| 32. | 17AICC09 | FOUNDATION OF<br>DATA SCIENCE                                         | CSE | CC | 3 | 0 | 0 | 3 | NIL                              |

| 33. | 17AICC10 | BIG DATA<br>ANALYTICS                                      | CSE | CC | 3 | 0 | 0 | 3 | DATABASE<br>MANAGEMENT<br>SYSTEM    |
|-----|----------|------------------------------------------------------------|-----|----|---|---|---|---|-------------------------------------|
| 34. | 17AICC11 | BIG DATA<br>ANALYTICS LAB                                  | CSE | CC | 0 | 0 | 4 | 2 | DATA WAREHOUSING AND DATA MINING    |
| 35. | 17AICC12 | DATA ANALYTICS<br>USING PYTHON                             | CSE | CC | 3 | 0 | 0 | 3 | PROGRAMMING<br>IN PYTHON            |
| 36. | 17CSCC05 | SOFTWARE<br>ENGINEERING                                    | CSE | CC | 3 | 0 | 0 | 3 | NIL                                 |
| 37. | 17CSCC10 | OBJECT ORIENTED<br>ANALYSIS AND<br>DESIGN                  | CSE | CC | 3 | 0 | 0 | 3 | OBJECT<br>ORIENTED<br>PROGRAMMING   |
| 38. | 17CSCC27 | CASE TOOLS LAB                                             | CSE | CC | 0 | 0 | 4 | 2 | OBJECT ORIENTED ANALYSIS AND DESIGN |
| 39. | 17CSCC17 | CYBER SECURITY                                             | CSE | CC | 3 | 0 | 0 | 3 | NIL                                 |
| 40. | 17CSCC32 | DESIGN PATTERNS                                            | CSE | CC | 3 | 0 | 0 | 3 | NIL                                 |
| 41. | 17AICC13 | DATA SCIENCE USING<br>R PROGRAMMING<br>(Theory + Practice) | CSE | CC | 3 | 0 | 2 | 4 | DATABASE<br>MANAGEMENT<br>SYSTEM    |

## B.E/ B.TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE SEMESTER I TO VIII

#### CATEGORY C – ELECTIVE COURSES - CREDITS (30)

#### (i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (18)

| (i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (18) |          |                                  |                   |              |   |   |   |   |                                  |  |  |
|--------------------------------------------------------------|----------|----------------------------------|-------------------|--------------|---|---|---|---|----------------------------------|--|--|
| SL. NO                                                       | CODE     | COURSE                           | OFFERING<br>DEPT. | CATEGOR<br>Y | L | T | P | С | PREREQUISITE                     |  |  |
| 1.                                                           | 17AIEC01 | NEURAL NETWORKS                  | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |  |  |
| 2.                                                           | 17CSEC13 | HUMAN COMPUTER<br>INTERACTION    | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |  |  |
| 3.                                                           | 17AIEC02 | NATURAL LANGUAGE<br>PROCESSING   | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |  |  |
| 4.                                                           | 17AIEC03 | REINFORCEMENT<br>LEARNING        | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | ARTIFICIAL<br>INTELLIGENCE       |  |  |
| 5.                                                           | 17AIEC04 | BIGDATA SECURITY                 | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | BIG DATA<br>ANALYTICS            |  |  |
| 6.                                                           | 17AIEC05 | DATA VISUALIZATION<br>TECHNIQUES | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | DATA WAREHOUSING AND DATA MINING |  |  |
| 7.                                                           | 17CSEC05 | CLOUD COMPUTING<br>SECURITY      | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | CLOUD<br>COMPUTING               |  |  |
| 8.                                                           | 17CSEC07 | DATA CENTRE<br>VIRTUALIZATION    | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | DATABASE<br>MANAGEMENT<br>SYSTEM |  |  |
| 9.                                                           | 17CSEC02 | AGILE METHODOLOGIES              | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | SOFTWARE<br>ENGINEERING          |  |  |
| 10.                                                          | 17CSEC04 | BIO METRICS                      | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | INFORMATION<br>SECURITY          |  |  |
| 11.                                                          | 17CSEC24 | OPEN SOURCE SYSTEMS              | CSE               | EC(PS)       | 3 | 0 | 0 | 3 | NIL                              |  |  |

|     | 1        |                                               |     |        |   |   | 1 |   | T                                      |
|-----|----------|-----------------------------------------------|-----|--------|---|---|---|---|----------------------------------------|
| 12. | 17CSEC17 | KNOWLEDGE BASED<br>DECISION SUPPORT<br>SYSTEM | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 13. | 17CSEC14 | INFORMATION<br>RETRIEVAL<br>TECHNIQUES        | CSE | EC(PS) | 3 | 0 | 0 | 3 | DATA MINING<br>AND DATA<br>WAREHOUSING |
| 14. | 17CSEC16 | IT INFRASTRUCTURE<br>MANAGEMENT               | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 15. | 17CSEC33 | VIRTUALIZATION<br>TECHNIQUES                  | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 16. | 17AIEC06 | INTRODUCTION TO DRONES                        | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 17. | 17AIEC07 | BIO SYSTEMS WITH AI                           | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 18. | 17AIEC08 | INTRODUCTION TO<br>DIGITAL SYSTEM             | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 19. | 17AIEC09 | EMBEDDED<br>PROGRAMMING                       | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 20. | 17AIEC10 | PROBLEM IDENTIFICATION AND DESIGN THINKING    | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 21. | 17AIEC11 | INTRODUCTION TO ROBOTICS                      | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 22. | 17AIEC12 | DIGITAL IMAGE<br>PROCESSING                   | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 23. | 17AIEC13 | THEORY OF<br>COMPUTATION                      | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 24. | 17AIEC14 | GENETIC ALGORITHMS<br>&FUZZY LOGIC<br>SYSTEMS | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 25. | 17AIEC15 | OPTIMIZATION IN<br>MACHINE LEARNING           | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 26. | 17AIEC16 | PATTERN RECOGNITION AND MACHINE LEARNING      | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 27. | 17AIEC17 | KERNEL METHODS FOR<br>MACHINE LEARNING        | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 28. | 17CSEC06 | CRYPTOGRAPHY AND<br>NETWORK SECURITY          | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 29. | 17CSEC10 | GAME THEORY                                   | CSE | EC(PS) | 3 | 0 | 0 | 3 | ENGINEERING<br>MATHEMATICS             |
| 30. | 17AIEC18 | COMPUTER VISION                               | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 31. | 17CSEC09 | ETHICAL HACKING                               | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 32. | 17CSEC11 | GREEN COMPUTING                               | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |
| 33. | 17CSEC15 | INTERNET SECURITY & COMPUTER FORENSICS        | CSE | EC(PS) | 3 | 0 | 0 | 3 | CYBER<br>SECURITY                      |
| 34. | 17CSEC19 | MOBILE COMPUTING                              | CSE | EC(PS) | 3 | 0 | 0 | 3 | COMPUTER<br>NETWORKS                   |
| 35. | 17CSEC21 | NANO TECHNOLOGY                               | CSE | EC(PS) | 3 | 0 | 0 | 3 | PHYSICAL<br>SCIENCES                   |
| 36. | 17CSEC32 | VIRTUAL REALITY                               | CSE | EC(PS) | 3 | 0 | 0 | 3 | NIL                                    |

## B.E/B.TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE SEMESTER I TO VIII

#### (ii) OPEN ELECTIVE CREDITS(CLASS ROOM OR ONLINE) - (12)

|        |          | OPEN ELECTIVI                                                             | `                 |          |   |   |   | <u> </u> |              |
|--------|----------|---------------------------------------------------------------------------|-------------------|----------|---|---|---|----------|--------------|
| SL. NO | CODE     | COURSE                                                                    | OFFERING<br>DEPT. | CATEGORY | L | T | P | С        | PREREQUISITE |
| 1.     | 17MBHS04 | TOTAL QUALITY<br>MANAGEMENT                                               | MANAGEMENT        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 2.     | 17MBHS03 | ENGINEERING<br>MANAGEMENT AND<br>ETHICS                                   | MANAGEMENT        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 3.     | 17MBHS05 | MARKETING<br>TECHNIQUES FOR<br>ENGINEERS                                  | MANAGEMENT        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 4.     | 17CVEC07 | DISASTER<br>MITIGATION AND<br>MANAGEMENT                                  | CIVIL             | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 5.     | 17EEEC22 | SCADA                                                                     | EEE               | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 6.     | 17EEEC03 | COMPUTER AIDED<br>DESIGN OF<br>ELECTRICAL<br>APPARATUS                    | EEE               | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 7.     | 17EEEC21 | NON<br>CONVENTIONAL<br>ENERGY SOURCES                                     | EEE               | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 8.     | 17MEPI04 | NON DESTRUCTIVE<br>TESTING                                                | MECHANICAL        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 9.     | 17MESE17 | MODERN<br>MANUFACTURING<br>METHODS                                        | MECHANICAL        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 10.    | 17ECCC07 | MICROCONTROLLE<br>RS & ITS<br>APPLICATIONS                                | ECE               | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 11.    | 17MBHS02 | FINANCE AND<br>ACCOUNTING FOR<br>ENGINEERS                                | MANAGEMENT        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 12.    | 17MBHS09 | INTELLECTUAL<br>PROPERTY RIGHTS<br>AND ALTERNATE<br>DISPUTE<br>RESOLUTION | MANAGEMENT        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 13.    | 17ATEC14 | COMPUTER<br>CONTROLLED<br>VEHICLE<br>SYSTEMS                              | AUTOMOBILE        | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 14.    | 17CVSE55 | REMOTE SENSING AND GIS FOR ENVIRONMENTAL APPLICATION                      | CIVIL             | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 15.    | 17CVEC03 | GEOGRAPHICAL<br>INFORMATION<br>SYSTEM                                     | CIVIL             | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 16.    | 17CVSE02 | ENTERPRISE WIDE<br>INFORMATION<br>SYSTEMS                                 | CIVIL             | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 17.    | 17CVSE47 | ICT BASED CITY AND<br>INFRASTRUCTURE<br>PLANNING                          | CIVIL             | EC(OE)   | 3 | 0 | 0 | 3        | Nil          |
| 18.    | 17EESE03 | ARTIFICIAL<br>INTELLIGENCE<br>APPLICATION<br>TO POWER SYSTEMS             | EEE               | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |
| 19.    | 17BMCC03 | BIOSENSORS AND<br>TRANSDUCERS                                             | BME               | EC(OE)   | 3 | 0 | 0 | 3        | NIL          |

|     |          |                                                            |       |        |   |   | 1 |   | 1   |
|-----|----------|------------------------------------------------------------|-------|--------|---|---|---|---|-----|
| 20. | 17BMEC06 | APPLIED NEURAL NETWORKS AND FUZZY LOGICSYSTEMS IN MEDICINE | BME   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 21. | 17BMSE17 | BRAIN COMPUTER<br>INTERFACE                                | BME   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 22. | 17BMSE18 | ROBOTICS & AUTOMATION IN MEDICINE                          | BME   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 23. | 17ECCC04 | SIGNALS AND<br>SYSTEMS                                     | ECE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 24. | 17ECCC01 | SEMICONDUCTOR<br>DEVICES                                   | ECE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 25. | 17ECCC15 | ANALOG & DIGITAL COMMUNICATION                             | ECE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 26. | 17EEEC20 | MATHEMATICAL<br>MODELLING AND<br>SIMULATION                | EEE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 27. | 17BMSE16 | WEARABLE<br>TECHNOLOGY                                     | BME   | BM(OE) | 3 | 0 | 0 | 3 | NIL |
| 28. | 17ECSE21 | WIRELESS SENSOR<br>NETWORKS AND<br>IOT                     | ECE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 29. | 17ECSE22 | WIRELESS<br>TECHNOLOGIES<br>FOR IOT                        | ECE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 30. | 17ECSE07 | SOFTWARE<br>TECHNOLOGY FOR<br>EMBEDDED<br>SYSTEMS          | ECE   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 31. | 17MECC12 | COMPUTER<br>INTEGRATED<br>MANUFACTURING                    | MECH  | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 32. | 17BTSE05 | INDUSTRIAL WASTE<br>MANAGEMENT                             | ВТЕ   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 33. | 17BMEC04 | MEMS AND ITS<br>BIOMEDICAL<br>APPLICATIONS                 | BME   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 34. | 17CVEC14 | AIR POLLUTION<br>MANAGEMENT                                | CIVIL | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 35. | 17BTPI05 | INDUSTRIAL<br>BIOSAFETY                                    | ВТЕ   | EC(OE) | 3 | 0 | 0 | 3 | NIL |
| 36. | 17BTEC29 | GREEN BUILDING AND SUSTAINABLE ENVIRONMENT                 | ВТЕ   | EC(OE) | 3 | 0 | 0 | 3 | NIL |

## B.E/ B.TECH. ARTIFICIAL INTELLIGENC & DATA SCIENCE SEMESTER I TO VIII

#### $CATEGORY\ D-PROJECT+INTERNSHIP+INDUSTRY\ ELECTIVES\ (P+I+I)-CREDITS\ (15)$

#### (i) PROJECT - CREDITS (9)

#### (i) INTERNSHIP + INDUSTRY ELECTIVES - CREDITS (6)

| SL.<br>NO | CODE     | COURSE                                          | OFFERING<br>DEPT. | CATEGORY | L | Т | P  | C | PREREQUISITE |
|-----------|----------|-------------------------------------------------|-------------------|----------|---|---|----|---|--------------|
| 1.        | 17CSPI01 | PROJECT WORK                                    | CSE               | PI       | 0 | 0 | 18 | 9 | NIL          |
| 2.        | 17CSPI02 | INTERNSHIP                                      | CSE               | PI       | 0 | 0 | 0  | 3 | NIL          |
| 3.        | 17CSPI03 | BUSINESS<br>INTELLIGENCE AND ITS<br>APPLICATION | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 4.        | 17CSPI04 | BUILDING ENTERPRISE<br>APPLICATIONS             | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 5.        | 17CSPI05 | INTERNET AND WEB TECHNOLOGY                     | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 6.        | 17CSPI06 | LEARNING IT<br>ESSENTIALS BY DOING              | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 7.        | 17CSPI07 | ESSENTIALS OF<br>INFORMATION<br>TECHNOLOGY      | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 8.        | 17CSPI08 | INTRODUCTION TO MAIN FRAMES                     | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 9.        | 17CSPI09 | MOBILE APPLICATION<br>DEVELOPMENT               | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |
| 10.       | 17CSPI10 | INTERNET OF THINGS                              | CSE               | PI       | 3 | 0 | 0  | 3 | NIL          |

#### $B.E \, / \, B.TECH. - ARTIFICIAL \, INTELLIGENCE \, \& \, DATA \, SCIENCE \, - \, \, SEMESTER \, I \, TO \, \, VIII$

## CATEGORY E – EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)\*\* - CREDITS (9) (\*\* - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED

### (\*\* - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

|           | FOR CGPA CALCULATIONS.) |                                                       |                         |             |        |                    |                       |     |              |  |  |  |
|-----------|-------------------------|-------------------------------------------------------|-------------------------|-------------|--------|--------------------|-----------------------|-----|--------------|--|--|--|
|           |                         | (i) EMPLOYABIL                                        | ITY ENHANCE             | MENT COUR   | SES (E | EC) (3             | )                     |     |              |  |  |  |
| SL.<br>NO | CODE                    | COURSE                                                | OFFERING<br>DEPT.       | CATEGORY    | L      | Т                  | P                     | С   | PREREQUISITE |  |  |  |
| 1.        | 17APEE01                | PERSONALITY<br>SKILLS<br>DEVELOPMENT - I              | MATHS                   | EE          | 2 WEEI | KS OF TRA          | AINING                | 1   | NIL          |  |  |  |
| 2.        | 17APEE02                | PERSONALITY<br>SKILLS<br>DEVELOPMENT - II             | ENGLISH &<br>MANAGEMENT | EE          | 2 WEEI | KS OF TRA          | AINING                | 1   | NIL          |  |  |  |
| 3.        | 17CSEE01                | APPLICATION SOFTWARE AND SYSTEM SOFTWARE INSTALLATION | CSE                     | EE          | 3      | 0                  | 0                     | 3   | NIL          |  |  |  |
| 4.        | 17CSEE02                | WEB DESIGNING                                         | CSE                     | EE          | 3      | 0                  | 0                     | 3   | NIL          |  |  |  |
| 5.        | 17CSEE03                | DIGITAL<br>MARKETING                                  | CSE                     | EE          | 3      | 0                  | 0                     | 3   | NIL          |  |  |  |
| 6.        | 17CSEE04                | MOBILE<br>APPLICATION<br>DEVELOPER                    | CSE                     | EE          | 3      | 0                  | 0                     | 3   | NIL          |  |  |  |
|           |                         | (ii) CO                                               | - CURRICULAI            | R COURSES   | (CCC)  | (3)                |                       |     |              |  |  |  |
| 1.        | 17APEE03                | NCC                                                   | NCC                     | EE          |        | KS OF<br>NING IN I | NCC                   | 1   | NIL          |  |  |  |
| 2.        | 17APEE04                | NSS                                                   | NSS                     | EE          |        | KS OF S<br>S CAMP  | OCIAL                 | 1   | NIL          |  |  |  |
| 3.        | 17APEE05                | SPORTS AND GAMES (INTER – UNIVERSITY LEVEL)           | PHYSICAL<br>EDUCATION   | EE          |        |                    |                       | 1   | NIL          |  |  |  |
| 4.        | 17APEE06                | SPORTS AND GAMES (INTRA- UNIVERSITY LEVEL)            | PHYSICAL<br>EDUCATION   | EE          |        |                    |                       | 2   | NIL          |  |  |  |
| 5.        | 17APEE07                | SPORTS AND<br>GAMES (STATE AND<br>NATIONAL LEVELS)    | PHYSICAL<br>EDUCATION   | EE          |        |                    |                       | 2   | NIL          |  |  |  |
|           | (iii) EX'               | TRA CURRICULAR                                        | COURSES (ECC            | C) - ( MOOC | C/SW   | AYAN               | <b>M</b> / <b>N</b> ] | PTE | L)(3)        |  |  |  |
| 1.        | 17CSEE05                | EXTRA CURRICULAR COURSES – I                          |                         | EE          |        |                    |                       |     | NIL          |  |  |  |
| 2.        | 17CSEE06                | EXTRA<br>CURRICULAR<br>COURSES – II                   |                         | EE          |        |                    |                       |     | NIL          |  |  |  |
| 3.        | 17CSEE07                | EXTRA<br>CURRICULAR<br>COURSES – III                  |                         | EE          |        |                    |                       |     | NIL          |  |  |  |
| 4.        | 17CSEE08                | EXTRA<br>CURRICULAR<br>COURSES -IV                    |                         | EE          |        |                    |                       |     | NIL          |  |  |  |
| 5.        | 17CSEE09                | EXTRA<br>CURRICULAR<br>COURSES –V                     |                         | EE          |        |                    |                       |     | NIL          |  |  |  |

EE

NIL

EXTRA

CURRICULAR

COURSES-VI

17CSEE10

6.

## B.E/ B.TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE SEMESTER I TO VIII

#### CATEGORY F - MANDATORY COURSES - Non Credit

|        |          | 0                                                                    |                   |          |   |   |   |   |              |
|--------|----------|----------------------------------------------------------------------|-------------------|----------|---|---|---|---|--------------|
| SL. NO | CODE     | COURSE                                                               | OFFERING<br>DEPT. | CATEGORY | L | Т | P | С | PREREQUISITE |
| 1.     | 17CHBS01 | ENVIROMENTAL<br>SCIENCES                                             | CHEMISTRY         | MC       | - | - | - | 0 | NIL          |
| 2.     | 17MBHS11 | ESSENCE OF INDIAN<br>KNOWLEDGE<br>TRADITION / INDIAN<br>CONSTITUTION | MBA               | MC       | - | - | _ | 0 | NIL          |

| B.E/B.TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE SEMESTER I TO VIII INDUCTION PROGRAM |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| INDUCTION PROGRAM<br>(MANDATORY)                                                        | 3 Weeks Duration                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Induction program for students to be offered right at the start of the first year.      | <ul> <li>Physical activity</li> <li>Creative Arts</li> <li>Universal Human Values</li> <li>Literary</li> <li>Proficiency Modules</li> <li>Lectures by Eminent People</li> <li>Visits to local Areas</li> <li>Familiarization to Dept./Branch &amp; Innovations</li> </ul> |  |  |  |  |  |  |  |

| PREAN<br>Technic                                   |                                                                                |                                      |                                     |                | TEC                      | ategor             | $\mathbf{y} \mid \mathbf{L}$ | T                 | P                 | Credit               |         |                  |                   |         |                                                    |
|----------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------|--------------------------|--------------------|------------------------------|-------------------|-------------------|----------------------|---------|------------------|-------------------|---------|----------------------------------------------------|
|                                                    |                                                                                |                                      |                                     |                |                          |                    |                              |                   |                   | ]                    | HSS     | 3                | 0                 | 0       | 3                                                  |
| develop<br>professi<br>Speakin<br>employa<br>PRERE | cal Engoing co ional cong, Rea able in EQUIS                                   | glish is mmun ontext. ding a the glo | ication The or nd Write balised NIL | skills intcome | in Engine of the inpeten | lish, es<br>course | sential<br>is to l           | for un<br>elp the | derstan<br>studer | iding an<br>its acqu | d expro | essing<br>langua | the id<br>ge skil | eas of  | t aims at<br>different<br>Listening,<br>betent and |
|                                                    | COURSE OBJECTIVES                                                              |                                      |                                     |                |                          |                    |                              |                   |                   |                      |         |                  |                   |         |                                                    |
| 1.                                                 | To en                                                                          | able sti                             | udents t                            | o deve         | lop LS                   | RW ski             | lls in E                     | inglish.          | (Lister           | ning, Sp             | eaking, | Readir           | ng, and           | l Writi | ng.)                                               |
| 2.                                                 | To ma                                                                          | ike the                              | m to be                             | come e         | ffectiv                  | e comn             | nunicat                      | ors               |                   |                      |         |                  |                   |         |                                                    |
| 3.                                                 | To en                                                                          | sure th                              | at learn                            | ers use        | Electro                  | onic me            | edia ma                      | terials           | for dev           | eloping              | langua  | ge               |                   |         |                                                    |
| 4.                                                 | To aic                                                                         | l the st                             | udents                              | with en        | nployal                  | oility sk          | cills.                       |                   |                   |                      |         |                  |                   |         |                                                    |
| 5.                                                 | To mo                                                                          | otivate                              | student                             | s conti        | nuously                  | to use             | Englis                       | sh langı          | ıage              |                      |         |                  |                   |         |                                                    |
| 6.                                                 | To develop the students communication skills in formal and informal situations |                                      |                                     |                |                          |                    |                              |                   |                   |                      |         |                  |                   |         |                                                    |
| COURS                                              | SE OU                                                                          | TCON                                 | MES                                 |                |                          |                    |                              |                   |                   |                      |         |                  |                   |         |                                                    |
| On the                                             | succes                                                                         | sful co                              | mpletio                             | n of the       | e cours                  | e, stude           | ents wi                      | ll be ab          | le to             |                      |         |                  |                   |         |                                                    |
| CO1.Li                                             | isten, r                                                                       | ememb                                | er and                              | respon         | d to oth                 | ers in             | differer                     | ntscena           | rio               |                      |         | Reme             | mber              |         |                                                    |
| CO2.U                                              |                                                                                |                                      | d speak                             | fluentl        | y and c                  | orrectly           | y with                       | correct           | pronun            | ciation              | in      | Under            | stand             |         |                                                    |
| Differer                                           |                                                                                |                                      |                                     |                |                          |                    |                              |                   |                   |                      |         | Onder            | Staria            |         |                                                    |
| <b>CO3.</b> To                                     |                                                                                |                                      |                                     |                |                          |                    |                              |                   |                   |                      |         | Apply            |                   |         |                                                    |
| <b>CO4.</b> To                                     |                                                                                |                                      |                                     | _              |                          |                    |                              |                   |                   |                      |         | Apply            | ,                 |         |                                                    |
| CO5.To                                             |                                                                                |                                      | •                                   | good co        | mmun                     | icators            | at the v                     | work pl           | ace and           | l to be              |         | Apply            | ,                 |         |                                                    |
| CO6.To                                             | s, tech                                                                        | nical a                              | nd scie                             | ntific fi      | eld                      |                    |                              |                   |                   |                      |         | Analy            |                   | 1570    |                                                    |
| MAPPI                                              |                                                                                |                                      |                                     |                |                          |                    |                              |                   |                   |                      |         |                  |                   |         | . 1                                                |
| COS                                                |                                                                                |                                      | PO3                                 |                |                          |                    |                              |                   |                   |                      |         |                  |                   |         |                                                    |
| CO1                                                | <u>M</u>                                                                       | M<br>M                               | -                                   | L              | M<br>M                   | M<br>M             | S                            | -                 | L<br>L            | S                    | L<br>S  | S<br>S           | S<br>S            | S       | M                                                  |
| CO2                                                |                                                                                | L                                    | L                                   | M              | -<br>1 <b>VI</b>         | - I <b>VI</b>      | -                            | L                 | L                 | M                    | S       | S                | <u>S</u>          | S       | M                                                  |
| CO4                                                | -                                                                              | M                                    | -                                   | -              | -                        | M                  | M                            | -                 | L                 | S                    | -       | S                | $\frac{S}{S}$     | -       | -                                                  |
| CO5                                                | M                                                                              | M                                    | -                                   | M              | M                        | M                  | S                            | M                 | L                 | S                    | M       | S                | S                 | S       | M                                                  |
| CO6                                                | M                                                                              | -                                    | M                                   | -              | -                        | M                  | -                            | -                 | -                 | -                    | S       | M                | S                 | S       | M                                                  |

#### **LISTENING**

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

#### **SPEAKING**

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones - Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.**REPORTING WRITING** Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

#### READING

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

#### **WRITING**

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

#### **TEXT BOOKS:**

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

#### **REFERENCES:**

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford UniversityPress
- 3. Grammar Builder- I, II, III, and Cambridge UniversityPress.
- **4.** Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications.,2002.

| S.No. | Name of the Faculty | Designation         | Department      | Email ID                |
|-------|---------------------|---------------------|-----------------|-------------------------|
| 1.    | Dr.P.Saradha        | Associate Professor | English/ VMKVEC | saradhap@vmkvec.edu.in  |
| 2.    | Mr.S.K.Prem Kishor  | Assistant Professor | English /AVIT   | prem.english@avit.ac.in |

| 17EG     | HS02                                                            |           | E        | NGLI     | SH LA    | NGU     | AGE I    | LAB     |          | Ca       | ategory   | L         | T       | P        | Cr       | edit    |
|----------|-----------------------------------------------------------------|-----------|----------|----------|----------|---------|----------|---------|----------|----------|-----------|-----------|---------|----------|----------|---------|
|          |                                                                 |           |          |          |          |         |          |         |          |          | HSS       | 0         | 0       | 4        | 2        | 2       |
|          | MBLE                                                            |           |          |          |          |         |          | _       |          |          | _         |           |         |          |          |         |
| _        | _                                                               |           |          |          |          |         | _        | _       | -        |          | ts. It ac |           | -       |          |          | arning, |
|          |                                                                 |           |          | anguag   | e skills | throug  | gh inte  | ractive | lesson   | s and co | mmunica   | itive mo  | de of   | teac     | ching.   |         |
| PREK     | EQUI                                                            | SITE:     | NIL      |          |          |         |          |         |          |          |           |           |         |          |          |         |
| COUF     | RSE OI                                                          | BJECT     | TIVES    |          |          |         |          |         |          |          |           |           |         |          |          |         |
| 1        | To un                                                           | derstar   | nd com   | munica   | ation n  | uisance | s in th  | e corpo | orate se | ctor.    |           |           |         |          |          |         |
| 2        | Toun                                                            | derstar   | nd the r | ole of   | mother   | tongu   | e in sec | rond la | ทธบเลดย  | learnin  | g and to  | avoid in  | terfere | nce      | e of mot | her     |
| <i>_</i> | tongue                                                          |           | id the i | ole of   | mounci   | tongu   |          | Jona la | iiguage  | Carmin   | g and to  | avoia iii | terrere | )11C     | c or mot | 1101    |
| 3        |                                                                 |           | icate et | ffective | ely thro | ough di | fferent  | activit | ties     |          |           |           |         |          |          |         |
| 4        |                                                                 |           | nd and   |          |          |         |          |         |          |          |           |           |         |          |          |         |
| 5        | Case study to understand the practical aspects of communication |           |          |          |          |         |          |         |          |          |           |           |         |          |          |         |
| 6        | 1                                                               |           |          |          |          |         |          |         |          |          |           |           |         |          |          |         |
|          | RSE O                                                           |           |          |          |          |         |          |         |          |          |           |           |         |          |          |         |
|          | succes                                                          |           |          |          |          |         |          |         |          | 1        |           |           |         |          |          |         |
|          | Give b                                                          |           |          |          |          |         |          |         |          |          |           | Indersta  | nd      |          |          |         |
|          | Best pe                                                         |           |          |          |          |         |          | _       | speaki   | ng.      |           | pply      |         |          |          |         |
| CO3. (   | Give be                                                         | etter jol | o oppo   | rtunitie | s in co  | rporate | comp     | anies   |          |          | A         | pply      |         |          |          |         |
| CO4.     | Better                                                          | unders    | standin  | g of r   | nuances  | s of E  | nglish   | langua  | age thi  | ough au  | ıdio- A   | pply      |         |          |          |         |
|          | experie                                                         |           |          |          |          |         |          |         |          |          |           |           |         |          |          |         |
|          |                                                                 |           | ls with  | clarity  | and c    | onfide  | nce wh   | nich in | turn ei  | nhances  | their A   | pply      |         |          |          |         |
|          | yability                                                        |           | _:       |          | 4        | 1 41-   | 1        | 1 -     | ::44     | 1        | - : A     | 1         |         |          |          |         |
|          | acquire<br>range                                                |           |          |          |          |         | spoke    | n ana v | written  | languag  | e in A    | pply      |         |          |          |         |
|          |                                                                 |           |          |          |          |         | MES      | AND F   | PROGI    | RAMMI    | E SPEC    | FIC O     | UTCC    | M        | ES       |         |
| COS      |                                                                 |           |          |          |          |         |          |         |          | PO10     | PO11      | PO12      |         |          | PSO2     | PSO3    |
| CO3      |                                                                 | S         | M        | S        | -        | L       | -        | -       | S        | S        | M         | -         | 130     | /1       | -        | S S     |
| CO2      | M                                                               | -         | -        | -        | -        | -       | -        | -       | M        | S        | -         | M         | S       | +        | M        | S       |
| CO3      | M                                                               | -         | -        | -        | -        | -       | -        | -       | -        | S        | -         | M         | S       | $\dashv$ | S        | S       |
| CO4      | M                                                               | -         | -        | -        | -        | -       | -        | -       | -        | M        | -         | -         | M       | $\dashv$ | S        | S       |
| CO5      | M                                                               | -         | -        | S        | -        | -       | -        | -       | -        | M        | -         | -         | M       | $\dashv$ | S        | S       |
| CO6      | -                                                               | M         | M        | -        | -        | -       | -        | -       | -        | M        | -         | -         | M       | 1        | M        | S       |
|          | 3.4                                                             | Madin     | ım; L-I  | OW       |          |         |          | l .     | <u> </u> |          | l .       | L         |         |          |          | l       |

**MODULE I:** Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation

**MODULE II:** Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

**MODULE III**: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

**MODULE IV:** Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

**MODULE V:** Case study of Etiquette in different scenario.

#### **TEXT BOOKS:**

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

#### **REFERENCES:**

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford UniversityPress
- **3.** Grammar Builder- I, II, III, and Cambridge UniversityPress.
- **4.** Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications.,2002.

|   | S.No. | Name of the Faculty | Designation         | Department       | Email ID                |
|---|-------|---------------------|---------------------|------------------|-------------------------|
| ] | [     | Dr.P.Saradha        | Associate Professor | English / VMKVEC | saradhap@vmkvec.edu.in  |
| 2 | 2     | Mr.S.K.Prem Kishor  | Assistant Professor | English / AVIT   | Prem.english@avit.ac.in |

| 17EGHS8     | 1                                                                                                 |                                                                    |          |         | BUS       | INESS  | ENGI     | LISH     |          |          | Categor    | ry L    | T        | P          | redit     |
|-------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|---------|-----------|--------|----------|----------|----------|----------|------------|---------|----------|------------|-----------|
| 1,201100    |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          | HSS        | 3       | 0        | 0          | 3         |
| PREAMI      |                                                                                                   |                                                                    |          |         |           |        |          | _        |          | _        |            |         |          |            |           |
| Language    |                                                                                                   |                                                                    |          |         | _         |        |          |          |          |          |            |         | -        |            |           |
| English, t  |                                                                                                   |                                                                    |          |         |           |        | e as a   | propell  | er for t | he adva  | ncement    | of know | ledge ii | n differen | it fields |
| and as a te |                                                                                                   |                                                                    |          | iream o | of the fu | iture. |          |          |          |          |            |         |          |            |           |
|             | PREREQUISITE: NIL                                                                                 |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
|             | OURSE OBJECTIVES                                                                                  |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| 1.          | To impart and enhance corporate communication.  To enable learners to develop presentation skills |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| 2.          |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| 3.          |                                                                                                   | To build confidence in learners to use English in Business context |          |         |           |        |          |          |          |          |            |         |          |            |           |
| 4.          | To make them experts in professional writing                                                      |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| 5.          | To assist students understand the role of thinking in all forms of communication                  |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| 6.          |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| COURSE      |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| On the su   |                                                                                                   |                                                                    |          |         |           |        |          |          | 0        |          |            |         | **       | 1 , 1      | 1         |
| CO1. Cor    |                                                                                                   |                                                                    |          |         |           |        |          |          | 1 '11    |          |            |         |          | nderstand  | l .       |
| CO2. Stud   |                                                                                                   |                                                                    |          |         |           |        | ting int | teractio | n skills | and co   | nsider hov | w own   | A        | oply       |           |
| communic    |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          |            |         |          |            |           |
| CO3. Stre   |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          |            |         |          | oply       |           |
| CO4. Cre    |                                                                                                   |                                                                    | -        |         |           | _      | -        | _        | -        | -        |            |         |          | oply       |           |
| CO5. Ma     |                                                                                                   |                                                                    |          |         |           |        |          |          |          | e differ | ent ideas  |         | A        | oply       |           |
| CO6. Ma     |                                                                                                   |                                                                    | _        |         |           |        |          |          |          |          |            |         |          | oply       |           |
| MAPPIN      | G WIT                                                                                             | TH PR                                                              | OGRA     | MME     | OUTC      | OMES   | S AND    | PROG     | GRAM     | ME SPI   | ECIFIC (   | OUTCO   | MES      |            |           |
| COS         |                                                                                                   |                                                                    |          |         |           |        |          |          |          |          | PSO1       | PSO2    | PSO3     |            |           |
| CO1         | M                                                                                                 | -                                                                  | L        | -       | L         | S      | S        | -        | M        | S        | -          | S       | M        | -          | -         |
| CO2         | -                                                                                                 | M                                                                  | S        | M       | -         | M      | M        | -        | L        | S        | -          | S       | S        | -<br>G     | -         |
| CO3         | L                                                                                                 | M<br>L                                                             | -<br>N/T | -<br>N# | -         | M      | -<br>L   | L        | -<br>N/T | S        | L<br>L     | M       | -        | S          | M         |
|             | -                                                                                                 |                                                                    | <b>M</b> | M<br>M  | -         | -      | L        | M        | M<br>L   | S        | L          | M<br>L  | S<br>M   | -          | M         |
| CO5         | _                                                                                                 | _                                                                  |          |         |           |        | -        | . IVI    |          |          |            |         |          |            |           |

**SUBJECT AND VERB AGREEMENT:** Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

**STRESS:** Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

**READING SKILLS:** Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Ouestions.

**CORPORATE COMMUNICATION:** Corporate Communication -Recommendation-Instruction-Check List-Circulars- Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

**CRITICAL READING:** Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions- Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

#### **TEXT BOOKS:**

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

#### **REFERENCES:**

- 1. Grammar Builder I, II, III Cambridge UniversityPress.
- **2.** Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row.

| S.No. | Name of the Faculty | Designation         | Department       | Email ID                |
|-------|---------------------|---------------------|------------------|-------------------------|
| 1.    | Dr.P.Saradha        | Associate Professor | English / VMKVEC | saradhap@vmkvec.edu.in  |
| 2.    | Mr.S.K.Prem Kishor  | Assistant Professor | English/ AVIT    | prem.english@avit.ac.in |

| 1======== | ENGINEERING STARTUPS           | Category | L | T | P | Credit |
|-----------|--------------------------------|----------|---|---|---|--------|
| 17MBHS01  | AND ENTREPRENEURIAL MANAGEMENT | HSS      | 3 | 0 | 0 | 3      |
| DDE AMBLE |                                | •        | • | • |   |        |

#### **PREAMBLE:**

A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: NIL

#### **COURSE OBJECTIVES:**

- **1.** To understand the basics of Startups Management and components.
- 2. To analyze the startups fund management practices
- **3.** To practice the various kinds of stocks and employment considerations in startups.
- **4.** To apply the importance of intellectual property rights and its procedures.
- **5.** To explore the entrepreneurial mindset and culture.

#### **COURSE OUTCOMES:**

#### After successful completion of the course, students will be able to

| CO1: Explain the concept of engineering startups, objectives and functions and its                                   | Understand |
|----------------------------------------------------------------------------------------------------------------------|------------|
| components.                                                                                                          |            |
| CO2: Analyze the startups funding issues and remuneration practices instartups business.                             | Analyse    |
| <b>CO3:</b> Analyze the various kinds of stocks and employment opportunities and consideration in startups business. | Analyse    |
| <b>CO4:</b> Compare and contrast the various forms of intellectual property protection and practice.                 | Analyse    |
| <b>CO5:</b> Explore the entrepreneurial mindset and culture that has been developing in companies of                 | Evaluate   |
| all sizes and industries.                                                                                            |            |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | -   | -   | -   | -   | M   | M   | S   | -   | M    | -    | M    | -    | L    | -    |
| CO2 | S   | S   | M   | M   | M   | L   | -   | -   | -   | -    | -    | M    | -    | -    | M    |
| CO3 | S   | S   | S   | M   | M   | M   | -   | -   | -   | -    | -    | M    | -    | L    | -    |
| CO4 | S   | S   | S   | M   | M   | M   | -   | -   | -   | -    | -    | M    | 1    | M    | -    |
| CO5 | S   | S   | 1   | M   | M   | M   | -   | 1   | 1   | -    | -    | M    | -    | -    | -    |

**Elements of a successful Start up:** Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up: Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – EmploymentContracts Stock Ownership & startup Employment Considerations: Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations: Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – DisabilityInsurance

**Protecting Intellectual Property:** Protecting your intellectual property: Copyrights - patents–Trade secrets

Trademarks - The Legal Form of your Startup: Corporation - Partnership - Limited Liability Company - Sole
 Proprietorship - Making the startup decision: commitment - Leaving a current employer - stay fit.

**Entrepreneurship:** Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

#### **Text Book:**

- **1.** James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for the High-Tech Entrepreneur" 2<sup>nd</sup> ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

#### **Reference Books:**

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd EditionDream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press,2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

| S.No | Name of the Faculty | Designation            | Department                  | Email ID                |
|------|---------------------|------------------------|-----------------------------|-------------------------|
| 1.   | Dr. G. Murugesan    | Professor              | Management Studies / VMKVEC | murugesan@vmkvec.edu.in |
| 2.   | Mr. T. Thangaraja   | Assistant<br>Professor | Management Studies / AVIT   | thangaraja@avit.ac.in   |

#### PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT

| Category | L | T | P | Credit |
|----------|---|---|---|--------|
| HSS      | 3 | 0 | 0 | 3      |

#### **PREAMBLE**

To develop students with good presentation and writing skills (Professionally & technically). Articulate and enunciate

| words and                                                            | words and sentences clearly and effectively. Develop proper listening skills. Understand different writing techniques and styles based on the communication being used. |          |         |           |          |          |           |          |           |             |              |            |           | s and      |        |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----------|----------|----------|-----------|----------|-----------|-------------|--------------|------------|-----------|------------|--------|
| styles bas                                                           | ed on th                                                                                                                                                                | e comi   | nunica  | tion be   | ing use  | d.       |           |          |           |             |              |            |           |            |        |
| PRERE(                                                               | UISIT                                                                                                                                                                   | E: NII   |         |           |          |          |           |          |           |             |              |            |           |            |        |
| COURSI                                                               | E OBJE                                                                                                                                                                  | CTIV     | ES      |           |          |          |           |          |           |             |              |            |           |            |        |
| 1.                                                                   | To dev                                                                                                                                                                  | elop co  | mmuni   | cation    | and per  | rsonalit | y skills  | S.       |           |             |              |            |           |            |        |
| 2.                                                                   | To imp<br>writing                                                                                                                                                       |          | ptitude | skills,   | train to | impro    | ve self-  | -learnir | ıg / rese | earching    | g abilities. | , presenta | ıtion ski | lls & tecl | hnical |
| 3.                                                                   | To improve students employability skills.                                                                                                                               |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| 4.                                                                   | To develop communication and problem solving skills.                                                                                                                    |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| 5.                                                                   | To develop professional with idealistic, practical and moral values.                                                                                                    |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| 6.                                                                   | To produce cover letters, resumes and job application strategies.                                                                                                       |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| COURSE OUTCOMES                                                      |                                                                                                                                                                         |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| On the successful completion of the course, students will be able to |                                                                                                                                                                         |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| CO1. Imp                                                             |                                                                                                                                                                         |          |         |           | •        |          |           |          |           |             |              |            |           | erstand    |        |
| CO2. Dem                                                             |                                                                                                                                                                         |          |         |           |          |          |           |          |           |             |              |            | App       | ly         |        |
| CO3. Spea                                                            | king wi                                                                                                                                                                 | th clar  | ity and | confid    | ence th  | ereby e  | nhanci    | ng emp   | loyabil   | lity skill  | s of the s   | tudents.   | App       | ly         |        |
| CO4. Train                                                           | n the stu                                                                                                                                                               | ıdents i | n orgai | nized a   | nd prof  | essiona  | ıl writii | ng       |           |             |              |            | App       | ly         |        |
| CO5. Deve                                                            | elop stu                                                                                                                                                                | dents re | eading  | skills tl | hat cou  | ld be a  | dopted    | while r  | eading    | text        |              |            | App       | ly         |        |
| CO6. Impr                                                            | CO6. Improve communication and personality skills.  Apply                                                                                                               |          |         |           |          |          |           |          |           |             |              |            |           |            |        |
| MAPPIN                                                               | G WIT                                                                                                                                                                   | H PR     | OGRA    | MME       | OUTC     | OMES     | SAND      | PROG     | FRAM      | ME SPI      | ECIFIC (     | OUTCO      | MES       |            |        |
| COS                                                                  | PO1                                                                                                                                                                     | PO2      | PO3     | PO4       | PO5      | PO6      | PO7       | PO8      | PO9       | <b>PO10</b> | PO11         | PO12       | PSO1      | PSO2       | PSO3   |
| CO1                                                                  | M                                                                                                                                                                       | M        | -       | -         | -        | M        | M         | -        | M         | S           | -            | -          | M         | M          | S      |
| CO2                                                                  | M                                                                                                                                                                       | -        | -       | -         | -        | -        | -         | -        | S         | M           | -            | -          | S         | M          | S      |
| CO3                                                                  | -                                                                                                                                                                       | -        | -       | -         | -        | -        | M         | -        | S         | S           | -            | -          | S         | S          | -      |

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | PO9 | <b>PO10</b> | PO11 | <b>PO12</b> | PSO <sub>1</sub> | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|------------|------------|-----|-----|-------------|------|-------------|------------------|------|------|
| CO1 | M   | M   | •   | -   | •   | M          | M          | •   | M   | S           | -    | -           | M                | M    | S    |
| CO2 | M   | -   | -   | -   | -   | -          | -          | -   | S   | M           | -    | -           | S                | M    | S    |
| CO3 | -   | -   | •   | -   | •   | -          | M          | •   | S   | S           | -    | -           | S                | S    | •    |
| CO4 | S   | -   | ı   | -   | ı   | -          | -          | ı   | •   | -           | -    | M           | -                | M    | M    |
| CO5 | -   | -   | -   | -   | 1   | -          | -          | -   | ı   | -           | -    | -           | M                | M    | ı    |
| CO6 | S   | -   | -   | -   | -   | -          | -          | -   | M   | S           | -    | M           | S                | -    | M    |

**COMMUNICATION AND SELF DEVELOPMENT:** Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication.

**GRAMMAR & SYNTAX:** Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

**READING AND WRITING SKILLS:** Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

**SPEAKING SKILLS:** Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation

**TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING:** Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

#### TEXT BOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria & Sons, New Delhi, Rep''nt 2007

#### REFERENCE BOOKS

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India
- 3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw Hill.

| S.No | Name of the Faculty | Designation            | Department | Email ID                |
|------|---------------------|------------------------|------------|-------------------------|
| 1.   | Dr.P.Saradha        | Associate<br>Professor | English    | saradhap@vmkvec.edu.in  |
| 2.   | Mr.S.K.Prem Kishor  | Assistant<br>Professor | English    | Prem.english@avit.ac.in |

| 17M A DC01 | ENGINEERING | Category | L | T | P | Credit |
|------------|-------------|----------|---|---|---|--------|
| 17MABS01   | MATHEMATICS | BS       | 2 | 2 | 0 | 3      |

#### **PREAMBLE**

The driving force in Engineering Mathematics is the rapid growth of technology and is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

| PRERE                                                                |                                                                                                                            |            |           |           |         |         |          |         |          |           |           |           |         |          |      |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|---------|---------|----------|---------|----------|-----------|-----------|-----------|---------|----------|------|
| COURS                                                                | SE OBJ                                                                                                                     | ECTIVI     | ES        |           |         |         |          |         |          |           |           |           |         |          |      |
| 1.                                                                   | To                                                                                                                         | o identify | y the cha | aracteris | tics of | a linea | ar syste | em wit  | h Eigen  | values a  | nd Eige   | n vector  | s.      |          |      |
| 2.                                                                   | To                                                                                                                         | o improv   | e their a | bility in | solvir  | ng geoi | metrica  | al appl | ications | of differ | ential ca | alculus   |         |          |      |
| 3.                                                                   | To                                                                                                                         | o find a ı | naximu    | m or mii  | nimum   | value   | for a f  | unctio  | n of sev | eral vari | ables su  | bject to  | a given | constrai | nt.  |
| 4.                                                                   | To                                                                                                                         | unders     | tand the  | integrat  | ion tec | hnique  | es for e | evaluat | ing surf | ace and   | volume    | integrals | S.      |          |      |
| 5.                                                                   | engineering studies                                                                                                        |            |           |           |         |         |          |         |          |           |           |           |         |          |      |
| COURS                                                                | COURSE OUTCOMES                                                                                                            |            |           |           |         |         |          |         |          |           |           |           |         |          |      |
| On the successful completion of the course, students will be able to |                                                                                                                            |            |           |           |         |         |          |         |          |           |           |           |         |          |      |
|                                                                      | CO1. Able to understand the system of linear equations arising in all engineering fields using matrix methods.  Understand |            |           |           |         |         |          |         |          |           |           |           |         |          |      |
| <b>CO2.</b> D                                                        | CO2. Determine the evolute and envelope for a given family of curves  Apply                                                |            |           |           |         |         |          |         |          |           |           |           |         |          |      |
| <b>CO3.</b> A                                                        | pply dif                                                                                                                   | ferentiat  | ion to so | lve max   | ima aı  | nd min  | ima pr   | oblem   | S.       |           |           |           | A       | Apply    |      |
| <b>CO4.</b> Co                                                       | ompute                                                                                                                     | the area   | and volu  | ume of p  | lane u  | sing in | tegrati  | on      |          |           |           |           | A       | Apply    |      |
| <b>CO5.</b> E                                                        | valuate t                                                                                                                  | he surfa   | ce and v  | olume i   | ntegral | using   | Green    | 's, Sto | kes and  | Gauss I   | Divergen  | ce theor  | rems A  | Analyze  |      |
| MAPPI                                                                | NG WI                                                                                                                      | TH PRO     | OGRAN     | ME O      | UTCO    | MES     | AND 1    | PROG    | RAMN     | IE SPE    | CIFIC (   | OUTCO     | MES     |          |      |
| COS                                                                  | PO1                                                                                                                        | PO2        | PO3       | PO4       | PO5     | PO6     | PO7      | PO8     | PO9      | PO10      | PO11      | PO12      | PSO1    | PSO2     | PSO3 |
| CO1                                                                  | S                                                                                                                          | M          | M         | M         | M       |         |          |         |          |           |           | M         | M       | M        |      |
| CO2                                                                  | S                                                                                                                          | M          | M         | M         | M       |         |          |         |          |           |           | M         | M       | M        |      |
| CO3                                                                  | S                                                                                                                          | M          | M         | M         | M       |         |          |         |          |           |           | M         | M       | M        |      |
| CO4                                                                  | S                                                                                                                          | M          | M         | M         | M       |         |          |         |          |           |           | M         | M       | M        |      |
| CO5                                                                  | S                                                                                                                          | M          | M         | M         | M       |         |          |         |          |           |           | M         | M       | M        |      |
| S- Stron                                                             | g; M-M                                                                                                                     | edium; I   | L-Low     | ı         | 1       | 1       | 1        | 1       | ı        | 1         | ı         | 1         | 1       | 1        | ı    |

**MATRICES:** Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

**DIFFERENTIAL CALCULUS:** Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

**FUNCTIONS OF SEVERAL VARIABLES:** Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

**MULTIPLE INTEGRALS:** Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Tripleintegration.

**VECTOR CALCULUS:** Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

#### **TEXT BOOKS:**

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) &AVIT (Chennai),(2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23<sup>rd</sup> Edition, Meenakshi Agency, Chennai (2016).

#### **REFERENCES:**

- 1. VeerarajanT., "EngineeringMathematics", TataMcGrawHillEducationPvt, NewDelhi(2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42<sup>nd</sup> Edition, Khanna Publishers, Delhi(2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore(2012).
- **4.** Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10<sup>th</sup>Edition).

| S.No | Name of the Faculty | Designation       | Name of the College | Mail ID              |
|------|---------------------|-------------------|---------------------|----------------------|
| 1.   | Dr.G.Selvam         | Asso.Prof         | Maths / VMKVEC      | selvam@vmkvec.edu.in |
| 2.   | Ms.S.Gayathri       | Asst.Prof.Grade I | Maths / AVIT        | gayathri@avit.ac.in  |

|          | IABS09 MATHEMATICS FOR COMPUTER ENGINEERS | Category | L | 1 | P | Credit |
|----------|-------------------------------------------|----------|---|---|---|--------|
| BS 2 2 0 |                                           | BS       | 2 | 2 | 0 | 3      |

#### **PREAMBLE**

An engineering student needs to have some basic mathematical tools and techniques to apply in diverse applications in Engineering. This emphasizes the development of rigorous logical thinking and analytical skills of the student and appraises him the complete procedure for solving different kinds of problems that occur in engineering. The Laplace transform method is a powerful method for solving linear ODEs and corresponding initial value problems as well as systems of ODEs arising in Engineering. The knowledge of transformations is to create a new domain in which it is easier to handle the problem that is beinginvestigated

**PREREQUISITE: NIL** 

#### **COURSE OBJECTIVES**

- 1. To familiarize with the applications of differential equations.
- 2. To learn Laplace transform and its Inverse method to solve differential Equations and integral transforms
- **3.** To calculate the Fourier transforms of periodic function.
- **4.** To gain the knowledge in Z Transform and its applications.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Learn the properties of Laplace transforms techniques                                                                        | Understand |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| CO2. Predict the suitable method to solve second and higher order differential equations                                          | Apply      |
| CO3. Apply Applications of Laplace transform to solve an ordinary differential equation.                                          | Apply      |
| <b>CO4</b> . Use the Fourier transform as the tool to connect the time domain and frequency domain to evaluate the given integral | Apply      |
| CO5. Solve the given difference equations using Z-transform.                                                                      | Apply      |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | S   | M   | M   | M   | 1   |     | 1   | 1   |      | -    | M    | M    | M    | M    |
| CO2 | S   | S   | M   | M   | M   |     |     |     | 1   |      | -    | M    | M    | M    | M    |
| CO3 | S   | S   | M   | M   | M   |     |     |     | 1   |      | -    | M    | M    | M    | M    |
| CO4 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | M    | M    | M    |
| CO5 | S   | S   | M   | M   | M   | 1   |     |     |     |      |      | M    | M    | M    | M    |

#### **ORDINARY DIFFERENTIAL EQUATIONS**

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

#### LAPLACE TRANSFORMS

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems –Transform of periodic functions

#### INVERSE LAPLACE TRANSFORMS AND APPLICATIONS

Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms.

#### FOURIER TRANSFORMS

Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

#### Z – TRANSFORMS

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

#### TEXT BOOKS:

- **1.** "Engineering Mathematics I & II ", by Department of Mathematics, VMKVEC (Salem) &AVIT (Chennai),(2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- **3.** Dr.A.Singaravelu , "Transforms and Partial differential Equations", 18<sup>th</sup> Edition, Meenakshi Agency, Chennai(2013).

#### **REFERENCES:**

- 1. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi(2011).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi(2012)
- **3.** Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore(2012).
- **4.** Kandasamy .P, Thilagavathy. K. and Gunavathy. K., "Engineering Mathematics", Volumes I & II (10th Edition), S. Chand & Co., New Delhi (2014).

| S.No | Name of the Faculty | Designation | Department        | email ID               |
|------|---------------------|-------------|-------------------|------------------------|
| 1.   | Dr.L.Tamilselvi     | Professor   | Maths / AVIT      | ltamilselvi@avit.ac.in |
| 2.   | Mrs.V.T.Lakshmi     | Asso.Prof   | Maths /<br>VMKVEC | lakshmi@vmkvec.edu.in  |

| 17MABS14 | NUMERICAL METHODS AND NUMBER | Category | L | Т | P | Credit |
|----------|------------------------------|----------|---|---|---|--------|
|          | THEORY                       | BS       | 2 | 2 | 0 | 3      |

#### **PREAMBLE**

This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational techniques and to choose an appropriate numerical approach. Number theory encodes properties of number-theoretic objects and has various applications in the field of security, memory management, Authentication, coding theory and the basis behind almost all of modern cryptography.

| PREF | EO | HZILI | $\mathbf{r}$ | NII. |
|------|----|-------|--------------|------|
|      |    |       |              | INIL |

#### **COURSE OBJECTIVES**

- 1. To familiar with numerical solution for the system of equations
- 2. To be get exposed to finite differences and interpolation
- **3.** To be thorough with the numerical Differentiation and integration
- 4. To give an integrated approach to Number Theory and to have the knowledge of division algorithm and fundamental theorem of arithmetic
- **5.** To familiar with congruences and classical theorems

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| <b>CO1.</b> Solve the system of linear algebraic equations and single non linear equations arising in the field of Computer Science Engineering. | Apply   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| CO2. Apply various numerical methods to find intermediate numerical value&Polynomial of numerical data.                                          | Apply   |
| <b>CO3.</b> Calculate the differentiation of a polynomial and evaluate the definite integrals byusing numerical methods.                         | Apply   |
| <b>CO4.</b> Analyze and interpret the concepts of divisibility, greatest common divisor, prime, prime-factorization and congruence.              | Analyze |
| <b>CO5.</b> Analyze the system of linear congruences and derive some classical theorems.                                                         | Analyze |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | S   | M   | M   | M   | 1   | 1   |     | 1   | 1    | 1    | M    | M    | M    | M    |
| CO2 | S   | S   | M   | M   | M   | 1   | 1   |     | 1   | 1    | 1    | M    | M    | M    | M    |
| CO3 | S   | S   | M   | M   | M   | 1   | 1   |     | 1   | 1    | 1    | M    | M    | M    | M    |
| CO4 | S   | S   | M   | M   | M   |     |     |     |     | !    |      | M    | S    | S    | M    |
| CO5 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | S    | S    | M    |

**SOLUTION OF EQUATIONS:** Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Seidel methods. Inverse of a matrix by Gauss-Jordan method.

**INTERPOLATION AND APPROXIMATION:** Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

**NUMERICAL DIFFERENTIATION AND INTEGRATION:** Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both1/3rd and 3/8th) rules. Romberg's rule, two and three point Gaussian quadrature formula.

#### DIVISIBILITY THEORY AND CANONICAL DECOMPOSTIONS

Division algorithm -Base-b Representations - Number Patterns - Prime and Composite Numbers - GCD - Euclidean Algorithm - Fundamental Theorem of Arithmetic - LCM.

**CONGRUENCES AND CLASSICAL THEOREMS:** Congruence's - Linear Congruence's, Chinese Remainder Theorem, Wilson's Theorem - Fermat's Little Theorem - Euler's Theorem.

#### **TEXT BOOKS:**

- 1. Dr.B.S.Grewal, "Numerical Methods in Engineering & Science", Khanna Publishers, 2007
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier publications, 2002.
- 3. David.M.Burton."Elementary Number theory", Tata McGraw HillEdition, 2012.

#### **REFERENCES:**

- **1.** T. Veerarajan, T. Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill, 2004.
- **2.** Niven.I, Zuckerman.H.S and Montgomery.H.L, "An Introduction to Theory of Numbers", John Wiley and sons, 2004.

| S.No | Name of the Faculty | Designation | Department     | Email ID               |
|------|---------------------|-------------|----------------|------------------------|
| 1.   | Dr.L.Tamilselvi     | Professor   | Maths / AVIT   | ltamilselvi@avit.ac.in |
| 2.   | Dr.P.Sasikala       | Professor   | Maths / VMKVEC |                        |

| 17MABS15  | PROBABILITY AND QUEUEING THEORY | Category | L       | T | P | Credit |
|-----------|---------------------------------|----------|---------|---|---|--------|
|           |                                 | BS       | 2       | 2 | 0 | 3      |
| PREAMBLE  |                                 |          |         |   |   |        |
| D 1 1 111 | 1110                            |          | 1 1 111 |   |   |        |

Probability is essential to science and life more generally. Starting from basic probability, the course proceeds to a thorough study of models for stochastic processes which are relevant in processing of random signals. Queueing theory is the mathematical study of waiting lines and it's a primary tool for studying the problem of congestion.

PREREQUISITE: NIL

#### **COURSE OBJECTIVES**

- 1. To be thorough with probability concepts and random variables.
- 2. To be familiar with different statistical distributions and the typical phenomena that each distribution often describes.
- 3. To acquire skills in handling situations involving more than one random variable and functions of random variables.
- **4.** To be get exposed to the concepts of random processes and discrete time Markov chain.
- **5.** To study queuing models to analyze the real world systems.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| <b>CO1.</b> Understand the concepts of random variable and probabilities associated with the distributions of random variables.                            | Understand |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO2. Classify the random variables to determine the appropriate distributions.                                                                             | Apply      |
| <b>CO3.</b> Apply the concepts of random variables and distributions to establish the distribution of linear combinations of independent random variables. | Apply      |
| CO4. Classify and apply the concepts of probability, Random Process and their applications in Probabilistic systems.                                       | Analyze    |

Analyze

**CO5.** Derive and analyze the single and multiserver queueing system.

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | S    | M    | M    |
| CO2 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | S    | M    | M    |
| CO3 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | S    | M    | M    |
| CO4 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | S    | M    | M    |
| CO5 | S   | S   | M   | M   | M   |     |     |     |     |      |      | M    | S    | S    | S    |

#### STANDARD DISTRIBUTIONS:

Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

#### TWO-DIMENSIONAL RANDOM VARIABLES:

Marginal and conditional distributions, Covariance, Correlation and regression, Transformation of random variables, Central limit theorem.

#### RANDOM PROCESSES, MARKOV CHAIN:

Classification, Stationary process, Markov process, Binominal process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

#### **OUEUEING THEORY:**

Markovian queueing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity.

#### **TEXT BOOKS:**

- 1. Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai, 2012.
- 2. Kapur.J.N. and Saxena.H.C. "Mathematical Statistics", S.Chand & Company Ltd. New Delhi,1997.

#### **REFERENCES:**

- **1.** T.Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi,2008.
- **2.** P.Kandasamy, K.Thilagavathy, K.Gunavathy "Probability, Random Variables and Random Processes" S.Chand &Company Ltd., New Delhi, 2008.
- **3.** Allen.A.O, "Probability Statistics and Queuing theory with Computer science applications", Academic Press, 2<sup>nd</sup> edition, 1990.
- **4.** S.C.Gupta and V.K.Kapoor, Fundamentas of Mathematical Statistics", 11<sup>th</sup> extensively revised edition, S.Chand & Sons,2007.

| S.No | Name of the Faculty | Designation         | Department        | Email ID                |
|------|---------------------|---------------------|-------------------|-------------------------|
| 1.   | Dr.P.Sasikala       | Professor           | Maths /<br>VMKVEC |                         |
| 2.   | Dr.A.K.Thamizhsudar | Asso.Prof. grade II | Maths / AVIT      | thamizhsudar@avit.ac.in |

| 17MA          | ABS22     |          | N         | IATHI    |          |          |            | CHINE     | 2        | Categ      | ory       | L          | T          | P          | Credit       |
|---------------|-----------|----------|-----------|----------|----------|----------|------------|-----------|----------|------------|-----------|------------|------------|------------|--------------|
|               |           |          |           |          | LE       | ARNIN    | I <b>G</b> |           |          | BS         | 3         | 2          | 2          | 0          | 3            |
| PREA          | MBLE      | •        |           |          |          |          |            |           |          | •          | •         |            |            | •          | - 1          |
|               |           | _        |           |          | _        | _        | _          |           | -        |            | _         | _          | oic is hav |            |              |
|               |           | _        | -         |          |          |          |            |           |          | _          | •         |            | athematic  | •          |              |
|               |           |          |           | _        | _        |          |            |           | _        | _          |           | -          |            | _          | of all such  |
|               |           | _        |           |          |          |          |            |           |          |            |           | _          |            |            | achine/deep  |
|               | -         |          |           |          |          | _        |            | _         |          |            | _         |            | _          | -          | ry those are |
|               |           | lınkage  | with m    | nachine  | learnin  | g. Appl  | lication   | s of the  | se topic | es will be | e introdu | ced in M   | IL with h  | ielp of so | me real-life |
| exampl        |           | ITE. E   | NCINE     | EDING    | 7 M A T  | TIEN (A) | TICC       |           |          |            |           |            |            |            |              |
| PRER          |           |          |           | EERING   | JMAI     | HEMA     | 1105       |           |          |            |           |            |            |            |              |
| COUR          |           |          |           |          |          |          |            |           |          |            |           |            |            |            |              |
| 1.            | To stu    |          | ut the p  | roblem   | of supe  | ervised  | learning   | g from 1  | the poir | nt of view | of func   | tion app   | roximatio  | on, optim  | ization, and |
| 2.            |           |          | ne most   | suitabl  | e optim  | ization  | and mo     | odelling  | approa   | ch for a   | given ma  | achine le  | arning pr  | oblem      |              |
| 3.            | To an     | alyse th | ne perfo  | rmance   | of vari  | ous opt  | imizati    | on algo   | rthms f  | rom the p  | oint of v | view of c  | omputati   | onal com   | plexity      |
|               |           |          | nd time   |          |          |          |            |           |          |            |           |            |            |            |              |
| 4.            | To im     | plemer   | ıt a simj | ple neu  | ral netw | ork arc  | hitectu    | re and a  | pply it  | to a patte | rn recog  | nition ta  | sk         |            |              |
| COUR          | SE OU     | TCOM     | 1ES       |          |          |          |            |           |          |            |           |            |            |            |              |
| On the        | success   | ful con  | npletion  | of the   | course,  | studen   | ts will t  | oe able   | to       |            |           |            |            |            |              |
| <b>CO1.</b> U | Jndersta  | and the  | proble    | n of su  | pervised | d learni | ng fron    | n the po  | int of v | iew of fu  | nction a  | pproxim    | ation,     | Unde       | rstand       |
| optimiz       | zation, a | nd stat  | istic     |          |          |          |            |           |          |            |           |            |            |            |              |
| co2.          |           | and the  | e most s  | uitable  | optimiz  | zation a | nd mod     | lelling a | approac  | h for a gi | ven mac   | thine lear | rning      | Unde       | rstand       |
|               |           | the ner  | forman    | ce of v  | arious o | ntimiza  | ution ale  | garthms   | from t   | he point   | of view   | of comp    | utational  |            |              |
| comple        |           | _        |           |          |          | _        |            | Sortiini  | , mom t  | ne point   | or view   | or comp    | atationar  | Analy      | /se          |
| <b>CO4.</b> T | o analy   | se a sin | nple net  | ıral net | work ar  | chitectu | ire on a   | a patteri | n recogi | nition tas | k         |            |            | Analy      | /se          |
| MAPP          | ING W     | TTH P    | ROGR      | AMM      | E OUT    | COME     | S AND      | PROC      | GRAM     | ME SPE     | CIFIC     | OUTCO      | MES        | •          |              |
| COS           | PO1       | PO2      | PO3       | PO4      | PO5      | PO6      | PO7        | PO8       | PO9      | PO10       | PO11      | PO12       | PSO1       | PSO2       | PSO3         |
| CO1           | S         | S        | M         | M        | M        |          |            |           |          |            |           | M          | M          | M          | M            |
| CO2           | S         | S        | M         | M        | M        |          |            |           |          |            |           | M          | M          | M          | M            |
| CO3           | S         | S        | M         | M        | M        |          |            |           |          |            |           | M          | M          | M          | M            |
| CO4           | S         | S        | M         | M        | M        |          |            |           |          |            |           | M          | S          | S          | M            |

#### LINEAR ALGEBRA

LINEAR ALGEBRA BASICS- Vector spaces and subspaces, basis and dimensions, linear transformation, four fundamental subspaces,

#### **MATRICES**

MATRIX THEORY- Norms and spaces, eigenvalues and eigenvectors, Special Matrices and their properties, least squared and minimum normed solutions, MATRIX DECOMPOSITION ALGORITHMS- SVD: Properties and applications, low rank approximations, Gram Schmidt process, polar decomposition.

#### **DIMENSIONALITY REDUCTIONS:**

DIMENSIONS REDUCTION ALGORITHMS and JCF- Principal component analysis, linear discriminant analysis, minimal polynomial and Jordan canonical form, CALCULUS: — Basic concepts of calculus: partial derivatives, gradient, directional derivatives, jacobian, hessian, , convex sets, convex functions and its properties

#### PROBABILITY AND OPTIMIZATIONS:

PROBABILITY – Basic concepts of probability: conditional probability, Bayes' theorem, independence, theorem of total probability, expectation and variance, few discrete and continuous distributions, joint distributions and covariance.

OPTIMIZATION – Unconstrained and Constrained optimization, Numerical optimization techniques for constrained and unconstrained optimization: Newton's method, Steepest descent method, Penalty function method.

#### SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES – Introduction to SVM, Error minimizing LPP, concepts of duality, hard and soft margin classifiers

#### **TEXT BOOKS:**

- 1. W. Cheney, Analysis for Applied Mathematics. New York: Springer Science+Business Medias, 2001.
- 2. S. Axler, Linear Algebra Done Right (Third Edition). Springer International Publishing, 2015.
- 3. J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer Science+Business Media, 2006.
- 4. J. S. Rosenthal, A First Look at Rigorous Probability Theory (Second Edition). Singapore: World Scientific Publishing, 2006.

| S.No | Name of the Faculty | Designation | Name of the<br>College | Email ID               |
|------|---------------------|-------------|------------------------|------------------------|
| 1.   | Dr.L.Tamilselvi     | Professor   | Maths / AVIT           | ltamilselvi@avit.ac.in |
| 2.   | Dr.P.Sasikala       | Professor   | Maths / VMKVEC         |                        |

| 17M     | ABS23                | 1       | MATH     | EMAT     | TICS F    | OR DA     | TA SC     | CIENC    | E        | Categ      | gory     | L          | T          | P (       | Credit   |
|---------|----------------------|---------|----------|----------|-----------|-----------|-----------|----------|----------|------------|----------|------------|------------|-----------|----------|
|         |                      |         |          |          |           |           |           |          |          | BS         | 3        | 2          | 2          | 0         | 3        |
| PREA    | MBLE                 |         |          |          |           |           |           |          |          |            | l        |            |            | l .       |          |
| Linear  | Algebr               | a plays | a fund   | lamenta  | ıl role i | n the th  | neory o   | f Data   | Science  | e. This c  | ourse a  | ms at in   | troducing  | g the bas | ic notic |
| of vect | or spac              | es, Lin | ear Alg  | ebra an  | d the u   | se of Li  | inear A   | lgebra   | in appli | cations t  | o Data   | Science    |            |           |          |
| PRER    | EQUIS                | SITE: I | ENGIN    | EERIN    | G MA      | ГНЕМА     | ATICS     |          |          |            |          |            |            |           |          |
| COUR    | RSE OF               | JECT    | IVES     |          |           |           |           |          |          |            |          |            |            |           |          |
| 1.      | To un                | derstar | d basic  | mathe    | matical   | concep    | ots in da | ata scie | nce, re  | lating to  | linear a | lgebra, p  | robabilit  | y, and ca | lculus.  |
| 2.      | To en                | nploy n | nethods  | related  | l to the  | se conc   | epts in   | a varie  | ty of da | ta scienc  | e appli  | cations.   |            |           |          |
| 3.      | То ар                | ply log | ical thi | nking t  | o probl   | em-solv   | ving in   | context  |          |            |          |            |            |           |          |
| 4.      | To us                | e appro | priate t | technol  | ogy to a  | aid prob  | olem-so   | olving a | nd data  | analysis   | S.       |            |            |           |          |
| COUR    | RSE OU               | JTCON   | MES      |          |           |           |           |          |          |            |          |            |            |           |          |
| On the  | succes               | sful co | npletio  | n of the | e course  | e, stude  | nts will  | be abl   | e to     |            |          |            |            |           |          |
| CO1.    | To unde              | erstand | the fun  | dament   | al prop   | erties o  | of matri  | ces, the | eir norn | ns, and th | neir app | lications  |            | Unde      | rstand   |
|         | To und<br>gradien    |         |          |          |           | erentiati | ing/inte  | grating  | multip   | ole variat | ole func | tions, and | d the role | Unde      | rstand   |
|         | To learr<br>le varia |         | Basic p  | properti | es of o   | ptimiza   | tion pro  | oblems   | involvi  | ing matri  | ices and | function   | ns of      | Unde      | rstand   |
| MAPI    | PING V               | VITH I  | PROGI    | RAMM     | IE OU'    | ГСОМ      | ES AN     | D PRO    | OGRA     | MME SI     | PECIFI   | C OUT      | COMES      | 1         |          |
| cos     | PO1                  | PO2     | PO3      | PO4      | PO5       | PO6       | PO7       | PO8      | PO9      | PO10       | PO11     | PO12       | PSO1       | PSO2      | PSO3     |
| CO1     | S                    | S       | M        | M        | M         |           |           |          |          |            |          | M          | M          | M         | M        |
| CO2     | S                    | S       | M        | M        | M         |           |           |          |          |            |          | M          | M          | M         | M        |
| CO3     | S                    | S       | M        | M        | M         |           |           |          |          |            |          | M          | M          | M         | M        |

#### INTRODUCTION TO VECTOR SPACES

Vector Spaces: Rn and Cn, lists, Fnand digression on Fields, Definition of Vector spaces, Subspaces, sums of Subspaces, Direct Sums, Span and Linear Independence, bases, dimension, LINEAR MAPS: Definition of Linear Maps - Algebraic Operations on - Null spaces and Injectivity - Range and Surjectivity - Fundamental Theorems of Linear Maps - Representing a Linear Map by a Matrix - Invertible Linear Maps - Isomorphic Vector spaces - Linear Map as Matrix Multiplication - Operators - Products of Vector Spaces - Product of Direct Sum - Quotients of Vector spaces.

#### EIGENVALUES, EIGENVECTORS, AND INNER PRODUCT SPACES

Eigenvalues and Eigenvectors - Eigenvectors and Upper Triangular matrices - Eigenspaces and Diagonal Matrices - Inner Products and Norms - Linear functionals on Inner Product spaces, MATHS FOR DATA SCIENCE: Singular value decomposition - Handwritten digits and simple algorithm - Classification of handwritten digits using SVD bases - Tangent distance - Text Mining

#### **CALCULUS:**

Functions of Several Variables - Limits and continuity in HIgher Dimensions - Partial Derivatives - The Chain Rule - Directional Derivative and Gradient vectors - Tangent Planes and Differentials - Extreme Values and Saddle Points - Lagrange Multipliers, CONVEX OPTIMIZATION: Affine and Convex Sets - Hyperplanes and half-spaces - Euclidean balls and ellipsoids - Norm balls and Norm cones - polyhedra - simplexs - The positive definite cone.- separating and supporting hyperplanes.

#### NORMS AND INNER PRODUCT SPACES:

Introduction - Inequalities on Linear Spaces - Norms on Linear Spaces - Inner products - Orthogonality - Unitary and Orthogonal Matrices - norms for matrices

#### **GRAPHS**:

Graphs - subgraphs - factors - Paths - cycles - connectedness - trees - Euler tours - Hamiltonian cycles - Planar Graphs - Digraphs, Algorithms - Representing Graphs - The algorithm of Hierholzer - Writing algorithms - Complexity of Algorithms.

#### **TEXT BOOKS:**

- 1. S. Axler, Linear algebra done right, Springer 2017.
- 2. Eldén Lars, Matrix methods in data mining and pattern recognition, Society for Industrial and Applied Mathematics, 2007.
- 3. M.D.Weir, J. Hass, and G.B.Thomas, Thomas' calculus, Pearson, 2016.
- 4. S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ. Pr., 2011.
- 5. D. Jungnickel, Graphs, networks and algorithms. Springer, 2014.

| S.No | Name of the Faculty | Designation | Name of the<br>College | Email ID               |  |  |
|------|---------------------|-------------|------------------------|------------------------|--|--|
| 1.   | Dr.L.Tamilselvi     | Professor   | Maths / AVIT           | ltamilselvi@avit.ac.in |  |  |
| 2.   | Dr.P.Sasikala       | Professor   | Maths / VMKVEC         |                        |  |  |

| 17MABS24                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |      | STATISTICAL FOUNDATIONS |   |   |  |  |   | Cate | -      | L          | T       | P     | Credit |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|-------------------------|---|---|--|--|---|------|--------|------------|---------|-------|--------|------|
|                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           |      |                         |   |   |  |  |   |      | BS     | 8          | 2       | 2     | 0      | 3    |
| PREAMBLE  Probability is essential to science and life more generally. Starting from basic probability, the course proceeds to a thorough study of models for stochastic processes which are relevant in processing of random signals. Queueing theory is the mathematical study of waiting lines and it's a primary tool for studying the problem of congestion. |                                                                                                                           |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| PREREQUISITE: ENGINEERING MATHEMATICS                                                                                                                                                                                                                                                                                                                             |                                                                                                                           |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| COURSE OBJECTIVES                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| 1.                                                                                                                                                                                                                                                                                                                                                                | To be thorough with probability concepts and random variables.                                                            |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| 2.                                                                                                                                                                                                                                                                                                                                                                | To be familiar with different statistical distributions and the typical phenomena that each distribution often describes. |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| 3.                                                                                                                                                                                                                                                                                                                                                                | To acquire skills in handling situations involving more than one random variable and functions of random variables.       |      |                         |   |   |  |  |   |      |        |            | lom     |       |        |      |
| 4.                                                                                                                                                                                                                                                                                                                                                                | To be get exposed to the concepts of random processes and discrete time Markov chain.                                     |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| 5.                                                                                                                                                                                                                                                                                                                                                                | 5. To study queuing models to analyze the real world systems.                                                             |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| COUF                                                                                                                                                                                                                                                                                                                                                              | RSE O                                                                                                                     | UTCO | MES                     |   |   |  |  |   |      |        |            |         |       |        |      |
| On the successful completion of the course, students will be able to                                                                                                                                                                                                                                                                                              |                                                                                                                           |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| <b>CO1.</b> Understand the concepts of random variable and probabilities associated with the distributions of random variables.                                                                                                                                                                                                                                   |                                                                                                                           |      |                         |   |   |  |  |   |      | of Und | Understand |         |       |        |      |
| CO2.                                                                                                                                                                                                                                                                                                                                                              | CO2. Classify the random variables to determine the appropriate distributions.                                            |      |                         |   |   |  |  |   |      |        |            | App     | Apply |        |      |
| CO3. Apply the concepts of random variables and distributions to establish the distribution of linear combinations of independent random variables.                                                                                                                                                                                                               |                                                                                                                           |      |                         |   |   |  |  |   |      |        |            | Apply   |       |        |      |
| CO4. Classify and apply the concepts of probability, Random Process and their applications in Probabilistic systems.  Analyze                                                                                                                                                                                                                                     |                                                                                                                           |      |                         |   |   |  |  |   |      |        | lyze       |         |       |        |      |
| CO5. Derive and analyze the single and multiserver queueing system.                                                                                                                                                                                                                                                                                               |                                                                                                                           |      |                         |   |   |  |  |   |      |        | Ana        | Analyze |       |        |      |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES                                                                                                                                                                                                                                                                                                   |                                                                                                                           |      |                         |   |   |  |  |   |      |        |            |         |       |        |      |
| COS                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |      |                         |   | 1 |  |  | 1 | 1    | PO10   | 1          |         |       | PSO2   | PSO3 |
| CO1                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                         | S    | M                       | M | M |  |  |   |      |        |            | M       | S     | M      | M    |
| CO2                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                         | S    | M                       | M | M |  |  |   |      |        |            | M       | S     | M      | M    |
| CO3                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                         | S    | M                       | M | M |  |  |   |      |        |            | M       | S     | M      | M    |
| CO4                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                         | S    | M                       | M | M |  |  |   |      |        |            | M       | S     | M      | M    |
| CO5                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                         | S    | M                       | M | M |  |  |   |      |        |            | M       | S     | S      | S    |

#### STANDARD DISTRIBUTIONS:

Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

## TWO-DIMENSIONAL RANDOM VARIABLES:

Marginal and conditional distributions, Covariance, Correlation and regression, Transformation of random variables, Central limit theorem.

#### RANDOM PROCESSES, MARKOV CHAIN:

Classification, Stationary process, Markov process, Binominal process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

#### **OUEUEING THEORY:**

Markovian queueing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity.

#### **TEXT BOOKS:**

- Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai, 2012.
   Kapur.J.N. and Saxena.H.C. "Mathematical Statistics", S.Chand & Company Ltd. New Delhi, 1997.

# **REFERENCES:**

- 1. T. Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi, 2008.
- 2. P.Kandasamy, K.Thilagavathy, K.Gunavathy "Probability, Random Variables and Random Processes" S.Chand & Company Ltd., New Delhi, 2008.
- 3. Allen.A.O, "Probability Statistics and Queuing theory with Computer science applications", Academic Press, 2<sup>nd</sup> edition,1990.
- 4. S.C.Gupta and V.K.Kapoor, Fundamentas of Mathematical Statistics", 11th extensively revised edition, S.Chand & Sons, 2007.

| S.No | Name of the Faculty | Designation | Name of the<br>College | Email ID               |
|------|---------------------|-------------|------------------------|------------------------|
| 1.   | Dr.L.Tamilselvi     | Professor   | Maths / AVIT           | ltamilselvi@avit.ac.in |
| 2.   | Dr.P.Sasikala       | Professor   | Maths / VMKVEC         |                        |

|               |                                                                      |                    |         | PHY              | 'SICAI               | L SCIE            | NCES     |            |           | Catego     | ry l      | Ĺ     | T      |          | P       | Credit                               |
|---------------|----------------------------------------------------------------------|--------------------|---------|------------------|----------------------|-------------------|----------|------------|-----------|------------|-----------|-------|--------|----------|---------|--------------------------------------|
| 1 <b>7</b> PC | CBS02                                                                |                    | PAR     | T A - I          | ENGIN                | EERIN             | G PHY    | YSICS      |           | BS         | 2         | 2     | 0      |          | 0       | 2                                    |
| PREAN         | <b>ABLE</b>                                                          |                    |         |                  |                      |                   |          |            | J.        |            | JI.       |       |        | l e      |         |                                      |
| domains       | s. Unden comn                                                        | rstandi<br>nunicat | ng the  | conce<br>d diffe | pts of 1<br>rent typ | aser, typoes of n | pes of 1 | asers, th  | nepropa   | gation of  | light th  | rough | fibers | s, appli | cations | gineering<br>of optical<br>gn and to |
| PRERE         | EQUIS                                                                | ITE:               | NI      | L                |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| COURS         | OURSE OBJECTIVES                                                     |                    |         |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| 1.            | To recall the properties of laser and to explain principles of laser |                    |         |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| 2.            | To assess the applications of laser                                  |                    |         |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| 3.            | To detail the principles of fiber optics                             |                    |         |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| 4.            | To study the applications of fiber optics                            |                    |         |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| 5.            | • • • • • • • • • • • • • • • • • • • •                              |                    |         |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| COURS         | SE OU'                                                               | TCOM               | ES      |                  |                      |                   |          |            |           |            |           |       |        |          |         |                                      |
| On the        | e succe                                                              | ssful co           | mplet   | ion of t         | he cour              | se, stud          | ents wil | ll be able | e to      |            |           |       |        |          |         |                                      |
| CO1.          | Unders                                                               | tand th            | e princ | ciples la        | ıser, fib            | er optic          | s and no | on-destr   | uctive to | esting     |           |       | Unde   | rstand   |         |                                      |
| CO2.          |                                                                      | tand th            | e cons  | truction         | of lase              | er, fiber         | optic aı | nd Non-    | Destruc   | tive testi | ng        |       | Unde   | rstand   |         |                                      |
|               | Demon<br>compos                                                      |                    |         | _                | f laser,             | fiber op          | tic and  | Non-De     | structiv  | e testing  | based     |       | Apply  | <b>y</b> |         |                                      |
|               | Interpre<br>various                                                  |                    |         | al applio        | cations              | of laser,         | fiber o  | ptics an   | d Non-I   | Destructi  | ve testin | g in  | Apply  | Į.       |         |                                      |
|               | Differe<br>Destru                                                    |                    |         |                  |                      | various           | types    | of laser,  | fiber op  | tic and N  | Von-      |       | Analy  | /ze      |         |                                      |
| MAPPI         | NG W                                                                 | ITH P              | ROGI    | RAMM             | E OUT                | ГСОМЕ             | ES ANI   | PROG       | GRAMN     | ME SPE     | CIFIC C   | OUTC  | COME   | S        |         |                                      |
| cos           | PO1                                                                  | PO2                | PO3     | PO4              | PO5                  | PO6               | PO7      | PO8        | PO9       | PO10       | PO11      | РО    | 12     | PSO1     | PSO     | PSO3                                 |
| CO1           | S                                                                    | -                  | M       | -                | -                    | -                 | -        | -          | -         | -          | -         | Ν     | 1      | M        | -       | -                                    |
| CO2           | S                                                                    | -                  | L       | -                | -                    | -                 | -        | -          | -         | -          | -         | N     |        | -        | -       | -                                    |
| CO3           | S                                                                    | -                  | -       | M                | -                    | -                 | M        | -          | -         | -          | -         | N     | 1      | M        | -       | -                                    |

M

M

 $\mathbf{M}$ 

S

M

M

S- Strong; M-Medium; L-Low

M

CO4

CO5

M

M

S

M

**LASERS:** Laser characteristics - Stimulated Emission - Population Inversion - Einstein coefficients - Lasing action - Types of Laser - Nd:YAG laser, CO2 laser, GaAs laser - Applications of Laser - Holography - construction and reconstruction of a hologram

**FIBRE OPTICS:** Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

**NON-DESTRUCTIVE TESTING:** Introduction - Types of NDT - Liquid penetrant method - characteristics of penetrant and developer - ultrasonic flaw detector - X-ray Radiography: displacement method - X-ray Fluoroscopy.

# **TEXT BOOK**

- 1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.
- 2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.
- 3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co,2010.

# REFERENCE BOOKS

- 1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.
- 2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.
- 3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.
- 4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.
- 5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.
- 6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

| S.No. | Name of the Faculty  | Designation          | Department          | Mail ID                     |
|-------|----------------------|----------------------|---------------------|-----------------------------|
| 1.    | Dr. C. SENTHIL KUMAR | Professor            | Physics /<br>VMKVEC | senthilkumarc@vmkvec.edu.in |
| 2.    | Dr. R. SETHUPATHI    | Associate Professsor | Physics /<br>VMKVEC | sethupathi@vmkvec.edu.in    |
| 3.    | Dr. G. SURESH        | Associate Professsor | Physics / AVIT      | suresh.physics@avit.ac.in   |
| 4.    | Dr. B.DHANALAKSHMI   | Associate Professsor | Physics / AVIT      | dhanalakshmi.phy@avit.ac.in |

| 1=D GD G0. | PHYSICAL SCIENCES PART B -ENGINEERING         | Category | L | Т | P | Credit |
|------------|-----------------------------------------------|----------|---|---|---|--------|
| 17PCBS02   | CHEMISTRY Semester I (Common to All Branches) | BS       | 2 | 0 | 0 | 2      |

#### **PREAMBLE**

Objective of this course is to present a better understanding of basic concepts of chemistry and its applications on different engineering domains. It also imparts knowledge on fundamentals of Electrochemistry, Energy storage technologies, properties of water and its treatment methods, classification of fuels, Non conventional sources of Energy and variousadvanced Engineering materials.

# **PREREQUISITE** -NIL

## **COURSE OBJECTIVES**

- 1. To impart basic knowledge in Chemistry so that the student will understand the engineering concept
- 2. To familiar with electrochemistry and Battery and fuel Cells
- To lay foundation for practical applications of water softening methods and its treatment methods in engineering aspects.
- **4.** To inculcate the knowledge of fuels and advanced material.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| On the successful completion of the course, students will be able to                          |            |
|-----------------------------------------------------------------------------------------------|------------|
| CO1. Describe the electrochemistry, batteries and working principle of energy storage devices | Understand |
| CO2. Estimate the hardness of water                                                           | Apply      |
| CO3. Identify suitable water treatment methods                                                | Analyze    |
| CO4 Outline the important features of fuels and advanced materials                            | Analyze    |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1             | S   | M   | -   | M   | -   | S   | S   | S   | -   | -    | L    | M    | M    | -    | M    |
| CO <sub>2</sub> | S   | S   | M   | -   | -   | M   | M   | M   | -   | -    | -    | M    | -    | -    | -    |
| CO3             | S   | S   | M   | -   | -   | M   | S   | M   | -   | -    | -    | M    | -    | -    | -    |
| CO4             | S   | -   | -   | -   | L   | L   | M   | L   | -   | -    | -    | S    | M    | -    | M    |

S- Strong; M-Medium; L-Low

# Electrochemistry, Batteries and Fuel cells

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H2-O2 fuel cell).

# Water Technology and Corrosion

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite & Demineralisation) – Domestic water treatment – Desalination (Electrodialysis & Reverse Osmosis).

# **Fuels And Chemistry of Advanced Materials**

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite).

#### **TEXT BOOKS:**

1. Engineering Chemistry by prepared by Vinayaka Mission's Research Foundation, Salem

## **REFERENCES:**

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., w Delhi.
- 2. Engineering Chemistry by Jain & Jain, 15<sup>th</sup> edition Dhanpatrai Publishing Company (P) Ltd., NewDelhi.
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., NewDelhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

| S.<br>No | Name of the Faculty         | Designation         | Department           | Email ID                         |
|----------|-----------------------------|---------------------|----------------------|----------------------------------|
| 1.       | Dr. V. Anbazhagan           | Professor           | Chemistry/<br>VMKVEC | anbu80@gmail.com                 |
| 2.       | Mr. A. Gilbert<br>Sunderraj | Assistant Professor | Chemistry / VMKVEC   | asmgill80@gmail.com              |
| 3.       | Dr. R. Nagalakshmi          | Professor           | Chemistry / AVIT     | nagalakshmi.chemistry@avit.ac.in |
| 4.       | Dr.K.Sanghamitra            | Associate Professor | Chemistry / AVIT     | sanghamitra.chemistry@avit.ac.in |

| 17PHBS05   | SMART MATERIALS                         | Category | ${f L}$ | T | P | Credit |  |  |  |  |
|------------|-----------------------------------------|----------|---------|---|---|--------|--|--|--|--|
|            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | BS       | 3       | 0 | 0 | 3      |  |  |  |  |
| DDE AMDI E |                                         |          |         |   |   |        |  |  |  |  |

#### **PREAMBLE**

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconductingmaterials.

# PREREQUISITE: NIL

# **COURSE OBJECTIVES**

- 1. To explain the fundamental properties and classification of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.
- **2.** To paraphrase the basic crystalline structure and its properties.
- **3.** To illustrate the synthesis and fabrication of Nano materials.
- **4.** To predict the application of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.
- **5.** To analyze the various parameters of crystalline materials.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Restate the properties of various materials.                                  | Understand |
|------------------------------------------------------------------------------------|------------|
| CO2. Summarize the various structures of materials.                                | Understand |
| <b>CO3.</b> Predict the applications of various materials to designing equipments. | Apply      |
| <b>CO4.</b> Illustrate the properties of materials to designing equipments.        | Apply      |
| CO5. Calculate the crystalline parameters of the materials.                        | Analyze    |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | S   | S   | M   | S   | -   | -   | -   | M   | -    | -    | S    | -    | -    | -    |
| CO2 | S   | M   | S   | M   | S   | -   | ı   | -   | M   | 1    | -    | M    | -    | -    | -    |
| CO3 | S   | S   | S   | S   | S   | 1   | 1   | 1   | S   | -    | -    | M    | S    | M    | M    |
| CO4 | S   | M   | S   | M   | S   | -   | -   | -   | M   | -    | -    | M    | S    | M    | M    |
| CO5 | M   | S   | S   | M   | M   | -   | 1   | -   | S   | 1    | -    | M    | -    | -    | -    |

S- Strong; M-Medium; L-Low

## **SMART MATERIALS:**

Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

#### **CRYSTALLINE MATERIALS:**

Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

#### NANO MATERIALS:

Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

#### **MAGNETIC MATERIALS:**

Basic concepts - Classification of magnetic materials - Domain theory - Hysteresis - Soft and Hard magnetic materials.

## **SUPERCONDUCTING MATERIALS:**

Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

# **TEXT BOOK:**

1. Mani P, Engineering Physics II, Dhanam Publications, 2018.

## **REFERENCES:**

- 1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

| S.No. | Name of the Faculty            | Designation | Department          | Mail ID                      |
|-------|--------------------------------|-------------|---------------------|------------------------------|
| 1.    | Dr. S. MOHAMMED<br>HARSHULKHAN | Asst.Prof   | Physics /<br>VMKVEC | harshulkhan@vmkvec.edu.in    |
| 2.    | Mr. R. SAKTHI GANAPATHY        | Asst.Prof   | Physics /<br>VMKVEC | sakthiganapthy@vmkvec.edu.in |
| 3.    | Dr .G. LATHA                   | Professor   | Physics / AVIT      | latha.physics@avit.ac.in     |
| 4.    | Dr. R. N. VISWANATH            | Professor   | Physics / AVIT      | viswanath.physics@avit.ac.in |

|                               |                                                                             |                               |                                |                      | CAL SO               |                      |                     |           |                     | Catego            | ry         | L        | Т        | P           | Credit                        |
|-------------------------------|-----------------------------------------------------------------------------|-------------------------------|--------------------------------|----------------------|----------------------|----------------------|---------------------|-----------|---------------------|-------------------|------------|----------|----------|-------------|-------------------------------|
| 171                           | PCBS81                                                                      |                               | PA                             | ART A                |                      | L AND<br>PHYS        |                     | UAL LA    | AB                  | BS                |            | 0        | 0        | 2           | 1                             |
| viscosi<br>determ<br>real lab | laborate<br>ty of w<br>ination<br>experin                                   | ater, w<br>of the c<br>ments, | aveleng<br>limensi<br>students | gth of s<br>on of ol | pectral<br>ojects li | lines, t<br>ke the s | hermal<br>size of a | conduct   | tivity a<br>article | and band and thic | gap. So    | me of    | the expe | eriments in | modulus, nvolve the the above |
| PRER                          |                                                                             |                               |                                |                      |                      |                      |                     |           |                     |                   |            |          |          |             |                               |
|                               | SE OB                                                                       |                               |                                |                      |                      |                      |                     |           |                     |                   |            |          |          |             |                               |
| 1.                            |                                                                             | •                             |                                |                      |                      |                      |                     |           |                     | s experin         | nents      |          |          |             |                               |
| 2.                            |                                                                             |                               |                                |                      |                      |                      |                     |           |                     |                   |            |          |          |             |                               |
| 3.                            | To gain the knowledge of practicing experiments through virtual laboratory. |                               |                                |                      |                      |                      |                     |           |                     |                   |            |          |          |             |                               |
| 4.                            | 4. To know the importance of units                                          |                               |                                |                      |                      |                      |                     |           |                     |                   |            |          |          |             |                               |
| 5.                            |                                                                             |                               |                                | h accur              | acy                  |                      |                     |           |                     |                   |            |          |          |             |                               |
| COUR                          | SE OU                                                                       | TCOM                          | IES                            |                      |                      |                      |                     |           |                     |                   |            |          |          |             |                               |
| On th                         | ne succe                                                                    | essful co                     | ompleti                        | on of th             | e cours              | e, stude             | ents wil            | l be able | e to                |                   |            |          |          |             |                               |
| CO1.                          |                                                                             |                               |                                |                      | units vaining r      |                      | rformir             | ng the ex | perime              | ents, calc        | culating t | he       | Unders   | tand        |                               |
| CO2.                          | Operat                                                                      | e the ed                      | quipmei                        | nts with             | precisi              | on                   |                     |           |                     |                   |            |          | Apply    |             |                               |
| CO3.                          | Practic                                                                     | e to ha                       | ndle the                       | equipr               | nents in             | a syste              | matic r             | nanner    |                     |                   |            |          | Apply    |             |                               |
|                               | Demor                                                                       |                               |                                |                      |                      |                      |                     |           |                     |                   |            |          | Apply    |             |                               |
|                               |                                                                             |                               |                                |                      |                      | ,11 11114            |                     | utory     |                     |                   |            |          | Analyz   | e           |                               |
|                               | Calcul                                                                      |                               |                                |                      |                      | ~~-                  | ~                   |           |                     |                   | ~          |          |          |             |                               |
|                               |                                                                             | ı                             | 1                              | 1                    | ı                    | ı                    | ı                   | 1         |                     | ME SPE            | 1          |          | 1        | I           | <u> </u>                      |
| COS                           | PO1                                                                         | PO2                           | PO3                            | PO4                  | PO5                  | PO6                  | PO7                 | PO8       | PO9                 | PO10              | PO11       | PO<br>12 | PSO<br>1 | PSO2        | PSO3                          |
| CO1                           | S                                                                           | S                             | -                              | -                    | -                    | -                    | -                   | -         | -                   | -                 | -          | -        | -        | -           | -                             |
| CO2                           | S                                                                           | S                             | M                              | M                    | S                    | -                    | -                   | -         | M                   | -                 | -          | M        | M        | -           | -                             |
| CO3                           | S                                                                           | -                             | -                              | -                    | -                    | -                    | -                   | -         | -                   | -                 | -          | -        | -        | -           | -                             |
| CO4                           | S                                                                           | S                             | M                              | M                    | S                    | -                    | -                   | -         | -                   | -                 | -          | S        | M        | -           | -                             |
| CO5                           | S                                                                           | S                             | -                              | -                    | -                    | -                    | -                   | -         | -                   | -                 | -          | -        | -        | -           | -                             |
| S- Stro                       | ng; M-N                                                                     | Mediun                        | n; L-Lo                        | W                    |                      |                      |                     |           |                     |                   |            |          |          |             |                               |

- 1. Young's modulus of a bar Non-uniformbending
- 2. Rigidity modulus of a wire TorsionalPendulum
- 3. Viscosity of a liquid Poiseuille'smethod
- **4.** Velocity of ultrasonic waves in liquids UltrasonicInterferometer
- 5. Particle size determination usingLaser
- **6.** Wavelength of spectral lines grating –Spectrometer
- 7. Thickness of a wire Air wedgeMethod
- **9.** Thermal conductivity of a bad conductor Lee'sdisc
- 10. Band gap determination of a thermistor Post OfficeBox
- 11. Specific resistance of a wire –Potentiometer

## LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Missions Research Foundation (Deemed to be University), Salem.

| S.No. | Name of the Faculty  | Designation          | Department          | Mail ID                      |
|-------|----------------------|----------------------|---------------------|------------------------------|
| 1.    | Dr. C. Senthil Kumar | Professor            | Physics /<br>VMKVEC | senthilkumarc@vmkvec.edu.in  |
| 2.    | Dr. R. Sethupathi    | Associate Professsor | Physics /<br>VMKVEC | sethupathi@vmkvec.edu.in     |
| 3.    | Dr. G. Suresh        | Associate Professsor | Physics / AVIT      | suresh.physics@avit.ac.in    |
| 4.    | Dr. B.Dhanalakshmi   | Associate Professsor | Physics / AVIT      | dhanalakshmi.phy@avit.ac. in |

|          | PHYSICAL SCIENCES PART B - ENGINEERING CHEMISTRY | Category | L | Т | P | Credit |
|----------|--------------------------------------------------|----------|---|---|---|--------|
| 17PCBS81 | LAB Semester I (Common to All Branches)          | BS       | 0 | 0 | 2 | 1      |

## **PREAMBLE**

The main objective of this course is to develop the intellectual and psychomotor skills of the students by imparting knowledge in water technology and quantitative analysis.

# PREREQUISITE: NIL

## **COURSE OBJECTIVES**

- 1. To impart basic skills in Chemistry so that the student will understand the engineering concept.
- 2. To inculcate the knowledge of water and electrochemistry.
- 3. To lay foundation for practical applications of chemistry in engineering aspects.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Estimate the chemical properties of water               | Apply   |
|--------------------------------------------------------------|---------|
| CO2. Determine the presence of various elements in the water | Analyze |

CO3. Calculate the strength of acids, oxidizing and reducing agents

Analyze

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | M   | -   | L   | M   | M   | S   | -   | -    | -    | M    | ı    | M    | M    |
| CO2 | S   | M   | M   | -   | L   | M   | M   | L   | -   | -    | -    | M    | M    | M    | M    |
| CO3 | S   | S   | M   | -   | L   | M   | M   | M   | -   | -    | -    | M    | -    | M    | M    |

S- Strong; M-Medium; L-Low

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometricmethod
- **3.** Acid Base titration by pHmethod
- 4. Estimation of Ferrous ion by Potentiometricmethod
- 5. Determination of Dissolved oxygen by Winkler'smethod
- **6.** Estimation of Sodium by Flamephotometer
- 7. Estimation of Copper from Copper OreSolution
- **8.** Estimation of Iron bySpectrophotometer

# **TEXTBOOKS**

Laboratory Manual on Engineering Chemistry prepared by Vinayaka Mission's Research Foundation, Salem.

# REFERENCE BOOKS

1. Laboratory Manual on Engineering Chemistry, K. Bhasin S, Dhanpat Rai Publishing Co Pvt Ltd

| S.No. | Name of the Faculty      | Designation         | Department         | Mail ID                          |  |  |  |  |
|-------|--------------------------|---------------------|--------------------|----------------------------------|--|--|--|--|
| 1.    | Dr. V. Anbazhagan        | Professor           | Chemistry / VMKVEC | anbu80@gmail.com                 |  |  |  |  |
| 2.    | Mr. A. Gilbert Sunderraj | Assistant Professor | Chemistry / VMKVEC | asmgill80@gmail.com              |  |  |  |  |
| 3.    | Dr. R. Nagalakshmi       | Professor           | Chemistry / AVIT   | nagalakshmi.chemistry@avit.ac.in |  |  |  |  |
| 4.    | Dr.K.Sanghamitra         | Associate Professor | Chemistry / AVIT   | sanghamitra.chemistry@avit.ac.in |  |  |  |  |

|         | BASICS OF ELECTRICAL AND ELECTRONICS Ca                                                                                          | ntegory     | L      | Т        | P       | Credit  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------|-------------|--------|----------|---------|---------|--|--|--|--|
| 17EEE   | ENGINEERING ENGINEERING                                                                                                          |             |        | _        | _       |         |  |  |  |  |
|         | A. BASIC ELECTRICAL ENGINEERING                                                                                                  | ES          | 2      | 0        | 0       | 2       |  |  |  |  |
|         | MBLE                                                                                                                             |             |        |          |         |         |  |  |  |  |
|         | preliminary course which highlights the basic concepts and outline of                                                            |             | -      | -        | _       | _       |  |  |  |  |
| discuss | sed herein are projected to deliver explanation on basic electrical engineering                                                  | g for begin | nners  | s of all | engi    | neering |  |  |  |  |
| gradua  | tes.                                                                                                                             |             |        |          |         |         |  |  |  |  |
| PRER    | EQUISITE – NIL                                                                                                                   |             |        |          |         |         |  |  |  |  |
| COUR    | RSE OBJECTIVES                                                                                                                   |             |        |          |         |         |  |  |  |  |
| 1.      | To understand the electrical inventions, basic concepts of AC and DC circ engineering.                                           | uits and b  | asic   | laws o   | of elec | etrical |  |  |  |  |
| 2.      | To gain knowledge about the working principle, construction, application measuring instruments.                                  | of DC and   | d AC   | mach     | ines a  | and     |  |  |  |  |
| 3.      | To understand the fundamentals of safety procedures, Earthing and Power                                                          | system.     |        |          |         |         |  |  |  |  |
| COUR    | RSE OUTCOMES                                                                                                                     |             |        |          |         |         |  |  |  |  |
| On the  | successful completion of the course, students will be able to                                                                    |             |        |          |         |         |  |  |  |  |
|         | CO1: Explain the evolution of electricity, name of theinventors, electrical quantities and basic laws of electrical engineering. |             |        |          |         |         |  |  |  |  |
| CO2:    | Demonstrate Ohm's and Faraday's Law.                                                                                             | App         | oly    |          |         |         |  |  |  |  |
|         | Inderstand the basic concepts of measuring instruments, electrical machiner applications.                                        | ies Und     | lersta | ınd      |         |         |  |  |  |  |

| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPEC | CIFIC OUTCOMES |
|----------------------------------------------------|----------------|

**CO4:** Analyze the various types of electrical loads, power rating of electrical

**CO6:** Compare the various types electrical power generation systems by application

machineries and energy efficient equipment.

of conventional and non-conventional sources.

S- Strong; M-Medium; L-Low

**CO5:** Explain the electrical safety and protective devices.

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | <b>PO12</b> | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-------------|------|------|------|
| CO1 | S   | M   | L   |     | S   |     |     |     |     |      |      | L           | L    | L    |      |
| CO2 | S   | M   | S   | S   |     |     |     |     | M   | -    |      | M           | L    | M    | L    |
| CO3 | L   | S   | L   |     | S   |     |     |     |     | L    |      | L           | L    | L    |      |
| CO4 | S   | M   | S   | L   | L   | S   | S   |     |     | S    |      | L           | L    | M    | L    |
| CO5 | L   | M   | S   | M   |     | S   | M   | M   |     | S    |      | L           | L    | L    |      |
| CO6 | S   | L   | S   | L   | M   | S   | S   |     |     | M    |      | L           | L    | L    | L    |

Analyze

Analyze

Understand

# HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor & vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials - Conducting and insulatingmaterials.

## MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domesticload. Energy Efficient equipments – star ratings.

## ELECTRICALSAFETY AND INTRODUCTIONTOPOWERSYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Simple layout of generation, transmission and distribution of power.

## **TEXT BOOKS:**

- 1. Metha.V.K,RohitMetha,"BasicElectricalEngineering",FifthEdition,Chand.S&Co,2012.
- 2. Kothari.D.PandNagrath.I.J, "BasicElectricalEngineering", SecondEdition, TataMcGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.
- 4. P. Selvam, R. Devarajan, A.Nagappan, T. Muthumanickam and T. Sheela"Basic Electrical and Electronics Engineering", First Edition, VMRFDU, Anuradha Agencies, 2017

## **REFERENCE BOOKS:**

1. SmarajtGhosh, "FundamentalsofElectrical&ElectronicsEngineering", SecondEdition, PHILearning, 2007.

| S.No. | Name of the Faculty | Designation                 | Department | Mail ID                 |
|-------|---------------------|-----------------------------|------------|-------------------------|
| 1.    | Dr. R. Devarajan    | Professor                   | EEE/VMKVEC | devarajan@vmkvec.edu.in |
| 2.    | Mr. R. Sathish      | Assistant Professor         | EEE/VMKVEC | sathish@vmkvec.edu.in   |
| 3.    | Ms. D. Saranya      | Assistant Professor (Gr-II) | EEE/AVIT   | dsaranya@avit.ac.in     |
| 4.    | Mr. S. Prakash      | Assistant Professor (Gr-II) | EEE/AVIT   | sprakash@avit.ac.in     |

| 17EEES03 | BASICS OF ELECTRICAL AND ELECTRONICS<br>ENGINEERING | Category | L | Т | P | Credit |
|----------|-----------------------------------------------------|----------|---|---|---|--------|
|          | B. BASIC ELECTRONICS ENGINEERING                    | ES       | 2 | 0 | 0 | 2      |

#### **PREAMBLE**

The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, demultiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems.

# **PRERQUISITE** – NIL

## **COURSE OBJECTIVES**

- 1. To learn and identify various active and passive components and their working principles.
- **2.** To understand the number conversion systems.
- 3. To learn the digital logic principles and realize adders, multiplexer, etc.,
- **4.** To understand the application oriented concepts in the communication systems.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| <b>CO1.</b> Interpret working principle and application of various active and passive electronic components like resistors, capacitors, inductors, diodes and transistors. | Understand |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO2. Construct the rectifiers and regulators circuits and explore their operations.                                                                                        | Apply      |
| CO3. Execute number system conversions and compute several digital logic operations.                                                                                       | Apply      |
| CO4. Design adders, Multiplexer, De-Multiplexer, Encoder, Decoder circuits.                                                                                                | Apply      |
| CO5. Apply the modern technologies in developing application oriented gadgets like the UHD, OLED, HDR.                                                                     | Apply      |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | M   |     |     |     |     |     |     | M   |      |      |      | S    | -    | -    |
| CO2 | S   | M   | M   | M   |     |     | M   |     | M   |      |      | M    | -    | -    | -    |
| CO3 | S   | M   | M   |     |     |     |     |     | M   |      |      |      | -    | M    | -    |
| CO4 | S   | M   | M   | M   |     |     | M   |     | M   |      |      | M    | -    | -    | -    |
| CO5 | S   | M   | -   |     | M   |     | M   |     | M   | M    |      | M    | M    | -    | M    |

S- Strong; M-Medium; L-Low

#### **SEMICONDUCTOR**

#### **DEVICES**

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

#### DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

## COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR &Beyond, Smart Phones – Block diagramsOnly.

## **TEXT BOOKS:**

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

#### **REFERENCES:**

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

| S.No. | Name of the<br>Faculty | Designation                 | Department      | Mail ID                    |
|-------|------------------------|-----------------------------|-----------------|----------------------------|
| 1.    | Dr.T.Sheela            | Associate Professor         | ECE /<br>VMKVEC | sheela@vmkvec.edu.in       |
| 2.    | Mrs.A.Malarvizhi       | Assistant Professor         | ECE /<br>VMKVEC | malarvizhi@vmkvec.edu.in   |
| 3.    | Mr.R.Karthikeyan       | Assistant Professor (Gr-II) | ECE / AVIT      | rrmdkarthikeyan@avit.ac.in |
| 4.    | Ms.R.Mohana Priya      | Assistant Professor (Gr-II) | ECE / AVIT      | mohanapriya@avit.ac.in     |

|         |                                                                                     |           |          | BASIC    | CIVI    | L ENG       | INEEI    | RING      |           | С         | ategory   |       | Т    | P  | С    | redit    |
|---------|-------------------------------------------------------------------------------------|-----------|----------|----------|---------|-------------|----------|-----------|-----------|-----------|-----------|-------|------|----|------|----------|
| 17CM    | ES02                                                                                | (0        | Commo    | n to Cl  | VIL, N  | <b>IECH</b> | ANICA    | L, CSI    | E, ECE    |           | ES        | 2     | 0    | 0  |      | 2        |
|         |                                                                                     |           |          | El       | EE, S&  | AE &        | MECT     | ")        |           |           | ES        |       | U    | U  |      | 4        |
|         | MBLE<br>m of th                                                                     |           | ct is to | provide  | a fund  | amenta      | l know   | ledge of  | f basic ( | Civil Eng | gineering | g     |      |    |      |          |
| PRER    | QUISI                                                                               | TE – N    | IIL      |          |         |             |          |           |           |           |           |       |      |    |      |          |
| COUF    | RSE OF                                                                              | BJECT     | IVES     |          |         |             |          |           |           |           |           |       |      |    |      |          |
| 1.      | To un                                                                               | derstan   | d the b  | asic cor | cepts o | of surve    | ying an  | d const   | ruction   | material  | s.        |       |      |    |      |          |
| 2.      | To im                                                                               | part ba   | sic kno  | wledge   | about b | ouilding    | g compo  | onents.   |           |           |           |       |      |    |      |          |
| COUF    | RSE OU                                                                              | JTCON     | MES      |          |         |             |          |           |           |           |           |       |      |    |      |          |
| On the  | succes                                                                              | sful cor  | npletio  | n of the | course  | , studei    | nts will | be able   | to        |           |           |       |      |    |      |          |
| CO1.    | CO1. An ability to apply knowledge of mathematics, science, and engineering.  Apply |           |          |          |         |             |          |           |           |           |           |       |      |    |      |          |
| CO2     | 1 n abili                                                                           | tri to do | oion on  | d oord   | not ove |             |          | all as to | onolva    | o and int |           |       |      |    |      |          |
| data.   | An abin                                                                             | ty to de  | esign ar | ia cona  | uct exp | erimeni     | is, as w | en as to  | anaiyz    | e and int | erpret    | Apply |      |    |      |          |
| MAPI    | PING V                                                                              | VITH I    | PROGI    | RAMM     | E OUT   | COM         | ES AN    | D PRO     | GRAN      | IME SP    | ECIFIC    | OUTC  | OMES | S  |      |          |
| COS     | PO1                                                                                 | PO2       | PO3      | PO4      | PO5     | PO6         | PO7      | PO8       | PO9       | PO10      | PO11      | PO12  | PSC  | )1 | PSO2 | PSO<br>3 |
| CO1     | S                                                                                   | M         | L        | -        | M       | S           | -        | -         | -         | -         | -         | -     | -    |    | -    | -        |
| CO2     | S                                                                                   | M         | L        | S        | M       | S           | -        | -         | -         | -         | -         |       |      |    |      |          |
| S- Stro | S- Strong; M-Medium; L-Low                                                          |           |          |          |         |             |          |           |           |           |           |       |      |    |      |          |
|         |                                                                                     |           |          |          |         |             |          |           |           |           |           |       |      |    |      |          |
|         |                                                                                     |           |          |          |         |             |          |           |           |           |           |       |      |    |      |          |
|         |                                                                                     |           |          |          |         |             |          |           |           |           |           |       |      |    |      |          |
|         |                                                                                     |           |          |          |         |             |          |           |           |           |           |       |      |    |      |          |

## SURVEYING AND CIVIL ENGINEERING MATERIALS

**Surveying:** Objects – types – classification – principles – measurements of distances – angles – levelling determination of areas – illustrative examples.

**Civil Engineering Materials:** Bricks – stones – sand – cement – concrete – steel sections.

# **BUILDING COMPONENTS AND STRUCTURES**

**Foundations:** Types, Bearing capacity – Requirement of good foundations.

**Superstructure:** Brick masonry – stone masonry – beams – columns – lintels – roofing – flooring – plastering – Mechanics – Internal and external forces – stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping.

#### **TEXT BOOKS:**

1. "Basic Civil and Mechanical Engineering", VMU, (2017). Company Ltd., New Delhi, 2009

## **REFERENCES:**

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.
- 2. Seetharaman S., "Basic Civil Engineering", AnuradhaAgencies.

| S.No. | Name of the Faculty | Designation | Department   | Mail ID                  |
|-------|---------------------|-------------|--------------|--------------------------|
| 1.    | S.SUPRIYA           | Asst.Prof   | Civil/VMKVEC | jansupriyanair@gmail.com |
| 2.    | C.VAIDEVI           | Asst.Prof   | Civil/AVIT   | Vaidevi.c@gmail.com      |

| 17CMES02 | BASICS OF MECHANICAL | Category | L | T | P | Credit |
|----------|----------------------|----------|---|---|---|--------|
|          | <b>ENGINEERING</b>   | FC(ES)   | 2 | 0 | 0 | 2      |

#### **Preamble**

Basic Mechanical Engineering gives the fundamental ideas in the areas of engineering design, manufacturing and Automobile engineering. An engineer needs to understand, the basic manufacturing techniques and working principle of an Automobile Engineering Components.

# **PRERQUISITE**

**NIL** 

## **COURSE OBJECTIVES**

- 1 To demonstrate the principles of casting and metal joining processes in manufacturing.
- To describe and to apply the in depth knowledge in automotive engines and important components.

## **COURSE OUTCOMES**

| On the si | iccessful ( | completion | of the | course  | students | will be | able to |
|-----------|-------------|------------|--------|---------|----------|---------|---------|
| On the st | iccessiui i | COMPICATOR | or the | course, | students | WIII UC | aut to  |

| on the successful completion of the course, students will be used to               |       |
|------------------------------------------------------------------------------------|-------|
| Illustrate the application of casting and metal joining processes in manufacturing | Apply |
| Demonstrate the operation of automotive engines and important components           | Apply |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | M   | L   | L   | M   | -   | -   | -   | -    | -    | M    | L    | -    | -    |
| CO2 | S   | M   | L   | L   | L   | M   | -   | -   | -   | -    | -    | M    | L    | -    | -    |

S- Strong; M-Medium; L-Low

## **SYLLABUS**

#### FOUNDRY AND WELDING

Foundry: Introduction to Casting - Types, Pattern- Definition, Function. Foundry tools. Green Sand Moulding application. Welding: Introduction to welding, Classification – Gas welding, Arc Welding, TIG, MIG, Plasma – Definitions. Arc Welding - Methods and Mechanisms – Applications.

## AUTOMOTIVE ENGINES AND COMPONENTS

Introduction, Two stroke and four stroke cycle – Petrol and Diesel Engines - Construction and working, Fundamentals of automotive components - Brakes, Clutches, Governor, Flywheel, Axles, Drives etc., Fuel supply systems, Exhaust emission and control.

## **TEXT BOOKS:**

1. Basic Civil and Mechanical Engineering, School of Mechanical Engineering Sciences, VMU, Salem

## **REFERENCES:**

- 1. K. Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai.
- 2. NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida .
- 3. TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai

| ı | COCILD | COURSE DESIGNERS    |                     |               |                              |  |  |  |  |  |  |  |  |
|---|--------|---------------------|---------------------|---------------|------------------------------|--|--|--|--|--|--|--|--|
|   | S.No.  | Name of the Faculty | Designation         | Department    | Mail ID                      |  |  |  |  |  |  |  |  |
|   | 1      | S. Duraithilagar    | Associate Professor | Mech / VMKVEC | sduraithilagar@vmkvec.edu.in |  |  |  |  |  |  |  |  |
|   | 2      | T.Raja              | Assistant Professor | Mech / VMKVEC | rajat@vmkvec.edu.in          |  |  |  |  |  |  |  |  |

| 15.00                                                                                      | TEGO1                                                                           |                                  | T-1             |          | TATO     | OF GO    |          |           |         | Cate                   | gory      | L     | ГР    | Cr   | edit |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|-----------------|----------|----------|----------|----------|-----------|---------|------------------------|-----------|-------|-------|------|------|
| 1708                                                                                       | SES01                                                                           |                                  | E               | SSENT    | IALS     | OF CO    | MPUT     | ING       |         | ES                     |           | 3 (   | 0     | 3    | 3    |
| and er                                                                                     | ourse a<br>nphasi<br>orld ap                                                    | aims to<br>zing pr<br>pplication | inciples<br>on. |          |          |          |          |           |         | perations<br>mentals c |           |       |       |      |      |
|                                                                                            |                                                                                 | OR IE                            |                 | ES       |          |          |          |           |         |                        |           |       |       |      |      |
| 1.                                                                                         | 1. To provide basic knowledge of hardware and software components of computers. |                                  |                 |          |          |          |          |           |         |                        |           |       |       |      |      |
| 2.                                                                                         | +                                                                               |                                  |                 |          |          |          |          |           |         | ackages.               | <u> </u>  |       |       |      |      |
| 3.                                                                                         |                                                                                 |                                  |                 |          |          |          |          |           |         | nent cycle             | e.        |       |       |      |      |
| 4.                                                                                         | To l                                                                            | earn ab                          | out var         | ious alg | gorithm  | and id   | entifyir | ng the a  | lgorith | m efficie              | ncy.      |       |       |      |      |
| 5.                                                                                         | To l                                                                            | earn di                          | fferent         | algorith | ım for v | various  | applica  | ation.    |         |                        |           |       |       |      |      |
| COU                                                                                        | RSE (                                                                           | OUTC                             | OME             | S        |          |          |          |           |         |                        |           |       |       |      |      |
| On the successful completion of the course, students will be able to                       |                                                                                 |                                  |                 |          |          |          |          |           |         |                        |           |       |       |      |      |
| CO1. To understand the Basic knowledge on hardware and software terminologies.  Understand |                                                                                 |                                  |                 |          |          |          |          |           |         |                        |           |       |       |      |      |
| CO2.                                                                                       | To De                                                                           | emonsti                          | rate the        | variou   | s Appli  | cation l | Package  | es like I | MS-wo   | rd, MS- l              | Excel etc | . App | oly   |      |      |
| CO3.                                                                                       |                                                                                 | derstar                          | nd Prog         | ram De   | volven   | nent Cy  | cle and  | apply     | various | Problem                | Solving   | App   | oly   |      |      |
| CO4.                                                                                       | To ana                                                                          | alyze th                         | ne effici       | iency o  | f Algor  | ithms.   |          |           |         |                        |           | Ana   | ılyze |      |      |
| CO5.                                                                                       | To Im                                                                           | plemen                           | t of Al         | gorithn  | ns for v | arious c | concept  | s.        |         |                        |           | App   | oly   |      |      |
| MAP                                                                                        | PING                                                                            | WIT                              | H PRO           | OGRA     | MME      | OUT      | COME     | ES ANI    | D PRO   | )GRAN                  | IME SI    | ECIFI | C OUT | COME | S    |
| COS                                                                                        | PO1                                                                             | PO2                              | PO3             | PO4      | PO5      | PO6      | PO7      | PO8       | PO9     | PO10                   | PO11      | PO12  | PSO1  | PSO2 | PSO3 |
| CO1                                                                                        | S                                                                               | -                                | -               | -        | -        | -        | -        | -         | -       | -                      | -         | -     | S     | M    |      |
| CO2                                                                                        | S                                                                               | M                                | M               | -        | M        | -        | -        | -         | -       | -                      | -         | M     | S     | M    | M    |
| CO3                                                                                        | CO3 S S S - M S                                                                 |                                  |                 |          |          |          |          |           |         |                        | S         | -     | M     |      |      |
| CO4                                                                                        | S                                                                               | S                                | S               | -        | S        | -        | -        | -         | -       | -                      | -         | -     | S     | M    | M    |
| CO5                                                                                        | S                                                                               | M                                | M               | -        | M        | -        | -        | -         | -       | -                      | -         | S     | S     | M    | M    |
| S- Str                                                                                     | ong; N                                                                          | И-Мес                            | lium; I         | L-Low    |          |          |          |           |         |                        |           |       |       |      |      |
|                                                                                            |                                                                                 |                                  |                 |          |          |          |          |           |         |                        |           |       |       |      |      |
|                                                                                            |                                                                                 |                                  |                 |          |          |          |          |           |         |                        |           |       |       |      |      |
|                                                                                            |                                                                                 |                                  |                 |          |          |          |          |           |         |                        |           |       |       |      |      |

**BASICS OF COMPUTER AND INFORMATION TECHNOLOGY:** Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

**SOFTWARE APPLICATIONS:** Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

**PROBLEM SOLVING METHODOLOGIES:** Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation – Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

**INTRODUCTION TO ALGORITHMS:** Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

**IMPLEMENTATION OF ALGORITHMS:** Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

#### **TEXT BOOKS:**

- **1.** "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India,1996.

#### **REFERENCES:**

- **1.** Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.
- **2.** Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3<sup>rd</sup> Edition, Addison Wesley,1997.

| S. No. | Name of the Faculty | Designation                      | Department    | Mail ID              |
|--------|---------------------|----------------------------------|---------------|----------------------|
| 1.     | K.Karthik           | Assistant Professor              | CSE /<br>AVIT | karthik@avit.ac.in   |
| 2.     | Mrs.T.Geetha        | Assistant Professor CSE / VMKVEC |               | geetha@vmkvec.edu.in |

| 17CSE                                                                                        | S05   |          | PROC     | GRAMN      | IING I    | N PVT     | HON       |               | CAT     | EGORY     |         | L T       | P      | CR       | EDIT |
|----------------------------------------------------------------------------------------------|-------|----------|----------|------------|-----------|-----------|-----------|---------------|---------|-----------|---------|-----------|--------|----------|------|
| 1,001                                                                                        | 2000  |          | INO      |            | 111101    |           | 11011     |               |         | ES        |         | 3 0       | 0      |          | 3    |
| PREA                                                                                         |       | •        |          |            |           |           |           | ,             |         |           | ''      | •         | •      | •        |      |
| _                                                                                            | _     |          |          |            | -         |           |           |               |         | -         |         | mming la  |        | to write | code |
|                                                                                              | -     |          | -        | _          | _         | plicatio  | on doma   | in. Pyt       | hon ha  | s evolved | d on mo | re popula | ar and |          |      |
| •                                                                                            |       |          | progra   | mming to   | ool       |           |           |               |         |           |         |           |        |          |      |
| PRERO<br>NIL                                                                                 | QUISI | ľE       |          |            |           |           |           |               |         |           |         |           |        |          |      |
| COUR                                                                                         | SE OB | JECTI    | VES      |            |           |           |           |               |         |           |         |           |        |          |      |
| 1.                                                                                           |       | _        |          | knowled    |           | -         |           |               |         |           |         |           |        |          |      |
| 2.                                                                                           |       |          |          |            |           |           |           |               |         | and sets  | •       |           |        |          |      |
| 3.                                                                                           |       |          |          | rent prog  |           |           |           | ntrol st      | atemen  | its.      |         |           |        |          |      |
| 4.                                                                                           | То    | learn al | out di   | fferent fu | inctions  | s in pyth | non.      |               |         |           |         |           |        |          |      |
| 5.                                                                                           |       |          |          | xception   | handli    | ng funct  | tions, fi | le conc       | epts ar | nd CSV a  | nd JSO  | N.        |        |          |      |
| COUR                                                                                         |       |          |          |            |           |           |           |               |         |           |         |           |        |          |      |
|                                                                                              |       |          | •        | of the c   |           |           |           |               |         |           |         |           |        |          |      |
| CO1. Learn python statements, comments and indentation, tokens, input and output  Understand |       |          |          |            |           |           |           |               |         |           |         |           |        |          |      |
|                                                                                              |       |          |          | ple progr  |           |           |           |               |         |           |         |           |        |          |      |
|                                                                                              |       |          |          |            |           |           | _         | -             |         | ictionary | •       | Apply     |        |          |      |
|                                                                                              | -     | solution | s for co | omplex p   | rogram    | is using  | decisio   | n maki        | ng and  | looping   |         | Apply.    |        |          |      |
| stateme                                                                                      |       |          |          |            |           |           |           |               |         |           | _       |           |        |          |      |
|                                                                                              |       | e functi | on prog  | grams wi   | th all th | ne conce  | epts like | e lambo       | da, dec | orators a | nd      | Apply.    |        |          |      |
| generat                                                                                      |       |          |          |            |           |           |           |               |         |           |         |           |        |          |      |
|                                                                                              | -     |          | •        | n handlin  |           | ams, fil  | e conce   | ept prog      | grams a | and       |         | Apply     |        |          |      |
|                                                                                              |       |          |          | SV and .   |           | 202.520   |           | <b>DD</b> 0 0 |         |           | CTTT C  | 0.7777.00 |        |          |      |
| MAPP                                                                                         | ING W | TTH P    | KOGK     | AMME       | OUT       | COMIES    | AND       | PKOG          | KAMI    | ME SPE    | CIFIC   | OUTCO     | IMES   |          |      |
| COS                                                                                          | PO1   | PO2      | PO3      | PO4        | PO5       | PO6       | PO7       | PO8           | PO9     | PO10      | PO11    | PO12      | PSO1   | PSO2     | PSO  |
| CO1                                                                                          | S     | M        | M        | M          | M         | -         | -         | -             | -       | -         | -       | -         | M      | M        | M    |
| CO2                                                                                          | S     | M        | M        | M          | M         | -         | -         | -             | -       | -         | -       | -         | S      | M        | M    |
| CO3                                                                                          | M     | S        | S        | S          | M         | -         | -         | -             | -       | -         | -       | -         | M      | M        | M    |
| CO4                                                                                          | S     | S        | S        | S          | M         | -         | -         | -             | -       | -         | -       | -         | S      | S        | M    |
| CO5                                                                                          | S     | M        | M        | M          | M         | -         | -         | -             | -       | -         | -       | -         | S      | M        | M    |
| S- Stro                                                                                      |       | vieaiiim | n. T-FO  | W          |           |           |           |               |         |           |         |           |        |          |      |

#### INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

#### DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

## **CONTROL STATEMENTS**

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

## **FUNCTIONS**

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

## **EXCEPTION HANDLING**

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

## **TEXT BOOKS:**

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House PvtLtd
- **3.** "Dive Into Python" by MarkPilgrim

## **REFERENCES:**

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                 |  |  |
|-------|---------------------|---------------------|--------------|-------------------------|--|--|
| 1.    | Mr. K.Karthik       | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in      |  |  |
| 2.    | Dr. K. Sasikala     | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |  |  |

| 17CSES83 | PROGRAMMING IN PYTHON LAB | Category | L | Т | P | Credit |
|----------|---------------------------|----------|---|---|---|--------|
|          |                           | ES       | 0 | 0 | 4 | 2      |

## **PREAMBLE**

This laboratory enables the students clearly understand the basic concepts of python, control statements and file commands in python

# **PRERQUISITE**: NIL

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| 1 '                                                                          |         |
|------------------------------------------------------------------------------|---------|
| CO1 Learn Syntax and Semantics and create Functions in Python                | Apply   |
| CO2. Handle Strings and Files in Python.                                     | Apply   |
| CO3. Design solutions for complex programs using decision making and looping | Apply   |
| Statements                                                                   |         |
| CO4. Understand Lists, Dictionaries in Python                                | Apply   |
| <b>CO5</b> . Compute the exception handling programs                         | Analyze |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | L   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | M    |
| CO2 | S   | M   | L   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | -    |
| CO3 | S   | M   | L   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | M    |
| CO4 | S   | M   | L   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | -    |
| CO5 | S   | S   | M   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | M    |

S- Strong; M-Medium; L-Low

#### LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

## **REFERENCES:**

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

| S.No. | Name of the Faculty | Designation            | Department   | Mail ID                 |
|-------|---------------------|------------------------|--------------|-------------------------|
| 1.    | Mr. K.Karthik       | Assistant<br>Professor | CSE / AVIT   | karthik@avit.ac.in      |
| 2.    | Dr. K. Sasikala     | Associate              | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
|       |                     | Professor              |              |                         |

| 17EEES8                                | 2         | ENGINEERING SKILLS PRACTICE LAB  Category                              |           |            |          |          |          |          |           |           |           |            | ГР      | Cre     | dit   |
|----------------------------------------|-----------|------------------------------------------------------------------------|-----------|------------|----------|----------|----------|----------|-----------|-----------|-----------|------------|---------|---------|-------|
|                                        |           | A. BASIC ELECTRICAL ENGINEERING ES                                     |           |            |          |          |          |          |           |           |           |            | 0 2     |         | 1     |
| PREAME<br>It is a labor<br>of earthing | oratory c |                                                                        | ch fami   | iarizes t  | he basi  | c electi | rical wi | iring, n | neasurer  | ment of e | electrica | ıl quantit | ies and | various | types |
| PRERQU                                 | ISITE -   | TE – NIL                                                               |           |            |          |          |          |          |           |           |           |            |         |         |       |
| COURSE                                 | OBJE      | JECTIVES                                                               |           |            |          |          |          |          |           |           |           |            |         |         |       |
| 1                                      | To lea    | p learn the residential wiring and various types of electrical wiring. |           |            |          |          |          |          |           |           |           |            |         |         |       |
| 2                                      | To me     | Γο measure the various electrical quantities.                          |           |            |          |          |          |          |           |           |           |            |         |         |       |
| 3                                      | To kno    | ow the ne                                                              | cessity a | nd types   | of eart  | hing a   | nd mea   | sureme   | ent of ea | rth resis | tance.    |            |         |         |       |
| COURSE                                 | OUTC      | OMES                                                                   |           |            |          |          |          |          |           |           |           |            |         |         |       |
| On the suc                             | ccessful  | completio                                                              | on of the | course,    | student  | s will   | be able  | to       |           |           |           |            |         |         |       |
| CO1: Imp                               | lement 1  | the variou                                                             | s types   | of electri | ical wir | ing.     |          |          |           |           | A         | pply       |         |         |       |
| CO2: Mea                               | asure the | fundame                                                                | ental par | ameters    | of AC    | circuits | S.       |          |           |           | A         | nalyze     |         |         |       |
| CO3: Mea                               | asure the | are the earth resistance of various electrical machineries.  Apply     |           |            |          |          |          |          |           |           |           |            |         |         |       |
| MAPPIN                                 | G WITI    | WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES                |           |            |          |          |          |          |           |           |           |            |         |         |       |
| COS                                    | PO1       | PO2                                                                    | PO3       | PO4        | PO5      | PO6      | PO7      | PO8      | PO9       | PO10      | PO11      | PO12       | PSO1    | PSO2    | PSO3  |
| CO1                                    | S         | M                                                                      | L         |            | S        |          |          | -        |           |           |           | L          | L       | M       | L     |
| CO2                                    | S         | M S S M M L L M                                                        |           |            |          |          |          |          |           |           |           |            |         |         |       |

L

L

--

CO3

L

S- Strong; M-Medium; L-Low

S

L

S

# LIST OF EXPERIMENTS

- 1. Residential house wiring using switches, fuse, indicator, lamp and energymeter.
- 2. Fluorescent lampwiring.
- 3. Stair casewiring.
- **4.** Measurement of electrical quantities voltage, current, power &power factor in RLCcircuit.
- **5.** Measurement of energy using single phase energymeter.
- **6.** Measurement of resistance to earth of an electrical equipment.

# REFERENCES

1. Laboratory Reference Manual.

| S.No. | Name of the Faculty | Designation                 | Department | Mail ID                 |
|-------|---------------------|-----------------------------|------------|-------------------------|
| 1.    | Dr. R. Devarajan    | Professor                   | EEE/VMKVEC | devarajan@vmkvec.edu.in |
| 2.    | Mr. R. Sathish      | Assistant Professor         | EEE/VMKVEC | sathish@vmkvec.edu.in   |
| 3.    | Ms. D. Saranya      | Assistant Professor (Gr-II) | EEE/AVIT   | dsaranya@avit.ac.in     |
| 4.    | Mr. S. Prakash      | Assistant Professor (Gr-II) | EEE/AVIT   | sprakash@avit.ac.in     |

| 17EEES8                           | 32         |                                                                                                 | GINEE      |           |           |         |         |         |        | Categ   | ory   | L         | ГР   | Cre       | edit |
|-----------------------------------|------------|-------------------------------------------------------------------------------------------------|------------|-----------|-----------|---------|---------|---------|--------|---------|-------|-----------|------|-----------|------|
|                                   |            | B. 1                                                                                            | BASIC 1    | ELECT     | RONIC     | CS EN   | GINE    | ERING   | F      | E       | S     | 0         | 0 2  |           | 1    |
| PREAMI<br>This course<br>componer | se is to p |                                                                                                 |            |           | _         |         |         |         | _      | _       |       |           |      | f electro | onic |
| PRERQU                            | JISITE -   | – NIL                                                                                           |            |           |           |         |         |         |        |         |       |           |      |           |      |
| COURSE                            | E OBJE     | CTIVES                                                                                          |            |           |           |         |         |         |        |         |       |           |      |           |      |
| 1                                 | To fan     | To familiarize the electronic components, basic electronic equipments and soldering techniques. |            |           |           |         |         |         |        |         |       |           |      |           |      |
| 2                                 | To stud    | dy the cha                                                                                      | racterist  | ics of D  | iodes, I  | BJT an  | d FET.  |         |        |         |       |           |      |           |      |
| 3                                 | To unc     | o understand the principles of various digital logic gates.                                     |            |           |           |         |         |         |        |         |       |           |      |           |      |
| 4                                 | To unc     | To understand the concept of basic modulation techniques.                                       |            |           |           |         |         |         |        |         |       |           |      |           |      |
| COURSE                            | E OUTC     | OUTCOMES                                                                                        |            |           |           |         |         |         |        |         |       |           |      |           |      |
| On the su                         | ccessful   | completion                                                                                      | on of the  | course,   | student   | ts will | be able | to      |        |         |       |           |      |           |      |
| CO1. Co                           | nstruct ex | xperiment                                                                                       | ts for PN  | and Ze    | ner dio   | de char | acteris | tics    |        |         | I     | Inderstar | nd   |           |      |
| CO2. Dei                          | nonstrat   | e the fund                                                                                      | lamental   | s of sold | lering to | echniqu | ues.    |         |        |         | A     | apply     |      |           |      |
| CO3. Cla                          | ssify the  | character                                                                                       | ristics of | Diodes,   | BJT aı    | nd FET  |         |         |        |         | A     | apply     |      |           |      |
| CO4. Dis                          | tinguish   | between                                                                                         | amplitud   | le and fr | equenc    | y modı  | ılation | technic | ques.  |         | A     | apply     |      |           |      |
| CO5. Ver                          | ify the t  | ruth tables                                                                                     | s of logi  | c gates ( | AND, (    | OR, NO  | OT, NA  | ND, N   | OR, XC | OR).    | A     | apply     |      |           |      |
| MAPPIN                            | G WIT      | H PROG                                                                                          | RAMM       | E OUT     | COME      | S ANI   | ) PRO   | GRAN    | AME SI | PECIFIC | C OUT | COMES     | 5    |           |      |
| COS                               | PO1        | PO2                                                                                             | PO3        | PO4       | PO5       | PO6     | PO7     | PO8     | PO9    | PO10    | PO11  | PO12      | PSO1 | PSO2      | PSO3 |
| CO1                               | S          | S M M M                                                                                         |            |           |           |         |         |         |        |         |       |           |      |           |      |
| CO2                               | M          | M                                                                                               | M          |           |           |         |         |         | M      |         | M     |           | M    |           |      |
| CO3                               | S          | M                                                                                               |            |           |           |         |         |         | M      |         | M     |           | -    |           |      |
| CO4                               | S          | M                                                                                               |            |           |           |         |         |         | M      |         | M     |           | -    | M         | M    |
| CO5                               | S          | M                                                                                               | M          |           |           |         |         |         | M      |         | M     |           | M    | M         |      |

S- Strong; M-Medium; L-Low

# LIST OF EXPERIMENTS

- **2.** Identifying ElectronicsComponents.
- **3.** Practicing of Soldering and Desoldering.
- **4.** Characteristics of PN junctionDiode.
- **5.** Characteristics of Zenerdiode.
- **6.** Input & Output characteristics of BJT.
- 7. Transfer characteristics of JFET.
- **8.** Verification of LogicGates.
- **9.** Study of AmplitudeModulation.
- **10.** Study of FrequencyModulation.

| S.No. | Name of the Faculty | Designation                 | Department   | Mail ID                    |
|-------|---------------------|-----------------------------|--------------|----------------------------|
| 1.    | Dr.T.Sheela         | Associate Professor         | ECE / VMKVEC | sheela@vmkvec.edu.in       |
| 2.    | Mrs.A.Malarvizhi    | Assistant Professor         | ECE / VMKVEC | malarvizhi@vmkvec.edu.in   |
| 3.    | Mr.R.Karthikeyan    | Assistant Professor (Gr-II) | ECE / AVIT   | rrmdkarthikeyan@avit.ac.in |
| 4.    | Ms.R.Mohana Priya   | Assistant Professor (Gr-II) | ECE / AVIT   | mohanapriya@avit.ac.in     |

| <b>17CMES81</b> |  |
|-----------------|--|

# ENGINEERING SKILLS PRACTICE LAB A. BASIC CIVIL ENGINEERING

| Category | L | T | P | Credit |
|----------|---|---|---|--------|
| ES       | 0 | 0 | 2 | 1      |

# PREAMBLE

Engineering Skills Practice is a hands-on training practice to Mechanical, Civil and Mechatronics Engineering students. It deals with fitting, carpentry, sheet metal and related exercises. Also, it will induce the habit of selecting right tools, planning the job and itsexecution.

# **PRERQUISITE** – NIL

## **COURSE OBJECTIVES**

- 1. To understand the basic concepts of surveying and construction materials.
- 2. To impart basic knowledge about building components.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

**CO1.** Prepare the different types of fitting.

Apply

CO2. Prepare the different types of joints using woodenmaterial

Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | L   | L   | L   | L   | L   | L   | L   | L   | L    | L    | L    | -    | -    | -    |
| CO2 | S   | S   | S   | L   | L   | L   | L   | L   | L   | L    | L    | L    | -    | -    | -    |

S- Strong; M-Medium; L-Low

## LIST OF EXPERIMENTS:

## **Buildings:**

1. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

# **Plumbing Works:**

- **2.** Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in householdfittings.
- 3. Study of pipe connections requirements for pumps and turbines.
- **4.** Preparation of plumbing line sketches for water supply and sewageworks.
- **5.** Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- **6.** Demonstration of plumbing requirements of high-risebuildings.

# **Carpentry using Power Tools only:**

- 7. Study of the joints in roofs, doors, windows and furniture.
- **8.** Hands-on-exercise: Wood work, joints by sawing, planning andcutting.

# **TEXT BOOKS:**

1. "Laboratory Reference Manual

| S.No | Name of the Faculty | Designation    | Department     | Email ID                 |
|------|---------------------|----------------|----------------|--------------------------|
| 1.   | S.Supriya           | Asst.Profesor  | CIVIL / VMKVEC | jansupriyanair@gmail.com |
| 2.   | C.VAIDEVI           | Asst.Professor | CIVIL / AVIT   | vaidevi.c@avit.ac.in     |

| 15 C) FF CO 1 | ENGINEERING SKILLS PRACTICE LAB    | Category | L | Т | P | Credit |
|---------------|------------------------------------|----------|---|---|---|--------|
| 17CMES81      | B. BASIC MECHANICAL<br>ENGINEERING | ES       | 0 | 0 | 2 | 1      |

#### **Preamble**

Workshop is a hands-on training practice to Mechanical Engineering students. It deals with fitting, carpentry, foundry and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

# Prerequisite -NIL

# **Course Objective**

- 1. To perform the practice in different types of fitting processes.
- 2. To utilize the different type of joints using wooden materials.
- **3.** To perform and acquire in depth knowledge in metal joining processes.
- **4.** To demonstrate the pattern using foundry processes.

# Course Outcomes: On the successful completion of the course, students will be able to

| CO1. | Identify the different types of fitting using MS plate.                | Apply |
|------|------------------------------------------------------------------------|-------|
| CO2. | Predict the different types of joints using wooden material            | Apply |
| CO3. | Utilize the different types of joining process in metal by Arc Welding | Apply |
| CO4. | Make use of different types of green sand mould                        | Apply |

## Mapping with Programme Outcomes and Programme Specific Outcomes

| CO              | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1             | S   | M   | L   | L   | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO <sub>2</sub> | S   | M   | L   | L   | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO3             | S   | M   | L   | L   | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO4             | S   | M   | L   | L   | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |

# S- Strong; M-Medium; L-Low

#### **Syllabus**

# LIST OF EXPERIMENTS

Tee - Fitting Vee

Fitting

Preparation of a mould for a single piece pattern

Preparation of a mould for a split piece pattern Half-

Lap Joint in Carpentry

Dove Tail Joint inCarpentry Lap

Joint -Welding

Butt Joint -Welding

## **Text Books**

# 1. BASIC MECHANICAL ENGINEERING, LAB MANUAL

## Reference Books

- 1. K. Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai
- 2. NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida

# **Course Designers**

| S.No | Faculty Name    | Designation         | Department / Name of the College | Email id                 |
|------|-----------------|---------------------|----------------------------------|--------------------------|
| 1.   | Dr.V.K.Krishnan | Associate Professor | Mech / VMKVEC                    | vkkrishnan@vmkvec.edu.in |
| 2    | B.Selvababu     | Assistant Professor | Mech / AVIT                      | selvababu@avit.ac.in     |

| 17ME                                                                                                                                                                                                       | TEQ4                                                                                                                | ENGINEERING GRAPHICS                                          | ES 1 0 4                        | Credit      |          |         |               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|-------------|----------|---------|---------------|--|--|--|--|
| 17NIE                                                                                                                                                                                                      | L304                                                                                                                | (Theory & Practice)                                           | ES                              | 1           | 0        | 4       | 3             |  |  |  |  |
| Pream                                                                                                                                                                                                      | ble                                                                                                                 |                                                               |                                 |             |          |         |               |  |  |  |  |
| Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometric description of the physical geometric description of the physical geometric description. |                                                                                                                     |                                                               |                                 |             |          |         |               |  |  |  |  |
| of any                                                                                                                                                                                                     | of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential |                                                               |                                 |             |          |         |               |  |  |  |  |
| in prop                                                                                                                                                                                                    | osing ne                                                                                                            | w product through drawings and interpreting                   | data from existi                | ng drawi    | ngs. Thi | s cour  | se deals with |  |  |  |  |
| orthogr                                                                                                                                                                                                    | raphic an                                                                                                           | d pictorial projections, sectional views and d                | evelopment of s                 | urfaces.    |          |         |               |  |  |  |  |
| Prereq                                                                                                                                                                                                     | juisite —                                                                                                           | NIL                                                           |                                 |             |          |         |               |  |  |  |  |
| Course                                                                                                                                                                                                     | e Object                                                                                                            | ive                                                           |                                 |             |          |         |               |  |  |  |  |
| 1.                                                                                                                                                                                                         | To imp                                                                                                              | lement the orthographic projections of points                 | s, straight lines, <sub>I</sub> | plane surf  | aces an  | d solid | ls.           |  |  |  |  |
| 2.                                                                                                                                                                                                         | To con                                                                                                              | struct the orthographic projections of section                | ed solids and tru               | e shape o   | f the se | ctions. |               |  |  |  |  |
| 3.                                                                                                                                                                                                         | To dev                                                                                                              | elop lateral surfaces of the uncut and cut solid              | ds.                             |             |          |         |               |  |  |  |  |
| 4.                                                                                                                                                                                                         | To dray                                                                                                             | w the pictorial projections (isometric and pers               | spective) of simp               | ole solids. | ı        |         |               |  |  |  |  |
| 5.                                                                                                                                                                                                         |                                                                                                                     |                                                               |                                 |             |          |         |               |  |  |  |  |
| Course                                                                                                                                                                                                     | e Outcor                                                                                                            | nes: On the successful completion of the co                   | ourse, students                 | will be al  | ole to   |         |               |  |  |  |  |
| CO1.                                                                                                                                                                                                       |                                                                                                                     | erpret the physical geometry of any object threal projections | ough its orthogra               | aphic or    |          | UNI     | DERSTAND      |  |  |  |  |

Apply

Apply

Apply

Apply

Apply

Apply in the form of drawing of the orthographic projections of points, straight lines,

To establish in the form of drawing of the orthographic projections of sectioned

Sketch the pictorial projections (isometric and perspective) of simple solids.

**CO6.** To apply free hand sketch of the orthographic views from the given pictorial view.

|       |                   | _                      | _         |                  |
|-------|-------------------|------------------------|-----------|------------------|
| Mappi | ng with Programme | <b>Outcomes and Pr</b> | ogramme S | pecific Outcomes |

Develop lateral surfaces of the solid section and cut section of solids.

CO2.

**CO3.** 

**CO4.** 

CO5.

plane surfaces and solids.

solids and true shape of the sections.

| CO     | PO1    | PO2  | PO3     | PO4   | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|--------|--------|------|---------|-------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1    | S      | S    | L       | S     | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO2    | S      | S    | L       | S     | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO3    | S      | S    | L       | S     | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO4    | S      | M    | L       | S     | S   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO5    | S      | S    | L       | S     | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| CO6    | S      | S    | L       | S     | L   | -   | -   | -   | -   | -    | -    | -    | L    | -    | -    |
| S- Str | ong: N | M-Me | dium: l | L-Low |     |     |     |     |     |      |      |      |      |      |      |

## PLANE CURVES AND FREE HAND SKETCHING

Conics – Construction of ellipse– First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

# PROJECTION OF POINTS, LINES

Projection of points, Projection of straight lines located in the first quadrant: inclined to both planes – Determination of true lengths and true inclinations – rotating line method only.

## PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

# SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section. Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

# ISOMETRIC VIEW AND PERSPECTIVE PROJECTION

Principles of isometric View – isometric scale – isometric view of simple solids- Introduction to Perspective projection

| Text B | Books                                                                                         |
|--------|-----------------------------------------------------------------------------------------------|
| 1.     | Natarajan K V, "Engineering Graphics", Tata McGraw-Hill Publishing Company Ltd. New Delhi.    |
| 2.     | K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International Private Limited. |
| 3.     | K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.              |
| Refere | ence Books                                                                                    |
| 1.     | N.D. Bhat and V.M. Panchal, Engineering Graphics, Charotar Publishers 2013                    |
| 2.     | E. Finkelstein, "AutoCAD 2007 Bible", Wiley Publishing Inc., 2007                             |
| 3.     | R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.           |
| 4      | DhananjayA.Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw Hill     |
| 4.     | Publishing Company Limited, 2008.                                                             |
| 5.     | G.S. Phull and H.S.Sandhu, "Engineering Graphics", Wiley Publications, 2014.                  |

## **Course Designers**

| S.No | Faculty Name      | Designation         | Department /<br>Name ofthe<br>College | Email id             |
|------|-------------------|---------------------|---------------------------------------|----------------------|
| 1.   | Prof. N.Rajan     | Associate Professor | Mech / VMKVEC                         | rajan@vmkvec.edu.in  |
| 2.   | Prof. M.SARAVANAN | Asst. Prof          | Mech / AVIT                           | saravanan@avit.ac.in |

|                       |             |           |          | P         | ROGRA     | AMMI     | NG IN    | C        |          |          | Category  | L        | T        | P      | Credit      |
|-----------------------|-------------|-----------|----------|-----------|-----------|----------|----------|----------|----------|----------|-----------|----------|----------|--------|-------------|
| 17CSES                | <b>S</b> 06 |           |          |           |           |          |          |          |          |          | ES        | 3        | 0        | 0      | 3           |
| PREAMBI               |             |           |          |           |           |          |          |          |          | <b> </b> |           |          | <u> </u> | I      |             |
| This is a c           |             |           |          |           |           |          |          |          |          |          |           |          |          |        |             |
| provide the           |             |           |          |           | n on p    | rogramı  | ming co  | oncepts  | and its  | applicat | ion. It a | lso enab | les the  | studei | its to solv |
| PREREQU               |             |           | uoie iog | 510.      |           |          |          |          |          |          |           |          |          |        |             |
| NIL                   |             |           |          |           |           |          |          |          |          |          |           |          |          |        |             |
| COURSE                | OBJEC       | CTIVES    | 5        |           |           |          |          |          |          |          |           |          |          |        |             |
| <b>1.</b> To          | introd      | uce Bas   | ics of C | •         |           |          |          |          |          |          |           |          |          |        |             |
| 2. To                 | unders      | stand Co  | ontrol S | tructure  | s & Arı   | ays.     |          |          |          |          |           |          |          |        |             |
|                       |             | String co | -        |           |           |          |          |          |          |          |           |          |          |        |             |
| <b>4.</b> To          | unders      | stand the | e conce  | pts of F  | unction   | s and Po | ointers. |          |          |          |           |          |          |        |             |
| <b>5.</b> To          | unders      | stand M   | emory a  | and File  | manag     | ement c  | oncepts  | s in C.  |          |          |           |          |          |        |             |
| COURSE                | OUTC        | OMES      |          |           |           |          |          |          |          |          |           |          |          |        |             |
| 0 . 1                 | C 1         | 1 . 4     | · C 41   |           | 1         | 4        | 1.1 1.1  |          |          |          |           |          |          |        |             |
| On the succ           | essiui c    | complet   | ion of t | ne cours  | se, stude | ents wii | i be abi | e to     |          |          |           |          |          |        |             |
| CO1: Unde             | rstand t    | he basic  | es of C  | Data typ  | es, sco   | pe of va | riables, | differe  | nt types | of Opera | ators     | Understa | and      |        |             |
| CO2: Apply Programmin |             | ncept of  | f Input/ | Output    | functio   | ns, Dec  | ision m  | aking aı | nd Loop  | structur | es in C   | Apply    |          |        |             |
| CO3: Demo             | onstrate    | the C p   | rogram   | s for str | ing, arra | ays, uni | on & st  | ructure. |          |          |           | Apply    |          |        |             |
| CO4: Deve             |             |           |          |           |           |          |          |          |          |          |           | Apply    |          |        |             |
| CO5: Apply            |             |           |          |           |           |          | C prog   | rams     |          |          |           | Apply    |          |        |             |
| СОЗ. Прріз            | y the m     | c manag   | Scincia  | concept   | to deve   | nop the  | C prog   | ranis.   |          |          |           | пррпу    |          |        |             |
| MAPPING               | WITE        | I PROC    | GRAM     | ME OU     | TCOM      | IES AN   | D PRO    | )GRAN    | IME S    | PECIFIC  | COUTC     | OMES     |          |        |             |
| COs                   | PO1         | PO2       | PO3      | PO4       | PO5       | PO6      | PO7      | PO8      | PO9      | PO10     | PO11      | PO12     | PSO1     | PS     | D2 PSO3     |
| CO1                   | S           | S         | M        | ı         | S         | ı        | -        | -        | M        | -        | S         | M        | S        | M      |             |
| CO2                   | S           | M         | M        | -         | S         | -        | -        | -        | M        | -        | S         | S        | S        | M      | M           |
| CO3                   | S           | M         | M        | -         | S         | -        | -        | -        | M        | -        | S         | S        | S        | M      | M           |
| CO4                   | S           | M         | М        | _         | S         | İ        | 1        | _        | М        | 1        | S         | S        | S        | M      | M           |

S

M

S

S

M

M

S

CO5

S

S- Strong; M-Medium; L-Low

M

M

## BASICS OF C

Identifiers, variables, expression, keywords, data types, constants, scope of variables. Operators: arithmetic, logical, relational, conditional and bitwise operators – Special operators: size of () & comma (,) operator – Precedence and associatively of operators – Type conversion in expressions.

#### CONTROL STRUCTURES

Basic input/output and library functions: Single character input/output i.e. getch(), getchar(), getche(), putchar() - Formatted input/output: printf() and scanf() - Library functions (mathematical and character functions). Decision Making and Branching – Looping statements.

## ARRAYS, STRING, STRUCTURE & UNION

Arrays – Initialization – Declaration – One dimensional and two dimensional arrays. Strings: Declaration – Initialization and string handling functions. Structure and Union: structure declaration and definition – Accessing a Structure variable – Structure within a structure – Union.

#### FUNCTIONS AND POINTERS

Function – Function Declaration – function definition – Pass by value – Pass by reference – Recursive function Pointers – Definition – Initialization.

## MEMORY AND FILE MANAGEMENT

Static and dynamic memory allocation – Storage class specifier – Preprocessor directives. File handling concepts – File read – write – Functions for file manipulation: fopen, fclose, gets, puts, fprintf, fscan, getw, putw, fputs, fgets, fread, fwrite.

#### TEXT BOOKS

1. Balaguruswami. E, "Programming in C", TMH Publications, 1997

#### REFERENCES

- 1. Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming using C", Cengage Learning, 3rd Edition,2007.

  2. Gottfried, "Programming with C", schaums outline series, TMH publications,1997.
- 3. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 4. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                      |
|--------|---------------------|---------------------|--------------|------------------------------|
| 1.     | Mr.B.Sundaramurthy  | Associate Professor | CSE / VMKVEC | sundaramurthy@ vmkvec.edu.in |
| 2.     | Mr.K.Karthik        | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in           |

| 17CS           | ES85     |             |           | PROG      | RAM      | MING     | IN C L    | AR       |          | Cate                  | gory  | L       | Т    | P C  | redit |
|----------------|----------|-------------|-----------|-----------|----------|----------|-----------|----------|----------|-----------------------|-------|---------|------|------|-------|
|                |          |             |           | 1110      | ,        |          |           |          |          | F                     | ES    | 0       | 0 4  | 1 2  |       |
| PREAM          | MBLE     |             |           |           |          |          |           |          |          |                       |       |         |      |      |       |
|                | e hand   | s on tra    | ining to  | the stu   | idents i | n under  | standin   | g and p  | -        | g Comput<br>g the pro |       |         |      | -    |       |
| PRERI          | EQUIS    | ITE         | N.        | IL        |          |          |           |          |          |                       |       |         |      |      |       |
| COUR           | SE OU    | TCOM        | IES       |           |          |          |           |          |          |                       |       |         |      |      |       |
| On the         | success  | ful con     | npletion  | of the    | course,  | studen   | ts will b | e able   | to       |                       |       |         |      |      |       |
| CO1 W          |          | _           | _         | link and  | d execu  | te C pro | ogram f   | or the g | given    |                       |       | Apply   |      |      |       |
| CO2. D         | •        | and imp     | lement    | algoritl  | nms inv  | olving   | decision  | n struct | ures, lo | ops, array            | ys .  | Apply   |      |      |       |
| CO3. U         | se diffe | erent da    | ata struc | ctures fo | or solvi | ng the g | given pr  | oblem    | using co | omputer               |       | Apply   |      |      |       |
| <b>CO4</b> . C | Create/u | pdate d     | ata file  | S.        |          |          |           |          |          |                       |       | Apply   |      |      |       |
| CO5. A         | •        |             |           |           | •        | •        | lgorithr  | m by mo  | odulariz | ring the              |       | Analyze |      |      |       |
| MAPP           | ING W    | TTH P       | ROGR      | AMMI      | E OUT    | COME     | S AND     | PROC     | GRAM     | ME SPE                | CIFIC | OUTCO   | MES  |      |       |
| COS            | PO1      | PO2         | PO3       | PO4       | PO5      | PO6      | PO7       | PO8      | PO9      | PO10                  | PO11  | PO12    | PSO1 | PSO2 | PSO3  |
| CO1            | S        | -           | -         | -         | S        | -        | -         | -        | M        | -                     | -     | M       | S    | M    | S     |
| CO2            | S        | M           | M         | M         | S        | -        | -         | -        | S        | -                     | M     | M       | S    | S    | M     |
| CO3            | S        | M           | M         | M         | S        | -        | -         | -        | S        | -                     | M     | M       | S    | S    | M     |
| CO4            | S        | M           | M         | M         | S        | -        | -         | -        | S        | -                     | M     | M       | S    | M    | M     |
| CO5            | S        | S           | M         | M         | S        | -        | -         | -        | S        | -                     | M     | M       | S    | M    | M     |
| S- Stron       | ng; M-N  | l<br>Medium | ı; L-Lo   | W         |          |          |           |          |          |                       |       |         |      |      |       |

# LIST OF EXPERIMENTS

- 1. Basic programs to understand different types of data, operators and expressions.
- 2. Programs using control structures
  - i) Factorial of a number
  - ii) Fibonacci series
  - iii) Generating prime numbers
  - iv) Generating Armstrong numbers
  - v) Greatest common divisor
- 3. Programs using arrays
  - i) Merging of arrays
  - ii) Array order reversal
  - iii) Selection sort
  - iv) Bubble sort
  - v) Insertion sort
- 4. Programs using strings
  - i) Palindrome checking
  - ii) String sorting
  - iii) Linear pattern search
  - iv) Text line editing
- 5. Programs using functions
- 6. Programs using pointers
- 7. Programs using structures
- 8. Programs using file structure

| S.No. | Name of the Faculty   | Designation            | Department   | Mail ID                     |
|-------|-----------------------|------------------------|--------------|-----------------------------|
| 1     | Mr. B. Sundharamurthy | Associate<br>Professor | CSE / VMKVEC | sundharamurthy@vmkvecedu.in |
| 2     | Mr K.Karthik          | Assistant<br>Professor | CSE / AVIT   | karthik@avit.ac.in          |

|            | 17CSCC01 | DATA STRUCTURES | Category | L | T | P | Credit |
|------------|----------|-----------------|----------|---|---|---|--------|
| CC 3 0 0 3 |          | DITTISTROCTORES | CC       | 3 | 0 | 0 | 3      |

### **PREAMBLE**

This course aims at understanding the basic concepts in programming structures, linear structures and non linear structures

## **PRERQUISITE**

**NIL** 

### **COURSE OBJECTIVES**

- 1. To remember and understand the basic concepts in linear structures
- **2.** To learn about tree structures.
- 3. To understand about balanced trees
- **4.** To learn about hashing and sets.
- **5.** To learn and understand about graphs

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Remember the basic concepts in linear structures | Understand |
|-------------------------------------------------------|------------|
| CO2. Learn about tree structures and tree traversals  | Apply      |
| CO3. Understand about balanced trees                  | Apply      |
| CO4. Learn about hashing and sets.                    | Apply      |
| CO5. Learn and understand about graphs                | Apply      |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | M   | -   | -   | ı   | ı   | -   | 1   | -    | 1    | M    | S    | S    | S    |
| CO2 | S   | M   | M   | M   | M   | -   | -   | -   | -   | -    | 1    | M    | S    | S    | S    |
| CO3 | S   | M   | L   | M   | M   | -   | -   | -   | -   | -    | -    | M    | S    | S    | M    |
| CO4 | S   | M   | M   | M   | M   | -   | -   | -   | -   | -    | -    | L    | S    | S    | M    |
| CO5 | S   | M   | L   | M   | M   | -   | -   | -   | -   | -    | -    | M    | S    | S    | M    |

S- Strong; M-Medium; L-Low

### **SYLLABUS**

## **Linear Structures**

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

## **Tree Structures**

Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.

## **Balanced Trees**

AVL Trees - Splay Trees - B-Tree - heaps - binary heaps - applications of binary Heaps .

## **Hashing and Set**

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

### Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

#### TEXT BOOKS

1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education.

### **REFERENCES:**

- **1.** A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First EditionReprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition

| S.No. | Name of the Faculty | Designation | Department | Mail ID                     |
|-------|---------------------|-------------|------------|-----------------------------|
| 1.    | Dr. R. Jaichandran  | Associate   | CSE / AVIT | jaichandran@avit.ac.in      |
|       |                     | Professor   |            |                             |
| 2.    | Dr.V.Amirthalingam  | Associate   | CSE /      | amirthalingam@vmkvec.edu.in |
|       |                     | Professor   | VMKVEC     | -                           |

| 17CSCC20 | DATA STRUCTURES LAB | Category | L | T | P | Credit |
|----------|---------------------|----------|---|---|---|--------|
| 17050020 | DATA STRUCTURES EAD | CC       | 0 | 0 | 4 | 2      |

## **PREAMBLE**

This laboratory enables the students clearly understand the concepts of data structures. Also students can implement the searching and sorting algorithms.

## **PRERQUISITE**

NIL

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Develop algorithms for the concepts of data structures.                                                                                                      | Apply   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| CO2. Able to Apply searching and sorting techniques                                                                                                               | Apply   |
| CO3. Construct implementations for Abstract Data Types (ADT) using appropriate Data Structures                                                                    | Apply   |
| <b>CO4.</b> Assess the suitability of a data structure to solve a problem, based on the time and space complexities of different operations on the data structure | Analyze |
| CO5. Implement algorithms which use sorting, searching and/or selection as sub-procedures.(CO5)                                                                   | Apply   |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | M   | M   | M   | -   | -   | -   | -   | -   | 1    | -    | -    | M    | M    | M    |
| CO2 | M   | M   | M   | M   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO3 | M   | M   | S   | M   | -   | -   | -   | -   | -   | ı    | 1    | -    | M    | M    | M    |
| CO4 | S   | M   | M   | M   | ı   | -   | -   | -   | -   | ı    | ı    | -    | M    | M    | S    |
| CO5 | S   | M   | M   | M   | 1   | -   | -   | -   | -   | 1    | 1    | -    | M    | M    | S    |

S- Strong; M-Medium; L-Low

### LIST OF EXPERIMENTS:

- 1. Exercises using Objects, Classes, Inheritance
- **2.** Operator Overloading and Polymorphism
- **3.** Array implementation of List Abstract Data Type (ADT)
- 4. Linked list implementation of List ADT
- 5. Cursor implementation of List ADT
- **6.** Array implementations of Stack ADT
- 7. Linked list implementations of Stack ADT
- **8.** Queue ADT
- 9. Search Tree ADT Binary Search Tree
- 10. Heap Sort
- 11. Quick Sort

## **REFERENCES:**

- 1. Laboratory Reference Manual.
- **2.** Balaguruswami. E, "Programming in C", TMH Publications, 1997
- **3.** Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- **4.** Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- **5.** Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                |
|-------|---------------------|---------------------|--------------|------------------------|
| 1     | Dr. R. Jaichandran  | Associate Professor | CSE / AVIT   | jaichandran@avit.ac.in |
| 3     | Dr. M. Nithya       | Prof & Head         | CSE / VMKVEC | nithya@vmkvec.edu.in   |

| 17CSCC04  | COMPUTER ARCHITECTURE | Category | L | T | P | Credit |
|-----------|-----------------------|----------|---|---|---|--------|
| 17050001  | COM CIER ARCHITECTURE | CC       | 3 | 0 | 0 | 3      |
| DDEAMDLE. | _                     |          |   |   |   |        |

#### **PREAMBLE:**

This course is dedicated to number system, logic design, and memory and processing. This is the only course that is concerned with the hardware of a computer, its logic design and organization. It aims at making the student familiar with digital logic and functional design of arithmetic and logic unit that is capable of performing floating point arithmetic operations.

## PREREQUISITE: NIL

## **COURSE OBJECTIVES**

- 1. To learn about the design of the processors.
- 2. To learn about the data transfer.
- 3. Understand the functional units of a computers, bus structures and addressing modes.
- 4. Apply the knowledge of algorithms to solve arithmetic problems.

### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| <b>CO1.</b> Explain about computer organization components.                                   | Understand |
|-----------------------------------------------------------------------------------------------|------------|
| <b>CO2.</b> Compute simple arithmetic operations for fixed-point and floating-point           | Apply      |
| addition, subtraction, multiplication & division.                                             |            |
| CO3. Design combinational and sequential digital functions.                                   | Analyse    |
| <b>CO4.</b> Construct an instruction set capable of performing a specified set of operations. | Analyze    |
| CO5. Demonstrate a memory system for a given set of specifications                            | Analyze    |
| CO6. Explain pipelining concepts                                                              | Understand |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | -   | M   | -   | -   | -          | -   | -   | -    | -    | L    | M    | M    | -    |
| CO2 | M   | M   | M   | M   | 1   | ı   | -          | 1   | -   | -    | -    | L    | M    | M    | -    |
| CO3 | M   | M   | S   | M   | 1   | -   | -          | -   | -   | -    | -    | -    | S    |      | -    |
| CO4 | S   | M   | M   |     | -   | 1   | -          | -   | -   | -    | -    | -    | S    | M    | -    |
| CO5 | S   | -   | M   | L   | -   | -   | -          | -   | -   | -    | -    | -    | S    |      | -    |
| CO6 | M   | M   | M   | S   | -   | ı   | -          | -   | -   | -    | -    | L    | M    | M    | -    |

S- Strong; M-Medium; L-Low

## **SYLLABUS**

## INTRODUCTION

Computer Organization- Main memory – CPU operation – Interrupt concept – I/ O techniques – Bus concept – Computer performance factors – System performance measurement- High performance techniques – Comparison of Architecture and Organization – Study of Salient features and architectures of Advanced processors (80286, 80386, 80486, Pentium).

## PROCESSOR DESIGN AND CONTROL UNIT

Goals – Design process –Data path organization – Main memory interface – Data path for single instructions- Floating point unit data path – Role of control unit – Reset sequence – Interrupt recognition and servicing – Abnormal situation handling – Hardwired control unit – Micro programmed control unit.

### MEMORY DESIGN & MEMORY MANAGEMENT

Memory types – Functional and usage modes – Memory allocation- Multiple memory decoding – Memory hierarchy – Instruction pre fetch – Memory interleaving – Write buffer – Cache memory – Virtual memory – Associative memory.

### INTRA SYSTEM COMMUNICATION AND I/O

I/O controller & driver- Case study: Hard disk controller in IBM PC – I /O ports and bus concepts – Case study: Keyboard interface – Bus cycle – Asynchronous and Synchronous Transfer – Interrupt handling in PC – I/O techniques in PC – Case Study: RS 232 interface – Modern serial I/O interface – Bus arbitration techniques – Hard disk interface in PC.

### ADVANCED ARCHITECTURE

Classification of parallelism – Multiple functional units – Pipelining – Vector computing – array processors – High performance architecture – RISC systems – Super scalar architecture – VLIW architecture – EPIC architecture – Multiprocessor systems – Cache coherence problem – Fault tolerance.

### **TEXT BOOKS:**

**1.** WilliamStallings, "Computer OrganizationAndArchitecture—DesigningFor Performance",Sixth Edition, Pearson Education, 2007.

### **REFERENCES:**

- **1.**Govindarajulu, "Computer Architecture and Organization Design principles and applications", Tata McGraw Hill publications, NewDelhi.
- **2.** David A. Patterson And John L. Hennessy, "Computer Organization And Design: The Hardware/Software Interface", Fifth Edition, Morgan Kaufmann, 2013.
- 3. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 1998.
- **4.** A.K.Ray & K.M.Bhurchandi, "Advanced Microprocessors and peripherals- Architectures, Programming and Interfacing", McGraw-Hill Education (India), 2013 reprint.

| S. No. | Name of the faculty | Designation                 | Department      | Mail Id                        |
|--------|---------------------|-----------------------------|-----------------|--------------------------------|
| 1.     | Mr. S.Senthilkumar  | Assistant. Professor        | CSE /<br>VMKVEC | senthikumars<br>@vmkvec.edu.in |
| 2.     | Mrs. S.Leelavathy   | Assistant. Professors (GII) | CSE / AVIT      | leelavathy@avit.ac.in          |

| 17CS0   | CC02                                                                  |          | OR IF                | T ODI    | FNTF     | n pro    | CDAN     | IMING      |          | Categor     | <b>y</b> ] | L          | T            | P         | Credit    |  |
|---------|-----------------------------------------------------------------------|----------|----------------------|----------|----------|----------|----------|------------|----------|-------------|------------|------------|--------------|-----------|-----------|--|
|         |                                                                       | '        | ODJEC                | JI OKI   | ETT IE.  | DIKO     | GKAN     | IMING      |          | CC          |            | 3          | 0            | 0         | 3         |  |
| PREA    | MBLE                                                                  | l.       |                      |          |          |          |          |            |          |             |            | l          |              |           |           |  |
| This sy | yllabus i                                                             | is inter | nded for             | r the Co | ompute   | r scienc | e stude  | ents and e | enables  | them to     | learn C    | bject Or   | iented 1     | Programn  | ning and  |  |
| the de  | esign of                                                              | f comp   | puter s              | olution  | s in a   | precis   | e man    | ner. The   | e sylla  | bus emp     | hasizes    | on OC      | P con        | cepts, Fu | inctions, |  |
| Polym   | orphism                                                               | , Inher  | itance a             | and I/O. | The in   | tention  | is to pr | ovide suf  | ficient  | depth in t  | these to   | pics to e  | nable ca     | andidates | to apply  |  |
| -       |                                                                       | _        |                      |          |          |          | _        |            |          | n the sylla |            |            |              | _         |           |  |
| progra  | mming                                                                 | solutio  | n. Thu               | s, mod   | ules co  | llective | ly focu  | is on pro  | ogramn   | ning cond   | cepts, s   | strategies | and tec      | hniques;  | and the   |  |
| applica | application of these toward the development of programming solutions. |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
| PRER    | PRERQUISITE                                                           |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
| NIL     | VIL COURSE OBJECTIVES                                                 |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
| COUR    | RSE OB                                                                | JECT:    | IVES                 |          |          |          |          |            |          |             |            |            |              |           |           |  |
| 1.      |                                                                       |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
| 2.      | To learn about the concepts of object oriented programming.           |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
| 3.      | , , , , , , , , , , , , , , , , , , ,                                 |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
| 4.      | To An                                                                 | alyse h  | ow to r              | educe t  | he codi  | ng by a  | pplying  | overload   | ding co  | ncepts      |            |            |              |           |           |  |
| 5.      | To An                                                                 | alyse h  | ow to r              | euse the | e code,  | how to   | verify a | and valid  | ate the  | coding      |            |            |              |           |           |  |
|         | RSE OU                                                                |          |                      |          |          |          |          |            |          |             |            |            |              |           |           |  |
|         |                                                                       |          | •                    |          |          |          |          | be able to |          |             |            |            |              |           |           |  |
|         |                                                                       | -        |                      | _        | _        | _        |          |            | g the c  | oncepts o   | of         | Apply      |              |           |           |  |
|         | ction, en                                                             | _        |                      |          | _        |          |          |            |          |             |            |            |              |           |           |  |
| CO2.    | Constru                                                               | ct objec | ct-orien             | ted pro  | grams f  | or a giv | en appl  | lication b | y using  | g construc  | etors      | Apply      |              |           |           |  |
| CO3.    | Develop                                                               | object   | -oriente             | ed prog  | rams fo  | r a give | n appli  | cation us  | ing the  | concepts    | of         | Analyze    |              |           |           |  |
| compil  | e-time a                                                              | and run  | -time p              | olymor   | phism    |          |          |            |          |             |            |            |              |           |           |  |
| CO4.    | Develop                                                               | object   | -oriente             | ed appli | cations  | throug   | h inheri | itance coi | ncepts   |             |            | Analyze    | <del>,</del> |           |           |  |
| CO5.    | Constru                                                               | ct objec | ct-orien             | ted app  | lication | s for a  | given so | cenario u  | sing fil | es, Sting   |            | Analyze    | ,            |           |           |  |
| handlii | ng and to                                                             | o hand   | le exce <sub>l</sub> | ptions   |          |          |          |            |          |             |            |            |              |           |           |  |
| MAPI    | PING W                                                                | TTH F    | PROGE                | RAMM     | E OUT    | COME     | ES ANI   | ) PROG     | RAMN     | AE SPEC     | CIFIC (    | OUTCO      |              |           |           |  |
| COS     | PO1                                                                   | PO2      | PO3                  | PO4      | PO5      | PO6      | PO7      | PO8        | PO9      | PO10        | PO11       | PO12       | PSO1         | PSO2      | PSO3      |  |
| CO1     | M                                                                     | M        | M                    | M        | M        | -        | -        | -          | -        | -           | M          | L          | M            | M         | M         |  |
| CO2     | M                                                                     | M        | M                    | M        | M        | -        | -        | -          | -        | -           | M          | L M M M    |              |           |           |  |
| CO3     | M                                                                     | M        | S                    | M        | S        | -        | -        | -          | -        | -           | M          | L S M M    |              |           |           |  |
| CO4     | S                                                                     | M        | M                    | M        | S        | ı        | ı        | -          | -        | -           | M          | L          | S            | M         | S         |  |

M

M

L

M

S

S

M

S- Strong; M-Medium; L-Low

M

CO5

M

M

### INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

### OBJECT INITIALIZATION AND FRIEND FUNCTION

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

### OVERLOADING AND GENERIC PROGRAMMING

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keyword- limitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

### INHERITANCE AND VIRTUAL FUNCTION

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function.

### EXCEPTION HANDLING AND STREAMS

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file- file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

## **TEXT BOOKS:**

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill,2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. Edition, 2008.
- **4.** Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3<sup>rd</sup> edition 2008.
- **5.** Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- **6.** Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

### **REFERENCES:**

- **1.** H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005.
- 2. 2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

| S.No | Name of the faculty | Designation                | Department      | Mail Id                 |
|------|---------------------|----------------------------|-----------------|-------------------------|
| 1.   | Dr. K. Sasikala     | Associate Professor        | CSE /<br>VMKVEC | sasikalak@vmkvec.edu.in |
| 2.   | Mr.S. Muthuselvan   | Assistant Professor Gr. II | CSE / AVIT      | muthuselvan@avit.ac.in  |

|                                       |            |                      |          |          |          |          |          |          | Categ     | gory    | L      | T      | P        | Cre       | dit      |
|---------------------------------------|------------|----------------------|----------|----------|----------|----------|----------|----------|-----------|---------|--------|--------|----------|-----------|----------|
| 17CSCC2                               | 21         | OBJEC'               | T ORII   | ENTED    | PRO(     | GRAM     | MING     | LAB      | CC        | ;       | 0      | 0      | 4        | ,         | 2        |
| PREAMBI<br>With a dyna<br>way of prob | ımic lea   |                      |          |          |          |          |          |          |           |         |        |        |          |           |          |
| PRERQUI<br>NIL                        | SITE       |                      |          |          |          |          |          |          |           |         |        |        |          |           |          |
| COURSE                                | OBJEC      | TIVES                |          |          |          |          |          |          |           |         |        |        |          |           |          |
| <b>1.</b> To                          | be capa    | ble of ex            | plaining | g proce  | dure as  | well as  | object   | oriented | d prograi | nming   | conce  | pts &  | their di | fferences | <b>.</b> |
| <b>2.</b> To                          | be able    | to imple             | ment in  | line and | d friend | function | on very  | well.    |           |         |        |        |          |           |          |
| <b>3.</b> To                          | be fami    | liar with            | how to   | make p   | rogram   | ıs using | function | on overl | oading &  | k opera | tor ov | erloac | ling     |           |          |
| <b>4.</b> To                          | get the    | capabilit            | y to imp | olement  | the dif  | ferent t | ypes of  | inherita | ance & d  | one pro | blems  | relat  | ed to th | em        |          |
| COURSE                                | OUTCO      | OMES                 |          |          |          |          |          |          |           |         |        |        |          |           |          |
| On the succ                           | essful c   | ompletio             | n of the | course   | , studer | nts will | be able  | to       |           |         |        |        |          |           |          |
| CO1. Cons                             |            | ject-orier           | ited pro | grams f  | or a giv | en scer  | nario    | using tl | he        | Analys  | sis    |        |          |           |          |
| concepts of abstraction,              |            | ulation, n           | nessage  | -passin  | g and n  | odular   | itv.     |          |           |         |        |        |          |           |          |
| CO2. Deve                             |            |                      |          | _        | _        |          |          | using th | e         | Apply   |        |        |          |           |          |
| concepts of compile-tin               | no and r   | ın timo r            | olumor   | nhiem    |          |          |          |          |           |         |        |        |          |           |          |
| CO3. Cons                             |            |                      |          |          | or a giv | en app   | lication | by       |           | Apply   |        |        |          |           |          |
| demonstrati                           | •          |                      |          |          |          |          |          |          |           |         |        |        |          |           |          |
| the inter-                            |            |                      |          |          |          |          |          |          | egation.  | . Apply |        |        |          |           |          |
| CO5. Cons                             |            |                      |          |          |          |          |          |          | ist data  | Apply   |        |        |          |           |          |
| using files                           |            | .•                   |          |          |          |          |          | -        |           |         |        |        |          |           |          |
| and object-                           |            |                      | RAMM     | E OUT    | COMI     | ES ANI   | D PRO    | GRAM     | ME SPI    | ECIFIC  | COU    | ГСОN   | MES      |           |          |
| COS PO                                |            | 2 PO3                | PO4      | PO5      | PO6      | PO7      | PO8      |          | PO10      | PO11    |        |        | PSO1     | PSO2      | PSO3     |
| CO1                                   |            | M                    | M        | S        | -        | -        | -        | -        | -         | -       |        | -      | M        | M         | M        |
| CO2                                   | I M        | M                    | M        | M        | -        | -        | -        | -        | -         | -       |        | -      | M        | M         | M        |
| CO3 N                                 | I M        | S                    | M        | S        | -        | -        | -        | -        | -         | -       |        | -      | M        | M         | M        |
| CO4                                   | M          | M                    | M        | M        | -        | -        | -        | -        | -         | -       |        | -      | M        | M         | S        |
| CO5                                   | M          | M                    | M        | M        | -        | -        | -        | -        | -         | -       |        | -      | M        | M         | S        |
| S- Strong; I                          | <br>И-Medi | <br>um: L-L <i>e</i> | ]<br>)W  |          |          |          |          |          |           |         |        |        |          |           |          |

### LIST OF EXPERIMENTS

- 1. Write a program to illustrate function overloading feature
- 2. Write a program to illustrate the overloading of various operators Ex. Binary operators, Unary operators, New and Delete operators.
- 3. Write a program to illustrate the use of following functions: a) Friend functions b) Inline functions c) Static Member functions d) Function with default arguments
- 4. Write a program to illustrate the use of destructor and the various types of constructors (no arguments, constructor, constructor with arguments, copy constructor etc).
- 5. Write a program to illustrate the various forms of inheritance: Ex. Single, Multiple, multilevel, hierarchical inheritance etc.
- 6. Write a program having student as on abstract class and create many derived classes such as Engg. Science, Medical, etc. from student's class. Create their objects and process them.
- 7. Write a program to illustrate the use of virtual functions.
- 8. Write a program to illustrate the use of virtual base class.
- 9. Write a program to illustrate file handling operations: Ex. a) Copying a text files b) Displaying the contents of the file etc.
- 10. Write a program to illustrate how exceptions are handled (ex: division-by-zero, overflow and underflow in stacketc).

### **REFERENCES:**

- **1.** H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2010.
- 2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.
- **3.** B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- **4.** K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.
- 5. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.
- **6.** Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3<sup>rd</sup> edition 2008.
- 7. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 8. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

| S.No | Name of the faculty | Designation         | Department   | Email Id                |
|------|---------------------|---------------------|--------------|-------------------------|
| 1.   | Dr. K. Sasikala     | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.   | Mr.K.Karthik        | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in      |

| 17CSCC06  | DESIGN AND ANALYSIS OF | Category | L | Т | P | Credit |
|-----------|------------------------|----------|---|---|---|--------|
|           | ALGORITHM              | CC       | 3 | 0 | 0 | 3      |
| DDEAMBIE. |                        |          |   |   |   |        |

### PREAMBLE:

This subject introduces students the concepts of design and analysis of algorithms. On completion of this course students will be able to:

- i) Learn the algorithm analysistechniques.
- ii) Become familiar with the different algorithm designtechniques
- iii) Construct efficient algorithms for solving engineering problems by using appropriate algorithm design paradigms and datastructures.

## PREREQUISITE: DATA STRUCTURES

|        | -                                                                                                    |                                      |  |  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|
| COUR   | SE OBJECTIVES                                                                                        |                                      |  |  |  |  |  |  |  |  |  |
| 1.     | To familiarize the student with good programming design methods, particularly                        | Top- Down design.                    |  |  |  |  |  |  |  |  |  |
| 2.     | To develop algorithms for manipulating stacks, queues, linked lists, trees, graphs                   |                                      |  |  |  |  |  |  |  |  |  |
| 3.     | To create the data structures for implementing the above algorithms                                  |                                      |  |  |  |  |  |  |  |  |  |
| 4.     | To construct the recursive algorithms as they apply to trees and graphs                              |                                      |  |  |  |  |  |  |  |  |  |
| 5.     | To familiarize the student with the issues of Time complexity and examine various                    | ous algorithms from this perspective |  |  |  |  |  |  |  |  |  |
| COUR   | SE OUTCOMES                                                                                          |                                      |  |  |  |  |  |  |  |  |  |
| On the | successful completion of the course, students will be able to                                        |                                      |  |  |  |  |  |  |  |  |  |
| CO1.   | CO1. Analyse the correctness of algorithms using induction and loop invariants.  Analyze             |                                      |  |  |  |  |  |  |  |  |  |
|        | CO2. Analyse the worst-case, best-case and average-case running time of algorithms  Analyze  Analyze |                                      |  |  |  |  |  |  |  |  |  |

| using asymptotic.                                                                        |         |
|------------------------------------------------------------------------------------------|---------|
| <b>CO3.</b> Analyse the performance of a sequence of operations using amortized analysis | Analyze |
| tachniques like notential method and accounting method                                   |         |

techniques like potential method and accounting method. CO4. Construct algorithms using design paradigms like divide and conquer, greedy and Analyze dynamic programming for a given problem.

CO5. Infer when a design scenario requires the application of the different algorithm Apply design paradigms.

**CO6.** Analyse how the performance of an algorithm is affected based on the choice Analyze of data structures the algorithm uses.

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| 141771 | MATTING WITH I ROUKAMINE OUTCOMES AND I ROUKAMINE SI ECHTE OUTCOMES |     |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------|---------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| COS    | PO1                                                                 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1    | S                                                                   | M   | M   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | M    |
| CO2    | S                                                                   | M   | M   | -   | -   | -   | 1   | -   | -   | -    | -    | -    | S    | S    | M    |
| CO3    | M                                                                   | M   | S   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | M    |
| CO4    | S                                                                   | M   |     | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | S    | M    |
| CO5    | M                                                                   | M   | M   | -   | -   | -   | 1   | -   | -   | -    | -    | -    | S    | M    | S    |
| CO6    | M                                                                   | M   | M   | -   | -   | -   | -   | -   | -   | -    | -    | -    | S    | M    | M    |

#### INTRODUCTION TO ALGORITHMS

The role of algorithms in computing, Growth of functions, Asymptotic notations, Designing and Analyzing algorithms-an Introduction using insertion sort. Review on the Math needed for algorithm design and analysis.

## **DIVIDE AND CONQUER**

Solving recurrences – The Substitution method, Recurrence Tree method and Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worst-case], Strassen's algorithm for Matrix Multiplication, The maximum sub-array problem.

### **GREEDY ALGORITHMS**

Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees – Kruskal's Algorithm and Prim's Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis: The accounting method, The potential method.

### DYNAMIC PROGRAMMING

Calculating the binomial co-efficient, The problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions.

### **GRAPH ALGORITHMS**

Depth-first search & Breadth-First Search, Flow Networks, Topological sort, Strongly connected components Computational Complexity: Classes P and NP, Polynomial reductions, Classes NP-Complete and NP-Hard. Heuristics: Graph Coloring problem, Travelling Sales Person problem.

## **TEXT BOOKS:**

1. Charles E. Leiserson, "Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction to Algorithms", Third edition, PHI. 2010

## **REFERENCES:**

- 1. Gilles Brassard and Paul Bratley, "Fundamentals of Algorithmic", PHI,2000.
- 2. Sara Baase Computer algorithms: Introduction to Design and Analysis -, Addison Wesley publication, 1998.

| S. No. | Name of the faculty | Designation                | Department   | Email Id                 |
|--------|---------------------|----------------------------|--------------|--------------------------|
| 1.     | Dr. S. Rajaprakash  | Assistant Professor Gr. II | CSE / AVIT   | srajaprakash@avit.ac.in  |
| 2.     | Mr. M. Annamalai    | Associate Professor        | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 17CSC         | C23                                                                                                      |            |           | AI C      | ODIT      | HM LA     | A R        |            | Ca       | ategory    | L        | T        | P        | Cro      | edit |
|---------------|----------------------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|-----------|------------|------------|----------|------------|----------|----------|----------|----------|------|
| Trese         | C <b>2</b> 5                                                                                             |            |           | ALG       | OKII      |           | хD         |            |          | CC         | 0        | 0        | 4        | 2        | 2    |
| PREAM         | MBLE                                                                                                     | !          |           |           |           |           |            |            |          |            |          | ı        | 1        |          |      |
| The obje      | ective o                                                                                                 | of this la | boratory  | y course  | is to en  | able stud | dents to   | solve alg  | gorithmi | ic proble  | ms by a  | appropri | ately mo | deling t | he   |
| •             |                                                                                                          | •          | _         |           | icient d  | ata struc | tures an   | d algori   | thms to  | meet the   | proble   | m constr | aints an | d        |      |
| impleme       | enting t                                                                                                 | he algoi   | rithm in  | C/C++.    |           |           |            |            |          |            |          |          |          |          |      |
| PRERI         |                                                                                                          |            |           |           |           |           |            |            |          |            |          |          |          |          |      |
| Data Str      | uctures                                                                                                  | Lab (1'    | 7CSCC2    | 20)       |           |           |            |            |          |            |          |          |          |          |      |
| COUR          | SE OF                                                                                                    | BJECT      | IVES      |           |           |           |            |            |          |            |          |          |          |          |      |
| 1.            | To un                                                                                                    | derstanc   | d concep  | ots about | searchi   | ng and s  | sorting to | echnique   | es.      |            |          |          |          |          |      |
| 2.            | To understand basic concepts about stacks, queues, lists, trees and graphs.                              |            |           |           |           |           |            |            |          |            |          |          |          |          |      |
| 3.            | To understanding about writing algorithms and step by step approach in solving problems with the help of |            |           |           |           |           |            |            |          |            |          |          |          |          |      |
|               | funda                                                                                                    | mental o   | data stru | ctures.   |           |           |            |            |          |            |          |          |          |          |      |
| COUR          | SE OU                                                                                                    | JTCON      | MES       |           |           |           |            |            |          |            |          |          |          |          |      |
| On the s      | uccessi                                                                                                  | ful comp   | pletion o | of the co | urse, stu | idents w  | ill be ab  | le to      |          |            |          |          |          |          |      |
| <b>CO1.</b> D | evelop                                                                                                   | efficier   | nt algori | thms and  | d impler  | nentatio  | n schem    | es for so  | olving a | given      |          | Apply    |          |          |      |
| problem       | using                                                                                                    | appropr    | iate data | structu   | res and   | design te | echnique   | es like di | vide an  | d conque   | er,      |          |          |          |      |
| greedy,       | branch                                                                                                   | and bou    | and and   | dynamic   | progra    | mming.    |            |            |          |            |          |          |          |          |      |
| <b>CO2.</b> C | Compare                                                                                                  | e the sui  | tability  | of sever  | al candi  | date dat  | a structu  | res, algo  | orithms  | and        |          | Analyze  | ;        |          |      |
| impleme       | entation                                                                                                 | scheme     | es to sol | ve a pro  | blem, ba  | ased on   | the time   | , space    | complex  | xities and | 1        |          |          |          |      |
| problem       | constr                                                                                                   | aints im   | posed.    |           |           |           |            |            |          |            |          |          |          |          |      |
| <b>CO3.</b> N | Iodel, i                                                                                                 | mpleme     | ent and e | evaluate  | the algo  | rithms o  | designed   | using a    | high –   | level      |          | Analyze  | ;        |          |      |
| program       | ming la                                                                                                  | anguage    | <b>.</b>  |           |           |           |            |            |          |            |          |          |          |          |      |
|               |                                                                                                          |            |           |           |           |           |            |            |          |            | <b>,</b> |          |          |          |      |
|               |                                                                                                          |            |           |           |           |           |            |            |          | IME SP     |          |          |          |          |      |
|               | PO1                                                                                                      | PO2        | PO3       | PO4       | PO5       | PO6       | PO7        | PO8        | PO9      | PO10       | PO11     | PO12     | PSO1     | PSO2     | PSO3 |
| CO1           | M                                                                                                        | M          | S         | M         |           | _         | _          |            |          | _          | -        |          | M        | M        | S    |

M

M

-

M

M

M

S

CO2

CO3

M

M

M

M

S- Strong; M-Medium; L-Low

M

M

M

M

-

### LIST OF EXPERIMENTS

- 1. Write a program to illustrate basic algorithm design and asymptotic notations
- 2. Write a program to illustrate algorithm design involving sorting and selection
- 3. Write a program to illustrate algorithm design involving union find structures
- 4. Write a program to illustrate algorithm design involving hash tables and priority queues
- 5. Write a program to illustrate Divide and Conquer Algorithm design
- 6. Write a program to illustrate Greedy Algorithm design
- 7. Write a program to illustrate algorithm design involving trees like search trees, interval trees, k-d trees and AVL trees
- 8. Write a program to illustrate Dynamic Programming Algorithm design
- 9. Write a program to illustrate Branch-and-Bound Algorithms
- 10. Write a program to illustrate Algorithm design involving graphs
- 11. Write a program to illustrate Algorithm design involving String matching.
- 12. Write a program to illustrate Algorithm design based on Network Flows.

### **REFERENCES:**

- Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein Introduction to Algorithms, Third edition, PHI, 2013
- 2. Gilles Brassard and Paul Bratley Fundamentals of Algorithmics PHI, 2000.
- 3. Sara Baase Computer algorithms: Introduction to Design and Analysis –, Addison Wesley publication, 1998.

| S. No | Name of the faculty | Designation         | Department   | Email Id                 |  |  |  |  |
|-------|---------------------|---------------------|--------------|--------------------------|--|--|--|--|
| 1.    | Mr. M. Annamalai    | Associate Professor | CSE / VMKVEC | annamalaim@vmkvec.edu.in |  |  |  |  |
| 2.    | Dr.S.Rajaprakash    | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in   |  |  |  |  |

| 174                                                                                                      | ICC01                                                             | DD.C                         | ADI EN                                   | A COL                            | VINC                        | LICIN                      | C DV          | FIION               |                     | Cate                             | gory              | L                    | T              | P               |                 | Credit               |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------------------|----------------------------------|-----------------------------|----------------------------|---------------|---------------------|---------------------|----------------------------------|-------------------|----------------------|----------------|-----------------|-----------------|----------------------|
| I/A                                                                                                      | ICCUI                                                             |                              |                                          |                                  |                             | USIN<br>Theory             |               |                     |                     | C                                |                   | 3                    | 0              | 2               |                 | 4                    |
| using p<br>analytic<br>compute<br>progran                                                                | urse is d<br>oython p<br>cal skills                               | to use<br>lve pro<br>ementar | ming soming some in the oblems, by progr | skills. I<br>eir subs<br>includi | t gives<br>equent<br>ng the | engine<br>course<br>use of | eering work a | students<br>and pro | s an in<br>fessiona | esign ski<br>troductional develo | n to py<br>pment. | ython pr<br>It prese | rogra<br>nts s | mming<br>everal | and de techniqu | veloping<br>es using |
| COUR                                                                                                     | COURSE OBJECTIVES                                                 |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
| 1.                                                                                                       |                                                                   |                              |                                          | solutio                          | ns to si                    | mple co                    | mputati       | ional pr            | oblems              | •                                |                   |                      |                |                 |                 |                      |
| 2.                                                                                                       | To study programs using simple Python statements and expressions. |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
| 3.                                                                                                       |                                                                   |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
| 4. To study and use Python data structures – lists, tuples & dictionaries for representing compound data |                                                                   |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
| 5.                                                                                                       |                                                                   |                              |                                          | files, e                         | xceptio                     | n, modu                    | ıles and      | l packag            | ges in P            | ython for                        | solving           | probler              | ns.            |                 |                 |                      |
|                                                                                                          | SE OU                                                             |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
|                                                                                                          | successf                                                          |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
|                                                                                                          |                                                                   |                              |                                          |                                  |                             |                            |               | •                   | -                   | tional pr                        |                   | Unders               |                |                 |                 |                      |
| CO2. The Langua                                                                                          |                                                                   | iarize                       | with th                                  | e prog                           | rammii                      | ng con                     | cepts ir      | n Pytho             | n Prog              | rammin                           | g                 | Unders               | stand          |                 |                 |                      |
| CO3. T                                                                                                   | To unde                                                           | rstand                       | and ap                                   | ply pro                          | gramn                       | ning so                    | lutions       | related             | d to Ob             | jects, Cl                        | asses             | Apply                |                |                 |                 |                      |
| CO4. 0                                                                                                   | Construc                                                          | _                            |                                          | _                                |                             | adigms                     | like div      | vide and            | conqu               | er, greed                        | y and             | Apply                |                |                 |                 |                      |
| _                                                                                                        | c progra                                                          |                              |                                          |                                  |                             |                            |               |                     |                     |                                  |                   |                      |                |                 |                 |                      |
| CO5. 0                                                                                                   | Construc                                                          | t algori                     | thms us                                  | sing Pyt                         | hon for                     | searchi                    | ing and       | sorting             | based p             | oroblems                         |                   | Apply                |                |                 |                 |                      |
| MAPP                                                                                                     | ING W                                                             | TTH I                        | PROG                                     | RAMN                             | IE OU                       | TCON                       | MES A         | ND PI               | ROGR                | AMME                             | SPEC              | IFIC O               | UTO            | COME            | ES              |                      |
| COS                                                                                                      | PO1                                                               | PO2                          | PO3                                      | PO4                              | PO5                         | PO6                        | PO7           | PO8                 | PO9                 | PO10                             | PO11              | PO12                 |                | PSO1            | PSO2            | PSO3                 |
| CO1                                                                                                      | S                                                                 | M                            | L                                        | -                                | -                           | L                          | -             | -                   | -                   | -                                | -                 | L                    |                | M               | M               | M                    |
| CO2                                                                                                      | S                                                                 | M                            | L                                        | -                                | M                           | L                          | -             | -                   | -                   | -                                | -                 | L                    |                | S               | M               | M                    |
| CO3                                                                                                      | S                                                                 | M                            | L                                        | -                                | M                           | L                          | -             | -                   | -                   | -                                | -                 | L                    |                | M               | M               | M                    |

L

L

S

M

S

M

M

M

M

M

L

L

CO4

CO5

M

M

M

S- Strong; M-Medium; L-Low

L

L

### INTRODUCTION TO PROBLEM SOLVING WITH COMPUTING SYSTEMS:

Hardware and Software – Engineering Problem Solving Methodology: problem specification and analysis, algorithm design, flowchart, implementation, program testing and verification. Lab 1: find minimum in a list, Lab 2: insert a card in a list of sorted cards, guess an integer number in a range, Lab 3: Towers of Hanoi.

### PROGRAMMING CONCEPTS:

Basics of Python programming -Constant, variable, keywords, data types - Operators, operator precedence, expressions - Control Structures: Selection structure- Repetition Structure, File Handling, Exception Handling. Lab 4. word count, Lab 5. File handling. Lab 6. Exception handling.

## **OBJECTS, CLASSES AND FUNCTIONS:**

Object and Classes: Classes in Python, Principles of Object Orientation, Creating Classes, Instance Methods, File Organization, Special Methods, Class Variables, Inheritance, Polymorphism, Type Identification, Custom Exception Classes, Functions: Introduction, Defining Your Own Functions, Parameters, Function Documentation, Keyword and Optional Parameters, Passing Collections to a Function, Variable Number of Arguments, Scope, Passing Functions to a Function, Mapping Functions in a Dictionary, Lambda, Standard Modules in Python. Lab 7. Lambda functions, Lab 8. Functions Lab 9. User defined functions

### ALGORITHM DESIGN: FUNDAMENTAL ALGORITHMS:

Swapping of two variables – counting – summation of set of numbers – factorial – Fibonacci sequence – base conversion Factoring Techniques: smallest divisor of an integer – greatest common divisor – generating prime number – generating prime factor. Lab 10. Exchange the values of two variables, Lab 11. Circulate the values of n variables, Lab 12. Distance between two points.

## MERGING, SORTING AND SEARCHING TECHNIQUES:

Two way merge – sorting by selection sort – sorting by exchange – sorting by insertion – linear search – binary search Array techniques: Array order reversal – Statistical measurement - array counting - array Partitioning Text Processing and Pattern Searching: Key word search – text line editing –linear pattern search. Lab 7: square root, gcd, Lab 13: exponentiation, sum an array of numbers, Lab 14: linear search, binary search, Lab 15: selection sort, insertion sort, mergesort.

### **TEXT BOOKS:**

- 1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist'', 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/)
- 2. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

## **REFERENCES:**

- 1. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 2. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press 2013
- 3. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.

| L |        |                     |                           |                 |                         |
|---|--------|---------------------|---------------------------|-----------------|-------------------------|
|   | S. No. | Name of the faculty | Designation               | Department      | Email Id                |
| Ī | 1.     | Mrs. R Shobana      | Assistant Professor (GII) | CSE / AVIT      | shobana@avit.ac.in      |
|   | 2.     | Dr. K. Sasikala     | Associate Professor       | CSE /<br>VMKVEC | sasikalak@vmkvec.edu.in |

| 17000                           | 7.002                                                                                                                                                                                                                                                                                                                                                                                |         |          |           |            |           |           |         | C       | Category  | y   I | _ <b>T</b> | P    | C      | redit |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|------------|-----------|-----------|---------|---------|-----------|-------|------------|------|--------|-------|
| 17CSC                           | Cus                                                                                                                                                                                                                                                                                                                                                                                  | DA      | TABAS    | SE MA     | NAGE       | MENT      | SYSTI     | EM      |         | CC        | 3     | 0          | 0    |        | 3     |
| This co<br>Manager<br>effective | PREAMBLE: This course aims at facilitating the student to understand the various concepts and functionalities of Database Management Systems, the method and model to store data and how to manipulate them through query languages, the effective designing of relational database and how the system manages the concurrent usage of data in multiuser environment.  PREREQUISITE: |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| PRERI<br>NIL                    | PREREQUISITE:<br>NIL                                                                                                                                                                                                                                                                                                                                                                 |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| COUR                            | COURSE OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                    |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| 1.                              | 1. Describe a relational database and object-oriented database.                                                                                                                                                                                                                                                                                                                      |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| 2.                              | 2. Create, maintain and manipulate a relational database using SQL.                                                                                                                                                                                                                                                                                                                  |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| 3.                              |                                                                                                                                                                                                                                                                                                                                                                                      |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| 4.                              |                                                                                                                                                                                                                                                                                                                                                                                      |         |          |           |            |           |           |         |         |           |       |            |      |        |       |
| 5.                              | Design                                                                                                                                                                                                                                                                                                                                                                               | and bu  | ild data | base sy   | stem fo    | or a give | en real v | vorld p | roblem  | •         |       |            |      |        |       |
| COUR                            | SE OUT                                                                                                                                                                                                                                                                                                                                                                               | ГСОМ    | IES      |           |            |           |           |         |         |           |       |            |      |        |       |
| On the s                        | successf                                                                                                                                                                                                                                                                                                                                                                             | ul con  | pletion  | n of the  | cours      | e, stude  | ents wil  | l be al | ole to  |           |       |            |      |        |       |
| <b>CO1.</b> II                  | lustrate                                                                                                                                                                                                                                                                                                                                                                             | the dat | abase d  | esign f   | or appl    | ication   | s and us  | se of E | R Diag  | ram.      |       |            | Unde | rstand |       |
| <b>CO2.</b> B                   |                                                                                                                                                                                                                                                                                                                                                                                      | _       |          | e relatio | nal dat    | abase u   | sing Str  | uctured | l Query | Langua    | ge    |            | Ap   | ply    |       |
| and relat                       |                                                                                                                                                                                                                                                                                                                                                                                      |         |          | . 4 - 1   | <b>c</b> : |           | -1: 4:    | 1       |         |           |       |            |      |        |       |
| CO3. D                          | •                                                                                                                                                                                                                                                                                                                                                                                    |         |          |           | ·          |           | piication | by inc  | corpora | ing vario | ous   |            | Ap   | ply    |       |
| <b>CO4.</b> A <sub>1</sub>      |                                                                                                                                                                                                                                                                                                                                                                                      |         |          |           |            |           | ism for   | dataha  | se nroh | lems      |       |            | Δn   | ply    |       |
| CO5. Co                         |                                                                                                                                                                                                                                                                                                                                                                                      |         |          |           |            |           |           |         |         |           | data  |            |      | ply    |       |
| MAPPI                           |                                                                                                                                                                                                                                                                                                                                                                                      |         |          |           |            |           |           |         |         |           |       | CIFIC O    |      |        |       |
| COS                             | PO1                                                                                                                                                                                                                                                                                                                                                                                  | PO2     | PO3      | PO4       | PO5        | PO6       | PO7       |         | PO9     |           | PO11  | PO12       | PSO1 |        | PSO3  |
| CO1                             | S                                                                                                                                                                                                                                                                                                                                                                                    | M       | M        | M         | M          | -         | -         | -       | -       | -         | M     | S          | S    | M      | S     |
| CO2                             | M                                                                                                                                                                                                                                                                                                                                                                                    | M       | M        | L         | M          | -         | -         | -       | -       | -         | M     | M          | S    | M      | S     |
| CO3                             | M                                                                                                                                                                                                                                                                                                                                                                                    | M       | S        | M         | M          | -         | -         | -       | -       | -         | M     | L          | S    | M      | S     |
| CO4                             | S                                                                                                                                                                                                                                                                                                                                                                                    | M       | M        | M         | L          | -         | -         | -       | -       | -         | M     | M          | S    | S      | S     |
| CO5                             | S                                                                                                                                                                                                                                                                                                                                                                                    | M       | M        | M         | M          | ı         | -         | -       | I       | -         | M     | M          | S    | M      | S     |
| S- Stron                        | g; M-Me                                                                                                                                                                                                                                                                                                                                                                              | dium;   | L-Low    |           |            |           |           |         |         |           |       |            |      |        |       |

### INTRODUCTION

Database System Applications - Views of data - Data Models - Database Languages - Modification of the Database - Database System Architecture - Database users and Administrator- Introduction to relational databases - Structure of Relational Databases - Entity-Relationship model (E-R model) - E-R Diagrams.

### RELATIONAL APPROACH

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals - Structure of SQL Queries - SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases.

### DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form- Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

### TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery - Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols - Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

### STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing - Query Processing - Catalogue Information for Cost Estimation - Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

## **TEXT BOOKS:**

**1.** Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, McGraw-Hill Education; 6 edition, 2010).

#### **REFERENCES:**

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson India; 7th edition, 2017
- 2. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Third Edition, McGraw Hill, 2002
- **3.** Carlos Coronel, Steven Morris, "Database Systems Design, Implementation and Management, 13th Edition, Cengage Learning; 13th edition, 2018).

| S. No. | Name of the faculty | Designation                | Department | Mail Id                |
|--------|---------------------|----------------------------|------------|------------------------|
| 1.     | Mr. S. SenthilKumar | Assistant Professor        | CSE /      | senthikumars           |
|        |                     |                            | VMKVEC     | @vmkvec.edu.in         |
| 2.     | Mr. S. Muthuselvan  | Assistant Professor Gr. II | CSE / AVIT | muthuselvan@avit.ac.in |

| 17CS                                                                                                    | CC22                                                                                                                                | D/                                                                   | ATAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASF                                                                    | MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MENT                                                       | SVS                        | TFM                                  | Cat                               | egory                                   | L                       | T     | P        | Cı       | edit |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|-------------------------|-------|----------|----------|------|
| 1.00                                                                                                    | 0022                                                                                                                                |                                                                      | IIAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADL                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141151 4 1                                                 | . 515                      | 1 12141                              |                                   | CC                                      | 0                       | 0     | 4        |          | 2    |
| This coapplication maniput PRER COUF 1. 2. 3.                                                           | ations, pulate data QUISIT RSE OB To den To emp                                                                                     | erform a using TE NI  JECTI  monstrate oloy the ign and              | ves  e the beconce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | angua<br>angua<br>asic fu                                              | studer<br>ons re<br>ges the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at to aplated to the cough | o creatin                                                  | ng, ma<br>and JD           | nipula<br>DBC.<br>Query<br>sign la   | signing of<br>ting and<br>Langua  | of relation maintain ge (SQL) abase sys | onal dat                | tabas | se for R | eal-worl |      |
|                                                                                                         | COURSE OUTCOMES  On the successful completion of the course, students will be able to                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                            |                                      |                                   |                                         |                         |       |          |          |      |
| relation Langua CO2. I using v constra CO3. ( synony Structu CO4. I objects CO5. ( Develor databa Conne | Developy<br>various<br>aints like<br>Construcy<br>yms usinured Que<br>Develops.<br>Constructory<br>op a constructory a constructory | normal e integriet and mag ery Lang objects et and maplete cation in | ized and ty and nake use using nake usenake us | nple and dennd dennd value se of dender PL/SC se of contract the level | nd comoralization construction at a base of the compose of the com | red data raints. The objection of the data age us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | queries i<br>cabases f<br>cts such<br>pulate d<br>ca types | as ind atabas using a Data | iven apices, sees through PL/SQ base | Query oplication equence ough the | se Ana                                  | ply<br>alysis<br>alysis | DUT   | COME     | CS.      |      |
| 172.22                                                                                                  | 11,0 ,,                                                                                                                             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                            |                                      |                                   |                                         |                         |       |          |          | PSO  |
| COS                                                                                                     | PO1                                                                                                                                 | PO2                                                                  | PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO4                                                                    | PO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO7                                                        | PO8                        | PO9                                  | PO10                              | PO11                                    | PO12                    | 2     | PSO1     | PSO2     | 3    |
| CO1                                                                                                     | M                                                                                                                                   | M                                                                    | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                          | -                          | -                                    | -                                 | -                                       | -                       |       | M        | M        | M    |
| CO2                                                                                                     | M                                                                                                                                   | M                                                                    | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                          | -                          | -                                    | -                                 | -                                       | -                       |       | M        | M        | M    |
| CO3                                                                                                     | M                                                                                                                                   | М                                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                          | -                          | -                                    | -                                 | -                                       | -                       |       | M        | M        | M    |

M

M

M

M

S

S

CO4

CO5

S

S

M

M

S- Strong; M-Medium; L-Low

M

M

M

M

### LIST OF EXPERIMENTS

- 1. Write a program to illustrate the creation of a database and writing SQL queries to retrieve information from the database
- 2. Write a program to perform Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions
- 3. Write a program to illustrate Simple SQL Queries
- 4. Write a program to analyze and model a database application
- 5. Write a program to illustrate the creation and Modification of Tables without normalization
- 6. Write a program to illustrate the creation and Modification of Tables with normalization
- 7. Write a program to illustrate Integrity Constraints enforcement
- 8. Write a program to illustrate Complex SQL Queries
- 9. Write a program to illustrate the creation and usage of other database objects
- 10. Write a program to illustrate the creation of Procedures, Functions and Package with Cursor
- 11. Write a program to illustrate the creation of Triggers.
- 12. Write a program to illustrate the creation of composite data types in PL/SQL

### **REFERENCES:**

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fourth Edition, Tata McGraw Hill, 2012.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fourth Edition, Addision weskey, 2002.
- 3. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- **4.** Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management, Fifth Edition, Thompson Learning, Course Technology, 2003.

| S. | Name of the faculty | Designation                   | Department   | Email Id                    |
|----|---------------------|-------------------------------|--------------|-----------------------------|
| No |                     |                               |              |                             |
| 1. | Mr. S. SenthilKumar | Assistant Professor           | CSE / VMKVEC | senthikumars @vmkvec.edu.in |
| 2. | Mr.S.Muthuselvan    | Assistant Professor<br>(G II) | CSE / AVIT   | muthuselvan@avit.ac.in      |

| 170                        | SCC09    |          |                    | T          | AVA P    | DOCI      | ) A N/IN/ | IINC     |          |          | Category                  | L         | T          | P       | redit  |
|----------------------------|----------|----------|--------------------|------------|----------|-----------|-----------|----------|----------|----------|---------------------------|-----------|------------|---------|--------|
| 170                        | SCCU     |          |                    | J <i>E</i> | AVAF     | KUGI      | XAIVIIV.  | шис      |          |          | CC                        | 3         | 0          | 0       | 3      |
| This co                    | Students | -        |                    |            | _        | -         |           |          |          |          | s and help<br>e Java prog |           |            |         | _      |
| PRER<br>NIL                | EQUIS    | ITE      |                    |            |          |           |           |          |          |          |                           |           |            |         |        |
| COUR                       | RSE OB   | JECTI    | VES                |            |          |           |           |          |          |          |                           |           |            |         |        |
| 1.                         | Under    | stand f  | undame             | entals of  | f progra | mming     | such as   | s variab | les, cor | nditiona | l and iterat              | ive execu | ution, m   | ethods, | etc.   |
| 2.                         |          |          | undame<br>braries, |            | f object | -oriente  | ed progr  | rammin   | g in Jav | a, inclu | ding defin                | ing class | es, invo   | king me | thods, |
| 3.                         | Be aw    | are of t | the imp            | ortant to  | opics ar | nd princ  | iples of  | f softwa | re deve  | lopmen   | t.                        |           |            |         |        |
| 4.                         | Under    | stand E  | Event H            | andling    | and Sv   | ving Co   | mpone     | nts.     |          |          |                           |           |            |         |        |
| 5.                         | Under    | stand C  | Generic            | Prograi    | nming.   |           |           |          |          |          |                           |           |            |         |        |
| COUR                       | SE OU    | TCOM     | IES                |            |          |           |           |          |          |          |                           |           |            |         |        |
| On suc                     | cessful  | comple   | tion of            | the cou    | rse, stu | dents w   | ill be al | ble to   |          |          |                           |           |            |         |        |
| <b>CO1.</b> Kn             | owledge  | e of the | structu            | ire and    | model o  | of the Ja | ava prog  | grammi   | ng lang  | uage     |                           |           | Under      | stand   |        |
| CO2.Us                     | e the Ja | va prog  | grammii            | ng langi   | age for  | variou    | s progr   | ammin    | g techno | ologies  |                           |           | Under      | stand   |        |
| CO3. D                     |          |          |                    |            |          |           |           |          |          |          |                           |           | Арр        | oly     |        |
| <b>CO4.</b> Ev<br>Java pro |          |          |                    |            |          |           |           | require  | d to dec | ide whe  | ther the                  |           | Anal       | yze     |        |
| CO5.Ch<br>knowled          |          |          |                    |            |          |           |           |          | g from t | the acqu | iired                     |           | Арр        | oly     |        |
| MAPP                       | 'ING W   | TTH P    | ROGR               | AMMI       | E OUT    | COME      | S AND     | PROC     | GRAMI    | ME SPI   | ECIFIC O                  | UTCOM     | <b>IES</b> |         |        |
| COs                        | PO1      | PO2      | PO3                | PO4        | PO5      | PO6       | PO7       | PO8      | PO9      | PO10     | PO11                      | PO12      | PSO1       | PSO2    | PSO3   |
| CO1                        | S        | M        | M                  | -          | S        | -         | -         | -        | -        | -        | -                         | -         | S          | M       | -      |
| CO2                        | S        | M        | M                  | -          | M        | 1         | -         | -        | -        | -        | -                         | -         | M          | M       | M      |
| CO3                        | S        | M        | L                  | L          | M        | -         | -         | -        | -        | -        | -                         | -         | M          | M       | M      |
| CO4                        | S        | M        | M                  | L          | M        | -         | -         | -        | -        | -        | -                         | -         | M          | M       | -      |
| CO5                        | S        | M        | L                  | L          | S        | -         | -         | -        | -        | -        | -                         | -         | S          | M       | M      |

### BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalizemethod.

### ARRAYS, STRINGS & OBJECTS

Arrays – Strings - Packages – Java-Doc comments – Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes - The Object class – Reflection – interfaces – object cloning – inner classes – proxies.

### **EVENTS & GRAPHICS PROGRAMMING**

I/O Streams - Filter and pipe streams - Byte Code interpretation - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Graphics programming - Frame - Components - working with 2D shapes.

### **SWING & GENERIC PROGRAMMING**

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components – exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics.

### THREADS & SOCKET PROGRAMMING

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to JavaBeans.

### TEXT BOOKS:

- Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press 2008
- 2. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000.
- 3. Ed Roman, "Mastering Enterprise Java Beans", John Wiley &Sons Inc., 1999.

### **REFERENCES:**

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.
- **3.** C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd.,2006.

| S. No. | Name of the Faculty | Designation               | Department      | Mail ID                 |  |  |  |  |
|--------|---------------------|---------------------------|-----------------|-------------------------|--|--|--|--|
| 1.     | Mrs. R. Shobana     | Assistant Professor (GII) | CSE / AVIT      | shobana@avit.ac.in      |  |  |  |  |
| 2.     | Dr.K.Sasikala       | Associate Professor       | CSE /<br>VMKVEC | sasikalak@vmkvec.edu.in |  |  |  |  |

| 17CSCC26   | JAVA PROGRAMMING LAB | Category | ${f L}$ | T | P | Credit |
|------------|----------------------|----------|---------|---|---|--------|
|            |                      | CC       | 0       | 0 | 4 | 2      |
| DDE AMRI E |                      |          |         |   |   |        |

#### PREAMBLE

The goal of this course is to provide students with the ability to write programs in Java and apply concepts described in the Object-Oriented Programming course. The course is designed to accommodate students with diverse programming backgrounds, consequently Java is taught from first principles in a practical class setting were students can work at their own pace from a course handbook. Each practical class will culminate in an assessed exercise.

## **PREREQUISITE**

Object Oriented Programming Lab (17CSCC02)

## **COURSE OBJECTIVES**

- Gain knowledge about basic Java language syntax and semantics to write Java programs and use concepts such as 1. variables, conditional and iterative execution methods etc.
  - Understand the fundamentals of object-oriented programming in Java, including defining classes, objects, 2. invoking methods etc and exception handling mechanisms.
  - Understand the principles of inheritance, packages and interfaces. 3.

### **COURSE OUTCOMES**

On successful completion of the course, students will be able to

| CO1. Create Java programs that solve simple business problems. | Apply |
|----------------------------------------------------------------|-------|
| CO2. Validate user input.                                      | Apply |
| CO3. Construct a Java class based on a UML class diagram.      | Apply |
| CO4. Perform a test plan to validate a Java program.           | Apply |
| CO5. Document a Java program.                                  | Apply |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | M   | M   | M   | S   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO2 | M   | M   | M   | M   | S   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO3 | M   | M   | S   | M   | S   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO4 | S   | M   | M   | M   | S   | -   | -   | -   | -   | -    | -    | -    | M    | M    | S    |
| CO5 | S   | M   | M   | M   | M   | -   | -   | -   | -   | -    | -    | -    | M    | M    | S    |

### LIST OF EXPERIMENTS.

- 1. Write a JAVA program to search the largest element from the given array.
- 2. Write a JAVA program to sort the strings in an alphabetical order.
- 3. Write a JAVA program to extract a portion of a character string and to print the extracted portion and the remaining portion of the string. Assume that m characters are extracted, starting with the nth character.
- 4. Write a JAVA program for illustrating overloading and overriding methods in JAVA.
- 5. Write a JAVA program which illustrates the implementation of multiple inheritance using interfaces in JAVA.
- 6. Write a JAVA program to create your package for basic mathematical operations such as add, subtract, multiply. Demonstrate the use of this package in another class.
- 7. Write a JAVA program that counts the number of digits in a given number. If an alphabet is entered instead of a number, the program should not terminate. Instead it should display appropriate error message. (Exception Handling).
- 8. Write a JAVA program to move the text "JAVA PROGRAMMING LAB" diagonally using Applet.
- 9. Write a JAVA program to create an Applet with a label "Do you know car driving?" and two buttons Yes, NO. When the user clicks "Yes" button, the message "Congrats" must be displayed. When the user clicks "NO "button, "Regrets" must be displayed.
- 10. Write a JAVA program to animate the face image using Applet.
- 11. Write a JAVA program to create four Text fields for the name, street, city and pin code with suitable Labels. Also add a button called "My Details". When you click the button, your name, street, city, and pin code must appear in the Text fields.

| S. No. | Name of the Faculty | Designation               | Department      | Mail ID                 |
|--------|---------------------|---------------------------|-----------------|-------------------------|
| 1.     | Dr. K. SASIKALA     | Associate Professor       | CSE /<br>VMKVEC | sasikalak@vmkvec.edu.in |
| 2.     | Mr.S.Muthuselvan    | Assistant Professor(G II) | CSE / AVIT      | muthuselvan@avit.ac.in  |

| 170                                          | SCC07               |              |         | ΩÞ       | ED A T   | TNC      | NOTE.     | · N //   |          | C         | ategor     | y L      | Т         | P       | Credit      |
|----------------------------------------------|---------------------|--------------|---------|----------|----------|----------|-----------|----------|----------|-----------|------------|----------|-----------|---------|-------------|
| 1/0                                          | SCC07               |              |         | OP       | LKAI     | 'ING S   | ) 1 S I E | LIVI     |          |           | CC         | 3        | 0         | 0       | 3           |
| PREAMBI The student computing, existing dist | t will be<br>mobile | comp         | uting e | etc. Th  |          | _        |           | _        |          |           |            |          |           |         |             |
| PREREQU<br>NIL                               | USITE               | •            |         |          |          |          |           |          |          |           |            |          |           |         |             |
| COURSE (                                     | OBJEC               | <b>FIVES</b> | 5       |          |          |          |           |          |          |           |            |          |           |         |             |
| 1.                                           | To be a             | aware        | of the  | evoluti  | on of c  | peratii  | ng syst   | ems.     |          |           |            |          |           |         |             |
| 2.                                           | To lear             |              | •       |          |          | proce    | sses co   | ommun    | icate, l | how pi    | cocess s   | synchroi | nization  | is don  | <del></del> |
| 3.                                           | To hav              | e an u       | ndersta | anding   | of the   | main n   | nemor     | y and s  | econda   | ary me    | mory n     | nanagen  | nent tecl | hnique  | S.          |
| 4.                                           | To und              | lerstan      | d the L | O Sub    | system   | 1.       |           |          |          |           |            |          |           |         |             |
| 5.                                           | To hav              |              | xposur  | e to the | e role o | of opera | ating s   | ystem    | in clou  | id and    | mobile     | environ  | ment o    | peratin | <u> </u>    |
| COURSE (                                     | 1 -                 |              |         |          |          |          |           |          |          |           |            |          |           |         |             |
| On the succ                                  |                     |              | ion of  | the cou  | irca et  | udante   | will b    | a abla i | to       |           |            |          |           |         |             |
|                                              |                     |              |         |          |          |          |           |          |          | .45       |            |          | 1         |         |             |
| <b>CO1.</b> To leasystems and                |                     |              |         |          |          |          |           |          | i opera  | uing      |            | Ap       | pıy       |         |             |
| CO2. To U                                    | nderstan            | d the p      | rocess  | synch    | ronizat  |          |           |          | given    | l         |            | Ap       | ply       |         |             |
| scenario in CO3. Illustr                     |                     |              |         |          |          | nagem    | ent of    | memor    | v (the   | main r    | nemors     | / Lin    | derstand  |         |             |
| and seconda                                  |                     |              |         |          |          |          | ciit oi i | incinoi  | y (the   | iliaili i | ileilioi y |          | acistan   | u       |             |
| CO4.Apply                                    | the I/O             | Subsy        | stem c  | oncept   | s for a  | given    | scenar    | io.      |          |           |            | Ap       | ply       |         |             |
| CO5. Identi                                  | ify the ro          | ole of o     | perati  | ng syst  | em in    | cloud a  | and mo    | bile er  | vironi   | nent.     |            | An       | alyze     |         |             |
|                                              |                     |              |         |          |          |          |           |          |          |           |            |          | •         |         |             |
| MAPPING                                      | WITH                | PROC         | GRAM    | IME C    | OUTCO    | OMES     | AND       | PROC     | 3RAM     | IME S     | PECIF      | IC OU    | TCOM      | ES      | •           |
| COs                                          | PO1                 | PO2          | PO3     | PO4      | PO5      | PO6      | PO7       | PO8      | PO9      | PO10      | PO11       | PO12     | PSO1      | PSO2    | PSO3        |
| CO1                                          | S                   | S            | M       | M        | -        | -        | -         | -        | -        | -         | -          | -        | S         | S       | -           |
| CO2                                          | s                   | S            | -       | M        | -        | -        | -         | -        | -        | -         | -          | -        | S         | M       | -           |
| CO3                                          | S                   | S            | -       | М        | -        | -        | -         | -        | -        | -         | -          | -        | S         | М       | -           |
| CO4                                          | s                   | M            | L       | М        | -        | -        | -         | -        | -        | -         | -          | -        | S         | L       | М           |
| CO5                                          | s                   | M            | L       | L        | -        | -        | -         | -        | -        | -         | -          | -        | S         | M       | -           |

### **OPERATING SYSTEM**

Introduction & Structure: Basics, OS Architecture, OS Operations, System calls.

### PROCESSES&SYNCHRONIZATION

Process concept – Process scheduling – Operations on processes – Cooperating processes – Inter process communication – Communication in client-server Systems. Case study: IPC in Linux. Threads: Multi- threading models – Threading issues. Case Study: Threads library– Clock Synchronization – Event Ordering – Mutual Exclusion – Deadlock Modelling – Deadlock Prevention – Deadlock Avoidance – Deadlock Detection and Recovery - Election Algorithms.

### **STORAGEMANAGEMENT**

Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation with paging. Virtual Memory: Background–Demand paging – Process creation – Page replacement – Allocation of frames – Thrashing. Case Study: Memory management inLinux.

### I/O SYSTEMS

I/O Systems – I/O Hardware – Application I/O interface – kernel I/O subsystem – streams – performance. Mass-Storage Structure: Disk scheduling – Disk management – Swap-space management – RAID – disk attachment – stable storage – tertiary storage. Case study: I/O inLinux.

### **CLOUD OS & MOBILEOS**

Introduction to Cloud Computing, Features of Cloud OS, Case Studies. - Introduction to Mobile Computing Features of Mobile OS, Case Studies.

## **TEXT BOOKS:**

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley India Pvt. Ltd, 2008.

#### **REFERENCES:**

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.
- 2. Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- 3. Harvey M. Deital, "Operating Systems", Third Edition, Pearson Education, 2004.
- 4. Fundamentals Of Mobile Computing, Patnaik, Prasant, Kumar, Mall, Rajib, PHI,2012.
- **5.** Mobile Computing Technology, Applications, and Service Creation 1st edition, Asoke K Talukder, Roopa Yavagal, McGraw-Hill, 2006.
- **6.** The Practice of Cloud System Administration: Designing and Operating Large Distributed Systems, Thomas A. Limoncelli Strata R. Chalup, Christina J. Hogan, Addison-Wesley Professional; 1st Edition, 2014.
- 7. Cloud Computing: Concepts, Technology & Architecture, Thomas Erl, Ricardo Puttini, Zaigham Mahmood, Prentice Hall; 1st Edition,2013.

| S. No. | Name of the<br>Faculty | Designation                  | Department      | Mail ID                    |
|--------|------------------------|------------------------------|-----------------|----------------------------|
| 1.     | Mrs. Shobana           | Assistant<br>Professor(G II) | CSE / AVIT      | shobana@avit.ac.in         |
| 2.     | Dr.S.SenthilKumar      | Assistant Professor          | CSE /<br>VMKVEC | senthikumars@vmkvec.edu.in |

| 1                           | 7CSCC              | 24               |           | ΩP        | FRATI    | NC SV    | STEM      | SIAR     |         |          | Categor  | y L                    | T    | P    | Credit |
|-----------------------------|--------------------|------------------|-----------|-----------|----------|----------|-----------|----------|---------|----------|----------|------------------------|------|------|--------|
|                             |                    |                  |           | O         | LKAII    | 110 51   |           | IS LAD   | '       |          | CC       | 0                      | 0    | 4    | 2      |
| This la<br>system<br>with U |                    | hese ex<br>mmand | s and C   | nts for   | acquiri  |          |           |          |         |          |          | nentation of operation |      |      |        |
| COUR                        | RSE OB             | JECTI            | IVES      |           |          |          |           |          |         |          |          |                        |      |      |        |
| 1.                          | To lea             | ırn shel         | l progra  | amming    | and the  | e use of | filters   | in the U | JNIX e  | nvironn  | nent.    |                        |      |      |        |
| 2.                          | To lea             | rn to p          | rogram    | in C us   | ing sys  | tem cal  | ls.       |          |         |          |          |                        |      |      |        |
| 3.                          | To lea             | ırn to u         | se the fi | ile syste | m relat  | ed syst  | em call   | s.       |         |          |          |                        |      |      |        |
| 4.                          | To pro             | ovide k          | nowled    | ge abou   | it proce | sses cre | eation a  | nd proc  | esses c | ommuni   | ication. |                        |      |      |        |
| 5.                          | To lea             | ırn how          | proces    | s synch   | ronizat  | ion is d | one usi   | ng sema  | aphores |          |          |                        |      |      |        |
| COUR                        | RSE OU             | TCOM             | 1ES       |           |          |          |           |          |         |          |          |                        |      |      |        |
| On the                      | success            | ful con          | npletion  | of the    | course,  | studen   | ts will b | e able   | to      |          |          |                        |      |      |        |
| CO1. Fa                     | amiliar v          | with the         | langua    | ge and    | terms o  | f the U  | NIX/LI    | NUX o    | peratin | g systen | n        | Apply                  |      |      |        |
| CO2. Do                     | elineate<br>e UNIX |                  |           |           |          | es need  | ed to ca  | rry out  | basic o | peration | ns on    | Apply                  |      |      |        |
| CO3. Do                     |                    | evelop           | and eva   | luate C   | PU bur   |          |           |          | vaiting | time and | d        | Apply                  |      |      |        |
| CO4. Do                     | esign so           | lutions          | for Inte  | er Proce  | ess com  | munica   | tion and  | d memo   | ry man  | agemen   | t        | Apply                  |      |      |        |
| CO5. Do                     |                    |                  |           |           |          | vare sol | ution to  | a give   | n probl | em whic  | ch       | Apply                  |      |      |        |
| MAPP                        | 'ING W             | TTH P            | ROGR      | AMMI      | E OUT    | COME     | S AND     | PROC     | GRAM    | ME SP    | ECIFIC   | OUTCON                 | MES  |      |        |
| COS                         | PO1                | PO2              | PO3       | PO4       | PO5      | PO6      | PO7       | PO8      | PO9     | PO10     | PO11     | PO12                   | PSO1 | PSO2 | PSO3   |
| CO1                         | M                  | M                | M         | M         | S        | -        | -         | -        | -       | -        | -        | -                      | M    | M    | M      |
| CO2                         | M                  | M                | M         | M         | S        | -        | -         | -        | -       | -        | -        | -                      | M    | M    | M      |
| CO3                         | M                  | M                | S         | M         | S        | -        | -         | -        | -       | -        | -        | -                      | M    | M    | M      |
| CO4                         | S                  | M                | M         | M         | S        | -        | -         | -        | -       | -        | -        | -                      | M    | M    | S      |
| CO5                         | S                  | M                | M         | M         | S        | -        | -         | -        | -       | -        | -        | -                      | M    | M    | S      |

### LIST OF EXPERIMENTS.

- 1. Execute Basic UNIX commands.\
- 2. Write C programs to simulate UNIX commands like ls, grep, etc.
- 3. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. (2sessions).
- 4. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. (2sessions).
- 5. Developing Application using Inter Process communication (using shared memory, pipes or message queues).
- 6. Implement the Producer Consumer problem using semaphores.
- 7. Implement some memory management schemes -I.
- 8. Implement some memory management schemes II.
- 9. Implement any file allocation technique (Linked, Indexed or Contiguous)

### **REFERENCES:**

- 1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", Sixth Edition, Wiley India Pvt Ltd, 2003.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.\
- 3. Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- 4. Harvey M. Deital, "Operating Systems", Third Edition, Pearson Education, 2004.

| S. No. | Name of the Faculty | Designation               | Department      |                             |  |  |
|--------|---------------------|---------------------------|-----------------|-----------------------------|--|--|
| 1      | Dr. S. Senthilkumar | Assistant Professor       | CSE /<br>VMKVEC | senthilkumars@vmkvec.edu.in |  |  |
| 2      | Mrs. R Shobana      | Assistant Professor (GII) | CSE / AVIT      | shobana@avit.ac.in          |  |  |

| 17C       | SCC08              | COMPUTER NETWORKS                                                                                      | Category        | L       | T        | P       | Credit        |
|-----------|--------------------|--------------------------------------------------------------------------------------------------------|-----------------|---------|----------|---------|---------------|
| 170       | 5000               | COM CIER NEI WORKS                                                                                     | CC              | 3       | 0        | 0       | 3             |
|           | AMBLE ourpose of   | this course is to understand the concepts of data                                                      | communication   | and co  | mputer   | netwo   | rks. Identify |
| the co    | omponents          | required to build different types of networks. Ch                                                      | oose the requir | ed func | tionalit | y at ea | ch layer for  |
|           |                    | n. Identify the solution for each functionality for                                                    | each layer. Tra | ace the | flow of  | finfori | mation from   |
| one n     | ode to anot        | her node in thenetwork.                                                                                |                 |         |          |         |               |
| -         |                    |                                                                                                        |                 |         |          |         |               |
| PRE       | REQUISIT           | TE NIL                                                                                                 |                 |         |          |         |               |
| PRE       | REQUISIT           | TE NIL                                                                                                 |                 |         |          |         |               |
|           | REQUISIT           |                                                                                                        |                 |         |          |         |               |
|           | RSE OBJ            |                                                                                                        |                 |         |          |         |               |
| COU       | RSE OBJ            | ECTIVES                                                                                                | Ethernets.      |         |          |         |               |
| COU<br>1. | RSE OBJI To provid | ECTIVES le basic knowledge in networking concepts.                                                     | Ethernets.      |         |          |         |               |
| 1.<br>2.  | To introd          | ECTIVES  le basic knowledge in networking concepts.  uce and demonstrate various bridges, switches and | Ethernets.      |         |          |         |               |

## **COURSE OUTCOMES**

On successful completion of the course, students will be able to

| CO1. Learn the fundamentals of networks and different types of OSI Layers.                                                 | Understand |
|----------------------------------------------------------------------------------------------------------------------------|------------|
| CO2. Learn the different Ethernet, wireless networks, switching and bridging concepts                                      | Understand |
| CO3. Design solutions for complex routing methods and different multicast routing techniques.                              | Evaluate   |
| CO4. Learn the concepts of different protocols for transmission purpose and study the quality of service for TCP protocol. | Understand |
| CO5. Learn different types of application protocols and its architecture.                                                  | Understand |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|------------|------------|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | M   | -   | -   | -          | -          |     | -   | -    | -    | -    | S    | M    | -    |
| CO2 | S   | M   | M   | -   | -   | -          | -          | -   | -   | -    | -    | -    | S    | M    | -    |
| CO3 | S   | M   | S   | M   | -   | -          | -          | -   | -   | -    | -    | -    | S    | M    | M    |
| CO4 | S   | M   | M   | -   | -   | -          | -          | -   | -   | -    | -    | -    | S    | M    | -    |
| CO5 | S   | M   | M   | ı   | -   | ı          | -          | -   | ı   | -    | -    | -    | S    | M    | -    |

### FUNDAMENTALS OF OSI LAYERS

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance; Link layer Services - Framing - Error Detection - Flow control.

### MEDIA ACCESS & INTERNETWORKING

Media access control - Ethernet (802.3) - Wireless LANs - 802.11 - Bluetooth - Switching and bridging - Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP).

#### ROUTING

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6) - Multicast – addresses – multicast routing (DVMRP, PIM).

### TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission - TCP Congestion control - Congestion avoidance (DECbit, RED) - QoS - Application requirements.

#### APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS –SNMP.

### **TEXT BOOKS:**

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill, 2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016.

### **REFERENCES:**

- 1. William Stallings, "Data and Computer Communication", Eighth Edition, PearsonEducation.
- 2. Knuth, D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

| S. No. | Name of the Faculty | Designation         | Department      | Mail ID                |
|--------|---------------------|---------------------|-----------------|------------------------|
| 1.     | K. Karthik          | Assistant Professor | CSE / AVIT      | karthik@avit.ac.in     |
| 2.     | Mrs. T. Narmadha    | Assistant Professor | CSE /<br>VMKVEC | narmadha@vmkvec.edu.in |

| 17CSCC25 | COMPUTER NETWORKS LAB | Category | L | T | P | Credit |
|----------|-----------------------|----------|---|---|---|--------|
|          |                       | CC       | 0 | 0 | 4 | 2      |
|          |                       |          |   |   |   |        |

## **PREAMBLE**

The purpose of this course is to understand the concepts of data communication and computer networks. Identify the components required to build different types of networks. Choose the required functionality and solution at each layer for given application. Trace the flow of information from one node to another node in the network.

## **PREREQUISITE**

NIL

### **COURSE OBJECTIVES**

- **1.** To provide basic knowledge in networking concepts.
- 2. To introduce and demonstrate various bridges, switches and Ethernets.
- **3.** To introduce different methodologies in routing
- 4. To learn about transmission protocols and QOS
- **5.** To provide knowledge about different application protocols.

### **COURSE OUTCOMES**

On successful completion of the course, students will be able to

| CO1. Learn the fundamentals of networks and different types of OSI Layers                                                  | Understand |
|----------------------------------------------------------------------------------------------------------------------------|------------|
| CO2. Learn the different Ethernet, wireless networks, switching and bridging concepts                                      | Understand |
| CO3. Design solutions for complex routing methods and different multicast routing techniques.                              | Apply      |
| CO4. Learn the concepts of different protocols for transmission purpose and study the quality of service for TCP protocol. | Apply      |
| CO5. Learn different types of application protocols and its architecture.                                                  | Apply      |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | <b>PO10</b> | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|------|------|------|------|------|
| CO1 | M   | M   | M   | M   | S   | -   | -   | -   | -   | -           | -    | -    | M    | M    | M    |
| CO2 | M   | M   | M   | M   | S   | -   | -   | -   | -   | -           | -    | -    | M    | M    | M    |
| CO3 | M   | M   | S   | M   | S   | -   | -   | -   | -   | -           | -    | -    | M    | M    | M    |
| CO4 | S   | M   | M   | M   | S   | -   | -   | -   | -   | -           | -    | -    | M    | M    | S    |
| CO5 | S   | M   | M   | M   | S   | -   | -   | -   | -   | -           | -    | -    | M    | M    | S    |

## LIST OF EXPERIMENTS.

- 1. Implementation of Stop and Wait Protocol and Sliding WindowProtocol.
- 2. Study of Socket Programming and Client Servermodel
- **3.** Write a code simulating ARP /RARPprotocols.
- **4.** Write a code simulating PING and TRACEROUTEcommands
- **5.** Create a socket for HTTP for web page upload anddownload.
- **6.** Simple Tcp/Ip Client ServerCommunication
- 7. UDP Echo Client ServerCommunication
- **8.** Half Duplex Chat UsingTCP/IP
- **9.** Full Duplex Chat UsingTCP/IP
- 10. Implementation Of File TransferProtocol
- 11. Remote Command Execution Using UDP
- 12. ARP Implementation Using UDP

| S. No. | Name of the Faculty | Designation         | Department      | Mail ID                     |
|--------|---------------------|---------------------|-----------------|-----------------------------|
| 1.     | Dr. S. Senthilkumar | Assistant Professor | CSE /<br>VMKVEC | senthilkumars@vmkvec.edu.in |
| 2.     | Mr. K. Karthik      | Assistant Professor | CSE / AVIT      | karthik@avit.ac.in          |

| 17C             | SCC18    |          |          | RICH     | INTER    | RNET A   | APPLI      | CATIC    | )N         | (       | Category  | L        | T       | P (       | Credit   |
|-----------------|----------|----------|----------|----------|----------|----------|------------|----------|------------|---------|-----------|----------|---------|-----------|----------|
|                 |          |          |          |          |          |          |            |          |            |         | CC        | 3        | 0       | 0         | 3        |
| PREA            |          |          |          |          |          |          |            |          |            |         |           |          |         | l .       |          |
|                 |          |          | _        |          |          |          |            |          | _          | sharing | g and bus | iness. T | he cour | se focuse | s on the |
| fundame         |          |          |          |          |          |          | and We     | bApplic  | cations.   |         |           |          |         |           |          |
| PRERI           |          |          |          | ROGRA    | MMIN     | G        |            |          |            |         |           |          |         |           |          |
| COUR            | SE OB    | JECTI    | VES      |          |          |          |            |          |            |         |           |          |         |           |          |
| 1.              | To lear  | n CGI (  | Concep   | ts & CO  | GI Progr | rammin   | ıg         |          |            |         |           |          |         |           |          |
| 2.              | To Stu   | dy DH7   | ΓML, X   | ML,AJ    | AX       |          |            |          |            |         |           |          |         |           |          |
| 3.              | To Stu   | dy On-I  | Line we  | b appli  | cation & | k Intern | net Con    | cepts    |            |         |           |          |         |           |          |
| COUR            |          |          |          | - 11     |          |          |            | •        |            |         |           |          |         |           |          |
| 0 1             |          | C 1      | 1        | C .1     |          | . 1 .    | '11 1      | 11 .     |            |         |           |          |         |           |          |
| On the          | success  | ful com  | pletion  | of the   | course,  | student  | s will b   | e able t | .0         |         |           |          |         |           |          |
| CO1: U          | ndersta  | nd the b | asic co  | ncept of | f HTMI   | and S    | cripting   | g Langu  | age        |         |           | Underst  | and     |           |          |
| CO2: L          | earn the | HTML     | ., Comi  | non Ga   | teway I  | nterface | e.         |          |            |         |           | Apply    |         |           |          |
| CO3: L          | earn the | Java S   | cript an | d AJAX   | X        |          |            |          |            |         |           | Apply    |         |           |          |
| <b>CO4</b> : Le | earn the | Server   | side pr  | ogramn   | ning     |          |            |          |            |         |           | Apply    |         |           |          |
| CO5. L          | ome the  | dataha   |          | aativity |          |          |            |          |            |         |           | Apply    |         |           |          |
| CO5: Le         |          |          |          |          |          | 20145    | G 4 N TD   | DD 0 0   | X D A D 63 | ATE CEL |           |          | N ATEC  |           |          |
| MAPP            | ING W    | TTH P    | KOGK     | AMMI     | COUT     | COME     | S AND      | PROG     | KAMI       | ME SPE  | ECIFIC O  | UTCO     | MES     |           | ı        |
| COs             | PO1      | PO2      | PO3      | PO4      | PO5      | PO6      | <b>PO7</b> | PO8      | PO9        | PO10    | PO11      | PO12     | PSO1    | PSO2      | PSO3     |
| CO1             | M        | M        | M        | M        | -        | -        | -          | -        | -          | -       | -         | -        | M       | M         | M        |
| CO2             | M        | M        | M        | M        | -        | -        | -          | -        | -          | -       | -         | -        | M       | M         | M        |
| CO3             | M        | M        | S        | M        | -        | -        | -          | -        | -          | -       | -         | -        | M       | M         | M        |
| CO4             | S        | M        | M        | M        | -        | -        | -          | ı        | -          | -       | -         | -        | M       | M         | S        |
| CO5             | S        | M        | M        | M        | -        | -        | -          | -        | -          | -       | -         | -        | M       | M         | S        |

### INTRODUCTION

Internet Principles – Basic Web Concepts – Client/Server model – retrieving data from Internet – HTML and Scripting Languages – Standard Generalized Mark –up languages – Next Generation –

Internet –Protocols and Applications

## **COMMON GATEWAY INTERFACE PROGRAMMING**

 $HTML\ forms-CGI\ Concepts-HTML\ tags\ Emulation-Server-Browser\ Communication-E-mail\ generation-CGI\ client\ Side\ applets-CGI\ server\ applets-authorization\ and\ security.\ Introduction\ to\ PERL.$ 

## SCRIPTING LANGUAGES

Java Script Programming-Dynamic HTML-Cascading style sheets-Object model and Event model- Filters and Transitions-Active X Controls-Multimedia-Client side script.- Traditional webapplication vs AJAX application –creating full scale AJAX application - Forms – Scripting Object

## SERVER SIDE PROGRAMMING

Dynamic Web content – cascading style sheets – DHTML – XML – Server side includes – communication – Active and Java Server Pages - Ruby enabled applications

### ONLINE

Simple applications – on-line databases – monitoring user events – plug-ins –database connectivity – Internet Information Systems – MICROSOFT IIS - EDI application in business – Internet Commerce

- Customization of Internet Commerce.

### **TEXT BOOK**

- 1. Jason Hunter, William Crawford, "Java Servlet Programming", O' Reilly Publications, 1999.
- 2. Ravi Kalakota and Andrew B Whinston, "Frontiers of Electronic Commerce", Addison Wesley, 1996
- 3. Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and Java", Prentice Hall of India –QUE, 1999
- **4.**Paul JDeitel and Harvey M Deitel, "AJAX, Rich Internet appliactions and web development", Prentice Hall, 2008.

## **REFERENCES**

- 1. Jeffy Dwight, Michael Erwin and Robert Niles, "Using CGI", Prentice Hall of India QUE,2010.
- 2. Scot Johnson, Keith Ballinger, Davis Chapman, "Using Active server Pages", Prentice Hall of India, 1999.
- 3. Ted coombs, Jason coombs, Brewer, "Active X source book", John wiley, 1999
- 4. Evangelos Petroutsos, "Mastering Visual Basic 6", BPB Publications, 1998

| S.No. | Name of the Faculty Designation |                     | Department   | Mail ID                      |  |  |  |
|-------|---------------------------------|---------------------|--------------|------------------------------|--|--|--|
| 1.    | Dr.R.Jaichandran                | Assistant Professor | CSE / AVIT   | rjaichandran@avit.ac.in      |  |  |  |
| 2.    | Mr. B. Sundaramurthy            | Assistant Professor | CSE / VMKVEC | sundharamurthy@vmkvec.edu.in |  |  |  |

| 17CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CC31                                                                                                                  | RICH INTERNET APPLICATION DEVELOPMENT |     |     |     |   |   | Catego | ory     | L          | T               | P    | Cr   | edit |  |   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|-----|-----|---|---|--------|---------|------------|-----------------|------|------|------|--|---|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |                                       | LAB |     |     |   |   | CC     |         | 0          | 0               | 4    |      | 2    |  |   |      |
| PREAMBLE  This course provides to study Internet programming and Web application development. Students will learn basic principles and techniques for building Internet applications. It provides students with the basic Web page development technologies and an introduction to dynamic Web page development using client-side scripting. Topics include introduction to HTTP protocol and client side programming, XHTML, Cascading Style Sheets, JavaScript DOM, XML, Namespace, DTD, Schema and AJAX. |                                                                                                                       |                                       |     |     |     |   |   |        |         |            | pment<br>nclude |      |      |      |  |   |      |
| PREREQUISITE – JAVA PROGRAMMING LAB(17CSCC26)                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
| COURSE OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                       |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . To learn CGI Concepts & CGI Programming                                                                             |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . To Study DHTML, XML,AJAX                                                                                            |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | To Study On-Line web application & Internet Concepts                                                                  |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
| COUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RSE OU                                                                                                                | JTCON                                 | MES |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
| On the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | On the successful completion of the course, students will be able to                                                  |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |                                       | -   |     |     |   |   | compa  | re with | n traditio | onal            | Unde | star | nd   |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Web Application model (JS,XML,PHP,CSS)  CO2. Develop Rich Internet Applications using JavaScript, XML, PHP,  Apply    |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OOM to communicate with Web Server                                                                                    |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO3. Develop dynamic Web pages using CSS, validating input data,                                                      |                                       |     |     |     |   |   |        |         |            | Apply           |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wrapping applications into a single PHP script  CO4 Implement Server-Side script to serve client-side requests  Apply |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO4. Implement Server-Side script to serve client-side requests                                                       |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO5. Develop dynamic web pages using Ajax  Apply  Apply                                                               |                                       |     |     |     |   |   |        |         |            |                 |      |      |      |  |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES                                                       |                                       |     |     |     |   |   |        |         | DCO2       |                 |      |      |      |  |   |      |
| COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PO1                                                                                                                   | PO2                                   | PO3 | PO4 | PO5 |   |   |        | PO9     | PO10       | PO11            | PO   |      | PSO1 |  |   | PSO3 |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                                                                                                     | M                                     | M   | M   | L   | - | - | -      | -       | -          | -               | -    |      | M    |  | M | M    |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                                                                                                     | M                                     | M   | M   | S   | - | - | -      | -       | -          | -               | -    |      | M    |  | M | S    |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                                                                                                     | M                                     | S   | M   | S   | - | - | -      | -       | -          | -               | -    |      | M    |  | M | S    |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                     | M                                     | M   | M   | M   | - | - | -      | -       | -          | -               | -    |      | M    |  | M | M    |

M

S

**CO5** 

### LIST OF EXPERIMENTS

- 1. Use HTML5 markup tags for structuring web page
- 2. Use HTML5 with appropriate CSS properties and elements for styling, formatting, and enhancing web pages
- 3. Construct and validate web pages using HTML5 and CSS3
- 4. Implement client-side application logic using JavaScript
- 5. Define XML related concepts and languages
- 6. Compare and contrast between HTML and XML
- 7. Validate XML documents for correctness.
- 8. Create JSON in JavaScript and insert JSON data into HTML
- 9. Implement Server-Side script to serve client-side requests
- 10. Develop dynamic web pages using Ajax technology

### **TEXT BOOK**

1. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, , "Internet and World Wide Web", Prentice Hall; 5 edition (2011-11)

## **Course Designers:**

| S.No. | Name of the Faculty               | Designation                    | Department   | Mail ID                 |  |  |
|-------|-----------------------------------|--------------------------------|--------------|-------------------------|--|--|
| 1.    | Dr.K.Sasikala Associate Professor |                                | CSE / VMKVEC | sasikalak@vmkvec.edu.in |  |  |
| 2.    | Mr. S.Muthuselvan                 | Assistant Professor ( G<br>II) | CSE / AVIT   | muthuselvan@avit.ac.in  |  |  |

| -                                            | 7CSCC1                                       | 16                                                 |                                               | CL                                          | OUD C                  | OMPU                  | TING        |          |               |                | Category  | L             | T                                                                                         | P                            | Credit |
|----------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------|-----------------------|-------------|----------|---------------|----------------|-----------|---------------|-------------------------------------------------------------------------------------------|------------------------------|--------|
|                                              |                                              |                                                    |                                               |                                             |                        |                       |             |          |               |                | CC        | 3             | 0                                                                                         | 0                            | 3      |
|                                              | MBLE                                         | 1 ,                                                | 1.1                                           |                                             | . 1                    | 1                     |             | 1 1      | 1             | ,.             | 11        |               |                                                                                           |                              |        |
|                                              | y and un                                     |                                                    |                                               |                                             |                        |                       | uting a     | na appi  | y tnem        | practica       | 11y.      |               |                                                                                           |                              |        |
| PRER                                         | EQUIS                                        | ITE : (                                            | COMPU                                         | JTER N                                      | ETWC                   | ORKS                  |             |          |               |                |           |               |                                                                                           |                              |        |
| COUR                                         | RSE OB                                       | JECTI                                              | VES                                           |                                             |                        |                       |             |          |               |                |           |               |                                                                                           |                              |        |
| 1.                                           | To unde                                      | erstand                                            | cloud c                                       | computi                                     | ng cond                | cepts.                |             |          |               |                |           |               |                                                                                           |                              |        |
| 2.                                           | To stud                                      | ly vario                                           | us clou                                       | d servic                                    | es.                    |                       |             |          |               |                |           |               |                                                                                           |                              |        |
| 3.                                           | To appl                                      | ly cloud                                           | d compu                                       | ıting in                                    | collabo                | ration v              | with otl    | ner serv | ices.         |                |           |               |                                                                                           |                              |        |
| 4.                                           | То Арр                                       | oly clou                                           | d comp                                        | uting so                                    | ervices.               |                       |             |          |               |                |           |               |                                                                                           |                              |        |
| 5.                                           | To appl                                      | ly cloud                                           | l compi                                       | iting or                                    | line.                  |                       |             |          |               |                |           |               |                                                                                           |                              |        |
| COUR                                         | RSE OU                                       | TCOM                                               | 1ES                                           |                                             |                        |                       |             |          |               |                |           |               |                                                                                           |                              |        |
| 0 1                                          |                                              | C 1                                                | 1                                             | C (1                                        |                        | 4 1                   | '11 1       | 1.1      | 4             |                |           |               |                                                                                           |                              |        |
| On the                                       | success                                      | stul con                                           | npietion                                      | or the                                      | course,                | studen                | s will t    | be able  | to            |                |           |               |                                                                                           |                              |        |
|                                              |                                              |                                                    |                                               |                                             |                        |                       |             |          |               |                |           |               |                                                                                           |                              |        |
| C <b>O1:</b> U                               | Inderstai                                    | nd basic                                           | cs in Cl                                      | oud Co                                      | mputing                | g                     |             |          |               |                |           |               | Unde                                                                                      | rstand                       |        |
|                                              |                                              |                                                    |                                               |                                             |                        |                       |             |          |               |                |           |               |                                                                                           | erstand                      |        |
|                                              | nderstai                                     |                                                    |                                               |                                             |                        |                       |             |          |               |                |           |               | Aŗ                                                                                        | pply                         |        |
| CO2: A                                       |                                              | oud con                                            | nputing                                       | concep                                      | ots in rea             |                       |             |          |               |                |           |               | Aŗ                                                                                        |                              |        |
| CO2: A                                       | apply clo                                    | oud con                                            | omputing                                      | concep                                      | ots in rea             |                       |             |          |               |                |           |               | A <sub>f</sub>                                                                            | pply                         |        |
| CO2: A                                       | apply clo                                    | oud con                                            | omputing                                      | concep                                      | ots in rea             |                       |             |          |               |                |           |               | A <sub>f</sub>                                                                            | oply oply oply               |        |
| CO2: A                                       | apply clo                                    | oud con                                            | omputing                                      | concep                                      | ects                   | al time               | applica     | tions    |               |                |           |               | A <sub>f</sub>                                                                            | oply                         |        |
| CO2: A CO3: D CO4: A CO5: A                  | apply clo                                    | oud con                                            | omputing omputing vices                       | concerng project                            | ects                   | al time               |             |          | GRAM          | ME SPI         | ECIFIC O  | UTCON         | A <sub>I</sub> A <sub>I</sub>                                                             | oply oply oply               |        |
| CO2: A CO3: D CO4: A CO5: A                  | apply clo                                    | oud concloud coud servollabora                     | omputing omputing vices ate cloue             | concerng project                            | ects  ces with         | al time               | S AND       | PROC     |               |                |           |               | A <sub>F</sub> A <sub>F</sub> A <sub>F</sub>                                              | oply oply oply oply          | PSO3   |
| CO2: A CO3: D CO4: A CO5: A                  | apply clo                                    | oud con                                            | omputing omputing vices ate cloue             | concerng project                            | ects                   | al time               |             |          | GRAMI<br>PO9  | ME SPI         | ECIFIC O  | UTCON<br>PO12 | A <sub>I</sub> A <sub>I</sub>                                                             | oply oply oply oply          | PSO3   |
| CO2: A CO3: D CO4: A CO5: A MAPP Cos         | pply clo pevelop o pply clo ble to co PING W | oud concloud coud servollabora                     | omputing omputing vices ate clou ROGR         | concepting projected service AMMI           | ects  ces with  PO5    | al time n other a     | S AND       | PO8      | PO9           | PO10           | PO11      | PO12          | A <sub>F</sub> A <sub>F</sub> A <sub>F</sub> A <sub>F</sub> A <sub>F</sub> A <sub>F</sub> | oply oply oply oply oply     |        |
| CO2: A CO3: D CO4: A CO5: A MAPP Cos CO1     | pply clo                                     | oud concloud concloud servollabora  VITH P  PO2  M | omputing omputing vices ate clou ROGR PO3     | concepting projected service  AMMI  PO4  M  | ects  ces with  PO5    | n other a  COME PO6 - | S AND PO7   | PO8      | PO9<br>-      | PO10<br>-      | PO11<br>- | PO12          | Ap Ap Ap Ap Ap Ap Ap  MES                                                                 | oply oply oply oply oply M   | M      |
| CO2: A CO3: D CO4: A CO5: A MAPP Cos CO1 CO2 | pply clo                                     | oud concloud servollabora  VITH P  PO2  M  M       | omputing omputing vices ate clou ROGR PO3 M M | concerng projected service  AMMI  PO4  M  M | ects  ces with  PO5  - | n other a  COME PO6 - | S AND PO7 - | PO8 -    | PO9<br>-<br>- | PO10<br>-<br>- | PO11<br>- | PO12<br>-     | Ap Ap Ap Ap Ap  MES PSO1 M                                                                | pply pply pply pply pply M M | M      |

#### INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage –Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

#### **DEVELOPING CLOUD SERVICES**

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

## **CLOUD COMPUTING FOR EVERYONE**

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

# USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

## **COLLABORATING ONLINE**

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services – Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware – Collaborating via Blogs and Wikis.

# TEXT BOOKS

- **1.** Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and aradigms", John Wiley & Sons, 2010.
- 2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

#### REFERENCES

**1.** Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

| S.No. | Name of the Faculty | Designation         | Department    | Mail ID                 |
|-------|---------------------|---------------------|---------------|-------------------------|
| 1.    | Dr.R.Jaichandran    | Professor           | CSE /<br>AVIT | rjaichandran@avit.ac.in |
| 2.    | T.Geetha            | Assistant professor | CSE / VMKVEC  | geetha_kcs@yahoo.com    |

|                    | 7AICC02    | 2         | I         | NFOR      | MATI(     | ON SE    | CURIT     | Ϋ́       |          |           | Categor     | y        | T          | P         | Credit |
|--------------------|------------|-----------|-----------|-----------|-----------|----------|-----------|----------|----------|-----------|-------------|----------|------------|-----------|--------|
|                    |            |           |           |           |           |          |           |          |          |           | CC          | 3        | 0          | 0         | 3      |
| PREA!              |            | ntrodu    | ction to  | the nee   | ed for Ir | nformat  | ion Sec   | urity in | real tii | me and t  | to study to | echnique | es involve | ed in it. |        |
| PRER               | EQUISI     | TE: C     | ompute    | r Netw    | orks      |          |           |          |          |           |             |          |            |           |        |
| COUR               | SE OBJ     | ECTI      | VES       |           |           |          |           |          |          |           |             |          |            |           |        |
| 1.                 | To study   | found     | lational  | theory    | behind    | inform   | ationse   | curity   |          |           |             |          |            |           |        |
| 2.                 | To study   | basic     | princip   | les and   | technic   | ues wh   | endesig   | gning a  | secure   | system    |             |          |            |           |        |
| 3.                 | To study   | the at    | tacks a   | nd defe   | nses wo   | rk in p  | ractice   |          |          |           |             |          |            |           |        |
| 4.                 | To learn   | about     | the thre  | eats for  | their si  | gnifica  | nce       |          |          |           |             |          |            |           |        |
| 5.                 | To learn   | about     | the pro   | tections  | s and lin | nitatior | is provi  | dedby t  | today's  | technolo  | ogy         |          |            |           |        |
| COUR               | SE OUT     | COM       | IES       |           |           |          |           |          |          |           |             |          |            |           |        |
| On the             | successf   | ul com    | pletion   | of the    | course,   | student  | ts will b | e able t | :0       |           |             |          |            |           |        |
| <b>CO1.</b> U      | nderstand  | d the fo  | oundati   | onal the  | eory bel  | nind inf | ormatic   | nsecur   | ity      |           |             | Unders   | tand       |           |        |
| CO2. U             | nderstand  | d the b   | asic pri  | nciples   | and tec   | hnique   | s when    | designir | ng a sec | cure syst | tem         | Unders   | tand       |           |        |
| CO3. Le            | earn how   | today     | 's attacl | ks and c  | lefenses  | work i   | in pract  | ice      |          |           |             | Unders   | tand       |           |        |
| CO4. Le            | earn how   | to ass    | ess thre  | eats for  | their sig | gnificar | ice       |          |          |           |             | Unders   | tand       |           |        |
| CO5 In             | fer the p  | rotection | ons and   | l limitat | ions pro  | ovidedb  | v todav   | 's techr | nology   |           |             | Unders   | tand       |           |        |
| COS. III           |            |           |           |           |           |          |           |          |          | ME SPI    | ECIFIC (    |          |            |           |        |
|                    | TT 10 11 1 |           |           |           | PO5       | PO6      | PO7       | PO8      | PO9      | PO10      | PO11        | PO12     | PSO1       | PSO2      | PSO3   |
|                    |            | PO2       | PO3       | PO4       | 103       | 1 00     | 107       |          |          |           |             |          |            |           |        |
| MAPP               |            | PO2<br>M  | PO3       | M M       | -         | -        | -         | -        | -        | -         | -           | -        | M          | M         | M      |
| MAPP<br>Cos        | PO1        |           |           |           | -<br>M    | -        | -         | -        | -        | -         | -           | -        | M<br>M     | M<br>M    | M<br>M |
| MAPP Cos CO1. CO2. | PO1<br>M   | М         | M         | M         | -         | -        | -         | -        | -        | -         | -           | -        |            |           |        |
| MAPP               | PO1 M M    | M<br>M    | M<br>M    | M<br>M    | -<br>M    | -        | -         | -        | -        |           | -           | -        | M          | M         | M      |

#### INTRODUCTION

An Overview of Computer Security, Access Control Matrix, Policy-Security policies, Confidentiality policies, Integrity policies and Hybrid policies.

# INFORMATION SECURITY MANAGEMENT

Cryptography- Key management – Session and Interchange keys, Key exchange and generation, Cryptographic Key Infrastructure, Storing and Revoking Keys, Digital Signatures, Cipher Techniques.

## SECURITY DESIGN AND ACCESS CONTROL MECHANISMS

Systems: Design Principles, Representing Identity, Access Control Mechanisms, Information Flow and Confinement Problem.

#### SECURITY ATTACKS FOR CLIENT/ SERVER SYSTEMS

Malicious Logic, Vulnerability Analysis, Auditing and Intrusion Detection

## INFORMATION SECURITY RISK MANAGEMENT

Network Security, System Security, User Security and Program Security

#### TEXT BOOK

1. Matt Bishop, "Computer Security art and science", Second Edition, Pearson Education

## REFERENCE BOOKS

- **1.** Mark Merkow, James Breithaupt "Information Security: Principles and Practices" First Edition, Pearson Education,
- 2. Whitman, "Principles of Information Security", Second Edition, Pearson Education
- **3.** William Stallings, "Cryptography and Network Security: Principles and Practices", Third Edition, Pearson Education.
- **4.** "Security in Computing", Charles P.Pfleeger and Shari Lawrence Pfleeger, Third Edition.

| S. No. | Name of the Faculty | Designation               | Department   | Mail ID                  |
|--------|---------------------|---------------------------|--------------|--------------------------|
| 1.     | Mrs. R Shobana      | Assistant Professor (GII) | CSE / AVIT   | shobana@avit.ac.in       |
| 2.     | M. Annamalai        | Assistant Professor       | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 1'               | 7CSCC     | 15       |           | C# ANI   | ) .NET   | APPL     | ICATI    | ON       |          |           | Categor   | y L         | Т    | P    | Credit |
|------------------|-----------|----------|-----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-------------|------|------|--------|
|                  |           |          |           |          | DEVEL    |          |          | 011      |          |           | CC        | 3           | 0    | 0    | 3      |
| PREA!            |           | introdu  | ction to  | the .N   | ET fran  | nework   | and ena  | able the | studen   | t to prog | gram in C | <u>'</u> #. |      | l    |        |
| PRER             | EQUIS     | ITE: Ja  | ava Pro   | grammi   | ng       |          |          |          |          |           |           |             |      |      |        |
| COUR             | SE OB     | JECTI    | VES       |          |          |          |          |          |          |           |           |             |      |      |        |
| 1.               | To stud   | y basic  | and ad    | vanced   | feature  | of the   | C# lan   | guage    |          |           |           |             |      |      |        |
| 2.               | To crea   | te form  | based     | and wel  | based    | applica  | tions    |          |          |           |           |             |      |      |        |
| 3.               | To stud   | y the in | iternals  | of the . | NET fr   | amewoi   | rk       |          |          |           |           |             |      |      |        |
| 4.               | To lear   | n about  | ADO.      | Net      |          |          |          |          |          |           |           |             |      |      |        |
| 5.               | To lear   | n about  | differe   | nt web   | services | 3        |          |          |          |           |           |             |      |      |        |
| COUR             | SE OU     | TCOM     | IES       |          |          |          |          |          |          |           |           |             |      |      |        |
| On the           | success   | ful con  | pletion   | of the   | course,  | student  | s will t | e able t | .0       |           |           |             |      |      |        |
| CO1. Le          | earn the  | basics   | of .net   | Frame v  | work an  | d C# la  | nguage   | :        |          |           |           | Underst     | tand |      |        |
| <b>CO2.</b> Le   | earn C#   | elemen   | its and   | OOPS o   | oncepts  | S        |          |          |          |           |           | Apply       |      |      |        |
| CO3. Le          | earn inte | erface a | nd inhe   | ritance  | concep   | ts in C# | ł langua | age      |          |           |           | Analyz      | e    |      |        |
| CO4. Le          |           | dament   | tals of v | window   | applica  | tion pro | ogramn   | ning and | d create | a windo   | ow        | Apply       |      |      |        |
| Applicat CO5. De |           | web app  | olication | ns and 1 | earn ad  | vanced   |          |          |          |           |           | Apply       |      |      |        |
| MAPP             | ING W     | TTH P    | ROGR      | AMMI     | E OUT    | COME     | S AND    | PROG     | GRAMI    | ME SPI    | ECIFIC (  |             | MES  |      |        |
| Cos              | PO1       | PO2      | PO3       | PO4      | PO5      | PO6      | PO7      | PO8      | PO9      | PO10      | PO11      | PO12        | PSO1 | PSO2 | PSO3   |
| CO1.             | S         | M        | M         | M        | M        | -        | -        | -        | -        | -         | -         | -           | M    | -    | -      |
| CO2.             | S         | M        | M         | L        | L        | -        | -        | -        | -        | -         | -         | -           | M    | M    | M      |
| CO3.             | S         | M        | S         | -        | M        | -        | ı        | -        | ı        | -         | -         | -           | M    | M    | M      |
| CO4.             | S         | M        | L         | -        | M        | -        | -        | -        | -        | -         | -         | -           | M    | M    | -      |
| CO5.             | S         | M        | L         | L        | M        | -        | -        | -        | -        | -         | -         | -           | S    | M    | -      |
| S- Stro          | ng; M-N   | Medium   | ı; L-Lo   | w        |          |          |          |          |          |           |           |             |      |      |        |

#### **INTRODUCTION:**

Overview Of .Net-Advantages Of .Net Over Other Languages-Assemblies-.Net Architecture-The Role of C# In The .Net Enterprise Architecture-The Common Language Runtime-C# Basics-Objects And Types-Inheritance —Arrays.

#### **OBJECT ORIENTED ASPECTS OF C#:**

Operators and Casts: Operators - Type Safety - Operator Overloading - User-Defined Casts. Delegates and Events: Delegates - Events. Strings and Regular Expressions: System.String -Regular Expressions. Collections: Collection Interfaces and Types

- Lists - Queues - Stacks - Linked Lists - Sorted Lists - Dictionaries - Hash Set - Bit Arrays - Performance-Indexers.

## I/O AND NETWORKPROGRAMMING:

Tracing and events - threading and synchronization - .Net security - localization -Manipulating XML - Managing the file system - basic networkprogramming.

#### ADO.NET: #:

Data Access: ADO.NET Overview - Using Database Connections - Commands - Fast Data Access: The Data Reader - Managing Data and Relationships: The DataSet Class - XML Schemas: Generating Code with XSD - Working with ADO.NET. Windows Forms: Creating a Windows Form Application - Control Class - Standard Controls and Components - Forms. Data Binding: The Data Grid View Control - Data Grid View Class Hierarchy - Data Binding - Visual Studio .NET and Data Access.

#### **ASP.NET AND WEB SERVICES:**

ASP.NET Pages: ASP.NET Introduction - ASP.NET Web Forms - ADO.NET and Data Binding.ASP.NET Development: User and Custom Controls - Master Pages - Site Navigation - Security - Themes - Web Parts. ASP.NET AJAX: What Is Ajax - What Is ASP.NET AJAX - Using ASP.NET AJAX.

#### **TEXT BOOK**

**1.** Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Professional C# 2008, Wiley Publishing, Inc., 2008. ISBN:978-8-126-51627-8.

## REFERENCE BOOKS

- 1. Andrew Troelsen, "C# and the .NET Platform", A! Press,2005.
- 2. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill,2004.
- 3. Kevin Hoffman, "Visual C# 2005", Pearson Education, 2006.

| S. No. | Name of the Faculty | Designation               | Department   | Mail ID                |
|--------|---------------------|---------------------------|--------------|------------------------|
| 1.     | Mrs. T. Narmadha    | Assistant Professor       | CSE / VMKVEC | narmadha@vmkvec.edu.in |
| 2.     | Mrs. R. Shobana     | Assistant Professor (GII) | CSE / AVIT   | shobana@avit.ac.in     |

| 1                | 7CSCC                  | 30       | <b>C</b> # |          | .NET<br>ELOP |           |          |          |      |          | Category         | 7 <b>L</b>   | T      | P      | Credit |
|------------------|------------------------|----------|------------|----------|--------------|-----------|----------|----------|------|----------|------------------|--------------|--------|--------|--------|
|                  |                        |          |            | DEV      | ELOI         | 1411714 1 | LAD      |          |      |          | CC               | 0            | 0      | 4      | 2      |
| PREAN<br>To gain | <b>ABLE</b><br>progran | nming l  | knowled    | dge in C | C#&.Ne       | t Frame   | work.    |          |      |          |                  |              |        |        |        |
| PRERE            | EQUISI'                | TE : JA  | AVA PI     | ROGRA    | AMMIN        | IG LAE    | 3(17CS   | CC26)    |      |          |                  |              |        |        |        |
| COUR             | SE OBJ                 | ECTIV    | ES         |          |              |           |          |          |      |          |                  |              |        |        |        |
| 1.               | Disting                | uish be  | tween b    | y value  | , by ref     | and or    | ıt parar | neter ty | pes. |          |                  |              |        |        |        |
| 2.               | Call cla               | ss meth  | ods usi    | ng by v  | alue, b      | y ref, ar | nd out p | aramet   | ers. |          |                  |              |        |        |        |
| 3.               | To be a                | ble to d | lefine aı  | nd use g | global n     | amed c    | onstant  | S        |      |          |                  |              |        |        |        |
| 4.               | To be a                | ble to d | lebug a    | prograi  | n of syr     | ntax and  | d logic  | errors   |      |          |                  |              |        |        |        |
| 5.               | Introdu                | ce to .N | let IDE    | Compo    | nent Fr      | amewo     | rk.      |          |      |          |                  |              |        |        |        |
| 6.               | Progran                | nming    | concept    | s in .Ne | et Frame     | ework.    |          |          |      |          |                  |              |        |        |        |
| 7.               | Creatin                | g websi  | ite using  | g ASP.1  | Net Con      | trols.    |          |          |      |          |                  |              |        |        |        |
| COUR             | SE OUT                 | COMI     | ES         |          |              |           |          |          |      |          |                  |              |        |        |        |
| On the s         | successf               | ul comp  | oletion    | of the c | ourse, s     | tudents   | will be  | able to  | )    |          |                  |              |        |        |        |
| CO1 (            | Susata Ci              | 1        | 1: 4:      |          | ~l. ~        |           |          |          |      |          | Tind             | a.u.a4.a.u.d |        |        |        |
| CO1. (           |                        |          |            |          |              |           |          |          |      |          |                  | erstand      |        |        |        |
| CO2. V           |                        |          |            |          |              |           |          |          |      |          | App              |              |        |        |        |
| CO3. U           |                        |          | •          |          |              |           |          |          |      |          | Ana              | <u> </u>     |        |        |        |
| <b>CO4.</b> Q    |                        |          |            |          |              |           |          |          |      | latabase | App              |              |        |        |        |
| CO5. D           |                        |          |            |          |              |           | •        |          |      | TE CDE   | App              |              | EG     |        |        |
| Cos              | PO1                    |          |            |          | PO5          |           |          |          |      | PO10     | CIFIC OU<br>PO11 | PO12         |        | PSO2   | PSO3   |
| CO1.             |                        |          |            |          |              |           |          |          |      |          |                  |              |        | 1      |        |
| CO2.             | M                      | M        | M          | M        | S            | -         |          | -        | -    | -        | -                | -            | M      | M      | S      |
| CO3.             | M                      | M        | M          | M        | M            | -         |          | -        | -    | -        | -                | -            | M      | M      | M      |
| CO4.             | M<br>S                 | M        | S          | M        | M            | -         |          | -        | -    | -        | -                | -            | M      | M      | M      |
| CO5.             | S                      | M<br>M   | M<br>M     | M<br>M   | M<br>M       | -         |          | -        | -    | -        | -                | -            | M<br>M | M<br>M | M<br>M |
| S- Stron         |                        |          |            |          | IVI          | -         |          | -        | -    | -        | -                | -            | IVI    | IVI    | IVI    |
| ~ 5HOI.          | .5, 1/1 1/1            | .caram,  |            |          |              |           |          |          |      |          |                  |              |        |        |        |

# LIST OF EXPERIMENTS:

- 1. Classes and Objects using out, ref and params
- 2. Student Information System using Properties
- 3. Banking Application using Inheritance
- 4. Library Management using Predefined Interfaces
- 5. Students Admission using User defined Interfaces
- 6. Solving Postfix Expressions using Stack
- 7. Solving Complex Numbers using Operator Overloading
- 8. Matrix Addition, Subtraction, Multiplication and Division using Delegates
- 9. User Subscription for News Events using Events
- 10. Calculator using Windows Application
- 11. Advanced Windows Controls

# TEXT BOOK:

1. Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Professional C# 2008, Wiley Publishing, Inc., 2008. ISBN: 978-8-126-51627-8.

# REFERENCE BOOKS:

- 1. Andrew Troelsen, "C# and the .NET Platform", A! Press, 2005.
- 2. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill, 2004.
- 3. Kevin Hoffman, "Visual C# 2005", Pearson Education, 2006.
- 4. Laboratory Reference Manual.

| S. No. | Name of the<br>Faculty | Designation              | Department      | Mail ID                |
|--------|------------------------|--------------------------|-----------------|------------------------|
| 1.     | Mrs. S. Leelavathi     | Assistant Professor G-II | CSE / AVIT      | leelavathi@avit.ac.in  |
| 2.     | Mrs. T. Narmadha       | Assistant Professor      | CSE /<br>VMKVEC | narmadha@vmkvec.edu.in |

|                |          |         |                     |          |          |          |          |          |         |         | <b>C</b> 4   |            | TD.      | D C        | 1 104  |
|----------------|----------|---------|---------------------|----------|----------|----------|----------|----------|---------|---------|--------------|------------|----------|------------|--------|
| 17             | 10001    |         |                     | U        | NIX IN   | ITERN    | ALS (    | Theory   | + Pra   | ctice)  | Category     | L          | T        | PC         | redit  |
| 1/2            | AICC03   |         |                     |          |          |          |          |          |         |         | CC           | 3          | 0        | 2          | 4      |
| PREA           |          | 1       |                     |          |          |          |          |          |         | l.      |              | •          |          |            |        |
|                |          |         |                     |          |          |          |          |          |         |         | s. It is air |            |          |            |        |
|                |          |         |                     |          | idows s  | ystem.   | The an   | m is to  | ıntrodu | ice you | to the co    | ncepts, th | ie possi | bilities a | nd the |
| tools us       |          |         | grammi              | ng.      |          |          |          |          |         |         |              |            |          |            |        |
| NIL            | EQUIS.   | IIL     |                     |          |          |          |          |          |         |         |              |            |          |            |        |
| COUR           | SE OB    | JECTI   | VES                 |          |          |          |          |          |         |         |              |            |          |            |        |
| 1.             | To un    | derstan | d the de            | esign of | the UN   | IIX ope  | rating s | ystem    |         |         |              |            |          |            |        |
| 2.             | To be    | come fa | amiliar             | with the | e variou | s data s | tructure | es used  |         |         |              |            |          |            |        |
| COUR           | SE OU    | TCOM    | IES                 |          |          |          |          |          |         |         |              |            |          |            |        |
|                |          |         |                     |          |          |          |          |          |         |         |              |            |          |            |        |
| On the         | success  | ful con | npletion            | of the   | course,  | student  | s will b | e able t | 0       |         |              |            |          |            |        |
| CO1: L         | earn the | e basic | Unix o <sub>l</sub> | perating | system   | s and it | ts basic | comma    | ands.   |         |              | Understa   | and      |            |        |
| CO2: A         | nalyze   | the buf | fers and            | l kerne  | represe  | entation |          |          |         |         |              | Analyze    |          |            |        |
| CO3: A         | nalyze   | the UN  | IX syst             | em stru  | cture, s | ystem c  | alls.    |          |         |         |              | Analyze    |          |            |        |
| <b>CO4</b> : U | Jndersta | nd UN   | IX segn             | nentatio | on, sche | duling,  | paging.  |          |         |         |              | Analyze    |          |            |        |
|                |          |         |                     |          |          |          |          |          | FRAMI   | ME SPI  | ECIFIC (     | · ·        |          |            |        |
| Cos            | PO1      | PO2     | PO3                 | PO4      | PO5      | PO6      | PO7      | PO8      | PO9     | PO10    | PO11         | PO12       | PS01     | PSO2       | PSO3   |
| CO1            | S        | M       | L                   | L        | M        | -        | -        | -        | -       | -       | -            | M          | S        | M          | M      |
| CO2            | S        | M       | L                   | L        | M        | -        | -        | ı        | ı       | ı       | -            | M          | S        | M          | M      |
| CO3            | S        | M       | L                   | -        | L        | -        | -        | -        | -       | -       | -            | M          | S        | M          | M      |
| CO4            | S        | M       | L                   | L        | M        | -        | -        | -        | -       | -       | -            | M          | S        | M          | M      |
| S- Stro        | ng; M-N  | Medium  | n; L-Lo             | W        |          |          |          |          |         |         |              |            |          |            |        |

## INTRODUCTION

General Review of the System-History-System structure-User Perspective-Operating System Services- Assumptions About Hardware. Introduction to the Kernel-Architecture System Concepts-Data Structures- System Administration Lab1 - Installation of Unix operating system, Lab2 - User management in Unix, Lab3 - Study of Unix general purpose utility command

#### DISK BLOCKS

The Buffer Cache-Headers-Buffer Pool-Buffer Retrieval-Reading and Writing Disk Blocks - Advantages and Disadvantages. Internal Representation of Files-Inodes- Structure-Directories-Path Name to Inode- Super Block-Inode Assignment-Allocation of Disk Blocks - Other File Types, Lab4 - Study of Unix networking commands, Lab5 - Study of Unix file system, Lab6 - Study of bash commands.

#### **FILE SYSTEM**

System Calls for the File System-Open-Read-Write-Lseek-Close-Create-Special files Creation -Change Directory and Change Root-Change Owner and Change Mode-Stat-Fstat-Pipes-Dup-Mount-Unmount-Link-Unlink-File System Abstraction-Maintenance. Lab7- Study File and directory permissions, Lab8-Study of Editor , Lab9-Study of File System Management

## PROCESS MANAGEMENT

The System Representation of Processes-States-Transitions-System Memory-Context of a Process-Saving the Context-Manipulation of a Process Address Space-Sleep Process Control-signals-Process Termination-Awaiting-Invokingother Programs-The Shell-System Boot and the INIT Process. Lab10- Study of Shell script, Lab11- Implementation of Shell script, Lab12 - Study of process management

## **MEMORY MANAGEMENT**

Memory Management Policies-Swapping-Demand Paging-a Hybrid System-I/O Subsystem-Driver Interfaces-Disk Drivers-Terminal Drivers. Lab13- study of grep, awk, perl scripts , Lab14- study of Memory management, Lab15-study of User management.

#### **TEXT BOOKS**

1. Maurice J. Bach, "The Design of the Unix Operating System", Pearson Education 2002.

## REFERENCES

- 1. UreshVahalia, "UNIX Internals: The New Frontiers", Prentice Hall, 2000.
- 2. John Lion, "Lion's Commentary on UNIX", 6th edition, Peer-to-Peer Communications, 2004.
- **3.** Daniel P. Bovet & Marco Cesati, "Understanding the Linux Kernel", O'REILLY, Shroff Publishers & Distributors Pvt. Ltd, 2000.
- 4. M. Beck et al, "Linux KernelProgramming

| S. No. | Name of the Faculty | Designation                | Department   | Mail ID                  |
|--------|---------------------|----------------------------|--------------|--------------------------|
| 1.     | Mr. S. Muthuselvan  | Assitant Professor ( G-II) | CSE / AVIT   | muthuselvan@avit.ac.in   |
| 2.     | M. Annamalai        | Assistant Professor        | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 1'                              | 17CSCC14 ARTIFICIAL INTELLIGENCE Category L T P Credit |                                |                                  |                    |          |          |          |                 |          |                     | redit     |            |           |          |         |
|---------------------------------|--------------------------------------------------------|--------------------------------|----------------------------------|--------------------|----------|----------|----------|-----------------|----------|---------------------|-----------|------------|-----------|----------|---------|
|                                 |                                                        |                                |                                  |                    |          |          |          |                 |          |                     | CC        | 3          | 0         | 0        | 3       |
| contains<br>knowled<br>AI and i | labus is<br>intellig<br>lge and                        | ent age<br>in macl<br>epts, ap | nt, Kno<br>nine lea<br>plication | wledge<br>rning co | Repres   | entatio  | n and M  | <b>l</b> achine | learnin  | lean aboung, and ap | plication | n. This is | useful to | o how re | present |
| COUR                            | SE OB                                                  | JECTI                          | VES                              |                    |          |          |          |                 |          |                     |           |            |           |          |         |
|                                 | To iden<br>areas of                                    |                                |                                  |                    | ms that  | can be   | solved   | using A         | AI techr | nique: to k         | cnow the  | relation   | betweer   | AI and   | other   |
| 2.                              | To have                                                | e knowl                        | edge of                          | generio            | e proble | m-solv   | ing me   | thods in        | ı AI     |                     |           |            |           |          |         |
| 3.                              | To desi                                                | gn softv                       | ware ag                          | ents to            | solve a  | probler  | n.       |                 |          |                     |           |            |           |          |         |
| 4.                              | To appl                                                | ly the k                       | nowled                           | ge of al           | gorithm  | s to sol | ve arith | nmetic p        | oroblen  | ns.                 |           |            |           |          |         |
| 5.                              | To asse                                                | mble ar                        | n efficie                        | ent code           | for eng  | gineerin | g probl  | lems.           |          |                     |           |            |           |          |         |
| COUR                            | SE OU                                                  | TCOM                           | IES                              |                    |          |          |          |                 |          |                     |           |            |           |          |         |
| On the                          | success                                                | ful con                        | pletion                          | of the             | course,  | student  | s will b | e able t        | 0        |                     |           |            |           |          |         |
| <b>CO1:</b> Id                  | lentify t                                              | he diffe                       | rent age                         | ent and            | its type | s to sol | ve the p | oroblem         | ns       |                     |           | Understa   | nd        |          |         |
| CO2: K                          | now ab                                                 | out the                        | problen                          | n solvin           | g techn  | ique in  | Artific  | ial Intel       | ligence  |                     |           | Apply      |           |          |         |
| <b>CO3:</b> C                   |                                                        |                                |                                  |                    | -        |          |          | -               |          |                     |           | Apply      |           |          |         |
| CO4: K<br>environi              |                                                        | out exte                       | nsion o                          | f condit           | tion pro | bability | and ho   | ow to ap        | oply in  | the real ti         | me        | Apply      |           |          |         |
| CO5: L                          |                                                        |                                |                                  |                    |          | •        |          |                 |          |                     |           | Understa   |           |          |         |
|                                 | ı                                                      |                                |                                  |                    | 1        |          |          |                 |          | ME SPEC             | ı         | 1          | 1         | T _ a: - |         |
| Cos                             | PO1                                                    | PO2                            | PO3                              | PO4                | PO5      | PO6      | PO7      | PO8             | PO9      | PO10                | PO11      | PO12       | PSO1      | PSO2     | PSO3    |
| CO1                             | M                                                      | M                              | M                                | M                  | M        | -        | -        | -               | -        | -                   | -         | M          | S         | M        | -       |
| CO2                             | M                                                      | M                              | L                                | M                  | L        | -        | -        | -               | -        | -                   | M         | M          | S         | M        | M       |
| CO3                             | M                                                      | -                              | S                                | M                  | M        | -        | -        | -               | -        | -                   | -         | M          | S         | -        | M       |
| CO4                             | S                                                      | M                              | M                                | M                  | M        | -        | -        | -               | -        | -                   | -         | M          | S         | M        | M       |
| CO5                             |                                                        |                                |                                  |                    |          |          |          |                 |          |                     |           |            |           |          |         |

S- Strong; M-Medium; L-Low

# INTRODUCTION

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

## PROBLEM SOLVING

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

#### KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

#### MACHINE LEARNING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

## APPLICATION

AI Applications-Language Models-Information Retrieval-Information Extraction-Natural Language Processing-Machine Translation-Speech Recognition

## TEXT BOOKS

- **1.** S. Russell and P. Norvig, "Artificial Intelligence A Modern Approach", Second Edition, Pearson Education, 2015.
- **2.** Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4<sup>th</sup> Edition, 2011..

## REFERENCES

**1.**David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

- **2.** G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.
- **3.** J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

| S.<br>No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                 |
|-----------|------------------------|---------------------|--------------|-------------------------|
| 1.        | Dr.S.Rajaprakash       | Associate professor | CSE / AVIT   | rajaprakash@avit.ac.in. |
| 2.        | Dr.M. Nithya           | Professor           | CSE / VMKVEC | nithya@vmkv.ac.in       |

| 17A                                         | ICC04               |                                 | A                               | RTIFI              | CIAL     | INTE     | LLIGE    | ENCE            | LAB      | С                  | ategory   | L          | Т         | P C     | redit   |
|---------------------------------------------|---------------------|---------------------------------|---------------------------------|--------------------|----------|----------|----------|-----------------|----------|--------------------|-----------|------------|-----------|---------|---------|
|                                             |                     |                                 |                                 |                    |          |          |          |                 |          | (                  | CC        | 0          | 0         | 4       | 2       |
| This syl<br>contains<br>knowled<br>AI and i | intellig            | ent age<br>in mach<br>epts, app | nt, Kno<br>nine lea<br>plicatio | wledge<br>rning co | Repres   | entatio  | n and M  | <b>l</b> achine | learnin  | lean aboug, and ap | plication | n. This is | useful to | how rep | present |
| COUR                                        | SE OB               | JECTI                           | VES                             |                    |          |          |          |                 |          |                    |           |            |           |         |         |
|                                             | To iden<br>areas of | •                               |                                 | •                  | ms that  | can be   | solved   | using A         | AI techr | nique: to k        | now the   | relation   | between   | AI and  | other   |
| 2.                                          | To have             | e knowl                         | edge of                         | generio            | e proble | em-solv  | ing me   | thods ir        | ı AI     |                    |           |            |           |         |         |
| 3.                                          | To desi             | gn softv                        | ware ag                         | ents to            | solve a  | problen  | n.       |                 |          |                    |           |            |           |         |         |
| 4.                                          | Apply t             | he knov                         | wledge                          | of algor           | rithms t | o solve  | arithme  | etic pro        | blems.   |                    |           |            |           |         |         |
| 5.                                          | Assemb              | ole an e                        | fficient                        | code fo            | r engin  | eering p | oroblen  | ıs.             |          |                    |           |            |           |         |         |
| COUR                                        | SE OU               | TCOM                            | IES                             |                    |          |          |          |                 |          |                    |           |            |           |         |         |
| On the                                      | success             | ful con                         | pletion                         | of the             | course,  | student  | s will b | e able t        | 0        |                    |           |            |           |         |         |
| <b>CO1:</b> Id                              | lentify t           | he diffe                        | rent ago                        | ent and            | its type | s to sol | ve the p | problem         | ns       |                    |           | Understa   | nd        |         |         |
| CO2: K                                      | now ab              | out the j                       | problen                         | n solvin           | g techn  | ique in  | Artifici | ial Intel       | ligence  |                    |           | Apply      |           |         |         |
| <b>CO3:</b> C                               | onstruct            | the no                          | rmal fo                         | rm and             | represe  | nt the k | nowled   | ge.             |          |                    |           | Apply      |           |         |         |
| CO4: K<br>environi                          |                     | out exte                        | nsion o                         | f condit           | tion pro | bability | and ho   | ow to ap        | oply in  | the real ti        | me        | Apply      |           |         |         |
| <b>CO5:</b> L                               |                     |                                 |                                 |                    |          | •        |          |                 |          |                    |           | Understa   |           |         |         |
|                                             | ı                   |                                 |                                 |                    | ı        |          | 1        | 1               |          | ME SPEC            |           | 1          |           | I ·     |         |
| Cos                                         | PO1                 | PO2                             | PO3                             | PO4                | PO5      | PO6      | PO7      | PO8             | PO9      | PO10               | PO11      | PO12       | PSO1      | PSO2    | PSO3    |
| CO1                                         | M                   | M                               | M                               | M                  | M        | -        | -        | -               | -        | -                  | -         | M          | S         | M       | -       |
| CO2                                         | M                   | M                               | L                               | M                  | L        | -        | -        | -               | -        | -                  | M         | M          | S         | M       | M       |
| CO3                                         | M                   | M                               | S                               | M                  | M        | -        | -        | -               | -        | -                  | -         | M          | S         | -       | M       |
| CO4                                         | S                   | M                               | M                               | M                  | M        | -        | -        | -               | -        | -                  | -         | M          | S         | M       | M       |
| CO5                                         | 5 S M M M M M S M - |                                 |                                 |                    |          |          |          |                 |          |                    |           |            |           |         |         |

S- Strong; M-Medium; L-Low

## LIST OF EXPERIMENTS

- 1. Write a program to implement BFS
- **2.** Write a program to implement DFS
- 3. Write a program to implement Minimum Spanning Tree Kruskal's algorithm
- **4.** Write a program to implement Minimum Spanning Tree Prim's algorithm
- **5.** Write a program to implement 8 puzzle problem
- **6.** Write a program to implement A\* algorithm
- 7. Write a program to implement Travelling Salesman Problem

## TEXT BOOKS

- **1.** S. Russell and P. Norvig, "Artificial Intelligence A Modern Approach", Second Edition, Pearson Education, 2015.
- **2.** Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4<sup>th</sup> Edition, 2011..

# REFERENCES

- **1.**David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.
- **2.** G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

| S.<br>No. | Name of the<br>Faculty | Designation               | Department   | Mail ID            |
|-----------|------------------------|---------------------------|--------------|--------------------|
| 1.        | Mrs. R Shobana         | Assistant Professor (GII) | CSE / AVIT   | shobana@avit.ac.in |
| 2.        | Dr.Nithya              | Professor                 | CSE / VMVKEC | nithya@vmkv.ac.in  |

| 170             | CSEC27                                                       |                   |          | SC        | FT CO     | )MPUT    | ΓING                           |           |          |          | Category   | L         | T         | P         | Credit   |
|-----------------|--------------------------------------------------------------|-------------------|----------|-----------|-----------|----------|--------------------------------|-----------|----------|----------|------------|-----------|-----------|-----------|----------|
|                 |                                                              |                   |          |           |           |          |                                |           |          |          | CC         | 3         | 0         | 0         | 3        |
|                 | MBLE                                                         | <u> </u>          |          |           |           |          |                                |           |          | <u> </u> |            |           |           | <u> </u>  |          |
| -               |                                                              |                   |          |           | -         | _        |                                |           |          |          | Intelligen |           | -         |           | _        |
| _               |                                                              |                   |          | _         |           |          |                                |           |          |          | now to re  | _         |           | -         |          |
|                 | -                                                            | in some           | e impoi  | rtant pro | ediction  | metho    | od. Thus                       | s, this s | syllabus | s focuse | es on to k | now abo   | out AI a  | nd its co | oncepts  |
| applica         |                                                              |                   | DELET    | NY 1 Y Y  | TOTAL Y   | IGENIO   |                                |           |          |          |            |           |           |           |          |
| PKEK            | REREQUISITE: ARTIFICIAL INTELLIGENCE                         |                   |          |           |           |          |                                |           |          |          |            |           |           |           |          |
| COUF            | URSE OBJECTIVES                                              |                   |          |           |           |          |                                |           |          |          |            |           |           |           |          |
| 1.              |                                                              | e an ur<br>proble |          | nding or  | the fu    | ndamer   | ntals of                       | non-tra   | ditional | techno   | logies and | l approac | hes to so | olving h  | ard real |
| 2.              |                                                              |                   |          |           |           |          | , fuzzy<br>-world <sub>l</sub> |           |          | logic ar | nd genetic | algorith  | ms.       |           |          |
| 3.              | To giv                                                       | e an ov           | verview  | of Gen    | etic alg  | orithms  | s and m                        | achine !  | learning | g techni | ques to so | lving ha  | rd real-w | vorld pro | blems    |
| 4.              | To stu                                                       | ıdy abo           | utAlgo   | rithm     |           |          |                                |           |          |          |            |           |           |           |          |
| COUF            | RSE OU                                                       | TCOM              | IES      |           |           |          |                                |           |          |          |            |           |           |           |          |
| On the          | success                                                      | ful con           | npletion | of the    | course.   | student  | ts will b                      | e able t  | 0        |          |            |           |           |           |          |
|                 |                                                              |                   | -p100101 |           |           |          |                                |           |          |          |            | 1         |           |           |          |
| CO1: I          | dentify                                                      | the diff          | erent ag | gent and  | l its typ | es to so | lve the                        | probler   | ns       |          |            | Unders    | tand      |           |          |
| CO2: k          | know ab                                                      | out the           | probler  | n solvin  | g techn   | nique in | Artific                        | ial Intel | ligence  | ;        |            | Apply     |           |           |          |
|                 | Construct the normal form and represent the knowledge  Apply |                   |          |           |           |          |                                |           |          |          |            |           |           |           |          |
|                 |                                                              |                   |          |           |           |          |                                |           |          | .1 1     |            |           |           |           |          |
| enviror         |                                                              |                   |          |           | •         |          |                                |           |          |          | time       | Analyz    | e         |           |          |
| CO5: A problem  | Apply th<br>ns                                               | e Infor           | mation   | Retriev   | al and S  | Speech 1 | Recogn                         | ition in  | the rea  | l-world  |            | Analyz    | e         |           |          |
| MAPI            | PING W                                                       | TTH P             | ROGR     | AMMI      | E OUT     | COME     | S AND                          | PROC      | RAMI     | ME SPI   | ECIFIC (   | OUTCO     | MES       |           |          |
| COs             | PO1                                                          | PO2               | PO3      | PO4       | PO5       | PO6      | PO7                            | PO8       | PO9      | PO10     | PO11       | PO12      | PSO1      | PSO2      | PSO3     |
| CO1             | S                                                            | M                 | L        | -         | -         | -        | -                              | -         | -        | -        | -          | L         | S         | S         | M        |
| CO2             | S                                                            | M                 | L        | -         | -         | -        | -                              | -         | -        | -        | -          | L         | M         | S         | M        |
| CO <sub>3</sub> | S                                                            | M                 | S        | -         | -         | -        | -                              | -         | -        | -        | -          | -         | S         | -         | M        |

CO4

CO5

S

M

S- Strong; M-Medium; L-Low

S

M

M

S

M

M

M

M

## **FUZZY SET THEORY**

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

## **OPTIMIZATION**

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

#### NEURAL NETWORKS

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

#### NEURO FUZZY MODELING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

# APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

#### TEXT BOOKS

1.J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2011

# REFERENCES

- 1. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
- 2. Davis E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 3. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI,2003.
- 4. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence PC Tools", AP Professional, Boston, 2005.

| S. No. | Name of the<br>Faculty | Designation         | Department      | Mail ID                    |
|--------|------------------------|---------------------|-----------------|----------------------------|
| 1.     | Dr.S.Rajaprakash       | Associate Professor | CSE / AVIT      | rajaprakash@avit.ac.in     |
| 2.     | V.Amirthalingam        | Assistant Professor | CSE /<br>VMKVEC | amirhalingam@vmkvec.edu.in |

| 1              | 7AICC               | )5       |           | M         | ACHIN     | IE LEA    | RNIN      | G          |          |          | Category  | y L       | T        | P         | redit   |
|----------------|---------------------|----------|-----------|-----------|-----------|-----------|-----------|------------|----------|----------|-----------|-----------|----------|-----------|---------|
|                |                     |          |           |           |           |           |           |            |          |          | CC        | 3         | 0        | 0         | 3       |
|                | MBLE                |          |           |           |           |           |           |            |          |          |           |           |          |           |         |
|                | ovide an<br>of mach |          |           |           |           |           |           | ning co    | ncepts   | and id   | entify ap | plication | s suitab | le for di | fferent |
| • •            | EQUIS               |          |           |           |           |           |           |            |          |          |           |           |          |           |         |
| FKEK           | EQUIS               | IIE; A   | KI IFIC   | JAL II    | NI ELL.   | IGENC     | E         |            |          |          |           |           |          |           |         |
| COUR           | RSE OB              | JECTI    | VES       |           |           |           |           |            |          |          |           |           |          |           |         |
| 1.             | To stu              | dy the   | outline   | the key   | concep    | ots of m  | achine 1  | learning   | <u> </u> |          |           |           |          |           |         |
| 2.             | To un               | derstan  | d the su  | pervise   | d learn   | ing and   | classifi  | cation t   | echniq   | ues      |           |           |          |           |         |
| 3.             | To ap               | ply the  | concep    | t of uns  | upervis   | ed learı  | ning and  | l Cluste   | ring fo  | r applic | ations    |           |          |           |         |
| 4.             | To inf              | er theo  | retical a | and prac  | ctical as | pects o   | f reinfo  | rcemen     | t learni | ng       |           |           |          |           |         |
| COUR           | SE OU               | TCOM     | IES       |           |           |           |           |            |          |          |           |           |          |           |         |
|                |                     |          |           |           |           |           |           |            |          |          |           |           |          |           |         |
| On the         | success             | ful com  | npletion  | of the    | course,   | student   | ts will b | e able t   | О        |          |           |           |          |           |         |
| CO1: (         | Outline t           | he key   | concep    | ts of ma  | chine l   | earning   |           |            |          |          |           | Unders    | tand     |           |         |
|                |                     |          |           |           |           |           |           | niana      |          |          |           | Unders    | tond     |           |         |
| CO2:3          | ummari              | ze supe  | i viseu i | earning   | , and cra | issifica  | uon teci  | imques     | •        |          |           |           | tanu     |           |         |
| CO3: A         | Apply th            | e conce  | ept of u  | nsuperv   | ised lea  | rning a   | nd Clus   | tering f   | or appl  | ications | 3         | Apply     |          |           |         |
| <b>CO4:</b> Ir | nfer thec           | retical  | and pra   | ctical a  | spects o  | of reinfo | orcemer   | ıt learni  | ng       |          |           | Unders    | tand     |           |         |
| CO5: I         | nfer the            | oratical | and pre   | actical ( | enacte    | of rainf  | orcama    | nt laarn   | ina      |          |           |           |          |           |         |
| CO3. 1         | inci the            | orcticar | and pro   | actical   | ispects   | or reim   | OICCIIIC. | iit icarii | ing      |          |           | Unders    | tand     |           |         |
| MAPP           | PING W              | TTH P    | ROGR      | AMMI      | E OUT     | COME      | S AND     | PROG       | GRAMI    | ME SPI   | ECIFIC (  | OUTCO     | MES      |           |         |
| COs            | PO1                 | PO2      | PO3       | PO4       | PO5       | PO6       | PO7       | PO8        | PO9      | PO10     | PO11      | PO12      | PSO1     | PSO2      | PSO3    |
| CO1            | S                   | -        | -         | -         | -         | L         | -         | -          | -        | -        | -         | L         | L        | -         | -       |
| CO2            | S                   | S        | S         | L         | -         | L         | -         | L          | L        | -        | L         | L         | S        | M         | L       |
| CO3            | S                   | S        | M         | L         | -         | L         | -         | L          | L        | -        | L         | L         | S        | M         | L       |
| CO4<br>CO5     | S                   | L        | M         | L         | -         | L         | -         | -          | -        | -        | -         | L         | -        | -         | -       |
|                | S                   | L        | S         | _         | _         | L         | _         | L          | -        | -        | _         | L         | -        | L         | -       |

#### INTRODUCTION

Machine Learning - Examples of machine learning applications- Types of machine learning –Model selection and generalization – Guidelines for Machine Learning Experiments

# SUPERVISED LEARNING

Classification - Decision Trees – Univariate Tree –Multivariate Tree - Pruning –Perceptron – Multilayer Perceptron - Back Propagation – Cross Validation and Resampling Methods

## UNSUPERVISED LEARNING

Clustering- Mixture densities -K-means - EM Algorithm — Supervised Learning After Clustering- Hierarchical Clustering

# **DIMENSIONALITY REDUCTION**

The Curse of Dimensionality —Subset Collection - Principal Component Analysis - Factor Analysis — Linear Discriminant Analysis

#### REINFORCEMENT LEARNING

Single State Case – Elements of Reinforcement Learning - Model Based Learning – TemporalDifference Learning - Generalization in Reinforcement Learning - Policy Search

#### TEXT BOOKS

1. EthemAlpaydin, Introduction to Machine Learning MIT Press, 2014.

## REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                 |
|--------|------------------------|---------------------|--------------|-------------------------|
| 1.     | Mr. S. Muthuselvan     | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in  |
| 2.     | Dr. K. Sasikala        | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

|                                                                          | 17AICC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{M}_{L}$                                    | ACHIN                                        | IE LEA                                          | RNIN                    | G LAB                               |                              |                | Category          | L                                                                                                                    | T                            | P        | redit   |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------|-------------------------------------|------------------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|----------|---------|
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         |                                     |                              |                | CC                | 0                                                                                                                    | 0                            | 4        | 2       |
|                                                                          | MBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         |                                     |                              |                |                   |                                                                                                                      | <u> </u>                     | l        |         |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         | ning co                             | ncepts                       | and ide        | entify app        | olications                                                                                                           | suitabl                      | e for di | fferent |
|                                                                          | of machi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         |                                     |                              |                |                   |                                                                                                                      |                              |          |         |
| PKEK                                                                     | EQUISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IE: A                                                                                                                                                                                                                         | KHHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JAL II                                              | NIELL                                        | IGENC.                                          | E                       |                                     |                              |                |                   |                                                                                                                      |                              |          |         |
| COUF                                                                     | RSE OBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ECTI                                                                                                                                                                                                                          | VES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                              |                                                 |                         |                                     |                              |                |                   |                                                                                                                      |                              |          |         |
| 1.                                                                       | To stud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dy the                                                                                                                                                                                                                        | outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the key                                             | concep                                       | ts of m                                         | achine l                | learning                            | <u> </u>                     |                |                   |                                                                                                                      |                              |          |         |
| 2.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ipervise                                            |                                              |                                                 |                         |                                     |                              | ues            |                   |                                                                                                                      |                              |          |         |
| 3.                                                                       | To app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ly the                                                                                                                                                                                                                        | concep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t of uns                                            | upervis                                      | ed learr                                        | ning and                | l Cluste                            | ring for                     | r applic       | ations            |                                                                                                                      |                              |          |         |
| 4.                                                                       | To infe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er theo                                                                                                                                                                                                                       | retical a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and prac                                            | ctical as                                    | pects o                                         | f reinfo                | rcemen                              | t learnii                    | ng             |                   |                                                                                                                      |                              |          |         |
| COUF                                                                     | RSE OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ГСОМ                                                                                                                                                                                                                          | IES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                              |                                                 |                         |                                     |                              |                |                   |                                                                                                                      |                              |          |         |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         |                                     |                              |                |                   |                                                                                                                      |                              |          |         |
| On the                                                                   | successf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ful con                                                                                                                                                                                                                       | pletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of the                                              | course,                                      | student                                         | s will b                | e able t                            | О                            |                |                   |                                                                                                                      |                              |          |         |
| 001                                                                      | O.,41:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         |                                     |                              |                |                   |                                                                                                                      |                              |          |         |
| COI: (                                                                   | Jume u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ie key                                                                                                                                                                                                                        | concep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ts of ma                                            | ichine l                                     | earning                                         |                         |                                     |                              |                |                   | Understa                                                                                                             | and                          |          |         |
|                                                                          | Summariz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                              |                                                 |                         | chnique                             | s                            |                |                   | Understa<br>Understa                                                                                                 |                              |          |         |
| CO2: S                                                                   | Summari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ze supe                                                                                                                                                                                                                       | ervised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | learning                                            | g and cl                                     | assifica                                        | tion tec                |                                     |                              | onnlia         | otions            |                                                                                                                      | and                          |          |         |
| CO2: S                                                                   | Summariz<br>Understar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ze supe                                                                                                                                                                                                                       | ervised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | learning<br>t of uns                                | g and cl<br>upervise                         | assifica                                        | tion tec                | l Cluste                            | ring for                     | applica        | ntions            | Understa<br>Understa                                                                                                 | and<br>and                   |          |         |
| CO2: S                                                                   | Summari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ze supe                                                                                                                                                                                                                       | ervised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | learning<br>t of uns                                | g and cl<br>upervise                         | assifica                                        | tion tec                | l Cluste                            | ring for                     | applica        | ntions            | Understa                                                                                                             | and<br>and                   |          |         |
| CO3: 1                                                                   | Summariz<br>Understar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ze supe                                                                                                                                                                                                                       | concept<br>and pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | learning<br>t of unstactical a                      | g and cl<br>upervise<br>aspects              | assifica<br>ed learn<br>of reinf                | ing and                 | l Cluste                            | ring for                     | · applica      | ntions            | Understa<br>Understa                                                                                                 | and<br>and                   |          |         |
| CO2: S<br>CO3: U                                                         | Summariz<br>Understar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ze supe                                                                                                                                                                                                                       | concept<br>and pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | learning<br>t of unstactical a                      | g and cl<br>upervise<br>aspects              | assifica<br>ed learn<br>of reinf                | ing and                 | l Cluste                            | ring for                     | applica        | ntions            | Understa<br>Understa                                                                                                 | and<br>and<br>and            |          |         |
| CO2: S<br>CO3: U<br>CO4: I                                               | Summariz<br>Understar<br>Infer theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ze supend the operatical                                                                                                                                                                                                      | ervised<br>concept<br>and pra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | learning t of unstactical a                         | g and cl<br>upervise<br>aspects              | assifica<br>ed learn<br>of reinf<br>of reinf    | tion tec                | l Cluste<br>nt learn<br>nt learn    | ring for                     |                | ations ECIFIC C   | Understa Understa Understa                                                                                           | and<br>and<br>and            |          |         |
| CO2: S<br>CO3: U<br>CO4: I                                               | Summariz<br>Understar<br>Infer theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ze supend the operatical                                                                                                                                                                                                      | ervised<br>concept<br>and pra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | learning t of unstactical a                         | g and cl<br>upervise<br>aspects              | assifica<br>ed learn<br>of reinf<br>of reinf    | tion tec                | l Cluste<br>nt learn<br>nt learn    | ring for                     | ME SPI         |                   | Understa Understa Understa                                                                                           | and<br>and<br>and            | PSO2     | PSO:    |
| CO2: S<br>CO3: U<br>CO4: 1<br>CO5: 1                                     | Summarized Understand Infer the Confer the C | ze supend the operatical                                                                                                                                                                                                      | and pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | learning t of unsu actical a                        | g and clupervisonspects aspects              | assificated learn of reinf                      | orceme orceme           | l Cluste nt learn nt learn PROG     | ring for ing ing             | ME SPI         | ECIFIC (          | Understa Understa Understa Understa                                                                                  | and and and and and and and  | PSO2     | PSO:    |
| CO2: S<br>CO3: U<br>CO4: 1<br>CO5: 1<br>MAPI                             | Summarize Understan Infer theo Infer theo PING WI PO1 S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ze supend the oretical oretical ITH P                                                                                                                                                                                         | and programmer and pr | learning t of unsuactical a actical a AMMI PO4      | g and clupervise aspects aspects E OUTO      | assificated learn of reinfof reinfof COME       | orceme orceme S AND PO7 | l Cluste nt learn nt learn PROG     | ring for ing ing FRAMM PO9   | ME SPI         | ECIFIC (          | Understa Understa Understa Understa Understa PO12                                                                    | and and and and and TES PSO1 |          |         |
| CO2: S<br>CO3: U<br>CO4: I<br>CO5: I<br>MAPI<br>Cos<br>CO1<br>CO2<br>CO3 | Understantinfer theology  PO1  S  S  S  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ze supend the oretical stretcal PO2 - S S                                                                                                                                                                                     | and process and pr | learning t of unsubstituted actical a  AMMI PO4 L L | g and clupervise aspects aspects POTO        | assificated learn of reinfof reinfof PO6  L L L | orceme S AND PO7        | l Cluste nt learn nt learn PROG PO8 | ring for ing  RAMN PO9       | ME SPI<br>PO10 | ECIFIC C PO11     | Understa | and and and and TES PSO1     | -        | -       |
| CO2: S<br>CO3: U<br>CO4: I<br>CO5: I<br>MAPI<br>Cos<br>CO1               | Summarize Understan Infer theo Infer theo PING WI PO1 S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ze supe and the coretical pretical representation of the coretical representation of the core | and process and pr | learning t of unstactical a actical a AMMI PO4 - L  | g and clupervisonspects aspects  E OUTO  PO5 | assificated learn of reinf of reinf COME PO6 L  | orceme S AND PO7 -      | PROG PO8 - L                        | ring for ing ing FRAMN PO9 L | ME SPI PO10 -  | ECIFIC O PO11 - L | Understa                            | and and and ES PSO1 L S      | -<br>M   | -<br>L  |

## LIST OF EXPERIMENTS

Design of experiments in Machine Learning

Introduction to popular Machine Learning Datasets and Toolkits

Face Recognition using PCA; Practical applications of clustering

Experiments on Supervised classification using MLP, RBF, ANN, SVM and Decision Trees

Applications of Classifiers Ensembles

Sequence classification using HMM

Applications of CNN and RNN

Path planning with Reinforcement learning

## TEXT BOOKS

1. Ethem Alpaydin, Introduction to Machine Learning MIT Press, 2014.

## REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mai l ID                |
|--------|------------------------|---------------------|--------------|-------------------------|
| 1.     | Dr.S.Rajaprakash       | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in  |
| 2.     | Dr.K.Sasikala          | Assistant Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 17AICC                     | 07                                 |            | DI        | EEP LE   | EARNI     | NG         |           |          |           | Category   | L        | T        | P       | credit |
|----------------------------|------------------------------------|------------|-----------|----------|-----------|------------|-----------|----------|-----------|------------|----------|----------|---------|--------|
|                            |                                    |            |           |          |           |            |           |          | (         | CC         | 3        | 0        | 0       | 3      |
| PREAMBLE                   | <u> </u><br>                       |            |           |          |           |            |           |          |           |            | I        |          |         |        |
| This course p              |                                    |            |           |          |           |            |           |          |           |            |          | p learni | ng tech | niques |
| This course al             | _                                  |            |           |          |           | _          | s knowl   | edge or  | n deep le | arning to  | ols.     |          |         |        |
| PREREQUIS                  | REQUISITE: ARTIFICIAL INTELLIGENCE |            |           |          |           |            |           |          |           |            |          |          |         |        |
| COURSE OF                  | URSE OBJECTIVES                    |            |           |          |           |            |           |          |           |            |          |          |         |        |
| I. To st                   | udy the                            | basics o   | of mach   | ine lear | ning, n   | eural ne   | tworks    | and dee  | p learni  | ng         |          |          |         |        |
| 2. To st                   | udy the                            | present    | the ma    | themati  | cal, stat | tistical a | and com   | putatio  | nal chall | enges of l | building | neural n | etworks |        |
| 3. To st                   | udy the                            | dimens     | ionality  | reducti  | ion tech  | niques     |           |          |           |            |          |          |         |        |
| <b>1.</b> To ki            | now dee                            | p learni   | ng tech   | niques   | to supp   | ort real-  | time ap   | plicatio | ons       |            |          |          |         |        |
| 5. To e                    | xamine                             | the case   | e studie  | s of dee | p learn   | ing tech   | niques    |          |           |            |          |          |         |        |
| COURSE OU                  | JTCON                              | <b>TES</b> |           |          |           |            |           |          |           |            |          |          |         |        |
|                            | 2.1                                |            | 0.1       |          |           |            |           |          |           |            |          |          |         |        |
| On the succes              | stul con                           | npletion   | of the    | course,  | student   | is will b  | e able to | )        |           |            |          |          |         |        |
| CO1: Underst               | and basi                           | ics of de  | eep lear  | ning     |           |            |           |          |           |            |          | Under    | stand   |        |
| CO2: Impleme               | ent vario                          | ous deep   | p learni  | ng mod   | els       |            |           |          |           |            |          | Ap       | ply     |        |
|                            |                                    |            |           |          |           | 4          | :         |          |           |            |          |          |         |        |
| CO3: Realign               | •                                  |            |           | _        |           |            | •         |          |           |            |          | Ap       | pry     |        |
| CO4: Underst computing tec | and and                            | apply s    | scaling t | up macl  | nine lea  | rning te   | chnique   | es and a | ssociate  | d          |          | Ap       | ply     |        |
| CO5: Analyse               |                                    |            |           |          | on in de  | eep lear   | ning      |          |           |            |          | Ap       | nlv     |        |
| CO6: Explore               | _                                  |            |           |          |           | 1          |           |          |           |            |          | Cre      |         |        |
| MAPPING V                  |                                    | _          |           |          | COME      | S AND      | PROG      | RAMN     | ME SPE    | CIFIC O    | UTCOM    |          | aic     |        |
| Cos PO1                    | PO2                                | PO3        | PO4       | PO5      | PO6       | PO7        | PO8       | PO9      | PO10      | PO11       | PO12     | PSO1     | PSO2    | PSO    |
| 001                        |                                    |            |           |          |           |            |           | M        |           | M          | M        | M        |         |        |
| CO2 S                      | S<br>S                             | M<br>S     | S         | M        | -         | -          | M<br>M    | M        | -         | M          | M        | - IVI    | -       | M      |
|                            | ى                                  |            |           |          |           |            |           |          |           | M          | M        | M        |         | 141    |
|                            | M                                  | M          | S         | M        | _         |            | IVI       | IVI      | _         | 171        | IVI      | IVI      | _       | _      |
| CO3 S<br>CO4 S             | M<br>M                             | M<br>M     | S<br>S    | M<br>M   | -         | -          | M<br>M    | M<br>M   | -         | M          | M        | M        | -       | -      |

M

M

M

M

M

M

CO6 S M M S- Strong; M-Medium; L-Low

S

M

#### INTRODUCTION

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximate

#### **DEEP NETWORKS**

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation andregularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow NetworksConvolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning.

#### DIMENSIONALITY REDUCTION

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures — AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization.

## OPTIMIZATION AND GENERALIZATION

Optimization in deep learning— Non-convex optimization for deep networks- Stochastic Optimization- Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

#### CASE STUDY AND APPLICATIONS

magenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec

- Joint DetectionBioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions.

# REFERENCE BOOKS

- 1. CosmaRohillaShalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016.
- 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                 |
|--------|------------------------|---------------------|--------------|-------------------------|
| 1.     | Mr. S. Muthuselvan     | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in  |
| 2.     | Dr. K. Sasikala        | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| PREAMBLE To provide an in-depth knowledge about deep learning concepts and identify applications suitable for different type deep learning with suitable justification.  PREREQUISITE: ARTIFICIAL INTELLIGENCE  COURSE OBJECTIVES  1. To study the basics of machine learning, neural networks and deep learning  2. To study the present the mathematical, statistical and computational challenges of building neural networks  3. To study the dimensionality reduction techniques  4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning models  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PC01 S L L - L L S M CO3 S S S M L - L L - L L L S M CO3 S S S M L - L L - L L L S M CO3 S S S M L - L L - L L L S M CO4 S L M L - L L - L L L S M CO4 S L M L - L L - L L L S M CO4 S L M L - L L - L L L S M CO4 S L M L - L L - L L L S M CO4 S L M L - L L - L L L S M CO4 S L M L - L L - L L L S M CO4 S L M L S L M CO4 S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L - L L - L L L S L CO4 S S L M L L - L L - L L L S L CO4 S S L M L L - L L - L L L S L CO4 S S L M L L - L L L S L CO4 S S L M L L - L L L L S                                                                                                                                                                                                                                                                                                  | PREAMBLE To provide an in-depth knowledge about deep learning concepts and identify applications suitable for different types deep learning with suitable justification.  PREREQUISITE: ARTIFICIAL INTELLIGENCE COURSE OBJECTIVES  1. To study the basics of machine learning, neural networks and deep learning 2. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO CO1 S L L L S M L CO3 S S S S L - L L - L L S M L CO3 S S S S L - L L - L L S M L CO3 S S S M L - L L L L S M L CO3 S S S M L - L L L L L S M L CO3 S S S M L - L L L L L S M L CO3 S S S M L - L L L L L S M L CO3 S S S M L - L L L L L S M L CO3 S S S M L L - L L L L L S M L CO3 S S S M L L - L L L L L S M L CO3 S S S M L L - L L L L L S M L CO3 S S S M L L - L L L L L S M L CO3 S S S M L L - L L L L L L S M L CO3 S S S M L L - L L L L L L S M L CO3 S S S M L L - L L L L L L L S M L CO3 S S S M L L - L L L L L L L S M L CO3 S S S M L L - L L L L L L L L L S M L CO3 S S S M L L - L L L L L L L L L L S M L CO3 S S S M L L - L L L L L L L L L L L CO3 S S S M L L - L L L L L L L L L L L L L CO3 S S S M L L - L L L L L L L L L L L L L L CO3 S S S S L L L L L L L L L L L L L L L                                                                                                                                                            | 1             | 7AICC0       | 8        |          | DI       | EEP LE   | CARNII    | NG LA     | В        |          |          | Category   | L          | T         | P         | redit  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|----------|----------|----------|----------|-----------|-----------|----------|----------|----------|------------|------------|-----------|-----------|--------|
| To provide an in-depth knowledge about deep learning concepts and identify applications suitable for different type deep learning with suitable justification.  PREREQUISITE: ARTIFICIAL INTELLIGENCE  COURSE OBJECTIVES  1. To study the basics of machine learning, neural networks and deep learning 2. To study the present the mathematical, statistical and computational challenges of building neural networks 3. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning models  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PCO1 S L L L L L - L L S M M CO3 S S S M L - L L - L L L S M M CO4 S L M L M L - L L - L L L S M M CO4 S L M L L S L S M CO4 S L M L L S L S M CO4 S L M L L S L S M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To provide an in-depth knowledge about deep learning concepts and identify applications suitable for different types deep learning with suitable justification.  PREREQUISITE: ARTIFICIAL INTELLIGENCE  COURSE OBJECTIVES  1. To study the basics of machine learning, neural networks and deep learning  2. To study the present the mathematical, statistical and computational challenges of building neural networks  3. To study the dimensionality reduction techniques  4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO2 PSO3 S S S L - L - L - L L - L L S M L L - L CO3 S S S M L - L L - L L S M L CO3 S S S M L - L L - L L S M L CO3 S S L S L S - L - L - L L S M L CO3 S S L S L S - L - L - L L S M L CO3 S S L S L S - L - L - L L S CO5 CO5 CO5 S L S L S - L L L - L L - L L S CO5 CO5 CO5 S L S L S - L L L L - L L L - L L C CO5 S S L S L S - L L L - L L - L L L - L L C CO5 S S L S L S - L L L - L L L - L L L - L L C CO5 S S L S L S - L L L - L L - L L L - L L C CO5 CO5 S L S L S - L L L L - L L L - L L L C CO5 S S L S L S - L L L L - L L L - L L L C CO5 CO5 S L S L S L S L L L L L L L L L L L C C CO5 CO5 S L S L S L S L L L L L L L L L L L L                                                                                                                                                                                                         |               |              |          |          |          |          |           |           |          |          |          | CC         | 0          | 0         | 4         | 2      |
| COURSE OBJECTIVES  1. To study the basics of machine learning, neural networks and deep learning 2. To study the present the mathematical, statistical and computational challenges of building neural networks 3. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PO1 S L L L L L L L L S M CO3 S S S M L - L L - L L L S M CO3 S S S M L - L L - L L L S M CO3 S S S M L - L L - L L L S M CO3 S S S M L - L L L - L L S M CO3 S S S M L - L L L - L L S M CO3 S S S M L - L L L - L L S M CO3 S S L M L - L L L L - L L S M CO3 S S L M L - L L - L L L S M CO3 S S L M L - L L - L L S M CO3 S S L M L - L L - L L S M CO3 S S L M L - L L - L L S M CO3 S L M L - L L - L L S L S M CO3 S L M L - L L - L L S L S M CO3 S L M L - L L - L L L S L S M CO4 S L M L - L L - L L L S L S L CO3 S L M L - L L - L L L S L S L CO3 S L M L - L L - L L L S L S L CO3 S L M L - L L L - L L L S L S L CO3 S L M L - L L - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L L S L C - L L L C - L L L L C - L L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L L L C - L                                                                                                                                                                                                                                                                                                                  | COURSE OBJECTIVES  1. To study the basics of machine learning, neural networks and deep learning 2. To study the present the mathematical, statistical and computational challenges of building neural networks 3. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 PS02 S S S S L - L - L - L L S M L CO3 S S S M L - L L - L L S M L CO3 S S M L - L L - L L S M L CO3 S S M L - L L - L L S M L CO3 S S L S L L - L L S M L CO3 S S L S L L - L - L L S M L CO3 S S L S L L - L - L L S M L CO3 S S L S L L - L - L L S M L CO3 S S L S L L - L - L L S CO5 S S L S L L - L - L L - L L S CO5 S S L S L L - L - L - L L - L L S CO5 S S L S L L - L - L L - L L - L L - L C CO5 S S L S L L - L - L - L - L C CO5 S S L S L L - L - L - L - L C CO5 S S L S L L - L - L - L L - L L - L C CO5 S S L S L L - L - L L - L L - L C CO5 S S L S L L - L L - L L - L L - L C CO5 S S L S L L - L L - L L - L L - L C CO5 S S L S L L - L L - L L - L L - L L C CO5 S S L S L L - L L - L L - L L - L L C CO5 S S L S L L - L L - L L - L L L - L L L C CO5 S S L S L L - L L - L L - L L L - L L C CO5 S S L S L L - L L - L L - L L L - L L L C CO5 S S L S L L - L L - L L - L L L - L L C CO5 S S L S L L - L L - L L L - L L L L                                                                                                            | To pro        | vide an      |          |          |          |          | eep lear  | ning co   | oncepts  | and id   | entify a | pplication | s suitable | e for dif | ferent ty | pes of |
| 1. To study the basics of machine learning, neural networks and deep learning 2. To study the present the mathematical, statistical and computational challenges of building neural networks 3. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  Apply  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L L L L S M  CO3 S S S M L - L L - L L S M  CO3 S S S M L - L L - L L S M  CO4 S L M L - L - L L L S M  CO5 CO4 S L M L - L L S L S M  CO6 S L M L - L L S L S M  CO6 S L M L - L L S L S L S L S L S L S L S L S L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. To study the basics of machine learning, neural networks and deep learning 2. To study the present the mathematical, statistical and computational challenges of building neural networks 3. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO PSO PSO S S S S L - L - L - L L S M L CO3 S S S M L - L - L - L L S M L CO3 S S M L - L L - L L S M L CO3 S S L S L - L L - L L S M L CO3 S S L S L - L - L L - L L S M L CO3 S S L S L - L - L - L L - L CO5 S L S L - L - L - L - L L - L - L CO5 S S L S L - L - L - L - L - L - L -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRER          | <b>EQUIS</b> | ITE: A   | RTIFIC   | CIAL IN  | NTELL!   | [GENC]    | Е         |          |          |          |            |            |           |           |        |
| 2. To study the present the mathematical, statistical and computational challenges of building neural networks  3. To study the dimensionality reduction techniques  4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  Apply  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6  PO1  PO2  PO3  PO4  PO5  PO6  PO7  PO8  PO9  PO10  PO11  PO12  PS01  PS02  PC01  S  S  S  S  L  L  L  L  L  S  M  CO3  S  S  M  L  L  L  L  L  S  M  CO4  S  L  M  L  L  L  L  L  S  M  CO4  S  L  M  L  L  L  L  L  L  S  M  CO4  S  L  M  L  L  L  L  L  S  M  CO4  S  L  M  L  L  L  L  L  L  L  L  L  L  L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. To study the present the mathematical, statistical and computational challenges of building neural networks  3. To study the dimensionality reduction techniques  4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO  CO1 S L L - L L S M L  CO2 S S S S L - L L L L S M L  CO3 S S S M L - L L L L L S M L  CO3 S S L S L - L L L L S M L  CO4 S L M L - L - L - L L L S M L  CO5 S L S L - L L - L L L S M L  CO6 S L S L - L L - L L L S M L  CO6 S L S L - L L - L L L S M L  CO7 S L S L - L L - L L L L S M L  CO8 S L S L - L L - L L L L S M L  CO9 S L S L L - L - L L L L S M L  CO9 S L S L - L L - L L L L L S M L  CO9 S L S L - L L - L L L L L L L L  CO9 S L S L S L L - L L L L L L L  CO9 S L S L S L L - L L L L L L  CO9 S L S L S L L - L L L L L L  CO9 S L S L S L L - L L L L L L  CO9 S L S L S L L L L L L L L  CO9 S L S L S L L L L L L L L  CO9 S L S L S L L L L L L L  CO9 S L S L S L L L L L L L  CO9 S S L S L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S L L S L L L L L L L L  CO9 S  | COUR          | SE OB        | JECTI    | VES      |          |          |           |           |          |          |          |            |            |           |           |        |
| 3. To study the dimensionality reduction techniques  4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L - L L L - L L S M  CO3 S S S M L - L L - L L L S M  CO3 S S M L - L - L L L - L L S M  CO4 S L M L - L - L L - L L S M  CO4 S L M L - L - L - L L S M  CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. To study the dimensionality reduction techniques 4. To know deep learning techniques to support real-time applications 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO CO1 S S S S S L S L S L S L S L S L S L S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.            | To stu       | dy the   | basics o | of mach  | ine lear | ning, ne  | eural ne  | tworks   | and dec  | ep learn | ing        |            |           |           |        |
| 4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  Apply  CO3:Realign high dimensional data using reduction techniques  Apply  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L - L L L - L S M  CO2 S S S S L - L L L S M  CO3 S S M L - L L L L S M  CO4 S L M L - L - L L L S M  CO4 S L M L - L - L - L L S M  CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. To know deep learning techniques to support real-time applications  5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  Apply  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0  CO1 S L L - L L L S M L  CO2 S S S S L - L L L L L S M L  CO3 S S M L - L L - L L L S M L  CO4 S L M L - L - L L - L L S M L  CO4 S L M L - L - L - L L - L L S M L  CO5 S L S L L - L - L L - L L S M L  CO6 S L S L S L L - L - L L - L L - L L - L  CO5 S L S L L - L - L L - L L - L L - L  CO5 S L S L L - L - L L - L L - L L - L  CO5 S L S L L - L - L L - L L - L L - L  CO5 S L S L L - L - L - L L - L L - L  CO5 S L S L L - L - L - L L - L L - L  CO5 S L S L L - L - L - L - L L - L L - L  CO5 S L S L L - L - L - L - L L - L  CO5 S L S L L - L - L - L - L L - L  CO5 S L S L L - L - L - L - L L - L  CO5 S L S L L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L  CO6 S CO6 S CO7 | 2.            | To stu       | dy the   | present  | the ma   | themati  | cal, stat | istical a | ind com  | putatio  | nal cha  | llenges of | building   | neural r  | networks  |        |
| To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L L L S M  CO3 S S S M L - L - L L L S M  CO3 S S S M L - L - L - L L S M  CO4 S L M L - L - L - L L S M  CO4 S L M L - L - L - L L S M  CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5. To examine the case studies of deep learning techniques  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0  CO1 S L L - L L L L S M L  CO2 S S S S L - L L L L L L S M L  CO3 S S M L - L L - L L L L S M L  CO4 S L M L - L - L - L L L S M L  CO4 S L M L - L - L - L L - L L S M L  CO5 S L S L L - L - L L - L L C - L L C - L  CO5 S L S L L - L - L L - L L C - L  CO5 S L S L L - L - L L - L L C - L  CO5 S L S L L - L - L L - L L - L L C - L  CO5 S L S L L - L - L - L L - L L - L  CO5 S L S L L - L - L - L L - L L - L  CO5 S L S L L - L - L - L - L L - L L - L  CO5 S L S L L - L - L - L - L L - L L - L  CO5 S L S L L - L - L - L L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO5 S L S L L - L - L - L - L - L - L  CO6 S L S L L - L - L - L - L - L  CO7 S S L S L L - L - L - L - L - L -                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.            |              | •        |          | ·        |          |           | •         |          |          |          |            |            |           |           |        |
| COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  Apply  CO3:Realign high dimensional data using reduction techniques  Apply  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L L L L L S M CO3 S S S M L - L L - L L S M CO3 S S M L - L L - L L S M CO4 S L M L - L - L - L L S M CO4 S L M L - L - L - L L S M CO4 S L M L - L - L - L L S M CO4 S L M L - L - L - L - L L S M CO4 S L M L - L - L - L L L L S M CO4 S L M L - L - L - L - L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO  CO1 S L L L L S M L  CO2 S S S S L - L L L L S M L  CO3 S S S M L - L L L L S M L  CO4 S L M L - L - L L - L L S M L  CO5 S L S L L L L S M L  CO5 S L S L L - L L S M L  CO6 S L M L - L - L L - L L S M L  CO7 S S L S L L - L L S M L  CO8 S L S L S L L - L L S M L  CO9 S S L S L S L L S S M L  CO9 S S L S L S L L S S M L  CO9 S S L S L S L L S S M L  CO9 S S L S L S L L S S M L  CO9 S S L S L S L L S S M L  CO9 S S L S L S S S L S S S L S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.            | To kno       | ow dee   | p learni | ng tech  | niques   | to suppo  | ort real- | time ap  | plicatio | ons      |            |            |           |           |        |
| On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L L L L - CO2 S S S S L - L - L L L S M  CO3 S S M L - L - L L L S M  CO3 S S M L - L - L L L S M  CO4 S L M L - L - L L L L S M  CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | On the successful completion of the course, students will be able to  CO1:Understand basics of deep learning  CO2:Implement various deep learning models  CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0  CO1 S L L L L S M L  CO2 S S S S L - L L L L S M L  CO3 S S M L - L - L L L L S M L  CO4 S L M L - L - L - L L S M L  CO5 S L S L - L - L - L L - L L  CO5 S L S L - L - L - L L - L L S M L  CO6 S L S L - L - L - L L - L L S M L  CO7 S S L S L - L - L - L L - L L S M L  CO8 S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L - L L - L L S M L  CO9 S S L S L - L - L - L - L L - L L - L L  CO9 S S L S L - L - L - L - L - L L - L L  CO9 S S L S L - L - L - L - L - L L - L L  CO9 S S L S L - L - L - L - L - L L - L L  CO9 S S L S L - L - L - L - L - L - L L  CO9 S S L S L - L - L - L - L - L - L L  CO9 S S L S L - L - L - L - L - L - L -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.            | To ex        | amine    | the case | studie   | s of dee | p learni  | ng tech   | niques   |          |          |            |            |           |           |        |
| CO1: Understand basics of deep learning  CO2: Implement various deep learning models  CO3: Realign high dimensional data using reduction techniques  CO4: Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L L L S M  CO2 S S S S L - L - L L L S M  CO3 S S M L - L - L L - L L S M  CO4 S L M L - L - L - L L S M  CO4 S L M L - L - L L S M  CO5 S S L M L - L - L L S M  CO6 S S L M L - L - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO1:Understand basics of deep learning   Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COUR          | SE OU        | TCOM     | IES      |          |          |           |           |          |          |          |            |            |           |           |        |
| CO2:Implement various deep learning models         Apply           CO3:Realign high dimensional data using reduction techniques         Apply           CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies         Apply           CO5: Analyse optimization and generalization in deep learning         Apply           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COs         PO1         PO2         PO9         PO10         PO11         PO12         PSO1         PSO2         P           CO3         S         S         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO2:Implement various deep learning models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On the        | success      | ful com  | pletion  | of the   | course,  | student   | s will b  | e able t | 0        |          |            |            |           |           |        |
| CO3:Realign high dimensional data using reduction techniques         Apply           CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies         Apply           CO5: Analyse optimization and generalization in deep learning         Apply           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         P           CO1         S         -         -         -         -         -         -         L         L         -         L         L         -         -         L         L         -         L         L         -         L         L         S         M         L         -         L         L         -         L         L         S         M         L         -         L         L         -         L         L         -         L         L         -         L         L         L         L         L         L         L         L         L         L         L <t< td=""><td>CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO2 PSO2 S S S S L - L - L - L L S M L CO3 S S S M L - L - L L - L S M L CO3 S S S M L - L - L L - L S M L CO4 S L M L - L - L - L - L C - L C - L C - L C - L C CO5 S L S L - L - L - L - L C - L C CO5 S L S L - L - L - L - L - L C - L C CO5 S L S L - L - L - L - L C CO5 S L S L - L - L - L - L - L C CO5 S L S L - L - L - L - L - L - L C CO5 S L S L - L - L - L - L - L - L - L</td><td><b>CO1:</b>U</td><td>nderstar</td><td>nd basic</td><td>es of de</td><td>ep learr</td><td>ning</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Unde</td><td>rstand</td><td></td></t<>                                                                                                                                                                                                                    | CO3:Realign high dimensional data using reduction techniques  CO4:Understand and apply scaling up machine learning techniques and associated computing techniques and technologies  CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO2 PSO2 S S S S L - L - L - L L S M L CO3 S S S M L - L - L L - L S M L CO3 S S S M L - L - L L - L S M L CO4 S L M L - L - L - L - L C - L C - L C - L C - L C CO5 S L S L - L - L - L - L C - L C CO5 S L S L - L - L - L - L - L C - L C CO5 S L S L - L - L - L - L C CO5 S L S L - L - L - L - L - L C CO5 S L S L - L - L - L - L - L - L C CO5 S L S L - L - L - L - L - L - L - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CO1:</b> U | nderstar     | nd basic | es of de | ep learr | ning     |           |           |          |          |          |            |            | Unde      | rstand    |        |
| CO4: Understand and apply scaling up machine learning techniques and associated computing techniques and technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO4: Understand and apply scaling up machine learning techniques and associated computing techniques and technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO2:Ir        | nplemer      | nt vario | us deep  | learnin  | ng mode  | els       |           |          |          |          |            |            | Ap        | ply       |        |
| CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P  CO1 S L L L L S M  CO3 S S M L - L - L L - L S M  CO4 S L M L - L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO5: Analyse optimization and generalization in deep learning  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO  CO1 S L L L L L S M L  CO2 S S S S L - L - L L L S M L  CO3 S S M L - L - L L - L L S M L  CO4 S L M L - L L L L  CO5 S L S L - L L L L  CO5 S L S L - L L L L  CO5 S L S L - L - L - L - L - L - L - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |              |          |          |          |          |           |           | •        |          |          |            |            | Ap        | ply       |        |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         P           CO1         S         -         -         -         -         -         -         -         L         L         -         L         L         -         L         L         -         L         L         -         L         L         S         M         L         -         L         L         L         L         L         L         S         M         L         -         L         L         -         L         L         L         S         M         L         -         L         L         -         L         L         -         L         L         -         L         L         -         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS0           CO1         S         -         -         -         -         -         -         -         -         L         L         -         L         L         -         L         L         -         L         L         -         L         L         S         M         L           CO2         S         S         S         M         L         -         L         L         L         L         S         M         L           CO3         S         S         M         L         -         L         -         L         L         S         M         L           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>comput</td> <td>ing tech</td> <td>niques</td> <td>and tec</td> <td>hnologi</td> <td>es</td> <td></td> <td></td> <td></td> <td>s and a</td> <td>ssociate</td> <td>d</td> <td></td> <td>Ap</td> <td>ply</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | comput        | ing tech     | niques   | and tec  | hnologi  | es       |           |           |          | s and a  | ssociate | d          |            | Ap        | ply       |        |
| COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         P           CO1         S         -         -         -         L         -         -         -         -         L         L         -         L         L         -         L         L         -         L         L         -         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS02           CO1         S         -         -         -         L         -         -         -         -         L         L         -         L         L         -         L         L         -         L         L         L         L         L         L         S         M         L           CO3         S         S         M         L         -         L         -         L         L         L         S         M         L           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>CO5: A</td> <td>Analyse</td> <td>optimiz</td> <td>cation a</td> <td>nd gene</td> <td>ralizati</td> <td>on in de</td> <td>ep lear</td> <td>ning</td> <td></td> <td></td> <td></td> <td></td> <td>Ap</td> <td>ply</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO5: A        | Analyse      | optimiz  | cation a | nd gene  | ralizati | on in de  | ep lear   | ning     |          |          |            |            | Ap        | ply       |        |
| CO1         S         -         -         -         L         -         -         -         L         L         -           CO2         S         S         S         L         -         L         -         L         L         L         L         S         M           CO3         S         S         M         L         -         L         -         L         L         -         L         S         M           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO1         S         -         -         -         L         -         -         -         -         L         L         -         -         -         -         L         L         -         L         L         -         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAPP          | ING W        | ITH P    | ROGR     | AMMI     | E OUT    | COME      | S AND     | PROG     | RAM      | ME SPI   | ECIFIC C   | OUTCOM     | 1ES       |           |        |
| CO2         S         S         L         -         L         -         L         L         -         L         S         M           CO3         S         S         M         L         -         L         -         L         L         L         S         M           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>CO2         S         S         L         -         L         -         L         L         -         L         L         S         M         L           CO3         S         S         M         L         -         L         -         L         L         -         L         S         M         L           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<!--</td--><td>COs</td><td>PO1</td><td>PO2</td><td>PO3</td><td>PO4</td><td>PO5</td><td>PO6</td><td>PO7</td><td>PO8</td><td>PO9</td><td>PO10</td><td>PO11</td><td>PO12</td><td>PSO1</td><td>PSO2</td><td>PSO3</td></td> | CO2         S         S         L         -         L         -         L         L         -         L         L         S         M         L           CO3         S         S         M         L         -         L         -         L         L         -         L         S         M         L           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>COs</td> <td>PO1</td> <td>PO2</td> <td>PO3</td> <td>PO4</td> <td>PO5</td> <td>PO6</td> <td>PO7</td> <td>PO8</td> <td>PO9</td> <td>PO10</td> <td>PO11</td> <td>PO12</td> <td>PSO1</td> <td>PSO2</td> <td>PSO3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COs           | PO1          | PO2      | PO3      | PO4      | PO5      | PO6       | PO7       | PO8      | PO9      | PO10     | PO11       | PO12       | PSO1      | PSO2      | PSO3   |
| CO3         S         S         M         L         -         L         -         L         L         L         S         M           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO3         S         S         M         L         -         L         -         L         L         -         L         S         M         L           CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>CO1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>L</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>L</td> <td></td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO1           |              | -        | -        | -        | -        | L         | -         | -        | -        | -        | -          | L          |           | -         | -      |
| CO4 S L M L - L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO4         S         L         M         L         -         L         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |              |          |          |          | -        |           | -         |          |          | -        |            |            |           | +         | L      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO5 S L S L - L L - L -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |              |          |          |          | -        |           | -         | L        | L        | -        | L          |            | S         | M         | L      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |              |          |          | L        | -        | -         | -         | -        | -        | -        | -          |            | -         | -         | -      |

## LIST OF EXPERIMENTS

- 1. Write a Python program to work on Theanos i) functions with scalars ii) functions with vectors iii) Functions with scalars and vectors iv) activation functions
- 2. Write a Python program for Single Layer Neural Network
- 3. Write a Python program for Two Layer Neural Network
- 4. Write a Python program for Multiclass Classification
- 5. Write a Python program for Regression with Keras
- 6. Write a Python program for Optimizers
- 7. Write a Python program for Activation Functions
- 8. Write a Python program for CNN using MNIST dataset
- 9. Write a Python program for LSTM model using IMDB dataset
- 10. Write a Python program for getting information on GPUs
- 11. Write a Python program for Vector Addition
- 12. Write a Python program for Matrix multiplication

## **REFERENCE BOOKS:**

1. "Deep Learning with Python A Hands-on Introduction", Nikhil Kethkar, Apress, 2017.

| S. No. | Name of the<br>Faculty | Designation               | Department      | Mail ID                 |
|--------|------------------------|---------------------------|-----------------|-------------------------|
| 1.     | Mrs. R Shobana         | Assistant Professor (GII) | CSE / AVIT      | shobana@avit.ac.in      |
| 2.     | Dr. K. Sasikala        | Associate Professor       | CSE /<br>VMKVEC | sasikalak@vmkvec.edu.in |

| 17CSCC13              | DATA WAREHOUSING AND DATA INING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Category        | ${f L}$  | T       | P     | Credit     |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|---------|-------|------------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CC              | 3        | 0       | 0     | 3          |
| PREAMBLE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |          | •       | •     |            |
|                       | ng and data mining is one of the most advanced fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |          |         |       |            |
|                       | tatistics, Information Technology and information Scientific and Informatio |                 |          |         |       |            |
|                       | a large databases It is a new emerging interdisciplinary a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rea of researc  | n and    | aeveloj | oment | wnich has  |
|                       | among scientists of various disciplines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |          |         |       |            |
| PREREQUISIT           | TE: DATABASE MANAGEMENT SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |          |         |       |            |
| COURSE OBJI           | FCTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |          |         |       |            |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |          |         |       |            |
|                       | a data warehouse from an operational database system, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d appreciate th | e needs  | for de  | velop | ing a data |
|                       | for large corporation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |          |         |       |            |
| <b>2.</b> Describe th | e problems and processes involved in the development of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | data warehous   | se       |         |       |            |
| 3. To explain         | the process of data mining and its importance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |          |         |       |            |
| COURSE OUT            | COMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |          |         |       |            |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |          |         |       |            |
| On the successfu      | al completion of the course, students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |          |         |       |            |
| CO1: Understan        | nd the basics of data warehousing and mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | τ               | Jndersta | and     |       |            |
| CO2: Learn the        | data preprocessing, language, architectures, concept descrip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ption.          | Apply    |         |       |            |
| CO3: Learn the        | association rules and its algorithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F               | Apply    |         |       |            |
| CO4: Learn the        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thms A          | Apply    |         |       |            |
|                       | classification and clustering rules and the respective algorit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |          |         |       |            |

| COs             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1             | S   | L   | -   | M   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO <sub>2</sub> | S   | M   | M   | M   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO3             | S   | L   |     | L   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | M    |
| CO4             | S   | M   | M   | M   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | S    |
| CO5             | S   | M   | M   | L   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | S    |
| ~ ~             | ,   |     |     |     |     |     |     |     |     |      |      |      |      |      |      |

S- Strong; M-Medium; L-Low

#### INTRODUCTION AND DATA WAREHOUSING

Introduction, Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Implementation, Further Development, Data Warehousing to Data Mining.

## DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Preprocessing, Cleaning, Integration, Transformation, Reduction, Discretization, Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces, Architectures, Concept Description, Data Generalization, Characterizations, Class Comparisons, Descriptive Statistical Measures.

## ASSOCIATION RULES

Association Rule Mining, Single-Dimensional Boolean Association Rules from Transactional Databases, Multi-Level Association Rules from Transaction Databases.

## CLASSIFICATION AND CLUSTERING

Classification and Prediction, Issues, Decision Tree Induction, Bayesian Classification, Association Rule Based, Other Classification Methods, Prediction, Classifier Accuracy, Cluster Analysis, Types of data, Categorization of methods, Partitioning methods, Outlier Analysis.

## RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, World Wide Web, Applications and Trends in Data Mining.

# TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India / Morgan Kauffman, 2001.

#### REFERENCES

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2004.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2003.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.
- **4.** W.H.Inmon, "Building the Data Warehouse", 3rd Edition, Wiley, 2003.
- 5. Alex Bezon, Stephen J.Smith, "Data Warehousing, Data Mining & OLAP", MeGraw-Hill Edition, 2001.
- **6.** Paulraj Ponniah, "Data Warehousing Fundamentals", Wiley-Interscience Publication, 2003.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|--------|---------------------|---------------------|--------------|-------------------------|
| 1      | Mr. S. Muthuselvan  | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in  |
| 2.     | Dr. K. Sasikala     | Assistant Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 17A                                         | AICC09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               | FOUN                                                    | NDAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON O                                                    | F DAT                                     | ΓA SC                                                                     | IENCI                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | Category                                                                           | L                                                             | T                                                        | P                                      | Credit                                    |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------|--|
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                           |                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | CC                                                                                 | 3                                                             | 0                                                        | 0                                      | 3                                         |  |
| inferenc<br>informe<br>for expl<br>inferenc | eience is the Exploration that the Explorati | oration es abou are vis atistical their da TE | involve t values ualizati tests an ata and  VES emprehe | s identics we will ons and mod corrections which we have a series with a | fying p<br>sh we k<br>I descri<br>els.Thre<br>ly interp | atterns new. In ptive so oug hun pret the | in information in inference tatistics ander state answer arious todels of | mation<br>e involve, for prending as<br>es providuos | . Predictives quartediction aparticuded by indiction aparticular aparticul | tion invitifying n are malar dominferent | sets throu<br>olves usin<br>our degree<br>achine lea<br>nain, the s<br>ial and cor | g inform<br>e of certa<br>rning and<br>tudents l<br>mputation | ation we<br>inty. The<br>doptime<br>earn to<br>nal tools | e know the primalization, ask apprince | o make<br>ry tools<br>and for<br>copriate |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                           | ouiesis i                                                                 | or spec                                              | nic pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diems                                    |                                                                                    |                                                               |                                                          |                                        |                                           |  |
| 4.<br>COURS                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n about                                       |                                                         | diction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | models                                                  |                                           |                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                    |                                                               |                                                          |                                        |                                           |  |
| turther a                                   | Jndersta<br>analysis<br>Jndersta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd how                                        | to appl                                                 | y pre-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rocessir                                                | ng techi                                  | niques t                                                                  | o conve                                              | ert raw o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | as to enabl<br>zations to                                                          |                                                               |                                                          |                                        |                                           |  |
| CO3: U<br>of rando<br>CO4: U                | om varia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıbles an                                      | d use th                                                | ese tec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hniques                                                 | to gen                                    | erate da                                                                  | ıta from                                             | variou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s distrib                                | utions                                                                             | Understa                                                      |                                                          |                                        |                                           |  |
| of certai                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                           |                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                    | Understa                                                      | nd<br>                                                   |                                        |                                           |  |
| <b>СО5:</b> F                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                           |                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | nsights                                                                            | Understa                                                      |                                                          |                                        |                                           |  |
|                                             | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO2                                           | PO3                                                     | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO5                                                     | PO6                                       | PO7                                                                       | PO8                                                  | PO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | PO11                                                                               | PO12                                                          | PSO1                                                     | PSO2                                   | PSO3                                      |  |
| CO1                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                             | -                                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                       | -                                         | -                                                                         | -                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1 010                                  | -                                                                                  | -                                                             | M                                                        | M                                      | M M                                       |  |
| CO2                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                             | M                                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                       | -                                         | -                                                                         | -                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                        | -                                                                                  | -                                                             | M                                                        | M                                      | M                                         |  |
| CO3                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                             | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                       | -                                         | -                                                                         | -                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                        | -                                                                                  | -                                                             | M                                                        | M                                      | M                                         |  |
|                                             | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                             | M                                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                       | _                                         | -                                                                         | _                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                        | -                                                                                  | - M M S                                                       |                                                          |                                        |                                           |  |
| CO4                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 171                                           | 171                                                     | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                           |                                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                    |                                                               |                                                          | 171                                    | S                                         |  |

## INTRODUCTION:

Data Science, Big Data and Data Science – Datafication - Current landscape of perspectives - Skill sets needed; Matrices - Matrices to represent relations between data, and necessary linear algebraic operations on matrices - Approximately representing matrices by decompositions (SVD and PCA); Statistics: Descriptive Statistics: distributions and probability - Statistical Inference: Populations and samples - Statistical modeling - probability distributions - fitting a model - Hypothesis Testing - Intro to R/ Python.

#### DATA PREPROCESSING:

Data cleaning - data integration - Data Reduction Data Transformation and Data Discretization. Evaluation of classification methods — Confusion matrix, Students T-tests and ROC curves-Exploratory Data Analysis - Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA - The Data Science Process.

## BASIC MACHINE LEARNING ALGORITHMS:

Association Rule mining - Linear Regression- Logistic Regression - Classifiers - k-Nearest Neighbors (k-NN), k-means - Decision tree - Naive Bayes- Ensemble Methods - Random Forest. Feature Generation and Feature Selection - Feature Selection algorithms - Filters; Wrappers; Decision Trees; Random Forests.

## **CLUSTERING:**

Choosing distance metrics - Different clustering approaches - hierarchical agglomerative clustering, k-means (Lloyd's algorithm), - DBSCAN - Relative merits of each method - clustering tendency and quality.

## DATA VISUALIZATION:

Basic principles, ideas and tools for data visualization.

# REFERENCE BOOKS

- 1. Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk From The Frontline", O'Reilly, 2014.
- 2. Jiawei Han, Micheline Kamber and Jian Pei, "Data Mining: Concepts and Techniques", Third Edition. ISBN 0123814790, 2011.
- 3. Mohammed J. Zaki and Wagner Miera Jr, "Data Mining and Analysis: Fundamental Concepts and Algorithms", Cambridge University Press, 2014.
- 4. Matt Harrison, "Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visualization, O'Reilly, 2016.
- 5. Joel Grus, "Data Science from Scratch: First Principles with Python", O'Reilly Media, 2015.
- 6. Wes McKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, 2012

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                |
|--------|------------------------|---------------------|--------------|------------------------|
| 1.     | Dr.S.Rajaprakash       | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in |
| 2.     | Mrs. T. Narmadha       | Assistant Professor | CSE / VMKVEC | narmadha@vmkvec.edu.in |

| 17A                      | ICC10       |             |           | F         | BIG DA     | TA AN     | ALYT        | ICS         |          |          | Category  | $\mathbf{L}$                                           | T        | P C  | redit |  |  |  |
|--------------------------|-------------|-------------|-----------|-----------|------------|-----------|-------------|-------------|----------|----------|-----------|--------------------------------------------------------|----------|------|-------|--|--|--|
|                          |             |             |           |           |            |           |             |             |          |          | CC        | 3                                                      | 0        | 0    | 3     |  |  |  |
| PREAM                    |             |             |           |           |            |           |             |             |          | <u> </u> |           | 1                                                      | <u> </u> | •    |       |  |  |  |
|                          |             |             |           |           |            |           |             |             |          |          |           | s course spotlights the concer<br>al-world experience. |          |      |       |  |  |  |
| PRERE                    |             |             | es are a  | ррпсав    | le ili big | data ai   | larytics    | enviroi     | iment in | maustr   | y and rea | i-woria e.                                             | xperienc | е.   |       |  |  |  |
|                          |             |             | GEMEN     | NT SYS    | TEM        |           |             |             |          |          |           |                                                        |          |      |       |  |  |  |
| COURS                    | E OBJ       | ECTIV       | ES        |           |            |           |             |             |          |          |           |                                                        |          |      |       |  |  |  |
| 1.                       | To uno      | derstand    | l how b   | ig data : | analytics  | s can le  | verage i    | into a k    | ey comp  | onent    |           |                                                        |          |      |       |  |  |  |
| 2.                       | To uno      | derstand    | the big   | g data to | ols with   | their a   | pplicati    | ons         |          |          |           |                                                        |          |      |       |  |  |  |
| 3.                       | To uno      | derstand    | the big   | g data re | ports fo   | or the ex | isting t    | ools        |          |          |           |                                                        |          |      |       |  |  |  |
| 4.                       | To uno      | derstand    | l the big | g data aj | plication  | ons like  | Mongo       | DB, Ca      | ssandra  | and Hiv  | e.        |                                                        |          |      |       |  |  |  |
| COURS                    | E OUT       | COME        | S         |           |            |           |             |             |          |          |           |                                                        |          |      |       |  |  |  |
| On the s                 | uccessfu    | ıl comp     | letion o  | f the co  | urse, stu  | idents v  | vill be a   | ble to      |          |          |           |                                                        |          |      |       |  |  |  |
| <b>CO1:</b> U            | ndersta     | nd the b    | asics of  | f digital | data an    | d introd  | uction 1    | to big d    | ata      |          |           | Understa                                               | ınd      |      |       |  |  |  |
| CO2: A                   | nalyze      | the basi    | c big da  | ta chall  | enges, i   | mportai   | nt and to   | echnolo     | gies.    |          |           | Analyze                                                |          |      |       |  |  |  |
| CO3: S architec          | _           | •           | •         | challen   | ges with   | the hel   | p of Ha     | doop a      | nd Mon   | goDB     |           | Apply                                                  |          |      |       |  |  |  |
| CO4: A                   |             |             |           | like M    | ongoDF     | B, Cassa  | ındra ar    | d Hive      |          |          |           | Analyze                                                |          |      |       |  |  |  |
| CO5: A                   | nalyze      | Pig and     | Hive in   | terms     | of proce   | ssing ar  | nd to de    | sign Jas    | sperRep  | orts.    |           | Analyze                                                |          |      |       |  |  |  |
|                          | NG WI       | TH PR       | OGRA      | MME (     | OUTCO      | MES A     | ND PI       | ROGRA       | AMME     | SPECI    | FIC OUT   | rcomes                                                 | <b>S</b> |      |       |  |  |  |
| MAPPI                    |             | PO2         | PO3       | PO4       | PO5        | PO6       | PO7         | PO8         | PO9      | PO10     | PO11      | PO12                                                   | PSO1     | PSO2 | PSO3  |  |  |  |
| MAPPII<br>COs            | PO1         | 102         |           |           | M          | _         | -           | -           | -        | -        | -         | M                                                      | S        | M    | M     |  |  |  |
|                          | PO1<br>S    | M           | L         | -         | 171        |           |             |             |          |          |           |                                                        |          |      |       |  |  |  |
| COs<br>CO1<br>CO2        | S<br>S      |             | L<br>L    | -         | M          | -         | -           | -           | -        | -        | -         | M                                                      | S        | M    | M     |  |  |  |
| COs<br>CO1<br>CO2<br>CO3 | S<br>S<br>S | M<br>M<br>M | L<br>L    |           | M<br>M     | -         | -           | -           | -        | -        | -         | M                                                      | S        | M    | M     |  |  |  |
| COs<br>CO1<br>CO2        | S<br>S      | M<br>M      | L         |           | M          |           | -<br>-<br>- | -<br>-<br>- |          |          | -         |                                                        |          |      |       |  |  |  |

## DIGITAL DATA AND INTRODUCTION TO BIG DATA

Types of Digital Data - Structured Data - Semi-Structured Data - Unstructured Data - Introduction to Big Data - What is Big Data - Why Big Data - Traditional Business Intelligence (BI) versus Big Data - Typical Hadoop Environment - Changes in the Realms of Big Data - Coexistence of Big Data and Data Warehouse.

## **BIG DATA ANALYTICS**

What's in Store? - Big Data Analytics - Classification of Analytics - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Big Data Analytics Important - Technologies for Meet the Challenges Posed by Big Data - Data Science - Data Scientist - Big Data Environment - Analytics Tools.

#### **HADOOP**

Introduction to Hadoop - Hadoop Components - Hadoop Conceptual Layer - High Level Architecture of Hadoop - Business Value of Hadoop - Hadoop Distributed File System - Processing Data with Hadoop - MapReduce Daemons - MapReduce working - MapReduce Example - Managing Resources and Application with Hadoop YARN - Hadoop Ecosystem.

## MONGODB, CASSANDRA AND HIVE

MongoDB - RDBMS and MongoDB - Data Types in MongoDB-CRUD- Introduction to Apache Cassandra - Features of Cassandra - CQL Data Types -CQLSH- Keyspaces-CRUD-Collections- Using a Counter - Time To Live (TTL)-Alter - Import and Export - Export to CSV - Import from CSV - Import from STDIN - Export to STDOUT - System Tables - Practice Examples - Introduction to Hive - Hive Architecture - Hive Data Types - Hive File Format - Hive Query Language - RCFILE Implementation - SERDE - UDF.

# PIG AND JASPER REPORTS

Anatomy of Pig - Pig on Hadoop - Pig Philosophy - Use Case for Pig: ETL Processing - Pig Latin Overview - Data Types in Pig - Running Pig - Execution Modes of Pig - HDFS Commands - Relational Operators - Eval Function - Complex Data Type - Piggy Bank - UDF (User Defined Function) - Parameter Substitution - Diagnostic Operator - Word Count Example - When to use Pig? - When NOT to use Pig? - Pig at Yahoo - Pig versus Hive - Hive Vs Pig - Introduction to Jasper Reports, Jaspersoft Studio - Connecting to MongoDB NoSQL database - Connecting to Cassandra NoSQL Databases

# **TEXT BOOKS:**

- 1. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 2. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 3. Hadoop: The Definitive Guide by Tom White
- 4. Hadoop in action Chuck Lam
- 5. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

#### **REFERENCES:**

- 1. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
- 3. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- **4.** Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- **5.** Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012.

| S.No | Name of the Faculty | Designation              | Department   | Mail ID                 |
|------|---------------------|--------------------------|--------------|-------------------------|
| 1.   | Dr.R.Jaichandran    | Assistant professor G-II | CSE / AVIT   | rjaichandran@avit.ac.in |
| 2.   | Dr.M. Nithya        | Professor                | CSE / VMKVEC | nithya@vmkvec.edu.in    |

| 17                                  | 7AICC                                                     | 11               |                    | BIG               | DATA                | ANAI           | LYTIC           | S LAB    |          |                     | Category                                      | L                       | T                  | P                     | redit   |
|-------------------------------------|-----------------------------------------------------------|------------------|--------------------|-------------------|---------------------|----------------|-----------------|----------|----------|---------------------|-----------------------------------------------|-------------------------|--------------------|-----------------------|---------|
|                                     |                                                           |                  |                    |                   |                     |                |                 |          |          |                     | CC                                            | 0                       | 0                  | 4                     | 2       |
| manipula<br>providing<br>architectu | ect is<br>ated usi<br>g a pra<br>ure and                  | ng the octical a | emergin<br>pproach | g techn<br>to dev | ologies.<br>eloping | This c<br>Java | ourse bapplicat | oreaks d | lown the | e walls<br>f the Ha | real-time<br>of compl<br>doop pla<br>HBase in | exity in particular. It | orocessi<br>descri | ng Big I<br>bes the I | Data by |
| PREREC<br>DATA<br>COURS             | WARE                                                      | EHOUS            |                    | ID DAT            | CA MIN              | ING            |                 |          |          |                     |                                               |                         |                    |                       |         |
| 1.                                  | To un                                                     | derstand         | l how b            | ig data a         | nalytic             | s can le       | verage i        | into a k | ey comp  | onent               |                                               |                         |                    |                       |         |
| 2.                                  | To un                                                     | derstand         | the big            | g data to         | ols with            | their a        | pplicati        | ons      |          |                     |                                               |                         |                    |                       |         |
| 3.                                  | To understand the big data reports for the existing tools |                  |                    |                   |                     |                |                 |          |          |                     |                                               |                         |                    |                       |         |
| 4.                                  | To un                                                     | derstand         | the big            | g data ap         | plication           | ns like        | Mongo           | DB, Ca   | ssandra  | and Hiv             | e.                                            |                         |                    |                       |         |
| COURS                               |                                                           |                  |                    |                   |                     |                |                 |          |          |                     |                                               |                         |                    |                       |         |
| On the su                           | ıccessfi                                                  | ıl comp          | letion o           | f the co          | ırse, stu           | idents v       | vill be a       | ble to   |          |                     |                                               |                         |                    |                       |         |
| <b>CO1:</b> U                       | Indersta                                                  | and the          | Big Dat            | a conce           | pts in re           | al time        | scenari         | О        |          |                     |                                               | Understa                | ind                |                       |         |
| CO2: U world.                       | Indersta                                                  | and the l        | oig data           | system            | s and id            | entify t       | he main         | source   | s of Big | g Data in           | the real                                      | Understa                | nd                 |                       |         |
| CO3: D<br>Analytic                  |                                                           | trate an         | ability t          | o use H           | adoop f             | ramewo         | ork for j       | processi | ing Big  | Data for            | î                                             | Apply                   |                    |                       |         |
| CO4: E                              |                                                           | the Ma           | p reduc            | e appro           | ach for             | differen       | ıt domai        | in probl | ems      |                     |                                               | Evaluate                |                    |                       |         |
| CO5: A                              |                                                           |                  |                    |                   |                     |                |                 |          |          | orts.               |                                               | Analyze                 |                    |                       |         |
|                                     | •                                                         | •                |                    |                   | •                   | •              |                 | •        |          |                     | FIC OUT                                       | COMES                   | <u> </u>           |                       |         |
| COs                                 | PO1                                                       | PO2              | PO3                | PO4               | PO5                 | PO6            | PO7             | PO8      | PO9      | PO10                | PO11                                          | PO12                    | PSO1               | PSO2                  | PSO3    |
| CO1                                 | S                                                         | M                | L                  | M                 | M                   | -              | -               | -        | -        | -                   | -                                             | M                       | M                  | M                     | -       |
| CO2                                 | S                                                         | M                | L                  | M                 | M                   | -              | -               | -        | -        | -                   | -                                             | M                       | M                  | M                     | -       |
| CO3                                 | S                                                         | M                | L                  | M                 | M                   | -              | -               | -        | -        | -                   | -                                             | M                       | M                  | M                     | -       |
| CO4<br>CO5                          | S                                                         | M<br>M           | L<br>L             | M<br>M            | M<br>M              | -              | -               | -        | -        | -                   | -                                             | M<br>M                  | M                  | M<br>M                | -       |
| ( '/ 15                             |                                                           |                  |                    |                   |                     |                |                 |          |          |                     |                                               |                         |                    |                       |         |

#### LIST OF EXPERIMENTS

- 1. Install VMWare
- 2. a. Perform setting up and Installing Hadoop in its three operating modes. i. Standalone. ii. Pseudo distributed. iii. Fully distributed. b. Use web based tools to monitor your Hadoop setup.
- 3. a. Implementing the basic commands of LINUX Operating System File/Directory creation, deletion, update operations. b. Implement the following file management tasks in Hadoop: i. Adding files and directories ii. Retrieving files iii. Deleting files
- 4. Run a basic word count Map Reduce program to understand Map Reduce Paradigm.
- 5. Write a Map Reduce program that mines weather data. Hint: Weather sensors collecting data every hour at many locations across the globe gather a large volume of log data, which is a good candidate for analysis with Map Reduce, since it is semi structured and record-oriented
- 6. Implement matrix multiplication with Hadoop Map Reduce
- 7. a. Installation of PIG. b. Write Pig Latin scripts sort, group, join, project, and filter your data.
- 8. a. Run the Pig Latin Scripts to find Word Count. b. Run the Pig Latin Scripts to find a max temp for each and every year.
- 9. a. Installation of HIVE. b. Use Hive to create, alter, and drop databases, tables, views, functions, and indexes.

# **TEXT BOOKS:**

- 1. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 2. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 3. Hadoop: The Definitive Guide by Tom White
- 4. Hadoop in action Chuck Lam
- 5. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

# **REFERENCES:**

- **1.** Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
- 3. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 4. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012

| S.No | Name of the Faculty | Designation              | Department | Mail ID                 |
|------|---------------------|--------------------------|------------|-------------------------|
| 1.   | Dr.R.Jaichandran    | Assistant professor G-II | CSE / AVIT | rjaichandran@avit.ac.in |

|                                                                                                             |                                                                                                                                 |          |          |          |         |            |           |           |          |           |             | 1          |           |           |          |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------|------------|-----------|-----------|----------|-----------|-------------|------------|-----------|-----------|----------|
| 17A                                                                                                         | ACC12                                                                                                                           |          | Ι        | OATA A   | ANALY   | TICS       | USING     | S PYTH    | ION      |           | Categor     | y L        | T         | P         | Credit   |
|                                                                                                             |                                                                                                                                 |          |          |          |         |            |           |           |          |           | CC          | 3          | 0         | 0         | 3        |
|                                                                                                             | MBLE                                                                                                                            |          |          |          |         |            |           |           |          |           |             | 1          |           |           |          |
|                                                                                                             |                                                                                                                                 |          |          |          |         |            |           |           |          |           | ent types   |            |           |           |          |
|                                                                                                             |                                                                                                                                 |          | ysis, pe | rform si | imple s | tatistica  | al analy  | ses, cre  | ate mea  | aningful  | l data vis  | ualization | s, predic | et future | trends   |
|                                                                                                             | ata, and                                                                                                                        |          | D O O D  | 43 O O   | NG DI   | DY //DY Y/ | 227       |           |          |           |             |            |           |           |          |
| PRER                                                                                                        | EQUIS                                                                                                                           | ITE: 1   | PROGR    | AMMI     | NG IN   | PYTHO      | JN        |           |          |           |             |            |           |           |          |
| COUR                                                                                                        | RSE OB                                                                                                                          | JECTI    | IVES     |          |         |            |           |           |          |           |             |            |           |           |          |
| 1. Understand the basics in Python programming in terms of constructs, control statements, string functions |                                                                                                                                 |          |          |          |         |            |           |           |          |           |             |            |           |           |          |
| To                                                                                                          | To Joan to use Bondes Date Frames, Numby multi-dimentional erroys, and SciPy libraries to work with a various                   |          |          |          |         |            |           |           |          |           | 18          |            |           |           |          |
|                                                                                                             | 3. To learn about pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. |          |          |          |         |            |           |           |          |           | 1           |            |           |           |          |
|                                                                                                             | introdu<br>art mod                                                                                                              |          |          |          |         | •          | t-learn,  | and we    | will us  | e some    | of its mad  | hine lear  | ning algo | orithms   | to build |
| COUR                                                                                                        | RSE OU                                                                                                                          | TCOM     | 1ES      |          |         |            |           |           |          |           |             |            |           |           |          |
| On the                                                                                                      | success                                                                                                                         | sful con | npletion | of the   | course, | student    | ts will t | e able t  | to       |           |             |            |           |           |          |
|                                                                                                             | Underst<br>ents, stri                                                                                                           |          |          | in Pytho | on prog | rammir     | ng in ter | rms of c  | construc | ets, cont | rol         | Under      | stand     |           |          |
|                                                                                                             | To use l<br>ith a va                                                                                                            |          |          | imes, N  | umpy n  | nulti-di   | mentio    | nal arra  | ys, and  | SciPy li  | ibraries to | Under      | stand     |           |          |
|                                                                                                             | Γo use p<br>ualize c                                                                                                            |          |          | -source  | library | , and w    | e will u  | ise it to | load, m  | anipula   | te, analyz  | e, Under   | stand     |           |          |
|                                                                                                             |                                                                                                                                 |          |          |          |         | ome of     | its mac   | hine lea  | arning a | lgorithr  | ns to build | d Apply    |           |           |          |
|                                                                                                             | smart models and make cool predictions  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES                         |          |          |          |         |            |           |           |          |           |             |            |           |           |          |
| COs                                                                                                         | PO1                                                                                                                             | PO2      | PO3      | PO4      | PO5     | PO6        | PO7       | PO8       | PO9      | PO10      | PO11        | PO12       | PSO1      | PSO2      | PSO3     |
| 001                                                                                                         |                                                                                                                                 | 3.4      |          |          | 3.4     |            |           |           |          |           |             |            |           |           | 3.6      |
| CO1                                                                                                         | S                                                                                                                               | M        | S        | -        | M<br>M  | -          | -         | -         | -        | -         | -           | M          | S         | S         | M        |
| CO2                                                                                                         | S                                                                                                                               | M<br>M   | S        | -        | M       | -          | -         | -         | -        | -         | -           | M<br>M     | M<br>S    | 3         | M<br>M   |
| 003                                                                                                         | S                                                                                                                               | IVI      | 3        | -        | 1V1     | -          | -         | -         | -        | -         | -           | IVI        | S         | -         | IVI      |

S- Strong; M-Medium; L-Low

M

#### **PYTHON BASICS:**

Structure of Python Program-Underlying mechanism of Module Execution-Branching and Looping-Problem Solving Using Branches and Loops-Functions - Lists and Mutability- Problem Solving Using Lists and Functions

# SEQUENCE DATATYPES AND OBJECT\_ORIENTED PROGRAMMING

Sequences, Mapping and Sets- Dictionaries- -Classes: Classes and Instances-Inheritance-Exceptional Handling-Introduction to Regular Expressions using "re" module.

#### **USING NUMPY**

Basics of NumPy-Computation on NumPy-Aggregations-Computation on Arrays-Comparisons, Masks and Boolean Arrays-Fancy Indexing-Sorting Arrays-Structured Data: NumPy's Structured Array.

#### DATA MANIPULATION WITH PANDAS

Introduction to Pandas Objects-Data indexing and Selection-Operating on Data in Pandas-Handling Missing Data-Hierarchical Indexing - Combining Data Sets - Aggregation and Grouping-Pivot Tables-Vectorized String Operations -Working with Time Series-High Performance Pandas- and query()

## **VISUALIZATION WITH MATPLOTLIB:**

Basic functions of matplotlib-Simple Line Plot, Scatter Plot-Density and Contour Plots-Histograms, Binnings and Density-Customizing Plot Legends, Colour Bars-Three-Dimensional Plotting in Matplotlib.

#### REFERENCES

- 1. Jake VanderPlas ,Python Data Science Handbook Essential Tools for Working with Data, O'Reily Media,Inc, 2016
- 2. Zhang, Y, An Introduction to Python and Computer Programming, Springer Publications, 2016
- 3. Joel Grus ,Data Science from Scratch First Principles with Python, O'Reilly Media,2016
- 4. T.R.Padmanabhan, Programming with Python, Springer Publications, 2016

| S.<br>No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|-----------|---------------------|---------------------|--------------|-------------------------|
| 1.        | Dr.S.Rajaprakash    | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in  |
| 2.        | Dr. K. Sasikala     | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 17CSCC05 | SOFTWARE ENGINEERING | Category | L | Т | P | Credit |
|----------|----------------------|----------|---|---|---|--------|
|          |                      | CC       | 3 | 0 | 0 | 3      |
|          |                      |          |   |   |   |        |

## **PREAMBLE:**

This course aims at introducing to the students about the product that is to be engineered and the process that provides a framework for the engineering technology. The course facilitates the students to analyze risk in software design and quality and to plan, design, develop and validate the software project.

# PREREQUISITE:

**NIL** 

# **COURSE OBJECTIVES**

- 1. To be aware of generic models to structure the software development process.
- 2. To understand fundamental concepts of requirements engineering and requirements specification.
- 3. To understand different notion of complexity at both the module and system level.
- 4. To be aware of some widely known design methods.
- 5. To understand the role and contents of testing activities in different life cycle phases.

# **COURSE OUTCOMES**

| On the successful completion of the course, students will be able to                                                                                     |            |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| CO1. Explain a process model for a software project Development.                                                                                         | Understand |  |  |  |  |  |
| CO2. Prepare the SRS, Life Cycle Models.                                                                                                                 | Apply      |  |  |  |  |  |
| CO3. Apply Design document, Project plan of a given software system, Project Management and Requirement analysis, Principles to S/W project development. | Apply      |  |  |  |  |  |
| CO4. Analyze the cost estimate and problem complexity using various estimation techniques.                                                               | Analyse    |  |  |  |  |  |
| CO5. Generate test cases using the techniques involved in selecting: (a) White Box testing (b) Block Box testing.                                        | Apply      |  |  |  |  |  |
| CO6. Explain the advantages of Design Process, configuration management and risk management activities                                                   | Understand |  |  |  |  |  |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS                        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO<br>3 |
|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|----------|
| CO1                        | S   | M   | M   | L   | -   | -   | -   | -   | -   | -    | S    | S    | S    | M    | M        |
| CO2                        | S   | M   | M   | M   | -   | -   | -   | -   | -   | -    | S    | S    | S    | M    | M        |
| CO3                        | S   | M   | S   | L   | -   | -   | -   | -   | -   | =    | S    | S    | S    | M    | M        |
| CO4                        | S   | M   | L   | L   | -   | -   | -   | -   | -   | =    | S    | L    | S    | M    | S        |
| CO5                        | S   | M   | M   | M   | -   | -   | -   | -   | -   | -    | S    | M    | S    | M    | S        |
| CO6                        | S   | M   | M   | L   | -   | -   | -   | -   | -   | -    | S    | M    | S    | M    | M        |
| S- Strong; M-Medium; L-Low |     |     |     |     |     |     |     |     |     |      |      |      |      |      |          |

#### **SOFTWARE**

Introduction – S/W Engineering paradigm -SDLC– Software Process.

#### LIFE CYCLE MODELS

Linear Sequential Model- Prototyping Model-RAD Model-Evolutionary Software Process Models-Component Based Development - Project Planning Objectives – Software Scope – Resources – Software Project Estimation – Empirical Estimation Models – Make/Buy Decision-Functional and Non Functional requirements –software requirement specification (SRS) – Requirement Engineering process-Feasibility studies.

## PLANNING AND ESTIMATION

System Engineering-Analysis Concepts - Design Process & concepts - Design Principles - Effective Modular Design - Design Heuristics - Design Model - The status of software Architecture-Architecture Styles-case Study: Keyword in context- Software Design Description (SDD).

# REQUIREMENT ENGINEERING TASKS

Requirements Management, Structured coding Techniques-Coding Styles-Standards and Guidelines- Software testing Fundamentals-Types of testing - Quality Concepts - Quality Movement - Software Quality Assurance - Software Reviews - Formal Approaches to SQA - Software Reliability - ISO 9000 Quality Standards - SQA Plan.

#### SOFTWARE CONFIGURATION MANAGEMENT

Introduction about software configuration management – the SCM process –identification of objects in the software configuration – version control – change control – configuration audit – status reporting – SCM standards –software Documentation-seven rules for sound documentation..

## **TEXT BOOKS:**

- 1. Roger S. Pressman, "Software Engineering A practitioner's Approach", McGraw-Hill Education; 8th edition, 2014.
- 2. Ian sommerville, "Software Engineering", Tenth Edition, Pearson Education Asia, 2018.
- 3. Mary Shaw, David Garlan,"Software Architecture- a perspectives on an Emerging Discipline

#### **REFERENCES:**

- 1. Watts S.Humphrey," A Discipline for Software Engineering", Pearson Education, 2007.
- 2. James F.Peters and Witold Pedrycz, "Software Engineering, An Engineering Approach", Riley-India, 2007

| 9 | S.No | Name of the Faculty  | Designation         | Department   | Email Id                    |  |  |
|---|------|----------------------|---------------------|--------------|-----------------------------|--|--|
|   | 1.   | Mr. B. Sundaramurthy | Assistant Professor | CSE / VMKVEC | sundaramurthy@vmkvec.edu.in |  |  |
| 4 | 2.   | Mr. K.Karthik        | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in          |  |  |

| 17CS(           | CC10                                                                                            |                           | OBJ       | ЕСТ О     | RIEN                                   | ΓED AI    | NALYS    | SIS AN  | D DES    | IGN         | Cate   | gory       | L      | ГР     | Cr         | edit |
|-----------------|-------------------------------------------------------------------------------------------------|---------------------------|-----------|-----------|----------------------------------------|-----------|----------|---------|----------|-------------|--------|------------|--------|--------|------------|------|
|                 |                                                                                                 |                           |           |           |                                        |           |          |         |          |             | CC     | 1          | 3 (    | 0      |            | 3    |
| PREAM           |                                                                                                 |                           |           |           |                                        | _         |          |         |          | _           |        |            |        |        |            |      |
| •               |                                                                                                 |                           |           | _         | _                                      |           |          |         |          | an about    |        | •          | _      | _      | •          |      |
|                 | -                                                                                               |                           |           |           | _                                      | _         | -        |         | _        | e students  |        | elop softv | vare b | y ider | ıtifyir    | ıg   |
|                 |                                                                                                 |                           | of obje   | cts and   | their in                               | teractio  | ns to m  | eet the | desired  | objective   | es     |            |        |        |            |      |
| PRERI           |                                                                                                 |                           |           |           |                                        |           |          |         |          |             |        |            |        |        |            |      |
|                 |                                                                                                 | d Progra<br><b>JECTIV</b> |           |           |                                        |           |          |         |          |             |        |            |        |        |            |      |
| 1.              |                                                                                                 |                           |           | . 1 1     | 1                                      |           | C        |         | 41       | 4 41 4-     | - 14:  | 11 1       | 41 41  | 1. '   | 4          |      |
| 1.              | 1 1                                                                                             | •                         |           | •         | •                                      | _         |          | •       |          | nat the stu |        | ii unders  | tana u | ie obj | ect        |      |
| 2               |                                                                                                 |                           | •         |           |                                        |           |          |         |          | effective   | •      |            |        |        |            |      |
| 2.              |                                                                                                 |                           |           |           |                                        |           |          |         |          | nguage)c    |        |            |        |        |            |      |
| 3.              | To lay foundation for practical applications of object oriented concepts in programming aspects |                           |           |           |                                        |           |          |         |          |             |        |            |        |        |            |      |
|                 |                                                                                                 | TCOM                      |           |           |                                        |           |          |         |          |             |        |            |        |        |            |      |
| On the          | success                                                                                         | ful comp                  | oletion o | of the co | ourse, s                               | tudents   | will be  | able to |          |             |        |            |        |        |            |      |
| C <b>O1:</b> To | learn a                                                                                         | about va                  | rious Ul  | ML dias   | grams a                                | nd desi   | gn patte | erns    |          |             |        |            | Unde   | rstan  | d          |      |
| C <b>O2:</b> To |                                                                                                 |                           |           | `         |                                        | ·         |          |         | sion na  | tterns      |        |            | A      | pply   |            |      |
| C <b>O3:</b> To |                                                                                                 | •                         |           |           | •                                      | Sterris a | па аррі  | ying ac | 51511 pu | tterris     |        |            |        |        |            |      |
| CO3. 10         | Fraction                                                                                        | ce the 10                 | i ilie ba | sic cond  | epis                                   |           |          |         |          |             |        |            | A      | pply   |            |      |
| C <b>O4:</b> To | implei                                                                                          | ment the                  | design    | to code   | and pe                                 | rform te  | esting   |         |          |             |        |            | A      | pply   |            |      |
|                 | r                                                                                               |                           |           |           | ·· · · · · · · · · · · · · · · · · · · |           |          |         |          |             |        |            |        | rr J   |            |      |
| MAPP            | ING W                                                                                           | TTH PR                    | ROGRA     | MME       | OUTC                                   | OMES      | AND I    | PROGE   | RAMM     | E SPEC      | IFIC O | UTCOM      | ES     |        |            |      |
|                 |                                                                                                 |                           |           |           |                                        |           |          |         |          |             |        |            |        |        |            | PSO  |
| COS             | PO1                                                                                             | PO2                       | PO3       | PO4       | PO5                                    | PO6       | PO7      | PO8     | PO9      | PO10        | PO11   | PO12       | PSO    | 1 PS   | <b>SO2</b> | 3    |
|                 |                                                                                                 |                           |           |           |                                        |           |          |         |          |             |        |            |        |        |            | 3    |
| CO1             | S                                                                                               | M                         | M         | L         | M                                      | -         | -        | -       | -        | -           | -      | M          | S      |        | M          | -    |
| CO2             | S                                                                                               | M                         | M         | M         | M                                      | -         | -        | -       | M        | -           | -      | M          | S      |        | M          | M    |
| CO3             | S                                                                                               | M                         | S         | S         | M                                      | -         | -        | -       | -        | -           | -      | L          | S      |        | M          | M    |
| CO4             | S                                                                                               | M                         | M         | -         | M                                      | -         | -        | -       | L        | -           | M      | L          | S      |        | M          | M    |
| S- Strot        | ]<br>າσ· M-N                                                                                    | Лedium;                   | L-Low     |           |                                        |           |          |         |          |             |        |            |        |        |            |      |
| ~ 50101         | -5, 1,1                                                                                         |                           |           |           |                                        |           |          |         |          |             |        |            |        |        |            |      |

# INTRODUCTION TO OOAD

Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams – Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams.

# **DESIGN PATTERNS**

GRASP: Designing objects with responsibilities – Creator – Information expert – Low Coupling – High Cohesion – Controller – Design Patterns – creational – factory method – structural – Bridge – Adapter – behavioral – Strategy – observer

# **CASE STUDY**

Case study – the Next Gen POS system, Inception –Use case Modeling – Relating Use cases – include, extend and generalization – Elaboration – Domain Models – Finding conceptual classes and description classes – Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies – Aggregation and Composition

# APPLYING DESIGN PATTERNS

System sequence diagrams – Relationship between sequence diagrams and use cases Logical architecture and UML package diagram – Logical architecture refinement – UML class diagrams – UML interaction diagrams – Applying GoF design patterns

#### CODING AND TESTING

Mapping design to code – Testing: Issues in OO Testing – Class Testing – OO Integration Testing – GUI Testing – OO System Testing.

#### **TEXT BOOKS:**

- 1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, Third Edition, Pearson Education
- 2. Object Oriented Analysis And Design By Brahama Dathan & Sranath Ramnath.

#### **REFERENCES:**

- 1. Simon Bennett, Steve Mc Robb and Ray Farmer, —Object Oriented Systems Analysis and Design Using UMLI, Fourth Edition, Mc-Graw Hill Education
- 2. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, "Design patterns: Elements of Reusable Object-Oriented Software," Addison-Wesley
- 3. Martin Fowler, —UML Distilled: A Brief Guide to the Standard Object Modeling Languagell, Third edition, Addison Wesley

| S.No | Name of the Faculty | Designation         | Department   | Email Id              |
|------|---------------------|---------------------|--------------|-----------------------|
| 1.   | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in  |
| 2.   | Mrs.S. Leelavathy   | Assistant Professor | CSE / AVIT   | leelavathy@avit.ac.in |

|                         |                                          |                                     |           |          |          |        |         |        |         |          |          |         | <u> </u> |          |            |
|-------------------------|------------------------------------------|-------------------------------------|-----------|----------|----------|--------|---------|--------|---------|----------|----------|---------|----------|----------|------------|
| 17CSC                   | C27                                      |                                     |           | CA       | SE T     | OOLS   | S LAF   | 3      |         | C        | ategor   | y L     | T        | P        | Credit     |
|                         |                                          |                                     |           |          |          |        |         |        |         |          | CC       | 0       | 0        | 4        | 2          |
| PREAMBL<br>Scope of thi |                                          | s to un                             | derstand  | l the ap | plicati  | on of  | case to | ols, w | hich fo | ocuses ( | on the S | oftware | engine   | ering ac | ctivities. |
| PRERQUIS                | SITE :                                   | Object                              | t Oriente | ed Ana   | lysis a  | nd De  | sign    |        |         |          |          |         |          |          |            |
| COURSE (                | )BJE(                                    | CTIVE                               | ES        |          |          |        |         |        |         |          |          |         |          |          |            |
| 1.                      | Softw                                    | are rec                             | quireme   | nts ana  | lysis a  | nd spe | cificat | ion    |         |          |          |         |          |          |            |
| 2.                      | Softv                                    | Software design                     |           |          |          |        |         |        |         |          |          |         |          |          |            |
| 3.                      | Soft                                     | Software implementation             |           |          |          |        |         |        |         |          |          |         |          |          |            |
| 4.                      | Soft                                     | Software testing and maintenance    |           |          |          |        |         |        |         |          |          |         |          |          |            |
| 5.                      | Com                                      | Communication skills and teamwork.  |           |          |          |        |         |        |         |          |          |         |          |          |            |
| 6.                      | Mod                                      | Modelling techniques and CASE tools |           |          |          |        |         |        |         |          |          |         |          |          |            |
| 7.                      | Software project planning and management |                                     |           |          |          |        |         |        |         |          |          |         |          |          |            |
| COURSE C                | OUTC                                     | OMES                                | 8         |          |          |        |         |        |         |          |          |         |          |          |            |
| On the succe            | essful                                   | comple                              | etion of  | the cou  | ırse, st | udents | will b  | e able | to      |          |          |         |          |          |            |
| CO1. Desig              | n and                                    | implen                              | nent pro  | jects u  | sing O   | O con  | cepts   |        |         |          |          | Apply   |          |          |            |
| CO2. Use th             | ne UM                                    | L anal                              | ysis and  | design   | ı diagr  | ams    |         |        |         |          |          | Apply   |          |          |            |
| CO3. Apply              |                                          |                                     |           | oattern  | s.       |        |         |        |         |          |          | Apply   |          |          |            |
| CO4. Create             | e code                                   | from c                              | lesign.   |          |          |        |         |        |         |          |          | Apply   |          |          |            |
| CO5. Comp               | are an                                   | d conti                             | rast vari | ous tes  | ting te  | chniqu | ies     |        |         |          |          | Apply   |          |          |            |
| MAPPING                 | WITI                                     | H PRC                               | GRAM      | IME C    | OUTC     | OMES   | AND     | PRO    | GRAN    | AME S    | PECIF    | IC OU   | ГСОМ     | ES       |            |
| COS                     | PO1                                      |                                     | PO3       |          | PO5      |        |         | PO8    | PO9     | PO10     | PO11     |         |          |          |            |
| CO1                     | M                                        | М                                   | M         | M        | М        | -      | -       | -      | -       | -        | -        | -       | M        | M        | M          |
| CO2                     | M                                        | М                                   | М         | M        | М        | -      | -       | -      | -       | -        | -        | -       | M        | M        | M          |
| CO3                     | M                                        | M                                   | S         | M        | M        | -      | -       | -      | -       | -        | -        | -       | M        | M        | M          |
| CO4                     | S                                        | M                                   | M         | M        | S        | -      | -       | -      | -       | -        | -        | -       | M        | M        | S          |
| CO5                     | S                                        | M                                   | M         | M        | S        | ı      | -       | -      | -       | -        | -        | -       | M        | M        | S          |

S- Strong; M-Medium; L-Low

# **List of Experiment**

- 1. Prepare the following documents for two or three of the experiments listed below and develop the software engineering methodology.
- 2. Program Analysis and Project Planning. Thorough study of the problem Identify project scope, Objectives, Infrastructure.
- 3. Software requirement Analysis Describe the individual Phases / Modules of the project, Identify deliverables.
- 4. Data Modelling Use work products Data dictionary, Use diagrams and activity diagrams, build and test lass diagrams, Sequence diagrams and add interface to class diagrams.
- 5. Software Development and Debugging
- 6. Software Testing
- 7. Prepare test plan, perform validation testing, Coverage analysis, memory leaks, develop test case hierarchy, Site check and Site monitor.
- 8. Create an Application for any 2 of the following:
  - Quiz System
  - Student Marks Analyzing System
  - Online Ticket Reservation System
  - Payroll System
  - Course Registration System
  - Expert Systems
  - ATM Systems
  - Stock Maintenance
  - Real-Time Scheduler
  - Remote Procedure Call Implementation

# **Reference Books**

- 1. Ali Bahrami, "Object Oriented Systems Development", Tata McGraw-Hill, 1999
- 2. Martin Fowler, "UML Distilled", Second Edition, PHI/Pearson Education, 2002. (UNIT II).
- 3. Stephen R. Schach, "Introduction to Object Oriented Analysis and Design", Tata McGraw-Hill, 2003.
- 4. James Rumbaugh, Ivar Jacobson, Grady Booch "The Unified Modeling Language Reference Manual", Addison Wesley, 1999.
- 5. Hans-Erik Eriksson, Magnus Penker, Brain Lyons, David Fado, "UML Toolkit", OMG Press Wiley Publishing Inc., 2004.

# **Course Designers:**

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID               |
|-------|---------------------|---------------------|--------------|-----------------------|
| 1.    | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in  |
| 2.    | Mrs.S. Leelavathy   | Assistant Professor | CSE /AVIT    | leelavathy@avit.ac.in |

| 1             | 7CSCC1                                                   | 17            |                       | C        | YBER :    | SECUI      | RITY      |          |               |           | Category      | / L   | T          | P    | Credit |
|---------------|----------------------------------------------------------|---------------|-----------------------|----------|-----------|------------|-----------|----------|---------------|-----------|---------------|-------|------------|------|--------|
|               |                                                          |               |                       |          |           |            |           |          |               |           | $\mathbf{CC}$ | 3     | 0          | 0    | 3      |
| PREA          | MBLE                                                     | ,             |                       |          |           |            |           |          |               | •         |               | '     |            |      |        |
|               |                                                          |               |                       | ber Sec  | urity in  | real tir   | ne and    | to study | techni techni | ques inve | olved in i    | t.    |            |      |        |
|               | EQUIS                                                    |               |                       |          |           |            |           |          |               |           |               |       |            |      |        |
|               | SE OB                                                    |               |                       |          | 1 00      |            | • .       |          |               |           |               |       |            |      |        |
| 1.            | To unde                                                  |               |                       |          |           | •          | ecurity   |          |               |           |               |       |            |      |        |
|               | To stud                                                  | •             |                       | _        | _         | S          |           |          |               |           |               |       |            |      |        |
| 3.            | To appl                                                  | • •           |                       |          | •         |            |           |          |               |           |               |       |            |      |        |
| 4.            | To stud                                                  | -             |                       |          |           |            |           |          |               |           |               |       |            |      |        |
|               | Defend                                                   |               |                       | er attac | eks       |            |           |          |               |           |               |       |            |      |        |
|               | SE OU                                                    |               |                       |          |           |            |           |          |               |           |               |       |            |      |        |
| On the        | success                                                  | ful con       | pletion               | of the   | course,   | student    | ts will t | e able   | to            |           |               |       |            |      |        |
| <b>CO1:</b> A | Able to Understand basics in cyber security  Understand  |               |                       |          |           |            |           |          |               |           |               |       |            |      |        |
| CO2: A        | : Able to apply attackers techniques in real time  Apply |               |                       |          |           |            |           |          |               |           |               |       |            |      |        |
| CO3: A        | ble to a                                                 | pply ex       | ploitati              | on in w  | eb appl   | ications   | S         |          |               |           |               | Apply |            |      |        |
| CO4: A        | ble to u                                                 | ndersta       | nd and                | apply n  | naliciou  | s in net   | works.    |          |               |           |               | Apply |            |      |        |
| CO5: A        | ble to a                                                 | pply de       | fense a               | nd anal  | ysis tecl | hniques    | in real   | time     |               |           |               | Apply |            |      |        |
| MAPP          | ING W                                                    | TTH P         | ROGR                  | AMMI     | E OUT     | COME       | S AND     | PROC     | GRAMI         | ME SPE    | CIFIC O       | UTCON | <b>IES</b> |      |        |
| COs           | PO1                                                      | PO2           | PO3                   | PO4      | PO5       | <b>PO6</b> | PO7       | PO8      | PO9           | PO10      | PO11          | PO12  | PSO1       | PSO2 | PSO3   |
| CO1           | M                                                        | M             | M                     | M        | -         | -          | -         | -        | -             | -         | -             | -     | M          | M    | M      |
| CO2           | M                                                        | M             | M                     | M        | M         | -          | -         | -        | -             | -         | -             | -     | M          | M    | M      |
| CO3           | M                                                        | M             | S                     | M        | M         | -          | -         | -        | -             | -         | -             | -     | M          | M    | M      |
| CO4           | S                                                        | M             | M                     | M        |           | -          | -         | -        | -             | -         | -             | -     | M          | M    | S      |
| CO5           |                                                          |               |                       |          |           |            |           |          |               |           |               |       |            |      |        |
| S- Stro       | ng; M-N                                                  | <b>Mediun</b> | ı; <mark>L-L</mark> o | w        |           |            |           |          |               |           |               |       |            |      |        |

# INTRODUCTION

Network and security concepts – basic cryptography – Symmetric encryption – Public key Encryption – DNS – Firewalls – Virtualization – Radio Frequency Identification – Microsoft Windows security Principles

# ATTACKER TECHNIQUES

Antiforensics - Tunneling techniques - Fraud Techniques - Threat Infrastructure

# **EXPLOITATION**

Techniques to gain a foot hold – Misdirection, Reconnaissance, and disruption methods.

# MALICIOUS CODE

Self Replication Malicious code – Evading Detection and Elevating privileges – Stealing Information and Exploitation

# **DEFENSE AND ANALYSIS TECHNIQUES**

Memory Forensics – Honeypots – Malicious code naming – Automated malicious code analysis systems – Intrusion detection systems – Defense special file investigation tools

# **TEXT BOOKS**

- 1. James Graham, Richard Howard and Ryan Olson, "Cyber Security Essentials", CRC Press, Taylor & Francis Group, 2011.
- 2. Dan Shoemaker, Ph.D., William Arthur Conklin, Wm Arthur Conklin, "Cyber security: The Essential Body of Knowledge", Cengage Learning, 2012

#### REFERENCES

1. Ali Jahangiri, "Live Hacking: The Ultimate Guide to hacking Techniques & Counter measures for Ethical Hackers & IT Security Experts", 2009.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                     |
|--------|---------------------|---------------------|--------------|-----------------------------|
| 1.     | Dr.R.Jaichandran    | Asst professor G-II | CSE / AVIT   | rjaichandran@avit.ac.in     |
| 2.     | V.Amirthalingam     | Assistant Professor | CSE / VMKVEC | amirthalingam@vmkvec.edu.in |

| 17CSCC32 | DESIGN PATTERNS | Category | L | Т | P | Credit |
|----------|-----------------|----------|---|---|---|--------|
|          |                 | CC       | 3 | 0 | 0 | 3      |

# PREAMBLE:

This course is indented to cover various software design patterns. The course covers the rationale and benefits of object-oriented software design patterns. Numerous problems will be studied to investigate the implementation of good design patterns.

# PREREQUISITE: NIL

# **COURSE OBJECTIVES**

- 1. To understand the Design patterns that are common in software applications
- 2. To understand how these patterns are related to Object Oriented design.

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

| On the successful completion of the course, students will be able to                                                                                                                     |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO1.specific object oriented design problem the pattern solves.                                                                                                                          | Understand |
| CO2. Perform the analysis of the software-to-be-developed using an object oriented approach                                                                                              | Apply      |
| CO3 Prepare the refined list of entities, their attributes and relationships, design the object types and their interfaces, concrete classes and types for the software-to-be developed. | Apply      |
| CO4. Implement the pattern in Java to a real world problem.                                                                                                                              | Apply      |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|------|------|
| CO1 | M   | M   | M   | L   | -   | -   | -   | -   | -   | -    | -    | -    | M        | M    | М    |
| CO2 | M   | М   | M   | M   | -   | -   | 1   | -   | 1   | -    | 1    | 1    | M        | M    | M    |
| соз | M   | М   | S   | M   | -   | -   | -   | -   | -   | -    | -    | -    | M        | M    | М    |
| CO4 | S   | M   | M   | M   | -   | -   | -   | -   | -   | -    | -    | -    | M        | M    | S    |

S- Strong; M-Medium; L-Low

# **SYLLABUS**

# INTRODUCTION

Object and object orientation –Need for analysis and design – Difference and boundary between analysis and design- The Micro development process – The Macro Development process. Three models – Subject matter model – Object type model – Technical model.

### SUBJECT & OBJECT TYPE MODEL

Subject matter model – Modelling – Entities – Properties and connections - Objects – Type Design – CRC. Technical Model – Inheritance – Encapsulation - Relationships - Implementation inheritance and abstract class

#### **DESIGN PATTERNS: CREATIONAL PATTERNS**

Abstract Factory- Builder – Factory Method – Object Pool – Prototype – Singleton.

#### STRUCTURAL PATTERNS

Adapter- Bridge- Composite- Decorator – Facade – Flyweight – Private Class Data – Proxy.

#### **BEHAVIORAL PATTERNS**

Chain of responsibility – Command – Interpreter - Iterator – Mediator – Memento – Null Object – Observer - State – Strategy – Template Method – Visitor Design patterns in cloud, Business process management and Automation testing.

# **TEXT BOOKS:**

1. Eric Freeman & Elisabeth Robson: Head First Design Patterns, O"REILLY, 2014.

# **REFERENCES:**

- 1. Grady Booch, Robert A.Maksimchuk, Michael W.Engel, Bobbi J.Young, Jim Conallen, Kelli A. Houston, Object Oriented Analysis and Design with Applications, Third Edition, Addison-Wesley, 2011
- 2. John Deacon, Object Oriented Analysis and Design, First Edition, Addison Wesley, 2005.

| S. No | Name of the faculty  | Designation                    | Department   | Email Id                    |
|-------|----------------------|--------------------------------|--------------|-----------------------------|
| 1.    | Mr. R. Bharanidharan | Associate Professor            | CSE / VMKVEC | bharanidharan@vmkvec.edu.in |
| 2.    | Mr. S.Muthuselvan    | Assistant Professor (<br>G II) | CSE / AVIT   | muthuselvan@avit.ac.in      |

| 1                                                      | 7AICC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                     | DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A SCIE                                    |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MMINO                         | G                             | Category                                                        | L                               | Т                              | P                           | Credit                     |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------------------------|---------------------------------|--------------------------------|-----------------------------|----------------------------|
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | (The                       | ory + I                    | Practice                        | e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                               | CC                                                              | 3                               | 0                              | 2                           | 4                          |
| In this install language statistic debugge workin PRER | and coge concern comments of the comments of t | epts as puting d organ ple.  ITE  MANA | s software s | are nec<br>are impl<br>ncludes<br>and con | essary<br>emente<br>progra | for a<br>ed in a<br>amming | statistic<br>high-le<br>in R, 1 | cal progressed started to the contract of the | grammi<br>tistical<br>data in | ng env<br>languag<br>to R, ac | tive data<br>ironment,<br>ge. The c<br>ccessing F<br>a analysis | discuss<br>ourse cov<br>package | generio<br>ers pra<br>s, writi | e progr<br>ectical ing R fu | ramming ssues in inctions, |
|                                                        | COURSE OBJECTIVES  1. Understand the basics in R programming in terms of constructs, control statements, string functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |
|                                                        | Understand the use of R for Big Data analytics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |
| 3.                                                     | Learn to apply R programming for Text processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |
| 4.                                                     | Able to appreciate and apply the R programming from a statistical perspective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |
| COUR                                                   | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |
| On the                                                 | success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sful con                               | npletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of the                                    | course,                    | student                    | s will b                        | e able t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                             |                               |                                                                 | 1                               |                                |                             |                            |
| CO1: U                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | basics i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n R pro                                   | gramm                      | ing in to                  | erms of                         | constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | icts, cor                     | ntrol sta                     | tements,                                                        | Understa                        | and                            |                             |                            |
| CO2: U                                                 | Jndersta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the                                | use of F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R for Bi                                  | g Data                     | analytic                   | es                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 | Understa                        | and                            |                             |                            |
| CO3: L                                                 | earn to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | apply I                                | R progra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | amming                                    | for Te                     | xt proce                   | essing                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 | Understa                        | and                            |                             |                            |
| CO4: A                                                 | Apprecia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ate and                                | apply tł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne R pro                                  | gramm                      | ing fro                    | m a stat                        | istical <sub>I</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | perspect                      | tive                          |                                                                 | Apply                           |                                |                             |                            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               | ECIFIC (                                                        |                                 |                                | •                           |                            |
| Cos                                                    | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO2                                    | PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO4                                       | PO5                        | PO6                        | PO7                             | PO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO9                           | PO10                          | PO11                                                            | PO12                            | PSO1                           | PSO                         | PSO3                       |
| CO1                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                         | -                          | -                          | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                             | -                                                               | M                               | S                              | S                           | M                          |
| CO2                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                         | -                          | -                          | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                             | -                                                               | M                               | M                              | S                           | M                          |
| CO3                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                         | -                          | -                          | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | -                             | -                                                               | M                               | S                              | -                           | M                          |
| CO4                                                    | CO4         S         M         S         -         -         -         -         -         -         -         M         S         S         M           S- Strong; M-Medium; L-Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |
| S- Stro                                                | ng; M-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Medium                                 | ı; L-Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W                                         |                            |                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                                 |                                 |                                |                             |                            |

# R INSTALLATION, SETUP AND LINEAR REGRESSION

Download and install R – R IDE environments – Why R – Getting started with R – Vectors and Data Frames – Loading Data Frames – Data analysis with summary statistics and scatter plots – Summary tables - Working with Script Files, Linear Regression – Introduction – Regression model for one variable regression – Selecting best model – Error measures SSE, SST, RMSE, R2 – Interpreting R2 – Multiple linear regression – Lasso and ridge regression – Correlation – Recitation – Lab Program 1. Using with and without R objects on console Lab Program 2. Using mathematical functions on console Lab Program 3. Write an R script, to create R objects for calculator application and save in a specified location in disk

#### LOGISTIC REGRESSION

Logistic Regression – The Logit – Confusion matrix – sensitivity, specificity – ROC curve – Threshold selection with ROC curve – Making predictions – Area under the ROC curve (AUC) - Recitation – Lab Programs 4. Write an R script to find basic descriptive statistics using summary, str, quartile function on mtcars& cars datasets. Lab Programs 5. Write an R script to find subset of dataset by using subset (), aggregate () functions on iris dataset. Lab Programs 6. Reading different types of data sets (.txt, .csv) from web and disk and writing in file in specific disk location., Reading Excel data sheet in R, Reading XML dataset in R.

**DECISION TREES:** Approaches to missing data – Data imputation – Multiple imputation – Classification and Regression Tress (CART) – CART with Cross Validation – Predictions from CART – ROC curve for CART – Random Forests – Building many trees – Parameter selection – K-fold Cross Validation – Recitation – Lab Programs 7. Find the data distributions using box and scatter plot, Lab Programs 8. Find the outliers using plot, Plot the histogram, bar chart and pie chart on sample data. Lab Program 9. Find the correlation matrix, Plot the correlation plot on dataset and visualize giving an overview of relationships among data on iris data, analysis of covariance: variance (ANOVA), if data have categorical variables on iris data.

# **TEXT ANALYTICS USING NLP:**

Using text as data – Text analytics – Natural language processing – Bag of words – Stemming – word clouds – Recitation – Time series analysis – Clustering – k-mean clustering – Random forest with clustering – Understanding cluster patterns – Impact of clustering – Heatmaps – Recitation – Lab Programs 10. Apply multiple regressions, if data have a continuous independent variable. Lab Programs 11. Apply regression Model techniques to predict the data, Lab Programs 12. Apply NLP techniques to find the contents based on the positive or negative reviews for any dataset.

# **ENSEMBLE MODELLING:**

Support Vector Machines – Gradient Boosting – Naive Bayes - Bayesian GLM – GLMNET - Ensemble modeling – Experimenting with all of the above approaches with and without data imputation and assessing predictive accuracy – Recitation – Lab programs 13 Apply SVM techniques on any prediction problem, Lab Program 14. Naïve Bayes techniques on any prediction problem. Lab 15. Lab 9. Apply Clustering algorithms for unsupervised classification and plot the cluster data using R visualizations.

# **TEXT BOOKS**

- 1. Hands-on programming with R, Garrett Grolemund, O'Reilley, 1st Edition, 2014
- 2. R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-Wesley, 2014

#### REFERENCES

- 1. Beginning R The Statistical Programming Language, Mark Gardener, Wiley, 2015
- **2.** Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R, Robert Knell, Amazon Digital South Asia Services Inc, 2013.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|--------|---------------------|---------------------|--------------|-------------------------|
| 1.     | S. Muthuselvan      | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in  |
| 2.     | Dr. K. Sasikala     | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 17A                                     | JEC01                            |                                  |                 | NI                 | EURAL              | NETV                 | VORK      | S        |          |          | Category   | 7 L                    | T        | P        | redit |
|-----------------------------------------|----------------------------------|----------------------------------|-----------------|--------------------|--------------------|----------------------|-----------|----------|----------|----------|------------|------------------------|----------|----------|-------|
|                                         |                                  |                                  |                 |                    |                    |                      |           |          |          |          | EC(PS)     | 3                      | 0        | 0        | 3     |
| This sy<br>contain<br>represe<br>know a | ns intell<br>ent knov<br>about A | igent a<br>vledge a<br>I and its | gent, kand in r | Knowled<br>nachine | dge Rej<br>learnir | presenta<br>ng conta | ation a   | nd Mac   | chine le | arning,  | and app    | ificial Intellication. | This is  | useful t | o how |
| INTR                                    | EQUIS<br>ODUCT                   | TON T                            |                 | IFICIA             | L INTE             | ELLIGE               | ENCE      |          |          |          |            |                        |          |          |       |
| COUR                                    | RSE OB                           |                                  |                 | 1'                 | 41 C               | 1                    | . 1 C     |          | 1' 1     | . 1 1    | . •        | 1 1                    |          | 1 ' 1    | 1 1   |
| 1.                                      | world                            | proble                           | ms              |                    |                    |                      |           |          |          |          |            | l approach             |          |          |       |
| 2.                                      |                                  |                                  |                 | ficial nal-world   |                    |                      | , fuzzy   | sets and | d fuzzy  | logic ar | nd genetic | algorithn              | ns. Use  | of ANN,  | Fuzzy |
| 3.                                      | To gi                            | ve an ov                         | verview         | of Gen             | etic alg           | orithms              | s and m   | achine l | learning | g techni | ques to so | olving hard            | d real-w | orld pro | blems |
| 4.                                      |                                  | ıdy abo                          |                 | rithm              |                    |                      |           |          |          |          |            |                        |          |          |       |
| COUR                                    | RSE OU                           | TCOM                             | IES             |                    |                    |                      |           |          |          |          |            |                        |          |          |       |
| On the                                  | success                          | ful con                          | npletion        | of the             | course,            | student              | ts will b | e able t | 0        |          |            |                        |          |          |       |
| CO1: I                                  | dentify                          | the diff                         | erent ag        | gent and           | l its typ          | es to so             | lve the   | problen  | ns       |          |            | Understa               | and      |          |       |
| CO2: F                                  | Know at                          | out the                          | proble          | m solvi            | ng tech            | nique ir             | n Artific | ial Inte | lligence | 9        |            | Apply                  |          |          |       |
| CO3: 0                                  | Construc                         | et the no                        | ormal fo        | orm and            | represe            | ent the l            | knowle    | dge      |          |          |            | Apply                  |          |          |       |
| CO4: I environ                          | dentify<br>ment.                 | the exte                         | ension o        | of condi           | tion pro           | bability             | y and h   | ow to aj | pply in  | the real | time       | Analyze                |          |          |       |
| problen                                 |                                  |                                  |                 |                    |                    | •                    |           |          |          |          |            | Analyze                |          |          |       |
| MAPP                                    | ING W                            | ITH P                            | ROGR            | AMMI               | E OUT              | COME                 | S AND     | PROG     | GRAMI    | ME SPI   | ECIFIC (   | OUTCOM                 | IES      | ı        | T     |
| COs                                     | PO1                              | PO2                              | PO3             | PO4                | PO5                | PO6                  | PO7       | PO8      | PO9      | PO10     | PO11       | PO12                   | PSO1     | PSO2     | PSO3  |
| CO1                                     | S                                | M                                | L               | -                  | -                  | -                    | -         | -        | -        | -        | -          | L                      | S        | S        | M     |
| CO2                                     | S                                | M                                | L               | -                  | -                  | -                    | -         | -        | -        | -        | -          | L                      | M        | S        | M     |
| CO3                                     | S                                | M                                | S               | -                  | -                  | -                    | -         | -        | -        | -        | -          | -                      | S        | -        | M     |

M

M

M

S

M

M

CO4

CO5

M

S- Strong; M-Medium; L-Low

M

#### **FUZZY SET THEORY**

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

# **OPTIMIZATION**

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed earch Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

#### **NEURAL NETWORKS**

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

#### NEURO FUZZY MODELING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

# APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

#### **TEXT BOOKS**

1.J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2011

# REFERENCES

Fimothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

DavisE.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.

5. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.

R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston, 2005.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                     |
|--------|---------------------|---------------------|--------------|-----------------------------|
| 1.     | Dr.S.Rajaprakash    | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in      |
| 2.     | Dr.S.Senthil kumar  | Assistant Professor | CSE / VMKVEC | senthilkumars@vmkvec.edu.in |

| 17C            | SEC13                            |                     |          | HUMA     | AN CO    | MPUT      | ER IN     | ΓERAC    | CTION    |          | Category    | L      | T      | P      | Credit |
|----------------|----------------------------------|---------------------|----------|----------|----------|-----------|-----------|----------|----------|----------|-------------|--------|--------|--------|--------|
|                |                                  |                     |          |          |          |           |           |          |          |          | EC(PS)      | 3      | 0      | 0      | 3      |
|                | -Comp<br>cally, the<br>r all typ | e assoc<br>es of da | iation b | etween   | people   |           |           |          |          |          | rating on t |        |        |        |        |
| INTRO          | DUCT                             | ION TO              |          | FICIAI   | _ INTE   | LLIGE     | NCE       |          |          |          |             |        |        |        |        |
| COUR           |                                  |                     |          |          |          |           |           |          |          |          |             |        |        |        |        |
| 1.             | Learn                            | the fou             | ndatior  | s of Hu  | ıman C   | ompute    | r Intera  | ction    |          |          |             |        |        |        |        |
| 2.             | Be far                           | niliar w            | ith the  | design   | technol  | logies fo | or indiv  | iduals a | and pers | sons wit | h disabilit | ies    |        |        |        |
| 3.             | Be aw                            | are of 1            | nobile l | HCI      |          |           |           |          |          |          |             |        |        |        |        |
| 4.             | To lea                           | rn the n            | nobile h | uman c   | ompute   | r interac | tion      |          |          |          |             |        |        |        |        |
| 5.             | Learn                            | the gui             | delines  | for use  | r interf | ace       |           |          |          |          |             |        |        |        |        |
| COUR           | SE OU                            | TCOM                | ES       |          |          |           |           |          |          |          |             |        |        |        |        |
| On the         | success                          | ful com             | pletion  | of the   | course,  | studen    | ts will b | e able 1 | to       |          |             |        |        |        |        |
| <b>CO1</b> : U | Indersta                         | and the             | foundat  | ions of  | human    | compu     | ter inter | raction  |          |          |             |        | Unde   | rstand |        |
| CO2: U         |                                  |                     |          | ntal des | sign an  | ıd evalı  | ation I   | Method   | dologie  | s of hu  | man         |        | Ap     | ply    |        |
| CO3: U         | Indersta                         | and the             | models   | and the  | ories o  | f HCI     |           |          |          |          |             |        | Ap     | ply    |        |
| CO4: D         |                                  |                     |          | lge of l | numan    | compu     | iter inte | eractio  | n desig  | n conc   | epts and    |        | Ap     | ply    |        |
| CO5: A         |                                  |                     |          |          |          |           | ith effe  | ective v | work d   | esign to | real        |        | Ap     | ply    |        |
| COs            |                                  | PO2                 |          |          |          |           | PO7       | PO8      | PO9      | PO10     | PO11        | PO12   | PSO1   | PSO2   | PSO3   |
| CO1            | S                                | M                   | L        | -        | M        | M         | -         | M        | -        | -        | -           | M      | S      | S      | S      |
| CO2            | S                                | S                   | S        | -        | M        | L         | -         | L        | -        | -        | -           | M      | S      | S      | M      |
| CO3            | S                                | S<br>S              | S<br>S   | -        | M        | M<br>M    | -         | M        | -        | -        | -           | M      | S      | S      | S      |
| CO5            | S                                | M                   | M M      | -        | M<br>M   | M         | -         | M<br>M   | -        | -        | -           | M<br>M | M<br>M | -<br>M | M      |
| COS            |                                  |                     |          |          |          |           |           |          |          |          |             |        |        |        |        |

# FOUNDATIONS OF HCI

The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity-Paradigms.

# **DESIGN & SOFTWARE PROCESS**

Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

# MODELS AND THEORIES

Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.

#### **MOBILE HCI**

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.

# WEB INTERFACE DESIGN

Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.

#### **TEXT BOOKS**

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004 (UNIT I, II &III)
- 2. Brian Fling, "Mobile Design and Development", First Edition, O"Reilly Media Inc., 2009 (UNIT-IV)

#### **REFERENCES**

1. Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O"Reilly, 2009.(UNIT-V).

| S.<br>No. | Name of the Faculty | Designation         | Department   | Mail ID                |  |  |  |
|-----------|---------------------|---------------------|--------------|------------------------|--|--|--|
| 1.        | S. Muthuselvan      | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in |  |  |  |
| 2.        | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in   |  |  |  |

| 17A           | IEC02                                                                         |          | N        | ATUR      | AT T A !  | NCHA     | GE PR     | OCES     | SINC     |          | Category   | L        | T          | P C     | redit  |
|---------------|-------------------------------------------------------------------------------|----------|----------|-----------|-----------|----------|-----------|----------|----------|----------|------------|----------|------------|---------|--------|
| 1771          | ILC02                                                                         |          | 147      | AIUM      | IL LA     | IIII     | GL I K    | OCLOR    | )IIIG    |          | EC(PS)     | 3        | 0          | 0       | 3      |
| PREA          | MBLE                                                                          |          |          |           |           |          |           |          |          |          |            |          | <u> </u>   |         |        |
| This co       | ourse w                                                                       | ill cov  | er the   | techniq   | ues, mo   | odels, a | nd algo   | orithms  | that e   | nable c  | omputers   | to deal  | withthe    | ambigui | ty and |
|               |                                                                               |          |          |           |           |          |           |          |          |          | natural la |          |            |         |        |
|               | _                                                                             |          |          |           |           |          | text b    | y ident  | ifying   | referen  | ces to na  | med enti | ties as    | well as | stated |
| relation      |                                                                               |          | such er  | ntities,w | ill be ta | aught.   |           |          |          |          |            |          |            |         |        |
| PRERI         |                                                                               |          |          |           |           |          |           |          |          |          |            |          |            |         |        |
| INTRO         |                                                                               |          |          | FICIAI    | LINTE     | LLIGE    | NCE       |          |          |          |            |          |            |         |        |
| COUR          | SE OB                                                                         | JECTI    | VES      |           |           |          |           |          |          |          |            |          |            |         |        |
| 1.            | To intro                                                                      | oduce tl | ne funda | amental   | s of La   | nguage   | process   | sing fro | m the a  | lgorithr | nic viewp  | oint.    |            |         |        |
|               |                                                                               |          |          |           |           |          |           |          |          |          |            |          |            |         |        |
| 2.            | To discuss various issues those make natural language processing a hard task. |          |          |           |           |          |           |          |          |          |            |          |            |         |        |
| 3.            | To disc                                                                       | uss son  | ne appli | cations   | of Natu   | ıral Lar | nguage l  | Process  | ing (NI  | LP).     |            |          |            |         |        |
| COUR          | SE OU                                                                         | TCOM     | IES      |           |           |          |           |          |          |          |            |          |            |         |        |
| On the        | success                                                                       | ful con  | npletion | of the    | course,   | student  | ts will b | e able t | 0        |          |            |          |            |         |        |
| CO1: T        | 'o under                                                                      | rstand t | hefunda  | mental    | concep    | ts of N  | atural L  | anguag   | e        |          |            | Underst  | and        |         |        |
| Process       | ing.                                                                          |          |          |           |           |          |           |          |          |          |            |          |            |         |        |
| <b>CO2:</b> T | o under                                                                       | rstand t | he algoi | rithm de  | esign fo  | rNLP t   | asks      |          |          |          |            | Underst  | and        |         |        |
| CO3:To        |                                                                               | usefuls  | ystems   | for lang  | guage p   | rocessi  | ng and i  | relatedt | asks inv | volving  | text       | Apply    |            |         |        |
|               |                                                                               | TTH P    | ROGR     | AMMI      | E OUT     | COME     | S AND     | PROG     | GRAMI    | ME SPI   | ECIFIC (   | OUTCON   | <b>IES</b> |         |        |
| COs           | PO1                                                                           | PO2      | PO3      | PO4       | PO5       | PO6      | PO7       | PO8      | PO9      | PO10     | PO11       | PO12     | PSO1       | PSO2    | PSO3   |
| CO1           | S                                                                             | M        | L        | -         | -         | -        | -         | -        | -        | -        | -          | M        | S          | S       | M      |
| CO2           | S                                                                             | M        | L        | -         | -         | -        | -         | -        | -        | -        | -          | M        | M          | S       | M      |
| CO3           | S                                                                             | M        | S        | -         | -         | -        | -         | -        | -        | -        | -          | -        | S          | -       | M      |
| ~ ~           | 1/1                                                                           | / - 1'   | n; L-Lov |           |           |          |           |          |          | 1        | l          |          | 1          | 1       | 1      |

# INTRODUCTION

Introduction to Natural Language Understanding- Levels oflanguage analysis- Syntax, Semantics, ragmatics.Linguistic Background- An Outline of English Syntax

#### **LEXICONS**

Lexicons, POS Tagging, Word Senses. Grammars and Parsing-Features, Agreement and Augmented Grammars.

#### SEMANTICS AND LOGICAL FORM

Linking Syntax and SemanticsAmbiguity Resolution- other Strategies for SemanticInterpretation- Scoping and the Interpretation of NounPhrases.

#### KNOWLEDGE REASONING AND REPRESENTATION

Local DiscourseContext and Reference- Using World Knowledge- DiscourseStructure- Defining a Conversational Agent.

#### APPLICATIONS

Machine Translation, Information Retrievaland Extraction, Text Categorization and Summarization

#### **TEXT BOOKS**

- **1.** James Allen, Natural Language Understanding, The Benjamin/Cummings Publishing Company Inc., Redwood City, CA.
- 2. D. Jurafsky and J. H. Martin, Speech and Language Processing, Prentice Hall India.

#### REFERENCES

- 1. Charniak, Eugene, Introduction to Artificial intelligence, Addison-Wesley.
- 2. Ricardo Baeza-Yates and BerthierRibeiro-Neto, Modern Information Retrieval, AddisonWesley,1999.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|--------|------------------------|---------------------|--------------|-----------------------------|
| 1.     | Dr.S.Rajaprakash       | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in      |
| 2.     | V.Amirthalingam        | Assistant Professor | CSE / VMKVEC | amirthalingam@vmkvec.edu.in |

| 17AIEC03 | REINFORCEMENT LEARNING | Category | L | Т | P | Credit |
|----------|------------------------|----------|---|---|---|--------|
|          |                        | EC(PS)   | 3 | 0 | 0 | 3      |
|          |                        |          |   |   | L |        |

# **PREAMBLE**

Sequential decision-making is one of the major topics in machine learning. From experience, the task is to decide the sequence of actions to perform in an uncertain environment in order to achieve some goals that may not necessarily seem beneficial in near future but are optimal for getting better long term reward. Reinforcement learning (RL) is a paradigm that proposes a formal framework to this problem. The aim of the course will be to familiarize the students with the basic concepts as well as with the state-of-the-art research literature in deep reinforcement learning. After completion the students will be able to (a) structure a reinforcement learning problem, (b) understand and apply basic RL algorithms for simple sequential decision making problems in uncertain conditions. (c) evaluate the performance of the solution (d) interpret state-of-the-art RL research and communicate their results.

# **PREREQUISITE**

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

#### **COURSE OBJECTIVES**

- 1. To introduce the fundamentals of Reinforcement Learning system that knows how to make automated decisions
- 2. To understand how RL relates to and fits under the broader umbrella of machine learning, deep learning, supervised and unsupervised learning
- 3. To understand how to formalize your task as a RL problem, and how to begin implementing a solution.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| <b>CO1:</b> To introduce the fundamentals of Reinforcement Learning system that knows how to make automated decisions                                    | Understand |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>CO2:</b> To understand how RL relates to and fits under the broader umbrella of machine learning, deep learning, supervised and unsupervised learning | Understand |
| CO3: To understand how to formalize your task as a RL problem, and how to begin                                                                          | Understand |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | M   | -   | -   | -   | -   | -   | -   | -    | -    | M    | S    | S    | M    |
| CO2 | S   | M   | M   | -   | -   | -   | -   | -   | -   | -    | -    | M    | M    | S    | M    |
| CO3 | S   | M   | S   | -   | -   | -   | -   | -   | -   | -    | -    | M    | S    | -    | M    |

S- Strong; M-Medium; L-Low

#### INTRODUCTION

Course logistics and overview. Origin and history of Reinforcement Learning research. Its connections with other related fields and with different branches of machine learning. Probability Primer: Brush up of Probability concepts - Axioms of probability, concepts of random variables, PMF, PDFs, CDFs, Expectation. Concepts of joint and multiple random variables, joint, conditional and marginal distributions. Correlation and independence.

# MARKOV DECISION PROCESS

Introduction to RL terminology, Markov property, Markov chains, Markov reward process (MRP). Introduction to and proof of Bellman equations for MRPs along with proof of existence of solution to Bellman equations in MRP. Introduction to Markov decision process (MDP), state and action value functions, Bellman expectation equations, optimality of value functions and policies, Bellman optimality equations.

# PREDICTION AND CONTROL BY DYNAMIC PROGRAMMING

Overiew of dynamic programing for MDP, definition and formulation of planning in MDPs, principle of optimality, iterative policy evaluation, policy iteration, value iteration, Banach fixed point theorem, proof of contraction mapping property of Bellman expectation and optimality operators, proof of convergence of policy evaluation and value iteration algorithms, DP extensions.

#### MONTE CARLO METHODS FOR MODEL FREE PREDICTION AND CONTROL

Overiew of Monte Carlo methods for model free RL, First visit and every visit Monte Carlo, Monte Carlo control, On policy and off policy learning, Importance sampling. TD Methods: Incremental Monte Carlo Methods for Model Free Prediction, Overview TD(0), TD(1) and TD( $\lambda$ ), k-step estimators, unified view of DP, MC and TD evaluation methods, TD Control methods - SARSA, Q-Learning and their variants.

# FUNCTION APPROXIMATION METHODS

Getting started with the function approximation methods, Revisiting risk minimization, gradient descent from Machine Learning, Gradient MC and Semi-gradient TD(0) algorithms, Eligibility trace for function approximation, Afterstates, Control with function approximation, Least squares, Experience replay in deep Q-Networks. Policy Gradients: Getting started with policy gradient methods, Log-derivative trick, Naive REINFORCE algorithm, bias and variance in Reinforcement Learning, Reducing variance in policy gradient estimates, baselines, advantage function, actor-critic methods

# **TEXT BOOKS**

Reinforcement Learning: An Introduction", Richard S. Sutton and Andrew G. Barto, 2nd Edition Probability, Statistics, and Random Processes for Electrical Engineering", 3rd Edition, Alberto Leon-Garcia. Machine Learning: A Probabilistic Perspective", Kevin P. Murphy

#### REFERENCES

Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction, Second edition, MIT Press, 2018

| S. No. | Name of the<br>Faculty | Designation         | Department      | Mail ID                |
|--------|------------------------|---------------------|-----------------|------------------------|
| 1.     | Dr.S.Rajaprakash       | Associate Professor | CSE / AVIT      | rajaprakash@avit.ac.in |
| 2.     | Dr.M. Nithya           | Professor           | CSE /<br>VMKVEC | nithya@vmkv.edu.in     |

| 1                                                                     | 7AIEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04       |           | ]        | BIG DA    | ATA SI    | ECURI     | TY        |         |      | Category | y L      | Т    | P    | Credit |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|-----------|-----------|-----------|-----------|---------|------|----------|----------|------|------|--------|
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |          |           |           |           |           |         |      | EC(PS)   | 3        | 0    | 0    | 3      |
| install<br>languag<br>statistic<br>debugg<br>workin<br>PRER<br>BIG DA | In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment, discuss generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, and organizing and commenting R code. Topics in statistical data analysis and optimization will provide working example.  PREREQUISITE BIG DATA ANALYTICS  COURSE OBJECTIVES |          |           |          |           |           |           |           |         |      |          |          |      |      |        |
| 1.                                                                    | To understand the mathematical foundations of security principles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |          |           |           |           |           |         |      |          |          |      |      |        |
| 2.                                                                    | To app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reciate  | the diff  | erent as | spects o  | f encry   | ption te  | chnique   | es      |      |          |          |      |      |        |
| 3.                                                                    | To und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erstand  | the role  | played   | by aut    | hentica   | tion in s | security  | ,       |      |          |          |      |      |        |
| 4.                                                                    | To und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erstand  | the sec   | urity co | ncerns    | of big-c  | lata.     |           |         |      |          |          |      |      |        |
|                                                                       | success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |           | of the   | course,   | student   | s will b  | e able t  | to      |      |          |          |      |      |        |
| CO1: T                                                                | o under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stand t  | he math   | nematica | al found  | lations   | of secu   | rity prir | nciples |      |          | Understa | and  |      |        |
| CO2: T                                                                | o appre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ciate th | ne differ | ent asp  | ects of e | encrypt   | ion tech  | nniques   |         |      |          | Understa | and  |      |        |
| CO3:T                                                                 | o under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stand th | ne role p | olayed b | y authe   | enticatio | on in se  | curity    |         |      |          | Understa | and  |      |        |
| <b>CO4:</b> T                                                         | o under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stand t  | he secu   | rity con | cerns o   | f big-da  | ıta       |           |         |      |          | Understa | and  |      |        |
| MAPP                                                                  | ING W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |           |          |           |           |           |           |         |      |          | OUTCOM   |      |      |        |
| COs                                                                   | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PO2      | PO3       | PO4      | PO5       | PO6       | PO7       | PO8       | PO9     | PO10 | PO11     | PO12     | PSO1 | PSO2 | PSO3   |
| CO1                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M        | L         | -        | M         | -         | -         | -         | -       | -    | -        | M        | S    | M    | M      |
| CO2                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M        | L         | -        | M         | -         | -         | -         | -       | -    | -        | M        | S    | M    | M      |
| CO3                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M        | L         | -        | M         | -         | -         | -         | -       | -    | -        | M        | S    | M    | M      |
| CO4                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |          |           |           |           |           |         |      |          | M        | S    | M    | M      |

S- Strong; M-Medium; L-Low

#### SYMMETRIC TECHNIQUES

Probability and Information Theory - Algebraic foundations - Number theory - Substitution Ciphers Transposition Ciphers - Classical Ciphers - DES - AES - Confidentiality Modes of Operation

# **ASYMMETRIC TECHNIQUES**

Diffie-Hellman Key Exchange protocol – Discrete logarithm problem – RSA cryptosystems & cryptanalysis – ElGamal cryptosystem – Elliptic curve architecture and cryptography – Data Integrity techniques.

# **AUTHENTICATION**

Authentication requirements – Authentication functions – Message authentication codes – Hash functions – Security of hash functions and MACS – MD5 Message Digest algorithm – Secure hash algorithm.

# SECURITY ANALYTICS I

Introduction to Security Analytics – Techniques in Analytics – Analysis in everyday life – Challenges in Intrusion and Incident Identification – Analysis of Log file – Simulation and Security Process.

#### **SECURITY ANALYTICS II**

Access Analytics – Security Analysis with Text Mining – Security Intelligence – Security Breaches

# REFERENCESBOOKS:

William Stallings, "Crpyptography and Network security: Principles and Practices", Pearson/PHI, 5th Edition,

- 2. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw Hill Education, 2nd Edition, 2010.
- 3. Douglas R. Stinson, "Cryptography Theory and Practice", Chapman & Hall/CRC, 3rd Edition, 2006.
- 4. Mark Talabis, Robert McPherson, I Miyamoto and Jason Martin, "Information Security Analytics: Finding Security Insights, Patterns, and Anomalies in Big Data", Syngress Media, U.S., 2014.

| S.<br>No. | Name of the Faculty | Designation         | Department   | Mail ID              |  |
|-----------|---------------------|---------------------|--------------|----------------------|--|
| 1.        | Mrs. R. Latha       | Assistant Professor | CSE / AVIT   | rlatha@avit.ac.in    |  |
| 2.        | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in |  |

| 1               | 17AIEC    | 05       | DA'      | ΓΑ VIS     | SUALIZ   | ZATIO     | N TEC        | HNIQ     | UES      | C           | ategory    | L        | T          | P        | Credit      |
|-----------------|-----------|----------|----------|------------|----------|-----------|--------------|----------|----------|-------------|------------|----------|------------|----------|-------------|
|                 |           |          |          |            |          |           |              |          |          | E           | C(PS)      | 3        | 0          | 0        | 3           |
| PREA            | AMBLI     | <u> </u> |          |            |          |           |              |          |          | <u> </u>    |            | 1        | l I        |          |             |
|                 |           |          |          |            |          |           |              |          |          |             |            |          |            |          | elds. Data  |
|                 |           |          |          |            |          |           |              |          |          |             |            |          |            |          | ourse is to |
|                 |           |          |          |            |          |           |              |          |          |             |            |          |            |          | e value of  |
|                 |           |          |          |            |          | mation    | visuali      | zation a | and scie | entific vi  | isualizati | ion, and | how ur     | ndersta  | nd how to   |
|                 | everage   |          | zation n | nethods    |          |           |              |          |          |             |            |          |            |          |             |
|                 | REQUI     |          |          |            |          |           |              |          |          |             |            |          |            |          |             |
|                 | A WAR     |          |          | AND D      | ATA M    | IINING    | <del>}</del> |          |          |             |            |          |            |          |             |
| COU             | RSE O     | BJECT    | IVES     |            |          |           |              |          |          |             |            |          |            |          |             |
| 1.              | To un     | derstan  | d how a  | occurate   | ly repre | esent vo  | olumino      | ous com  | plex da  | ta set in   | web and    | fromoth  | er data    | source   | s           |
| 2.              | To un     | derstan  | d the m  | ethodol    | ogies u  | sed to    | visualiz     | e large  | data set | S           |            |          |            |          |             |
| 3.              |           |          |          | ocess in   | nvolved  | l in data | a visual     | ization  | and sec  | urity asp   | ects invo  | olved in |            |          |             |
|                 |           | isualiza |          |            |          |           |              |          |          |             |            |          |            |          |             |
| COU             | RSE O     | UTCO     | MES      |            |          |           |              |          |          |             |            |          |            |          |             |
| On the          | e succes  | esful co | mpletio  | n of the   | COurse   | stude     | nts will     | he ahle  | to       |             |            |          |            |          |             |
| On the          | - Succes  | 55141 00 | тртено   | ii oi tiic | Course   | , stade   | iits wiii    | 00 0010  |          |             |            | T        |            |          |             |
| CO1:            | Unders    | stand ho | w accii  | rately r   | enresen  | t volun   | ninous (     | complex  | data s   | et in web   | and        |          | Unde       | erstand  |             |
|                 | ther data |          |          | racery r   | срговол  | it voidii | innous (     | ompre.   | i data s | 00 111 1100 | una        |          | Ona        | DISCUITO |             |
|                 | Unders    |          |          | ndologie   | es used  | to visu:  | alize laı    | ge data  | sets     |             |            |          | Unde       | rstand   |             |
|                 |           |          |          |            |          |           |              |          |          |             |            |          | Undo       | rstand   |             |
|                 |           |          |          |            | olved in | data vi   | isualiza     | tion and | l securi | ty aspect   | ts         |          | Onde       | istanu   |             |
|                 | ed in da  |          |          |            |          |           |              |          | ~= . = . |             |            |          |            |          |             |
| MAP             | PING V    | VITH     | PROGI    | RAMM       | E OUT    | ICOM.     | ES AN        | D PRO    | GRAM     | IME SP.     | ECIFIC     | OUTCO    | <b>MES</b> |          |             |
| COs             | PO1       | PO2      | PO3      | PO4        | PO5      | PO6       | PO7          | PO8      | PO9      | PO10        | PO11       | PO12     | PSO        | PSO      | PSO3        |
| ~~1             | ~         |          |          |            | 3.5      |           |              |          |          |             |            |          |            |          |             |
| CO1             | S         | M        | L        | -          | M        | -         | -            | M        | -        | -           | -          | M        | S          | M        |             |
| CO2             | S         | M        | L        | -          | M        | -         | -            | M        | -        | -           | -          | M        | S          | M        |             |
| CO <sub>3</sub> | S         | M        | L        | -          | M        | -         | -            | M        | -        | -           | -          | M        | S          | M        | M           |
|                 | ong; M-   |          |          |            |          |           |              |          |          |             |            |          |            |          |             |

# INTRODUCTION

Context of data visualization – Definition, Methodology, Visualization design objectives. KeyFactors – Purpose, visualization function and tone, visualization design options – Datarepresentation, Data Presentation, Seven stages of data visualization, widgets, data visualizationtools.

#### VISUALIZING DATA METHODS

Mapping - Time series - Connections and correlations - Scatterplot maps - Trees, Hierarchies and Recursion - Networks and Graphs, Info graphics

# VISUALIZING DATA PROCESS

Acquiring data, - Where to Find Data, Tools for Acquiring Data from the Internet, Locating Files for Use with Processing, Loading Text Data, Dealing with Files and Folders, Listing Files in a Folder, Asynchronous Image Downloads, Advanced Web Techniques, Using a Database, Dealing with a Large Number of Files. Parsing data - Levels of Effort, Tools for Gathering Clues, Text Is Best, Text Markup Languages, Regular Expressions (regexps), Grammars and BNF Notation, Compressed Data, Vectors and Geometry, Binary Data Formats, Advanced Detective Work.

#### INTERACTIVE DATA VISUALIZATION

Drawing with data – Scales – Axes – Updates, Transition and Motion – Interactivity - Layouts –Geomapping – Exporting, Framework – T3, .js, tablo.

# SECURITY DATA VISUALIZATION

Port scan visualization - Vulnerability assessment and exploitation - Firewall log visualization -Intrusion detection log visualization -Attacking and defending visualization systems - Creatingsecurity visualization system.

#### **REFERENCES**

- 1. Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2013.
- 2. Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.
- 3. Greg Conti, "Security Data Visualization: Graphical Techniques for Network Analysis", No Starch Press Inc, 2007

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail<br>ID              |
|--------|------------------------|---------------------|--------------|-------------------------|
| 1.     | Dr. R. Jaichandran     | Associate Professor | CSE / AVIT   | rjaichandran@avit.ac.in |
| 2.     | Dr. K. Sasikala        | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 1                                             | 7CSEC                                                       | n5                               | CI       |                     | OMDI                        | TING      | CECI II                               | DITY     |        | Ca                | ategory  | L                                   | Т      | P (      | Credit |
|-----------------------------------------------|-------------------------------------------------------------|----------------------------------|----------|---------------------|-----------------------------|-----------|---------------------------------------|----------|--------|-------------------|----------|-------------------------------------|--------|----------|--------|
| 1                                             | CSEC                                                        |                                  | CL       | оорс                | OMPC                        | IING      | SECUI                                 | XII I    |        |                   | C(PS)    | 3                                   | 0      | 0        | 3      |
| This co-<br>cloud s<br>system<br>PRER<br>CLOU | services a, virtual EQUIS JD CON RSE OB                     | , which ization ITE MPUTIN JECTI | NG, CY   | idely u<br>logy, vi | sed in<br>rtualiza<br>ECURI | the desi  | ign of a                              | cloud c  | omputi | security ng secur | in cloud | d services<br>security<br>d with in | issues | in virtu |        |
| 2.                                            |                                                             |                                  |          | ud serv             |                             |           | , , , , , , , , , , , , , , , , , , , |          |        |                   |          |                                     |        |          |        |
| 3.                                            | То ар                                                       | ply clou                         | ıd com   | puting i            | n collat                    | oration   | with o                                | ther ser | vices  |                   |          |                                     |        |          |        |
| 4.                                            | To un                                                       | derstan                          | d the cl | oud cor             | nputing                     | g service | es                                    |          |        |                   |          |                                     |        |          |        |
| 5.                                            | To ap                                                       | ply clou                         | ıd com   | puting o            | nline                       |           |                                       |          |        |                   |          |                                     |        |          |        |
| COUR                                          | RSE OU                                                      | TCOM                             | IES      |                     |                             |           |                                       |          |        |                   |          |                                     |        |          |        |
| On the                                        | success                                                     | ful con                          | npletion | of the              | course,                     | student   | s will b                              | e able 1 | :0     |                   |          |                                     |        |          |        |
| CO1: U                                        | Jndersta                                                    | ınd basi                         | ic servi | ce conce            | epts of                     | cloud co  | omputir                               | ng       |        |                   |          | Understa                            | and    |          |        |
| CO2: U                                        | Jndersta                                                    | and and                          | apply s  | security            | issues                      | in cloud  | compu                                 | ıting    |        |                   |          | Analyze                             |        |          |        |
| CO3: A                                        | Apply vi                                                    | rtualiza                         | tion tec | chnique             | s                           |           |                                       |          |        |                   |          | Apply                               |        |          |        |
| CO4: U                                        | Jndersta                                                    | and and                          | apply t  | he attac            | ks cond                     | cepts in  | virtuali                              | zation   |        |                   |          | Apply                               |        |          |        |
| CO5: U                                        | Jndersta                                                    | and and                          | apply l  | egal iss            | ues in c                    | cloud se  | rvices                                |          |        |                   |          | Apply                               |        |          |        |
| MAPP                                          | PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOM |                                  |          |                     |                             |           |                                       |          |        |                   |          |                                     | MES    |          |        |
| COs                                           | PO1                                                         | PO2                              | PO3      | PO4                 | PO5                         | PO6       | PO7                                   | PO8      | PO9    | PO10              | PO11     | PO12                                | PSO1   | PSO2     | PSO3   |
| CO1                                           | S                                                           | M                                | L        | -                   | M                           | -         | -                                     | M        | -      | -                 | -        | M                                   | S      | M        | M      |
| CO2                                           | S                                                           | M                                | L        | -                   | M                           | -         | -                                     | M        | -      | -                 | -        | M                                   | S      | M        | M      |
| CO3                                           | S                                                           | M                                | L        | -                   | M                           | -         | -                                     | M        | -      | -                 | -        | M                                   | S      | M        | M      |
| CO4                                           | S                                                           | M                                | L        | -                   | M                           | -         | -                                     | M        | -      | -                 | -        | M                                   | S      | M        | M      |

M

M

M

CO5

S

M

S- Strong; M-Medium; L-Low

M

# INTRODUCTION

Security in Cloud Services (PaaS, IaaS and SaaS). Authentication in cloud services, open SSL, key management and crypto systems in cloud services: stream ciphers, block ciphers, modes of operation, hashing, digital signatures.

#### **SECURITY ISSSUES**

Security Issues in Virtualization System: ESX and ESXi Security, ESX file system security, storage considerations, backup and recovery. Vulnerabilities in virtual machine, hypervisor vulnerabilities, hypervisor escape vulnerabilities, configuration issues, malware (botnets etc).

#### VIRTUALIZATION TECHNOLOGY

IBM security virtual server protection, virtualization-based sandboxing; Storage Security- HIDPS, log management, Data Loss Prevention. Location of the Perimeter.

#### VIRTUALIZATION ATTACKS

Guest hopping, attacks on VM (attack on control of VM, code injection into virtualized file structure), VM migration attack, hyperjacking.

#### LEGAL ISSUES

Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern Security Standards (eg PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloud provider vs. compliance for the customer

#### **TEXT BOOKS**

- 1. TimMather, Subra Kumaraswamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765], 2009.
- 2. Ronald L. Krutz, Russell Dean Vines, "Cloud Security" [ISBN: 0470589876], 2010.

# **REFERENCES**

1. John Rittinghouse, James Ransome, "Cloud Computing" CRC Press; 1 edition [ISBN: 1439806802], 2009.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|--------|------------------------|---------------------|--------------|-----------------------------|
| 1.     | Dr. R. Jaichandran     | Associate Professor | CSE / AVIT   | rjaichandran@avit.ac.in     |
| 2.     | Dr. S. Senthilkumar    | Assistant Professor | CSE / VMKVEC | senthilkumars@vmkvec.edu.in |

|            |                                                                                                                                                 |          |           |          |          |          |           |           |           |              | G 4       |           |          |         | G 114    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|----------|----------|-----------|-----------|-----------|--------------|-----------|-----------|----------|---------|----------|
| 1          | 7CSEC                                                                                                                                           | 07       | DAT       | TA CE    | NTRE '   | VIRTU    | JALIZA    | ATION     |           |              | Category  | y L       | T        | P       | Credit   |
|            |                                                                                                                                                 |          |           |          |          |          |           |           |           |              | EC        | 3         | 0        | 0       | 3        |
| PREA       | MBLE                                                                                                                                            | •        |           |          |          |          |           |           |           |              |           |           |          |         |          |
|            |                                                                                                                                                 |          |           | _        |          |          |           |           |           |              | ring usir |           |          |         |          |
|            |                                                                                                                                                 |          |           |          | •        |          | course.   | Setting   | g up of a | a virtual    | data cent | ter and h | ow to m  | anage t | hem with |
| softwar    | re inter                                                                                                                                        | faces wi | ill be di | scussed  | in deta  | il       |           |           |           |              |           |           |          |         |          |
| PRER       |                                                                                                                                                 |          |           |          |          |          |           |           |           |              |           |           |          |         |          |
|            |                                                                                                                                                 | MANA     |           | NT SYS   | STEM     |          |           |           |           |              |           |           |          |         |          |
| COUR       | SE OF                                                                                                                                           | BJECTI   | IVES      |          |          |          |           |           |           |              |           |           |          |         |          |
| 1.         | To le                                                                                                                                           | arn the  | concept   | s of We  | b desig  | n patte  | rns and   | page de   | esign     |              |           |           |          |         |          |
| 2.         | To ur                                                                                                                                           | nderstan | d and le  | earn the | scripti  | ng lang  | uages v   | vith des  | ign of v  | veb appl     | ications  |           |          |         |          |
| 3.         | To le                                                                                                                                           | arn the  | mainten   | ance ar  | nd evalu | ation o  | of web d  | lesign    |           |              |           |           |          |         |          |
| 4.         | To le                                                                                                                                           | arn aboı | ut Reso   | urce mo  | nitorin  | g and v  | irtual n  | nachine   | data Pr   | otection     |           |           |          |         |          |
| COUR       | SE OU                                                                                                                                           | JTCON    | 1ES       |          |          |          |           |           |           |              |           |           |          |         |          |
| On the     | succes                                                                                                                                          | sful con | npletion  | of the   | course.  | studen   | ts will b | oe able 1 | to        |              |           |           |          |         |          |
|            |                                                                                                                                                 |          |           |          |          |          |           |           |           |              |           |           |          |         |          |
| CO1: E     | Explain                                                                                                                                         | the con  | cept of   | data cei | nter and | l Evolu  | tion of l | Data Ce   | entre     |              |           | Underst   | and      |         |          |
|            |                                                                                                                                                 |          |           |          |          | nachine  | es throu  | gh softv  | ware ma   | anageme      | nt        | Apply     |          |         |          |
| interfac   |                                                                                                                                                 |          |           |          | ,        | . 1      | C'        |           |           | •.           |           |           |          |         |          |
| and mig    |                                                                                                                                                 |          |           | ion dep  | loymen   | it, modi | fication  | ı, mana   | gement    | ; monito     | rıng      | Apply     |          |         |          |
|            | analyze                                                                                                                                         | the util | ity in V  |          |          |          | er, displ | ays info  | ormatio   | n about      | the use   | Analyze   | <b>;</b> |         |          |
|            |                                                                                                                                                 |          |           |          |          |          |           | - do4o T  | )         | a.m. alv:11a |           | A a 1     |          |         |          |
|            | D5: Develop the resource monitoring and virtual machine data Protection skills.  APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES |          |           |          |          |          |           |           |           |              |           |           |          |         |          |
|            |                                                                                                                                                 |          |           |          |          |          |           |           |           |              |           |           |          |         |          |
| COs<br>CO1 | PO1<br>S                                                                                                                                        | PO2<br>M | PO3       | PO4      | PO5<br>M | PO6      | PO7       | PO8       | PO9       | PO10         | PO11      | PO12      | PSO1     |         | 2 PSU3   |
|            | S                                                                                                                                               |          |           | -        | M        | -        | -         | -         | -         | -            | -         | M<br>M    |          | M       | -<br>M   |
| CO2        | S                                                                                                                                               | L<br>M   | L<br>L    | -        |          | -        | -         | -         | -         | -            | -         | M         | S        |         | M        |
| CO3        | S                                                                                                                                               | M        | L         | -        | M<br>L   | -        | -         | -         | -         | -            | -         | M         | S        | -<br>M  | M        |
| CO5        | S                                                                                                                                               | L        | L         | -        | M        | -        | -         | -         | -         | _            | _         | M         | S        | M       | IVI      |
| CO3        | b                                                                                                                                               | L        | L         | -        | IVI      | -        | -         | -         | -         | _            | _         | 171       | S .      | 171     | _        |

# **DATA CENTER CHALLENGES**

How server, desktop, network Virtualization and cloud computing reduce data centre footprint, environmental impact and power requirements by driving server consolidation; Evolution of Data Centres: The evolution of computing infrastructures and architectures from standalone servers to rack optimized blade servers and unified computing systems (UCS).

#### ENTERPRISE-LEVEL VIRTUALIZATION

Provision, monitoring and management of a virtual datacenter and multiple enterprise-level virtual servers and virtual machines through software management interfaces; Networking and Storage in Enterprise Virtualized Environments - Connectivity to storage area and IP networks from within virtualized environments using industry standard protocols

#### VIRTUAL MACHINES & ACCESS CONTROL

Virtual machine deployment, modification, management; monitoring and migration methodologies.

#### RESOURCE MONITORING

Physical and virtual machine memory, CPU management and abstraction techniques using a hypervisor

# VIRTUAL MACHINE DATA PROTECTION

Backup and recovery of virtual machines using data recovery techniques; Scalability - Scalability features within Enterprise virtualized environments using advanced management applications that enable clustering, distributed network switches for clustering, network and storage expansion; High Availability: Virtualization high availability and redundancy techniques.

#### **TEXT BOOKS**

- **1.** Mickey Iqbal, "IT Virtualization Best Practices: A Lean, Green Virtualized Data Center Approach", MC Press [ISBN: 978-1583473542]2012.
- **2.** Mike Laverick, "VMware vSphere 4 Implementation" Tata McGraw-Hill Osborne Media; 1 edition [ISBN: 978-0071664523].2012.
- 3. Jason W. McCarty, Scott Lowe, Matthew K. Johnson, "VMware vSphere 4 AdministrationInstant

#### **REFERENCES**

- **1.** BrianPerry, ChrisHuss, Jeantet Fields, "VCPVMwareCertifiedProfessionalonvSphere4 StudyGuide" Sybex; edition [ISBN: 978-0470569610], 2013.
- **2.** Jason Kappel, Anthony Velte, Toby Velte, "Microsoft Virtualization with Hyper-V: Manage Your Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application Virtualization" McGraw-Hill Osborne [ISBN: 978-007161

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                |
|--------|------------------------|---------------------|--------------|------------------------|
| 1.     | K.Karthik              | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in     |
| 2.     | T.Narmadha             | Assistant Professor | CSE / VMKVEC | narmadha@vmkvec.edu.in |

| 17                       | CSEC02                                                                                                                                                                                                                                                                                                                                                       |           |           | AGILI     | Е МЕТ     | HODO     | LOGI      | ES       |           | Ca        | ategory    | L          | Т       | P        | Credit |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|----------|-----------|----------|-----------|-----------|------------|------------|---------|----------|--------|
|                          |                                                                                                                                                                                                                                                                                                                                                              |           |           |           |           |          |           |          |           | E         | C(PS)      | 3          | 0       | 0        | 3      |
| Softw<br>stand<br>out, c | PREAMBLE Software Development is an umbrella term for an arrangement of strategies and practices in light of the qualities and standards communicated in the Agile Manifesto. Arrangements advance through coordinated effort between self-sorting out, cross-utilitarian groups using the suitable practices for their specific circumstance.  PREREQUISITE |           |           |           |           |          |           |          |           |           |            |            |         |          |        |
|                          | REQUIS<br>TWARE                                                                                                                                                                                                                                                                                                                                              |           | NEERIN    | 1G        |           |          |           |          |           |           |            |            |         |          |        |
|                          | RSE OB                                                                                                                                                                                                                                                                                                                                                       |           |           |           |           |          |           |          |           |           |            |            |         |          |        |
| 1.                       | To unde                                                                                                                                                                                                                                                                                                                                                      | rstand    | the back  | ground    | l and dr  | iving fo | orces fo  | r taking | an Ag     | ile appr  | oach to s  | oftware d  | evelopn | nent     |        |
| 2.                       | To obtain tradition                                                                                                                                                                                                                                                                                                                                          |           |           |           |           |          |           | framev   | works a   | nd be al  | ble to dis | tinguish b | etween  | agile ar | nd     |
| 3.                       | To Exar                                                                                                                                                                                                                                                                                                                                                      | nine va   | rious m   | etrics f  | or adop   | ting agi | le softv  | vare en  | gineerir  | ng        |            |            |         |          |        |
| 4.                       | Describ                                                                                                                                                                                                                                                                                                                                                      | e how a   | ın unit t | ests is e | execute   | d from l | oeginni   | ng to er | ıd.       |           |            |            |         |          |        |
| 5.                       | Identify                                                                                                                                                                                                                                                                                                                                                     | the app   | oroache   | s, tools  | and sce   | narios 1 | to intro  | duce A   | gile to y | our org   | anization  | effective  | ely     |          |        |
| 6.                       | To desig                                                                                                                                                                                                                                                                                                                                                     | gn auto   | mated b   | uild too  | ols, vers | sion cor | itrol and | d contir | uous ir   | ntegratio | on         |            |         |          |        |
| COU                      | RSE OU                                                                                                                                                                                                                                                                                                                                                       | TCOM      | 1ES       |           |           |          |           |          |           |           |            |            |         |          |        |
| On th                    | e success                                                                                                                                                                                                                                                                                                                                                    | sful con  | npletion  | of the    | course,   | student  | ts will t | e able   | to        |           |            |            |         |          |        |
| CO1:                     | Identify                                                                                                                                                                                                                                                                                                                                                     | the fun   | dament    | als of a  | gile and  | scrum    | framew    | ork      |           |           |            | Understa   | and     |          |        |
| CO2:                     | Apply do                                                                                                                                                                                                                                                                                                                                                     | esign pı  | rinciple  | s and re  | factorin  | ng to ac | hieve A   | gility.  |           |           |            | Apply      |         |          |        |
| CO3:                     | Reduce                                                                                                                                                                                                                                                                                                                                                       | he risk   | s in Tes  | t driver  | approa    | ach in a | gile pro  | jects    |           |           |            | Analyze    |         |          |        |
| CO4:                     | Impleme                                                                                                                                                                                                                                                                                                                                                      | ent a rea | al softw  | are proj  | ect that  | impler   | nents ag  | gile exe | cution    | techniqu  | ies        | Apply      |         |          |        |
|                          | <b>D5:</b> Deploy a firm basis for adopting agile methodology, regardless of the ustry/professional sector.  Analyze                                                                                                                                                                                                                                         |           |           |           |           |          |           |          |           |           |            |            |         |          |        |
| MAF                      | PING W                                                                                                                                                                                                                                                                                                                                                       | /ITH P    | ROGR      | AMMI      | E OUT     | COME     | S AND     | PROC     | GRAM      | ME SP     | ECIFIC     | OUTCO      | MES     |          |        |
| COs                      |                                                                                                                                                                                                                                                                                                                                                              | PO2       | PO3       | PO4       |           | PO6      | PO7       | PO8      | PO9       | PO10      | PO11       | PO12       | PSO1    | PSO2     | PSO3   |
| CO                       | _                                                                                                                                                                                                                                                                                                                                                            | M         | L         | -         | M         | -        | -         | -        | -         | -         | -          | M          | S       | M        | M      |
| CO                       |                                                                                                                                                                                                                                                                                                                                                              | M         | L         | -         | M         | -        | -         | -        | -         | -         | -          | M          | S       | M        | M      |
| CO                       |                                                                                                                                                                                                                                                                                                                                                              | M<br>M    | L<br>L    | -         | M<br>M    | -        | -         | -        | -         | -         | -          | M<br>M     | S<br>S  | M<br>M   | M<br>M |

M

M

CO5 S M L S- Strong; M-Medium; L-Low

M

#### **FUNDAMENTALS OF AGILE**

The Genesis of Agile- Introduction and background- Agile Manifesto and Principles- Overview of Scrum- Extreme Programming- Feature Driven development- Lean Software Development- Agile project management- Design and development practices in Agile projects- Test Driven Development- Continuous Integration- Refactoring- Pair Programming- Simple Design- User Stories- Agile Testing- Agile Tools.

# AGILE SCRUM FRAMEWORK

Introduction to Scrum- Project phases- Agile Estimation- Planning game- Product backlog- Sprint backlog- Iteration planning- User story definition- Characteristics and content of user stories- Acceptance tests and Verifying stories- Project velocity- Burn down chart- Sprint planning and retrospective- Daily scrum- Scrum roles – Product Owner- Scrum Master- Scrum Team- Scrum case study- Tools for Agile project management.

#### **AGILE TESTING**

The Agile lifecycle and its impact on testing- Test-Driven Development (TDD)- xUnit framework and tools for TDD-Testing user stories - acceptance tests and scenarios- Planning and managing testing cycle- Exploratory testing- Risk based testing- Regression tests- Test Automation- Tools to support the Agile tester.

# AGILE SOFTWARE DESIGN AND DEVELOPMENT

Agile design practices- Role of design Principles including Single Responsibility Principle- Open Closed Principle-Liskov Substitution Principle- Interface Segregation Principles- Dependency Inversion Principle in Agile Design- Need and significance of Refactoring- Refactoring Techniques- Continuous Integration- Automated build tools- Version control.

# **INDUSTRY TRENDS**

Market scenario and adoption of Agile- Agile ALM- Roles in an Agile project- Agile applicability- Agile in Distributed teams- Business benefits- Challenges in Agile- Risks and Mitigation- Agile projects on Cloud- Balancing Agility with Discipline- Agile rapid development technologies

#### **TEXT BOOKS**

- 1. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", Pearson, 21 Mar2008.
- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Prentice Hall, 25 Oct2002.
- 3. Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", AddisonWesley, 30 Dec 2008
- 4. www.it-ebooks.info/tag/agile
- 5. http://martinfowler.com/agile.html

#### REFERENCES

- 1. Alistair Cockburn, "Agile Software Development: The Cooperative Game", Addison Wesley, 19 Oct2006.
- 2. Mike Cohn Publisher, "User Stories Applied: For Agile Software", Addison Wesley, 1 Mar2004

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                  |
|--------|---------------------|---------------------|--------------|--------------------------|
| 1.     | S. Muthuselvan      | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in   |
| 2.     | M. Annamalai        | Assistant Professor | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 17C                 | SEC04    |           |            |           | BIO M    | IETRI     | CS        |            |           |           | Category    | L        | T       | P         | Credit |
|---------------------|----------|-----------|------------|-----------|----------|-----------|-----------|------------|-----------|-----------|-------------|----------|---------|-----------|--------|
|                     |          |           |            |           |          |           |           |            |           |           | EC(PS)      | 3        | 0       | 0         | 3      |
| PREA                |          | l         |            |           |          |           |           |            |           | l .       |             |          |         | l .       |        |
| To explose be proce |          | / biolog  | ;ical inf  | ormatic   | on could | l be sto  | red in d  | ligital fo | orm to c  | create bi | iometric re | esources | and hov | v the sar | ne may |
| PRERI               |          |           | CURIT      | Y         |          |           |           |            |           |           |             |          |         |           |        |
| COUR                | SE OB    | JECTI     | VES        |           |          |           |           |            |           |           |             |          |         |           |        |
| 1.                  | To un    | derstan   | d the co   | oncepts   | of Bior  | netrics,  | to enab   | ole desig  | gn of bi  | ometric   | system      |          |         |           |        |
| 2.                  | To un    | derstan   | d the ba   | asics of  | Biomet   | rics and  | l its fur | nctional   | ities     |           |             |          |         |           |        |
| 3.                  | To ge    | t the ex  | posure     | the con   | text of  | Biomet    | ric App   | lication   | S         |           |             |          |         |           |        |
| 4.                  | To lea   | ırn to de | evelop a   | applicat  | ions wi  | th bion   | netric se | ecurity    |           |           |             |          |         |           |        |
| COUR                | SE OU    | TCOM      | <b>IES</b> |           |          |           |           |            |           |           |             |          |         |           |        |
| O : 41: -           |          | C-1       | 1 . 4      | - C (1    |          | -4 1      | ::11 1-   | 1.1 . 4    | _         |           |             |          |         |           |        |
| On the              | success  | iui con   | ipietion   | or the    | course,  | studeni   | S WIII C  | be able t  | 0         |           | <del></del> |          |         |           |        |
| <b>CO1:</b> T       | o learn  | about t   | he conc    | cepts of  | biomet   | ric mate  | ching fo  | or ident   | fication  | n         |             | Underst  | and     |           |        |
| <b>CO2:</b> T       | o identi | ify algo  | rithms     | for fing  | er bion  | netric te | chnolog   | gy         |           |           |             | Underst  | and     |           |        |
| <b>CO3:</b> A       | apply fa | cial bio  | metrics    | for ide   | ntificat | ion       |           |            |           |           |             | Apply    |         |           |        |
| CO4: A              |          | iris bio  | metric,    | voice b   | iometri  | c, phys   | iologica  | al biom    | etrics et | tc. for   |             | Analyze  | :       |           |        |
| CO5: T              | o analy  | ze the u  | ise of e   | thical is | sues     |           |           |            |           |           |             | Analyze  | :       |           |        |
| MAPP                | ING W    | TTH P     | ROGR       | AMMI      | E OUT    | COME      | S AND     | PROG       | FRAMI     | ME SPI    | ECIFIC (    | OUTCO    | MES     |           |        |
| COs                 | PO1      | PO2       | PO3        | PO4       | PO5      | PO6       | PO7       | PO8        | PO9       | PO10      | PO11        | PO12     | PSO1    | PSO2      | PSO3   |
| CO1                 | S        | M         | L          | -         | M        | -         | -         | -          | -         | -         | -           | M        | S       | M         | M      |
| CO2                 | S        | M         | L          | -         | M        | -         | -         | -          | -         | -         | -           | M        | S       | M         | M      |
| CO3                 | S        | M         | L          | -         | M        | -         | -         | -          | -         | -         | -           | M        | S       | M         | M      |
| CO4                 | S        | L         | L          | -         | M        | -         | -         | -          | -         | -         | -           | M        | S       | M         | M      |
| CO5                 | S        | M         | L          |           | M        |           |           |            |           |           |             | M        | S       | M         | M      |

# INTRODUCTION

The design cycle of biometric systems – Applications of Biometric systems – Security and priPerson Recognition – Biometric systems –Biometric functionalities: verification, identification – Biometric systems issues.

### FINGERPRINT, FACIAL and IRIS RECOGNITION

FINGERPRINT: Friction ridge pattern- finger print acquisition: sensing techniques, image quality –Feature Extraction –matching –indexing. FACE RECOGNITION: Image acquisition: 2D sensors, 3D sensors- Face detection- Feature extraction -matching. Design of an IRIS recognition system-IRIS segmentation- normalization – encoding and matching- IRIS quality –performance evaluation.

# BEHAVIORAL BIOMETRICS AND MULTIBIOMETRICS

Ear detection and - gait feature extraction and matching - hand geometry- soft biometrics - sources of multi-biometrics-Acquisition and processing - Fusion levels.

# **BIOMETRIC CRYPTOGRAPHY**

Protection of biometric data –biometric data shuffling scheme- experimental results –security analysis - cryptographic key Reservation - cryptographic key with biometrics-Revocability in key generation system-Adaptations of Generalized key Regeneration scheme –IRIS Biometrics –Face Biometrics –Extension of Key Regeneration scheme.

#### ETHICAL USAGE

Public sector Implementation – Border Control – Responsibilities –Customer service – Government sector – Agriculture – Academic Research – Online Communications – Environmental situations – External pressure – Distractions – Implementations issues – Future Works

#### **TEXT BOOKS**

- 1. Anil K Jain and Arun A Roass Karthik Nandedkar, "Introduction to Biometrics", Springer, 2011.
- 2. David Check Ling Ngo, Andrew Beng Jin Teoh, Jiankun Hu "Biometric Security" Cambridge, 2015.

#### **REFERENCES**

- 1. LI, S. Z., AND JAIN, A. K., Eds. Handbook of Face Recognition. Springer, Heidelberg, Germany, 2011.
- **2.** MALTONI , D. , MAIO, D. , JAIN, A. K. , AND PRABHAKAR , S . Handbook of Fingerprint Recognition. Springer,2009.
- **3.** JAIN, L.C., HALICI, U., HAYASHI, I.; LEE, S.B., TSUTSUI, S. Intelligent Biometric Techniques in Fingerprint and Face Recognition. CRC Press, 1999.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                     |
|--------|---------------------|---------------------|--------------|-----------------------------|
| 1.     | K.Karthik           | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in          |
| 2.     | R.Bharanidharan     | Assistant Professor | CSE / VMKVEC | bharanidharan@vmkvec.edu.in |

| 17.0                                    | CE COA                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ODEN     | COLI      |           | ZOZDEN    | ra .      |           |            | Category   | L                                   | Т       | P        | credit |
|-----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-----------|-----------|-----------|-----------|-----------|------------|------------|-------------------------------------|---------|----------|--------|
| 170                                     | SEC24                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | OPEN     | SOUR      | (CE S)    | YSTEM     | 15        |           |            | EC(PS)     | 3                                   | 0       | 0        | 3      |
| that tec<br>patent,<br>these g<br>PRERI | rpose of<br>chnology<br>or trad-<br>oals.<br><b>EQUIS</b>       | y to inverse to the temporal of te | est in it<br>causes | withou   | t havin   | g to eith | ner pay   | monop     | oly rent  | or fear 1  | itigation  | otential co<br>on trade<br>except t | secret, | copyrigh | it,    |
|                                         | SE OB                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |           |           |           |           |           |            |            |                                     |         |          |        |
| 1.                                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |           |           |           |           |           | n source j |            |                                     |         |          |        |
| 2.                                      | To un                                                           | derstan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d distri            | buted te | am soft   | ware d    | evelopn   | nent, ar  | nd curre  | nt events  | s in the o | pen sour                            | ce worl | d        |        |
| 3.                                      | To lea                                                          | ırn free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and op              | en sour  | ce comp   | onents    | & tools   | S         |           |            |            |                                     |         |          |        |
| 4.                                      | Stude                                                           | nts will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | also w              | ork on a | ın open   | source    | project   | and wi    | ll be ex  | pected to  | make a     | significa                           | nt cont | ribution |        |
|                                         | success                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | of the   | course,   | student   | ts will b | e able t  | to        |            |            |                                     |         |          |        |
| <b>CO1:</b> E                           | Explain                                                         | commo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n open              | source l | icenses   | and th    | e impac   | ct of cho | oosing a  | license    |            | Underst                             | and     |          |        |
| CO2: A                                  | Analyze                                                         | the ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | en sourc            | e proje  | et struct | ure and   | l how to  | succes    | ssfully s | setup a pi | roject     | Analyze                             |         |          |        |
| CO3 A                                   | pply the                                                        | linux l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | based u             | ser prof | ile, file | securit   | y, and f  | ile link  | and ma    | ınagemer   | nt.        | Apply                               |         |          |        |
| CO4: K                                  | Knowled                                                         | lge of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ree and             | open so  | ource to  | ols like  | libre o   | ffice, o  | pen offi  | ce.        |            | Apply                               |         |          |        |
| CO5: A                                  | Apply thound.                                                   | ne libre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | office-             | present  | ation li  | ke crea   | te, open  | , addin   | g slide,  | text,      |            | Apply                               |         |          |        |
| MAPP                                    | MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |           |           |           |           |           |            |            |                                     |         |          |        |
| COs                                     | PO1                                                             | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO3                 | PO4      |           | PO6       | PO7       | PO8       | PO9       | PO10       | PO11       | PO12                                | PSO1    |          | PSO3   |
| CO1                                     | S                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                   | -        | L         | -         | -         | -         | -         | -          | -          | S<br>M                              | S       | S        | S      |
| CO2                                     | S                                                               | M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M<br>M              | M        | <u>M</u>  | <u>-</u>  | -         | -         | -         | -          | -          | M                                   | S       | M<br>S   | S      |
| CO4                                     | S                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                   | M        | M         | <u>-</u>  | -         | -         | _         | _          | -          | M                                   | S       | M        | -      |
| CO5                                     | S                                                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                   | M        | -         | -         | -         | -         | -         | -          | -          | M                                   | S       | S        | S      |
| S- Stro                                 | - Strong; M-Medium; L-Low                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |           |           |           |           |           |            |            |                                     |         |          |        |

# **OPEN SOURCE LICENSING**

Open Source Licensing, Contract, and Copyright Law-The MIT, BSD, Apache, and Academic Free Licenses-The GPL, LGPL, and Mozilla Licenses-Qt, Artistic, and Creative Commons Licenses-Non-Open Source Licenses.

#### **OPEN SOURCE OPERATING SYSTEM**

Linux history-distributions-licensing-installing Linux-working with directories-working with file contents-the Linux file tree. shell expansion: commands and arguments-control operators-shell variables-file globing. Pipes and commands: I/O redirection-filters -regular expressions. Introduction to vi — scripting: scripting introduction- scripting loops-scripting parameters

# LINUX USER MANAGEMENT

local user management- introduction to users-user management-user passwords-user profiles -groups. file security: standard file permissions-advanced file permissions-access control lists-file links.

#### LIBRE OFFICE -WORD, SPREAD SHEET

Introduction of libre office- WRITER — THE WORD PROCESSOR: Opening a Document -Laying Out the Page-Setting paper size, margins, and orientation -Creating headers and footers -Numbering pages -Entering and Editing Text-Modifying text-Moving and copying text. CALC — THE SPREADSHEET: Creating a Spreadsheet -Inputting Your Data -Entering your data -Editing your data - Filling cells automatically -Managing Columns and Rows-Copying, pasting, cutting, dragging, and dropping your cells -Adding the Art -Formula Basics.

# LIBRE OFFICE- PRESENTATION

IMPRESS — THE PRESENTATION Creating a Presentation -Opening an existing presentation -Adding Slides - Adding text to a slide -Saving Your Presentation for Posterity - Making Presentations Picture Perfect -Adding Images - Clipping art -Drawing objects -Coloring Backgrounds - Creating a plain-colored background -Creating a gradient background.

### **TEXT BOOKS**

- 1. Understanding Open Source and Free Software Licensing By Andrew M. St. Lauren, August 2004, Pages: 207. (Unit)
- **2.** Linux study link:https://itsfoss.com/learn-linux-for-free/ (Unit II &Unit III).

3.https://www.libreoffice.org/assets/Uploads/Documentation/en/GS51-GettingStartedLO.pdf (Unit IV &V)

#### **REFERENCES**

- 1. Andy channelle (2009), "Beginning OpenOffice 3", Aprèss.
- **2.** Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", Sixth Edition, OReilly Media, 2009.
- 3. N. B. Venkateshwarlu (Ed); Introduction to Linux: Installation and Programming, B S Publishers;2005.
- **4.** Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, and Lar Kaufman, Running Linux, Fourth Edition, O'Reilly Publishers, 2002.
- 4. Carla Schroder, Linux Cookbook, First Edition, O'Reilly Cookbooks Series, 2004.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                  |
|--------|---------------------|---------------------|--------------|--------------------------|
| 1.     | K. Karthik          | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in       |
| 2.     | Mr.M.Annamalai      | Assistant Professor | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 17CSEC17        |                                                                                                                           |          | KNOWLEDGE BASED DECISION |           |          |          |            |           | (        | Category  | $\mathbf{L}$ | T         | PC   | redit |     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|-----------|----------|----------|------------|-----------|----------|-----------|--------------|-----------|------|-------|-----|
|                 |                                                                                                                           |          | SUPPORT SYSTEMS          |           |          |          |            |           | EC(PS)   | 3         | 0            | 0         | 3    |       |     |
|                 | MBLE                                                                                                                      | ı        |                          |           |          |          |            |           |          |           |              | 1         | l    | ı     |     |
|                 |                                                                                                                           |          | ırse is t                | o impar   | t knowl  | ledge or | n decisi   | on supp   | ort sys  | tems and  | implem       | entation. |      |       |     |
| PRER<br>NIL     | EQUIS                                                                                                                     | ITE      |                          |           |          |          |            |           |          |           |              |           |      |       |     |
|                 | RSE OB                                                                                                                    | JECTI    | IVES                     |           |          |          |            |           |          |           |              |           |      |       |     |
| <br>1.          | To far                                                                                                                    | miliariz | e decisi                 | on sunt   | ort eve  | tems an  | d their    | charact   | eristics |           |              |           |      |       |     |
|                 | To familiarize decision support systems and their characteristics  To study about Intelligent DSS and applications of DSS |          |                          |           |          |          |            |           |          |           |              |           |      |       |     |
| 2.              |                                                                                                                           |          |                          |           |          |          |            |           |          |           |              |           |      |       |     |
| 3.              | To learn Collaborative Computing Technologies                                                                             |          |                          |           |          |          |            |           |          |           |              |           |      |       |     |
| 4.              | To learn the technologies related to decision support systems                                                             |          |                          |           |          |          |            |           |          |           |              |           |      |       |     |
| 5.              | To learn Electronic Commerce and Management-Support Systems.                                                              |          |                          |           |          |          |            |           |          |           |              |           |      |       |     |
| COUR            | RSE OU                                                                                                                    | TCOM     | <b>IES</b>               |           |          |          |            |           |          |           |              |           |      |       |     |
| On the          | success                                                                                                                   | sful con | nnletion                 | of the    | course   | student  | s will h   | ne able t | · O      |           |              |           |      |       |     |
| on the          | Виссева                                                                                                                   |          | приспол                  | or the    |          | Staden   | .5 ******* |           |          |           |              |           |      |       |     |
| C <b>O1:</b> U  | Jndersta                                                                                                                  | and deci | ision m                  | aking a   | nd com   | puterize | ed supp    | ort       |          |           |              | Understa  | ınd  |       |     |
| C <b>O2:</b> U  | Jndersta                                                                                                                  | and Bus  | iness Ir                 | itelliger | nce ,Dat | ta Ware  | housing    | g and D   | ata Mir  | ning      |              | Understa  | ınd  |       |     |
| 202. I          | Indonete                                                                                                                  | nd and   | onnly.                   | Callaha   | motion   | Commi    | miaatia    | n Ento    | manica I | Decision  |              | Apply     |      |       |     |
|                 |                                                                                                                           |          |                          |           |          |          |            |           | •        |           |              |           |      |       |     |
| C <b>O4</b> : U | 4: Understand and apply Artificial Intelligence and Expert Systems over the Internet. Apply                               |          |                          |           |          |          |            |           |          |           |              |           |      |       |     |
| CO5: U          | Jndersta                                                                                                                  | ınd and  | apply I                  | Electron  | nic Com  | merce    | and Ma     | nageme    | ent-Sup  | port Syst | ems.         | Apply     |      |       |     |
| MAPP            | ING W                                                                                                                     | ITH P    | ROGR                     | AMMI      | E OUT    | COME     | S AND      | PROG      | FRAMI    | ME SPE    | CIFIC (      | OUTCO     | MES  |       |     |
| COs             | PO1                                                                                                                       | PO2      | PO3                      | PO4       | PO5      | PO6      | PO7        | PO8       | PO9      | PO10      | PO11         | PO12      | PSO1 | PSO2  | PSO |
| CO1             | S                                                                                                                         | M        | S                        | M         | L        | -        | -          | -         | -        | -         | -            | M         | S    | M     | M   |
| CO2             | M                                                                                                                         | S        | S                        | S         | M        | -        | -          | -         | -        | -         | -            | M         | M    | M     | M   |
| CO3             | S                                                                                                                         | M        | S                        | M         | M        | -        | -          | -         | -        | -         | -            | M         | M    | -     | M   |
| CO4             | S                                                                                                                         | M        | S                        | S         | M        |          |            |           |          | _         | _            | M         | S    | S     | S   |

M

CO5

M

S- Strong; M-Medium; L-Low,

M

M

S

# DECISION MAKING AND COMPUTERIZED SUPPORT

Management Support Systems: An Overview - Decision Making, Systems, Modeling, and Support.

#### **DECISION SUPPORT SYSTEMS**

Decision Support Systems: Overview - Modeling and Analysis - Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analysis, and Visualization - Decision Support System Development.

# COLLABORATION, COMMUNICATION, ENTERPRISE DECISION

Collaborative Computing Technologies: Group Support Systems - Enterprise Information Systems - knowledge Management.

# EVIDENCE COLLECTION AND FORENSICS TOOLS

Artificial Intelligence and Expert Systems: Knowledge-Based System – Knowledge Acquisition, Representation, and Reasoning - Advanced Intelligent Systems - Intelligent Systems over the Internet.

# IMPLEMENTING IN THE E-BUSINESS ERA

Electronic Commerce - Integration, Impacts, and the Future of the Management-Support Systems.

#### **TEXT BOOKS**

**1.** Efraim Turban, Jay Aronson E., Ting-Peng Liang, "Decision Support Systems and Intelligent Systems", 7<sup>th</sup> Edition, Pearson Education, 2013.

#### REFERENCES

**1.**Michel R. Klein and Leif B. Methlie, "Knowledge-Based Decision Support Systems With Applications in Business", , Wiley; 2nd edition

| S.  | Name of the | Designation         | Department   | Mail ID              |  |  |
|-----|-------------|---------------------|--------------|----------------------|--|--|
| No. | Faculty     |                     |              |                      |  |  |
| 1.  | K.Karthik   | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in   |  |  |
| 2.  | T.Geetha    | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in |  |  |

|                                                                      |                                                                                                      |         |                       |          |         |            |          |        |         |         |           | •         |         | •        |        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------|-----------------------|----------|---------|------------|----------|--------|---------|---------|-----------|-----------|---------|----------|--------|
| 17CSEC14                                                             |                                                                                                      |         | INFORMATION RETRIEVAL |          |         |            |          |        |         | C       | ategory   | L         | T       | P        | Credit |
|                                                                      |                                                                                                      |         | TECHNIQUES            |          |         |            |          |        |         | EC(PS)  | 3         | 0         | 0       | 3        |        |
| PREAMBLE                                                             |                                                                                                      |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
|                                                                      |                                                                                                      |         |                       |          |         |            |          |        | them to | underst | and the b | pasics of | Informa | tion Ret | rieval |
|                                                                      | ertinenc                                                                                             |         | deling,               | query o  | peratio | ns and     | indexin  | g.     |         |         |           |           |         |          |        |
|                                                                      | EQUIS<br>MININ                                                                                       |         | ATA W                 | /AREH    | OUSIN   | IG         |          |        |         |         |           |           |         |          |        |
| COURSE OBJECTIVES                                                    |                                                                                                      |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| 1.                                                                   | . To learn about the basic concepts, practical issues and impact of the web on Information Retrieval |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| 2.                                                                   | To understand about the various IR models                                                            |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| 3.                                                                   | To get an understanding of machine learning techniques for text classification and clustering        |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| 4.                                                                   | To understand the various applications of Information Retrieval giving emphasis to Multimedia IR     |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| 5.                                                                   | 5. To lay foundation for learning the concepts of digital libraries                                  |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| COURSE OUTCOMES                                                      |                                                                                                      |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| On the successful completion of the course, students will be able to |                                                                                                      |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| <b>CO1:</b> [                                                        | Describe                                                                                             | the ob  | jectives              | of info  | rmation | ı retriev  | al syste | ems    |         |         |           | Underst   | and     |          |        |
| CO2: U                                                               | Jndersta                                                                                             | nd abo  | ut the v              | arious I | R mode  | els        |          |        |         |         |           | Apply     |         |          |        |
| CO3: U                                                               | Jndersta                                                                                             | and the | static a              | nd dyna  | mic ind | lices an   | d query  | operat | ions    |         |           | Apply     |         |          |        |
| <b>CO4</b> : In                                                      | CO4: Implement clustering algorithms like hierarchical clustering and classification  Apply          |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| CO5: U                                                               | CO5: Understand searching ,ranking and digital libraries Apply                                       |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES      |                                                                                                      |         |                       |          |         |            |          |        |         |         |           |           |         |          |        |
| Cos                                                                  | PO1                                                                                                  | PO2     | PO3                   | PO4      | PO5     | <b>PO6</b> | PO7      | PO8    | PO9     | PO10    | PO11      | PO12      | PSO1    | PSO2     | PSO3   |
| CO1                                                                  | S                                                                                                    | M       | -                     | M        | M       | M          | -        | -      | -       | -       | -         | M         | S       | S        | S      |
| CO2                                                                  | S                                                                                                    | S       | S                     | M        | M       | L          | -        | M      | -       | -       | -         | M         | S       | M        | M      |
| CO3                                                                  | S                                                                                                    | L       | L                     | -        | L       | -          | -        | -      | -       | -       | -         | S         | M       | S        | S      |
| CO4                                                                  | S                                                                                                    | S       | S                     | M        | M       | M          | -        | M      | -       | -       | -         | M         | S       | -        | S      |
| CO5                                                                  | S                                                                                                    | S       | M                     | M        | M       | L          | -        | -      | -       | -       | -         | M         | M       | M        | M      |

S- Strong; M-Medium; L-Low

#### INTRODUCTIO N

Motivation – Basic Concepts – Practical Issues - Retrieval Process – Architecture - Boolean Retrieval –Retrieval Evaluation – Open Source IR Systems–History of Web Search – Web Characteristics–The impact of the web on IR — IR Versus Web Search–Components of a Searchengine.

#### **MODELING**

Taxonomy and Characterization of IR Models – Boolean Model – Vector Model - Term Weighting – Scoring and Ranking –Language Models – Set Theoretic Models - Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing.

#### **INDEXING**

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency.

# **CLASSIFICATION AND CLUSTERING**

Text Classification and Naïve Bayes – Vector Space Classification – Support vector machines and Machine learning on documents. Flat Clustering – Hierarchical Clustering – Matrix decompositions and latent semantic indexing – Fusion and Meta learning.

# SEARCHING AND RANKING

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking - Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries.

# **TEXT BOOKS**

- **1.** Ricardo Baeza Yates, BerthierRibeiro Neto, Modern Information Retrieval: The concepts and Technology behind Search (ACM Press Books), SecondEdition
- 2. Textbook Retrieval Systems In Information Management by GGChowdhury

# **REFERENCES**

- 1. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze, Introduction to Information Retrieval, Cambridge University Press, First South Asian Edition
- **2.** Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval Implementing and Evaluating Search Engines, The MIT Press, Cambridge.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID              |  |  |
|--------|---------------------|---------------------|--------------|----------------------|--|--|
| 1.     | Mrs. R. Latha       | Assistant Professor | CSE / AVIT   | rlatha@avit.ac.in    |  |  |
| 2.     | Mrs.T.Geetha        | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in |  |  |

| 17C           | SEC16                                                                                                      |         | _        | IT INF    |          |          |           | ND       | _        | (          | Category | y L       | Т         | P        | Credit   |
|---------------|------------------------------------------------------------------------------------------------------------|---------|----------|-----------|----------|----------|-----------|----------|----------|------------|----------|-----------|-----------|----------|----------|
|               |                                                                                                            |         |          | I         | MANA     | GEME     | ENT       |          |          |            | EC(PS)   | 3         | 0         | 0        | 3        |
| The pr        | MBLE roposed anageme                                                                                       |         | expose   | s the stu | ıdents t | o undei  | rstand tl | ne featu | res of d | ifferent ( | technolo | gies invo | lved in I | T infras | tructure |
|               | EQUIS                                                                                                      | ITE     |          |           |          |          |           |          |          |            |          |           |           |          |          |
| NIL<br>COUR   | RSE OB                                                                                                     | IECTI   | VES      |           |          |          |           |          |          |            |          |           |           |          |          |
|               | F                                                                                                          |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| 1.            | To understand the basics of IT infrastructure  To understand the current computing techniques in IT fields |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| 2.            | To understand the current computing techniques in IT fields                                                |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| 3.            | To explore the business models                                                                             |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| 4.            | To understand the different security management and storage management in IT infrastructure                |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| 5.            | To understand the service delivery concept in IT field                                                     |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| COUR          | RSE OU                                                                                                     |         |          |           |          |          |           |          |          |            |          |           |           |          |          |
| On the        | success                                                                                                    | ful con | npletion | of the    | course,  | studen   | ts will b | e able t | 0        |            |          |           |           |          |          |
| CO1: U        | Jndersta                                                                                                   | and the | basics o | of IT in  | frastruc | ture     |           |          |          |            |          | Understa  | and       |          |          |
| CO2: U        | Jndersta                                                                                                   | and the | current  | compu     | ting tec | hniques  | s in IT f | ields    |          |            |          | Understa  | and       |          |          |
| <b>CO3:</b> E | Explore                                                                                                    | the bus | iness m  | odels     |          |          |           |          |          |            |          | Apply     |           |          |          |
| CO4: A        | Apply th                                                                                                   |         |          |           | anagem   | ent and  | storage   | e manag  | gement   | in IT      |          | Apply     |           |          |          |
| CO5: U        | Jndersta                                                                                                   | and the | service  | deliver   | y conce  | pt in IT | field     |          |          |            |          | Analyze   |           |          |          |
| MAPP          | ING W                                                                                                      | TTH P   | ROGR     | AMMI      | E OUT    | COME     | S AND     | PROG     | GRAMI    | ME SPE     | CIFIC (  | OUTCO     | MES       |          |          |
| Cos           | PO1                                                                                                        | PO2     | PO3      | PO4       | PO5      | PO6      | PO7       | PO8      | PO9      | PO10       | PO11     | PO12      | PSO1      | PSO2     | PSO3     |
| CO1           | S                                                                                                          | M       | -        | -         | M        | S        | -         | -        | -        | -          | -        | M         | M         | S        | S        |
| CO2           | S                                                                                                          | -       | S        | -         | M        | S        | -         | -        | -        | -          | -        | M         | M         | M        | -        |
| CO3           | S                                                                                                          | M       | S        | -         | M        | S        | -         | -        | -        | -          | -        | M         | M         | S        | S        |
| CO4           | S                                                                                                          | L       | S        | M         | M        | M        | -         | -        | -        |            | -        | L         | S         | M        | -        |

M

M

M

M

CO5

S

S

S- Strong; M-Medium; L-Low

M

M

M

# **IT system Management**

Common tasks in IT system management, approaches for organization Management, Models in IT system design, IT management systems context diagram, patterns for IT system Management.

# **IT Infrastructure Management**

Factors to consider in designing IT organizations and IT infrastructure, Determining customer's Requirements, Identifying System Components to manage, Exist Processes, Data, applications, Tools and their integration, Patterns for IT systems management, Introduction to the design process for information systems, Models, Information Technology Infrastructure Library (ITIL).

#### **Establishing business value of information system**

Information system costs and benefits, Capital budgeting for information system, Real Options pricing models, Limitation of financial models.

# **Service Delivery and Service Support Management**

Service-level management, financial management and advantages of financial management -Service support process, Configuration Management-Incident management.

# **Storage Management and Security Management**

Types of Storage management, Benefits of storage management, backups, Archive, Recovery, Disaster recovery-Introduction Security, Identity management, Single sign-on, Access Management.

#### **TEXT BOOKS**

- **1.** A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.
- 2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999

#### **REFERENCES**

- **1.** P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi, 2009.
- 2. J. D. Finnerty, Project financing Asset-based financial engineering, John Wiley & Sons, New York, 1996.
- **3.** A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|--------|------------------------|---------------------|--------------|-----------------------------|
| 1.     | E.Srividhya            | Assistant Professor | CSE / AVIT   | srividhya@avit.ac.in        |
| 2.     | Mr.B.Sundaramurthy     | Associate Professor | CSE / VMKVEC | sundaramurthy@vmvkec.edu.in |

| Category   In   In   In   In   In   In   In   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Г              |                                                                                      |          |          |           |          |          |           |          |         |         |            | 1          | 1 1      |          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|----------|----------|-----------|----------|----------|-----------|----------|---------|---------|------------|------------|----------|----------|-------|
| PREAMBLE ThissyllabusisintendedfortheEngineeringstudentsandenablethemtounderstandthebasicsvirtualizationandvirtual machines.  PRERECUISITE NIIL  COURSE OBJECTIVES  1.   To understand the concepts of virtualization and virtual machines  2.   To understand the implementation of process and system virtual machines  3.   To explore the aspects of high level language virtual machines  4.   To gain expertise in server, network and storage virtualization  5.   To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi   Apply  CO3: Deploy, manage and migrate virtual machines.   Apply  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.   Apply  CO5: Configure and manage a Storage Area Network (SAN).   Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6   PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12   PS01   PS02   PS03   PS04   PS05   PS04   PS05   PS06   PS | 17C            | SEC33                                                                                |          | VIR      | TUAL      | IZATI    | ON TE    | CHNI      | QUES     |         |         | Category   | y L        | T        | P        | redit |
| ThissyllabusisintendedfortheEngineeringstudentsandenablethemtounderstandthebasicsvirtualizationandvirtual machines.  PREREQUISITE NIL  TO understand the concepts of virtualization and virtual machines  1. To understand the implementation of process and system virtual machines  2. To understand the implementation of process and system virtual machines  4. To gain expertise in server, network and storage virtualization  5. To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual retwork and storage such as vCenter server or ESxi  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  CO6: OFFIGURE TO TOO TOO TOO TOO TOO TOO TOO TOO TOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                      |          |          |           |          |          |           |          |         |         | EC(PS)     | 3          | 0        | 0        | 3     |
| PREREQUISITE   NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                      |          | 10 1     |           |          |          |           |          |         |         |            |            |          |          |       |
| NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                      |          | dforthe  | Enginee   | eringstu | dentsar  | ndenabl   | ethemto  | ounders | tandthe | basicsvirt | ualization | andvirtu | ial mach | ines. |
| 1. To understand the concepts of virtualization and virtual machines  2. To understand the implementation of process and system virtual machines  3. To explore the aspects of high level language virtual machines  4. To gain expertise in server, network and storage virtualization  5. To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S M S - M GO2 S M S M L - M S M S - M GO3 S S M L M S M GO3 S S M L M S M GO4 S S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | EQUIS                                                                                | ITE      |          |           |          |          |           |          |         |         |            |            |          |          |       |
| 2. To understand the implementation of process and system virtual machines  3. To explore the aspects of high level language virtual machines  4. To gain expertise in server, network and storage virtualization  5. To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M S M S - M CO2 S M L M S M CO3 S S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COUR           | SE OB                                                                                | JECTI    | VES      |           |          |          |           |          |         |         |            |            |          |          |       |
| 3. To explore the aspects of high level language virtual machines 4. To gain expertise in server, network and storage virtualization 5. To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  Apply  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S - M M S - M - CO2 S M L M L L - M M - CO2 S M L L M L L - M M - CO3 S S M S L M S - M GO4 S S S L M S - M GO4 S S S L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.             | To un                                                                                | derstan  | d the co | ncepts    | of virtu | alizatio | on and v  | irtual n | nachine | s       |            |            |          |          |       |
| 4. To gain expertise in server, network and storage virtualization  5. To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S M S - M CO2 S M L M M S - M CO2 S M L M M S - M CO3 S S S M L M S - M CO4 S S S L M S - M CO4 S S M L M S - M CO4 S S M L M S - M CO4 S S M L M S - M CO4 S S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.             | To un                                                                                | derstan  | d the in | npleme    | ntation  | of proc  | ess and   | system   | virtual | machin  | es         |            |          |          |       |
| To understand and deploy practical virtualization solutions and enterprise solutions  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  Apply  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S M S - M GCO2 S M L - M S M S - M GCO3 S S M L M S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.             | To ex                                                                                | plore th | e aspec  | ts of hi  | gh level | l langua | age virt  | ual mac  | hines   |         |            |            |          |          |       |
| CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  CO6: Configure and manage a Storage Area Network (SAN).  Apply  Apply  CO6: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M S M S - M CO2 S M L M M S - M CO3 S S M C M S - M CO3 S S M C M S M CO3 S S S M C M S M CO4 S S S L M S M CO4 S S M L M S M CO4 S S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.             |                                                                                      |          |          |           |          |          |           |          |         |         |            |            |          |          |       |
| On the successful completion of the course, students will be able to  CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  Apply  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S M S - M CO2 S M L M M S - M CO3 S S M C M S - M CO4 S S L M S - M CO4 S S M L M S - M CO4 S S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.             | To understand and deploy practical virtualization solutions and enterprise solutions |          |          |           |          |          |           |          |         |         |            |            |          |          |       |
| CO1: Install and configure virtualization technology such as VMware  CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  Apply  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M S M S - M  CO2 S M L - M M S - M  CO3 S S M L - M M S - M  CO4 S S M L M S - M  CO5 S M L M S - M  CO6 S M L M  CO7 S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COUR           | SE OU                                                                                | TCOM     | IES      |           |          |          |           |          |         |         |            |            |          |          |       |
| CO2: Configure and manage virtual network and storage such as vCenter server or ESxi  CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S M S - M CO2 S M L - M M S - M CO3 S S M M S - M CO4 S S M L M S - M CO4 S S M L M S - M CO4 S S M L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | On the         | success                                                                              | ful con  | pletion  | of the    | course,  | studen   | ts will b | e able t | to      |         |            |            |          |          |       |
| CO3: Deploy, manage and migrate virtual machines.  CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.  CO5: Configure and manage a Storage Area Network (SAN).  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M S M S - M CO2 S M L - M M S - M S - M CO3 S S S M M S - M CO4 S S S L M S - M CO4 S S M L L M - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CO1:</b> In | nstall ar                                                                            | nd confi | gure vi  | rtualiza  | tion tec | hnolog   | y such a  | as VMv   | vare    |         |            | Apply      |          |          |       |
| CO4: Describe the architecture of a Data Center environment with RAID and Intelligent Storage Systems.         Apply           CO5: Configure and manage a Storage Area Network (SAN).         Apply           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           Cos         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         S         -         -         -         -         -         -         M         S         -         M           CO2         S         M         L         -         M         -         -         -         -         -         -         M         S         -         M         -           CO3         S         S         M         -         -         -         -         -         -         -         -         M         -         -         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>CO2: C</td> <td>Configu</td> <td>re and n</td> <td>nanage</td> <td>virtual</td> <td>networl</td> <td>c and st</td> <td>orage s</td> <td>uch as v</td> <td>vCenter</td> <td>server</td> <td>or ESxi</td> <td>Apply</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO2: C         | Configu                                                                              | re and n | nanage   | virtual   | networl  | c and st | orage s   | uch as v | vCenter | server  | or ESxi    | Apply      |          |          |       |
| Storage Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CO3:</b> [  | Deploy,                                                                              | manage   | and m    | igrate v  | irtual n | nachine  | s.        |          |         |         |            | Apply      |          |          |       |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           Cos         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         S         -         -         -         -         -         -         -         M         S         -         M         -         -         -         -         -         -         M         -         -         -         -         -         -         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                      |          | hitectu  | re of a I | Oata Ce  | nter en  | vironm    | ent with | n RAID  | and Int | elligent   | Apply      |          |          |       |
| Cos         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         S         -         -         -         -         -         -         M         S         -         M           CO2         S         M         L         -         M         -         -         -         -         -         -         M         -           CO3         S         S         M         -         -         -         -         -         -         M         -         -         M         -         -         M         -         -         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>CO5: C</td> <td>Configu</td> <td>re and n</td> <td>nanage</td> <td>a Stora</td> <td>ge Area</td> <td>Netwo</td> <td>ork (SA</td> <td>N).</td> <td></td> <td></td> <td></td> <td>Apply</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO5: C         | Configu                                                                              | re and n | nanage   | a Stora   | ge Area  | Netwo    | ork (SA   | N).      |         |         |            | Apply      |          |          |       |
| CO1         S         M         S         -         -         -         -         -         -         -         -         M         S         -         M           CO2         S         M         L         -         M         -         -         -         -         -         -         -         M         -           CO3         S         S         M         -         -         -         -         -         -         M         -         M         -           CO4         S         S         L         -         -         -         -         -         -         -         M         -         M         -           CO5         S         M         L         -         L         -         -         -         -         -         -         -         -         M         -         -         M         -         -         M         -         -         M         -         -         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th< th=""><th>MAPP</th><th>ING W</th><th>TTH P</th><th>ROGR</th><th>AMMI</th><th>E OUT</th><th>COME</th><th>S AND</th><th>PROG</th><th>GRAMI</th><th>ME SPI</th><th>ECIFIC (</th><th>OUTCON</th><th>MES</th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAPP           | ING W                                                                                | TTH P    | ROGR     | AMMI      | E OUT    | COME     | S AND     | PROG     | GRAMI   | ME SPI  | ECIFIC (   | OUTCON     | MES      |          |       |
| CO2         S         M         L         -         M         -         -         -         -         -         -         -         M         -           CO3         S         S         M         -         -         -         -         -         -         M         S         -         M           CO4         S         S         L         -         -         -         -         -         -         M         -           CO5         S         M         L         -         L         -         -         -         -         -         -         N         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cos            | PO1                                                                                  | PO2      | PO3      | PO4       | PO5      | PO6      | PO7       | PO8      | PO9     | PO10    | PO11       | PO12       | PSO1     | PSO2     | PSO3  |
| CO3         S         S         M         -         -         -         -         -         -         M         S         -         M           CO4         S         S         L         -         -         -         -         -         -         M         -         M         -           CO5         S         M         L         -         L         -         -         -         -         -         L         M         -         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                      |          |          | -         | -        | -        | -         | -        | -       | -       | -          |            | S        | -        | M     |
| CO4         S         S         L         -         -         -         -         -         -         M         -           CO5         S         M         L         -         L         -         -         -         -         -         L         M         -         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                      |          |          | -         | M        | -        | -         | -        | -       | -       | -          |            |          | M        | -     |
| CO5 S M L - L L M - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                      |          |          | -         | -        | -        | -         | -        | -       | -       | -          | M          |          | -        | M     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                      |          |          | -         | -        | -        | -         | -        | -       |         |            |            |          | M        | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                      |          |          | -         | L        | -        | -         | -        | -       | -       | -          | L          | M        | _        | S     |

# **OVERVIEW OF VIRTUALIZATION**

System architectures - Virtual Machine basics - Process vs System Virtual Machines - Taxonomy. Emulation: Basic Interpretation - Threaded Interpretation - Precoded and Direct Threaded Interpretation - Binary Translation. System Virtual Machines - Key concepts - Resource utilization basics.

# PROCESS VIRTUAL MACHINES

Implementation – Compatibility – Levels – Framework – State Mapping – Register – Memory Address Space – Memory Architecture Emulation – Memory Protection – Instruction Emulation – Performance Tradeoff - Staged Emulation – Exception Emulation – Exception Detection – Interrupt Handling – Operating Systems Emulation – Same OS Emulation – Different OS Emulation – System Environment

#### HIGH LEVEL LANGUAGE VIRTUAL MACHINES AND SERVER VIRTUALIZATION

HLL virtual machines: Pascal P-Code – Object Oriented HLLVMs - Java VM architecture - Java Native Interface - Common Language Infrastructure. Server virtualization: Partitioning techniques - virtual hardware - uses of virtual servers - server virtualization platforms.

#### NETWORK AND STORAGE VIRTUALIZATION

Design of Scalable Enterprise Networks – Layer2 Virtualization – VLAN - VFI - Layer 3 Virtualization – VRF - Virtual Firewall Contexts - Network Device Virtualization - Data- Path Virtualization - Routing Protocols. Hardware Devices – SAN backup and recovery techniques – RAID – Classical Storage Model – SNIA Shared Storage Model – Virtual Storage: File System Level and Block Level.

#### APPLYING VIRTUALIZATION

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

#### **TEXT BOOKS**

**1.**Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.

# **REFERENCES**

- **1.** James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann,2005.
- **2.** David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.
- 3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.
- **4.** Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress2005.
- **5.** Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

| S.<br>No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|-----------|------------------------|---------------------|--------------|-----------------------------|
| 1.        | Dr. Nitisha            | Associate Professor | CSE / AVIT   | nitishaaggarwal@avit.ac.in  |
| 2.        | R.Bharanidharan        | Professor           | CSE / VMKVEC | bharanidharan@vmkvec.edu.in |

| 17AIEC06                                                                                                               | INTRODUCTION TO DRONES | Category | L | Т | P | Credit |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------------|----------|---|---|---|--------|--|--|--|--|--|
|                                                                                                                        |                        | EC(PS)   | 3 | 0 | 0 | 3      |  |  |  |  |  |
| PREAMBLE                                                                                                               | REAMBLE                |          |   |   |   |        |  |  |  |  |  |
| This course provides hands on experience on design, fabrication and flying of UAV category aircraft. Students will get |                        |          |   |   |   |        |  |  |  |  |  |
| in-depth skill set on design and fabrication techniques of UAV such as drones.                                         |                        |          |   |   |   |        |  |  |  |  |  |

PREREQUISITE

NIL

# COURSE OBJECTIVES

- 1. To be able to describe common components of drone
- 2. To be able to define acronyms related to drone

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

| CO1: Describe the parts and functions of UAV & Indian Aviation regulations of UAV     | Understand |
|---------------------------------------------------------------------------------------|------------|
| CO2: Explain the concepts of Aerodynamics, Propulsion & Structures of Model Aircrafts | Understand |
| CO3: Describe the working principle and components of UAV                             | Understand |
| CO4: Demonstrate the design process of UAV                                            | Apply      |
| CO5: Demonstrate design, fabrication and Flying of UAV                                | Apply      |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1 | S   | S   | S   | S   | M   | -   | -          | S   | S   | -    | -    | -    | S    | -    | _    |
| CO2 | S   | 1   | S   | S   |     | -   | -          | S   | S   | -    | -    | -    | -    | M    | _    |
| CO3 | S   | 1   | S   | S   | -   | -   | -          | S   | S   | -    | -    | -    | -    | M    | -    |
| CO4 | S   | S   | S   | S   | -   | -   | -          | S   | S   | -    | -    | -    | -    | -    | -    |
| CO5 | S   | S   | S   | S   | -   | -   | -          | S   | S   | -    | -    | -    | -    | -    | -    |

# BASICS OF FLIGHT

Different types of flight vehicles - Components and functions of an airplane - Forces acting on Airplane - Physical properties and structure of the atmosphere - Aerodynamics –Airfoil nomenclature -aerofoil characteristics - Angle of attack, Mach number- Lift and Drag - Propulsion and airplane structures.

# UNMANNED AERIAL VEHICLE

Difference between aircraft and UAV - Parts and functions of Fixed, Rotorcraft and flapping wing UAV - various History of UAV's, Types of Drones, Applications and Uses. Characteristics of Multi rotor vehicle, Fixed Wing vehicle, Flapping wing Vehicles and their applications – Defense, Civil, Environmental monitoring (physical, chemical and biological).

#### PAYLOADS FOR UAV

Payloads — Classification of Payloads — camera — sensors — radars — various measuring devices — classification of payload based on applications — Hyper spectral sensors — laser detection and range — synthetic aperture radar — thermal cameras — ultra sonic detectors - case study on payloads.

#### LAUNCH AND RECOVERY

Launching systems - UAV Launch Methods for Fixed-Wing Vehicles - Vertical Takeoff and Landing UAV Launch Recovery systems.

#### UAV NAVIGATION AND GUIDANCE SYSTEMS

Navigation - Dead Reckoning – Inertial – Radio Navigation – Satellite – Way point Navigation. Dijkstra's Algorithm – A- star Algorithm - UAV Guidance – Types of guidance - UAV communication systems - Ground control station – Telemetry - UAS future

# TEXT BOOKS

1. Andey Lennon "Basics of R/C model Aircraft design" Model airplane news publication

# REFERENCES

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|--------|------------------------|---------------------|--------------|-----------------------------|
| 1      | S. Muthuselvan         | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in      |
| 2      | R.Bharanidharan        | Professor           | CSE / VMKVEC | bharanidharan@vmkvec.edu.in |

| 17A                                    | IEC07                                                                                                                                                                                   |                                                                |                                 | BIOS                      | YSTE                        | MS WI                 | TH AI                 |                           |                                   |                  | Category             | y L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T              | P (                   | Credit |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|---------------------------|-----------------------------|-----------------------|-----------------------|---------------------------|-----------------------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|--------|
|                                        |                                                                                                                                                                                         |                                                                |                                 |                           |                             |                       |                       |                           |                                   |                  | EC(PS)               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0              | 0                     | 3      |
| PREAN                                  | MBLE                                                                                                                                                                                    |                                                                |                                 |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| Engine<br>diagno<br>course<br>trees, i | eering.<br>osis or t                                                                                                                                                                    | AI algo<br>reatment<br>ovide a<br>forests                      | orithms<br>nt. This<br>in overv | can less cours<br>view of | earn pa<br>e will<br>a wide | tterns focus of range | from bon practof AI a | iomedictical ap<br>and ma | cal data<br>plication<br>chine-le | a sets tons of a | o provid<br>AI in BN | ols to proceed of the color of | ble instands-o | ights on<br>n tutoria | diseas |
| NIL                                    |                                                                                                                                                                                         |                                                                |                                 |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| COUR                                   | SE OBJ                                                                                                                                                                                  | E OBJECTIVES                                                   |                                 |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| 1.                                     | To int                                                                                                                                                                                  | To introduce general biological concepts in engineering fields |                                 |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| 2.                                     | To understand importance of biological concepts in engineering fields                                                                                                                   |                                                                |                                 |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| 3.                                     | To un                                                                                                                                                                                   | derstan                                                        | d appli                         | cation o                  | of engir                    | neering               | concep                | ots in m                  | edical i                          | nstrum           | entation             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| COUR                                   | SE OU                                                                                                                                                                                   | ГСОМ                                                           | ES                              |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| 0 1                                    |                                                                                                                                                                                         | ` 1                                                            | 1 .:                            | C (1                      |                             | . 1                   | . '11 1               | 1.1                       |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| On the                                 | successf                                                                                                                                                                                | ul com                                                         | pietion                         | of the o                  | course,                     | student               | ts will t             | be able                   | to                                |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| CO1: U                                 | Understa                                                                                                                                                                                | and the                                                        | use of                          | basic bi                  | ology i                     | n engir               | neering               |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unde           | erstand               |        |
| CO2: U                                 | Understa                                                                                                                                                                                | and the                                                        | relatio                         | ı betwe                   | en AI &                     | & healtl              | hcare                 |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unde           | rstand                |        |
| CO3: A                                 | Apply th                                                                                                                                                                                | ne AI co                                                       | oncepts                         | to anal                   | yses &                      | predict               | the me                | edical i                  | maging                            | data             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ap             | ply                   |        |
|                                        | CO3: Apply the AI concepts to analyses & predict the medical imaging data  Apply CO4: Design healthcare devices using AI and its applications in robotic surgery & 3D  printing  Create |                                                                |                                 |                           |                             |                       |                       |                           |                                   |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                       |        |
| MAPP                                   | NG W                                                                                                                                                                                    | TH PI                                                          | ROGR                            | AMME                      | OUT                         | COME                  | S AND                 | ) PRO                     | GRAM                              | ME SP            | ECIFIC               | OUTCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MES            |                       |        |
| COs                                    | PO1                                                                                                                                                                                     | PO2                                                            | PO3                             | PO4                       | PO5                         | PO6                   | PO7                   | PO8                       | PO9                               | PO10             | PO11                 | PO12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSO1           | PSO2                  | PSO:   |
| CO1                                    | -                                                                                                                                                                                       | M                                                              | -                               | -                         | -                           | -                     | S                     | M                         | -                                 | -                | -                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S              | -                     | -      |
| CO2                                    | -                                                                                                                                                                                       | M                                                              | -                               | -                         | M                           | -                     | S                     | M                         | -                                 | -                | -                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S              | M                     | -      |
| CO <sub>3</sub>                        | M                                                                                                                                                                                       | -                                                              | -                               | M                         | S                           | -                     | M                     | M                         | M                                 | -                | -                    | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -              | S                     | -      |

M

M

M

S

CO4 S M S S- Strong; M-Medium; L-Low S

#### **INTRODCTION TO AI:**

A Multifaceted Discipline – Examining Artificial Intelligence – Machine Learning and Data Science – Learning from Real-time, Big Data, Applications of AI in Healthcare – Realizing the Potential of AI in healthcare Data: Data – Types of Data – Big Data Small Data – Meta Data – Healthcare Data Little and Big Use Cases – Evolution of Data and its Analytics – Turning Data into Information Using Big Data – Reasoning – Challenged of Big Data Resistance – Policies and Governance – Fragmentation – Lack of Data Strategy – Visualization – Timeliness of Analysis – Ethics – Data and Information Governance – Deploying a Big Data Project – Big Data Tools

# **MACHINE LEARNING ALGORITHMS:**

Basics – Machine Learning different from Traditional Software Engineering – Machine Learning Basics – How to Perform Machine Learning – Machine Learning Algorithms: Defining the ML project – Common Libraries for Machine Learning – Supervised Learning Algorithms – Decision Tress – Ensembles – Linear Regression – Logistic Regression – SVM – Naïve Bayes – kNN k-Nearest neighbor – Neural Networks – Deep Learning – Unsupervised Learning – Dimensionality Reduction Algorithms – Dimensionality Reduction techniques – Natural Language Processing (NLP): Preprocessing: Lexical Analysis – Syntactic Analysis – Semantic Analysis – Techniques Used within NLP – Genetic Algorithm – Best Practices and Considerations – Use Case: Type 2 Diabetes

# OVERVIEW OF HEALTH CARE DATA:

Type of Healthcare data – Structure of Health care Data – Common Data sources for High Utilizers - Machine Learning Modelling from Health Care Data: Supervised Models – Interpreting supervised Models – Unsupervised Models – Descriptive Analysis of High Utilizers: Threshold-Based Methods for Frequent Emergency Department Users – Temporal Consistency of High Utilizers - Residual Analysis for Identifying High Utilizers: Bata and Methods – Results – Results – Machine Learning Results for High Utilizers – Predicting Hospital Readmissions – Predicting Healthcare expenditure – Clustering Asynchronous Healthcare Encounters Time Series

# OVERVIEW OF HEALTHCARE DATA:

Type of Healthcare data – Structure of Health care Data – Common Data sources for High Utilizers - Machine Learning Modelling from Health Care Data: Supervised Models – Interpreting supervised Models – Unsupervised Models – Descriptive Analysis of High Utilizers: Threshold-Based Methods for Frequent Emergency Department Users – Temporal Consistency of High Utilizers - Residual Analysis for Identifying High Utilizers: Bata and Methods – Results – Results – Machine Learning Results for High Utilizers – Predicting Hospital Readmissions – Predicting Healthcare expenditure – Clustering Asynchronous Healthcare Encounters Time Series

# FUTURE OF HEALTHCARE & CASE STUDIES:

Shifting from Volume to Value – Evidence-Based Medicine – Personalized Medicine – Vision of the Future – Connected Medicine – Medication Adherence – Accessible Diagnostic Tests – Smart Implantables – Digital Health and Therapeutics – Incentivized Wellness – AI – Virtual and Augmented Reality – Blockchain – Robots – Smart Places Case Studies: AI for Imaging of Diabetic Foot Concerns and Prioritization of Referral for Improvements in Morbidity and Mortality – Outcomes of a Digitally Delivered, Low Carbohydrate, Type 2 Diabetes Self-Management Program: 1-Year Results of a Single-Arm – Delivering a Scalable and Engaging Digital Therapy for Epilepsy – Improving Learning Outcomes For Junior Doctors Through the Novel use of Augmented and Virtual Reality – Big Data, Big Ehics: Diagnosing Disease Risk from Patient Data

# TEXT BOOKS

- 1. Machine Learning and AI for Healthcare Big Data for Improved health Outcomes, Arjun Panesar, Apress, 2019
- **2.** Data Driven Approaches for Health Care Machine Learning for Identifying High Utilizers, Chengliang Yang, Chris Detcher, Elizabeth Shenkman, Sanjay Ranka, CRC Press, 2020.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|--------|------------------------|---------------------|--------------|-----------------------------|
| 1.     | Mrs. R. Latha          | Assistant Professor | CSE / AVIT   | rlatha@avit.ac.in           |
| 2.     | R.Bharanidharan        | Professor           | CSE / VMKVEC | bharanidharan@vmkvec.edu.in |

| 17.                                 | AIEC08                                               |                             |                     |                   |                    |          |           |                    |         | (                      | Categor  | y L                                 | T       | P       | Credit                                           |
|-------------------------------------|------------------------------------------------------|-----------------------------|---------------------|-------------------|--------------------|----------|-----------|--------------------|---------|------------------------|----------|-------------------------------------|---------|---------|--------------------------------------------------|
|                                     |                                                      |                             | IN                  | TROD              | UCTIO              | ON TO    | DIGIT     | TAL SY             | YSTEM   | 1                      | EC(PS)   | 3                                   | 0       | 0       | 3                                                |
| The p<br>the ex-<br>combi-<br>conce | xperience                                            | e, to d<br>, sequ<br>plemen | esign a<br>ential c | ny dig<br>ircuits | ital cir<br>and ap | cuits a  | nd sys    | tems. I<br>digital | The cor | urse incl<br>nics. Stu | ludes fu | c design.<br>ndamenta<br>nn learn t | ls of E | Boolean | algebra                                          |
| COUR                                | SE OBJ                                               | ECTI                        | VES                 |                   |                    |          |           |                    |         |                        |          |                                     |         |         |                                                  |
| 1.                                  | To fa                                                | miliariz                    | e with              | various           | Digita             | l IC     |           |                    |         |                        |          |                                     |         |         |                                                  |
| 2.                                  | To understand basic fundamentals of Digital circuits |                             |                     |                   |                    |          |           |                    |         |                        |          |                                     |         |         |                                                  |
| 3.                                  | To prepare for various engineering applications      |                             |                     |                   |                    |          |           |                    |         |                        |          |                                     |         |         |                                                  |
| COUR                                | SE OU                                                | ГСОМ                        | ES                  |                   |                    |          |           |                    |         |                        |          |                                     |         |         |                                                  |
| On the                              | successi                                             | ul com                      | pletion             | of the o          | course,            | studen   | ts will b | e able             | to      |                        |          |                                     |         |         |                                                  |
| CO1:                                | Understa                                             | and the                     | Numbe               | er syste          | m                  |          |           |                    |         |                        |          | Understa                            | and     |         |                                                  |
| CO2:                                | Understa                                             | and Dig                     | gital IC            | and me            | asure t            | heir pe  | rformar   | ice para           | ameters | 1                      |          | Underst                             | and     |         |                                                  |
| CO3:                                | Understa                                             | and the                     | applica             | tion of           | combin             | nationa  | l logic   |                    |         |                        |          | Understa                            | and     |         |                                                  |
|                                     | Perform<br>onics sys                                 |                             |                     |                   |                    | e comb   | ination   | al and             | sequent | ial Digit              | al       | Apply                               |         |         |                                                  |
| CO5:                                | Solve as                                             | ynchro                      | nous se             | quentia           | ıl circui          | ts for s | imple a   | pplicat            | ion     |                        |          | Apply                               |         |         |                                                  |
| <b>CO6:</b>                         | Explain                                              | the app                     | lication            | ıs of diş         | gital ele          | ectronic | es        |                    |         |                        |          | Create                              |         |         |                                                  |
| MAPP                                | ING W                                                | ITH PI                      | ROGR                | AMME              |                    | COME     | S AND     | 1                  | 1       | 1                      |          | OUTCO                               | MES     |         |                                                  |
| COs                                 | PO1                                                  | PO2                         | PO3                 | PO4               | PO5                | PO6      | PO7       | PO8                | PO9     | PO10                   | PO11     | PO12                                | PSO1    | PSO2    | PSO3                                             |
| CO1                                 | S                                                    | M                           | L                   | M                 | -                  | -        | -         | -                  | -       | -                      | -        | L                                   | M       | -       | -                                                |
| CO2                                 | S<br>S                                               | M<br>M                      | L                   | L                 | -                  | -        | -         | -                  | -       | -                      | -        | <br>M                               | -<br>M  | -       | -                                                |
| CO4                                 | S                                                    | -                           | L<br>-              | L<br>M            | -                  |          | _         | -                  | _       | _                      | -        | - IVI                               | M       | -       | -                                                |
| CO5                                 | S                                                    |                             | _                   | M                 | _                  |          | _         | _                  | -       | _                      | -        | <u> </u>                            | -       |         | _                                                |
|                                     | 2                                                    |                             |                     | 111               |                    |          |           |                    |         |                        |          |                                     |         | +       | <del>                                     </del> |

CO6

#### NUMBER SYSTEMS & BOOLEAN ALGEBRA

Decimal, binary, octal, hexadecimal number system and conversion, binary weighted & nonweighted codes & code conversion, signed numbers, 1s and 2s complement codes, Binary arithmetic, Binary logic functions, Boolean laws, truth tables, associative and distributive properties, De-Morgan's theorems, realization of switching functions using logic gates.

#### COMBINATIONAL LOGIC:

Switching equations(Mathematical operations), canonical logic forms, sum of product & product of sums, Karnaugh maps, two, three and four variable Karnaugh maps, simplification of expressions, mixed logic combinational circuits, multiple output functions, Quine Mcluskey Methods for 5 variables. Introduction to combinational circuits, code conversions, decoder, encoder, priority encoder, multiplexers & De-multiplexer, binary adder, subtractor, BCD adder, carry look ahead adder, Binary comparator, Arithmetic Logic Units

# SEQUENTIAL LOGIC & CIRCUITS:

Latch, flip-flops, clocked and edge triggered flip-flops, timing specifications, asynchronous and synchronous counters, counter design, Registers, types of registers. Analysis of simple synchronous sequential circuits, Introduction to Mealy and Moore Circuits.

# INTRODUCTION TO HARDWARE DESCRIPTION LANGUAGE

Introduction to Verilog / VHDL- Structural, Dataflow and Behavioral modeling. Structural, Dataflow and Behavioral modeling of combinational logic circuits (Multiplexer, Demultiplexer, decoder and encoder). Structural, Dataflow and Behavioral modeling of sequential logic circuits (counters and shift registers)

# ASYNCHRONOUS SEQUENTIAL CIRCUITS & ITS APPLICATIONS

Analysis Procedure, Circuits with latches; Design Procedure, Reduction of state and flow table; Race free state assignment; Hazards; ASM chart; Design examples Multiplexing displays - Frequency counters - Time measurements - using the ADC0804 - Slope alone operation, span adjust, zero shift, testing - microprocessor compatible A/D converters.

#### TEXT BOOKS

- 1. Digital Electronics, R P Jain, McGraw Hill, 2017, Second Edition
- 2. Digital Logic and Computer Design, Morris Mano, PHI, 2017 review, Second Edition
- 3. Digital Electronic Principles, Malvino, PHI, 2011-13, Seventh Edition

# REFERENCES

- 1. Digital Design, John F. Wakerly, 4<sup>th</sup> Edition, Pearson/PHI, 2006.
- 2. Digital Fundamentals, Thomas L. Floyd, 8th Edition, Pearson Education Inc, New Delhi, 2003
- 3. Digital Principles and Design, Donald D.Givone, TMH.
- **4.** Digital Electronics, William H. Gothmann, 2<sup>nd</sup> Edition, PHI, 1982.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                 |  |  |  |
|--------|------------------------|---------------------|--------------|-------------------------|--|--|--|
| 1.     | Mrs. R. Latha          | Assistant Professor | CSE / AVIT   | rlatha@avit.ac.in       |  |  |  |
| 2.     | Dr. K. Sasikala        | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |  |  |  |

| 17A           | IEC09       |          |                      |          |          |          |          |          |           | C         | ategory  | L          | T        | P      | Credit  |
|---------------|-------------|----------|----------------------|----------|----------|----------|----------|----------|-----------|-----------|----------|------------|----------|--------|---------|
|               |             |          | EMBEDDED PROGRAMMING |          |          |          |          |          |           | F         | EC(PS)   | 3          | 0        | 0      | 3       |
| PREAN         | <b>IBLE</b> |          |                      |          |          |          |          |          |           | ı         |          | 1 1        |          |        |         |
|               |             |          |                      |          |          |          |          |          |           |           |          | learn the  |          |        |         |
|               |             |          | evelopn              | nent thr | ough a   | practic  | al hands | s-on ap  | proach    | utilizing | industry | design a   | utomatio | on (ED | A) tool |
| and des       |             |          |                      |          |          |          |          |          |           |           |          |            |          |        |         |
| PRERE<br>NIL  | QU151       | IŁ       |                      |          |          |          |          |          |           |           |          |            |          |        |         |
| COURS         | SE OBJ      | ECTI     | VES                  |          |          |          |          |          |           |           |          |            |          |        |         |
| 1.            | To gi       | ve the a | warene               | ess of m | ajor en  | nbedded  | d device | ·s       |           |           |          |            |          |        |         |
| 2.            | To gi       | ve the k | nowled               | lge abo  | ut inter | facing o | devices. |          |           |           |          |            |          |        |         |
| 3.            | To ga       | in knov  | vledge               | on the p | orogran  | nming c  | concepts | for em   | bedded    | l systems | S        |            |          |        |         |
| 4.            | To ga       | in knov  | vledge               | on emb   | edded    | design v | with PIC | Contro   | ollers ar | nd Ardui  | no micro | ocontrolle | rs       |        |         |
| COURS         | SE OU       | ГСОМ     | ES                   |          |          |          |          |          |           |           |          |            |          |        |         |
| On the s      | uccessi     | ul com   | pletion              | of the o | course,  | student  | s will b | e able t | 0         |           |          |            |          |        |         |
| <b>CO1:</b> E | Explain     | embedo   | ded sys              | tem cor  | ncept    |          |          |          |           |           |          | Understa   | nd       |        |         |
| <b>CO2:</b> D | Describe    | e the en | nbedded              | d operat | ting sys | stem     |          |          |           |           |          | Understa   | nd       |        |         |
| CO3: II       | llustrate   | e the ha | rdware               | fundan   | nentals  | of emb   | edded s  | ystem    |           |           |          | Apply      |          |        |         |
| <b>CO4:</b> D | Demons      | trate R  | ΓOS                  |          |          |          |          |          |           |           |          | Apply      |          |        |         |
| CO5: L        | ist the     | develop  | ment t               | ools and | d expla  | in with  | case stu | ıdies    |           |           |          | Understa   | nd       |        |         |
| MAPPI         | NG W        | ITH PI   | ROGR                 | AMME     | OUT      | COME     | S AND    | PROG     | RAMI      | ME SPE    | CIFIC    | OUTCON     | MES      |        |         |
| Cos           | PO1         | PO2      | PO3                  | PO4      | PO5      | PO6      | PO7      | PO8      | PO9       | PO10      | PO11     | PO12       | PSO1     | PSO2   | PSO3    |
| CO1           | S           | M        | L                    | :L       | -        | -        | -        | -        | -         | -         | -        | -          | M        | -      | -       |
| CO2           | -           | -        | -                    | -        | -        | -        | -        | -        | -         | -         | -        | -          | -        | -      | -       |
| CO3           | -           | M        | M                    | M        |          | L        | -        | -        | -         | -         | -        | -          | -        | -      | -       |
| CO4           | -           | M        | M                    | M        | L        | S        | 1        | -        | 1         | -         | -        | -          | -        | -      | -       |
| ~~-           |             |          |                      |          |          |          |          |          |           |           |          | 1          | 3.4      |        |         |

CO5

# PROGRAMMING EMBEDDED SYSTEMS

Embedded Program – Role of Infinite loop – Compiling, Linking and locating – downloading and debugging – Emulators and simulators processor – External peripherals – Memory testing – Flash Memory.

# OPERATING SYSTEM

Embedded operating system – Real time characteristics – Selection process – Flashing the LED – serial ports – Zilog 85230 serial controlled code efficiency – Code size – Reducing memory usage – Impact of C++.

# HARDWARE FUNDAMENTALS

Buses – DMA – interrupts – Built-ins on the microprocessor – Conventions used on schematics – Microprocessor Architectures – Software Architectures – RTOS Architectures – Selecting and Architecture.

#### RTOS

Tasks and Task states – Semaphores – Shared data – Message queues, Mail boxes and pipes – Memory management– Interrupt routines – Encapsulating semaphore and queues – Hard Real-time scheduling – Power saving.

# EMBEDDED SOFTWARE DEVELOPMENT TOOLS

Host and target machines – Linkers / Locators for Embedded Software – Debugging techniques – Instruction set simulators Laboratory tools – Practical example – Source code.

#### TEXT BOOKS

- 1. An Embedded Software Primer, David E.Simon, Pearson Education, 2003.
- 2. Programming Embedded Systems in C and C++, Michael Bass, O'Reilly, 2003.

| S.<br>No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                     |
|-----------|------------------------|---------------------|--------------|-----------------------------|
| 1.        | S. Muthuselvan         | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in      |
| 2.        | Dr. S. Senthilkumar    | Assistant Professor | CSE / VMKVEC | senthilkumars@vmkvec.edu.in |

| 17A           | AIEC10                                                                                                                                                                                  |           | PRO      |          |          | TIFIC    |           | AND      |          |          | Category      | L           | T              | P       | Credit     |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|---------------|-------------|----------------|---------|------------|--|--|--|
|               |                                                                                                                                                                                         |           |          | DES      | SIGN T   | ΓHINK    | ING       |          |          |          | EC(PS)        | 3           | 0              | 0       | 3          |  |  |  |
| PREAN         | MBLE                                                                                                                                                                                    | I         |          |          |          |          |           |          |          | II       |               | II.         |                |         |            |  |  |  |
|               |                                                                                                                                                                                         | oplies to | o every  | day pro  | blems    | in orde  | er to cre | eate hu  | man-ce   | ntered i | nnovatio      | ns. Envisi  | ioned a        | s a col | laborative |  |  |  |
|               |                                                                                                                                                                                         |           |          |          |          |          |           |          |          |          |               |             |                |         | ping, and  |  |  |  |
|               |                                                                                                                                                                                         |           |          |          |          |          |           |          |          |          |               |             |                |         | creating a |  |  |  |
|               |                                                                                                                                                                                         |           |          |          |          |          |           |          |          |          |               |             |                |         | ies and to |  |  |  |
|               | apid pro                                                                                                                                                                                |           |          |          |          |          |           |          |          |          |               | •           | •              |         |            |  |  |  |
|               | EQUISI                                                                                                                                                                                  |           | ,        |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
| NIL           | <b>C</b>                                                                                                                                                                                |           |          |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
| COLIB         | SE OBJ                                                                                                                                                                                  | FCTI      | VFC      |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
| COUN          | SE OD                                                                                                                                                                                   | ECII      | V ES     |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
| _             | Introd                                                                                                                                                                                  | luce stu  | dents to | a disc   | ipline,  | design   | thinkin   | g that e | nhance   | s innov  | ation acti    | vities in t | erms of        | value   | creation,  |  |  |  |
| 1.            |                                                                                                                                                                                         |           |          |          |          |          |           |          |          |          |               |             |                |         | ,          |  |  |  |
|               | speed, and sustainability. Be exposed to architectural styles and views  Strengthen students individual and collaborative capabilities to identify problems/issues/needs, develop sound |           |          |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
| 2.            | hypotheses, collect and analyze appropriate data, and develop ways to collect meaningful feedback in a real-                                                                            |           |          |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
|               | hypotheses, collect and analyze appropriate data, and develop ways to collect meaningful feedback in a real-world environment                                                           |           |          |          |          |          |           |          |          |          |               |             |                |         |            |  |  |  |
| _             |                                                                                                                                                                                         |           |          | nslate   | broadly  | / define | d oppo    | rtunitie | s into a | ctionab  | le innova     | tion possi  | ibilities      | and     |            |  |  |  |
| 3.            |                                                                                                                                                                                         |           | tions fo |          |          |          |           |          |          |          | 10 IIII10 ; W | non poss.   |                |         |            |  |  |  |
| COUR          | SE OU                                                                                                                                                                                   |           |          |          |          |          |           | <u> </u> |          |          |               |             |                |         |            |  |  |  |
| On the s      | successf                                                                                                                                                                                | ul com    | pletion  | of the o | course,  | student  | ts will b | e able   | to       |          |               |             |                |         |            |  |  |  |
|               |                                                                                                                                                                                         |           | sign th  | inking o | can be a | applied  | in a wi   | de rang  | ge of co | ntexts,  | from the      |             | Unde           | rstand  |            |  |  |  |
| persona       | al to the                                                                                                                                                                               | global    |          |          |          |          |           |          |          |          |               |             | Onde           | istana  |            |  |  |  |
| CO2. I        | Understa                                                                                                                                                                                | and how   | v to nle | ace and  | win ac   | a decid  | merc      |          |          |          |               |             | Unde           | rstand  |            |  |  |  |
| CO2. (        | Unucisa                                                                                                                                                                                 | and nov   | v to pie | ase and  | wiii as  | a uesiş  | gners     |          |          |          |               |             | Office         | 15tanu  |            |  |  |  |
| CO3: I        | Initiate a                                                                                                                                                                              | ın attitu | ide of p | layfuln  | ess to a | id desi  | gn thinl  | king     |          |          |               |             | Aj             | pply    |            |  |  |  |
| <b>CO4:</b> U | Use com                                                                                                                                                                                 | puting    | tools a  | nd onli  | ne envi  | ronmen   | its       |          |          |          |               |             | A <sub>l</sub> | ply     |            |  |  |  |
| CO5: A        | Apply y                                                                                                                                                                                 | our skil  | ls in th | inking a | and vis  | ualizing | g image   | s, word  | ls, colo | ur, shap | es etc.       |             | Aj             | ply     |            |  |  |  |
| MAPPI         | ING W                                                                                                                                                                                   | ITH PI    | ROGR     | AMME     | OUT      | COME     | S AND     | PROC     | GRAM     | ME SP    | ECIFIC        | OUTCO       |                |         |            |  |  |  |
| Cos           | PO1                                                                                                                                                                                     | PO2       | PO3      | PO4      | PO5      | PO6      | PO7       | PO8      | PO9      | PO10     | PO11          | PO12        | PSO1           | PSO     | 2 PSO3     |  |  |  |
| CO1           | -                                                                                                                                                                                       | -         | -        | -        | -        | -        | -         | -        | M        | -        | -             | M           | -              | -       | -          |  |  |  |
| CO2           | S                                                                                                                                                                                       | -         | -        | -        | -        | -        | -         | -        | M        | -        |               |             |                |         |            |  |  |  |
| CO3           | -                                                                                                                                                                                       | -         | -        | -        | 1        | _        | _         | -        | _        | -        | -             | -           | _              | L       | L          |  |  |  |

M

M

M

L

L

L

L

CO4

CO5

S

S

S- Strong; M-Medium; L-Low

S

S

# STAGES OF THINKING:

Why Design Thinking, The Design Process, Stages of Design Thinking, Research- Identifying drivers, Information gathering, Target groups, Samples and feedback

# **IDEA GENERATION:**

Idea generation- Basic design, Themes of thinking, Inspiration and References, Brainstorming, Value, Inclusion, Sketching, Presenting ideas, Refinement - Thinking in images, Thinking in signs, Appropriation, Humour, Personification, Visual metaphors, Modification, Thinking in words, Words and language, Type 'faces', Thinking in shapes, Thinking in proportions, Thinking in color

#### **REFINEMENT:**

Thinking in images – Thinking in signs – Appropriation – Humour – Personification – Visual metaphors – Modification – Thinking in words – Words and language – Type 'faces' – Thinking in shapes – Thinking in proportions – Thinking in colour

#### **PROTOTYPING:**

Developing designs, 'Types' of prototype, Vocabulary, Implementation-Format, Materials, Finishing, Media, Scale, Series/Continuity

### DESIGNING TO WIN/ PLEASE:

Formula One Designing – Radical innovation – City / Car Design – Learning from Failures – Design Process and Working Methods – Product Innovations – Learning from Failures – Design Process and Working Methods

#### TEXT BOOKS

- 1. Designing for Growth: A Design Thinking Tool Kit for Managers, Jeanne Liedtka and Tim Ogilvie, Columbia University Press, 2011
- 2. Design Thinking: Understanding How Designers Think and Work, Niger Cross, BERG 2011

# REFERENCES

- **1.**The Art of Innovation: Lessons in Creativity From IDEO, Tom Kelly, America's Leading Design Firm (Profile Books, 2002)
- **2.** Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Tim Brown, Harper Business, 2009
- **3.** The Design of Business: Why Design Thinking Is The Next Competitive Advantage, Roger Martin, (Harvard Business Review Press, 2009)
- **4.** Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Alexander Osterwalder and Yves Pigneur, John Wiley and Sons, 2010
- 5. Design Thinking: Understanding How Designers Think and Work, Nigel Cross, Bloomsbury Academic, 2011

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                 |
|--------|------------------------|---------------------|--------------|-------------------------|
| 1.     | S. Muthuselvan         | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in  |
| 2.     | Dr. K. Sasikala        | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 17AIEC11 | INTRODUCTION TO ROBOTICS | Category | L | T | P | Credit |
|----------|--------------------------|----------|---|---|---|--------|
|          |                          | EC(PS)   | 3 | 0 | 0 | 3      |
| PREAMBLE |                          |          |   |   |   |        |

This course will help us to study the basic concepts of robotics and their design and enable the students to understand about the working concepts of robot and its role in automation

# PREREQUISITE

NIL

# COURSE OBJECTIVES

| 1. | To understand the basics of robot                    |
|----|------------------------------------------------------|
| 2. | To understand the End effectors and robot controls   |
| 3. | To understand the Robot Transformations and Sensors  |
| 4. | To understand the Robot cell design and applications |
| 5. | To understand the Micro/Nano robotic systems         |

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

| <b>CO1:</b> Enlighten the students about the fundamentals of robotic systems | Understand |
|------------------------------------------------------------------------------|------------|
| CO2: Apply the basic concepts of robot                                       | Apply      |
| CO3: Analyze End effectors and robot control                                 | Analyse    |
| CO4: Formulate Robot Transformations and Sensors                             | Create     |
| CO5: Develop Robot cell design and applications                              | Create     |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | -   | M   | -   | -   | -   | L   | -   | -   | -   | -    | -    | 1    | -    | -    | -    |
| CO2 | -   | M   | -   | -   | -   | L   | -   | -   | -   | -    | -    | ı    | -    | -    | -    |
| CO3 | -   | M   | -   | S   | -   | -   | -   | S   | -   | -    | -    | ı    | ı    | -    | ı    |
| CO4 | -   | M   | -   | -   | -   | L   | 1   | 1   | -   | -    | -    | -    | -    | -    | 1    |
| CO5 | -   | M   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |

#### INTRODUCTION

Robot anatomy-Definition, law of robotics, History and Terminology of Robotics-Accuracy and repeatability of Robotics-Simple problems-Specifications of RobotSpeed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systemsRobot Drive systems-Hydraulic, Pneumatic and Electric system.

# END EFFECTORS AND ROBOT CONTROLS

Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot-Control system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDT-Motion Interpolations-Adaptive control.

#### ROBOT TRANSFORMATIONS AND SENSORS

Robot kinematics-Types- 2D, 3D Transformation-Scaling, Rotation, Translation- Homogeneous coordinates, multiple transformation-Simple problems. Sensors in robot – Touch sensors-Tactile sensor – Proximity and range sensors – Robotic vision sensor-Force sensor-Light sensors, Pressure sensors.

#### ROBOT CELL DESIGN AND APPLICATIONS

Robot work cell design and control-Sequence control, Operator interface, Safety monitoring devices in Robot-Mobile robot working principle, actuation using MATLAB, NXT Software Introductions-Robot applications- Material handling, Machine loading and unloading, assembly, Inspection, Welding, Spray painting and undersea robot.

# MICRO/NANO ROBOTICS SYSTEM

Micro/Nanorobotics system overviewScaling effect-Top down and bottom up approach- Actuators of Micro/Nano robotics syst+emNanorobot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nanorobot in targeted drug delivery system

#### REFERENCES

- 1. S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education., 2009
- 2. Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012
- **3.** Richard D. Klafter, Thomas .A, Chri Elewski, Michael Negin, Robotics Engineering an Integrated Approach, Phi Learning., 2009.
- 4. Francis N. Nagy, Andras Siegler, Engineering foundation of Robotics, Prentice Hall Inc., 1987.
- **5.** P.A. Janaki Raman, Robotics and Image Processing anIntroduction, Tata McGraw Hill Publishing company Ltd., 1995
- **6.** Carl D. Crane and Joseph Duffy, Kinematic Analysis of Robot manipulators, Cambridge University press, 2008.
- 7. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987
- **8.** Craig. J. J. "Introduction to Robotics mechanics and control", Addison-Wesley, 1999. 9.Ray Asfahl. C., "Robots and Manufacturing Automation", John Wiley & Sons Inc.,1985. 10.Bharat Bhushan., "Springer Handbook of Nanotechnology", Springer, 2004.
- 9. Julian W. Gardner., "Micro sensor MEMS and Smart Devices", John Wiley & Sons

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|--------|---------------------|---------------------|--------------|-------------------------|
| 1.     | K.Karthik           | Associate Professor | CSE / AVIT   | karthik@avit.ac.in      |
| 2.     | Dr.K.Sasikala       | Associate Professor | CSE / VMKVEC | sasikalak@vmvkec.edu.in |

| 17AIEC12 | DIGITAL IMAGE PROCESSING | Category | L | T | P | Credit |
|----------|--------------------------|----------|---|---|---|--------|
|          |                          | EC(PS)   | 3 | 0 | 0 | 3      |

#### PREAMBLE

This course provides an introduction to the fundamental concepts and general principles of image processing. It covers the key stages of digital image processing techniques. Students will also get an opportunity to implement the algorithms that are specific to real time image processing systems/applications

# PREREQUISITE

NIL

# COURSE OBJECTIVES

- 1. To learn digital image fundamentals
- 2. To be exposed to image processing techniques
- 3. To be familiar with segmentation techniques and image compression
- **4.** To understand applying image processing algorithms to real problems

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

| CO1: Understand the need for image transforms and their properties                                                   | Understand |
|----------------------------------------------------------------------------------------------------------------------|------------|
| CO2: Apply image enhancement and restoration techniques                                                              | Apply      |
| CO3: Use the techniques, skills, and modern engineering tools necessary for engineering application to real problems | Apply      |
| CO4: Develop algorithm for image segmentation, image compression & coding                                            | Create     |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | L   | -   | L   | M   | 1   | -   | L   | M   | -    | -    | L    | S    | -    | -    |
| CO2 | M   | L   | L   | L   | M   | L   | L   | L   | M   | L    | -    | M    | S    | -    | -    |
| CO3 | M   | L   | L   | L   | M   | L   | L   | L   | M   | L    | -    | M    | -    | M    | -    |
| CO4 | M   | L   | L   | L   | M   | L   | L   | L   | M   | L    | -    | Н    | -    | M    | M    |

#### DIGITAL IMAGE FUNDAMENTALS

Light and Electromagnetic spectrum, Components of Image processing system, Image formation and digitization concepts, Neighbours of pixel adjacency connectivity, Distance measures, Color fundamentals, Color models.

# IMAGE PROCESSING TECHNIQUE

Image Enhancements: In spatial domain: Basic gray level transformations, Histogram processing, Using arithmetic/Logic operations, smoothing spatial filters, Sharpening spatial filters. In Frequency domain: Introduction to the Fourier transform and frequency domain concepts, smoothing frequency-domain filters, Sharpening frequency domain filters.

#### IMAGE RESTORATION

Image Restoration: Various noise models, image restoration using spatial domain filtering, image restoration using frequency domain filtering, Estimating the degradation function, Inverse filtering.

#### IMAGE SEGMENTATION

Detection of Discontinuities, Edge linking and boundary Description: Local processing, Global processing, Hough transform, Thresholding & Region based segmentation, Segmentation by Morphological watersheds, Object representation, description and recognition

# IMAGE COMPRESSION

Image compression model, Fundamental coding theorem, Lossless compression, Lossy compression

#### TEXT BOOKS

- 1. Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods, 3<sup>rd</sup> Edition, Prentice Hall India, 2002
- 2. Fundamentals of Digital Image Processing, A K Jain, Prentice Hall India, 2008.

#### REFERENCES

- 1. Digital Image Processing, S. Jayaraman, S. Esakkirajan, T. Virakumar, McGraw Hill, 3<sup>rd</sup> Edition, 2010.
- 2. Digital Image Processing, Chanda Mazumdar, 3<sup>rd</sup> Edition, Prentice Hall, India, 2000.

| S. No. | Name of the Faculty | Designation               | Department   | Mail ID                  |
|--------|---------------------|---------------------------|--------------|--------------------------|
| 1.     | Dr.R.Jaichandran    | Associate Professor(G-II) | CSE / AVIT   | rjaichandran@avit.ac.in  |
| 2.     | M. Annamalai        | Assistant Professor       | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 17A             | AIEC13   |                      |           |          |          |          |           |           |          |          | Category                 | $\mathbf{L}$ | T        | P        | Credit   |
|-----------------|----------|----------------------|-----------|----------|----------|----------|-----------|-----------|----------|----------|--------------------------|--------------|----------|----------|----------|
|                 |          |                      | TI        | HEORY    | Y OF C   | COMPU    | UTATI     | ON        |          | _        | EC(PS)                   | 3            | 0        | 0        | 3        |
| PREAN           |          |                      |           |          |          |          |           |           |          |          |                          |              | <u>I</u> |          |          |
|                 |          |                      |           |          |          |          |           |           |          |          | ith their v<br>d pattern |              |          |          | of forma |
|                 | EQUISI   |                      | coginz    | C18. 111 | is can t | e appii  | icu iii u | Csigiiiii | ig comp  | mers an  | u pattern                | iccogiiii.   | ion syst | CIII     |          |
| NIL             | -        |                      |           |          |          |          |           |           |          |          |                          |              |          |          |          |
| COURS           | SE OBJ   | IECTI                | VES       |          |          |          |           |           |          |          |                          |              |          |          |          |
| 1.              |          | ovide ii<br>il langu |           | tion to  | some o   | f the ce | entral id | leas of t | theoreti | ical com | puter scie               | ence fror    | n the pe | erspecti | ve of    |
| 2.              | To in    | troduce              | the fur   | damen    | tal cond | cepts of | f forma   | l langua  | ages, gi | rammars  | s and auto               | mata the     | eory     |          |          |
| 3.              | Class    | ify mac              | hines b   | y their  | power    | to reco  | gnize la  | ınguage   | es       |          |                          |              |          |          |          |
| 4.              | Empl     | oy finit             | e state i | machine  | es to so | lve pro  | blems i   | in comp   | outing   |          |                          |              |          |          |          |
| 5.              | To un    | derstan              | d deter   | ministi  | e and n  | on-dete  | erminist  | tic mac   | hines.   |          |                          |              |          |          |          |
| 6.              | To un    | derstan              | d the d   | ifferenc | es betw  | veen de  | ecidabil  | ity and   | un-dec   | idabilit | y                        |              |          |          |          |
| COUR            | SE OU    | ГСОМ                 | ES        |          |          |          |           |           |          |          |                          |              |          |          |          |
| On the s        | successi | ful com              | pletion   | of the o | course,  | studen   | ts will b | be able   | to       |          |                          |              |          |          |          |
|                 |          | and the              | concep    | t of abs | stract m | achine   | s and th  | neir pov  | wer to r | ecogniz  | e the                    |              | Under    | rstand   |          |
| languag         |          |                      |           |          |          |          |           |           |          |          |                          |              |          |          |          |
| CO2: I          | Distingu | iish bet             | ween d    | ecidabil | lity and | l un-de  | cidabili  | ty        |          |          |                          |              | Unde     | rstand   |          |
| CO3: (          | Gain pro | oficienc             | y with    | mathen   | natical  | tools ar | nd form   | al meth   | nods     |          |                          |              | Under    | rstand   |          |
| CO4: I          | Employ   | finite s             | tate ma   | chines   | for mod  | deling a | and solv  | ving co   | mputin   | g proble | ems                      |              | Ap       | ply      |          |
| CO5: I          | Design o | context              | free gra  | ammars   | for for  | mal la   | nguages   | S         |          |          |                          |              | Cre      | eate     |          |
| MAPPI           | ING W    | ITH PI               | ROGR      | AMME     | OUT      | COME     | S AND     | PRO       | GRAM     | ME SP    | ECIFIC                   | OUTCO        | OMES     |          |          |
| COs             | PO1      | PO2                  | PO3       | PO4      | PO5      | PO6      | PO7       | PO8       | PO9      | PO10     | PO11                     | PO12         | PSO1     | PSO2     | PSO3     |
| CO1             | -        | S                    | M         | ı        | M        | ı        | _         | _         | -        | -        | -                        | M            | S        | M        | -        |
| CO2             | _        | S                    | M         | -        | M        | _        | _         | -         | _        | -        |                          | M            | S        | M        | _        |
| CO3             | -        | -                    | M         | -        | S        | -        | -         | -         | -        | -        | -                        | M            | -        | M        | -        |
| CO4             | S        | M                    | M         | -        | M        | -        | -         | -         | -        | M        | M                        | M            | -        | M        | S        |
| CO <sub>5</sub> | 1        | S                    | M         | 1        | M        | _        | _         | _         | _        | _        | _                        | M            | M        | _        | _        |

#### INTRODUCTION

Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with €- moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA"s with and without €-moves – Equivalence of finite Automaton.

# REGULAR EXPRESSIONS

Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Properties of Regular Languages Pumping Lemma for Regular Languages, Applications of the Pumping Lemma, Closure Properties of Regular Languages, Decision Properties of Regular Languages.

# **CONTEXT-FREE GRAMMARS:**

Chomsky hierarchy of languages. Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. Push Down Automata,: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.

#### TURING MACHINES

Definitions of Turing machines – Models – Computable languages and functions –Techniques for Turing machine construction – Multi head and Multi tape Turing Machines – The Halting problem – Partial Solvability – Problems about Turing machine

# **UN-DECIDABILITY:**

A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Post's Correspondence Problem, Other Undecidable Problems, Intractable Problems: The Classes P and NP, An NP Complete Problem

#### TEXT BOOKS

- 1. Introduction to Automata Theory, Languages, and Computation, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education, 3<sup>rd</sup> Edition.
- 2. Introduction to the Theory of Computation, Michael Sipser, Cengage Learning, 3<sup>rd</sup> Edition.

# REFERENCES

- 1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
- 3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
- **4.** Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson Education.
- 5. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2<sup>nd</sup> Edition, PHI.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                    |
|--------|---------------------|---------------------|--------------|----------------------------|
| 1.     | Dr. Nitisha         | Associate Professor | CSE / AVIT   | nitishaaggarwal@avit.ac.in |
| 2.     | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in       |

| 17 <i>A</i> | AIEC14              |           | GENE     | TIC A    |          |          |           | U <b>ZZY</b> I | LOGIC    | C         | Category  | y L        | T        | P        | Credit   |
|-------------|---------------------|-----------|----------|----------|----------|----------|-----------|----------------|----------|-----------|-----------|------------|----------|----------|----------|
|             |                     |           |          |          | S        | YSTE     | MS        |                |          |           | EC(PS)    | 3          | 0        | 0        | 3        |
|             | ourse w<br>ques usi | ng Gen    |          |          |          |          |           | ıl Neura       | al Netw  | orks (A   | ANNs), F  | uzzy logio | c (FL) a | nd optir | mizatior |
| NIL         |                     |           |          |          |          |          |           |                |          |           |           |            |          |          |          |
| COUR        | SE OBJ              | ECTI      | VES      |          |          |          |           |                |          |           |           |            |          |          |          |
| 1.          | To int              | roduce    | the ide  | as of fu | zzy set  | s, fuzzy | y logic   | and use        | of heu   | ristics b | ased on l | numan ex   | perience | e        |          |
| 2.          | appro               | priate r  | ules for | inferer  | nce syst | ems      |           |                |          |           | •         | s and gen  |          |          |          |
| 3.          | learni              | ng        |          | ematica  | al backş | ground   | for car   | rying o        | ut the o | ptimiza   | tion asso | ciated wit | h neura  | l networ | k        |
| COUR        | SE OU               | ГСОМ      | ES       |          |          |          |           |                |          |           |           |            |          |          |          |
| On the      | successf            | ul com    | pletion  | of the o | course,  | student  | ts will t | e able         | to       |           |           |            |          |          |          |
| CO1: 1      | dentify             | and sel   | ect a su | itable S | Soft Co  | mputin   | g techn   | ology t        | o solve  | the pro   | blem      | Understa   | and      |          |          |
| CO2: 1      | Design a            | neural    | netwo    | rk to so | lve any  | proble   | m         |                |          |           |           | Create     |          |          |          |
| CO3: 1      | Design f            | uzzy co   | ontrolle | r syster | ns       |          |           |                |          |           |           | Create     |          |          |          |
| CO4: 0      | Construc            | ct a solu | ution an | ıd imple | ement a  | Soft C   | Comput    | ing solu       | ition    |           |           | Create     |          |          |          |
| MAPP        | ING W               | ITH PI    | ROGRA    | AMME     | OUT      | COME     | S AND     | PROC           | GRAM     | ME SP     | ECIFIC    | OUTCO      | MES      |          |          |
| COs         | PO1                 | PO2       | PO3      | PO4      | PO5      | PO6      | PO7       | PO8            | PO9      | PO10      | PO11      | PO12       | PSO1     | PSO2     | PSO3     |
| CO1         | -                   | -         | -        | -        | -        | -        | -         | -              | -        | -         | -         | -          | M        | -        | -        |
| CO2         | L                   | -         | -        | -        | -        | -        | -         | S              | L        | M         | -         | -          | M        | -        | -        |

L

M

M

Н

S

M

S

S- Strong; M-Medium; L-Low

L

M

M

CO3

CO4

#### INTRODUCTION TO BNN

Neural Networks: Introduction to Biological Neural Networks: Neuron physiology, Neuronal diversity, specification of the brain, the eye's Neural Network. Artificial Neural Network Concepts: Neural attributes, modeling learning in ANN, characteristics of ANN, ANN topologies, learning algorithm

#### NETWORK PARADIGM

Neural Network Paradigm: MeCulloch-Pitts, Model, the perception, Backpropagation networks. Associative Memory Adaptive Resonance (ART) paradigm, Hopfield Model, Competitive learning Model, Kohonen SelfOrganizing Network

#### **FUZZY SETS**

Fuzzy Logic: Introduction to Fuzzy sets: Fuzzy set theory Vs Probability Theory, classical set theory, properties of Fuzzy sets, Operation on Fuzzy sets. Fuzzy relations, Operations of Fuzzy relation, the extension principle. Fuzzy Arithmetic

# APPROXIMATE REASONING

Approximate reasoning: Introduction, linguistic variables, Fuzzy proposition, Fuzzy if-then rules. Fuzzy Reasoning – Fuzzy Inference Systems – Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models – Input Space Partitioning and Fuzzy Modeling

# GENETIC ALGORITHMS & HYBRID SYSTEMS

Genetic Algorithm – Genetic Modelling - Hybrid systems: Integration of Neural Networks, Fuzzy logic and Genetic Algorithms – GA based backpropagation networks – Fuzzy backpropagation networks – Simplifies Fuzzy ARTMAP - Fuzzy Associative Memories – Fuzzy Logic controlled Genetic systems

# TEXT BOOKS

- 1. Introduction to Artificial Neural Systems, Jacek M. Zurada, Jaico Publishing House, 1994.
- 2. Neural Network, Fuzzy Logic and Genetic Algorithm, S. Rajshekahran, G.A. Vijaylaxmi Pai, PHI Learning Pvt. Ltd, 2003.

### REFERENCES

- 1. Fuzzy sets & fuzzy logic, George J Klir, B. Yuan, PHI, 1995...
- **2.** Swarm Intelligence: From Natural to Artificial Systems, E. Bonabeau, M. Dorigo, and G. Theraulaz, Oxford University Press, 1999.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                    |
|--------|---------------------|---------------------|--------------|----------------------------|
| 1.     | Dr. Nitisha         | Associate Professor | CSE / AVIT   | nitishaaggarwal@avit.ac.in |
| 2.     | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in       |

| 17AIEC15            | OPERATE A TRONG IN MACHINE LEADING                       | Category      | L        | Т      | P      | Credit       |
|---------------------|----------------------------------------------------------|---------------|----------|--------|--------|--------------|
|                     | OPTIMIZATION IN MACHINE LEARNING                         | EC(PS)        | 3        | 0      | 0      | 3            |
| PREAMBLE            |                                                          | •             |          | ,      | ,      |              |
| This course introdu | uces a range of machine learning models and optimization | tools that ar | e used t | o appl | y thes | se models in |

practice. For the students with some ML background this course will introduce what lies behind the optimization tools often used as a black box as well as an understanding of the trade-offs of numerical accuracy and theoretical and empirical complexity. Through this course the students with some optimization background will introduce a variety of applications arising in machine learning and statistics as well as novel optimization methods targeting these applications

# PREREQUISITE

**NIL** 

# COURSE OBJECTIVES

- 1. Introduces a general mathematical concept of optimization
- 2. Skills the students to understand important mathematical models used in computer science branch
- 3. Helps to understand the in-depth functioning of the algorithms
- Helps to choose the methods in order to improve their performances

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

| CO1: Understand the basic concepts in Optimization of Machine Learning algorithms | Understand |
|-----------------------------------------------------------------------------------|------------|
| CO2: Understand the usage of various methods of Convex Optimization               | Understand |
| CO3: Familiarize with the various Lagrangian methods in Machine Learning          | Understand |
| CO4: Familiarize with the various Newton-type and Robust Optimization methods     | Understand |
| CO5: Familiarize with the methods to improve the performance of the algorithm     | Understand |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | -   | -   | M   | -   | 1          | -   | M   | -    | -    | M    | M    | -    | -    |
| CO2 | S   | M   | -   | ı   | M   | -   | -          | -   | M   | -    | -    | M    | M    | -    | -    |
| CO3 | S   | M   | -   | -   | M   | -   | 1          | 1   | M   | -    | -    | M    | M    | -    | -    |
| CO4 | S   | M   | 1   | 1   | M   | -   | -          | 1   | M   | -    | -    | M    | M    | -    | -    |
| CO5 | S   | M   | -   | 1   | M   | -   | -          | -   | M   | -    | -    | M    | M    | -    | -    |

#### INTRODUCTION: OPTIMIZATION AND MACHINE LEARNING

Support Vector Machines – Regularized Optimization Convex Optimization with Sparsity-Inducing Norms: Generic Methods – Proximal Methods – Coordinate Descent Algorithms – Reweighted-t2 Algorithms – Working-set Methods – Quantitative Evaluation – Extensions – Interior-Point Methods for Large-Scale Cone Programming: Primal-Dual Interior-Point Methods – Linear and Quadratic programming – Second-Order Cone Programming – Semidefinite Programming

# METHODS FOR CONVEX OPTIMIZATION:

Incremental Subgradient-Proximal Methods – Convergence for Methods with Cyclic Order – Convergence for Methods with Randomized Order – Applications – First-Order Methods for Nonsmooth Convex Large-Scale Optimization: Mirror Decent Algorithm: Minimizing over a Simple Set – Problems with Functional Constraints – Minimizing Strongly Convex Functions – Mirror Decent Stochastic Approximation - Mirror Descent for Convex-Concave Saddle-Point Problems – Setting up a Mirror Descent Method – First-Order Methods for Nonsmooth Convex Large-Scale Optimizatio II: Saddle-Point Reformulations of Convex Minimization Problems – Mirror-Pros Algorithm – Accelerating First Order Methods by Randomization – Notes and Remarks

# LAGRANGIAN METHODS IN MACHINE LEARNING:

Introduction – Regularized Risk Minimization – Multiple Kernel Learning – Map Inference in graphical Models – Dual Decomposition for Inference: Motivation Applications – Ducal Decomposition and Langrangian Relaxation – Subgradient Algorithms – Block Coordinate Descent Algorithms – Relations to Linear Programming Relaxation – Decoding: Finding the MAP Assignment – Augmented Lagrangian Methods for Learning, Selecting and Combining Features – Proximal Minimization Algorithm – Ducal Augmented Lagrangian (DAL) Algorithm – Convex Optimixation Approach to Regret Minimization: The RFTL Algorithm and Its Analysis – The "Proximal-Dual" Approach – Convexity of Loss Functions – Applications

# NEWTON -TYPE METHODS AND ROBUST OPTIMIZATION

Projected Newton-type Methods – Two-Metric Projection Methods – Inexact Projection Methods – Toward Nonsmooth Objectives – Interior-Point Methods in Machine Learning: Background – Polynomial Complexity Result – Interior-Point Methods for Machine Learning – Accelerating Interior-Point Methods – The Tradeoffs of Large-Scale Learning: Approximate Optimization – Asymptotic Analysis – Robust Optimization in Machine Learning – Background on Robust Optimization – Robust Optimization and Regularization – Robustness and Consistency – Robustness and Generalization

# **METHODS TO IMPROVE PERFORMANCE:**

Optimization Versus Learning – Building a Model of the Gradients – The Relative Roles of the Covariance and the Hessian – A Second Order of the Gradients - An Efficient Implementation of Online Consensus Gradient TONGA – Bandit View on Noisy Optimization – Concentration Inequalities – Discrete Optimization – Online Optimization – Optimization Methods for Sparse Inverse Covariance Selection – Block Coordinate Descent Methods – Alternating Linearization Methods – Remarks on Numerical Performance - A Pathwise Algorithm for Covariance Selection: Covariance Selection – Algorithm – Numerical results – Outline Covariance Selection

#### TEXT BOOKS

1. Suvrit Sra, Sebastaian Nowozin, Stephen J. Wright, Optimization for Machine Learning, The MIT Press, 2012.

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                |
|--------|---------------------|---------------------|--------------|------------------------|
| 1.     | S. Muthuselvan      | Assistant Professor | CSE / AVIT   | muthuselvan@avit.ac.in |
| 2.     | T.Geetha            | Assistant Professor | CSE / VMKVEC | geetha@vmkvec.edu.in   |

| 17A                        | AIEC16                                                                                    |            | PA        | TTER      |           |           |           | AND      |          |          | Category      | y L                                    | T         | P (        | Credit    |
|----------------------------|-------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|---------------|----------------------------------------|-----------|------------|-----------|
|                            |                                                                                           |            |           | MAC       | HINE      | LEAR      | NING      |          |          |          | EC(PS)        | 3                                      | 0         | 0          | 3         |
| PREAN                      | MBLE                                                                                      | I          |           |           |           |           |           |          |          | I        |               |                                        | <u> </u>  | l          |           |
| moder<br>make t<br>the fie | n proble<br>the stud<br>ld.                                                               | ems. It is | helps to  | make      | the stud  | lents ic  | lentify   | where,   | when a   | nd how   | pattern r     | nd its rel<br>recognitio<br>exts as we | n can b   | e applied  | l. It wil |
| PKEKI<br>NIL               | EQUISI                                                                                    | IL         |           |           |           |           |           |          |          |          |               |                                        |           |            |           |
| COUR                       | SE OBJ                                                                                    | ECTI       | VES       |           |           |           |           |          |          |          |               |                                        |           |            |           |
| 1.                         | To stu                                                                                    | ıdy stat   | istic, pa | attern re | ecogniti  | on, par   | ametric   | e approa | aches to | o study  | parametri     | ic discrim                             | inate fu  | nctions.   |           |
| 2.                         | To study nonparametric classification, feature extraction, pattern recognition algorithms |            |           |           |           |           |           |          |          |          |               |                                        |           |            |           |
| 3.                         | To pro                                                                                    | ovide k    | nowled    | ge abou   | ıt statis | tical, c  | lassific  | ation, u | nsuper   | vised an | d superv      | ised class                             | ification | ı, cluster | ring.     |
| COUR                       | SE OU                                                                                     | ГСОМ       | ES        |           |           |           |           |          |          |          |               |                                        |           |            |           |
| On the                     | successf                                                                                  | ul com     | pletion   | of the o  | course,   | student   | ts will b | e able   | to       |          |               |                                        |           |            |           |
|                            | Understa<br>ex proba                                                                      |            |           |           |           |           |           |          |          | in relat | ively         | Apply                                  |           |            |           |
|                            | Understa<br>Jues like                                                                     |            |           |           | nd class  | ify the   | system    | using    | non par  | ametric  |               | Apply                                  |           |            |           |
| perforn                    | nance                                                                                     | ·          |           |           | •         | •         |           | ·        |          |          | classifier    | Analyse                                |           |            |           |
|                            | Design serns that                                                                         |            |           | gorithm   | s for pa  | attern re | ecognit   | ion, wi  | th focus | s on seq | uences        | Create                                 |           |            |           |
| MAPP                       | ING W                                                                                     | ITH PI     | ROGRA     | AMME      | OUT       | COME      | S AND     | PRO(     | GRAM     | ME SP    | <b>ECIFIC</b> | OUTCO                                  | MES       |            |           |
| COs                        | PO1                                                                                       | PO2        | PO3       | PO4       | PO5       | PO6       | PO7       | PO8      | PO9      | PO10     | PO11          | PO12                                   | PSO1      | PSO2       | PSO3      |
| CO1                        | S                                                                                         | S          | S         | -         | S         | -         | -         | M        | M        | -        | M             | M                                      | -         | S          | -         |
| CO2                        | S                                                                                         | S          | S         | -         | S         | -         | -         | M        | M        | -        | M             | M                                      | -         | S          | -         |
| CO3                        | S                                                                                         | S          | S         | -         | S         | -         | -         | M        | M        | -        | M             | M                                      | -         | S          | -         |
| ~ ~ .                      | . ~                                                                                       | ~          | ~         |           | ~ !       | l l       |           |          |          |          |               |                                        |           |            |           |

M

M

M

M

S

CO4

# INTRODUCTION

Machine Perception, an Example, Pattern Recognition Systems, The Design Cycle, Learning and Adaption. Recognition with strings, grammatical methods, Rule based Methods.

# BAYESIAN DECISION THEORY

Introduction, Bayesian Decision Theory-Continuous Features, Minimum-Error-Rate Classification, Classifiers, Discriminant Functions, and Decision Surfaces, The Normal Density, Discriminant Functions for the Normal Density, Error Probabilities and Integrals, Error Bounds for Normal Densities, Bayes Decision Theory-Discrete Features, Missing and Noisy Features, Bayesian Belief Networks, Compound Bayesian Decision Theory and Context.

# MAXIMUM-LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION

Introduction, Maximum-Likelihood Estimation, Bayesian Estimation, BayesianParameter Estimation: Gaussian Case, Bayesian Parameter Estimation: General Theory, Sufficient Statistics, Problems of Dimensionality, Component Analysis and Discriminants, Expectation Maximization (EM), Hidden Markov Models.

# NONPARAMETRIC TECHNIQUES

Introduction, Density Estimation, Parzen Windows, Kn— Nearest-Neighbors Estimation, the Nearest-Neighbor Rule, Metrics and Nearest-Neighbor Classification, Fuzzy Classification, Reduced Coulomb Energy Networks, Approximations by Series Expansions.

# UNSUPERVISED LEARNING AND CLUSTERING

Introduction, Mixture Densities and Identifiability, Maximum-Likelihood Estimates, Application to Normal Mixtures, Unsupervised Bayesian Learning, Data Description and Clustering, Criterion Functions for Clustering, Iterative Optimization, Hierarchical Clustering, the Problem of Validity, On-line Clustering, Graph-Theoretic Methods, Component Analysis, Low Dimensional Representations and Multidimensional Scaling (MDS)

# TEXT BOOKS

- 1. Pattern Classification and Scene Analysis, R. O. Duda, P. E.Hart, Pearson Education, 2002.
- 2. Pattern Classification, Earl Gose, TMH 1998.
- 3. Syntactic Methods in Pattern Recognition, K. C. Fu, Academic Press, 1980.

#### REFERENCES

- 1. Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, John Wiley, 2001.
- 2. Pattern Recognition, S.Theodoridis and K.Koutroumbas, Academic Press, 4<sup>th</sup> Edition, 2009.
- 3. Pattern Recognition and Machine Learning, C.M.Bishop, Springer, 2006.

| S. No. | Name of the Faculty | Designation         | Department   | Mail<br>ID                   |
|--------|---------------------|---------------------|--------------|------------------------------|
| 1.     | K.Karthik           | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in           |
| 2.     | M. Annamalai        | Assistant Professor | CSE / VMKVEC | annamalaim@vmkvec.ed<br>u.in |

| 17A                   | AIEC17                                                            |          | KERN     | IEL M       |           |          |          | CHINE    |          |          | Category  | y L              | Т        | P        | Credit |
|-----------------------|-------------------------------------------------------------------|----------|----------|-------------|-----------|----------|----------|----------|----------|----------|-----------|------------------|----------|----------|--------|
|                       |                                                                   |          |          |             | LEAF      | RNING    |          |          |          |          | EC(PS)    | 3                | 0        | 0        | 3      |
| PREAN                 | MBLE                                                              | <u> </u> |          |             |           |          |          |          |          | <u> </u> |           |                  | <u> </u> | <b>_</b> |        |
|                       |                                                                   |          |          |             |           |          |          |          |          |          |           | nachine l        |          |          |        |
|                       |                                                                   |          |          |             |           |          |          |          |          |          |           | sources a        |          |          |        |
|                       |                                                                   |          |          |             |           |          |          |          |          |          |           | models. methods. | The stu  | ient kno | ws now |
|                       | EQUISI                                                            |          | is seque | , iiccs, ii | icrarcii  | ics and  | grapiis  | can oc   | tackice  | a tinoug | ii keinei | metrous.         |          |          |        |
| NIL                   | - 20101                                                           |          |          |             |           |          |          |          |          |          |           |                  |          |          |        |
| COUR                  | SE OBJ                                                            | JECTI    | VES      |             |           |          |          |          |          |          |           |                  |          |          |        |
| 1.                    | To fa                                                             | miliariz | e on the | e conce     | pts of k  | kernel b | ased m   | achine   | learnin  | g        |           |                  |          |          |        |
| 2.                    | To study on the methods for dimensionality reduction              |          |          |             |           |          |          |          |          |          |           |                  |          |          |        |
| 3.                    | To gain knowledge on the unsupervised models for cluster analysis |          |          |             |           |          |          |          |          |          |           |                  |          |          |        |
| 4.                    | To im                                                             | plemer   | nt vario | us mod      | els for l | Kernel-  | ridge 1  | regressi | on and   | SVMs     |           |                  |          |          |        |
| COUR                  | SE OU                                                             | ГСОМ     | ES       |             |           |          |          |          |          |          |           |                  |          |          |        |
| On the s              | successi                                                          | ful com  | pletion  | of the o    | course,   | student  | s will t | e able   | to       |          |           |                  |          |          |        |
| CO1: U                | Underst                                                           | and the  | fundan   | nental c    | oncept    | s in ker | nel bas  | ed mac   | hine lea | arning   |           |                  | Unde     | rstand   |        |
| CO2: U                | Underst                                                           | and the  | various  | metho       | ds for o  | limensi  | onality  | reduct   | ion      |          |           |                  | Ap       | ply      |        |
| CO3: U                | Underst                                                           | and and  | apply    | how un      | supervi   | ised mo  | dels w   | ork for  | cluster  | analysi  | S         |                  | Ap       | ply      |        |
| <b>CO4</b> : <i>A</i> | Apply a                                                           | nd anal  | yze var  | ious Ke     | rnel-Ri   | idge reg | gression | n mode   | ls       |          |           |                  | Ana      | lyse     |        |
|                       | Apply a                                                           |          | •        |             | • •       |          |          |          |          |          |           |                  |          | lysee    |        |
|                       |                                                                   |          |          |             |           |          |          |          |          |          |           | OUTCO            |          |          |        |
| Cos                   | PO1                                                               | PO2      | PO3      | PO4         | PO5       | PO6      | PO7      | PO8      | PO9      | PO10     | PO11      | PO12             | PSO1     | PSO2     | PSO3   |
| CO1                   | S                                                                 | M        | -        | -           | M         | -        | M        | M        | -        | -        | -         | S                | -        | M        | -      |
| CO2                   | S                                                                 | M        | -        | -           | M         | -        | M        | M        | -        | -        | -         | S                | -        | M        | -      |
| CO3                   | S                                                                 | M        | -        | -           | M         | -        | M        | M        | -        | -        | -         | S                | -        | M        | -      |
| CO4                   | S                                                                 | M        | -        | -           | M         | -        | M        | M        | -        | -        | -         | S                | -        | M        | -      |

M

M

M

S

M

CO5 S M -S- Strong; M-Medium; L-Low

#### FUNDAMENTALS OF KERNEL BASED MACHINE LEARNING:

Feature representation and dimension reduction – The learning subspace property (LSP) and "kernelization" aof learning models – Unsupervised learning for cluster discovery – Supervised learning for linear classifiers – Gnereralized inner products and kernel function – Performabce metrics Kernel-induced vector spaces: Mercer kernels and kernel-induced similiarity metrics – Training data independent intrinsic feature vectors – Training data- dependent empirical feature vectors – The kernel-trick for nonvectorial data analysis

# DIMENSION REDUCTION: FEATURE SELECTION AND PCA/KPCA:

Subspace projection and PCA - Numerical methods for computation of PCA - Kernel principal component analysis (KPCA) - Kernel principal component analysis(KPCA) Feature Selection: The filtering approach to feature selection - Application studies of the feature selection approach

#### UNSUPERVISED LEARNING MODELS FOR CLUSTER ANALYSIS:

Unsupervised learning for cluster discovery: The similarity metric and clustering strategy – K-means clustering Models – Expectation-maximization(EM) learning models – Self-organizing maps(SOM) learning models – Bi-clustering data analysis Kernel methods for cluster analysis: Kernel based K-means learning models – Kernel K-means for nonvectorical data analysis – K-means learning models in kernel-induced spectral space – Kernelized K-means learning models – Kernel- induced SOM learning models – Neighbor-joining hierarchical cluster analysis

# KERNEL RIDGE REGRESSORS AND VARIANTS:

Kernel-based regression and regularization analysis: Linear least-squares-error analysis - Kernel-based regression analysis - Regularization via radial basis function (RBF) networks Linear Regression and discriminant analysis for supervised classification: Characterization of supervised learning models - Supervised learning models over-determined formulation - A regularization method for robust learning: training versus prediction performances - Kernelized learning models in empirical space: linear kernels Kernel ridge regression for supervised classification: Kernel-based discriminant analysis(KDA) - Kernel ridge regression (KRR) for supervised classification - Perturbational discriminant analysis(PDA): Decision component and the regression ratio in special space - Application studies: KDA versus KRR - Trimming detrimental (anti-support) vectors in KRR learning models - Multi-class and multi-label supervised classification - Supervised subspace projection methods

# SUPPORT VECTOR MACHINES AND VARIANTS:

Support vector machines: Linear support vector machines – SVM with fuzzy separation: roles of stack variables – Kerrnel-based support vector machines – Application case studies – Empirical space SVM for trimming of training vectors Support vector learning models for outlier detection – Support vector regression(SVR) – Hyperplane based one-class SVM learning models – Hypersphere-based one class SVM – Support vector clustering Ridge-SVM learning models – Roles of C and o on WECs of KRR and SVM – Ridge-SVM learning models - Impacts of design parameters on the WEC of ridge SVM – Prediction accuracy versus training time – Application case studies

# TEXT BOOKS

1. Kernel Methods and Machine Learning, S.Y.Kung, Cambridge University Press, 2014.

| S. No. | Name of the Faculty | Designation            | Department   | Mail ID                 |
|--------|---------------------|------------------------|--------------|-------------------------|
| 1.     | Dr.R.Jaichandran    | Associate<br>Professor | CSE / AVIT   | rjaichandran@avit.ac.in |
| 2.     | Mrs.T.Narmadha      | Assistant Professor    | CSE / VMKVEC | narmadha@vmkvec.edu.in  |

| 170      | CSEC06                                                                                                      |           | CRY      | PTOG     |          |           |          | VORK      |         | (          | Category    |           | T          | P (  | Credit |  |
|----------|-------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|-----------|----------|-----------|---------|------------|-------------|-----------|------------|------|--------|--|
|          |                                                                                                             |           |          |          | SECU     | JRITY     |          |           |         |            | EC(PS)      | 3         | 0          | 0    | 3      |  |
|          | REAMBLE To understand the concepts in cryptography and network security and their applications in real time |           |          |          |          |           |          |           |         |            |             |           |            |      |        |  |
|          | erstand<br>EQUISI                                                                                           |           | cepts in | crypto   | graphy   | and net   | work se  | ecurity a | and the | ır applıca | ations in   | real time | 2          |      |        |  |
| NIL      | ZQUISI                                                                                                      | 112       |          |          |          |           |          |           |         |            |             |           |            |      |        |  |
| COUR     | SE OBJ                                                                                                      | ECTIV     | /ES      |          |          |           |          |           |         |            |             |           |            |      |        |  |
| 1        | To un                                                                                                       | derstan   | d the ba | asic con | cepts in | n unders  | standin  | g crypto  | graphy  | and netv   | work sec    | urity     |            |      |        |  |
| 2        | To kn                                                                                                       | ow abo    | ut vario | ous encr | yption   | techniq   | ues.     |           |         |            |             |           |            |      |        |  |
| 3        | To un                                                                                                       | derstan   | d the co | oncept o | of Publi | c key cı  | ryptogra | aphy.     |         |            |             |           |            |      |        |  |
| 4        | To stu                                                                                                      | ıdy abo   | ut mess  | age aut  | hentica  | tion and  | l hash f | unction   | S       |            |             |           |            |      |        |  |
| 5        | To impart knowledge on Network security                                                                     |           |          |          |          |           |          |           |         |            |             |           |            |      |        |  |
| COUR     | SE OUT                                                                                                      | COMI      | ES       |          |          |           |          |           |         |            |             |           |            |      |        |  |
| On the s | successf                                                                                                    | ul comp   | oletion  | of the c | ourse, s | students  | will be  | able to   | )       |            |             |           |            |      |        |  |
| CO1: 0   | Classify                                                                                                    | the syn   | nmetric  | encryp   | tion tec | hniques   | S        |           |         |            |             | Underst   | and        |      |        |  |
| CO2: I   | llustrate                                                                                                   | variou    | s Public | c key cr | yptogra  | phic te   | chnique  | es        |         |            |             | Apply     |            |      |        |  |
| CO3: I   | Evaluate                                                                                                    | the aut   | hentica  | tion and | d hash a | algorith  | ms.      |           |         |            |             | Apply     |            |      |        |  |
| CO4: I   | Discuss                                                                                                     | authenti  | ication  | applicat | tions    |           |          |           |         |            |             | Apply     |            |      |        |  |
| CO5: S   | Summar                                                                                                      | ize the i | intrusio | n detect | tion and | l its sol | utions t | o overc   | ome the | e attacks. |             | Analyze   | <u> </u>   |      |        |  |
| MAPPI    | NG WI                                                                                                       | TH PR     | ROGRA    | MME      | OUTC     | OMES      | AND      | PROG      | RAMM    | IE SPEC    | CIFIC O     | UTCON     | <b>IES</b> |      |        |  |
| COs      | PO1                                                                                                         | PO2       | PO3      | PO4      | PO5      | PO6       | PO7      | PO8       | PO9     | PO10       | <b>PO11</b> | PO12      | PSO1       | PSO2 | PSO:   |  |
| CO1      | S                                                                                                           | M         | L        | -        | M        | -         | -        | -         | -       | -          | -           | M         | S          | M    | M      |  |
|          | S                                                                                                           | M         | L        | -        | M        | -         | -        | -         | -       | -          | -           | M         | S          | M    | M      |  |
| CO2      |                                                                                                             | M         | L        | _        | M        | -         | -        | -         | -       | -          | -           | M         | S          | -    | -      |  |
| CO3      | S                                                                                                           |           |          |          |          |           | ı        | 1         |         | 1          | 1           | M S M M   |            |      |        |  |
|          | S<br>S<br>S                                                                                                 | M<br>L    | L<br>L   | -        | M<br>M   | -         | -        | -         | -       | -          | -           | M         | 3          | M    | M      |  |

#### INTRODUCTION

Security trends – Attacks and services – Classical crypto systems – Different types of ciphers – LFSR sequences – Basic Number theory – Congruences – Chinese Remainder theorem – Modular exponentiation – Fermat and Euler's theorem – Legendre and Jacobi symbols – Finite fields – continued fractions.

#### METHODS

Simple DES – Differential cryptanalysis – DES – Modes of operation – Triple DES –AES – RC4 – RSA – Attacks – Primality test – factoring

# **TECHNIQUES**

Discrete Logarithms – Computing discrete logs – Diffie-Hellman key exchange –ElGamal Public key cryptosystems – Hash functions – Secure Hash – Birthday attacks -MD5 – Digital signatures – RSA – ElGamal – DSA.

#### AUTHENTICATION

Authentication applications – Kerberos, X.509, PKI – Electronic Mail security – PGP,S/MIME – IP security – Web Security – SSL, TLS, SET.

# SECURITY AND FIREWALLS

System security – Intruders – Malicious software – viruses – Firewalls – Security Standards

#### TEXT BOOKS

- 1. Dr. S. Bose and Dr.P. Vijayakumar, "Cryptography and Network Security", First Edition, Pearson Education, 2016.
- 2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson, 2007.
- 3. William Stallings, "Cryptography and Network Security Principles and Practices", Pearson/PHI, 6th edition, 2013.

# REFERENCES

1. W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition, 2007.

Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing Third Edition – Prentice Hall of India, 2006.

| S. No. | Name of the<br>Faculty | Designation            | Department   | Mail ID                 |
|--------|------------------------|------------------------|--------------|-------------------------|
| 1      | Dr.R.Jaichandran       | Associate<br>Professor | CSE / AVIT   | rjaichandran@avit.ac.in |
| 2      | Dr.K.Sasikala          | Associate<br>Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

| 17C                                  | CSEC10                                                                                                          |                    |                     | G                                       | AME         | THEO    | RY        |           |             | (          | Category    | L                     | T            | P (       | Credit  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-----------------------------------------|-------------|---------|-----------|-----------|-------------|------------|-------------|-----------------------|--------------|-----------|---------|
|                                      |                                                                                                                 |                    |                     |                                         |             |         |           |           |             |            | EC(PS)      | 3                     | 0            | 0         | 3       |
| PREAM                                | <b>ABLE</b>                                                                                                     |                    |                     |                                         |             |         |           |           |             |            |             |                       | 1 1          |           |         |
|                                      |                                                                                                                 |                    | ed for t            | he Engi                                 | neering     | studen  | its and   | enable t  | hem to      | understa   | nd the ba   | asics of (            | Game T       | heory     |         |
|                                      | EQUISIT                                                                                                         |                    |                     |                                         |             |         |           |           |             |            |             |                       |              |           |         |
|                                      | RING MAT                                                                                                        |                    |                     |                                         |             |         |           |           |             |            |             |                       |              |           |         |
| COURS                                | SE ODJ                                                                                                          | ECIIV              | LS                  |                                         |             |         |           |           |             |            |             |                       |              |           |         |
| 1                                    | To inti                                                                                                         | roduce             | the stud            | dent to t                               | he noti     | on of a | game,     | its solut | ions co     | ncepts, a  | nd other    | basic no              | otions a     | nd        |         |
| 2                                    |                                                                                                                 | dy tool<br>g marke | _                   | ne theo                                 | ry, and     | the ma  | in appli  | cations   | for wh      | ich they   | are appro   | priate, i             | ncludin      | g electro | nic     |
| 3                                    |                                                                                                                 |                    |                     | ion of s                                | trategic    | thinkii | ng and i  | rational  | choice      | by using   | the tools   | s of gam              | e theor      | y, and to | provide |
| <u> </u>                             |                                                                                                                 |                    |                     | ame the                                 |             |         |           |           |             |            |             |                       |              |           |         |
| 4                                    |                                                                                                                 |                    | connect<br>d issues |                                         | tween g     | ame the | eory, co  | omputer   | science     | e, and ec  | onomics     | , especia             | ılly emp     | hasizing  | the     |
| 5                                    | To introduce contemporary topics in the intersection of game theory, computer science, and economics            |                    |                     |                                         |             |         |           |           |             |            |             |                       |              |           |         |
| COURS                                | SE OUT                                                                                                          | COMI               | ES                  |                                         |             |         |           |           |             |            |             |                       |              |           |         |
| On the s                             | successfu                                                                                                       | ıl comr            | oletion             | of the c                                | ourse, s    | tudents | will be   | able to   | )           |            |             |                       |              |           |         |
|                                      |                                                                                                                 |                    |                     |                                         |             |         |           |           |             |            | 41          |                       |              |           |         |
| issues                               | explain t                                                                                                       | ne con             | cept of             | basic n                                 | otion o     | r a gam | e, its so | olutions  | concep      | ots, and o | tner        | Underst               | and          |           |         |
| СО2: Г                               | Develop                                                                                                         | a strate           | gic gan             | ne theor                                | y with      | perfect | inform    | ation     |             |            |             | Apply                 |              |           |         |
|                                      | •                                                                                                               | a forma            | al notio            | n of stra                               | ategic th   | ninking | and rat   | ional cl  | noice by    | y using to | ools of     | Analyze               | <del>.</del> |           |         |
| game th                              |                                                                                                                 |                    |                     | .•                                      |             |         |           |           |             |            |             |                       |              |           |         |
| CO4: 10                              | dentify t                                                                                                       |                    |                     |                                         |             |         |           |           |             |            |             | Apply                 |              |           |         |
|                                      |                                                                                                                 |                    |                     |                                         |             |         | ry, com   | puter so  | cience,     | and econ   | omics,      | Analyze               | )            |           |         |
| CO5: A                               | specially emphasizing the computational issues  IAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES |                    |                     |                                         |             |         |           |           |             |            |             |                       |              |           |         |
| CO5: A                               |                                                                                                                 |                    | JUNA                |                                         |             |         |           |           |             |            |             |                       |              | DCO2      | DCO2    |
| CO5: A<br>especia<br>MAPPI           | NG WI                                                                                                           |                    | DO2                 | $\mathbf{D} \mathbf{\Omega} \mathbf{A}$ | P1 15       | PUO     | PU7       |           | PU9         |            | POH         | PO12                  | PSO1         | PSO2      | PSO3    |
| CO5: A<br>especia<br>MAPPI<br>Cos    | NG WI'                                                                                                          | PO2                | PO3                 |                                         |             |         |           | T         |             |            |             |                       | C            | NI        |         |
| CO5: A especial MAPPI Cos CO1        | PO1                                                                                                             |                    | PO3                 | M                                       | M           | -       | -<br>S    | L         | -           | L<br>M     | -           | -                     | S            | <u>M</u>  | M       |
| CO5: A especia MAPPI Cos CO1 CO2     | PO1 S M                                                                                                         | PO2<br>-<br>-      | -                   | M<br>M                                  | M<br>L      | -       | -<br>S    | -         | -           | M          | -<br>-<br>S | -<br>-<br>L           | S<br>S       | -         | +       |
| CO5: A especia MAPPI Cos CO1 CO2 CO3 | PO1 S M S                                                                                                       | PO2                | -<br>M              | M<br>M<br>M                             | M           | -       | S<br>-    | -         | -<br>-<br>- |            | -<br>-<br>S | -<br>-<br>L<br>-      |              | M - S -   | +       |
| CO5: A especia MAPPI Cos CO1 CO2     | PO1 S M                                                                                                         | PO2 M              | -                   | M<br>M                                  | M<br>L<br>L | -       |           | -         | -<br>-<br>- | M<br>L     |             | -<br>-<br>L<br>-<br>L |              | -         | -<br>-  |

#### INTRODUCTION

Making rational choices: basics of Games – strategy - preferences – payoffs – Mathematical basics - Game theory – Rational Choice - Basic solution concepts-noncooperative versus cooperative games - Basic computational issues - finding equilibria and learning in games- Typical application areas for game theory (e.g. Google's sponsored search, eBay auctions, electricity trading markets).

# GAMES WITH PERFECT INFORMATION

Games with Perfect Information - Strategic games - prisoner's dilemma, matching pennies Nash equilibria- theory and illustrations - Cournot's and Bertrand's models of oligopoly- auctions mixed strategy equilibrium- zero-sum games-Extensive Games with Perfect Information repeated games (prisoner's dilemma)- subgame perfect Nash equilibrium; computational issues.

# GAMES WITH IMPERFECT INFORMATION

Games with Imperfect Information - Bayesian Games — Motivational Examples — General Definitions — Information aspects — Illustrations - Extensive Games with Imperfect - Information - Strategies - Nash Equilibrium — Beliefs and sequential equilibrium — Illustrations - Repeated Games — The Prisoner's Dilemma — Bargaining.

# NON-COOPERATIVE GAME THEORY

Non-cooperative Game Theory - Self-interested agents- Games in normal form - Analyzing games: from optimality to equilibrium - Computing Solution Concepts of Normal-Form Games - Computing Nash equilibria of two-player, zero-sum games - Computing Nash equilibria of two-player, general-sum games - Identifying dominated strategies.

# MECHANISM DESIGN

Aggregating Preferences-Social Choice – Formal Model- Voting - Existence of social functions - Ranking systems - Protocols for Strategic Agents: Mechanism Design - Mechanism design with unrestricted preferences- Efficient mechanisms - Vickrey and VCG mechanisms (shortest paths) - Combinatorial auctions - profit maximization Computational applications of mechanism design - applications in Computer Science - Google's sponsored search - eBay auctions.

# TEXT BOOKS

1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press. 2008.

#### REFERENCES

- 1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.
- 2. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.
- 3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.
- 4. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress 2005.
- 5. Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                    |
|--------|------------------------|---------------------|--------------|----------------------------|
| 1      | Dr. Nitisha            | Associate Professor | CSE / AVIT   | nitishaaggarwal@avit.ac.in |
| 2      | Mrs.T.Narmadha         | Assistant Professor | CSE / VMKVEC | narmadha@vmkvec.edu.in     |

| 17AIEC18 | COMPUTER VISION | Category | L | Т | P | Credit |
|----------|-----------------|----------|---|---|---|--------|
|          |                 | EC(PS)   | 3 | 0 | 0 | 3      |

# PREAMBLE

In this course students will learn basic principles of image formation, image processing algorithms and different algorithms for 3D reconstruction and recognition from single or multiple images (video). This course emphasizes the core vision tasks of scene understanding and recognition. Applications to 3D modelling, video analysis, video surveillance, object recognition and vision based control will be discussed.

# PREREQUISITE NIL

# COURSE OBJECTIVES

| 1 | To learn the fundamental image processing techniques required for computer vision |
|---|-----------------------------------------------------------------------------------|
| 2 | To learn about Image formation process and perform shape analysis                 |
| 3 | To learn about image features, analysis of Images and generate 3D models          |
| 4 | To apply techniques to build computer vision applications                         |
| 5 | To learn about video processing, motion computation and 3D vision and geometry    |

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

| CO1: Implement fundamental image processing techniques required for computer vision | Understand |
|-------------------------------------------------------------------------------------|------------|
| CO2: Understand Image formation process and perform shape analysis                  | Apply      |
| CO3: Extract features form Images and do analysis of Images and generate 3D models  | Analyze    |
| CO4: Develop applications using computer vision techniques                          | Apply      |
| CO5: Understand video processing, motion computation and 3D vision and geometry     | Analyze    |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | L   | 1   | -   | M   | -   | -   | -   | M   | -    | -    | L    | S    | -    | -    |
| CO2 | M   | L   | -   | -   | M   | _   | _   | _   | M   | L    | -    | M    | S    | -    | -    |
| CO3 | M   | L   | -   | -   | M   | -   | -   | -   | M   | L    | -    | M    | -    | M    | -    |
| CO4 | M   | L   | -   | -   | M   | -   | -   | -   | M   | L    | -    | S    | -    | M    | M    |
| CO5 | M   | L   | 1   | -   | -   | -   | -   | 1   | M   | L    | -    | M    | -    | M    | M    |

**Introduction**: Image Processing, Computer Vision and Computer Graphics, What is Computer Vision - Low-level, Midlevel, High-level, Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Multimedia, Virtual Reality and Augmented Reality

Image Formation Models: Monocular imaging system, Radiosity: The 'Physics' of Image Formation, Radiance, Irradiance, BRDF, color etc, Orthographic & Perspective Projection, Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus, Construction of 3D model from images

**Image Processing and Feature Extraction**: Image preprocessing, Image representations (continuous and discrete), Edge detection, **Motion Estimation**: Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion, **Shape Representation and Segmentation**: Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medial representations, Multiresolution analysis

**Object recognition**: Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition, **Image Understanding**: Pattern recognition methods, HMM, GMM and EM

Applications: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians

# REFERENCE BOOKS

- 1. Computer Vision A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.
- 2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.
- 3. R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison Wesley Longman, Inc., 1992.
- 4. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.
- 5. Richard Szeliski, Computer Vision: Algorithms and Applications (CVAA). Springer, 2010
- 6. Image Processing, Analysis, and Machine Vision. Sonka, Hlavac, and Boyle. Thomson.
- 7. E. R. Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012
- 8. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012
- 9. Mark Nixon and Alberto S. Aquado, Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                    |
|--------|------------------------|---------------------|--------------|----------------------------|
| 1      | Dr. Nitisha            | Associate Professor | CSE / AVIT   | nitishaaggarwal@avit.ac.in |
| 2.     | Dr. K. Sasikala        | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in    |

| 17CS              | EC09       |                    |          | ETH      | ICAL :      | HACK        | ING      |                |          | C         | ategory   | $\mathbf{L}$ | T        | P         | Credit      |
|-------------------|------------|--------------------|----------|----------|-------------|-------------|----------|----------------|----------|-----------|-----------|--------------|----------|-----------|-------------|
|                   |            |                    |          |          |             |             |          |                |          | Е         | EC(PS)    | 3            | 0        | 0         | 3           |
| PREAMI            |            |                    |          | C        | •,          | 11 1.       |          |                |          | ,         |           |              |          |           |             |
| To analy PREREQ   |            |                    | ncepts   | of secu  | rity and    | d hacki     | ng pro   | cess           |          |           |           |              |          |           |             |
| r kekeq<br>NIL    | ĮU18111    | ட                  |          |          |             |             |          |                |          |           |           |              |          |           |             |
| COURSE            | OBJE       | CTIVE              | ES       |          |             |             |          |                |          |           |           |              |          |           |             |
| 1                 | To ur      |                    | nd Tech  | nnical f | oundat      | ion of o    | crackin  | g and e        | thical l | nacking   |           |              |          |           |             |
| 2                 | To id      | entify A           | Aspects  | of sec   | urity, ii   | mporta      | nce of   | data ga        | thering  | , foot pr | inting a  | nd syste:    | m hack   | ing       |             |
| 3                 | To ur      | nderstar           | nd eval  | uation ( | of com      | puter se    | ecurity  |                |          |           |           |              |          |           |             |
| 4                 |            | nderstar<br>em bas |          |          |             |             |          | e-enforc       | ce and a | apply the | eory to e | encourag     | ge an ar | nalytical | and         |
| 5                 | To di      | scuss a            | bout se  | curity t | ools ar     | nd its ap   | pplicati | ions           |          |           |           |              |          |           |             |
| COURSE            | OUTC       | OMES               | 3        |          |             |             |          |                |          |           |           |              |          |           |             |
| On the su         | ccessful   | comple             | etion of | f the co | urse, st    | udents      | will be  | e able to      | 0        |           |           |              |          |           |             |
| CO1: Ide          | •          | •                  |          | stages a | an ethic    | cal hacl    | ker req  | uires to       | take ir  | order to  | 0         | Underst      | tand     |           |             |
| CO2: Ide          | ntify to   | ols and            | technic  | ques to  | carry o     | out a pe    | netrati  | on testi       | ng.      |           |           | Underst      | tand     |           |             |
| CO3: Cri          | itically a | ınalyze            | securit  | y techr  | iques ı     | used to     | protec   | t syster       | n and u  | ser data  |           | Apply        |          |           |             |
| CO4: De policy an |            |                    |          |          |             | of the      | concep   | ots of se      | ecurity  | at the le | vel of    | Apply        |          |           |             |
| CO5: Ap           | _          | -                  |          | •        |             | real tir    | ne       |                |          |           |           | Apply        |          |           |             |
| MAPPIN            | G WIT      | H PRC              | GRAN     | MME (    | OUTC        | OMES        | AND      | PROG           | RAMN     | ME SPE    | CIFIC     | OUTC         | OMES     |           |             |
| Cos               | PO1        | PO2                | PO3      | PO4      | PO5         | PO6         | PO7      | PO8            | PO9      | PO10      | PO11      | PO12         | PSO1     | PSO2      | PSO:        |
| CUS               | M          | M                  | -        | -        | -           | -           | S        | -              | -        | -         | M         | M            | M        | S         | M           |
| CO1               |            | 1                  | _ ~ _    | M        | -           | -           | -        | -              | -        | -         | L         | M            | S        | -         | -           |
| CO1               | M          | M                  | S        | 171      |             |             |          | 1              |          |           | T         |              | . ~      |           |             |
| CO1<br>CO2<br>CO3 | M          | M                  | M        | M        | -           | M           | -        | L              | -        | -         | L         | -            | S        | M         | S           |
| CO1               |            |                    |          |          | -<br>-<br>S | M<br>M<br>M | -        | _ L<br><br>_ L | -        | -<br>M    | -<br>M    | M<br>M       | -<br>-   | M<br>M    | S<br>-<br>M |

# INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

### HACKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems-Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking-Hacking Windows & Linux.

# WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

#### WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

#### APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

### TEXT BOOKS

- 1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.
- 2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.
- 3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.
- 4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006.

### REFERENCES

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

| S. No. | Name of the<br>Faculty | Designation                  | Department   | Mail ID                  |
|--------|------------------------|------------------------------|--------------|--------------------------|
| 1      | Dr.R.Jaichandran       | Associate<br>Professor(G-II) | CSE / AVIT   | rjaichandran@avit.ac.in  |
| 2      | M. Annamalai           | Assistant Professor          | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

|                      |                                                                                                             |         |           |          |           |          |          |          |          |            |          | 1        |        |      |        |
|----------------------|-------------------------------------------------------------------------------------------------------------|---------|-----------|----------|-----------|----------|----------|----------|----------|------------|----------|----------|--------|------|--------|
| 17CSI                | EC11                                                                                                        |         |           | GRI      | EEN CO    | OMPU'    | TING     |          |          | (          | Category | L        | T      | P    | Credit |
|                      |                                                                                                             |         |           |          |           |          |          |          |          |            | EC(PS)   | 3        | 0      | 0    | 3      |
| PREAMI               |                                                                                                             |         |           |          |           | _        | _        |          |          | •          |          | _        |        | •    |        |
|                      | acquire knowledge to adopt green computing practices and To learn about energy saving practices  EREQUISITE |         |           |          |           |          |          |          |          |            |          |          |        |      |        |
| PREREQ<br>NIL        | U1511                                                                                                       | LE      |           |          |           |          |          |          |          |            |          |          |        |      |        |
| COURSE               | OBJ                                                                                                         | ECTIV   | ES        |          |           |          |          |          |          |            |          |          |        |      |        |
| 1                    | To acc                                                                                                      | uire kr | nowledg   | ge to ad | opt gree  | en com   | puting p | oractice | S        |            |          |          |        |      |        |
| 2                    | To mi                                                                                                       | nimize  | negativ   | e impa   | cts on tl | ne envii | ronmen   | t        |          |            |          |          |        |      |        |
| 3                    | To lea                                                                                                      | rn abou | ıt energ  | y savin  | g practi  | ces      |          |          |          |            |          |          |        |      |        |
| 4                    | To lea                                                                                                      | rn abou | ıt green  | compli   | ance. A   | and imp  | lement   | ation us | sing IT  |            |          |          |        |      |        |
| COURSE               | OUT                                                                                                         | COMI    | ES        |          |           |          |          |          |          |            |          |          |        |      |        |
| On the suc           | ccessfi                                                                                                     | ıl comr | oletion o | of the c | ourse s   | tudents  | will be  | able to  | <u> </u> |            |          |          |        |      |        |
|                      |                                                                                                             |         |           |          |           |          | WIII OC  |          |          |            |          |          |        |      |        |
| CO1: Ex              | plain t                                                                                                     | he sign | ificance  | e knowl  | edge to   | adopt    | green c  | omputii  | ng pract | tices      |          | Underst  | and    |      |        |
| CO2: De              |                                                                                                             | nd deve | elop the  | green    | asset us  | sed to n | ninimiz  | e negati | ive imp  | acts on t  | he       | Apply    |        |      |        |
| environm<br>CO3: Ide |                                                                                                             | ın appr | opriate   | cooling  | techno    | logies a | and infr | astructi | ire for  |            |          |          |        |      |        |
| optimizin            |                                                                                                             |         |           |          |           |          |          |          |          |            |          | Apply    |        |      |        |
| CO4: Ma              |                                                                                                             |         | knowle    | dge abo  | out ener  | gy savi  | ng prac  | tices,th | ne impa  | ct of e-w  | raste    | Apply    |        |      |        |
| CO5: An              |                                                                                                             |         | reen co   | mplian   | ce, imp   | lementa  | ation us | ing IT a | and deri | ive the ca | ase      |          |        |      |        |
| study.               | •                                                                                                           |         |           | •        |           |          |          |          |          |            |          | Analyze  |        |      |        |
| MAPPIN               |                                                                                                             |         |           | 1        |           |          |          | 1        | 1        |            |          |          |        |      |        |
|                      | 01                                                                                                          | PO2     | PO3       | PO4      | PO5       | PO6      | PO7      | PO8      | PO9      | PO10       | PO11     | PO12     | PSO1   | PSO2 | PSO3   |
| CO1                  | S                                                                                                           | -       | S         | -        | -         | -        | M        | -        | -        | -          | -        | -        | S      | M    | S      |
| CO2<br>CO3           | S<br>S                                                                                                      | S<br>M  | M<br>M    | -        | L         | <br>M    | S<br>S   | S<br>M   | -        | M          | -        | <u>M</u> | M<br>M | M    | S<br>S |
| CO4                  | S                                                                                                           | S       | 1VI       | -        |           | 1VI      | S        | S        |          | M          | _        | M        | M      | S    | M      |
| CO5                  | S                                                                                                           | M       | M         | -        | -         | S        | M        | -        | M        | -          | M        | S        | M      | M    | M      |
|                      | Strong; M-Medium; L-Low                                                                                     |         |           |          |           |          |          |          |          |            |          |          |        |      |        |

#### FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

#### GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

## GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Systems Seamless Sharing Across. Collaborating and Cloud Computing, Virtual Presence.

#### GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

## GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

#### TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligence, CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with IT, John Wiley and Sons, 2010.

## REFERENCES

- 1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journey, Shoff/IBM rebook, 2011.
- 2. John Lamb, —The Greening of ITI, Pearson Education, 2009.
- 3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industry, Lulu.com, 2008.

| S. No. | Name of the<br>Faculty | Designation          | Department      | Mail ID                |
|--------|------------------------|----------------------|-----------------|------------------------|
| 1      | K.Karthik              | Associate Professor  | CSE / AVIT      | karthik@avit.ac.in     |
| 2      | Mrs.T.Narmadha         | A celetant Protector | CSE /<br>VMKVEC | narmadha@vmkvec.edu.in |

|                                                              | CSEC15                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NTER                                                    | NET SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                      |                              | MPUTER           | R          |           | Category     | L                                            | T            | P           | Credit      |
|--------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|------------------|------------|-----------|--------------|----------------------------------------------|--------------|-------------|-------------|
|                                                              |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORE                                                                         | ENSICS                                               | •                            |                  |            | ]         | EC(PS)       | 3                                            | 0            | 0           | 3           |
|                                                              |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              | y and dif        | fferent    | t types o | f Cyber      | forensic                                     | techno       | logies ar   | ıd enable   |
|                                                              | EQUISI                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              |                  |            |           |              |                                              |              |             |             |
|                                                              | er Securi<br>SE OBJ                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /TEC                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              |                  |            |           |              |                                              |              |             |             |
| COUK                                                         | PE ORI                                                              | ECIIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / ES                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              |                  |            |           |              |                                              |              |             |             |
| 1                                                            | To stu                                                              | idy the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Importa                                                 | ance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Firewal                                                                      | ls and t                                             | heir typ                     | oes              |            |           |              |                                              |              |             |             |
| 2                                                            | To an                                                               | alyze aı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd valid                                                | late con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nputer f                                                                     | orensic                                              | s data                       |                  |            |           |              |                                              |              |             |             |
| 3                                                            | To stu                                                              | ıdy vari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ous thre                                                | eats asso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ociated                                                                      | with se                                              | curity a                     | and inforn       | matior     | n warfare | <u>;</u>     |                                              |              |             |             |
| 4                                                            | To stu                                                              | ıdy abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut evide                                                | ence col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lection                                                                      | and for                                              | ensics t                     | tools            |            |           |              |                                              |              |             |             |
| 5                                                            | To stu                                                              | ıdy abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut vario                                                | us fore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsics an                                                                     | d analy                                              | sis and                      | validatio        | n          |           |              |                                              |              |             |             |
| COLID                                                        | CE OU                                                               | COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rc                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              |                  |            |           |              |                                              |              |             |             |
| COUR                                                         | SE OUI                                                              | COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              |                  |            |           |              |                                              |              |             |             |
|                                                              |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | of the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ollrea e                                                                     | tudonts                                              | will be                      | abla to          |            |           |              |                                              |              |             |             |
|                                                              | successf                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | of the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ourse, s                                                                     | tudents                                              | will be                      | able to          |            |           |              |                                              |              |             |             |
| On the s                                                     | successf                                                            | ul comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oletion                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                      |                              | able to          | ecurity    | y         |              | Underst                                      | and          |             |             |
| On the s                                                     | successf                                                            | ul comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oletion o                                               | rk Laye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Secur                                                                      | ity &Tr                                              | ansport                      | Layer Se         | ecurity    | y         |              | Understa<br>Apply                            | and          |             |             |
| On the s  CO1: U                                             | successf<br>Understa                                                | ul compand the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Network                                                 | rk Laye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Secur<br>Firewa                                                            | ity &Tr                                              | ansport                      | Layer Se         | ecurity    | у         |              |                                              | and          |             |             |
| On the s  CO1: U  CO2: U  CO3: A                             | successf<br>Understa<br>Understa                                    | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Network Import                                          | rk Laye<br>ance of<br>sics Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r Secur<br>Firewa                                                            | ity &Tr                                              | ansport                      | Layer Se         | ecurity    | y         |              | Apply                                        |              |             |             |
| On the s  CO1: U  CO2: U  CO3: A  CO4: U                     | successf<br>Understa<br>Understa<br>Apply C<br>Understa             | ul compand the compute and evice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Network Import r Foren lence co                         | rk Laye<br>ance of<br>sics Fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r Secur<br>Firewandamen                                                      | ity &Tr                                              | ansport                      | Layer Se         | ecurity    | y         |              | Apply Apply Analyze                          |              |             |             |
| On the s  CO1: U  CO2: U  CO3: A  CO4: U  CO5: A             | successf<br>Understa<br>Understa<br>Apply C<br>Understa<br>Analyzir | and the and the ompute and evice and vice and vi | Network Import r Foren lence co                         | rk Laye ance of sics Fun ollection ng the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firewandamen and for                                                         | ity &Tr<br>lls and t<br>tals<br>prensics<br>data     | ansport<br>their ty<br>tools | Layer Se         |            |           |              | Apply Apply Analyze Analyze                  | :            |             |             |
| On the s  CO1: U  CO2: U  CO3: A  CO4: U  CO5: A             | successf<br>Understa<br>Understa<br>Apply C<br>Understa<br>Analyzir | and the and the ompute and evice and vice and vi | Network Import r Foren lence co                         | rk Laye ance of sics Fun ollection ng the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firewandamen and for                                                         | ity &Tr<br>lls and t<br>tals<br>prensics<br>data     | ansport<br>their ty<br>tools | Layer Se         |            |           |              | Apply Apply Analyze Analyze UTCOM            | :            | PSO2        | PSO3        |
| On the s  CO1: U  CO2: U  CO3: A  CO4: U  CO5: A             | successf Understa Apply C Understa Analyzir ING WI                  | ul compund the compute and evice and v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Network Import r Foren dence co                         | rk Laye ance of sics Fun ollection ng the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r Secur<br>Firewandamen<br>and for                                           | ity &Tr  lls and tals  orensics  data  OMES          | their ty                     | Layer Se         | AMM        | E SPEC    | CIFIC O      | Apply Apply Analyze Analyze UTCOM            | TES          | PSO2        | PSO3        |
| On the s  CO1: U  CO2: U  CO3: A  CO4: U  CO5: A  MAPPI  COs | successf Understa Apply C Understa Analyzir ING WI                  | and the ompute and evice TH PR PO2 M S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Network Import r Foren dence co validatir ROGRA         | rk Laye ance of sics Fun ollection ng the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firewandamen and for oversic OUTC                                            | ity &Tr  lls and tals  orensics data  OMES           | their ty tools AND           | PROGRA           | AMM<br>PO9 | E SPEC    | CIFIC O      | Apply Apply Analyze Analyze UTCOM PO12       | IES PSO1 S S | S<br>S      |             |
| CO1: U CO2: U CO3: A CO4: U CO5: A MAPPI COs CO1 CO2 CO3     | successf Understa Apply C Understa Analyzir ING WI PO1 S            | and the and eviding and vice PO2  M S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Network Import r Foren dence covalidation ROGRA PO3 L   | ance of sics Fundal sics Funda sic | r Secur<br>Firewa<br>ndamen<br>n and for<br>orensic<br>OUTC<br>PO5<br>M<br>M | ity &Tr  lls and tals  orensics data  OMES  PO6  M   | their ty                     | PROGRA  POS I  M | AMM<br>PO9 | E SPEC    | CIFIC O      | Apply Apply Analyze Analyze UTCOM PO12 M M M | FSO1 S S S   | S<br>S<br>S | S<br>M<br>S |
| CO1: U CO2: U CO3: A CO4: U CO5: A MAPPI COs CO1 CO2         | Successf Understa Apply C Understa Analyzir ING WI PO1 S S          | and the ompute and evice TH PR PO2 M S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Network Import r Foren dence co validatin ROGRA PO3 L S | rk Laye ance of sics Fun ollection ng the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r Secur<br>Firewa<br>ndamen<br>n and for<br>orensic<br>OUTC<br>PO5<br>M<br>M | ity &Tr  lls and tals  orensics data  OMES  PO6  M L | tools  AND 1 PO7             | PROGRA POS I M L | AMM<br>PO9 | E SPEC    | CIFIC O PO11 | Apply Apply Analyze Analyze UTCOM PO12 M M   | IES PSO1 S S | S<br>S      | S<br>M      |

## NETWORK LAYER SECURITY &TRANSPORT LAYER SECURITY

IPSec Protocol – IP Authentication Header – IP ESP – Key Management Protocol for IPSec. Transport layer Security: SSL protocol, Cryptographic Computations – TLS protocol.

#### E-MAIL SECURITY & FIREWALLS

PGP - S/MIME - Internet Firewalls for Trusted System: Roles of Firewalls - Firewall related terminology- Types of Firewalls - Firewall designs - SET for E-Commerce Transactions.

## INTRODUCTION TO COMPUTER FORENSICS

Computer Forensics Fundamentals – Types of Computer Forensics – Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

## EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensic Tools: Software/Hardware Tools.

## ANALYSIS AND VALIDATION

Validating forensic data- Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics.

## TEXT BOOKS

1. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2012

## REFERENCES

- 1.Nelson, Phillips, Enfinger, Steuart, "Computer Forensics and Investigations", Cengage Learning, India Edition, 2012
- 2.John R.Vacca, "Computer Forensics", Firewall Media, 2015
- 3.Richard E.Smith, "Internet Cryptography", Pearson Education, 3rd Edition, 2010
- 4.Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction", Pearson Education, 1st Edition, 2012.

| S. No. | Name of the<br>Faculty | Designation            | Department   | Mail ID              |
|--------|------------------------|------------------------|--------------|----------------------|
| 1      | K.Karthik              | Assistant<br>Professor | CSE / AVIT   | karthik@avit.ac.in   |
| 2      | T.Geetha               | Assistant Professor    | CSE / VMKVEC | geetha@vmkvec.edu.in |

| 17CSI           | EC19    |          |               | MOF       | BILE C    | OMPU    | JTING     |          |           | (      | Category    | L           | T      | P    | Credit |
|-----------------|---------|----------|---------------|-----------|-----------|---------|-----------|----------|-----------|--------|-------------|-------------|--------|------|--------|
|                 |         |          |               |           |           |         |           |          |           |        | EC(PS)      | 3           | 0      | 0    | 3      |
| PREAME          |         |          |               |           |           |         |           |          |           |        |             | 1           | I      |      |        |
| To learn        |         |          | and iss       | sues in l | Mobile    | Comp    | ıting.    |          |           |        |             |             |        |      |        |
| PREREQ<br>COMPI | -       |          | <i>I</i> ODKC |           |           |         |           |          |           |        |             |             |        |      |        |
| COURSE          |         |          |               |           |           |         |           |          |           |        |             |             |        |      |        |
|                 |         |          |               |           |           |         |           |          |           |        |             |             |        |      |        |
| 1 '             | To Lea  | ırn wir  | eless tra     | ansmiss   | ion Bas   | sics    |           |          |           |        |             |             |        |      |        |
| 2               | To lear | rn diffe | rent Ar       | chitecti  | ares of   | Comm    | unicatio  | n Syste  | ms        |        |             |             |        |      |        |
| 3               | To lea  | rn prote | ocols in      | Mobil     | e Netwo   | ork and | l Transp  | ort Lay  | er        |        |             |             |        |      |        |
| COURSE          | OUT     | COMI     | ES            |           |           |         |           |          |           |        |             |             |        |      |        |
|                 |         |          |               |           |           |         |           |          |           |        |             |             |        |      |        |
| On the suc      | ccessfu | ıl comp  | oletion (     | of the co | ourse, s  | tudent  | s will be | able to  | )         |        |             |             |        |      |        |
| CO1: Exp        | plain t | he basi  | cs of w       | ireless t | ransmi    | ssion a | nd signa  | al proce | ssing     |        |             | Underst     | and    |      |        |
| CO2: Un         | dersta  | nd the   | concept       | of cell   | ular net  | work    |           |          |           |        |             | Underst     | and    |      |        |
| CO3: Un         | dersta  | nd the   | concept       | of wire   | eless lar | netwo   | ork       |          |           |        |             | Underst     | and    |      |        |
| <b>CO4:</b> Ap  |         |          |               |           |           |         |           | laver    |           |        |             | Apply       |        |      |        |
| CO5: Ide        | 1 •     |          |               |           |           |         |           | layer    |           |        |             | Analyze     |        |      |        |
| MAPPIN          |         |          |               |           |           |         |           | DDACI    | D A NAINA | IE SDE |             |             |        |      |        |
|                 | G WI    |          | PO3           |           |           |         |           |          |           |        |             |             |        | DCO2 | PSO3   |
|                 | 01      |          | P(14          | PO4       | PO5       | PO6     | PO7       | PO8      | PO9       | PO10   | PO11        | <b>PO12</b> | PSO1   | PSO2 | 1 PS() |
| Cos P           | 01      | PO2      |               |           |           |         |           |          |           |        | <b> </b>    |             |        |      |        |
| Cos P           | S       | M        | L             | -         | M         | -       | -         | -        | -         | -      | -           | S           | M      | M    | M M    |
| Cos P CO1 CO2   | S<br>S  | M<br>M   | L<br>L        |           | M         | -       | -         | -        | -         | -      | -           | S           | M<br>M | M    |        |
| Cos P           | S       | M        | L             | -         |           |         |           |          |           |        | -<br>-<br>- |             |        |      |        |

#### INTRODUCTION

Introduction – wireless transmission – radio propagation – signals and propagation – antennas – multiplexing and modulation – spectrum - operation of cellular systems, planning a cellular system, analog & digital cellular systems.

## MOBILITY AND BANDWIDTH MANAGEMENT IN CELLULAR NETWORKS

Call setup in mobile IP Network - Handoff Management - Mobility Models - Bounds on Bandwidth - Algorithms for Channel Assignment - Coalesced CAP - Localization of Mobile Nodes - Benchmark Instances.

#### WIRELESS LAN

Wireless LAN – IEEE 802.11 standards – HIPERLAN – Blue tooth technology and protocols. Wireless Local Loop technologies.

# MOBILE NETWORK LAYER AND TRANSPORT LAYER

Reference model -Handover Location Management -Mobile QOS-Access Point Control Protocol, Mobile IP-DHCP-Mobile transport layer-Traditional TCP-Indirect snooping-Mobile TCP- Wireless Application protocol.

## ADHOC WIRELESS NETWORKS

Introduction-Issues in Adhoc Wireless Networks-Adhoc Wireless Internet-Routing protocols in Ad Hoc networks-Security in Ad hoc networks. Case Studies: Automatic transfer of Plans- Identifying the callee.

## TEXT BOOKS

- 1. Jochen Schiller, "Mobile Communications", Addison Wesley, 2000.
- 2. C.Siva Ram Murthy and B.S Manoj "Ad hoc Wireless Networks", Pearson Education, 2007.
- 3. K. Sinha, S.C. Ghosh and Bhabani P. Sinha "Wireless Networks and Mobile Computing", CRC Press, 2015.

#### REFERENCES

- 1. Mobile Computing Principles-Reza B'Far-Cambridge University Press-2005.
- 2. Uyless Black, "Mobile and Wireless Networks", Prentice Hall, 1996.
- 3. Willian C.Y.Lee, Mobile Communication Design Fundamentals, John Wiley, 1993.

| S. No. | Name of the        | Designation                  | Department   | Mail ID                 |
|--------|--------------------|------------------------------|--------------|-------------------------|
|        | Faculty            |                              |              |                         |
| 1      | Dr. R. Jaichandran | Assitant<br>Professor (G-II) | CSE / AVIT   | rjaichandran@avit.ac.in |
| 2.     | Dr. K. Sasikala    | Associate<br>Professor       | CSE / VMKVEC | sasikalak@vmkvec.edu.in |

|                                                          | SEC21                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAN                                                                 | O TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHNOLOG                                                                       | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | (                       | Category     | L                                            | T            | P           | Credit      |
|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|----------------------------------------------|--------------|-------------|-------------|
|                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ]                       | EC(PS)       | 3                                            | 0            | 0           | 3           |
| PREAN                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
| This c                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed unde                                                             | erstandi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng of the inc                                                                 | lustrial ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | plicatio | ons of Na               | notechno     | ology.                                       |              |             |             |
|                                                          |                                                        | SCIEN(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
|                                                          |                                                        | JECTIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
| 1                                                        | To Le                                                  | earn Nai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | no comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | outing c                                                            | halleng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ges                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
| 2                                                        |                                                        | pply reli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
| 3                                                        | To U                                                   | Jse Nano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | scale o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | quantun                                                             | n comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uting                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
| COURS                                                    | SE OU'                                                 | ГСОМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
|                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                         |              |                                              |              |             |             |
| On the s                                                 | successf                                               | ful comi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aletion o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the co                                                           | 011#00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tudanta rriill                                                                | 1 11 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                         |              |                                              |              |             |             |
| C11 0110 E                                               | ,                                                      | idi com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oretion (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the co                                                           | burse, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tudents will                                                                  | be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )        |                         |              |                                              |              |             |             |
|                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng, technolog                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | l challen               | ges.         | Underst                                      | and          |             |             |
| CO1: E                                                   | Explain                                                | the con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cept of l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nano co                                                             | omputir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               | gy process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | l challen               | ges.         | Underst<br>Analyze                           |              |             |             |
| CO1: E                                                   | Explain<br>Analyze                                     | the con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cept of l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nano co                                                             | omputing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng, technolog                                                                 | gy process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sing and |                         |              |                                              |              |             |             |
| CO1: E                                                   | Explain<br>Analyze<br>Develop                          | the cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cept of laceture of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nano co<br>design<br>reliabil                                       | omputing of election ity of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng, technolog<br>ronic nano c                                                 | gy process<br>computer<br>ing from I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sing and |                         |              | Analyze                                      |              |             |             |
| CO1: E<br>CO2: A<br>CO3: E<br>CO4: A                     | Explain<br>Analyze<br>Develop<br>Apply th              | the cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cept of lacept of na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nano co<br>design<br>reliabil<br>ano scal                           | omputing of electricity of notice equant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng, technolog<br>cronic nano c<br>ano computi<br>cum computi                  | gy process<br>computer<br>ing from I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sing and |                         |              | Analyze<br>Apply<br>Apply                    | ;            |             |             |
| CO1: E CO2: A CO3: E CO4: A CO5: A                       | Explain<br>Analyze<br>Develop<br>Apply th              | the condense a archite the cordense concest the name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cept of lacept of nation of indus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nano co<br>design<br>reliabil<br>ano scal<br>trial ap               | omputing of electricity of notes and electricity of notes and electricity of the computation of the computat | ng, technolog<br>ronic nano c<br>ano computi<br>rum computi<br>n              | gy process<br>computer<br>ing from I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sing and | Large Nu                | ımbers       | Analyze Apply Apply Analyze                  | ;            |             |             |
| CO1: E CO2: A CO3: E CO4: A CO5: A                       | Explain Analyze Develop Apply th Analyze ING W         | the cond a archite of the cord the cond the name of th | cept of lacept of national condustrial con | Nano co<br>design<br>reliabil<br>ano scal<br>trial ap               | omputing of electric of a lectric of notice that the computation of th | ng, technolog<br>cronic nano c<br>ano computi<br>cum computi<br>n<br>OMES ANI | computer ing from I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Law of I | Large Nu                | umbers       | Analyze Apply Apply Analyze UTCOM            | MES          | PSO2        | PSO         |
| CO1: E CO2: A CO3: E CO4: A CO5: A                       | Explain<br>Analyze<br>Develop<br>Apply th              | the cond a archite the cord the cord the nan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cept of lacept of nation of indus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nano co<br>design<br>reliabil<br>ano scal<br>trial ap               | omputing of electricity of notes and electricity of notes and electricity of the computation of the computat | ng, technolog<br>ronic nano c<br>ano computi<br>rum computi<br>n              | computer ing from I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sing and | Large Nu                | ımbers       | Analyze Apply Apply Analyze UTCOM            | ;            | PSO2        | PSO S       |
| CO1: E CO2: A CO3: E CO4: A CO5: A MAPPI                 | Explain Analyze Develop Apply th Analyze ING WI        | the cond a archite of the cord the cond the name of th | cept of lacept of nation of industrial control of the control of t | Nano co<br>design<br>reliabil<br>ano scal<br>trial ap<br>MME<br>PO4 | omputing of electric of a lectric of notice that the computation of th | ronic nano cano computi n  OMES ANI PO6 PO                                    | computer ing from I program of pr | Law of I | Large Nu                | cific o      | Analyze Apply Apply Analyze UTCOM PO12       | 1ES          |             |             |
| CO1: E CO2: A CO3: E CO4: A CO5: A MAPPI COs CO1 CO2 CO3 | Explain Analyze Develop Apply th Analyze NG WI PO1 S   | the condense a archite the condense concentre the name archite the name archite the name archite the name archite the name architecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cept of laceture of acept of na o indus COGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nano co<br>design<br>reliabil<br>ano scal<br>trial ap<br>MME<br>PO4 | omputing of electric of electric of notice quant plication outcomposed to the control of the control outcomposed to the control o | ronic nano cano computi n  OMES ANI  PO6 PO                                   | computer ing from I program of the p | Law of I | Large Nu IE SPEC PO10 - | cific o      | Analyze Apply Apply Analyze UTCON PO12 L M M | PSO1 S S S   | M<br>S<br>M | S<br>M<br>M |
| CO1: E CO2: A CO3: E CO4: A CO5: A MAPPI COs CO1 CO2     | Explain Analyze Develop Apply th Analyze NG WI PO1 S S | the condense a archite the condense concentre the name th | cept of lacept of nation industrial COGRA  PO3 L M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nano codesign reliabil ano scal trial app  MME PO4                  | omputing of electric dity of notice equant plication out to possible out to the control o | ronic nano cano computi n  OMES ANI PO6 PO                                    | experiences of the process of the pr | Law of I | Large Nu IE SPEC PO10   | CIFIC O PO11 | Analyze Apply Apply Analyze UTCOM PO12 L M   | MES PSO1 S S | M<br>S      | S<br>M      |

#### NANOCOMPUTING-PROSPECTS AND CHALLENGES

Introduction - History of Computing - Nanocomputing - Genesis of Nanocomputing - Quantum Computers – Nanocomputing Technologies - Nano Information Processing - Prospects and Challenges - Physics of Nanocomputing: Digital Signals and Gates.

## LOGIC DESIGN AND ARCHITECTURE OF ELECTRONIC NANO COMPUTER

Wireless Ground state Computing - Adaptations of wireless computing Designs - Quantum cellular neural networks - nanometre scale nonlinear networks - approaches to parallelism

#### RELIABILITY OF NANOCOMPUTING

Markov Random Fields - Reliability Evaluation Strategies - NANOLAB - NANOPRISM - Reliable Manufacturing and Behaviour from Law of Large Numbers.

## NANO SCALE QUANTUM COMPUTING

Quantum Computers - Hardware Challenges to Large Quantum Computers - Fabrication, Test, and Architectural Challenges - Quantum-dot Cellular Automata (QCA) - Computing with QCA - QCA Clocking - QCA Design Rules.

## INDUSTRIAL APPLICATION

Nanotechnology in electrical and electronics Industry - biomedical and pharmaceutical industry - Chemical industry - Agriculture and Food technology - Textiles.

#### TEXT BOOKS

- 1. Sahni V. and Goswami D., "Nano Computing", McGraw Hill Education Asia Ltd, 2008
- 2. Sandeep K. Shukla and R. Iris Bahar., Nano, Quantum and Molecular Computing, Kluwer Academic Publishers 2004. **REFERENCES**
- 1. Jennifer Kuzma and Peter VerHage, "Nanotechnology in agriculture and food production", Woodrow Wilson International Center, 2006.
- 2. Brown P. J. and K. Stevens, "Nanofibers and Nanotechnology in Textile's, Woodhead Publishing Limited, Cambridge, 2007
- 3. Michael S. Montemerlo "Technologies and Designs for Electronic Nanocomputers", MITRE, 1997
- 4. Neelina H. Malsch (Ed.), "Biomedical Nanotechnology", CRC Press, 2005

| S. No. | Name of the Faculty            | Designation | Department          | Mail ID                   |
|--------|--------------------------------|-------------|---------------------|---------------------------|
| 1      | Dr. R. N. Viswanathan          | Professor   | Physics / AVIT      | viswanathan@avit.ac.in    |
| 2      | Dr. S. MOHAMMED<br>HARSHULKHAN | Asst.Prof   | Physics /<br>VMKVEC | harshulkhan@vmkvec.edu.in |

| <b>17</b> C                          | SEC32                                                          |               |               | VII      | RTUAL    | REAI          | LITY    |           |          |              | Category   | L         | T         | P (    | Credit |
|--------------------------------------|----------------------------------------------------------------|---------------|---------------|----------|----------|---------------|---------|-----------|----------|--------------|------------|-----------|-----------|--------|--------|
|                                      |                                                                |               |               |          |          |               |         |           |          |              | EC(PS)     | 3         | 0         | 0      | 3      |
| PREAN                                |                                                                |               |               |          |          |               |         |           |          |              |            |           |           | I      |        |
|                                      |                                                                |               | detailed      | d unders | standing | g of the      | concep  | ots of Vi | irtual R | eality a     | nd its app | lication. |           |        |        |
| NIL                                  | QUISIT                                                         | L             |               |          |          |               |         |           |          |              |            |           |           |        |        |
| COURS                                | SE OBJI                                                        | ECTIV         | ES            |          |          |               |         |           |          |              |            |           |           |        |        |
| 1                                    | To Lea                                                         | rn Geo        | ometric       | modeli   | ng and   | Virtual       | enviro  | nment     |          |              |            |           |           |        |        |
| 2                                    | To Lea                                                         | rn Vir        | tual Ha       | rdware   | and So   | ftware        |         |           |          |              |            |           |           |        |        |
| 3                                    | To Lea                                                         | rn Vir        | tual Re       | ality ap | plicatio | ns            |         |           |          |              |            |           |           |        |        |
| COURS                                | SE OUT                                                         | COMI          | ES            |          |          |               |         |           |          |              |            |           |           |        |        |
|                                      |                                                                |               |               |          |          |               |         |           |          |              |            |           |           |        |        |
| On the s                             | successfu                                                      | l comp        | oletion       | of the c | ourse, s | tudents       | will be | able to   | )        |              |            |           |           |        |        |
| CO1: I                               | Differenti                                                     | ate bet       | ween V        | irtual,  | Mixed a  | and Aug       | gmente  | d Realit  | y platfo | orms.        |            | Underst   | and       |        |        |
|                                      | dentify a                                                      |               |               |          |          | gies for      | r imme  | rsive tec | chnolog  | y devel      | opment,    | Apply     |           |        |        |
| _                                    | Demonstr                                                       |               |               |          |          | lesignir      | ng gami | ng syste  | ems      |              |            | Apply     |           |        |        |
| 004                                  | Categoriz                                                      | e the b       | enefits       | /shortee | mings    | of avail      | able im | mersive   | e techno | ology pl     | atforms.   | Analyze   | <u> </u>  |        |        |
| CO4: (                               |                                                                |               |               |          |          |               |         |           |          | <i>8)</i> F- |            | 1         |           |        |        |
|                                      | APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES |               |               |          |          |               |         |           |          |              |            |           | TES .     |        |        |
| CO5: 7                               | NG WI                                                          | IH PK         |               |          |          | OIVIL         | 11111   |           |          |              |            |           |           | PSO2   | PSO    |
| CO5: T                               |                                                                |               |               | PO4      | PO5      | PO6           | PO7     | POS       | P()9     | POID         | POTI       | P()12     | PSUI      |        |        |
| CO5: T                               |                                                                | PO2<br>M      | <b>PO3</b>    | PO4      | PO5<br>M | PO6           | PO7     | PO8       | PO9      | PO10<br>-    | PO11       | PO12<br>M | PSO1<br>M | M      | M      |
| CO5: T                               | PO1                                                            | PO2           | PO3           |          |          | PO6<br>-      |         |           | -<br>-   | -<br>-       | -<br>-     |           |           |        |        |
| CO5: T<br>MAPPI<br>COs<br>CO1        | PO1<br>S                                                       | PO2<br>M      | PO3           | -        | M        | PO6<br>-<br>- | -       | -         | -        | -            | -          | M         | M         | M      | M      |
| CO5: T<br>MAPPI<br>COs<br>CO1<br>CO2 | PO1<br>S<br>S                                                  | PO2<br>M<br>M | PO3<br>L<br>L | -<br>L   | M<br>M   | -             | -       | -         | -        | -            | -          | M<br>L    | M<br>M    | M<br>M | M<br>M |

#### INTRODUCTION

**Virtual Reality & Virtual Environment**: Introduction – Computer graphics – Real time computer graphics – Flight Simulation – Virtual environments – requirement – benefits of virtual reality- **3D Computer Graphics**: Introduction – The Virtual world space – positioning the virtual observer – the perspective projection – human vision – stereo perspective projection – 3D clipping – Colour theory – Simple 3D modelling – Illumination models – Reflection models – Shading algorithms

## GEOMETRIC MODELLING

**Geometric Modelling**: Introduction – From 2D to 3D – 3D space curves – 3D boundary representation - **Geometrical Transformations**: Introduction – Frames of reference – Modelling transformations – Instances – Picking – Flying – Scaling the VE – Collision detection - **A Generic VR system**: Introduction – The virtual environment – the Computer environment – VR Technology – Model of interaction – VR System

## CONTENT CREATION AND INTERACTION ISSUES

Gestalt perceptual organization - real world content - field of view - paradigm shift from real environment to virtual environment - reusing existing content - transition to VR content Human factors: Direct Vs Indirect Interaction - Modes and flow - Input device characteristics - viewpoint and control patterns.

#### DESIGN ISSUES

Optimizing performance - optimizing target hardware and software - **VR Hardware** : Introduction – sensor hardware – Head-coupled displays –Aquatic hardware – Integrated VR systems-**VR Software**: Introduction – Modelling virtual world –Physical simulation- VR toolkits - multiplayer environment - multiplayer networking architecture.

#### APPLICATION

Engineering – Entertainment – Science – Training – classroom.

#### TEXT BOOKS

- 1. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2002
- 2. Jason Jerald, "The VR book: Human centered design for virtual reality", CRC Press, 2015

#### REFERENCES

- 1. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.
- 2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", WileyInterscience,1 Edition,1994.
- 3. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application, and Design", Morgan Kaufmann, 1st Edition, 2002.
- 4. Jonathan Linowes, "Unity Virtual Reality Projects- Explore the world of virtual reality by building immersive and fun VR Projects using Unity 3D", Packt Publishing, 2015.

| S. No. | Name of the<br>Faculty | Designation         | Department   | Mail ID                |
|--------|------------------------|---------------------|--------------|------------------------|
| 1      | S. Muthuselvan         | Assistant Professor | CSE / VMKVEC | muthuselvan@avit.ac.in |
| 2      | T.Geetha               | Assistant Professor | CSE / AVIT   | geetha@vmkvec.edu.in   |

| 17MBHS04   | TOTAL OHALITY MANACEMENT | Category | L | T | P | Credit |
|------------|--------------------------|----------|---|---|---|--------|
| 1711221801 | TOTAL QUALITY MANAGEMENT | EC(OE)   | 3 | 0 | 0 | 3      |

#### PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

# PREREQUISITE: NIL

#### **COURSE OBJECTIVES:**

- 1. To understand the Total Quality Management concepts.
- 2. To practice the TQM principles.
- **3.** To apply the statistical process control
- **4.** To analyze the various TQM tools
- **5.** To adopt the quality systems.

## **COURSE OUTCOMES:**

After successful completion of the course, students will be able to

| <b>CO1:</b> Understand the importance of quality and TQM at managerial level.         | Understand |
|---------------------------------------------------------------------------------------|------------|
| CO2: Practice the relevant quality improvement tools to implement TQM.                | Apply      |
| CO3: Analyse various TQM parameters with help of statistical tools.                   | Analysing  |
| CO4: Assess various TQM Techniques.                                                   | Evaluate   |
| CO5: Practice the Quality Management Systems in a different organization Environment. | Apply      |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | -   | ı   | -   | -   | 1   | L   | L   | L   | M    | L    | M    | L    | 1    | -    |
| CO2 | M   | -   | -   | -   | L   | L   | -   | L   | M   | M    | ı    | L    | L    | -    | -    |
| CO3 | S   | S   | M   | S   | S   | -   | -   | L   | -   | L    | 1    | L    | -    | M    | -    |
| CO4 | L   | M   | S   | L   | M   | -   | L   | -   | L   | M    | L    | M    | -    | -    | -    |
| CO5 | L   | L   | M   | -   | L   | M   | S   | S   | M   | L    | L    | M    | L    | -    | -    |

#### INTRODUCTION

Quality: Definition - Dimensions - Planning- costs - Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership - Concepts- Role of Top Management- Quality Council - Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation - Barriers.

## TOM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

## STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Managementools.

## **TOM TOOLS**

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

## **QUALITY SYSTEMS**

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

## **TEXT BOOKS:**

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill-1991.

## **REFERENCES:**

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford.1989.
- **3.** Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

| S.No | Name of the Faculty | Designation         | Department   | Mail ID               |  |
|------|---------------------|---------------------|--------------|-----------------------|--|
| 1.   | A. Mani             | Associate Professor | MBA / VMKVEC | mani@vmkvec.edu.in    |  |
| 2.   | Dr. V. Sheela Mary  | Associate Professor | MBA / AVIT   | sheelamary@avit.ac.in |  |

| 15MD11602 | ENGINEERING           | Category | L | T | P | Credit |
|-----------|-----------------------|----------|---|---|---|--------|
| 17MBHS03  | MANAGEMENT AND ETHICS | EC(OS)   | 3 | 0 | 0 | 3      |

## PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: NIL

#### **COURSE OBJECTIVES:**

- 1. To Understand the principles of planning at various levels of the organisation.
- 2. To analyse and practice the concepts of organizing, staffing to higher productivity.
- 3. To apply the concepts related to directing and controlling.
- **4.** To understand and apply the case studies to practice code of ethics in organisation.
- **5.** To apply the ethical principles in working environment.

## **COURSE OUTCOMES:**

After successful completion of the course, students will be able to

| CO1: Understand the importance of planning principles in organization                              | Understand |
|----------------------------------------------------------------------------------------------------|------------|
| CO2: Apply the various strategies of organising and staffing process.                              | Apply      |
| <b>CO3:</b> Analyse various leadership skills and control techniques for shaping the organization. | Analyse    |
| CO4: Understand and apply best ethical practices in organisation                                   | Analyse    |
| CO5: Analyse and Apply relevant ethical practices in engineering.                                  | Apply      |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | M   | M   | L   | S   | M   | M   | L   | S   | S    | S    | S    | S    | S    | M    |
| CO2 | M   | L   | L   | -   | M   | M   | M   | L   | M   | S    | M    | M    | M    | M    | M    |
| CO3 | M   | M   | L   | -   | M   | M   | M   | L   | L   | S    | S    | M    | M    | M    | M    |
| CO4 | L   | M   | -   | M   | -   | M   | S   | S   | S   | S    | -    | M    | M    | -    | L    |
| CO5 | M   | M   | -   | L   | -   | M   | S   | S   | S   | S    | -    | M    | L    | M    | L    |

#### **PLANNING**

Management – Nature & Scope – Functions of Management – Levels of Management – Role of Managers - Nature and purpose of planning - Planning process - Types of plans – Objectives Managing by objective (MBO) - Decision Making - Types of decision - Decision Making Process - Decision Making under different conditions.

## **ORGANIZING & STAFFING**

Nature and purpose of organizing - Organization structure - Formal and informal Organization - Line and Staff authority - Depart mentation - Span of control - Centralization and Decentralization - Delegation of authority - Staffing - Selection and Recruitment - Orientation - Career Development - Career stages - Training Methods - PerformanceAppraisal.

#### **DIRECTING & CONTROLLING**

Creativity and Innovation - Motivation and Satisfaction - Motivation Theories - Leadership Styles - Communication - Barriers to effective Communication - Controlling - Controlling Techniques - Organization Culture - Elements and types of culture - Managing cultural diversity.

## INTRODUCTION TO ETHICS

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger Case Study.

#### ETHICS IN ENGINEERING

Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

## TEXT BOOKS

- 1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8thedition.
- **2.** Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.
- 3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York(2005).

#### **REFERENCES:**

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).
- **2.** Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.
- **3.** Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.
- **4.** Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics An Indian Perspective", Biztantra, New Delhi, (2004)
- 5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

| S. No. | Name of the Faculty | Designation         | Department   | Mail ID                     |
|--------|---------------------|---------------------|--------------|-----------------------------|
| 1.     | M. Manickam         | Associate Professor | MBA / VMKVEC | manickam@vmkvec.edu.in      |
| 2.     | C. M. Muthukrishna  | Assistant Professor | MBA / AVIT   | muthukrishna.mba@avit.ac.in |

| 17MBHS05 | MARKETING TECHNIQUES FOR | Category | L | T | P | Credit |
|----------|--------------------------|----------|---|---|---|--------|
|          | ENGINEERS                | EC(OE)   | 3 | 0 | 0 | 3      |

#### PREAMBLE:

Marketing is enveloping trend in modern competitive world as it contributes greatly for the productivity of firms. Marketing includes advertising, promotions, public relations, and sales and procedure of introducing and promoting the product or service into the market and enhancing sales from the buying public. Marketing techniques are significant management process that includes the distribution of marketing activities. Marketing techniques for engineers emphasises the ways to Work closely with advertising and marketing teams to promote understanding of the product, Gives technical presentations and demonstrations on products and makes the engineers to Participatein product Development cycle giving input about clients potential needs.

PREREQUISITE: NIL

#### **COURSE OBJECTIVES:**

- **1.** To understand the concept of marketing.
- **2.** To analyse various indicators of marketing
- **3.** To assess the product Promotion and relevant Strategies.
- **4.** To evaluate market channel for Promotion .
- **5.** To Apply and practice Promotional activities covering online Marketing.

## **COURSE OUTCOMES:**

After successful completion of the course, students will be able to

| CO1: Understand the basics of marketing opportunities                               | Understand |
|-------------------------------------------------------------------------------------|------------|
| CO2: Analyse the relevant marketing engineering strategies                          | Analyse    |
| CO3: Apply analytical skills in solving Product promotional challenges              | Apply      |
| CO4: Assess the marketing distribution strategies                                   | Analyse    |
| CO5: Analyse the digital marketing techniques for both Product and Market Promotion | Analyse    |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | -   | -   | 1   | L   | -   | L   | M   | M   | L   | S    | ı    | L    | L    | -    | -    |
| CO2 | -   | -   | -   | L   | L   | L   | M   | M   | M   | M    | -    | M    | -    | -    | L    |
| CO3 | L   | -   | -   | L   | L   | L   | -   | -   | M   | M    | L    | M    | -    | M    | M    |
| CO4 | L   | -   | 1   | M   | L   | L   | 1   | 1   | 1   | M    | M    | M    | 1    | M    | L    |
| CO5 | L   | M   | M   | M   | M   | M   | -   | -   | M   | M    | M    | M    | M    | M    | M    |

#### **Basics of Marketing**

Meaning – Definition and Importance of Marketing – Difference between Selling and Marketing – Approaches to the study of Marketing – Marketing concept – Market Segmentation – Basic for segmenting the consumer market – Marketing Environment - macro and micro components and their impact on marketing decisions - Buyer Behaviour

## **Marketing Engineering:**

Marketing engineering – importance – Marketing environment decision – Marketing Engineering approach- Marketing Engineering opportunities – Re-engineering Marketing –tools for Marketing engineering –Dynamic effects of Marketing engineering.

## **Product Promotion**

Product – Meaning and Definition – Product Policy – Classification of Products – Product mix – product line strategies – Branding– Product life cycle – New Product Development case studies - Pricing – Importance of Price – Objectives of Pricing- Factors affecting Price determination – Pricing Policies – kinds of Pricing – Pricing of New products – Discounts and Allowance- Resale – Price maintenance.

### **Market Promotion**

Channels of Distribution – Factors influencing the choice of a channel – Channel of Distribution for consumer and Industrial goods – Middlemen – Kinds of Wholesalers and retailers and their functions- Promotional mix – Factors determining promotional mix – Sales promotion – Objectives – Types- Advertising Budget – Personal Selling – Kinds of Advertising – Benefits — Personal selling – kinds of salesmen – Function – Qualities of a good salesmen- process of selling.

## **Marketing Research and Online Marketing**

Marketing Research: Meaning and scope of marketing research; Marketing research process- Social, ethical and legal aspects of marketing; Marketing of services; International marketing; Green marketing; Cyber marketing; Relationship marketing and other developments of marketing. The evolution of online marketing technologies – Difference between online and traditional advertising - Difference between search engines and search advertising – Measuring the effectiveness of online advertising- improving paid search engines.

## **TEXT BOOK:**

- 1. Philip Kotler, Marketing Management, Millennium Edition, Prentice HallPublication.
- 2. KS Chandrasekar, "Marketing management Text and Cases", Tata McGrawHill Vijaynicole, Firstedition, 2010
- **3.** Gary L. Lilien (Author), Arvind Rangaswamy (Author), De Bruyn, Arnaud (Author) "Principles of Marketing Engineering and Analytics" April 21,2017

#### **REFERENCES:**

- 1. Ramasamy & Namakumari, Marketing Management, Macmillan Pub.
- **2.** Arunkumar, Meenakshi, Marketing Management, VikasPub.
- 3. Sherlaker.S.A, Marketing Management, HPH
- 4. Rajan Saxena, Marketing Management, TMH
- 5. Beri. C. G, Marketing Research, Sultan ChandPub.

| S.No | Name of the Faculty | Designation         | Department   | mail id                    |
|------|---------------------|---------------------|--------------|----------------------------|
| 1.   | Dr. P. Marishkumar  | Associate Professor | MBA / VMKVEC | marishkumarp@vmkvec.edu.in |
| 2.   | Dr. L. Rajeshkumar  | Asst. Professor     | MBA /AVIT    | rajesh.mba@avit.ac.in      |

| 17              | CVE(                | <b>C07</b>                         | D        | ISASTI                              |         |          |          | AND      |         |            | Category             |                | T       | P    | Credit |
|-----------------|---------------------|------------------------------------|----------|-------------------------------------|---------|----------|----------|----------|---------|------------|----------------------|----------------|---------|------|--------|
|                 |                     |                                    |          | M                                   | IANA(   | SEME     | NT       |          |         |            | EC(OE                | 3              | 0       | 0    | 3      |
| This struct     | tures, a<br>us haza | deals<br>and H<br>ards su          | azard A  |                                     | nt pro  | cedure   | in Inc   | lia. Th  | is cour |            | out the m<br>deals w |                |         |      |        |
| PRER<br>NIL     | REQUI               | SITE                               |          |                                     |         |          |          |          |         |            |                      |                |         |      |        |
|                 | RSE O               | BJEC                               | TIVES    | }                                   |         |          |          |          |         |            |                      |                |         |      |        |
| 1.              | To                  | Under                              | stand ba | asic conc                           | epts in | Disast   | er Man   | ageme    | nt      |            |                      |                |         |      |        |
| 2.              | To                  | Unders                             | stand D  | efinition                           | s and T | ermin    | ologies  | used in  | n Disas | ter Mar    | nagement             |                |         |      |        |
| 3.              | To                  | Unders                             | stand th | e Challe                            | nges po | osed by  | / Disas  | ters     |         |            |                      |                |         |      |        |
| 4.              | Тот                 | To understand Impacts of Disasters |          |                                     |         |          |          |          |         |            |                      |                |         |      |        |
| COUI            | RSE O               | UTCO                               | OMES     |                                     |         |          |          |          |         |            |                      |                |         |      |        |
| On the          | succe               | ssful c                            | omplet   | ion of the                          | e cours | e, stud  | ents wi  | ll be at | ole to  |            |                      |                |         |      |        |
| Disas           | ters, A             | tmospl                             | heric D  | ious type<br>isasters,<br>Disasters |         |          |          |          |         |            | d Marine<br>sasters, |                | erstand |      |        |
|                 |                     | •                                  | •        | al deficie<br>ole remed             |         |          | _        | ldings   | for Ear | thquake    | 2                    | Unde           | erstand |      |        |
|                 |                     |                                    |          | nes for th<br>disaster.             | e preca | utiona   | ry mea   | sures a  | nd reha | abilitatio | on                   | A <sub>l</sub> | oply    |      |        |
|                 |                     |                                    | •        | on measu                            | res aga | inst flo | oods, c  | yclone,  | land sl | lides      |                      | Aı             | oply    |      |        |
| CO5:            | Under               | stand                              | the effe | ects of di                          | sasters | on bui   | lt struc | tures in | India   |            |                      | Unde           | erstand |      |        |
| MAPI            | PING V              | WITH                               | PROC     | GRAMN                               | IE OU   | TCOM     | IES A    | ND PR    | OGRA    | MME        | SPECIF               | IC OU          | ГСОМ    | ES   |        |
| COs             | PO1                 | PO2                                | PO3      | PO4                                 | PO5     | PO6      | PO7      | PO8      | PO9     | PO10       | PO11                 | PO12           | PSO1    | PSO2 | PSO3   |
| CO1             | M                   | -                                  | -        | L                                   | -       | -        | -        | -        | -       | -          | -                    | -              | -       | -    | -      |
| CO <sub>2</sub> | M                   | M                                  | L        | L                                   | -       | M        | -        | -        | -       | -          | -                    | -              | L       | -    | -      |
| CO3             | S                   | M                                  | S        | M                                   | -       | L        | -        | M        | -       | -          | -                    | -              | -       | -    | -      |
| CO <sub>4</sub> | S                   | M                                  | S        | -                                   | L       | -        | -        | -        | -       | -          | -                    | -              | -       | -    | -      |
| CO5             | L                   | L                                  |          | L                                   |         | _        |          |          | _       |            |                      |                |         |      |        |

## Syllabus

## INTRODUCTION

Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards

## RISK ASSESSMENT AND VULNERABILITY ANALYSIS

Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

## **DISASTER MANAGEMENT MECHANISM**

Concepts of risk management and crisis management; Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for relief

## DISASTER RESPONSE

Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

## DISASTER MANAGEMENT IN INDIA

Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

#### **TEXT BOOKS**

- 1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- **2.** Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian DevelopmentBank, Bangkok,1991.
- **3.** Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi2007.

## REFERENCE BOOKS

- **1.** AbarquezI. &MurshedZ. CommunityBasedDisasterRiskManagement:FieldPractitioner's Handbook, ADPC, Bangkok,2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

| S.No | Name of the Faculty | Designation     | Department     | Mail id                    |
|------|---------------------|-----------------|----------------|----------------------------|
| 1.   | M.Senthilkumar      | Asst. Professor | Civil / VMKVEC | senthilkumar@vmkvec.edu.in |
| 2.   | Dr.D.S.Vijayan      | Asst. Prof      | Civil / AVIT   | vijayan@avit.ac.in         |

| 150                                                             | EE CAA                                                                                                                         |         |          |           |          |           | SCAD    |         |         |          | Categor    | y L   | T        | P (     | Credit |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------|----------|-----------|---------|---------|---------|----------|------------|-------|----------|---------|--------|
| 17E)                                                            | EEC22                                                                                                                          |         |          |           |          | ì         | SCAD.   | A       |         |          | EC(OE)     | 3     | 0        | 0       | 3      |
|                                                                 | MBLE                                                                                                                           |         | 1 to one | 1vvva +1h |          | # arvata  | a dota  | in mool | time or | mliaatia | <b>n</b> a |       | <u> </u> | I       |        |
|                                                                 |                                                                                                                                |         |          | iyze in   | e powe   | r systei  | in date | ın rear | ume ap  | plicatio | IIS.       |       |          |         |        |
|                                                                 | PREREQUISITE – NIL COURSE OBJECTIVES                                                                                           |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 | 1. To understand the fundamentals of SCADA.                                                                                    |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 | <ol> <li>To understand the fundamentals of SCADA.</li> <li>To analyze the SCADA Components.</li> </ol>                         |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 | <ul><li>3. To apprise the communication in SCADA.</li></ul>                                                                    |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 | <ul><li>To apprise the communication in SCADA.</li><li>To learn the Concept of Monitoring and Control unit of SCADA.</li></ul> |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
| 5.                                                              | 1                                                                                                                              |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 |                                                                                                                                |         |          |           | ~ 0      |           | г       |         |         |          |            |       |          |         |        |
|                                                                 | COURSE OUTCOMES  On the successful completion of the course, students will be able to                                          |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
| CO1. Estimate the system components of SCADA.  Evaluate         |                                                                                                                                |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
| CO2. Outline the fundamentals of SCADA.  Analyze                |                                                                                                                                |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
| CO3. Compare the various SCADA communication protocol.  Analyze |                                                                                                                                |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
| CO4.                                                            | . Illustra                                                                                                                     | ate the | SCAD     | A com     | munica   | tion.     |         |         |         |          |            |       | App      | ly      |        |
| CO5.                                                            | Explai                                                                                                                         | n the n | nonitor  | ing and   | l contro | ol unit o | of SCA  | DA.     |         |          |            |       | Und      | erstand | l      |
| CO6.                                                            | Descri                                                                                                                         | be the  | applica  | ations c  | f SCA    | DA in j   | power   | system  | •       |          |            |       | Und      | erstand | l      |
| MAPI                                                            | PING V                                                                                                                         | VITH    | PROG     | RAMI      | ME OU    | JTCON     | MES A   | ND PI   | ROGR    | AMME     | SPECIF     | IC OU | TCOM     | IES     |        |
| COS                                                             | PO1                                                                                                                            | PO2     | PO3      | PO4       | PO5      | PO6       | PO7     | PO8     | PO9     | PO10     | PO11       | PO12  | PSO1     | PSO     | 2 PSO3 |
| CO1                                                             | S                                                                                                                              | L       | L        | L         | M        | M         | -       | -       | -       | -        | -          | 1     | L        | L       | M      |
| CO2                                                             | M                                                                                                                              | -       | -        | -         | M        | M         | -       | -       | -       | -        | -          | -     | L        | -       | L      |
| CO3                                                             | L                                                                                                                              | M       | -        | -         | M        | M         | -       | L       | -       | S        | -          | L     | M        | L       | M      |
| CO4 L M M M S - L                                               |                                                                                                                                |         |          |           |          |           |         |         | M       | L        | M          |       |          |         |        |
| CO5                                                             | CO5 L L M L                                                                                                                    |         |          |           |          |           |         |         | M       | M        | M          |       |          |         |        |
| CO6 S S L M L L L L                                             |                                                                                                                                |         |          |           |          |           |         |         |         |          | M          |       |          |         |        |
| S- Stro                                                         | S- Strong; M-Medium; L-Low                                                                                                     |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 |                                                                                                                                |         |          |           |          |           |         |         |         |          |            |       |          |         |        |
|                                                                 |                                                                                                                                |         |          |           |          |           |         |         |         |          |            |       |          |         |        |

## INTRODUCTION TO SCADA

Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits.

#### SCADA SYSTEM COMPONENTS

Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels.

#### SCADA COMMUNICATION

SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLCC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

## SCADA MONITORING AND CONTROL

Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

## SCADA APPLICATIONS IN POWER SYSTEM

Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning

## **TEXT BOOKS:**

- 1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications.USA.2004
- **2.** Gordon Clarke, Deon Reynders: Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems, Newnes Publications, Oxford,UK,2004.

#### **REFERENCES:**

- 1. William T. Shaw, Cybersecurity for SCADA systems, PennWell Books, 2006
- 2. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
- 3. Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power, PennWell 1999
- **4.** Dieter K. Hammer, Lonnie R.Welch, Dieter K. Hammer, "Engineering of Distributed Control Systems", Nova Science Publishers, USA, 1st Edition, 2001

| S.No. | Name of the Faculty | Designation         | Department | Mail ID               |
|-------|---------------------|---------------------|------------|-----------------------|
| 1.    | V.MANJULA           | Assistant Professor | EEE/VMKVEC | manjula@vmkvec.edu.in |
| 2.    | L.CHITRA            | Associate Professor | EEE/AVIT   | chitra@avit.ac.in     |

| 17EE                                                                             | EC03                                                                                 |         | (           |             |             |         |           | IGN OF    | ,       | •         | Categor   | y L       | T          | P                      | Credit |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|-------------|-------------|-------------|---------|-----------|-----------|---------|-----------|-----------|-----------|------------|------------------------|--------|
|                                                                                  |                                                                                      |         |             | ELE         | CTRIC       | CAL A   | PPAR.     | ATUS      |         | I         | EC(OE)    | 3         | 0          | 0                      | 3      |
| PREA                                                                             | MBLE                                                                                 |         |             |             |             |         |           |           |         | •         |           | •         | •          |                        |        |
|                                                                                  |                                                                                      | and far | niliarize   | the pri     | nciple,     | Conce   | pts of C  | Computer  | Aided 1 | Design to | echnolog  | gy for th | e design   | of Electr              | ical   |
| Machi                                                                            |                                                                                      | - NIII  |             |             |             |         |           |           |         |           |           |           |            |                        |        |
|                                                                                  | EQUISIT<br>SE OBJ                                                                    |         | 7 <b>EC</b> |             |             |         |           |           |         |           |           |           |            |                        |        |
| JOUR                                                                             | SE ODJ                                                                               | ECIIV   | LS          |             |             |         |           |           |         |           |           |           |            |                        |        |
| 1.                                                                               | Learn the importance of computer aided design method.                                |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
| 2.                                                                               | Understa                                                                             | and the | basic el    | ectroma     | agnetic     | field e | quation   | s and the | problen | n formul  | ation for | · CAD a   | pplication | ons.                   |        |
|                                                                                  |                                                                                      |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
| 3.                                                                               | Become familiar with Finite Element Method as applicable for Electrical Engineering. |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
| 4.                                                                               | Know the organization of a typical CAD package.                                      |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
| 5. Apply Finite Element Method for the design of different Electrical apparatus. |                                                                                      |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
| COURSE OUTCOMES                                                                  |                                                                                      |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
|                                                                                  | On the successful completion of the course, students will be able to                 |         |             |             |             |         |           |           |         |           |           |           |            |                        |        |
|                                                                                  | Understa                                                                             |         |             |             |             |         |           |           |         | esigning  | paramet   | ers.      | т          | In denotes a           | .1     |
|                                                                                  | Familiar                                                                             |         |             |             |             |         |           |           |         |           | 1         |           |            | Jnderstan<br>Jnderstan |        |
|                                                                                  | Impleme                                                                              |         |             |             | _           |         |           |           | problem |           |           |           | ,          | Apply                  | iu     |
|                                                                                  | Analyze                                                                              |         |             |             |             |         |           |           | concent | e of CAI  | <u> </u>  |           |            | Analyze                |        |
|                                                                                  | Design t                                                                             |         |             |             |             | аррага  | itus tiit | ough the  | concept | S OI CAI  |           |           |            | Create                 |        |
|                                                                                  |                                                                                      |         |             | •           |             |         |           |           |         |           |           |           |            | Create                 |        |
| MAP                                                                              | PING W                                                                               | TTH P   | ROGR        | AMME        | OUT         | COME    | S AND     | PROG      | RAMM    | E SPEC    | CIFIC O   | UTCON     | MES        |                        |        |
| COS                                                                              | PO1                                                                                  | PO2     | PO3         | PO4         | PO5         | PO6     | PO7       | PO8       | PO9     | PO10      | PO11      | PO12      | PSO1       | PSO2                   | PSO3   |
|                                                                                  | 1                                                                                    | M       | -           | M           | -           | -       | _         |           | _       | -         |           | -         | S          | M                      | M      |
| CO1                                                                              | S                                                                                    | 1,1     |             |             |             |         |           |           |         |           |           |           |            |                        |        |
| CO1                                                                              |                                                                                      | M       | -           | -           | -           | -       | -         | -         | -       | -         | -         | -         | M          | M                      | M      |
|                                                                                  | S                                                                                    |         | -<br>M      | -<br>M      | -<br>М      | -       | -         | -         | -       | -         | -         | -         | M<br>M     | M<br>S                 | M<br>M |
| CO2                                                                              | S<br>S                                                                               | M       | -<br>М<br>М | -<br>М<br>М | -<br>М<br>М |         | -         | -         | -       | -         |           |           |            | 112                    |        |

#### INTRODUCTION

Conventional design procedures – Limitations – Need for field analysis based design –Review of Basic principles of energy conversion – Development of Torque/Force.

#### MATHEMATICAL FORMULATION OF FIELD PROBLEMS

Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector / Scalar potential – Stored energy in Electric and Magnetic fields – Capacitance – Inductance- Laplace and Poisson's Equations – Energy functional.

## PHILOSOPHY OF FEM

 $\label{lem:matter-state-equation} Mathematical\ models - Differential/Integral\ equations - Finite\ Difference\ method - Finite\ element\ method - Energy\ minimization - Variational\ method-\ 2D\ field\ problems - Discretisation - Shape\ functions - Stiffness\ matrix - Solution\ techniques.$ 

## **CAD PACKAGES**

Elements of a CAD System – Pre-processing – Modelling – Meshing – Material properties-Boundary Conditions – Setting up solution – Post processing.

#### **DESIGN APPLICATIONS**

Voltage Stress in Insulators – Capacitance calculation – Design of Solenoid Actuator – Inductance and force calculation – Torque calculation in Switched Reluctance Motor.

#### **TEXT BOOKS:**

- 1. S.J Salon, 'Finite Element Analysis of Electrical Machines', Kluwer Academic Publishers, London, 1995.
- 2. Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor& Francis, 2005.

#### **REFERENCES:**

- 1. Joao Pedro, A. Bastos and Nelson Sadowski, 'Electromagnetic Modeling by Finite Element Methods', Marcell Dekker Inc., 2003.
- 2. P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.
- 3. D.A.Lowther and P.P Silvester, 'Computer Aided Design in Magnetics', Springer Verlag, New York, 1986.
- **4.** S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, New York, 1989.
- 5. User Manuals of MAGNET, MAXWELL & ANSYSSoftwares.

| S.No. | Name of the Faculty   | Designation                              | Department | Mail ID                        |
|-------|-----------------------|------------------------------------------|------------|--------------------------------|
| 1.    | Mr.G.Ramakrishnaprabu | Associate Professor                      | EEE/VMKVEC | ramakrishnaprabu@vmkvec.edu.in |
| 2.    | Mr.S.Prakash          | Assistant Professor<br>Professor (Gr-II) | EEE/AVIT   | sprakash@avit.ac.in            |

| 4.55                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |                       | ~~~                   |                        |                   |           | COLID    | 270       | (       | Categor | yL       | T       | P C      | redit |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|-------------------|-----------|----------|-----------|---------|---------|----------|---------|----------|-------|
| T/EI                                                                              | EEC21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               | NON (                 | CONVE                 | NTION                  | AL EN             | EKGY      | SOURG    | JES       |         | EC(OE   | ) 3      | 0       | 0        | 3     |
| anythir<br>conven<br>energy<br>imports<br>to urba<br>decents<br>system<br>gridapp | Non Conventional sources of energy are generally renewable sources of energy. This type of energy sources include nything, which provides power that can be replenished with increasing demand for energy and with fast depleting onventional sources of energy such as coal, petroleum, "natural gas etc. The non- conventional sources of energy such as nergy from sun, wind, biomass, tidal energy, geo thermal energy and even energy from waste material are gaining mportance. This energy is abundant, renewable, pollution free and eco-friendly. It can also be more conveniently supplied o urban, rural and even remote areas. Thus, it is also capable of solving the twin problems of energy supply in a ecentralized manner and helping in sustaining cleaner environment. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on ridapplications |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| PRER                                                                              | REREQUISITE: NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| COUR                                                                              | OURSE OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| 1.                                                                                | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o impart                                                                                                                                                                      | the know              | wledge o              | of basics              | of diffe          | erent no  | n conve  | ntional t | ypes of | power g | eneratio | on & po | wer plan | ts    |
| 2.                                                                                | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To impart the knowledge of basics of different non conventional types of power generation & power plants  To understand the need and role of Non-Conventional Energy sources. |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| 3.                                                                                | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To learn economical and environmental merits of solar energy for variety applications.                                                                                        |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| 4.                                                                                | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To learn modern wind turbine control & monitoring.                                                                                                                            |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| 5.                                                                                | To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To learn various power converters in the field of renewable energy technologies.                                                                                              |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| 6.                                                                                | To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To study and analyse different types of Power converters for Renewable energy conversion                                                                                      |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| COUR                                                                              | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
|                                                                                   | On the successful completion of the course, students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| CO1                                                                               | Ide<br>tea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | entify the<br>chniques<br>aplore the                                                                                                                                          | e differe<br>to gener | nt non c<br>rate elec | onvention<br>trical en | onal sou<br>ergy. | irces and | d the po |           |         | nd its  |          | erstand |          |       |
| 002                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | plication                                                                                                                                                                     |                       |                       | -,                     |                   |           |          |           |         |         | Anal     | yse     |          |       |
| CO3                                                                               | ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | miliarize<br>n be tapp                                                                                                                                                        | ped                   |                       |                        |                   |           |          |           | now hov | v it    |          | erstand |          |       |
| CO4                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | plore the                                                                                                                                                                     |                       |                       |                        |                   |           |          |           |         |         | Unde     | erstand |          |       |
| CO5                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | entify the                                                                                                                                                                    |                       |                       |                        |                   |           |          |           | •       |         | Anal     | yze     |          |       |
| CO6                                                                               | Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vestigate<br>enerators                                                                                                                                                        | and MI                | HD Gene               | erators                |                   |           | •        |           |         |         | Anal     |         |          |       |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G WITH                                                                                                                                                                        |                       |                       |                        | 1                 |           |          | 1         |         | 1       |          |         | 1        |       |
| COS                                                                               | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO2                                                                                                                                                                           | PO3                   | PO4                   | PO5                    | PO6               | PO7       | PO8      | PO9       | PO10    | PO11    | PO12     |         | PSO2     | PSO3  |
| CO1                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                             | M                     | M                     | -                      | L                 | L         | -        | L         | -       | -       | M        | L       | -        | -     |
| CO2                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                                                                                                                                             | -                     | L                     | M                      | -                 | S         | -        | M         | L       | M       | S        | S       | S        | M     |
| CO3                                                                               | -<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                             | M                     | S                     | L                      | M                 | L         | S        | -         | L       | S       | -        | S       | S<br>L   | S     |
| CO5                                                                               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                                                                                                                                             | -<br>T                | -<br>N/I              | -<br>T                 | S                 | -<br>N./  | L        | S         | L       | M       | S        | M -     | L        | S     |
|                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M                                                                                                                                                                             | L                     | M                     | L                      | L                 | M         |          | S         | M       | S       |          |         |          | S     |
| CO6                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |
| s- Stro                                                                           | - Strong; M-Medium; L-Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                               |                       |                       |                        |                   |           |          |           |         |         |          |         |          |       |

## INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

## SOLAR ENERGY CONCEPT

Introduction to Solar Energy - Radiation and its measurement, Solar Energy conversion and its types - Introduction to Solar Energy Collectors and Storage, Applications of Solar Energy: Solar Thermal Electric Conversion Systems, Solar Electric power Generation, Solar Photo-Voltaic, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation, Stand-alone, Grid connected solar powersatellite

## WIND ENERGY CONCEPT

Introduction - Basic Principles of Wind energy conversion-The nature of wind- The power in the wind (No derivations) - Forces on the Blades (No derivations)-Site Selection considerations-Basic components of a wind energy conversion system (WECS)-Advantages & Limitations of WECS-Wind turbines (Wind mill) - Horizontal Axis wind mill-Vertical Axis wind mill-performance of wind mills-Environmental aspects - Determination of torque coefficient, Induction typegenerators

## GEOTHERMAL AND BIOMASS ENERGY

Geothermal Sources - Hydro thermal Sources - a. Vapor dominated systems b. Liquid dominated systems -Prime movers for geothermal energy conversion - Biomass Introduction - Biomass conversion techniques-Biogas Generation-Factors affecting biogas Generation-Types of biogas plants- Advantages and disadvantages of biogas plants- urban waste to energy conversion - MSW incinerationplant.

#### TIDAL AND OTEC ENERGY

Tidal Energy-Basic Principles of Tidal Power-Components of Tidal Power Plants- Schematic Layout of Tidal Power house-Advantages & Limitations of Tidal, Wave, OTEC energy - Difference between tidal and wave power generation, OTEC power plants, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC.

## **TEXT BOOK**

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.
- **3.** Non Conventional Energy Resources, Shobh Nath. Singh, Pearson Education India, 2016, e ISBN: 978933255906-6

#### REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- **2.** Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi,2004. Non Conventional Energy Sources.Rai.

| S.No. | Name of the Faculty | Designation         | Department   | e-Mail ID                |  |  |
|-------|---------------------|---------------------|--------------|--------------------------|--|--|
| 1.    | P. LOGANATHAN       | Assistant Professor | EEE / VMKVEC | loganathan@vmkvec.edu.in |  |  |

| 157                                                                                            | 17MEPI04                                                                                                                               |         | NOI       | N-DES   | TRUC     | ΓIVE   |         | Ca                 | itegor  | y        | L        | T    | P    | C     | redit |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|----------|--------|---------|--------------------|---------|----------|----------|------|------|-------|-------|
| 171                                                                                            | WEPI                                                                                                                                   | )4      |           | TES     | STING    |        |         | E                  | EC(OE   | )        | 3        | 0    | 0    |       | 3     |
| To s                                                                                           | Preamble To study and understand the various Non Destructive Evaluation and Testing methods, theory and their industrial applications. |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| Prer                                                                                           | Prerequisite: NIL                                                                                                                      |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| Cour                                                                                           | Course Objective                                                                                                                       |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| 1. To expose to the concept of overview of NDT                                                 |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| 2. To familiarize with the applications of differential equations, surface NDE Methods         |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| 3. To understand the concept of thermography and Eddy current testing                          |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| 4.                                                                                             |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| 5.                                                                                             |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| Course Outcomes: On the successful completion of the course, students will be able to          |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| CO1. Explain the concept of overview of NDT  Understand                                        |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| To familiarize with the applications of differential equations, surface NDE Methods Understand |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| CO2. Experiment with the concept of thermography and Eddy current testing Apply                |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
|                                                                                                |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
| CO4                                                                                            | ·                                                                                                                                      | emmen   | t With th | ie conc | ept of u | masor  | ne tesi | ing an             | iu acoi | istic en | 11881011 |      |      | Apply |       |
| CO5                                                                                            | Exp                                                                                                                                    | erimen  | t with th | e conc  | ept of R | Radiog | raphy   | (RT)               |         |          |          |      |      | Apply | r     |
| Map                                                                                            | ping w                                                                                                                                 | ith Pro | gramm     | e Outo  | comes a  | nd Pr  | ogran   | ıme S <sub>l</sub> | pecific | Outco    | mes      |      |      |       |       |
| СО                                                                                             | PO1                                                                                                                                    | PO2     | PO3       | PO4     | PO5      | PO6    | PO7     | PO8                | PO9     | PO10     | PO11     | PO12 | PSO1 | PSO2  | PSO3  |
| CO1                                                                                            | S                                                                                                                                      | -       | L         | M       | -        | -      | -       | -                  | -       | -        | -        | -    | L    | -     | -     |
| CO2                                                                                            | S                                                                                                                                      | M       | M         | M       | L        | -      | -       | -                  | -       | -        | -        | -    | L    | -     | -     |
| CO3                                                                                            | S                                                                                                                                      | L       | M         | M       | M        | -      | -       | -                  | -       | -        | -        | -    | L    | -     | -     |
| CO4                                                                                            | S                                                                                                                                      |         | S         | S       | M        | -      | -       | -                  | -       | -        | -        | -    | L    | -     | -     |
| COS S M L M L -                                                                                |                                                                                                                                        |         |           |         |          |        |         |                    | _       | -        |          |      |      |       |       |
| S- St                                                                                          | rong; I                                                                                                                                | M-Med   | lium; L   | Low     |          | •      | •       |                    |         |          |          |      |      | •     |       |
|                                                                                                |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
|                                                                                                |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
|                                                                                                |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |
|                                                                                                |                                                                                                                                        |         |           |         |          |        |         |                    |         |          |          |      |      |       |       |

#### **OVERVIEW OF NDT**

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided

#### SURFACE NDE METHODS

Liquid Penetrant Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

#### THERMOGRAPHY AND EDDY CURRENT TESTING

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Typesof arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

## ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique —Principle, AE parameters, Applications

## RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

#### **Text Books**

- **1.** Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa PublishingHouse.
- **2.**Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New AgeInternational Publishers.

## **Reference Books**

- **1.** ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey
- 3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, NewYork.

## **Course Designers**

| S.N | To Faculty Name | Faculty Name Designation |             | Email id              |
|-----|-----------------|--------------------------|-------------|-----------------------|
| 1.  | S.ASHOKKUMAR    | Asst.Professor G-II      | MECH / AVIT | ashokkumar@avit.ac.in |

| 17M                                                                                      | ESE17                                                                                                                                                          | M      | ODEI           | RN M   | ANU    | FACT    | ΓURING               | ; C    | Categor  | y I      |          | T      | P        | Cred | it   |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------|--------|---------|----------------------|--------|----------|----------|----------|--------|----------|------|------|
|                                                                                          |                                                                                                                                                                |        |                |        | ТНО    | DS      |                      | ]      | EC(OE)   | 3        | 3        | 0      | 0        | 3    |      |
|                                                                                          | course                                                                                                                                                         |        |                |        |        |         | sadvance<br>knowledg |        |          |          |          |        |          |      |      |
| Prere                                                                                    | quisite                                                                                                                                                        | – NII  |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| Cours                                                                                    | se Obje                                                                                                                                                        | ective |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| 1.                                                                                       | To disc                                                                                                                                                        | uss th | e basi         | ic con | cepts  | of var  | ious unco            | onven  | tional n | nachini  | ng proce | esses  |          |      |      |
|                                                                                          | To Der                                                                                                                                                         | nonsti | rate th        | e Med  | chanic | al ene  | ergy base            | d unc  | onventi  | onal ma  | chining  | proces | ses.     |      |      |
|                                                                                          | To Demonstrate the Mechanical energy based unconventional machining processes.  To Demonstrate the Electrical energy based unconventional machining processes. |        |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| 4.                                                                                       | To Demonstrate the Chemical & Electro-Chemical energy based unconventional machining processes.                                                                |        |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| 5. To Demonstrate the Thermal energy based unconventional machining processes.           |                                                                                                                                                                |        |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| Course Outcomes: On the successful completion of the course, students will be able to    |                                                                                                                                                                |        |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| CO1. Discuss the basic concepts of various unconventional machining processes Understand |                                                                                                                                                                |        |                |        |        |         |                      |        |          |          |          |        |          |      |      |
| CO2.                                                                                     |                                                                                                                                                                |        |                |        |        |         | ased unco            |        |          |          |          |        | Apply    |      |      |
| CO3.                                                                                     |                                                                                                                                                                |        |                |        |        |         | sed uncor            |        |          |          |          |        | Apply    |      |      |
| CO4.                                                                                     | _                                                                                                                                                              |        | e Che<br>proce |        | & Ele  | ectro-C | Chemical             | energ  | gy based | d uncon  | vention  | al     | Apply    |      |      |
| <b>CO5.</b>                                                                              |                                                                                                                                                                |        |                |        | energ  | y base  | ed uncon             | ventic | onal mad | chining  | process  | es     | Apply    |      |      |
| Mapp                                                                                     | ing wi                                                                                                                                                         | th Pro | ogran          | nme C  | Outcor | nes a   | nd Progi             | ramm   | ie Speci | ific Out | tcomes   |        |          |      |      |
| со                                                                                       | PO1                                                                                                                                                            | PO2    | PO3            | PO4    | PO5    | PO6     | PO7                  | PO8    | PO9      | PO10     | PO11     | PO12   | PSO1     | PSO2 | PSO3 |
| CO1                                                                                      | S                                                                                                                                                              | _      | -              | -      | L      | -       | _                    | -      | -        | _        | M        | _      | L        | _    | -    |
| CO2                                                                                      | S                                                                                                                                                              | -      | -              | M      | M      | -       | -                    | -      | -        | -        | M        | -      | L        | -    | -    |
|                                                                                          | S                                                                                                                                                              | -      | -              | M      | M      | -       | -                    | -      | -        | -        | M        | -      | L        | -    | -    |
| CO3                                                                                      |                                                                                                                                                                |        | <b> </b>       |        |        |         |                      |        |          |          |          |        | <u> </u> |      |      |
| CO3                                                                                      | S                                                                                                                                                              | -      | -              | M      | M      | -       | -                    | -      | -        | -        | M        | -      | L        | -    | -    |

## INTRODUCTION

Unconventional machining Process – Need – classification – Brief overview–merits –demerits– Applications

## MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

## ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits—Wire cut EDM – working principle and Applications.

## CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants—Maskants

## THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

## Text Books

- 1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd.
- P.K.Mishra, "Non Conventional Machining "- The Institution of Engineers (India) Text Books: Series.

#### Reference Books

- 1. Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., NewYork
- 2. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi.
- Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing"

## **Course Designers**

| S.No | Faculty Name | Designation                    | Department/Name of the College | Email id                 |
|------|--------------|--------------------------------|--------------------------------|--------------------------|
| 1.   | S.PRAKASH    | Assistant<br>Professor (Gr-II) | Mech / AVIT                    | prakash@avit.ac.in       |
| 2.   | M SARAVANAN  | Asst Prof                      | Mech / VMKVEC                  | saravananm@vmkvec.edu.in |

| 17ECCC07 | MICROCONTROLLERS & | Category | L | T | P | Credit |
|----------|--------------------|----------|---|---|---|--------|
|          | ITS APPLICATIONS   | EC(OE)   | 3 | 0 | 0 | 3      |

## **PREAMBLE**

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

# PREREQUISITE - NIL

## **COURSE OBJECTIVES**

- 1. To learn the concepts of microprocessors and knowledge of interfacing devices.
- 2. To study the Architecture of 8051 microcontroller
- 3. To develop skill in simple program writing of microcontroller
- 4. To study the interfacing and applications of microcontroller
- **5.** To study the advanced microcontrollers.

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Explain the concept of microprocessor and interfacing devices.   | Understand |
|-----------------------------------------------------------------------|------------|
| CO2. Explain the architecture and function of 8051 microcontroller    | Apply      |
| CO3. Design and implement programs on 8051 Microcontroller            | Analyze    |
| CO4. Design and implement applications using 8051 Microcontroller     | Analyze    |
| CO5. Illustrate various applications using advanced Microcontrollers. | Analyze    |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO 2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|-------|------|
| CO1 | S   | S   | M   | -   | M   | -   | -   | -   | -   | -    | -    | M    | S    | M     | -    |
| CO2 | S   | S   | S   | -   | M   | -   | -   | -   | -   | -    | -    | M    | -    | -     | -    |
| CO3 | S   | M   | M   | -   | M   | M   | -   | -   | -   | -    | -    | M    | -    | -     | -    |
| CO4 | S   | S   | M   | -   | M   | M   | -   | -   | -   | -    | -    | M    | M    | -     | -    |
| CO5 | S   | M   | S   | -   | M   | M   | -   | -   | -   | -    | -    | M    | M    | M     | M    |

#### INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization - Signal Description of 8086 - Addressing modes - Data Transfer Instruction - Arithmetic Instruction - Branching Instruction - Program Transfer Instruction - simple programs- Programmable Peripheral Interface 8255 - Programmable Communication Interface 8251 USART - Programmable Interrupt Controller 8259A - Direct Memory Access Controller 8257- Programmable Interval Timer 8253 Keyboard/Display Controller8279.

#### INTEL 8051MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- SerialCommunication.

## **ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051**

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

#### INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing- DC MotorInterfacing.

#### ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, I<sup>2</sup>C – SPI – Watchdog timer – ARM7 (LPC2148) microcontroller – Architecture and applications.

## **TEXTBOOKS:**

- **1.** Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2 Frank D. Petruzella. "Programmable Logic Controllers", McGraw-Hill Book, Company,1989

#### **REFERENCE BOOKS:**

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- **4.** Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                   |
|-------|---------------------|---------------------|--------------|---------------------------|
| 1.    | Mr.S.Selvam         | Assistant Professor | ECE/AVIT     | selvam@avit.ac.in         |
| 2.    | Mr.R.Ramani         | Assistant Professor | ECE / VMKVEC | ramani@vmkvec.edu.in      |
| 3.    | Mr.G.Sureshkumar    | Assistant Professor | ECE / VMKVEC | sureshkumar@vmkvec.edu.in |

| 17MBHS02                                | FINANCE AND ACCOUNTING | Category | L | T | P | Credit |
|-----------------------------------------|------------------------|----------|---|---|---|--------|
| 171111111111111111111111111111111111111 | FOR ENGINEERS          | EC(OE)   | 3 | 0 | 0 | 3      |

## PREAMBLE:

Engineers are in a position to do Decision Making during every activity in the industry. The activities ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization.

PREREQUISITE: NIL

## **COURSE OBJECTIVES:**

- 1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.
- 2. To apply the various methods to claim depreciation and
- **3.** To practice fundamental investment decision through capital budgeting techniques.
- **4.** To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.
- **5.** To estimate the working capital requirements for day-to-day activities and handling inventories with economic ordering quantities.

## **COURSE OUTCOMES:**

After successful completion of the course, students will be able to

| CO1: Understand the importance of recording, book keeping and reporting of the business                                              | Understand |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| transaction.                                                                                                                         |            |
| CO2: Identify and Apply suitable method for charging depreciation on fixed assets.                                                   | Apply      |
| <b>CO3:</b> Analyse the various methods of capital budgeting techniques for investment decision.                                     | Apply      |
| <b>CO4:</b> Justify the scope of cost-volume-profit analysis, standard costing, and marginal costing techniques for decision making. | Analyse    |
| CO5: Estimation of working capital requirements of the organization.                                                                 | Evaluate   |

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | -   | -   | M   | L   | S   | M   | -   | S   | -   | M    | M    | L    | M    | L    | M    |
| CO2 | L   | -   | -   | L   | M   | -   | L   | L   | -   | -    | L    | M    | L    | L    | -    |
| CO3 | -   | M   | -   | M   | L   | -   | -   | L   | S   | M    | -    | L    | -    | L    | M    |
| CO4 | L   | L   | -   | S   | -   | -   | L   | -   | -   | L    | M    | L    | M    | L    | M    |
| CO5 | L   | -   | L   | S   | L   | -   | 1   | M   | M   | L    | -    | L    | M    | M    | -    |

#### Introduction:

Business Environment – Forms of business – Book Keeping and Accounting – Accounting Concepts and Conventions – Journal – Subsidiary books - Ledger – Trial Balance – Final Accounts **Deprecation:** Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

## **Capital Budgeting Decisions:**

Meaning – Nature & Importance of Investment Decisions – Types - Evaluation Techniques – Non-Discounting Cash Flow Techniques: Pay Back Period – Accounting Rate of Return – Discounting Cash Flow Techniques: NPV – IRR - ProfitabilityIndex.

## **Costing Accounting:**

Concepts - Elements of Cost - Preparation of Cost Sheet - Types of Costs - Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

## **Working Capital Management:**

Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management – ACP, Aging schedule –Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

#### Text Book

- **1.** Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- **2.** Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting",PHI Learning Pvt., Ltd.2007.

# **Reference Book**

- **1.** Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- **3.** Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

| S.No | Name of the Faculty | Designation         | Department   | Mail ID               |
|------|---------------------|---------------------|--------------|-----------------------|
| 1.   | M.Manickam          | Associate Professor | MBA / VMKVEC | manickam@vmkec.edu.in |
| 2.   | Dr. Rajeshkumar     | Assistat Professor  | MBA / AVIT   | rajesh.mba@avit.ac.in |

17MBHS09

# INTELLECTUAL PROPERTY RIGHTS AND ALTERNATE DISPUTE RESOLUTION

| Category | L | T |
|----------|---|---|
| EC(OE)   | 3 | 0 |

P

Credit

PREAMBLE: IPR & ADR

Intellectual Property Rights are valuable assets and the most essential for any kind of business development. IPR helps to set the business to show individuality from market competitors. It prevents duplication and provide authentication as a unique selling point to compete in the market and built confidence over the product among the customers. ADR is a new legal mechanism to sort out disputes among industries and helps to get easily solved through mediation and counselling. It provides instant solutions to both the parties with meagre loss in a faster way and less expensive through arbitrator.

**PREREQUISITE:** Not Required

## **COURSE OBJECTIVES:**

- 1. To understand and practice the basic concept of IPR and Patent filing procedure.
- 2. To describe the various procedure for getting grants of patent, trademark and trade secrets.
- 3. To apply various legal aspects in patent ownership and transfer.
- 4. To implement the best practices and laws relating to the Intellectual property rights.
- 5. To examine the practices of ADR mechanism in the technological advancement contexts.

# **COURSE OUTCOMES:**

After successful completion of the course, students will be able to

| T and the state of |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CO1: Understand the concept and development of intellectual property rights.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Understand |
| CO2: Explain the procedure and requirement of to apply New IPR development and related                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand |
| system in India and across the Globe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| CO3: Solve the various issues of transfer of patent ownership with reference to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apply      |
| International Patent Law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| CO4: Analyse the present system of Patent Act in India and changes aligned with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyse    |
| international standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| CO5: Criticise the present dispute mechanism and how ADR supports and solution to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evaluate   |
| business issues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | L   | M   | M   | -   | -   | S   | L   | M   | L   | M    | -    | L    | -    | -    | -    |
| CO2 | -   | -   | M   | L   | M   | M   | S   | L   | M   | L    | L    | L    | -    | -    | M    |
| CO3 | -   | -   | M   | M   | -   | L   | M   | -   | M   | L    | L    | M    | L    | M    | -    |
| CO4 | M   | -   | ı   | L   | M   | -   | L   | -   | ı   | L    | L    | M    | -    | -    | L    |
| CO5 | -   | L   | ı   | L   | M   | L   | -   | M   | L   | ı    | M    | L    | L    | L    | -    |

S- Strong; M-Medium; L-Low

## **SYLLABUS:**

## **UNIT – I: Introduction To IPRs**

Basic concepts of Intellectual Property- Patents Copyrights, Geographic Indicators, History of IPRs- the way from WTO to WIPO- TRIPS, Nature of Intellectual Property, Industrial Property, Technological Research, Inventions and Innovations - Defining Intellectual Property and Patents, Patent Searches and Application.

# **UNIT – II: New Developments in IPR**

Procedure for grant of Patents, TM, GIs, Trade Secrets, Patenting under PCT, Administration of Patent system in India, Patenting in foreign countries - International Treaties and conventions on IPRs, The TRIPs Agreement.

## **UNIT – III: Patent Ownership and Transfer**

Defining Intellectual Property and Patents, Patent Searches and Application, Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

# **UNIT – IV: Legislation of IPRs**

The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act and, IPR strength in India - Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

## **UNIT – V: Alternate Dispute Resolution**

Alternate Dispute Resolution and Arbitration – ADR Initiatives - Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration - Effective Mechanism for Business Issues.

## **TEXT BOOK:**

1. Deborah E. Bouchoux, Intellectual Property Rights, Delmar, Cengage Learning, 2005.

## **REFERENCES:**

- 1. V. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006.
- 2. A. Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2006.
- 3. Tejaswini Apte, A single guide to Intellectual property rights, Biodiversity and Traditional knowledge.
- 4. WIPO Intellectual Property Hand book.
- 5. Intellectual Property rights and copyrights, Ess Ess Publications.

| S.No | Name of the Faculty    | Designation            | Department   | Mail id                     |
|------|------------------------|------------------------|--------------|-----------------------------|
| 1    | Dr. G. Palaniappan     | Associate<br>Professor | MBA / VMKVEC | palaniappan@vmkvec.edu.in   |
| 2    | Mr. C. M. Muthukrishna | Assistant<br>Professor | MBA / AVIT   | muthukrishna.mba@avit.ac.in |

| Preamble This course introduces the role of sensors and actuators for controlling the engine, dri PREREQUISITE: NIL  COURSE OBJECTIVES:  1. To know the control Autonomy of vehicles 2. To study computer controlled fuel, Ignition , Speed and knock system of IC en 3. To learn the computer controlled drive line system of Automobile  4 To study about the computer control transportation system  5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition , speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 II  CO1 S M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rer    | ATEC14 CO                               | TER (    |           | ROLLI   | ED VE     | HICL     | E        | Categor   | y L       | , T        | P       | Credi |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|----------|-----------|---------|-----------|----------|----------|-----------|-----------|------------|---------|-------|--|
| This course introduces the role of sensors and actuators for controlling the engine, dri  PREREQUISITE: NIL  COURSE OBJECTIVES:  1. To know the control Autonomy of vehicles  2. To study computer controlled fuel, Ignition, Speed and knock system of IC en  3. To learn the computer controlled drive line system of Automobile  4 To study about the computer control transportation system  5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 IT  CO1 S M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ALCIA                                   |          | EC(O      | E) 3    | 0         | 0        | 3        |           |           |            |         |       |  |
| PREREQUISITE: NIL  COURSE OBJECTIVES:  1. To know the control Autonomy of vehicles 2. To study computer controlled fuel, Ignition, Speed and knock system of IC en 3. To learn the computer controlled drive line system of Automobile 4 To study about the computer control transportation system 5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 FO11 PO11 SPECIF COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO11 PO11 SPECIF COS SPECIF POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | amble                                   |          |           |         |           |          | <u> </u> |           | I         |            |         |       |  |
| COURSE OBJECTIVES:  1. To know the control Autonomy of vehicles  2. To study computer controlled fuel, Ignition, Speed and knock system of IC en  3. To learn the computer controlled drive line system of Automobile  4 To study about the computer control transportation system  5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 II  CO1 S M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sens   | s course introduces the                 | f senso  | ors and   | actuato | ors for c | controll | ling the | engine, d | rive line | e. It also | provide |       |  |
| 1. To know the control Autonomy of vehicles 2. To study computer controlled fuel, Ignition, Speed and knock system of IC en 3. To learn the computer controlled drive line system of Automobile 4 To study about the computer control transportation system 5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO8 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 FO11 FO11 SMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | EREQUISITE: NIL                         |          |           |         |           |          |          |           |           |            |         |       |  |
| 2. To study computer controlled fuel, Ignition, Speed and knock system of IC en  3. To learn the computer controlled drive line system of Automobile  4 To study about the computer control transportation system  5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 FO11 SMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | URSE OBJECTIVES                         |          |           |         |           |          |          |           |           |            |         |       |  |
| 3. To learn the computer controlled drive line system of Automobile  4 To study about the computer control transportation system  5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 FO11 FO11 SMARTH SPECIF SMARTH SMARTH SPECIF SMARTH SPECIF SMARTH SPECIF SMARTH SPECIF SMARTH SMARTH SPECIF SMARTH SPECIF SMARTH SPECIF SMARTH SPECIF SMARTH SMARTH SPECIF SMARTH SPECIF SMARTH SPECIF SMARTH SMARTH SPECIF SMARTH SPECIF SMARTH SPECIF SMARTH SMARTH SPECIF SMARTH SMARTH SMARTH SPECIF SMARTH SMART | nom    | To know the contro                      | onomy    | of vehi   | cles    |           |          |          |           |           |            |         |       |  |
| To study about the computer control transportation system  5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 II  CO1 S M M M M M CO2 S M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lled f | To study computer                       | olled fu | el, Igni  | tion, S | speed a   | nd kno   | ck syste | m of IC   | engine    |            |         |       |  |
| 5. To learn about the smart safety devices of Automobile  COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F  CO1 S M M M M M CO2 S M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | troll  | To learn the compu                      | ntrolled | d drive   | line sy | stem of   | Autor    | nobile   |           |           |            |         |       |  |
| COURSE OUTCOMES:  After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F  CO1 S M M M M M CO2 S M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ter c  | To study about the                      | ıter coı | ntrol tra | ansport | ation s   | ystem    |          |           |           |            |         |       |  |
| After Successful completion of this course, the students will be able to:  CO1. Summarize sensors and actuators used in vehicle control system  CO2. Identify Control of fuel, Ignition, speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F  CO1 S M M M M M  CO2 S M M M M M M M M  CO3 S S S S M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | afety  | To learn about the s                    | safety o | levices   | of Aut  | omobil    | le       |          |           |           |            |         |       |  |
| CO1. Summarize sensors and actuators used in vehicle control system CO2. Identify Control of fuel, Ignition, speed and knock in IC engine CO3. Make use of Drive line system, Steering and suspension systems CO4. Examine intelligent transportation system CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F CO1 S M M M M M CO2 S M M M M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | URSE OUTCOMES:                          |          |           |         |           |          |          |           |           |            |         |       |  |
| CO1. Summarize sensors and actuators used in vehicle control system CO2. Identify Control of fuel, Ignition, speed and knock in IC engine CO3. Make use of Drive line system, Steering and suspension systems CO4. Examine intelligent transportation system CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F CO1 S M M M M M CO2 S M M M M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M CO3 S S S S S M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | his c  | ter Successful completi                 | this co  | urse, th  | e stude | nts wil   | ll be ab | le to:   |           |           |            |         |       |  |
| CO2. Identify Control of fuel, Ignition , speed and knock in IC engine  CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 II  CO1 S M M M M M M  CO2 S M M M M M M M M  CO3 S S S S M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                         |          |           |         |           |          |          |           |           | Under      | stand   |       |  |
| CO3. Make use of Drive line system, Steering and suspension systems  CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F  CO1 S M M M M M  CO2 S M M M M M M M M  CO3 S S S S M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | Summarize sensors                       |          |           |         |           |          |          |           |           | Арі        |         |       |  |
| CO4. Examine intelligent transportation system  CO5. Analyze the smart safety Devices used in Automobiles  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF  CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 F  CO1 S M M M M M  CO2 S M M M M M M M M  CO3 S S S S M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | identify Control of                     |          |           |         |           |          |          |           |           |            |         |       |  |
| CO5.         Analyze the smart safety Devices used in Automobiles           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF           COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         F           CO1         S         M         M            M              CO2         S         M         M         M           M         M             CO3         S         S         S         M           M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                         |          |           |         | uspens    | ion sys  | tems     |           |           | App        |         |       |  |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF           COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         I           CO1         S         M         M         M           M              CO2         S         M         M         M           M         M         M             CO3         S         S         S         M           M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ortat  | <ul> <li>Examine intelligent</li> </ul> | portatio | on syste  | em      |           |          |          |           |           | Anal       | yze     |       |  |
| COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         FO11           CO1         S         M         M         M           M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Devi   | • Analyze the smart s                   | Device   | s used    | in Auto | omobil    | es       |          |           |           | Analyze    |         |       |  |
| COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         FO11           CO1         S         M         M         M           M             M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ME     | PPING WITH PROC                         | IME (    | HTCC      | OMES    | AND I     | PROGI    | RAMM     | E SPECI   | FIC O     | UTCON      | /IES    |       |  |
| CO1         S         M         M         M           M              CO2         S         M         M         M           M         M         M             CO3         S         S         S         M           M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                         |          |           |         |           |          |          |           | PO12      | PSO1       | PSO2    | PSO3  |  |
| CO3 S S S M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                         |          |           |         |           |          |          |           | M         | M          |         |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2 S M M                                 |          |           | M       | M         | M        |          |           | M         | M          |         |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3 S S S                                 |          |           | M       | M         | M        |          |           | M         | M          |         |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |          |           | M       | M         | M        |          |           | M         | M          |         |       |  |
| CO5         S         S         M           M         M         M             S- Strong; M-Medium; L-Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 5 S S S                                 |          |           | M       | M         | M        |          |           | M         | M          |         |       |  |

# INTRODUCTION

Understanding autonomy – Review of the role of control in autonomy (speed control, suspension control & integrated vehicle dynamics) - Role of sensors and actuators. Examples of autonomy cruise control

## ENGINE CONTROL SYSTEM

Fuel control-Ignition control in SI engines- Lambda control- idle speed control- Knock control- cylinder balancing

#### DRIVE LINE CONTROL SYSTEM

Speed control – gear shifting control – traction /braking- steering- suspension – vehicle handling and ride characteristics of road vehicles- adaptive cruise control

# INTELLIGENT TRANSPORTATION SYSTEM

Overview – control architecture – collision avoidance, pitch, yaw, bounce control – traffic routing system-automated high way systems- lane warning system- driver information system- data

## SAFETY IMPACTING DEVICES

Vision enhancement- driver conditioning warming- anti-lock braking systems – route guidance and navigation systems – in-vehicle computing – commercial vehicle diagnostic/ prognostics – hybrid/ electric and future cars- case study.

## **TEXT BOOK:**

1. Automotive control systems, U.Kienckeand L. Nielson, SAE and springer-Verlag, 2000

## **REFERENCES:**

- 1. Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, NewDelhi.
- 2. Artamonov, M.D., Harionov, V.A. & Morin, M.M. Motor Vehicle, Mir Publishers, Moscow1978.,
- 3. Heitner, J., Automotive Mechanics, CBS Publishers, New Delhi 1987.
- 4. Stockel Martin W and Stocker Martin T., Auto Mechanics Fundamentals, GoodheartWilcox,

| S.No | Name of the Faculty | Designation               | Department/College | Mail ID                   |
|------|---------------------|---------------------------|--------------------|---------------------------|
| 1.   | T.Raja              | Associate Professor       | Auto / VMKVEC      | rajat@vmkvec.edu.in       |
| 2.   | R. Prabhakar        | Associate Professor       | Auto / VMKVEC      | prabhakar@vmkvec.edu.in   |
| 3.   | M.Saravana Kumar    | Assistant. Professor GRII | Auto / AVIT        | saravanakumar@avit.ac.in  |
| 4.   | B. Samuvel Michael  | Assistant. Professor GRII | Auto / AVIT        | samuvelmichael@avit.ac.in |

| 17CV          | CD <i>EE</i> |          | DEL       | AOTE A   | a <b>r</b> Nan          |          | ID CIC   | EOD       |           | Categ    | gory    | L         | T        | P       | Credit |
|---------------|--------------|----------|-----------|----------|-------------------------|----------|----------|-----------|-----------|----------|---------|-----------|----------|---------|--------|
| 1/00          | SESS         |          |           |          | SENSII<br>MENT <i>A</i> |          |          |           |           | EC(C     | DE)     | 3         | 0        | 0       | 3      |
| PREA          | MBLE         | 1        |           |          |                         |          |          |           |           |          |         |           |          |         |        |
|               | This         | Course   | helps in  | n gainin | g know                  | ledge a  | bout re  | mote se   | nsing aı  | nd GIS f | or envi | ronmen    | t applic | cation. |        |
| PRER<br>NIL   | EQUIS        | SITE     |           |          |                         |          |          |           |           |          |         |           |          |         |        |
| COUR          | SE OF        | BJECT    | IVES      |          |                         |          |          |           |           |          |         |           |          |         |        |
| 1 Be          | acquai       | inted w  | ith the c | concepts | s of Ren                | note se  | nsing, I | EMR int   | teraction | n with E | nvironr | nental is | ssues.   |         |        |
| 2 Be          | famili       | ar with  | remote    | sensing  | gplatfor                | m syste  | ems, its | satellite | es and s  | ensors.  |         |           |          |         |        |
| 3 Ga          | in kno       | wledge   | on data   | proces   | sing usi                | ng ima   | ge proc  | essing s  | oftware   |          |         |           |          |         |        |
| 4 Ga          | in kno       | wledge   | on GIS    | and GI   | S softw                 | are.     |          |           |           |          |         |           |          |         |        |
| 5 Be          | famili       | ar with  | monito    | ring env | vironme                 | nt usin  | g remot  | te sensir | ng and C  | GIS.     |         |           |          |         |        |
| COUR          | SE OU        | JTCO     | MES       |          |                         |          |          |           |           |          |         |           |          |         |        |
| On the        | succes       | sful co  | mpletion  | n of the | course,                 | studen   | ts will  | be able   | to        |          |         |           |          |         |        |
| CO1. I        | Develop      | know     | ledge or  | n conce  | pt of rer               | note se  | ensing.  |           |           |          |         | Unders    | tand     |         |        |
| CO2. I        | Be awa       | re of re | mote se   | nsing p  | latforms                | s and se | ensors.  |           |           |          |         | Unders    | tand     |         |        |
| CO3. I        | dentify      | the ste  | ps in In  | nage pro | ocessing                | g softwa | are.     |           |           |          |         | Apply     |          |         |        |
| <b>CO4.</b> I | Relate t     | he prob  | olems in  | GIS so   | ftware.                 |          |          |           |           |          |         | Apply     |          |         |        |
| CO5. I        | Describ      | e the e  | nvironm   | ental ap | plication               | on usin  | g remot  | e sensir  | ng and C  | GIS.     |         | Analyz    | e        |         |        |
| MAPP          | ING V        | VITH I   | PROGR     | RAMM     | E OUT                   | COME     | ES ANI   | ) PROC    | GRAMI     | ME SPE   | CIFIC   | OUTC      | OME      | S       |        |
| COs           | PO1          | PO2      | PO3       | PO4      | PO5                     | PO6      | PO7      | PO8       | PO9       | PO10     | PO11    | PO12      | PSO1     | PSO2    | PS     |
|               |              |          |           |          |                         |          |          |           |           |          |         |           |          |         | 03     |

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PS |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|----|
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      | O3 |
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |    |
| CO1 | S   | L   | L   | L   | -   | -   | -   | -   | -   | -    | -    | -    | L    | L    | L  |
| CO2 | S   | L   | M   | L   | M   | -   | -   | -   | -   | -    | -    | -    | L    | -    | L  |
| CO3 | S   | M   | M   | L   | M   | M   | -   | -   | -   | -    | -    | -    | L    | -    | M  |
| CO4 | S   | S   | M   | L   | -   | -   | -   | -   | -   | -    | -    | -    | M    | M    | S  |
| C05 | S   | -   | M   | -   | M   | S   |     |     |     |      |      |      | M    | M    | S  |

S- Strong; M-Medium; L-Low

# **SYLLABUS**

PRINCIPLES OF ELECTRO MAGNETIC RADIATION: Concepts of Remote Sensing - Energy sources and radiation principles, Energy interactions in the atmosphere - Spectral reflectance of earth surface features.

REMOTE SENSING PLATFORMS: Aerial Photographs, Photographic Systems - Visible, Infra Red and Microwave sensing - Active and passive sensors - Satellites and their sensors, Indian Space Program - Satellite data

# products

**DATA PROCESSING:** Photogrammetry - Satellite data analysis - Visual Interpretation, Interpretation equipments

- Digital Image Processing - Image rectification, enhancement, classification, data merging and biophysical modeling - Image Processing software.

**GEOGRAPHIC INFORMATION SYSTEM**: Introduction to GIS concepts - Data base structure - Data analysis - GIS software

**REMOTE SENSING AND GIS APPLICATIONS:** Management and monitoring of environment, conservation of resources, coastal zone management - Limitations.

# **TEXT BOOKS:**

1. Lillesand, T.M. and Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 2004.

# **REFERENCES:**

- 1. Burrough, P.A. and McDonnell, R.A., Principles of Geographic Information Systems, Oxford University Press, New York, 2001.
- 2. Lintz, J. and Simonet, Remote Sensing of Environment, Addison Wesley Publishing Company, New Jersey, 1998.

| S.No | Name of the Faculty | Designation         | Department   | Mail ID                    |
|------|---------------------|---------------------|--------------|----------------------------|
| 1    | C. Nivetha          | Assistant Professor | Civil / AVIT | nivethachandru92@gmail.com |
| 2    | Dr.S.P.Sangeetha    | HoD                 | Civil / AVIT | sangeetha@avit.ac.in       |

| 17CVEC03        | GEOGRAPHICAL INFORMATION SYSTEM                                                                                                                                                                                                              | Category                    | L               | T      | P              | Credit    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|--------|----------------|-----------|
|                 | GEOGRAF HICAL INFORMATION SISTEM                                                                                                                                                                                                             | EC(OE)                      | 3               | 0      | 0              | 3         |
| Preamble        |                                                                                                                                                                                                                                              |                             |                 |        |                |           |
| ngthatthegeolog | formationSystemistheapplicationofthegeologicsciencestoe<br>gicfactorsaffectingtheengineeringworksarerecognized and<br>s may be performedduringtheplanning and design. A civil<br>ologic report, and incorporate adequate measures into the d | l adequately pengineer shou | provid<br>ld be | ed fo  | or. Engo under | gineering |
| PREREQUISI      | TE: NIL                                                                                                                                                                                                                                      |                             |                 |        |                |           |
| COURSE OBJ      | JECTIVES:                                                                                                                                                                                                                                    |                             |                 |        |                |           |
| 1. To prov      | vide exposure to applications of GIS in various application                                                                                                                                                                                  | n domains thro              | ugh ca          | se stu | idies          |           |
| 2. Student      | ts will learn about the use of zone mapping for water bodie                                                                                                                                                                                  | es .                        |                 |        |                |           |
| 3. Student      | ts will learn about the use of mapping techniques for Agric                                                                                                                                                                                  | culture and Ear             | th scie         | ences  |                |           |
| 4 Studen        | nts will also learn about the recent techniques used for GPS                                                                                                                                                                                 | S system                    |                 |        |                |           |
|                 | ident shall also be able to appreciate the importance of geo                                                                                                                                                                                 | ological format             | ion in          | causi  | ng eartl       | nquakes   |
| and lan         | dslides and literate the rural people                                                                                                                                                                                                        |                             |                 |        |                |           |

| CO1. | Acquire the knowledge of the topographical formation, interior earth, gradational activities and GIS Technique and data INPUT | Understand |
|------|-------------------------------------------------------------------------------------------------------------------------------|------------|
| CO2. | Understand the importance of advanced techniques involved in data Analysis and modelling                                      | Understand |
| CO3. | Study the importance of Data Output And Error Analysis.                                                                       | Analyse    |
| CO4. | Understand the importance of Natural Resources And Wasteland Management using GIS                                             | Understand |
| CO5. | Analysis of RS and GIS data and interpreting the data for modeling applications                                               | Analyse    |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | L   | S   | S   | M   | S   | M   | M   | S    | S    | S    | M    | -    | M    |
| CO2 | S   | M   | M   | L   | L   | M   | M   | L   | L   | L    | L    | M    | L    | L    | M    |
| CO3 | S   | S   | S   | S   | L   | L   | M   | L   | L   | L    | L    | L    | L    | M    | M    |
| CO4 | S   | S   | S   | M   | M   | S   | S   | L   | L   | L    | M    | M    | L    | M    | L    |
| CO5 | S   | S   | S   | S   | S   | S   | S   | S   | S   | S    | S    | S    | L    | M    | M    |

# GIS TECHNIQUE AND DATA INPUT

MAP – Types of Maps – Development of GIS – Components of GIS – Hardware, software, organisation – Types of data – Spatial and non-spatial data – Print, Line and Polygon – Vector and Raster data – Database structures – Files – Vector and Raster data structures.

#### DATA ANALYSIS AND MODELLING

Data Retrieval – Query – Simple Analysis – Spatial Analysis – Overlay – Vector Data Analysis – Raster Data Analysis – Modelling using GIS– Digital Elevation Model – Cost and path analysis– Expert Systems – Artificial Intelligence – Integration with GIS

#### DATA OUTPUT AND ERROR ANALYSIS

Data Output – Types – Devices used – Raster and Vector Display Devices – Printers – Plotters – Photo write Devices – Sources of Errors – Types of Errors – Elimination – Accuracies

#### GIS APPLICATIONS IN RESOURCE MANAGEMENT

Fields of Applications – Natural Resources – Agriculture – Soil – Water Resources – Wasteland Management - Social Resources - Cadastral Records – LIS

#### ADVANCED GIS APPLICATION

AM/FM – Utility Network Management – Integration with Remote Sensing – Knowledge based techniques – Multicriteria Techniques – Introduction to Object Oriented Data baseModel

#### **TEXT BOOK:**

- 1. Burrough P A, Principles of GIS for Land Resources Assessment, Oxford Publication, 2000
- 2. Michael N Demers, Fundamentals of Geographical Information Systems, Second Edition, John Wiley Publications, 2002

# **REFERENCES:**

1. Paul A Longley, Michael F Goodchild etal, Geographical Information Systems Volume I and II, Second Edition, shu Wiley Publications, 1999

| S.No | Name of the Faculty | Designation | Department     | Mail ID                 |
|------|---------------------|-------------|----------------|-------------------------|
| 1.   | C.Kathirvel         | Asst. Prof  | CIVIL / VMKVEC | geologykathir@gmail.com |
| 2.   | SUDIP DAS           | Asst. Prof  | AVIT           | sudipdas@avit.ac.in     |

| 17CVSE02       | ENTERPRISE WIDE INFORMATION SYSTEMS                                                                           | Category | L | T | P | Credit |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------|----------|---|---|---|--------|--|--|--|--|--|--|
|                | ENTERFRISE WIDE INFORMATION STSTEMS                                                                           | EC(OE)   | 3 | 0 | 0 | 3      |  |  |  |  |  |  |
| Preamble       |                                                                                                               |          |   |   |   |        |  |  |  |  |  |  |
| This course is | This course is designed to provide the student with a thorough understanding of both the role that Enterprise |          |   |   |   |        |  |  |  |  |  |  |
| Resource Plann | Resource Planning Systems (ERPs) play in an organization and the challenging task of managing the Information |          |   |   |   |        |  |  |  |  |  |  |

Systems (IS) function.

PREREQUISITE: NIL

# **COURSE OBJECTIVES:**

- 1. To introduce Enterprise resource planning
- **2.** To make students understand the financial accounting
- 3. Explain how 'best business practices' are incorporated in an ERP
- 4 Execute an entire business process chain in the areas of sales, Procurement, Production and Accounting
- 5. To study about the Materials requirement planning, billing & work centers.

# **COURSE OUTCOMES:**

After Successful completion of this course, the students will be able to:

| CO1. | Understand Enterprise resource planning                                                          | Understand |
|------|--------------------------------------------------------------------------------------------------|------------|
| CO2. | How 'best business practices' are incorporated in an ERP                                         | Understand |
| CO3. | The role of an ERP in carrying out business processes in a company                               | Understand |
| CO4. | Expedite production planning and control using tools provided in an ERP system                   | Apply      |
| CO5. | Apply appropriate methods to collect the Materials requirement planning, billing & work centers. | Apply      |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | M   | L   |     |     |     |     |     | 1   |      |      |      |      |      |      |
| CO2 | M   | M   | L   | L   |     | M   | L   |     | M   |      |      |      |      |      |      |
| CO3 | M   | M   | M   |     |     | M   | L   |     | M   |      | M    |      |      |      |      |
| CO4 | M   | M   | M   | M   |     | M   | M   | 1   | M   | 1    | -    |      | -    | L    | L    |
| CO5 | L   | -   | M   | L   | -   |     |     |     |     | -    | -    |      | -    | M    | M    |

#### **INTRODUCTION:**

Overview - database applications -Business function vs business process- Introduction to Enterprise Resource Planning (ERP)

# **BUSINESS PROCESSES:**

Sales and fulfillment cycle -Master Data and its role in ERP systems - Creating customer master data, material master data and pricing conditions -Implementing a Sales Cycle

#### PROCUREMENT PROCESSES:

Forecasting raw material requirements using sales information, production requirements, sales forecast-Raw Material procurement-Vendors and pricing conditions- Payment.

# PLANNING AND CONTROL:

MRP – Materials requirement planning-Independent and dependent materials requirements-Creating Production orders and schedules-Bill of Materials-Executing a Production process-Inventory and Goods movement-Routing and work centers.

#### PLANNING AND CONTROL:

MRP – Materials requirement planning-Independent and dependent materials requirements-Creating Production orders and schedules-Bill of Materials-Executing a Production process-Inventory and Goods movement-Routing and work centers.

#### TEXT BOOK:

- Enterprise Resource Planning, 3rd Edition, by Bret Wagner and Ellen Monk, ISBN:
   9781423901792,2009SAP R/3, Business Blueprint, 2<sup>nd</sup> Edition, by Thomas A. Curran & Andrew Ladd, Prentice
- 2. Hall PTR, 2000, ISBN: 0-13-085340-2

#### **REFERENCES:**

- 1. Essentials of Business Processes and Information Systems, by Simha R. Magal and Jeffrey Word, ©2010, ISBN:978-0-470-23059-6.
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by Simha R. Magal and Jeffrey Word, ISBN:978-0-470-88424-9

| S.No | Name of the Faculty | Designation | Department/College | Mail ID             |
|------|---------------------|-------------|--------------------|---------------------|
| 1.   | Mr. Sudip Das       | Asst. Prof  | AVIT               | sudipdas@avit.ac.in |

| 170           | CVSE47    |          |                                  | ICT B      | ASED (     | CITY A    | ND        |           | Cat       | egory     | L          | T        |       | P    | Credit |
|---------------|-----------|----------|----------------------------------|------------|------------|-----------|-----------|-----------|-----------|-----------|------------|----------|-------|------|--------|
|               |           |          | INF                              | RASTR      | UCTUI      | RE PLA    | NNING     | r         | EC        | C(OE)     | 3          | 0        |       | 0    | 3      |
| PREA          | MBLE      |          |                                  |            |            |           |           |           |           |           |            |          |       |      |        |
| virtual       | societie  | s in the | various r<br>world so<br>outlook | ocial net  | works a    | mong co   |           |           |           |           |            |          |       |      |        |
|               | REQUIS    |          | outlook                          | una gov    | Cinance    | cage      |           |           |           |           |            |          |       |      |        |
| PKLI          | NIL       | )11E     |                                  |            |            |           |           |           |           |           |            |          |       |      |        |
| COLLE         | RSE OB    | IFCTI    | VES                              |            |            |           |           |           |           |           |            |          |       |      |        |
| 1.            |           |          | ents awa                         | re and e   | vnosed t   | o changi  | ing scen  | ario of v | irtual co | cieties i | n the wo   | rld      |       |      |        |
| 2.            |           |          | der of ci                        |            | •          |           |           |           |           |           |            |          |       |      |        |
| 3.            |           |          | will be in                       |            |            | _         |           | _         |           |           |            | <u> </u> | 25    |      |        |
| 4.            |           |          | ks amon                          | •          |            |           |           | •         |           | ~ ~       | 110 11 100 | morogre  |       |      |        |
| 5.            | _         |          | ift in the                       |            |            |           |           |           |           |           |            |          |       |      |        |
| COUF          | RSE OU    |          |                                  |            |            |           |           |           |           |           |            |          |       |      |        |
|               |           |          |                                  | C .1       |            | 1         | 11 1 1 1  |           |           |           |            |          |       |      |        |
| On the        | success   | ful com  | pletion o                        | of the co  | urse, stu  | dents wi  | II be abi | e to      |           |           |            |          |       |      |        |
| CO1.          | Students  | are abl  | e to cope                        | up with    | the app    | lication  | technolo  | ogy       |           |           |            |          |       | App  | ly     |
|               |           |          | tand its i                       |            |            |           |           |           | develop   | ment at   | the hous   | se,      |       | Anal |        |
| neighb        | orhood    | and city | levels.                          |            |            |           |           |           |           |           |            |          |       |      |        |
| CO3.          | Appraise  | the spa  | atial orde                       | r of citie | es like dı | inking v  | vater pro | vision,   | transpor  | tation, s | anitation  | facility | etc., | Ana  | lyze   |
| <b>CO4.</b> ] | Building  | smart o  | cities and                       | l smart c  | ommuni     | ties with | the hel   | p of Soc  | ial netw  | orks am   | ong com    | munitie  | S     | App  | ly     |
| across        | the city. | countr   | y and glo                        | be         |            |           |           |           |           |           |            |          |       |      |        |
| CO5.          | Ability t | o Unde   | rstand the                       | e Paradi   | gm shift   | in the sp | atial pla | nning o   | utlook a  | nd gover  | rnance e   | dge.     |       | Ana  | lyze   |
| M             | IAPPIN    | IG WI    | TH PRO                           | OGRA       | MME (      | OUTCO     | MES A     | AND PI    | ROGR      | AMME      | SPEC       | IFIC O   | UTCO  | MES  |        |
| COs           | PO1       | PO2      | PO3                              | PO4        | PO5        | PO6       | PO7       | PO8       | PO9       | PO10      | PO11       | PO12     | PSO1  | PSO2 | PSO3   |
| CO1           | S         | M        | L                                | -          | -          | -         | M         | M         | S         | M         | M          | -        | S     | L    | -      |
| CO2           | -         | L        | -                                | -          | M          | M         | M         | -         | -         | L         | -          | -        | S     | M    | M      |
| CO3           | -         | _        | L                                | L          | L          | -         | L         | M         | M         | M         | M          | M        | -     | M    | M      |
| CO4           | M         | M        | _                                | L          | _          | L         | _         | L         | L         | L         | _          | M        | -     | L    | L      |

S- Strong; M-Medium; L-Low

M

M

M

**PLANNING VS TECHNOLOGY:** Tradition to modernity – Spatial planning and technology interface - Socioeconomic planning and technology interface – Planning cities and local technologies - Technological innovations and responsive city planning - Planning responsive technology Vs technology responsive planning.

**CITIES-TECHNOLOGY-INFRASTRUCTURE:** Transportation and technology, water, sanitation and technology, energy efficient technology for home, street, neighborhoods and city - Telecommunication, health and education – Security and safety for buildings and people in cities.

**TECHNO CITIES:** Digital cities, virtual cities, technology parks - Smart planning and infill development - Planning, design and communication system - Socio-economic and environmental Impact of techno cities..

**GOVERNANCE:** Role of law and technology, administration and organization, industry and corporate, communities and people in building smart cities and smart communities.

**CASE STUDIES:** Best practices in India and around the world.

#### TEXT BOOKS:

- 1. Brkovic, M. B., 'Planning in the Information Age: Opportunities and Challenges of e-Planning, CORP, 2004
- 2. City Government of Naga, 'The Naga City Citizen Chartes- A Guide Book of City Government Services.2004 **REFERENCES:**
- 1. Elizabeth, S. Frans, V. 'IDENSITY: Planning Paradigms for the Information Communication Age', Isocarp Congress, 2001.
- 2. Intelligent Community forum, 'Innovation and Employment in the Intelligent Community", Intelligent Community forum, 2012
- 3. Komakech, D., 'Achieving More Intelligent Cities", Municipal Engineer, 2005.

| S. No | Name of the Faculty | Designation | Department / College | Mail ID                  |
|-------|---------------------|-------------|----------------------|--------------------------|
| 1.    | Mrs.Subathra        | AP Gr II    | AVIT                 | subathra@avit.ac.in      |
| 2.    | Mr.Johnson Daniel   | AP          | AVIT                 | johnsondaniel@avit.ac.in |

| 1'      | 7EESE                      | 03        |          | ART       |           | AL INT   |          | GENC!    | E         | Cate      | gory     | L ,       | Т    | P       | Credit |
|---------|----------------------------|-----------|----------|-----------|-----------|----------|----------|----------|-----------|-----------|----------|-----------|------|---------|--------|
|         |                            |           |          |           | TO PO     | WER S    | SYSTE    | MS       |           | EC(O      | E)       | 3         | 0    | 0       | 3      |
| PREA    | MBL                        |           | •        |           |           |          |          |          |           |           |          |           | •    |         |        |
| To Stu  | dy abou                    | t the A   | tificial | Intellig  | ence ap   | plicatio | n to Po  | wer Sy   | stems.    |           |          |           |      |         |        |
| PRER    | <b>EQUIS</b>               | ITE-N     | L        |           |           |          |          |          |           |           |          |           |      |         |        |
| COUR    | SE OB                      | JECTI     | VES      |           |           |          |          |          |           |           |          |           |      |         |        |
| 1.      | To Ur                      | nderstar  | ıd abou  | t the Int | roducti   | on of N  | eural n  | etworks  | S.        |           |          |           |      |         |        |
| 2.      | To Ur                      | nderstar  | d abou   | t the Ap  | plication | on of N  | eural ne | etworks  | to Pow    | er Systei | n        |           |      |         |        |
| 3.      | To stu                     | idy the   | introdu  | ction to  | fuzzy l   | ogic.    |          |          |           | <u> </u>  |          |           |      |         |        |
| 4.      | To un                      | der star  | ıd appli | cations   | to pow    | er syste | ms.      |          |           |           |          |           |      |         |        |
| 5.      |                            |           | • •      |           | •         |          |          | power    | systems   | S.        |          |           |      |         |        |
| COUR    | SE OU                      | TCOM      | IES      |           |           |          |          |          |           |           |          |           |      |         |        |
|         | ne succe                   |           |          | on of th  | e cours   | e. stude | nts wil  | l be abl | e to      |           |          |           |      |         |        |
|         |                            |           |          |           |           |          |          |          |           | gorithm   |          |           |      | Unders  | tand   |
|         | Relate tl                  |           |          |           |           |          |          |          |           |           |          |           |      | Apply   |        |
|         |                            |           |          |           |           |          | •        |          |           | me for va | rious an | nlication |      | Analyz  | Δ      |
|         |                            |           |          | •         |           |          |          |          |           |           |          | pheation  | •    | Evaluat |        |
|         | Design t                   |           |          |           |           |          | model    | or bow   | ver syste | em contro | )I       |           |      |         | ie     |
| CO3. 1  | Jesigii (                  | ille basi | c iuca g | enetic (  | aigoriui  | 111.     |          |          |           |           |          |           |      | Create  |        |
| MAPP    | ING W                      | TTH P     | ROGR     | AMMI      | E OUT     | COME     | S AND    | PROC     | GRAMI     | ME SPE    | CIFIC (  | OUTCO     | MES  |         |        |
| COS     | PO1                        | PO2       | PO3      | PO4       | PO5       | PO6      | PO7      | PO8      | PO9       | PO10      | PO11     | PO12      | PSO1 | PSO2    | PSO3   |
| CO1     | S                          | M         | S        | L         | -         | M        | -        | M        | S         | -         | -        | M         | M    | L       | -      |
| CO2     | S                          | M         | M        |           | -         | M        | -        | M        | S         | -         | 1        | -         | M    | L       | -      |
| CO3     | M                          | M         | S        | M         | -         | M        | -        | M        | S         | -         | -        | M         | M    | L       | -      |
| CO4     | M                          | M         | S        | L         | -         | M        | -        | M        | S         | -         | -        | -         | L    | M       | -      |
| CO5     | M                          | S         | -        | L         | -         | -        | -        | -        | S         | -         | -        | -         | L    | M       | -      |
| S- Stro | S- Strong; M-Medium; L-Low |           |          |           |           |          |          |          |           |           |          |           |      |         |        |

#### INTRODUCTION TO NEURAL NETWORKS

Basics of ANN-Perceptron-Delta learning rule —Back Propagation Algorithm-Multilayer Feed forward network- Memory models-Bi-directional associative memory-Hopfield network

#### APPLICATIONS TO POWER SYSTEM PROBLEMS

Application of Neural Networks to load forecasting, Contingency Analysis-VAR control, Economic Load Dispatch.

#### INTRODUCTION TO FUZZY LOGIC

Crispness-Vagueness-Fuzziness-Uncertainty-Fuzzy set theory Fuzzy sets-Fuzzy set operations-fuzzy measures-fuzzy relations-fuzzy function. Structure of fuzzy logic controller- fuzzification models-data base-rule base-inference engine defuzzification module.

#### APPLICATIONS TO POWER SYSTEMS

Decision making in Power system Control through fuzzy set theory-Use of fuzzy set models of LP in Power systems scheduling problems-Fuzzy logic based power system stabilizer.

# GENETIC ALGORITHM AND ITS APPLICATIONS TO POWER SYSTEMS

Introduction – Simple Genetic Algorithm – Reproduction,. Crossover, Mutation, Advanced Operators in Genetic Search – Applications to voltage Control and Stability Studies.

#### **TEXT BOOKS:**

- 1. Laurence Fausett, "Fundamentals of Neural Networks", Prentice Hall, Englewood Cliffs, N.J., 1992
- 2. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill Inc., 2000.

#### **REFERENCES**

- **1.** James.A.Freeman and B.M.Skapura "Neural Networks, Algorithms Applications and Programming techniques"- AddisonWesley,1990.
- 2. George Klir and Tina Folger, A., "Fuzzy sets, Uncertainty and Information", Prentice Hall of India Pvt.Ltd., 1993.
- 3. Zimmerman, H.J. "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers, 1994.
- **4.** IEEE tutorial on "Application of Neural Network to Power Systems",1996
- 5. Loi Lei Lai, "Intelligent System Applications in Power Engineering", John Wiley and Sons Ltd., 1998
- **6.** EthemAlpaydin, "Introduction to Machine learning (Adaptive Computation and Machine Learning series)', MIT Press, Second Edition, 2010.

| S.No. | Name of the Faculty | Designation                    | Department /<br>College | Mail<br>ID                |
|-------|---------------------|--------------------------------|-------------------------|---------------------------|
| 1.    | Mr.A.Balamurugan    | Associate Professor            | EEE/VMKVEC              | balamurugan@vmkvec.edu.in |
| 2.    | Mr.S.Prakash        | Assistant Professor<br>(Gr-II) | EEE/AVIT                | sprakash@avit.ac.in       |

| 17BMCC03   | BIOSENSORS AND TRANSDUCERS | Category | L | Т | P | Credit |
|------------|----------------------------|----------|---|---|---|--------|
| T/Biviceus | DIOSENSONS IN DIRECTOR     | EC(OE)   | 3 | 0 | 0 | 3      |

#### **PREAMBLE**

The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.

# PREREQUISITE - NIL

#### **COURSE OBJECTIVES**

- 1. To use the basic concepts of transducers, electrodes and its classification.
- 2. To discuss the various types of electrodes.
- **3.** To determine the recording of biological components.
- **4.** To employ the knowledge in electrochemical and optical biosensors.
- **5.** To outline the various biological components using biosensors.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Describe the working principles of transducers.                             | Understand |
|----------------------------------------------------------------------------------|------------|
| CO2. Explain the various types of electrodes.                                    | Understand |
| CO3. Utilize various FET sensors for recording of biological components.         | Apply      |
| CO4. Distinguish various biosensors like electrochemical and optical biosensors. | Analyze    |
| CO5. Analyze the biological components using biosensors in various applications. | Analyze    |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | L   |     | M   |     | M   |     |     | L   |      |      | M    |      |      |      |
| CO2 | M   | L   |     | M   |     | M   |     |     | L   |      |      | M    |      |      |      |
| CO3 | S   | M   | L   | S   |     | S   | M   | M   | M   |      |      | M    |      |      |      |
| CO4 | S   | S   | L   | S   |     | S   | M   | M   | S   |      |      | M    | M    | S    | M    |
| CO5 | S   | S   | L   | S   |     | S   | M   | M   | S   |      |      | S    | M    | S    | M    |

**INTRODUCTION:** General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

#### **TRANSDUCERS:**

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

#### **BIO POTENTIAL ELECTRODES:**

Half cell potential, Types of Electrodes – Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

#### **BIOSENSORS:**

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

#### **APPLICATIONS OF BIOSENSORS:**

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

#### **TEXT BOOKS:**

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL,1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

#### **REFERENCES:**

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons,1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indianreprint).
- **3.** Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3<sup>rd</sup> Edition, John Wiley Publications, 2008.

| S.No. | Name of the Faculty | Designation                 | Department /<br>College | Mail ID                   |
|-------|---------------------|-----------------------------|-------------------------|---------------------------|
| 1.    | Mrs.S.Vaishnodevi   | Assistant Professor         | BME / VMKVEC            | vaishnodevi@vmkvec.edu.in |
| 2.    | Mr.V.Prabhakaran    | Assistant Professor (Gr-II) | BME / AVIT              | prabhakaran@avit.ac.in    |
| 3.    | Dr.N.Babu           | Professor                   | BME / VMVKEC            | babu@vmkvec.edu.in        |

|                      |           |          |           |           |           |           |           |          |           |           | Categor | rv L     | T                | P        | Credit   |
|----------------------|-----------|----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|---------|----------|------------------|----------|----------|
| 17BM                 | IEC06     | API      | PLIED     |           |           | TWOF      |           |          | ZZY LO    | OGIC      | EC(O)   |          | 0                | 0        | 3        |
|                      |           |          |           | sic con   | cepts o   | f Neura   | al Netw   | vorks a  | nd Fuzz   | zy Logic  | and lea | rn to de | esign a          | and use  | them for |
| PRER                 | EQUIS     | ITE – 1  | NIL       |           |           |           |           |          |           |           |         |          |                  |          |          |
| COUR                 | SE OB     | JECTI    | VES       |           |           |           |           |          |           |           |         |          |                  |          |          |
| 1.                   | To un     | derstan  | d the ba  | sic con   | cepts o   | f artific | ial neuı  | ral netw | orks.     |           |         |          |                  |          |          |
| 2.                   | To stu    | dy the   | various   | ANN N     | Models.   |           |           |          |           |           |         |          |                  |          |          |
| 3.                   | To far    | niliariz | e about   | the Sel   | f organ   | izing m   | aps and   | l compe  | etitive n | etworks.  |         |          |                  |          |          |
| 4.                   | To stu    | dy the   | basic co  | oncepts   | of fuzz   | y Logic   | systen    | ns.      |           |           |         |          |                  |          |          |
| 5.                   | То арј    | oly the  | concep    | ts of Al  | NN and    | Fuzzy l   | Logic i   | n Biom   | edical a  | pplicatio | ons.    |          |                  |          |          |
| COUR                 | SE OU     | TCOM     | IES       |           |           |           |           |          |           |           |         |          |                  |          |          |
|                      | success   |          |           |           |           |           |           |          | to        |           |         |          | 1                |          |          |
| CO1. I               | Explain   | the bas  | ic conce  | epts of a | artificia | l neural  | l netwo   | rks.     |           |           |         |          |                  | lerstand |          |
| CO2. I               | Discuss   | about b  | asics of  | f the fuz | zzy logi  | c.        |           |          |           |           |         |          | Unc              | lerstand | l        |
| <b>CO3.</b> <i>A</i> | Apply th  | e conce  | epts of   | ANN aı    | nd Fuzz   | y Logic   | in Bio    | medica   | l applica | ations.   |         |          | App              | oly      |          |
| <b>CO4.</b> I        | llustrate | the art  | ificial r | neural n  | etwork    | models    | s.        |          |           |           |         |          | Ana              | lyze     |          |
| CO3. S               | Summar    | ize Self | forgani   | zing ma   | aps and   | compe     | titive ne | etworks  |           |           |         |          | Eva              | luate    |          |
| MAPP                 | ING W     | TTH P    | ROGR      | AMMI      | E OUT     | COME      | S AND     | PROC     | GRAMI     | ME SPE    | CIFIC C | OUTCO    | MES              |          |          |
| COS                  | PO1       | PO2      | PO3       | PO4       | PO5       | PO6       | PO7       | PO8      | PO9       | PO10      | PO11    | PO12     | PSO <sub>1</sub> | PSO      | 2 PSO3   |
| CO1                  | M         |          |           |           |           | L         |           |          |           |           |         | M        | M                | M        | M        |
| CO2                  | M         |          |           |           | -         | L         |           |          |           |           |         | M        | M                | M        | M        |
| CO3                  | S         |          | S         | M         |           | M         |           | M        | M         |           |         | S        | M                | S        | S        |
| CO4                  | S         | M        | S         | S         | M         | M         |           | M        | M         |           |         | S        | S                | S        | S        |
| CO5                  | S         | S        | S         | S         | M         | M         |           | S        | S         |           |         | S        | S                | S        | S        |

#### ARTIFICIAL NEURAL NETWORKS - AN OVERVIEW

Neural Networks Basics-Biological Neural nets, Processing elements-Mc Culloh Pitts Model, Types of Learning, Network Parameters-Weights, Activation, Threshold Functions, Hebb Rule, Delta Rule, Perception learning Algorithm.

#### ARTIFICIAL NEURAL NETWORKS MODELS

Mapping, training of Feed forward networks-Perception, Mapping, training of Recurrent Networks-Hopfield Network, Radial Basis Function Network, Training of Feed Forward Back Propagation Network, Applications of BPN.

#### **SELF ORGANIZING MAPS (SOM)**

Self organizing maps-Pattern clustering, SOM-Topological Mapping, Kohonen's SOM, K-means clustering algorithm, competitive models – Min, Max Net, Adaptive Resonance Theory (ART) – Introduction, Network and Processing in ART, Associative memory model.

#### INTRODUCTION TO FUZZY LOGIC

Fuzzy logic-Basic concepts -Fuzzy Vs Crisp set, Linguistic variables, Membership functions, Fuzzy IF-THEN rules, Variable inference techniques, De-fuzzification techniques, Basic fuzzy inference algorithm.

### NEURAL NETWORK AND FUZZY LOGIC APPLICATIONS IN MEDICINE

Neural Networks in Biomedical Applications, Cancer, Cardiovascular Applications, Medical Image Analysis using neural networks, Fuzzy Logic Applications, Fuzzy Logic Controller, Neuro fuzzy systems – Applications inmedicine.

#### **TEXT BOOKS:**

- **1.** Mohamad H. Hassoun, **"Fundamentals of Artificial Neural Network"**, Cambridge, The MIT Press, 1<sup>st</sup> Edition, 1995.
- **2.** Laurene Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications", Pearson Education India, 3<sup>rd</sup> Edition, 2008.

#### **REFERENCES:**

- 1. C.M.Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag, 2006.
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", John Wiley and Sons, 2<sup>nd</sup> Edition,1995.
- **3.** B.Yegnanarayana, "Artificial Neural Networks", Prentice Hall of India, 3<sup>rd</sup> Edition2006.

| S.No. | Name of the Faculty | Designation                | Department      | Mail ID                  |
|-------|---------------------|----------------------------|-----------------|--------------------------|
| 1.    | Dr.D.Vinodkumar     | Professor                  | BME /<br>VMKVEC | vinodkumar@vmkvec.edu.in |
| 2.    | Mr. R. Ezhilan      | Assistant Professor        | BME /<br>VMKVEC | ezhilan@vmkvec.edu.in    |
| 3.    | Ms.R.Sandhiya       | Assistant Professor (Gr-I) | BME / AVIT      | sandhiya@avit.ac.in      |

| 17BMSE17 | BRAIN COMPUTER INTERFACE  | Category | L | T | P | Credit |
|----------|---------------------------|----------|---|---|---|--------|
| 17BMSE17 | DRAIN COMI CIER INTERPACE | EC(OE)   | 3 | 0 | 0 | 3      |

#### **PREAMBLE**

Brain-computer interface (BCI) is a collaboration between a brain and a device that enables signals from the brain to direct some external activity, such as control of a cursor or a prosthetic limb. The interface enables a direct communications pathway between the brain and the object to be controlled.

# PREREQUISITE - NIL

# **COURSE OBJECTIVES**

- 1. To learn the basics of brain computer interfacing and to study about data acquisition, hardware and software requirements.
- **2.** To study about the BCI approaches.
- **3.** To get an idea about EEG Feature Extraction methods.
- **4.** To acquire knowledge about EEG Translation methods.
- **5.** To acquire knowledge about MATLAB tools for BCI.

# **COURSE OUTCOMES** Describe about the BCI approaches.

On the successful completion of the course, students will be able to

**CO5.** Develop MATLAB based tools for brain computer interface.

| Understand |
|------------|
| Apply      |
| Analyze    |
| Evaluate   |
|            |

Create

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   |     |     |     | L   |     |     |     |     |      |      | M    | S    | M    | M    |
| CO2 | S   | M   | M   |     | M   | L   |     |     | L   |      |      | S    | S    | S    | S    |
| CO3 | S   | S   | S   |     | M   | M   |     |     | M   |      | L    | S    | S    | S    | S    |
| CO4 | S   | S   | S   | S   | S   | S   | M   | S   | S   | M    | M    | S    | S    | S    | S    |
| CO5 | S   | S   | S   | S   | S   | S   | M   | S   | S   | S    | S    | S    | S    | S    | S    |

#### INTRODUCTION

Introduction to Brain computer interfaces, The Evolution of BCIs, Brain signals for BCIs: Neuronal Activity inmotor cortex and related areas, Electrical and Magnetic fields produced by the brain, Signals reflecting brain metabolic activity, ConceptofBCI,InvasiveandNon-invasiveTypes,EEGStandards,SignalFeatures,SpectralComponents,EEG Data Acquisition, Pre-processing, Hardware and Software, Artifacts, Methods to Remove, Near Infrared BCI.

#### **BCI APPROACH METHODS**

Mu Rhythm – Movement Related EEG Potentials – Mental States – Visual Evoked Potential Based – P300 component.

#### EEG FEATURE EXTRACTION METHODS

Time/Space Methods – Fourier Transform – Wavelets – AR models – Band pass filtering PCA – Laplacian Filters – Linear and Non-linear Features.

#### EEG FEATURE TRANSLATION METHODS

LDA – Regression – Memory Based – Vector Quantization – Gaussian Mixture Modeling – Hidden Markov Modeling.

#### MATLAB-BASED TOOLS FOR BCI

Introduction, Data Streaming: Field Trip, Data-Suite: Data-River and Mat-River, EEGLAB Online Data Processing: A minimalistic BCI script using native MATLAB code, Other MATLAB BCI Classification tools, BCILAB.

#### **TEXT BOOKS:**

- 1. Jonathan R. Wolpaw, Elizabeth Winter Wolpaw, "Brain computer interfaces principles and practice", Oxford University Press -2012.
- 2. Desney S, Tan & Anton Nijholt, "Brain Computer interfaces: Applying our minds to human computer interaction", Springer Science and Business Media, 2010.

# REFERENCES:

- 1. Bernhard Graimann, Brendan Allison, Gert P furtscheller, "Brain computer interfaces Revolutionizing Human Computer interaction", Springer-2010.
- **2.** Special Issue on "Brain Control Interfaces", IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 14, June 2006.
- 3. Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition, 2002.
- 4. R.Spehlmann, "EEG Primer", Elsevier Biomedical Press, 1981.

| S.No. | Name of the Faculty | Designation           | Department   | Mail ID               |
|-------|---------------------|-----------------------|--------------|-----------------------|
| 1.    | Dr.A.Nagappan       | Professor & Principal | BME / VMKVEC | principal@vmkec.ac.in |
| 2.    | Dr. M.Ravindiran    | Professor & Head      | BME / AVIT   | ravindiran@avit.ac.in |
| 3.    | Mr.R.Ezhilan        | Assistant Professor   | BME / VMKVEC | ezhilan@vmkvec.edu.in |

#### Category $\mathbf{L}$ $\mathbf{T}$ P Credit **17BMSE18 ROBOTICS & AUTOMATION IN MEDICINE** EC(OE) 0 0 3 **PREAMBLE**

The purpose of learning this course on automation and robotics in medicine to acquire knowledge and understand the basic function and to create new application of robotic and automation system in medical field especially in surgery.

# PREREQUISITE - NIL

#### **COURSE OBJECTIVES**

- To understand the basics of Robotics, Kinematics. 1.
- 2. To understand the basics of Inverse Kinematics.
- To explore various kinematic motion planning solutions for various Robotic configurations. **3.**
- To study the basic inverse Kinematic motion planning solutions. 4.
- 5. To explore various applications of Robots in Medicine.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Understand the basics of robotic systems.                            | Understand |
|---------------------------------------------------------------------------|------------|
| CO2. Illustrate the application of automation and robotics in medicine.   | Apply      |
| CO3. Categorize the level of planning for various Robotic configurations. | Analyze    |
| CO4. Compare Robotics system and formulate Kinematics.                    | Evaluate   |
| CO5. Design Robotic systems for Medical application.                      | Create     |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   |     | L   | L   |     |     |     |     | L   |      |      | M    | M    | M    | S    |
| CO2 | S   |     | M   | M   |     |     |     | M   | M   |      |      | S    | M    | S    | S    |
| CO3 | S   | S   | S   | M   | M   |     | L   | M   | M   |      | L    | S    | M    | S    | S    |
| CO4 | S   | S   | S   | S   | S   | S   | M   | S   | S   | M    | M    | S    | S    | S    | S    |
| CO5 | S   | S   | S   | S   | S   | S   | M   | S   | S   | M    | S    | S    | S    | S    | S    |

#### INTRODUCTION

Introduction Automation and Robots, Classification, Application, Specification, Notations, Direct Kinematics Dot and cross products, Coordinate frames, Rotations, Homogeneous coordinates Link coordination arm equation – Five-axis robot, Four-axis robot, Six-axis robot.

#### KINEMATICS

Inverse Kinematics – General properties of solutions tool configuration, Five axis robots, Three Four axis, Six axis Robot, Workspace analysis and trajectory planning work envelope and examples, workspace fixtures, Pick and place operations, Continuous path motion, Interpolated motion, Straight-linemotion.

#### **ROBOT VISION**

Robot Vision Image representation, Template matching, Polyhedral objects, Shane analysis, Segmentation – Thresholding, region labeling, Shrink operators, Swell operators, Euler numbers, Perspective transformation, Structured illumination, Camera calibration.

#### **PLANNING**

Task Planning Task level programming, Uncertainty, Configuration, Space, Gross motion, Planning, Grasp Planning, Fine-motion planning, Simulation of planar motion, Source and Goal scenes, Task Planner simulation.

#### **APPLICATIONS**

Applications in Biomedical Engineering – Bio Engineering, Biologically Inspired Robots, Neural Engineering, Application in Rehabilitation – Interactive Therapy, Bionic Arm, Clinical and Surgical – Gynaecology, Orthopaedics, Neurosurgery.

#### **TEXT BOOKS:**

- 1. Robert Schilling, "Fundamentals of Robotics-Analysis and control", Prentice Hall, 2003.
- 2. J.J.Craig, "Introduction to Robotics", Pearson Education, 2005.

## **REFERENCES:**

- 1. Staugaard, Andrew C, "Robotics and Artificial Intelligence: An Introduction to Applied Machine Learning", Prentice Hall Of India, 1987
- 2. Grover, Wiess, Nagel, Oderey, "Industrial Robotics: Technology, Programming and Applications", McGraw Hill, 1986.
- 3. Wolfram Stadler, "Analytical Robotics and Mechatronics", McGraw Hill, 1995.
- 4. Saeed B. Niku, "Introduction to Robotics: Analysis, Systems, Applications", Prentice Hall, 2001.
- 5. K. S. Fu, R. C. Gonzales and C. S. G. Lee, "Robotics", McGraw Hill, 2008.

| S.No. | Name of the Faculty | Designation                 | Department   | Mail ID                |
|-------|---------------------|-----------------------------|--------------|------------------------|
| 1.    | Mr.V.Prabhakaran    | Assistant Professor (Gr-II) | BME / AVIT   | prabhakaran@avit.ac.in |
| 2.    | Mr.R.Ezhilan        | Assistant Professor         | BME / VMKVEC | ezhilan@vmkvec.edu.in  |
| 3.    | Mr. S.Kannan        | Assistant Professor         | BME / VMKVEC | kannan@vmkvec.edu.in   |

| 17ECC                                                                            | CC04                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIGN                        | ALS AN                          | ND SYS    | TEMS                           |                               |                  | Cat                    | egory                          | L              | Т               | P                 | Credit                                                      |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|-----------|--------------------------------|-------------------------------|------------------|------------------------|--------------------------------|----------------|-----------------|-------------------|-------------------------------------------------------------|
|                                                                                  |                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                 |           |                                |                               |                  | EC                     | C(OE)                          | 3              | 0               | 0                 | 3                                                           |
| and tec<br>nature<br>produci                                                     | and Sychnology<br>of soming other                                                                  | 7. Signa<br>e pheno<br>er signal                                                                                                  | ls are for the second s | unction<br>Signa<br>t) havi | ns of on<br>als vary<br>ing som | e or mo   | ore inde<br>uous /<br>ed behav | penden<br>discrete<br>ior. It | t variate in tir | oles cont<br>ne. Syst  | ain info<br>ems res<br>tudents | rmatio<br>pond | n abo<br>to pai | ut the<br>ticular | as of science<br>behavior or<br>r signals by<br>and systems |
| PRERI                                                                            | EQUIS                                                                                              | ITE: N                                                                                                                            | ĪL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| COUR                                                                             | SE OB.                                                                                             | JECTIV                                                                                                                            | /ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| 1.                                                                               | To uno                                                                                             | derstand                                                                                                                          | the vari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ious cla                    | assificat                       | ions of   | Continu                        | ous tim                       | e and D          | Discrete ti            | me Sigr                        | nals an        | d Syst          | ems.              |                                                             |
| 2.                                                                               | To lear                                                                                            | rn about                                                                                                                          | the spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctral ar                    | nalysis c                       | of Period | lic and                        | Aperio                        | lic Sign         | als using              | Fourier                        | series         | ١.              |                   |                                                             |
| 3.                                                                               | To imp                                                                                             | art the                                                                                                                           | knowled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dge in a                    | analysis                        | and cha   | racteriz                       | ation o                       | f the C7         | system                 | through                        | Lapla          | ce trar         | ısform            | ıs.                                                         |
| 4.                                                                               | To lear<br>Transf                                                                                  |                                                                                                                                   | the ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lysis aı                    | nd chara                        | cterizat  | ion of th                      | he DT s                       | system t         | hrough I               | Discrete                       | Fourie         | r Tran          | sform             | s and Z                                                     |
| COUR                                                                             | SE OU'                                                                                             | TCOM                                                                                                                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| On the                                                                           | success                                                                                            | ful com                                                                                                                           | pletion o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the c                    | ourse, s                        | tudents   | will be                        | able to                       |                  |                        |                                |                |                 |                   |                                                             |
|                                                                                  |                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| <b>CO1.</b> C                                                                    | Classify                                                                                           | the type                                                                                                                          | of signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | als and                     | system                          | S.        |                                |                               |                  |                        |                                |                |                 | Uno               | derstand                                                    |
|                                                                                  |                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           | •                               |           |                                |                               |                  | us time p<br>ansform 1 |                                |                |                 | I                 | Apply                                                       |
| <b>CO3.</b> F                                                                    | ind the                                                                                            | respons                                                                                                                           | e of a co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ontinuo                     | us time                         | LTI Sy    | stem usi                       | ing con                       | volution         | 1.                     |                                |                |                 |                   | Apply                                                       |
| <b>CO4.</b> D                                                                    | CO4. Determine the time and frequency domain characteristics of discrete time periodic and Apply   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| aperiodic signals using the properties of DTFT, DFT & Z-Transforms respectively. |                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| ~~=                                                                              | CO5. Compute DFT and IDFT coefficients of a given discrete time sequence using Fast Fourier  Apply |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
|                                                                                  | Г                                                                                                  | Transform algorithms.  CO6. Apply and characterize the causality and stability of Discrete LTI system using Z- Transforms.  Apply |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                 |           |                                |                               |                  |                        |                                |                |                 |                   |                                                             |
| 7                                                                                |                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he cau                      | cality on                       | d stabil  | ity of D                       | iscrate                       | I TI eve         | tem nein               | o 7_ Tro                       | neforr         | ne              |                   | Apply                                                       |

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | <b>PO12</b> | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-------------|------|------|------|
| CO1 | M   | M   | L   | -   | -   | -   | -   | -   | -   | -    | -    | -           | M    | -    | -    |
| CO2 | S   | M   | M   | -   | M   | -   | -   | -   | M   | -    | -    | M           | -    | -    | M    |
| CO3 | S   | M   | M   | -   | M   | -   | -   | -   | M   | -    | -    | M           | -    | -    | -    |
| CO4 | S   | M   | M   | -   | M   | -   | -   | -   | M   | -    | -    | M           | -    | -    | -    |
| CO5 | S   | M   | M   | -   | M   | -   | -   | -   | M   | -    | -    | M           | M    | M    | -    |
| CO6 | S   | M   | M   | -   | M   | -   | -   | -   | M   | -    | -    | M           | M    | M    | -    |

#### CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals, Discrete time signals, Unit step, Unit ramp, Unit impulse – Representation of signals in terms of unit impulse, Classification of continuous time signals & Discrete time signals-Continuous time systems- Discrete time systems.

#### ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series analysis-Representation of Continuous time Periodic signals – Trigonometric and exponential- Spectral Properties of Periodic power signals - Properties of Continuous time Fourier series – Parseval's relation for power signals, Fourier transform analysis-Representation of Continuous time signals- Properties of Continuous time Fourier transform – Fourier transform of a Periodic function, Rayleigh's Energytheorem.

#### LTI CONTINUOUS TIME SYSTEM

Convolution Integral, Impulse response, Solution of Differential equation with initial conditions- Zero state response and Zero input response, Block diagram representation, Fourier methods for analysis, Laplace transform analysis.

#### ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS

Representation of sequences – Discrete Time Fourier Transform (DTFT) - Discrete Fourier Transform (DFT) and its properties –Fast Fourier Transform-FFT Algorithm, DIF & DIT-Z Transform-Inverse Z Transform, Unilateral Z-Transform.

#### LTI DT SYSTEM

Convolution sum - Impulse response and properties of LTI systems - Difference equations - Z Transform analysis - System stability and causality - Frequency response - Block Diagramrepresentation.

#### **TEXT BOOKS:**

- 1. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Pearson education, 2nd edition, 2007.
- **2.** John G. Proakis and Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", Pearson Education, 4thEdition, 2007.

# **REFERENCE BOOKS:**

- 1. B.P. Lathi, "Linear Systems & Signals", Oxford Press, Second Edition, 2009.
- **2.** Rodger E Ziemer, William H. Tranter, D. Ronald Fannin, "Signals and Systems continuous and Discrete", Pearson Education, 4th Edition, 2009.
- **3.** Douglas K Linder, "Introduction to Signals and Systems", Mc-Graw Hill, 1st Edition, 1999.

| S.No. | Name of the Faculty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Designation         | Department | Mail ID                    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|----------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                            |
| 1.    | Dr.T.Muthumanickam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Professor & Head    | ECE /      | muthumanickam@vmkvec.edu.i |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | VMKVEC     | n                          |
| 2.    | Mr.S.Selvaraju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Associate Professor | ECE /      | selvaraju@vmkvec.edu.in    |
|       | , and the second |                     | VMKVEC     |                            |
| 3.    | Mr.P.Subramanian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Associate Professor | ECE / AVIT | subramanian@avit.ac.in     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                            |

| 17ECC                                                                                                 | SEMICONDUCTOR DEVICES  Category L T P                |                    |           |          |          |                     |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|-----------|----------|----------|---------------------|--|--|--|--|--|--|
|                                                                                                       | SEMICONDUCTOR DEVICES                                | EC(OE)             | 3         | 0        | 0        | 3                   |  |  |  |  |  |  |
| PREAM                                                                                                 | BLE                                                  |                    | 1         | 1        |          |                     |  |  |  |  |  |  |
| The cour                                                                                              | rse is designed to teach the physical principles and | l operational cha  | racterist | ics of   | f semi   | conductor devices   |  |  |  |  |  |  |
| with em                                                                                               | phasis on metal-oxide systems, bipolar, high-elect   | tron mobility, an  | d field-  | effect   | transis  | tors. Topics also   |  |  |  |  |  |  |
| include                                                                                               | SCR, TFET, HEMT, Silicon Nano Wire tubes. T          | The course provid  | les adva  | nced     | backgr   | ound in solid state |  |  |  |  |  |  |
| electroni                                                                                             | ic devices and is intended to help students to devi  | elop their basic a | analytica | ıl skill | ls and   | continue advanced   |  |  |  |  |  |  |
| research                                                                                              | in the varied branches of semiconductor devices.     | •                  | •         |          |          |                     |  |  |  |  |  |  |
| PRERQ                                                                                                 | UISITE: NIL                                          |                    |           |          |          |                     |  |  |  |  |  |  |
| COURS                                                                                                 | E OBJECTIVES                                         |                    |           |          |          |                     |  |  |  |  |  |  |
| 1.                                                                                                    | To emphasis the physics of semiconductors and the    | working of semic   | onducto   | r devi   | ces like | e PN and Zener      |  |  |  |  |  |  |
| (                                                                                                     | diodes with their applications.                      | J                  |           |          |          |                     |  |  |  |  |  |  |
| 2.                                                                                                    | To impart knowledge on working principle, configu    | ration, operationa | ıl charac | teristi  | cs and   | limitation of BJTs. |  |  |  |  |  |  |
| 3.                                                                                                    |                                                      |                    |           |          |          |                     |  |  |  |  |  |  |
| 4. To study the working principle and applications of discrete and integrated voltage regulators      |                                                      |                    |           |          |          |                     |  |  |  |  |  |  |
| 5. To familiarize with several special semiconductor devices like SCR, MISFET, TFET, HEMT and Silicon |                                                      |                    |           |          |          |                     |  |  |  |  |  |  |
|                                                                                                       | Nano Wire tubes.                                     |                    |           |          |          |                     |  |  |  |  |  |  |
|                                                                                                       | E OUTCOMES                                           |                    |           |          |          |                     |  |  |  |  |  |  |
| On the si                                                                                             | uccessful completion of the course, students will be | able to            |           |          |          |                     |  |  |  |  |  |  |

| r                                                                                      |            |
|----------------------------------------------------------------------------------------|------------|
| CO1. Explain the electron transport properties and operation of semiconductor devices  | Understand |
| like Diode and their relevant applications like HWR, FWR, Clipperand Clamper, etc.,    |            |
| CO2. Quantify the specification and characteristics of BJT in different configuration. | Apply      |
| CO3. Demonstrate RMS and ripple factor values of RC filters in simple power supply     | Apply      |
| and voltage regulatorscircuits                                                         |            |
| CO4. Relate the construction and characteristics of JFET and its families.             | Apply      |
| CO5. Examine the characteristics and applications of special devices like Shockley     | Apply      |
| Diode, Unitunction Transistor, Phototransistors, MISFETs, MESFETs, etc.,               |            |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   | M   | -   | -   | -   | -   | -   | -   | M   | -    | -    | M    | M    | M    | -    |
| CO2 | M   | M   | M   | -   | -   | -   | -   | -   | M   | -    | -    | M    | -    | -    | -    |
| CO3 | M   | M   | M   | -   | -   | -   | M   | -   | M   | -    | -    | M    | M    | -    | -    |
| CO4 | S   | M   | M   | M   | -   | -   | M   | -   | M   | -    | -    | M    | -    | -    | -    |
| CO5 | S   | M   | 1   | M   | -   | 1   | -   | -   | M   | -    | -    | M    | M    | M    | M    |

#### SEMICONDUCTOR DIODES AND APPLICATIONS

Introduction, Semiconductor Materials - Ge, Si, and GaAs, Covalent Bonding and Intrinsic Materials, Energy Levels, n- Type and p-Type Materials, Semiconductor Diode, Resistance Levels, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Reverse Recovery Time, Diode Specification Sheets, Semiconductor Diode Notation, Diode Testing, Zener Diodes, Light-Emitting Diodes, Sinusoidal Inputs; Half-Wave Rectifier, Full-Wave Rectifier, Clipper, Clamper, Zener Diode, Voltage-Multiplier Circuits, Practical Applications.

#### BIPOLAR JUNCTION TRANSISTORS

Introduction, Transistor Construction, Transistor Operation, Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Transistor Specification Sheet, Transistor Testing, Transistor Casing and TerminalIdentification.

#### FIELD EFFECT TRANSISTORS

Introduction, Construction and Characteristics of JFETs, Transfer Characteristics, Important Relationships, Depletion-Type MOSFET, Enhancement-Type MOSFET, MOSFET Handling.

#### **VOLTAGE REGULATORS**

Introduction, General Filter Considerations, Capacitor Filter, RC Filter, Discrete Transistor Voltage Regulation, IC Voltage Regulators.

# SPECIAL PURPOSE DEVICES

Introduction, Silicon-Controlled Rectifier, Basic Silicon-Controlled Rectifier Operation, SCR Characteristics and Applications, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFETs, TFETs, HEMTs, Silicon Nano WireTransistor.

#### **TEXT BOOK:**

**1.** Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 11th Edition, 2013.

# **REFERENCE BOOKS:**

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill,2010.
- 2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford Press, 2009.
- 3. B L Theraja, R S Sedha, "Principles of Electronic Devices and Circuits", S.Chand, 2004.

| COUR  | SE DESIGNERS           |                     |            |                              |
|-------|------------------------|---------------------|------------|------------------------------|
| S.No. | Name of the<br>Faculty | Designation         | Department | Mail ID                      |
| 1.    | Dr.P.Selvam            | Professor           | ECE /      | hodeee@vmkvec.edu.in         |
|       |                        |                     | VMKVEC     |                              |
| 2.    | Dr.T.Sheela            | Associate Professor | ECE /      | sheela@vmkvec.edu.in         |
|       |                        |                     | VMKVEC     |                              |
| 3.    | Mr.N.Manikanda         | Assistant Professor | ECE /      | manikandadevarajan@vmkvec.ed |
|       | Devarajan              |                     | VMKVEC     | u.in                         |
| 4.    | Mr. R. Karthikeyan     | Assistant Professor | ECE /      | rrmdkarthikeyan@avit.ac.in   |
|       |                        |                     | AVIT       |                              |

| 17EC                                                                                                | CC15                                                                                   |         |          | NALO<br>COMM |          |          |           |          |           | tegory    | L        | Т       | P       | Cred         | it    |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|----------|--------------|----------|----------|-----------|----------|-----------|-----------|----------|---------|---------|--------------|-------|
|                                                                                                     |                                                                                        |         |          |              |          |          |           |          | EC        | (OE)      | 3        | 0       | 0       | 3            |       |
| PREA                                                                                                | MBLE                                                                                   |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
|                                                                                                     | •                                                                                      |         |          | _            |          |          |           |          |           | _         | _        |         |         | s. It also o |       |
|                                                                                                     | _                                                                                      | _       |          |              |          | •        |           |          |           |           | Receiver | design, | Baseban | d and Ban    | dpass |
|                                                                                                     | nunicatio                                                                              |         |          | Noise A      | Analysi  | s and M  | Iultiple  | xing tec | chnique   | S.        |          |         |         |              |       |
| PRER                                                                                                | REQUIS                                                                                 | ITE - N | NIL      |              |          |          |           |          |           |           |          |         |         |              |       |
| COUI                                                                                                | COURSE OBJECTIVES                                                                      |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| 1.                                                                                                  |                                                                                        |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| 2.                                                                                                  | To learn the basic concepts behind the transmission and reception of Angle Modulation  |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| <b>3.</b> 7                                                                                         | To impart the knowledge about Analog to Digital Transition Systems &Information Theory |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| <b>4.</b> 7                                                                                         |                                                                                        |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| 5. To Apply the knowledge of Digital Communication circuits in various fields.                      |                                                                                        |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| COURSE OUTCOMES                                                                                     |                                                                                        |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| On the                                                                                              | success                                                                                | ful con | npletior | of the       | course,  | studen   | ts will b | e able   | to        |           |          |         |         |              |       |
| CO1.                                                                                                | Interpret                                                                              | the var | rious A  | nalog c      | ommun    | ication  | system    | S.       |           |           | 1        | Underst | and     |              |       |
| CO2.                                                                                                | Illustrate                                                                             | the pri | inciple  | and ope      | ration b | ehind '  | various   | Modul    | ators , I | Demodula  | ators    | Apply   |         |              |       |
| in Ana                                                                                              | log com                                                                                | munica  | ntions   |              |          |          |           |          |           |           |          |         |         |              |       |
|                                                                                                     | Apply d                                                                                |         | coding   | theory       | to estin | nate En  | tropy, l  | Mutual   | informa   | ation,    |          | Apply   |         |              |       |
|                                                                                                     | nation ra                                                                              |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
|                                                                                                     | Demonsterror pro                                                                       |         | _        | ot of va     | rious di | gital ca | rrier mo  | odulatio | on and o  | letermine | their    | Apply   |         |              |       |
|                                                                                                     | Analyze                                                                                |         |          | sificatio    | ns of sp | oread sp | ectrum    | technic  | ques.     |           |          | Analyze | ;       |              |       |
| MAPI                                                                                                | PING W                                                                                 | TTH P   | ROGR     | AMMI         | E OUT    | COME     | S AND     | PRO(     | GRAM      | ME SPE    | CIFIC (  | OUTCO   | OMES    |              |       |
| COS   PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12   PS01   PS02   PS03 |                                                                                        |         |          |              |          |          |           |          |           |           |          |         |         |              |       |
| CO1                                                                                                 | S                                                                                      | L       | -        | -            | -        | -        | -         | -        | -         | -         | -        | L       | S       | -            | -     |
| CO2                                                                                                 | S                                                                                      | M       | M        | _            | M        | _        | _         | _        | _         | _         | _        | M       | M       | _            | _     |
| CO3                                                                                                 | S                                                                                      | M       | M        | M            | - 171    | _        | _         | _        | _         | _         | _        | M       | - 141   | _            | _     |
|                                                                                                     | 5                                                                                      | 141     | 171      | 141          |          |          |           |          |           |           |          | 141     |         |              |       |

M

L

M

M

M

CO4

CO5

S

S- Strong; M-Medium; L-Low

S

M

M

# **Analog Communication Systems**

Principles of Amplitude Modulation – AM Modulators- Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM Demodulators, AM transmitters-Low level & High level Transmitters, AM Receivers – TRF, Super Heterodyne Receiver, Double conversion AMreceivers.

#### **Angle Modulation: Transmission And Reception**

Angle Modulation - FM and PM, Modulation Index, Frequency Modulators and Demodulators, Phase Modulators, FM transmitters- Direct & Indirect transmitters, Angle Modulation Vs Amplitude Modulation, FM Receivers, Frequency Vs Phasemodulation.

## Analog to Digital Transition Systems & Information Theory

Pulse Amplitude Modulation, Pulse Position Modulation, Pulse Code Modulation, Sampling Rate, DPCM, Delta Modulation, Time Division Multiplexing, Information Theory- Uncertainty, Information and entropy, source coding theorem, Discrete Memoryless channels, Mutual Information, Channel capacity, Channel coding theorem.

#### **Digital Transmission**

Pulse Transmission – Inter Symbol Interference, Eye pattern, Digital carrier Modulation-Binary Amplitude Shift Keying, Binary Frequency Shift Keying, Binary Phase Shift Keying, QPSK, bit and baud rate, BER Analysis

#### **Spread Spectrum Modulation**

Pseudo noise sequences, Direct sequence Spread Spectrum with coherent BPSK, Frequency hop spread spectrum modulation, Multiple Access Techniques – Wireless Communication, TDMA and FDMA

## **TEXT BOOK:**

1. Simon Haykin and Michael Moher, "Communication systems" John Wiley & Sons, Fifth Edition, 2016

# **REFERENCE BOOKS:**

- **1.** Simon Haykin and Michael Moher, "An Introduction to Analog and Digital Communications", John Wiley & Sons, second Edition, 2006.
- 2. Martin S.Roden, "Analog and Digital Communication System", 3<sup>rd</sup> Edition, PHI,2002
- 3. WayneTomasi, "ElectronicCommunicationSystems:FundamentalsThroughAdvanced", PearsonEducation, 2001.
- 4. B. Carlson, "Introduction to Communication systems", 3rd Edition, McGraw Hill, 1989

| S.No. | Name of the Faculty | Designation         | Department      | Mail ID                   |
|-------|---------------------|---------------------|-----------------|---------------------------|
| 1.    | Mr.B.Rajasekaran    | Associate Professor | ECE /<br>VMKVEC | rajasekaran@vmkvec.edu.in |
| 2.    | Mrs.S.Valarmathy    | Associate Professor | ECE /<br>VMKVEC | valarmathy@vmkvec.edu.in  |
| 3.    | Mr.P.Subramanian    | Associate Professor | ECE / AVIT      | subramanian@avit.ac.in    |

| 17EEE                                                  | C20                                                                                                                                                                                                                                                                                                                                                                                                                                           | MATHEMATICAL MODELLING AND                                      | Category      | L      | T  | P | Credit |  |  |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|--------|----|---|--------|--|--|--|--|--|--|
| 171212                                                 | C20                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIMULATION                                                      | EC(OE)        | 3      | 0  | 0 | 3      |  |  |  |  |  |  |
| Introduce<br>engineering<br>electrical<br>to allow the | PREAMBLE Introduce the students to study the fundamentals of computing and modeling software environments for electrical engineering. This Course contains Programming in numerical computing and modeling software environments for electrical engineering. No prior programming experience or knowledge of SCILAB is assumed, and the course is structured to allow thorough assimilation of ideas through hands-on examples and exercises. |                                                                 |               |        |    |   |        |  |  |  |  |  |  |
| COURSE                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |               |        |    |   |        |  |  |  |  |  |  |
| 1.                                                     | To stu                                                                                                                                                                                                                                                                                                                                                                                                                                        | dy basic concepts of scientific programming using SCILAB.       |               |        |    |   |        |  |  |  |  |  |  |
| 2.                                                     | To lea                                                                                                                                                                                                                                                                                                                                                                                                                                        | rn about the Basics of Program of SCILAB and related Mathematic | tical Applica | ations | S. |   |        |  |  |  |  |  |  |
| 3.                                                     | Analy                                                                                                                                                                                                                                                                                                                                                                                                                                         | ze the concepts of Program of SCILAB.                           |               |        |    |   |        |  |  |  |  |  |  |
| 4.                                                     | To uno                                                                                                                                                                                                                                                                                                                                                                                                                                        | derstand the different tools in SCILAB and ODE, DAE             |               |        |    |   |        |  |  |  |  |  |  |
| 5.                                                     | 5. To apply a software program to Electrical circuits and solve the simulation based solutions.                                                                                                                                                                                                                                                                                                                                               |                                                                 |               |        |    |   |        |  |  |  |  |  |  |
| COURSI                                                 | OUTC                                                                                                                                                                                                                                                                                                                                                                                                                                          | OMES                                                            |               |        |    |   |        |  |  |  |  |  |  |

On the successful completion of the course, students will be able to

| CO1 | Understand the main features of the SCILAB program development environment to enable their usage in the higher learning.                      | Understand             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| CO2 | Understand the need for simulation/implementation for the verification of mathematical functions.                                             | Understand and Analyze |
| CO3 | Implement simple mathematical functions/equations in numerical computing environment such as SCILAB.                                          | Analyze                |
| CO4 | Interpret and visualize simple mathematical functions and operations thereon using plots/display.                                             | Create and Apply       |
| CO5 | Analyze the program for correctness and determine/ estimate/ predict the output and verify it under simulation environment using SCILAB tools | Create                 |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   |     |     |     |     | L   |     | L   |     |      |      | L    | L    | M    |      |
| CO2 | M   |     | L   |     |     |     |     | L   |     | L    |      | L    | L    | M    |      |
| CO3 | S   | M   | L   |     | L   |     | L   | L   | M   | M    | L    |      | M    | L    | L    |
| CO4 | S   | M   | M   | L   | M   | M   | M   |     | S   | M    | M    | M    | M    | L    | M    |
| CO5 | S   | S   | L   | M   | M   | L   | S   | L   | M   | S    | S    | S    | S    | S    | S    |

#### INTRODUCTION

Introduction to SCILAB – Constants – Data types – SCILAB Syntax – Data type related functions – Over loading.

#### GRAPHICAL ANALYSIS USING SCILAB

The media – global plot parameters – 2D and 3D plotting – examples – printing graphics and exporting to Latex.

#### **SCILAB PROGRAMMING**

Linear algebra – Polynomial and rational function manipulation – Sparse matrices – random numbers – cumulative distribution functions and their inverse – building interface programs – inter SCI – dynamic linking – static linking.

#### **SCILAB TOOLS**

Systems and control toolbox – improper systems – system operation – control tools classical control – state space control – model reduction – identification – linear matrix inequalities – integrating ODEs – integrating DAEs.

#### **APPLICATIONS**

Resistive circuits – inductive and capacitive circuits – transients – steady state analysis – logics circuits – electronic devices - DC machines

#### **TEXT BOOK**

1. Claude Gomez Engineering and Scientific Computing with SCILAB, Birkhauserpublications

#### REFERENCES

- **1.**Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientificand Engineering Applications, A. Vande Wouwer, P. Saucez, C. V.Fernández 2014ISBN: 978-3319067896
- **2.** SCILAB(a Free Software to Matlab), Er. HemaRamachandran and Dr. Achutsankar Nair, S.Chand Publishers, ISBN-10: 8121939704,2011
- 3.http://in.mathworks.com/
- 4. https://www.scilab.org/resources/documentation/tutorialshttp://www.scilab.org/
- 5. SCILAB: A Begineer's Approach, Anil Kumar Verma, Cengage Learning India Pvt. Ltd.; Firstedition (2018), ISBN-10: 9386858932, ISBN-13:978-9386858931

| S.No. | Name of the Faculty | Designation         | Department   | e-Mail ID                |
|-------|---------------------|---------------------|--------------|--------------------------|
| 1.    | P. LOGANATHAN       | Assistant Professor | EEE / VMKVEC | loganathan@vmkvec.edu.in |
| 2.    | R. SATHISH          | Assistant Professor | EEE/ VMKVEC  | sathish@vmkvec.edu.in    |

| 1#D3            | MOD4 C                                                                |          |          |           | DADI     |          |           | T O CI   |         |           | Catego     | ry L      | T      | P    | Credit |
|-----------------|-----------------------------------------------------------------------|----------|----------|-----------|----------|----------|-----------|----------|---------|-----------|------------|-----------|--------|------|--------|
| 17BN            | ISE16                                                                 |          |          | WEA       | RABI     | E TE     | CHNO      | LOG      | Y       |           | BM(O       | E) 3      | 0      | 0    | 3      |
| PREA!           |                                                                       | akes the | studen   | ts to un  | derstan  | d the fu | ındame    | ntals an | d appli | cations o | of the wea | rable tec | chnolo | gy.  |        |
| PRER            | EQUIS                                                                 | ITE – I  | NIL      |           |          |          |           |          |         |           |            |           |        |      |        |
| COUR            | COURSE OBJECTIVES                                                     |          |          |           |          |          |           |          |         |           |            |           |        |      |        |
| 1.              | 1. To understand the fundamentals of sensors and wearable technology. |          |          |           |          |          |           |          |         |           |            |           |        |      |        |
| 2.              | To ascertain the design and integration of the smart textiles.        |          |          |           |          |          |           |          |         |           |            |           |        |      |        |
| 3.              | To understand the electronic textiles.                                |          |          |           |          |          |           |          |         |           |            |           |        |      |        |
| 4.              | T en                                                                  | deavor   | various  | sensor    | in spor  | ts wear  | able ap   | plicatio | n.      |           |            |           |        |      |        |
| 5.              | To understand the cloud storage of wearable devices.                  |          |          |           |          |          |           |          |         |           |            |           |        |      |        |
| COURSE OUTCOMES |                                                                       |          |          |           |          |          |           |          |         |           |            |           |        |      |        |
| On the          | success                                                               | ful con  | npletion | of the    | course,  | student  | ts will b | e able t | .0      |           |            |           |        |      |        |
| CO1.            | Discuss                                                               | s the fu | ndamer   | tals of   | sensor a | and wea  | rable te  | echnolo  | gy.     |           | U          | nderstan  | ıd     |      |        |
| CO2.            | Illustra                                                              | te the e | lectroni | c textile | es and i | ts appli | cations   | •        |         |           | A          | pply      |        |      |        |
| CO3.            | Analyz                                                                | e the se | ensor fo | r differ  | ent wear | rable ap | plication | ons.     |         |           | A          | nalyze    |        |      |        |
| CO4.            | Compa                                                                 | re the v | arious   | data sto  | rage of  | wearab   | ole syste | ems.     |         |           | E          | valuate   |        |      |        |
| CO5.            | Design                                                                | of sma   | rt cloth | ing.      |          |          |           |          |         |           | C          | reate     |        |      |        |
| MAPP            | ING W                                                                 | TTH P    | ROGR     | AMMI      | E OUT    | COME     | S AND     | PROG     | GRAMI   | ME SPE    | CIFIC C    | OUTCO     | MES    |      |        |
| cos             | PO1                                                                   | PO2      | PO3      | PO4       | PO5      | PO6      | PO7       | PO8      | PO9     | PO10      | PO11       | PO12      | PSO1   | PSO2 | PSO3   |
| CO1             | M                                                                     | L        |          |           |          |          |           |          | L       |           |            | S         | S      | M    | M      |
| CO2             | S                                                                     | M        | L        | L         |          |          |           |          | M S S M |           |            |           |        | M    |        |
| CO3             | S                                                                     | M        | M        | M         | S        | M        | L         |          | M       |           | S S M      |           |        | M    | M      |
| CO4             | S S S S S M M S S                                                     |          |          |           |          |          |           |          | S       | M         | S          | S         | S      | S    |        |

S

M

M

S

S

S

S

S

S

S

S

**CO5** 

S

S- Strong; M-Medium; L-Low

S

S

#### BASICS OF SENSORS AND WEARABLE TECHNOLOGY

Introduction to sensors – Sensor Physical Properties – Electric (Resistive, Capacitive and Inductive) – Piezoelectric – Optic – Photo elastic - Thermoelectric – Electrochemical. Wearable computers – Wearable Electronics – Intelligent Clothing – Industry on wearable technology – Current Trends – Market Forecast.

#### **SMART CLOTHING**

Introduction – Design of Smart Cloths – 2D Design for smart wearables – Textile Development – 3D Design for smart wearables – Construction of smart wearables – Integration – Prototype Development.

#### **ELECTRONIC TEXTILES**

Conductive Fibers for textiles – Conductive for Polymers textiles – Carbon Nanotubes yarns – Textile and Electronics Integration - Embroidered Antenna – Electronic textiles for Military Applications.

#### SENSOR FOR WEARABLE APPLICATIONS

Load and Pressure Measurement sensor – Sports Applications – Inertial Sensor – Sports Application – Optical Sensor – Sports Application – Angle & Displacement Sensor – Sports Application.

#### DATA STORAGE FOR WEARABLE TECHNOLOGY

Introduction – Storage in Consumer wearable - Cloud storage – Remote Cloud – Sensor Cloud – Cloudlet - Cloud storage Architecture – Confidential disk and Cloud storage with encryption – Two-layer confidentialstorage.

#### **TEXT BOOKS:**

- 1. Patrick F. Dunn, "Fundamentals of Sensors for Engineering and Science", CRC Press, Taylor &Francis.
- 2. Jane McCann, David Bryson, "Smart Clothes and Wearable Technology", CRC Press, Woodhead Publishing Ltd.

#### **REFERENCES:**

- 1. Daniel A. James, Nicola Petrone, "Sensors and Wearable Technologies in Sport: Technologies, Trends and Approaches for Implementation".
- 2. Marrington, Andrew, Kerr, Don, "Management Association, Information Resources Managing Security Issues and the Hidden Dangers of Wearable Technologies".
- 3. Tilak Dias, "Electronic Textiles: Smart Fabrics and Wearable Technology", Elsevier, WoodheadPublishing.

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                   |
|-------|---------------------|---------------------|--------------|---------------------------|
| 1.    | Dr. M.Ravindiran    | Professor & Head    | BME / AVIT   | ravindiran@avit.ac.in     |
| 2.    | Mr.R.Ezhilan        | Assistant Professor | BME / VMKVEC | ezhilan@vmkvec.edu.in     |
| 3.    | Mrs.S.Vaishnodevi   | Assistant Professor | BME / VMKVEC | vaishnodevi@vmkvec.edu.in |

| 17EC                                                            | SE21                                                                                     | WIR      | ELESS    | SENS     | OR NE    | TWOE     | RKS A   | ND IO    | Г        | Catego    | ory 1      | և 1       | ГР        | ,        | Credit  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------|----------|----------|-----------|------------|-----------|-----------|----------|---------|
|                                                                 |                                                                                          |          |          |          |          |          |         |          |          | EC(O      | E) :       | 3 0       | 0         |          | 3       |
| PREA                                                            | MBLE                                                                                     | 1        |          |          |          |          |         |          | <u> </u> |           |            | •         |           | •        |         |
| To un                                                           | derstan                                                                                  | d the fu | ındameı  | ntal cor | cepts o  | of wirel | ess sen | sor netv | vorks a  | nd Inter  | net of Th  | ings, hav | ve an enh | anced kn | owledge |
| of the                                                          | various                                                                                  | protoco  | ols with | Interne  | et of Th | ings in  | the rea | ıl world | scenar   | rio.      |            |           |           |          |         |
| PRER                                                            | EQUIS                                                                                    | SITE -   | NIL      |          |          |          |         |          |          |           |            |           |           |          |         |
| COUL                                                            | OURSE OBJECTIVES                                                                         |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| 1.                                                              | 1                                                                                        |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| 2.                                                              | To Know the physical layer issues and analyze Medium Access Control Protocols            |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| 3.                                                              | To identify with the IoT Reference Architecture and Real World Design Constraints        |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| 4.                                                              | To recognize the various IoT Protocols ( Datalink, Network, Transport, Session, Service) |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| 5.                                                              | To recognize the various for frotecois ( Batalink, retwork, Transport, Bession, Bervice) |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| COURSE OUTCOMES                                                 |                                                                                          |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
|                                                                 | Describ<br>network                                                                       |          | xplain r | adio sta | andards  | and co   | mmuni   | ication  | protoco  | ols for w | ireless se | nsor      |           | Underst  | and     |
| CO2.                                                            | Explain                                                                                  | the fur  | oction o | f the no | de arcl  | nitectur | e and u | se of se | nsors f  | or variou | ıs applica | ations.   |           | Underst  | and     |
| CO3.                                                            | Expose                                                                                   | the arc  | hitectur | es, fund | ctions a | nd perf  | ormano  | ce of wi | reless s | sensor no | etworks    |           |           | Underst  | and     |
| 9,2                                                             | Systems                                                                                  | and pl   | atforms  |          |          |          |         |          |          |           |            |           |           |          |         |
| <b>CO4.</b>                                                     | Describ                                                                                  | e the ba | asic con | cepts in | ı IoT.   |          |         |          |          |           |            |           |           | Underst  | and     |
| CO5.                                                            | Develo                                                                                   | p web s  | ervices  | to acce  | ss/cont  | rol IoT  | devices | s        |          |           |            |           |           | Apply    |         |
| CO6.                                                            | Deploy                                                                                   | an IoT   | applica  | tion usi | ng Ras   | pberry   | Pi.     |          |          |           |            |           |           | Apply    |         |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES |                                                                                          |          |          |          |          |          |         |          |          |           |            |           |           |          |         |
| COS                                                             | PO1                                                                                      | PO2      | PO3      | PO4      | PO5      | PO6      | PO7     | PO8      | PO9      | PO10      | PO11       | PO12      | PSO1      | PSO2     | PSO3    |
| CO1                                                             | S                                                                                        | M        | M        | -        | L        | -        | -       | -        | -        | -         | -          | L         | S         | M        | -       |
| CO2                                                             | S                                                                                        | S        | S        | -        | M        | -        | -       | -        | -        | -         | -          | M         | M         | -        | -       |
| CO3                                                             | S                                                                                        | M        | M        | -        | L        | -        | -       | -        | -        | -         | -          | L         | -         | -        | -       |
| CO4                                                             | S                                                                                        | S        | S        | -        | M        | M        | -       | -        | -        | -         | -          | M         | -         | M        | -       |

M

M

M

CO5

S

M

S- Strong; M-Medium; L-Low

M

M

M

#### INTRODUCTIONTOWIRELESSSENSORNETWORKS

Course Information, Introduction to Wireless Sensor Networks: Motivations, Applications, Performance metrics, History and Design factors Network Architecture: Traditional layered stack, Cross-layer designs, Sensor Network Architecture Hardware Platforms: Motes, Hardwareparameters

#### **INTRODUCTION TO NS-3**

Introduction to Network Simulator 3 (ns-3), Description of the ns-3 core module and simulation example.

#### MEDIUM ACCESS CONTROL PROTOCOL DESIGN

Fixed Access, Random Access, WSN protocols: synchronized, duty-cycled Introduction to Markov Chain: Discrete time Markov Chain definition, properties, classification and analysis MAC Protocol Analysis: Asynchronous duty-cycled. X-MAC Analysis (Markov Chain)

#### **FUNDAMENTALS OF IOT**

Introduction-Characteristics-Physical design - Protocols - Logical design - Enabling technologies -IoT Levels - Domain Specific IoT - IoT vs. M2M.

#### IOT DESIGN METHODOLOGY & BUILDING IOT WITH RASPBERRY PI

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development. Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

#### **TEXT BOOKS:**

- 1. W.DargieandC.Poellabauer(2010).FundamentalsofWirelessSensorNetworks—TheoryandPractice. Wiley.
- 2. ArshdeepBahga, Vijay Madisetti (2015). Internet of Things—Ahands-on approach. Universities Press.

# **REFERENCE BOOKS:**

- 1. KazemSohraby, DanielMinoliandTaiebZnati(2007). Wirelesssensornetworks Technology, Protocols, and Applications. Wiley Inter science.
- **2.** Manoel Carlos Ramon (2014). Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for LinuxProgrammers.
- **3.** Takahiro Hara, Vladimir I. Zadorozhny, and Erik Buchmann (2010). Wireless Sensor Network Technologies for the Information Explosion Era. Springer.
- 4. Marco Schwartz (2014). Internet of Things with the Arduino Yun. PacketPublishing

| S.No | Name of the<br>Faculty | Designation                    | Department      | Mail ID                    |
|------|------------------------|--------------------------------|-----------------|----------------------------|
| 1.   | Mr.R.Ramani            | Assistant Professor            | ECE /<br>VMKVEC | ramani@vmkvec.edu.in       |
| 2.   | Mr.R.Karthikeyan       | Assistant Professor<br>(Gr-II) | ECE / AVIT      | rrmdkarthikeyan@avit.ac.in |

| 17ECS                                                                                                             | SE22                                                                                                                                                                                |            |            |          |          |           |          |          |           | Catego     | ory         | L        | T        | P      | Credit |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------|----------|-----------|----------|----------|-----------|------------|-------------|----------|----------|--------|--------|
|                                                                                                                   |                                                                                                                                                                                     |            | WIRE       | LESS '   | ГЕСН     | NOLOG     | GIES F   | OR IO    | T         | EC(O       | <b>E</b> )  | 3        | 0        | 0      | 3      |
| PREA                                                                                                              | MBLE                                                                                                                                                                                | 1          |            |          |          |           |          |          | <u>L</u>  |            | I           | I        | <u> </u> |        |        |
|                                                                                                                   |                                                                                                                                                                                     |            |            |          |          |           |          | •        |           | -          | ing princi  | •        |          | •      |        |
|                                                                                                                   | educate the purpose of defending systems from unauthorized wireless attacks. This course also discovers the latest security standards and practices in mobile and wireless network. |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| PRER                                                                                                              | PREREQUISITE - NIL                                                                                                                                                                  |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| COUR                                                                                                              | URSE OBJECTIVES                                                                                                                                                                     |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| 1.                                                                                                                | Understand the wireless technologies, wireless network standards.                                                                                                                   |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| 2.                                                                                                                | Gain the knowledge on wireless networks, denial of service attacks and client-side threats.                                                                                         |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| 3.                                                                                                                | Build an understanding of mobile data network standards.                                                                                                                            |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| 4.                                                                                                                | To Understand the various IoT Protocols ( Datalink, Network, Transport, Session, Service)                                                                                           |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| 5. To classify Real World IoT Design Constraints, Industrial Automation in IoT.                                   |                                                                                                                                                                                     |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| COUR                                                                                                              | SE OU                                                                                                                                                                               | TCOM       | IES        |          |          |           |          |          |           |            |             |          |          |        |        |
| On the                                                                                                            | success                                                                                                                                                                             | sful con   | pletion    | of the   | course,  | students  | s will b | e able t | .0        |            |             |          |          |        |        |
| CO1. K                                                                                                            | Cnowle                                                                                                                                                                              | dge on     | various    | wireles  | s techno | ologies,  | wirele   | ss netw  | ork sta   | ndards ar  | nd their th | reats.   |          | Under  | stand  |
| CO2. S                                                                                                            | show ho                                                                                                                                                                             | ow hack    | ers and    | audito   | s alike  | test wire | eless no | etworks  | for vu    | lnerabilit | ies such a  | as rogue |          | Apply  |        |
| access                                                                                                            | points,                                                                                                                                                                             | denial o   | of service | e (DoS   | ) attack | s and cl  | ient-sio | de threa | its       |            |             |          |          |        |        |
| <b>CO3.</b> I                                                                                                     | Demons                                                                                                                                                                              | strate the | e mobile   | e data n | etwork   | standar   | ds and   | its chal | lenges.   |            |             |          |          | Apply  |        |
| <b>CO4.</b> S                                                                                                     | ummai                                                                                                                                                                               | rize the   | vulnera    | bilities | and mis  | s-config  | uration  | ns at wi | reless ti | ransport 1 | layer.      |          |          | Evalua | ite    |
| CO5. Invent how an attacker might attempt to subvert and bypass Wireless security measures in Bluetooth and WiFi. |                                                                                                                                                                                     |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES                                                   |                                                                                                                                                                                     |            |            |          |          |           |          |          |           |            |             |          |          |        |        |
| COS                                                                                                               | PO1                                                                                                                                                                                 | PO2        | PO3        | PO4      | PO5      | PO6       | PO7      | PO8      | PO9       | PO10       | PO11        | PO12     | PSO1     | PSO2   | PSO3   |
| CO1                                                                                                               | M                                                                                                                                                                                   | L          | M          | M        | M        | -         | -        | -        | -         | -          | -           | -        | -        | -      | -      |
| CO2                                                                                                               | M                                                                                                                                                                                   | L          | M          | M        | M        | -         | -        | -        | -         | -          | -           | -        | -        | -      | -      |

M

M

M

M

M

-

 $\mathbf{M}$ 

S

S

 $\mathbf{M}$ 

M

M

M

M

-

 $\mathbf{M}$ 

L

L

M

S- Strong; M-Medium; L-Low

M

S

S

M

S

M

M

S

-

-

-

L

S

S

S

CO3

CO4

CO5

#### **MOBILE & WIRELESS TECHNOLOGIES:**

Introduction to wireless technologies-Mobile cellular networks -Personal Area Networks -Transmission Media — WLAN standards, controllers -Securing WLAN -Countermeasures -Wired Equivalence Protocol(WEP).Wireless threats:Kinds of security breaches-Eavesdropping -Communication Jamming -RF interference -Covert wireless channels -DOS attack —Spoofing -Theft of services -Traffic Analysis-Cryptographic threats -Wireless security Standards.

#### MOBILE NETWORKS SECURITY:

Wireless Device security issues -CDPD security (Cellular Digital Packet Data)-GPRS security (General Packet Radio Service) - GSM (Global System for Mobile Communication) security -IP security -3G / 4G security.

#### WIRELESS TRANSPORT LAYER SECURITY:

Secure Socket Layer -Wireless Transport Layer Security -WAP Security Architecture -WAP Gateway -Wireless Intrusion Detection and Prevention Systems (WIDS/WIPS)

#### **BLUETOOTH & WIFI SECURITY:**

Basic specifications -Pico nets -Scatter nets -Bluetooth security architecture -Security at the baseband layer and link layer - Frequency hopping -Security manager -Authentication -Encryption -WiFi Hot spot architecture -Wireless honey pots -Security in IEEE 802.11.

#### WIRELESS SENSOR NETWORK SECURITY

Attacks on wireless sensor network and Preventive mechanisms: authentication and traffic analysis, Case study: centralized and passive intruder detection Case studies:Public safety wireless networks, Case study 2 –Satellite communications systems, Case study 3 –Wide Area Wireless Data Services (CDPD, GPRS, etc.), Case study 4– Wireless LANs (802.11, etc.), Case study 5 – Wireless Metropolitan Area Networks (e.g., 802.16)

# **Text Books**

**1.**Wireless Security-Models, Threats and Solutions, Nichols and Lekka, Tata McGraw –Hill, New Delhi, 2006. 2.Wireless Security, Merritt Maxim and David Pollino, Osborne/McGraw Hill, New Delhi, 2005.

#### **Reference Books**

- **1.** Wireless and Mobile Network Security-Security basics, Security in On-the-shelf and emerging technologies, Hakima Chaouchi, Maryline Maknavicius, ISBN:9781848211179,2010.
- 2. Mobile and Wireless Network Security and Privacy, Springer, ISBN: 0387710574, edition2007.
- 3. Wireless Network Security: Theories and Applications, Springer, ISBN: 978-3642365102, 2013

| S.No | Name of the Faculty | Designation                 | Department | Mail ID                    |
|------|---------------------|-----------------------------|------------|----------------------------|
| 1.   | Mr.R.Karthikeyan    | Assistant Professor (Gr-II) | ECE / AVIT | rrmdkarthikeyan@avit.ac.in |
| 2.   | Mrs.A.Malarvizhi    | Assistant Professor         | ECE /      | malarvizhi@vmkvec.edu.in   |
|      |                     |                             | VMKVEC     |                            |

| 17ECSE07 | SOFTWARE TECHNOLOGY FOR | Category | L | T | P | Credit |
|----------|-------------------------|----------|---|---|---|--------|
|          | EMBEDDED SYSTEM         | EC(OE)   | 3 | 0 | 0 | 3      |

#### **PREAMBLE**

The subject introduces the students to the modern technologies used in developing embedded software for better software quality. The introduction is both theoretical and practical. The subject shows why modern embedded software systems are complex, it lists the consequences of complexity, and details how we handle complexity in this context, and how we define and increase software quality. The subject then iterate through the modern solutions available to keep control over the softwaredevelopment process, and how we can increase software quality.

# **PREREQUISITE** – NIL

# **COURSE OBJECTIVES**

- 1. To learn the concepts of software architecture, analysis, design & maintenance.
- **2.** To study the Data representation.
- **3.** To familiarize about the mixing C and assembly
- **4.** To know about input and output programming
- 5. To study the memory management

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| r                                                                                         |            |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| <b>CO1.</b> Explain the concept of software architecture, analysis, design & maintenance. | Understand |  |  |  |  |  |
| CO2. Explain the different Data representation.                                           | Understand |  |  |  |  |  |
| CO3. Illustrate the concept of input and output programming                               | Apply      |  |  |  |  |  |
| CO4. Examine the memory management                                                        | Apply      |  |  |  |  |  |
| CO5. Analyze and implement the mixing C and assembly language programming                 | Analyze    |  |  |  |  |  |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO1 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|------|------|------|
| CO1 | M   | M   | L   | -   | M   | -   | -   | -   | L   | -    | -    | M   | M    | -    | M    |
| CO2 | M   | M   | L   | -   | M   | -   | -   | -   | L   | -    | -    | M   | -    | M    | -    |
| CO3 | S   | M   | L   | -   | L   | M   | -   | -   | M   | -    | -    | M   | M    | -    | -    |
| CO4 | S   | M   | L   | -   | L   | S   | M   | -   | L   | -    | -    | M   | -    | M    | -    |
| CO5 | S   | S   | S   | -   | M   | L   | M   | -   | M   | -    | -    | M   | M    | -    | M    |

**SOFTWARE TECHNOLOGY:** Software Architectures, Software development Tools, Software Development Process Life Cycle and its Model, Software Analysis, Design and Maintenance.

**INTRODUCTION TO DATA REPRESENTATION**: Data representation ,Two's complement, Fixed point and Floating Point Number Formats ,Manipulating Bits in -Memory, I/O Ports, Low level programming in C ,Primitive data types , Arrays, Functions ,Recursive Functions, Pointers, Structures & Unions ,Dynamic Memory Allocation ,File handling ,Linked lists, Queues, Stacks. Conventions ,Typical use of Addressing Options, Instruction Sequencing , Procedure Call and Return , Parameter passing ,Retrieving Parameters , Everything in pass by value ,Temporary variables

**INPUT/ OUTPUT PROGRAMMING:** I/O Instructions, Synchronization, Transfer Rate & Latency, Polled Waiting Loops, Interrupt – Driven I/O, Writing ISR in Assembly and C, Non Maskable and Software Interrupts

**MEMORY MANAGEMENT**: Direct Memory Access, Local and Global Scope, Automatic and Static Allocation, Distinguishing Static from Automatic Object Creation, Initialization and Destruction,

MIXING C AND ASSEMBLY: C and assembly, Programming in assembly ,RegisterUsage Text Books

**Reference Books** 

| COURSE DESIGNED | DC. |
|-----------------|-----|

| S.No | Name of the Faculty | Designation                 | Department   | Mail ID                    |
|------|---------------------|-----------------------------|--------------|----------------------------|
| 1.   | Mr.S.Selvam         | Assistant Professor (Gr-II) | ECE / AVIT   | selvam@avit.ac.in          |
| 2.   | Mr.G.Ramachandran   | Assistant Professor         | ECE / VMKVEC | ramachandran@vmkvec.edu.in |

| 457570044 | COMPUTER INTEGRATED | Category | L | Т | P | Credit |
|-----------|---------------------|----------|---|---|---|--------|
| 17MECC12  | MANUFACTURING       | EC(OE)   | 3 | 0 | 0 | 3      |

# Preamble

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, fundamentals of CNC machines, programming of CNC machines, group technology, computer aided process planning techniques, shop floor control and flexible manufacturing systems. It exposes the students to various currenttrends followed in the industries.

| Prerequ   | Prerequisite: NIL                                                                                                    |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
|-----------|----------------------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|----------|---------|--------|---------|---------|--------------|---------|------|-------|------|
| Course    | Course Objective                                                                                                     |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| 1.        | To unc                                                                                                               | lerstan | d the in | nportar | ce of   | CAD an   | d CAN   | Л      |         |         |              |         |      |       |      |
| 2.        | To enable student to learn about Solid modelling techniques and various graphics standards in CAD                    |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| 3.        | To understand about the fundamentals and programming of CNC machines                                                 |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| 4.        | To gain knowledge about GT and CAPP                                                                                  |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| 5.        | To ena                                                                                                               | ble stu | dents to | o learn | about   | FMS an   | d SFC   | ,      |         |         |              |         |      |       |      |
| Course    | Outcom                                                                                                               | ies: Oi | ı the sı | ıccessf | ul com  | pletion  | of the  | cour   | se, stu | dents v | vill be      | able to |      |       |      |
| CO1.      | Discus                                                                                                               | s the b | asic co  | ncepts  | of Con  | nputer A | Aided I | Design | and N   | Manufac | cturing      |         |      | Apply |      |
| CO2.      | Apply the concept of Modeling techniques for designing the products  Apply                                           |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| CO3.      | Discuss the basics, working principles of various components of CNC machines.  Apply                                 |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| CO4.      | Write the CNC programs for various mechanical components with different operations. Apply                            |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| CO5.      | Apply the concepts of Group technology and discuss the concepts of Computer aided Apply process planning techniques. |         |          |         |         |          |         |        |         |         |              |         |      |       |      |
| CO6.      | Analyze the functions of various components of Shop Floor Control and Flexible Manufacturing Systems.  Analyze       |         |          |         |         |          |         |        |         |         | <del>)</del> |         |      |       |      |
| Mappir    | g with I                                                                                                             | Progra  | mme (    | Outcon  | ies and | d Progr  | amme    | Speci  | ific O  | utcome  | S            |         |      |       |      |
| COs       | PO1                                                                                                                  | PO2     | PO3      | PO4     | PO5     | PO6      | PO7     | PO8    | PO9     | PO10    | PO11         | PO12    | PSO1 | PSO2  | PSO3 |
| CO1       | M                                                                                                                    | L       | -        | -       | -       | -        | -       | -      | -       | -       | -            | -       | M    | -     | -    |
| CO2       | S                                                                                                                    | M       | L        | -       | -       | -        | -       | -      | -       | -       | -            | -       | М    | -     | -    |
| CO3       | S                                                                                                                    | M       | L        | ı       | -       | -        | -       | -      | -       | -       | -            | -       | M    | -     | -    |
| CO4       | S                                                                                                                    | S       | M        | L       | -       | ı        | -       | -      | -       | M       |              | -       | M    |       | -    |
| CO5       | S                                                                                                                    | S       | S        | M       | -       | -        | -       | -      | -       | M       | -            | -       | M    | -     | -    |
| CO6       | S                                                                                                                    | S       | S        | M       | S       | -        | -       | -      |         | S       | _            | -       | M    | -     | -    |
| S- Strong | ; M-Med                                                                                                              | ium; L  | -Low     |         |         |          |         |        |         |         |              |         |      |       |      |

# **Syllabus**

#### INTRODUCTION TO CAD/CAM

The design process - Morphology of design, Product cycle - Computer Aided Design, Benefits of CAD. Role of computers - principles of computer graphics - Current trends in manufacturing engineering - Design for Manufacturing and Assembly - Sequential and concurrent engineering - Rapid prototyping.

#### SOLID MODELING

Graphic software: coordinate representation- graphic functions, software standards. Graphical Kernel system (GKS) - Initial graphics exchange system (IGES) - Graphic packages. Geometric Modeling - Wire frame, Surface and Solid models - Constructive Solid Geometry (CSG) and Boundary Representation (B-REP) Techniques - Features of Solid Modeling Packages.

#### FUNDAMENTALS OF CNC MACHINES

CNC Technology - Functions of CNC Control in Machine Tools - Classification of CNC systems - Contouring System - Interpolators, open loop and closed loop CNC systems - CNC Controllers, Direct Numerical Control (DNC Systems). - Work holding devices and tool holding devices-Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centers - Tooling for CNCmachines

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models.

# GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING

Introduction to CIM and its related activities-History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. - benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning - variant approach and generative approaches - CAPP and CMPP process planning systems.

#### SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases-factory data collection system -automatic identification methods- Bar code technology-automated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems- application and benefits.

| Text Books   |                                                                                                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------|
| 1.           | Mikell.P.Groover "Automation, Production Systems and Computer Integrated manufacturing", Pearson Education 2001.         |
| 2.           | Radhakrishnan P, Subramanyan.S. and Raju V., "CAD/CAM/CIM", 2nd Edition New Age International (P) Ltd., New Delhi, 2000. |
| Reference Re | ooks                                                                                                                     |

#### Reference Books

- 1. Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill, 1983.
- 2. Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International, 1986.
- 3. David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.
- **4.** Roger Hanman "Computer Integrated Manufacturing", Addison Wesley, 1997.

# **Course Designers**

| S.No | Faculty Name   | Designation         | College       | Email id               |
|------|----------------|---------------------|---------------|------------------------|
| 1.   | J.SATHEES BABU | Associate Professor | Mech / VMKVEC | jsathees@gmail.com     |
| 2.   | M.SARAVANAN    | Assistant Professor | Mech / VMKVEC | msaravanan94@gmail.com |

| 150           | TCEA#                                                                                                                              |              | NIDLIC           | TO TAT   | <b>XX</b> 7 A C | Veries in a | A NT A 4 | ~        |           | Category  | y        | L                                | T      | P     | Cr       | edit |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------|-----------------|-------------|----------|----------|-----------|-----------|----------|----------------------------------|--------|-------|----------|------|--|--|
| 17B           | TSE05                                                                                                                              | 1            | NDUS             | TRIAL    | . WAS           | STE ML      | ANA(     | GEMEN    |           | EC(OE     | )        | 3                                | 0      | 0     | (        | 3    |  |  |
| Pollutio      | urse wi<br>n Board<br>ork, and                                                                                                     | d regulation | ations<br>onomic | for wa   | ste ma          | nagem       | ent. T   | he cou   | rse will  | also h    | ighlight | tes, as w<br>t the buses for was | siness | profi | itabilit |      |  |  |
| COURS         |                                                                                                                                    |              |                  |          |                 |             |          |          |           |           |          |                                  |        |       |          |      |  |  |
| 1.            | To dis                                                                                                                             | cuss the     | e prese          | nt scena | ario of         | industr     | ial wa   | ste man  | agemen    | t in Indi | a        |                                  |        |       |          |      |  |  |
| 2.            | To explain the knowledge on sources and characteristics of various industrial wastes and strategies for its prevention and control |              |                  |          |                 |             |          |          |           |           |          |                                  |        |       |          |      |  |  |
| 3.            | To execute about the onsite pollution from major industries                                                                        |              |                  |          |                 |             |          |          |           |           |          |                                  |        |       |          |      |  |  |
| 4.            | To outline the various effects and disposal options for the industrial waste.                                                      |              |                  |          |                 |             |          |          |           |           |          |                                  |        |       |          |      |  |  |
| 5.            |                                                                                                                                    |              |                  | tenance  | of haz          | ardous      | waste    |          |           |           |          |                                  |        |       |          |      |  |  |
| COURS         |                                                                                                                                    |              |                  | C .1     |                 | 1           | • •      | 11 11    |           |           |          |                                  |        |       |          |      |  |  |
| After the     |                                                                                                                                    |              | •                |          |                 |             |          |          |           |           |          |                                  |        |       |          |      |  |  |
| CO1: So       |                                                                                                                                    |              | _                | into the | polluti         | ion fron    | n majo   | or indus | tries inc | cluding t | he sour  | ces and                          | U      | nder  | stand    |      |  |  |
| CO2: Id       |                                                                                                                                    | •            |                  | ization  | of ind          | ustrial v   | vastes   |          |           |           |          |                                  | U      | nder  | stand    |      |  |  |
| CO3: Il       |                                                                                                                                    |              |                  |          |                 |             |          |          | of indus  | trial was | ste wate | er                               | A      | pply  |          |      |  |  |
| <b>CO4:</b> C | orrelate                                                                                                                           | the var      | ious tr          | eatment  | s for d         | isposal     | s of in  | dustrial | waste.    |           |          |                                  | A      | naly  | se       |      |  |  |
| <b>CO5:</b> E | xamine                                                                                                                             | the phy      | sio che          | emical t | reatme          | nt for h    | azard    | ous was  | te.       |           |          |                                  | A      | naly  | se       |      |  |  |
| COS           | PO1                                                                                                                                | PO2          | PO               | PO4      | PO              | PO6         | PO       | PO8      | PO9       | PO10      | PO11     | PO12                             | PSO1   | l P   | SO2      | PSO3 |  |  |
| CO1           | M                                                                                                                                  | -            | -                | M        | L               | M           | S        | -        | -         | M         | -        | M                                | -      | M     |          |      |  |  |
| CO2           | M                                                                                                                                  | -            | -                | M        | L               | M           | M        | -        | -         | S         | L        | M                                | -      |       | -        | -    |  |  |
|               |                                                                                                                                    | 1            | ı                |          |                 | ı           | 1        | ı        |           | 1         |          |                                  |        |       |          |      |  |  |

M

M

M

M

S- Strong; M-Medium; L-Low

M

M

M

M

M

M

M

CO4

CO5

M

M

M

M

M

S

M

M

L

# INTRODUCTION TO INDUSTRIAL POLLUTION

Types of Industrias And Industrial Pollution, Characteristics Of Industrial Wastes, Population Equivalent, Bioassay Studies, Effects Of Industrial Effluents On Streams, Sewer, Land, Sewage Treatment Plants And Human Health Environmental Legislations Related to Prevention And Control Of Industrial Effluents And Hazardous Wastes

#### CLEANER PRODUCTION

Waste Management Approach, Waste Audit, Volume And Strength Reduction, Material And Process Modifications, Recycle, Reuse And Byproduct Recovery – Applications.

# POLLUTION FROM MAJORINDUSTRIES

Sources, Characteristics, Waste Treatment Flow Sheets For Selected Industries Such As Textiles, Tanneries, Pharmaceuticals, Electroplating Industries, Dairy, Sugar, Paper, Distilleries, Steel Plants, Refineries, Fertilizer, Thermal Power Plants, Wastewater ReclamationConcepts

# TREATMENT TECHNOLOGIES

Equalisation, Neutralisation, Removal of Suspended and Dissolved Organic Solids, Chemical Oxidation, Adsorption, Removal of Dissolved Inorganics, Combined Treatment Of Industrial And Municipal Wastes, Residue Management, Dewatering, Disposal.

# HAZARDOUS WASTE MANAGEMENT

Hazardous Wastes, Physico Chemical Treatment, Solidification, Incineration, Secure Land Fills.

#### **TEXT BOOKS:**

- 1. Rao M. N. & Dutta A. K. "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. Eckenfelder W.W. Jr., "Industrial Water Pollution Control", McGraw Hill Book Company, New Delhi, 2000.
- 3. Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi2010.

# **REFERENCES:**

- 1. Shen T.T., "Industrial Pollution Prevention", Springer, 1999.
- 2. Stephenson R.L. and Blackburn J.B., Jr., "Industrial Wastewater Systems Handbook", Lewis Publisher, New York, 1998
- 3. Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Delhi, 1995.
- 4. Pandey, "Environmental Management" Vikas Publications, 2010.
- 5. Industrial Wastewater Management, Treatment and Disposal", (WEF MOP FD3) McGraw Hill, 2008

| S.No. | Name of the Faculty  | Designation         | Department             | Mail ID                  |
|-------|----------------------|---------------------|------------------------|--------------------------|
| 1.    | Dr. S. Chozhavendhan | Associate professor | Biotechnology / AVIT   | chozhavendhan@avit.ac.in |
| 2.    | Mrs.C.Nirmala        | Associate professor | Biotechnology / VMKVEC | nirmala@vmkvec.edu.in    |

|                | 17BMEC04 | MEMS AND ITS BIOMEDICAL APPLICATIONS | Category | L | T | P | Credit |
|----------------|----------|--------------------------------------|----------|---|---|---|--------|
| EC(OE) 3 0 0 3 |          |                                      | EC(OE)   | 3 | 0 | 0 | 3      |

# **PREAMBLE**

To enable the students to acquire knowledge about the principles and applications of MEMS & Nanotechnology in Biomedical Industry.

# PREREQUISITE - NIL

# **COURSE OBJECTIVES**

- 1. To understand the working principle of MEMS & Microsystems.
- 2. To understand the working of MOEMS Technology.
- **3.** To give an insight to the microfluidic systems.
- **4.** To give an insight to the Bio-MEMS & its application in healthcare.
- 5. To study about the biomedical Nanotechnology & its application in research domain.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1 Discuss the concents of migrafluidia systems                                        | Undonstand |
|-----------------------------------------------------------------------------------------|------------|
| CO1. Discuss the concepts of microfluidic systems.                                      | Understand |
| CO2. Explain about the basics of working of MOEMS Technology.                           | Understand |
| CO3. Illustrate the working principle of MEMS & Microsystems.                           | Apply      |
| CO4. Analyze the nanomaterial in various biomedical applications.                       | Analyze    |
| CO5. Evaluate about the biomedical Nanotechnology & its application in research domain. | Evaluate   |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | M   |     |     |     |     |     |     |     | L   |      |      | M    |      |      |      |
| CO2 | M   |     | L   |     |     |     |     |     | L   |      |      | M    | M    |      |      |
| CO3 | S   | M   | M   |     |     |     |     |     | M   |      |      | S    | M    | M    | M    |
| CO4 | S   | S   | M   | L   | M   | M   | M   | M   | M   |      |      | S    | M    | M    | S    |
| CO5 | S   | S   | S   | M   | M   | S   | M   | S   | M   |      |      | S    | M    | S    | S    |

#### **MEMS & MICROSYSTEM**

MEMS and Microsystems-Introduction-Typical MEMS and Microsystem Products-Application of Micro- system in Healthcare Industry – Working Principles of Microsystems Micro-sensors – Micro-actuation – MEMS with Microactuation – Micro-accelerators.

# MICRO-OPTO ELECTROMECHANICAL SYSTEMS (MOEMS)

Fundamental principle of MOEMS Technology, Advantages - Light Modulators, Beam splitter - Micro-lens, Micro-mirrors - Digital Micro-mirror Device, Grating Light Valve, Optical Switch, Waveguide and Tuning

#### MICROFLUIDIC SYSTEMS

Microfluidics - Introduction and Fluid Properties, Applications of MFS-Fluid Actuation Methods - Electrophoresis, Dielectrophoresis, Electrowetting, Optoelectrowetting, Electro osmosis Flow, Electrothermal Flow, Thermocapillary Effect - Microfluidic Channel - Microdispenser - Microneedle - Microfilter

# **BIOMEMS**

Introduction to BioMEMS, BioMEMS for Clinical Monitoring, Lab on a chip, DNA Sensors, E-Nose, E-Tongue, Microsystem approaches to PCR, MEMS based Implantable Drug Delivery System, Emerging, BioMEMS Technology.

# **BIOMEDICAL NANOTECHNOLOGY**

Introduction to nanoscale phenomena, Nanoparticles - Nanomaterial characterization - XRD,SAXS,TEM,SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MRImaging, Nano-devicesin biomedical applications.

#### **TEXT BOOKS:**

- 1. Tai-Ran Hsu, "MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley & Sons, 2<sup>nd</sup> Edition, 2008.
- 2. Nitaigour Premch and Mahalik, "MEMS", Tata McGraw Hill, 2<sup>nd</sup> Reprint2008.
- 3. Wanjun Wang & Steven A. Soper, "BioMEMS Technologies and applications", CRC Press, First Edition 2007.

#### **REFERENCES:**

- **1.** Steven S. Saliterman, "**Fundamentals of BioMEMS & Medical Microdevices**", International Society for Optical Engineering, 1<sup>st</sup> Edition2006.
- 2. Gerald A Urban, "BioMEMS", Springer, 1st Edition2006.
- **3.** Abraham P. Lee and James L. Lee, "BioMEMS and Biomedical Nanotechnology", Volume-I, Springer, 1st Edition, 2006.

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID               |
|-------|---------------------|---------------------|--------------|-----------------------|
| 1.    | Dr. M.Ravindiran    | Professor & Head    | BME / AVIT   | ravindiran@avit.ac.in |
| 2.    | Mr. R. Ezhilan      | Assistant Professor | BME /VMKVEC  | ezhilan@vmkvec.edu.in |
| 3.    | Mr.S.Kannan         | Assistant Professor | BME /V MKVEC | kannan@vmkvec.edu.in  |

| 17CVEC14 | AIR POLLUTION MANAGEMENT | Category | L | T | P | Credit |
|----------|--------------------------|----------|---|---|---|--------|
|          |                          | EC(OE)   | 3 | 0 | 0 | 3      |
| ·        |                          |          |   |   |   |        |

# **PREAMBLE**

The course work offers the basic knowledge on various sources of air pollutants and their possible effects local, regional and global environment. It provides various techniques for sampling and analyzing the pollutants. Also, it deals with the principles and design of control of particulate/gaseous air pollutants and its emerging trends to fulfil the legal aspects of air pollution to have a sustainable environment for future generation.

# PREREQUISITE - NIL

# **COURSE OBJECTIVES**

- **1.** About noise pollution and the methods of controlling the same.
- **2.** The student is expected to know about source inventory and control mechanism.
- **3.** To impart knowledge on the sources, effects
- 4. The control techniques of air pollutants and noise pollution
- 5. The sources, characteristics and effects of air

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Identify the sources of air pollution, impacts of air pollutants and their measurements                                        | apply |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>CO2.</b> identify the significance of meteorological factors in pollutants dispersion and to predict the pollutant concentration | apply |
| CO3. Suggest preventive and control measures for air pollution.                                                                     | apply |
| CO4. Suggest locations for industries and appropriate city planning tips for the effective air pollution management of a city       | apply |
| CO5. Suggest remedies for the possible effects of air pollution on local, regional and global environment.                          | Apply |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | L   | L   |     | L   |     | L   |     |      |      |      | -    | -    | -    |
| CO2 | S   | M   | L   | L   | L   | M   |     | L   |     | L    | L    |      | -    | -    | -    |
| CO3 | S   | M   | L   | L   | L   | M   |     | L   |     | L    |      |      | -    | -    | -    |
| CO4 | S   | M   | M   | S   | L   |     |     | L   |     | L    |      | L    | L    | -    | -    |
| CO5 | S   | M   | M   | S   |     |     |     | M   |     | M    | L    |      | -    | -    | -    |

#### SOURCES AND EFFECTS OF AIR POLLUTANTS

Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming- ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

#### **DISPERSION OF POLLUTANTS**

Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate – Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

# AIR POLLUTION CONTROL

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment – gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

# AIR QUALITY MANAGEMENT

Air quality standards – Air quality monitoring – Preventive measures – Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

# **NOISE POLLUTION**

Sources of noise pollution - Effects - Assessment - Standards - Control methods - Prevention

# **TEXT BOOKS:**

- 1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi,1996

# **REFERENCES:**

- 1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997 2.
- 2. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing Company, New Delhi, 1991.

| S.No. | Name of the Faculty | Designation         | Department    | Mail ID                    |  |  |
|-------|---------------------|---------------------|---------------|----------------------------|--|--|
| 1.    | A.Fizoor Rahman     | Assistant Professor | CIVIL /VMKVEC | fizoorr@gmail.com          |  |  |
| 2.    | M.Senthilkumar      | Assistant Professor | CIVIL /VMKVEC | Senthilkumar@vmkvec.edu.in |  |  |
| 3.    | C.Nivetha           | Assstant Professor  | CIVIL / AVIT  | nivetha.c@avit.ac.in       |  |  |

| 17BTPI05 | INDUSTRIAL BIOSAFETY | Category | L | T | P | Credit |
|----------|----------------------|----------|---|---|---|--------|
| 17811105 |                      | E C(OE)  | 3 | 0 | 0 | 3      |

# PREAMBLE

Industrial biosafety deals with the microbial hazards caused to an individual and to the society. In the subject the learners could grasp the knowledge on biosafety levels and the roles of various regulatory committees in avoiding the risk. Biosafety often use pioneering techniques along with other applied fields of research like biotechnology, genetic engineering, biochemistry to study microbes and their complex mechanisms. Knowledge of these principles will enable practice well in handling pathogenic microorganisms carefully in thelaboratory.

# PREREQUISITE - NIL

# COURSE OBJECTIVES

- **1.** To recognize the basic knowledge on biosafety levels.
- **2.** To discuss various hazards caused by the GMOs.
- 3. To classify the role of regulatory committees in controlling the risk
- **4.** To outline the risk involved in using GMOs and LMOs.
- **5.** To design the biosafety procedure in lab and research institutions on handling pathogenic microorganisms.

# COURSE OUTCOMES

After the successful completion of the course, learner will be able to

| CO1: Recall the various biosafety levels.                                        | Remember   |
|----------------------------------------------------------------------------------|------------|
| CO2: Explain the various biosafety guidelines                                    | Understand |
| CO3: Identify the role of regulatory committees in controlling the risk          | Understand |
| CO4: Analyze the risk involved in using GMOs and LMOs products                   | Analyse    |
| CO5: Differentiate the various safety procedures followed in various industries. | Analyse    |

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 0 | PO11 | PO1 2 | PSO 1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|------|-------|-------|------|------|
| CO1 | L   | L   | L   | L   | -   | -   | -   | -   | -   | L     | -    | L     | -     | -    | -    |
| CO2 | M   | M   | -   | M   | -   | -   | -   | -   | -   | -     | L    | L     | -     | -    | -    |
| CO3 | S   | -   | M   | L   | M   | -   | -   | L   | -   | -     | -    | -     | -     | -    | -    |
| CO4 | L   | L   | L   | L   | L   | -   | S   | M   | -   | ı     | -    | M     | -     | -    | -    |
| CO5 | L   | L   | L   | -   | L   | -   | -   | -   | -   | -     | -    | -     | M     | -    | -    |

#### PRINCIPLES OF BIOSAFETY

Introduction, Historical Background, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels, Biosafety Levels of Specific Microorganisms, Biosafety guidelines - Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

#### BIOSAFETY IN BIOTECHNOLOGY INDUSTRIES

Hazard assessment, Use of genetically modified organisms & their release in environment; special procedures for rDNA based product production (Vaccine and Insulin); Biosafety in laboratory, Laboratory

# PRINCIPLES OF BIOSAFETY

Introduction, Historical Background, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels, Biosafety Levels of Specific Microorganisms, Biosafety guidelines - Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

#### BIOSAFETY IN BIOTECHNOLOGY INDUSTRIES

Hazard assessment, Use of genetically modified organisms & their release in environment; special procedures for rDNA based product production (Vaccine and Insulin); Biosafety in laboratory, Laboratory associated infections and other hazards; Prudent biosafety practices in laboratory

# BIOSAFETY – REGULATORY FRAMEWORKS

Biotechnology and bio-safety concerns at the level of individuals, institutions, society, region, country and world. Regulatory framework in India governing GMOs-Recombinant DNA Advisory Committee (RDAC), Institutional Biosafety Committee (IBC), Review Committee on Genetic Manipulation, Genetic Engineering Approval Committee (GEAC), State Biosafety Coordination Committee (SBCC), District Level Committee (DLC). Rules for the manufacture, use/import/export and storage of hazardous microorganisms/genetically engineered organisms or cells.

#### RISK ASSESMENT

Definition of GMOs & LMOs, GMO applications in food and agriculture, Risk Analysis, Risk Assessment, Risk management and communication Risk assessment in various industries- pharmaceuticals, food and beverages etc., steps towards minimizing the risk operations in industries.

# SAFETY AND BIOSAFETY - CASE STUDIES

Recommended Biosafety Levels for Infectious Agents and Infected Animals, Rules and regulation for handling of microbes in laboratory purposes, lab construction procedure, decontamination and discarding procedure of laboratory used microorganisms. Case studies -swine flu spreading, Bhopal tragedy etc.,

#### TEXT BOOKS:

- 1. R.C. Dubey., 2014. A Text Book of Biotechnology Fifth Revised Edition, S.ChandPublications
- **2.** Anupam Singh, Ashwani Singh, 2012. Intellectual property rights and Bio-Technology (Biosafetyand Bioethics), Published by Bio-Green Books, NewDelhi.
- 3. Mueller, M.J., "Patent Law", 3rd Edition, Wolters Kluwer Law & Business, 2009.

# **REFERENCES:**

**1.** V Sreekrishna, 2017. Bioethics and Biosafety in Biotechnology by New ageInternationalpublishers. Sateesh, M.K., 2008. Bioethics and Biosafety, IK InternationalPublishers.

| S.No. | Name of the Faculty | Designation         | Department           | Mail ID                  |
|-------|---------------------|---------------------|----------------------|--------------------------|
| 1.    | Dr. Chozhavendhan.S | Associate professor | Biotechnology / AVIT | chozhavendhan@avit.ac.in |
| 2.    | Dr. B. Prabasheela  | Associate professor | Biotechnology / AVIT | prabasheela@avit.ac.in   |
| 3.    | Mr.N.Jawahar        | Asst. Prof          | Biotechnology        | jawahar@vmkvec.edu.in    |

# 17BTEC29

# GREEN BUILDING AND SUSTAINABLE ENVIRONMENT

| Category | L | Т | P | Credit |
|----------|---|---|---|--------|
| EC(OE)   | 3 | 0 | 0 | 3      |

# **PREAMBLE**

Before starting with this course, one must get a clear knowledge on the basics of green building, learning the plan details of HVAC for a building, energy efficient modelling.

# PREREQUISITE - NIL

# **COURSE OBJECTIVES**

- 1. To define, develop and & Plan the details of Implementation.
- 2. To summarize the fundamentals of electric power systems and building electric wiring.
- 3. To demonstrate about the Bioclimatic design and concepts.
- **4.** To construct the water conservation & water management systems.
- **5.** To assess the key components of remodelling project.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| CO1. Interpret the basics of green building                                             | Understand |
|-----------------------------------------------------------------------------------------|------------|
| CO2. Explain the advantages and benefits of green building practices                    | Understand |
| CO3. Construct low energy architecture features in residential and commercial buildings | Apply      |
| <b>CO4.</b> Develop proper water conservation systems to make up a healthy building     | Apply      |
| CO5. Analyse the green sustainable materials and practices                              | Analyze    |

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | L   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |
| CO2 | M   | M   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |
| CO3 | M   | M   | -   |     | L   | -   | -   | -   | -   | -    | -    | S    | -    | -    | -    |
| CO4 | M   | M   | -   | -   | S   | -   | L   | -   | -   | -    | -    | -    | -    | -    | -    |
| CO5 | M   | M   | L   | L   | S   | S   | -   | L   | _   | _    | _    | _    | M    | M    | M    |

#### GREEN BUILDING BASICS AND PRACTICES:

Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

# ENERGY MANAGEMENT SYSTEM OF BUILDINGS

The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observationsystems.

# LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN

Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

# WATER MANAGEMENT, BUILDING METHODS & MATERIALS

Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Autoclave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

#### **ENERGY EFFICIENT REMODELLING**

Key components of remodelling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

# **TEXT BOOKS:**

- 1. Kibert, C.J. "Sustainable Construction: Green Building Designand Delivery," Second Edition, New York: John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and MatSantamouris.
- **3.** Passive building desing by N.K. Bansal, G. Hauser, and G.Minke.

# **REFERENCES:**

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

| S.No | Name of the Faculty             | Designation         | Department             | Mail ID                 |  |  |
|------|---------------------------------|---------------------|------------------------|-------------------------|--|--|
| 1.   | Dr.S.P.Sangeetha Professor & He |                     | Biotechnology / AVIT   | sangeetha@avit.ac.in    |  |  |
| 2.   | Ms.R.Subashini                  | Assistant Professor | Biotechnology / VMKVEC | subashini@vmkvec.edu.in |  |  |

| 17CSPI01 | PROJECT WORK | Category | L | T | P  | Credit |
|----------|--------------|----------|---|---|----|--------|
|          |              | PI       | 0 | 0 | 18 | 9      |

# **PREAMBLE**

This course enables the students to exercise some of the knowledge and/or skills developed during the programme to new situation or problem for which there are number of engineering solutions. This course include planning of the tasks which are to be completed within the time allocated, and in turn, helps to develop ability to plan, , use, monitor and control resources optimally and economically. By studying this course abilities like creativity, imitativeness and performance qualities are also developed in students. Leadership development and supervision skills are also integrated objectives of learning this course.

# **PREREQUISITE** – NIL

# **COURSE OBJECTIVES**

- **1.** To develop quality software solution.
- 2. To involve in all the stages of the software development life cycle like requirements engineering, systems analysis, systems design, software development, testing strategies and documentation.
- 3. To understand and gain the knowledge of the principles of software engineering practices.
- **4.** To Get good exposure and command in one or more application areas and on the software.
- **5.** To participate and manage a large software engineering projects in future.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| 1. Describe the Systems Development Life Cycle (SDLC).                                     | Apply |
|--------------------------------------------------------------------------------------------|-------|
| 2. Design of Modules.                                                                      | Apply |
| 3. Perform coding.                                                                         | Apply |
| <b>4.</b> Analyze and Apply various types of testing techniques and prepare documentation. | Apply |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | L   | L   | S   | M   | -   | -   | S   | -    | S    | -    | M    | M    | M    |
| CO2 | S   | S   | M   | M   | S   | M   | -   | -   | S   | -    | M    | -    | S    | S    | S    |
| CO3 | L   | M   | L   | L   | M   | M   | -   | -   | M   | -    | L    | -    | M    | M    | M    |
| CO4 | S   | S   | M   | L   | S   | M   | -   | -   | S   | -    | S    | -    | M    | M    | M    |

- Not more than one student is permitted to work on aproject.
- Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.
- Title of the project should be kept the same throughout the project.

# **Guidelines for preparing the Project Dissertation**

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include them in your projectreport.

#### Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

# **Project execution:**

Execute project preparation activities as per work allocation matrix.

# **Documentation and presentation:**

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as perAnnexure-II.)
- b. Certificate -As perAnnexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Courseoutcomes.
- f. Projecttitle.
- g. Assembly and detail productiondrawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.
- i. Plant layout withdimensions.
- j. List and specifications of machineries, equipments andtools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought outparts.
- m. Process sheets-As per format given in course Industrialengineering.
- n. Flow processcharts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carriedout.
- q. Details of rework / rectifications carried out.
- r. Costestimation.
- s. Monitoring and controlreport/sheet.
- t. Notes ontroubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References
- w. Day to day logbook as perAnnexure-V.
- x. Presentation including moments at work-video/photographs inaction

**Notes:** 

Prepare project report with MS Office with following guidelines.

PAGE: A4 (ON ONESIDE).

MARGINN: TOP:15mm.

BOTTOM:15mm.

RIGHT:15mm.

LEFT:30mm.

FONT: ARIAL.

SIZE: 12-BOLD, CONTENT12,

SPACING 18 POINTS,

HEADER: TITLE OF THE PROJECT,

PAGE NUMBER ON TOP

RIGHT.

FOOTER: ACADEMIC YEAR, SHORT

NAME OF THEINSTITUTE

# SUGGESTED LEARNING RESOURCES.

i. Use of Library.

ii. Referencebooks.

iii. Handbooks.

iv. Encyclopedia.

v. Magazines.

vi. Periodicals.

vii. Journals.

viii. Visits of industry, organizations related as per therequirement.

ix. Internet.

| S.No. | Name of the Faculty | Designation         | Department      | Mail ID                 |  |  |
|-------|---------------------|---------------------|-----------------|-------------------------|--|--|
| 1.    | Dr.M.Nithya         | Associate Professor | CSE /<br>VMKVEC | hodcse@vmkvec.edu.in    |  |  |
| 2.    | Dr.S.Rajaprakash    | Associate professor | CSE / AVIT      | rajaprakash@avit.ac.in. |  |  |

| 17CSPI02 | INTERNSHIP | Category | L | Т | P | Credit |
|----------|------------|----------|---|---|---|--------|
|          |            | PI       | 0 | 0 | 0 | 3      |

#### **PREAMBLE**

The Engineering Internship course is a Canvas-based course that offers students the opportunity to explore and develop their careers through professional practice. The structured plan of education impacts student work readiness through a number of professional development skill-building activities, including goal setting; analysis and reflection; feedback from employer; informational interviewing and debriefing their experience.

# PREREQUISITE - NIL

#### **COURSE OBJECTIVES**

- 1. An understanding of how liberal arts coursework ties to professional careers of interest.
- 2. Gain insight into a possible career path of interest while learning about the industry in which the organization resides, organizational structure, and roles and responsibilities within that structure.
- 3. Develop professional connections and identify a strategy for maintaining those connections
- **4.** Identify and articulate next steps in their career trajectory.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

| <b>CO1.</b> Add details about your experience including new skills developed and results obtained .                                               | Understand |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>CO2.</b> Analyze your internship experience, reflecting on lessons learned and how you liberal arts education prepared you for the internship. | our Apply  |
| <b>CO3.</b> Identification of additional skills that will need to be developed to ensure care readiness.                                          | eer Apply  |

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

| cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | S   | M   | S   | L   | S   | -   | L   | L   | S   | L    | S    | -    | M    | M    | M    |
| CO2 | S   | S   | M   | M   | S   | M   | L   | L   | M   | M    | M    | -    | S    | S    | S    |
| CO3 | L   | M   | M   | L   | M   | M   | L   | L   | M   | L    | L    | -    | M    | M    | M    |

# **General Procedure**

# **Final Reflection Report:**

# I. General InformationSection

Explain your role and how your work contributed to the company

# II. <u>TechnicalSkills</u>

Document the technical experiences you had during your work experience and discuss technical problems that you assisted in solving

# III. Development of ProfessionalSkills

Describe team and leadership building opportunities on the job

# IV. Assessments

- Discuss whether or not you met goals set out by your supervisor or that you set foryourself
- Evaluate your performance of assigned projects, noting both areas of strength and improvement

# V. Conclusion

- Summarize by addressing the impact of the work experience on your education and careergoals
- Provide two "lessons learned" to share with any student that is considering aninternship

| S.No. | Name of the Faculty | Designation         | Department    | Mail ID                 |
|-------|---------------------|---------------------|---------------|-------------------------|
| 1.    | Dr.M.Nithya         | Associate Professor | CSE / VMKVEC  | hodcse@vmkvec.edu.in    |
| 2.    | Dr.S.Rajaprakash    | Associate professor | CSE /<br>AVIT | rajaprakash@avit.ac.in. |

| 17CS   | BUSINESS INTELLIGENCE AND ITS APPLICATIONS  Category |           |            |           |          |           |           |           |          |            | y L       | T          | P         | Credit                  |        |
|--------|------------------------------------------------------|-----------|------------|-----------|----------|-----------|-----------|-----------|----------|------------|-----------|------------|-----------|-------------------------|--------|
| 2,02   |                                                      |           |            |           | APP      | LICAT     | IONS      |           |          |            | PI        | 3          | 0         | 0                       | 3      |
|        | ss Intell                                            |           |            |           |          |           |           |           |          |            |           |            |           | rate, anal<br>Data mini |        |
| PRERI  | EQUIS                                                | ITE – 1   | NIL        |           |          |           |           |           |          |            |           |            |           |                         |        |
| COUR   | SE OB                                                | JECTI     | VES        |           |          |           |           |           |          |            |           |            |           |                         |        |
| 1.     | To In                                                | troduce   | studen     | ts to vai | rious bu | isiness   | intellige | ence coi  | ncepts   |            |           |            |           |                         |        |
| 2.     | To lea                                               | arn the   | concept    | s of dat  | a integr | ration u  | sed to c  | levelop   | intellig | ent syste  | ms for de | ecision si | upport    |                         |        |
| 3.     | To int                                               | roduce    | visuali    | zation t  | ool for  | prepare   | the ent   | erprise   | reportir | ng         |           |            |           |                         |        |
| 4.     | To lea                                               |           | ytical c   | ompon     | ents and | d techno  | ologies   | used to   | create o | dashboar   | ds and so | corecards  | , data/te | ext/Web i               | mining |
| 5.     |                                                      |           | insights   | s into o  | rganizat | tional o  | peratio   | ns in im  | plemen   | tation of  | systems   | for Busi   | ness Int  | elligence               | (BI)   |
| COUR   | SE OU                                                | TCOM      | <b>IES</b> |           |          |           |           |           |          |            |           |            |           |                         |        |
| On th  | ie succe                                             | essful co | ompleti    | on of th  | ne cours | se, stude | ents wil  | l be able | e to     |            |           |            |           |                         |        |
|        |                                                      |           |            |           |          |           |           |           |          | develop    | mont      |            | Unde      | rstand                  |        |
| CO2. C | Gained a                                             | an unde   | rstandi    | ng of ho  | ow busi  | ness pr   | ofession  | nals can  | use ana  | alytics te | chniques  |            | Anal      | yze                     |        |
|        |                                                      |           |            |           |          |           |           |           |          | ita Integr |           | <u> </u>   | Appl      | y                       |        |
|        |                                                      |           |            |           |          |           |           | _         |          | ve analys  |           |            | Appl      | y                       |        |
| evelop | system                                               | is to me  | asure, 1   |           | and pro  |           |           |           | •        |            |           | indicator  | s Appl    | y                       |        |
| IAPPIN | NG WI                                                | ΓH PRO    | OGRAN      | ИМЕ О     | UTCO     | MES A     | ND PR     | OGRAN     | MME S    | PECIFIC    | OUTCO     | OMES       |           |                         |        |
| COS    | PO1                                                  | PO2       | PO3        | PO4       | PO5      | PO6       | PO7       | PO8       | PO9      | PO10       | PO11      | PO12       | PSO1      | PSO2                    | PSO    |
| CO1    | S                                                    | M         | L          | -         | M        | -         | -         | -         | -        | -          | -         | M          | S         | M                       | M      |
| CO2    | S                                                    | M         | L          | -         | M        | -         | -         | -         | -        | -          | -         | M          | S         | M                       | M      |
| CO3    | S                                                    | M         | L          | -         | M        | -         | -         | -         | -        | -          | -         | M          | S         | M                       | M      |
| CO4    | S                                                    | M         | L          | -         | M        | -         | -         | -         | -        | -          | -         | M          | S         | M                       | M      |
| CO5    | S                                                    | M         | L          | -         | M        | -         | -         | -         | -        | -          | -         | M          | S         | M                       | M      |
| 1      |                                                      |           |            |           |          |           |           |           |          |            |           |            |           |                         |        |

#### INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

#### **BASICS OF DATA INTEGRATION**

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

# INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

# **BASICS OF ENTERPRISE REPORTING**

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture— Enterprise Reporting using SSRS reporting service

#### **BI ROAD AHEAD**

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind\_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

#### **TEXT BOOKS**

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India,2011

#### REFERENCES

- **1.** Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.
- 2 David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.
- 3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

| S.No. | Name of the Faculty | Designation                  | Department   | Mail ID                 |
|-------|---------------------|------------------------------|--------------|-------------------------|
| 1.    | Dr. K. Sasikala     | Associate Professor          | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.    | Mrs. S. Leelavathy  | Assistant<br>Professor(G-II) | CSE / AVIT   | leelavathy@avit.edu.in  |

| 17CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P104                                                                              |                                                         | 17CSPI04 BUILDING ENTERPRISE APPLICATIONS Category L T P Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |              |                                    | T           | PC              | redit       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|--------------|------------------------------------|-------------|-----------------|-------------|
| 1705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1104                                                                              |                                                         | 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2211(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | , , , , , , ,                               | 22012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11011                    |                                 | PI           | 3                                  | 0           | 0               | 3           |
| Enterp<br>develo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | plicatio<br>Enterpri                                    | se App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 | d expertis   |                                    |             | pe of or an ent | erprise     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSE OF                                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |              |                                    |             |                 |             |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To tea                                                                            | ach the                                                 | studen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ts about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | variou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ıs ways                                                   | to buil                                     | d enterj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | prise ap                 | plication                       | ns           |                                    |             |                 |             |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | platfo                                                                            | rms                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |              |                                    |             | fferent h       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSE OU                                                                            | •                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iicai use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er mieri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aces, a                                                   | s wen a                                     | as chara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acter-or                 | ienieu sc                       | reens. 1     | ney test a                         | ma aec      | ug meir s       | ystem       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (30, 171                                                                          | ICO                                                     | MES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |              |                                    |             |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | eful co                                                 | malatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s atuda                                                   | nto rvill                                   | l bo obl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o to                     |                                 |              |                                    |             |                 |             |
| On the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | succes                                                                            |                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | . d.1:                          | T            | In danata                          | اد ـ        |                 |             |
| On the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | succes                                                                            | rize wit                                                | th conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ept of E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enterpri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | se Ana                                                    | lysis ar                                    | nd Busin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ness M                   | odeling.                        |              | Jndersta                           | nd          |                 |             |
| On the CO1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | succes                                                                            | rize wit                                                | th conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ept of E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enterpri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | se Ana                                                    | lysis ar                                    | nd Busin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ness M                   | odeling.<br>esign and           | 1            | Jndersta:<br>Jndersta:             |             |                 |             |
| On the CO1. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Familia: Understaent the Underst                                                  | rize with and recapplication                            | th concurrence tion are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ept of E<br>ents vali<br>chitectu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enterpri<br>idation,<br>ire.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | se Ana                                                    | lysis ar                                    | estimat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ness Mo                  |                                 | l (          |                                    |             |                 |             |
| On the CO1. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Familia<br>Underst                                                                | rize with and recapplication and the mpone              | th conc<br>quiremention are<br>e impor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ept of E<br>ents vali<br>chitectu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Enterpri<br>idation,<br>ire.<br>f applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | se Ana planni                                             | lysis ar                                    | estimat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ness Mo                  | esign and                       | I (          | Indersta                           |             |                 |             |
| On the CO1. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Familia: Understaent the Understation co                                          | and recapplica<br>and the<br>and the<br>mpone<br>ct and | ch concurrence impornts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ept of E<br>ents vali<br>chitectu<br>tance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Enterpridation, are.  f application applic | se Ana planni ation fi                                    | lysis ar                                    | estimat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ness Mo                  | esign and                       | · A          | Jndersta:<br>Apply                 |             |                 |             |
| On the CO1. I CO2. I docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Familia: Understaent the Understation co Constru                                  | and recapplica<br>and the<br>mpone<br>ct and a          | th concupuirement tion are imported imp | ents valichitecturatance of differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enterpridation, are.  f application applic | se Ana planni ration fi                                   | lysis ar                                    | estimates and second se | ness Motion. De          | esign and                       | · A          | Jndersta: Apply Apply Apply        | nd          |                 |             |
| On the CO1. I CO2. I docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Familia: Understaent the Understation co Constru                                  | and recapplica and the mpone ct and a Code              | th concepture mention are the importants developments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ept of Eents validable tance of different Code a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enterpridation, are.  f application applic | se Ana planni ration fintion lays, build                  | lysis ar ng and ramewo yers. proces ES AN   | estimate ork and s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | design                   | esign and                       | I U          | Jnderstar Apply Apply Apply C OUTC | OMES        | PSO2            | PSO         |
| CO3. Applica CO4. COS. MAPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E succes Familia Underst hent the Underst ation co Constru Perform                | and recapplica and the mpone ct and a Code              | th concepture mention are the importants developments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ept of Eents validable tance of different Code a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enterpridation, are.  f application applic | se Ana planni ration fintion lays, build                  | lysis ar ng and ramewo yers. proces ES AN   | estimate ork and s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | design                   | esign and                       | I U          | Jnderstar Apply Apply Apply C OUTC | OMES        |                 |             |
| On the CO1. In CO2. In CO3. In CO3. In CO4. In CO5. In | E success Familia: Understation the Understation co Constru Perform PING V        | and recapplica and the mpone ct and a Code VITH I       | th concupuirement tion are importants developed PROGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ept of Eents valichitecture of different Code a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enterpridation, dation, are.  f applicated a | se Anaplanni planni ration fration lay s, build FCOM PO6  | lysis arng and ramewoyers. proces ES AN     | estimate ork and s.  D PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness Motion. De design   | esign and ing other MME SI      | PECIFIC PO11 | Apply Apply Apply COUTO            | OMES PSO1   | PSO2            | M           |
| On the CO1. I CO2. I docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E success Familia: Understate the Understation co Construe Perform PING V PO1 S   | and recapplica and the mpone ct and a Code WITH I       | th concupuirementation are importants developed PROGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ents valichitecturation differents Code a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Enterpridation, ire.  f application analysis  FOS  M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | se Anaplanni planni ration fation lay s, build FCOM PO6   | lysis aring and ramewoyers. proces ES AN    | estimate ork and s.  D PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | design  OGRAM  PO9  M    | esign and ing other MME SI PO10 | PECIFIC M    | Apply Apply Apply COUTO PO12       | OMES PSOI   | PSO2            | M<br>M      |
| On the CO1. I CO2. I docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E succes Familia Understatent the Understation co Construe Perform PING V PO1 S S | and recapplica and the mpone ct and a Code WITH I PO2 M | th concupuirementation are importants developed PROGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ept of Eents validation with the chitecture of the chitecture of the chitecture of different of the chitecture of the ch | Enterpridation, are.  f application analysis  FOUT  POS  M  M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se Anaplanni planni ration fation lay s, build PCOM PO6 - | lysis arng and ramewoyers. proces ES AN PO7 | estimate ork and s.  PO8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | design  OGRAM  PO9  M  M | esign and ing other MME SI PO10 | PECIFIC M    | Apply Apply Apply COUTC PO12 -     | OMES PSO1 S | M M             | PSO M M M M |

# INTRODUCTION

enterprise applications and their types, software engineering methodologies, life cycle of raising an enterprise application, introduction to skills required to build an enterprise application, key determinants of successful enterprise applications, and measuring the success of enterprise application

#### INCEPTING OF ENTERPRISE APPLICATIONS

Enterprise analysis, business modeling, requirements elicitation, use case modeling, prototyping, non functional requirements, requirements validation, planning and estimation

# ARCHITECTING AND DESIGNING ENTERPRISE APPLICATIONS

Concept of architecture, views and viewpoints, enterprise architecture, logical architecture, technical architecture-design, different technical layers, best practices, data architecture and design – relational, XML, and other structured data representations, Infrastructure architecture and design elements - Networking, Internetworking, and Communication Protocols, IT Hardware and Software, Middleware, Policies for Infrastructure Management, Deployment Strategy, Documentation of application architecture anddesign

# CONSTRUCTING OF ENTERPRISE APPLICATIONS

Construction readiness of enterprise applications - defining a construction plan, defining a package structure, setting up a configuration management plan, setting up a development environment, introduction to the concept of Software Construction Maps, construction of technical solutions layers, methodologies of code review, static code analysis, build and testing, dynamic code analysis – code profiling and codecoverage

# TESTING AND ROLLING OUT ENTERPRISE APPLICATIONS

Types and methods of testing an enterprise application, testing levels and approaches, testing environments, integration testing, performance testing, penetration testing, usability testing, globalization testing and interface testing, user acceptance testing, rolling out an enterprise application.

#### **TEXT BOOKS**

- 1. Raising Enterprise Applications Published by John Wiley, authored by Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, VeerakumarEsakimuthu
- 2. Building Java Enterprise Applications Published by O'Reilly Media, authored by BrettMcLaughlin

# REFERENCE BOOK

- 1. Software Requirements: Styles & Techniques published by Addison-WesleyProfessional
- 2. Software Systems Requirements Engineering: In Practice published by McGraw-Hill/OsborneMedia
- 3. Managing Software Requirements: A Use Case Approach, 2/e published by Pearson
- **4.** Software Architecture: A Case Based Approach published by Pearson

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                  |
|-------|---------------------|---------------------|--------------|--------------------------|
| 1.    | Dr. S. Rajaprakash  | Associate Professor | CSE / AVIT   | rajaprakash@avit.ac.in   |
| 2.    | Mr.M.Annamalai      | Assistant Professor | CSE / VMKVEC | annamalaim@vmkvec.edu.in |

| 17CS               | PI05 INTERNET AND WEB TECHNOLOGY |                   |                     |                 |                   |          |          |                 |          |         | Catego  | ory L     | T        | P C                                  | redit  |
|--------------------|----------------------------------|-------------------|---------------------|-----------------|-------------------|----------|----------|-----------------|----------|---------|---------|-----------|----------|--------------------------------------|--------|
|                    |                                  |                   |                     |                 |                   |          |          |                 |          |         | PI      | 3         | 0        | 0                                    | 3      |
| PREA               | MBLE                             |                   |                     |                 |                   |          |          |                 |          |         |         |           |          | <u> </u>                             |        |
| 'langua<br>graphic | age of t                         | he Wel<br>ction v | o' – HT<br>vith a s | ML, the pecific | e funda<br>stress | amental  | ls of ho | w the laraphics | Internet | and the | Web fur | nction, a | basic ur | nis includ<br>nderstand<br>introduct | ing of |
| PRER               | EQUIS                            | SITE –            | NIL                 |                 |                   |          |          |                 |          |         |         |           |          |                                      |        |
| COUR               | SE OB                            | JECT              | IVES                |                 |                   |          |          |                 |          |         |         |           |          |                                      |        |
| 1.                 | To int                           | roduce            | basic o             | concept         | s of int          | ernet    |          |                 |          |         |         |           |          |                                      |        |
| 2.                 | To lea                           | ırn abo           | ut HTM              | 1L & X          | ML                |          |          |                 |          |         |         |           |          |                                      |        |
| 3.                 | To lea                           | ırn abo           | ut inter            | net sec         | urity             |          |          |                 |          |         |         |           |          |                                      |        |
| COUR               | SE OU                            | TCON              | MES                 |                 |                   |          |          |                 |          |         |         |           |          |                                      |        |
| On the             | succes                           | sful con          | npletio             | n of the        | course            | e, stude | nts wil  | l be abl        | e to     |         |         |           |          |                                      |        |
| CO1.               | Analyz                           | e a weł           | page a              | and ide         | ntify its         | eleme    | nts and  | attribu         | tes.     |         | 1       | Analyze   |          |                                      |        |
| CO2. 0             | Create v                         | veb pag           | ges usir            | ng XHT          | ML an             | d Casca  | ading S  | tyle Sh         | eets.    |         | 1       | Apply     |          |                                      |        |
| CO3. 1             | Build dy                         | ynamic            | web pa              | ages usi        | ing Java          | aScript  | (Client  | side p          | rogram   | ming).  |         | Apply     |          |                                      |        |
| CO4. 0             | Create X                         | KML d             | ocumer              | nts and         | Schema            | as       |          |                 |          |         | 1       | Apply     |          |                                      |        |
| CO5. 1             | Build in                         | teractiv          | ve web              | applica         | tions u           | sing JS  | P        |                 |          |         | 1       | Apply     |          |                                      |        |
| MAPP               | ING V                            | /ITH I            | PROGI               | RAMM            | E OU              | ГСОМ     | ES AN    | D PRO           | OGRAI    | MME SI  | PECIFIC | COUTO     | OMES     |                                      |        |
| COS                | PO1                              | PO2               | PO3                 | PO4             | PO5               | PO6      | PO7      | PO8             | PO9      | PO10    | PO11    | PO12      | PSO1     | PSO2                                 | PSO3   |
| CO1                | S                                | M                 | L                   | -               | M                 | -        | -        | -               | M        | -       | -       | M         | S        | M                                    | M      |
| CO2                | S                                | M                 | L                   | -               | M                 | -        | -        | -               | M        | -       | -       | -         | S        | M                                    | M      |
| CO3                | S                                | M                 | L                   | -               | L                 | -        | -        | -               | M        | -       | -       | L         | S        | M                                    | M      |
| CO4                | S                                | M                 | L                   | -               | M                 | -        | -        | -               | M        | -       | -       | -         | S        | M                                    | M      |
| CO5                | S                                | M                 | L                   | -               | M                 | -        | -        | -               | M        | -       | -       | L         | S        | M                                    | M      |
| S- Stro            | ng; M-                           | <br>Mediur        | <br>n; L-Lo         | )W              |                   |          |          |                 |          |         |         |           |          |                                      |        |

# INTRODUCTION TO INTERNET

Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure Http(Shttp) Internet Addressing – Addressing Scheme – Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP Addresses, Mapping. Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies: Three Tier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems

# HTML CSS AND SCRIPTING

HTML – Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax, Class Selector, Id Selector Dom (Document Object Model) & Dso (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML formelements

#### **XML**

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS

#### INTERNET SECURITY & FIREWALLS

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI, Challenges—Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip-Packet Screening, Proxy Application Gateways, Aaa (Authentication, Authorization And Accounting).

# WEBSITE PLANNING & HOSTING

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous),FtpClients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat

#### TEXT BOOKS

- 1. Internet & Intranet Engineering, Daniel Minoli, TMH.
- 2 .Alexis Leon and Mathews Leon Internet for Every One, Tech World.

# REFERENCES

- 1. Eric Ladd, Jim O'Donnel "Using HTML 4, XML and JAVA"-Prentice Hall of India-1999.
- 2. "Beginning Java Script" Paul Wilton SPD Publications-2001

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|-------|---------------------|---------------------|--------------|-------------------------|
| 1.    | Dr. K. Sasikala     | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.    | Dr. R. Jaichandran  | Associate Professor | CSE / AVIT   | rjaichandran@avit.ac.in |

|                        |                     | T                           |                      |           |          |          |         |          |          |            |           | 1        |         |                                |        |
|------------------------|---------------------|-----------------------------|----------------------|-----------|----------|----------|---------|----------|----------|------------|-----------|----------|---------|--------------------------------|--------|
| 17CS                   | SPI06               |                             | LEA                  | ARNIN     | G IT E   | ESSEN'   | TIALS   | BY D     | OING     |            | Catego    | ory L    | T       | P (                            | Credit |
|                        |                     |                             |                      |           |          |          |         |          |          |            | PI        | 3        | 0       | 0                              | 3      |
| The princlude tools as | es progr<br>nd tech | electiv<br>ammir<br>nologie | ng , Da<br>es for th | tabase    | and we   | b Tech   | nology  | among    | gst othe | er related | l topics. | This co  | urse re | of this Elers to the bapplicat | basic  |
|                        | EQUIS               |                             |                      |           |          |          |         |          |          |            |           |          |         |                                |        |
| COUR                   | RSE OB              | JECT                        | IVES                 |           |          |          |         |          |          |            |           |          |         |                                |        |
| 1.                     | To lea              | ırn abo                     | ut the e             | essentia  | ls of In | formati  | on Tec  | hnolog   | y        |            |           |          |         |                                |        |
| 2.                     | To ge               | t an ide                    | ea abou              | t the sc  | ripting  | langua   | ges.    |          |          |            |           |          |         |                                |        |
| 3.                     | To ge               | t an ide                    | ea abou              | t the int | ternet p | rotocol  | S       |          |          |            |           |          |         |                                |        |
| COUR                   | SE OU               | ITCON                       | MES                  |           |          |          |         |          |          |            |           |          |         |                                |        |
| On the                 | success             | sful co                     | mpletio              | n of the  | course   | e, stude | nts wil | l be abl | e to     |            |           |          |         |                                |        |
| CO1.                   | Unders              | tand th                     | ne netw              | vorking   | g conce  | ept inte | ernet p | rotocol  | s, netv  | vork rou   | ting      | Jndersta | nd      |                                |        |
| CO2. I                 | Underst             | and the                     | funda                | mentals   | of web   | applic   | ations  | and its  | modeli   | ng         | Ţ         | Jndersta | nd      |                                |        |
| CO3. I                 | Unders<br>ations    | tand a                      | nd lear              | n the s   | criptin  | g lang   | uages   | with de  | esign o  | f web      | Ţ         | Jndersta | nd      |                                |        |
| CO4.                   | Analyze             | the pr                      | ocess o              | f mobil   | e comr   | nunicat  | ion and | l netwo  | rk tech  | nologies   | 1         | Analyze  |         |                                |        |
| CO5. I                 |                     | mple in                     | nteracti             | ve appl   | ications | s, datab | ase app | olicatio | ns and 1 | multimed   | lia       | Analyze  |         |                                |        |
|                        |                     | /ITH I                      | PROGI                | RAMM      | IE OU'   | ГСОМ     | ES AN   | D PRO    | OGRAI    | MME SI     | PECIFIC   | COUTO    | COMES   | <u> </u>                       |        |
| COS                    | PO1                 | PO2                         | PO3                  | PO4       | PO5      | PO6      | PO7     | PO8      | PO9      | PO10       | PO11      | PO12     | PSO     | PSO2                           | PSO3   |
| CO1                    | S                   | M                           | M                    | M         | -        | -        | -       | -        | -        | -          | -         | M        | S       | M                              | M      |
| CO2                    | S                   | M                           | M                    | M         | -        | -        | -       | -        | _        | -          | _         | M        | S       | _                              | M      |
| CO3                    | S                   | M                           | M                    | M         | _        | -        | -       | _        | _        | -          | -         | M        | S       | M                              | M      |
| CO4                    | M                   | M                           | M                    | M         | M        | -        | _       | _        | _        | -          | -         | M        | S       | M                              | _      |
| CO5                    | M                   | M                           | M                    | M         | S        | -        | _       | _        | -        | -          | -         | M        | -       | M                              | M      |
| S- Stro                | ng; M-1             |                             |                      |           |          |          |         | 1        |          |            |           |          |         |                                |        |

# FUNDAMENTALS OF COMPUTER ARCHITECTURE

introduction-organization of a small computer -Central Processing Unit - Execution cycle - Instruction categories - measure of CPU performance Memory - Input/output devices - BUS-addressing modes. System Software - Assemblers - Loaders and linkers - Compilers and interpreters

#### **OPERATING SYSTEM**

Introduction – memory management schemes Process management Scheduling – threads.

Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to

C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

#### **RDBMS**

 $\label{eq:concept} \begin{array}{l} \text{Data processing-the database technology-data models-ER modeling concept-notations-Extended ER} \\ \text{features-Logical database design-normalization-SQL-DDL statements-DML statements-DCL} \\ \text{statements} \end{array}$ 

Writing Simple queries – SQL Tuning techniques – Embedded SQL - OLTP

#### **OBJECTED ORIENTED CONCEPTS**

Object oriented programming -UML Class Diagrams—relationship – Inheritance – Abstract classes – polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool – Application of OOC using Alice tool.

# **CLIENT SERVER COMPUTING**

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

# **REFERENCES**

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley,1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C languagePHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co.,1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept,2nd ed. McGraw-Hill International editions,1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming–An evolutionary approach, Addison Wesley, 1991

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|-------|---------------------|---------------------|--------------|-------------------------|
| 1.    | Dr.K.Sasikala       | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.    | Mr. K.Karthik       | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in      |

| 17CS                                    | SPI07                                       | ESS                                   | SENTI                            | ALS O                   | F INF                         | ORM                          | ATION                       | 1 TEC                       | HNOL     | OGY                             | Categ                            | ory L                                    | T                 | P      | Credit               |
|-----------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------|-------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|----------|---------------------------------|----------------------------------|------------------------------------------|-------------------|--------|----------------------|
| 1700                                    | 1107                                        | Loc                                   | )121 <b>\11</b>                  | ALS O                   | T III                         | OKWI                         | 11101                       | · IEC                       | III(OL)  | 001                             | PI                               | 3                                        | 0                 | 0      | 3                    |
| PREA                                    | MBLE                                        |                                       |                                  |                         |                               |                              |                             |                             |          |                                 |                                  |                                          | 1 1               | I      |                      |
| installa<br>unders<br>store d<br>how th | ation, a<br>tand th<br>lata and<br>ne syste | and em<br>e vario<br>l how t<br>m man | nphasizous cor<br>to maniages th | ing princepts a ipulate | inciple:<br>and fur<br>them t | s appli<br>actiona<br>hrough | cation<br>lities o<br>query | packa<br>f Datal<br>langua  | ges. Th  | is cour<br>anageme<br>e effecti | ese aims<br>ent Syst<br>ve desig | s like has at facilities, the gning of a | itating<br>method | the st | ident to<br>nodel to |
| PRER                                    |                                             |                                       |                                  |                         |                               |                              |                             |                             |          |                                 |                                  |                                          |                   |        |                      |
| COUF                                    | RSE OI                                      | ВЈЕСТ                                 | TIVES                            |                         |                               |                              |                             |                             |          |                                 |                                  |                                          |                   |        |                      |
| 1.                                      | To pr                                       | ovide l                               | oasic k                          | nowled                  | ge of h                       | ardwar                       | e and                       | softwar                     | e comp   | onents (                        | of comp                          | uters.                                   |                   |        |                      |
| 2.                                      | To sti                                      | ıdy Pro                               | oblem s                          | solving                 | Techn                         | iques a                      | nd pro                      | gram d                      | evelopn  | nent cyc                        | cle.                             |                                          |                   |        |                      |
| 3.                                      | Desig                                       | n and                                 | test sin                         | nple pro                | ograms                        | in C la                      | inguag                      | e                           |          |                                 |                                  |                                          |                   |        |                      |
| 4.                                      | Docu                                        | ment a                                | rtifacts                         | using                   | commo                         | n qual                       | ity stan                    | ıdards                      |          |                                 |                                  |                                          |                   |        |                      |
| 5.                                      | Desig                                       | n simp                                | ole data                         | store u                 | ising R                       | DBMS                         | conce                       | pts and                     | l impler | nent                            |                                  |                                          |                   |        |                      |
| COUF                                    | RSE O                                       | UTCO                                  | MES                              |                         |                               |                              |                             |                             |          |                                 |                                  |                                          |                   |        |                      |
| On the                                  | succes                                      | sful co                               | mpleti                           | on of th                | ne cour                       | se, stud                     | lents w                     | ill be a                    | ble to   |                                 |                                  |                                          |                   |        |                      |
| CO1.                                    | Basic k                                     | nowled                                | dge on                           | hardwa                  | re and                        | softwa                       | re tern                     | ninolog                     | ies.     |                                 |                                  | Understa                                 | nd                |        |                      |
|                                         | 110                                         |                                       | _                                | e of ma                 | themat                        | ics, sci                     | ence a                      | nd com                      | puting i | in the co                       | ore                              | Apply                                    |                   |        |                      |
|                                         | ation to                                    |                                       |                                  | Devol                   | vement                        | Cvcle                        | and an                      | oply vai                    | rious Pr | oblem                           |                                  |                                          |                   |        |                      |
|                                         | g Tech                                      |                                       |                                  |                         |                               |                              |                             | <b>F</b> - <i>y</i> · · · · |          |                                 |                                  | Apply                                    |                   |        |                      |
|                                         | Develo                                      | <u> </u>                              |                                  |                         |                               |                              |                             | •                           |          |                                 |                                  | Analyze                                  |                   |        |                      |
|                                         | Build a<br>lational                         |                                       |                                  | e relatio               | onal da                       | tabase                       | using S                     | Structui                    | red Que  | ry Lang                         | guage                            | Analyze                                  |                   |        |                      |
|                                         |                                             |                                       |                                  |                         |                               |                              |                             |                             |          |                                 |                                  | FIC OU                                   |                   |        | T                    |
| COS                                     | PO1                                         | PO2                                   | PO3                              | PO4                     | PO5                           | PO6                          | PO7                         | PO8                         | PO9      | PO10                            | PO11                             | PO12                                     | PSO <sub>1</sub>  | PSO    | 2 PSO3               |
| CO1                                     | S                                           | M                                     | M                                | M                       | M                             | -                            | -                           | -                           | -        | -                               | -                                | -                                        | S                 | M      | M                    |
| CO2                                     | S                                           | M                                     | M                                | M                       | M                             | -                            | -                           | -                           | -        | -                               | -                                | -                                        | S                 | M      | M                    |
| CO3                                     | S                                           | M                                     | M                                | M                       | M                             | -                            | -                           | -                           | -        | -                               | -                                | -                                        | S                 | M      | M                    |
| CO4                                     | S                                           | M                                     | M                                | M                       | M                             | -                            | -                           | -                           | -        | -                               | -                                | -                                        | S                 | M      | M                    |
| CO5                                     | S                                           | M                                     | M                                | M                       | M                             | -                            | -                           | -                           | -        | -                               | -                                | -                                        | S                 | M      | M                    |
| S- Stro                                 | ng; M-                                      | Mediu                                 | m; L-L                           | LOW                     | 1                             | 1                            |                             | <u> </u>                    | <u> </u> |                                 | <u> </u>                         | 1                                        | 1                 | 1      |                      |

#### INTRODUCTION

Basics of computer systems - Various hardware components - Data storage and various Memory units - Central Processing Unit - Execution cycle - Introduce to software and its classifications. Operating system concepts—Introduction - Memory management - Process management - Intercrosses Communication - Deadlocks - File management - Device management.

# PROBLEM SOLVING TECHNIQUES

Introduction to problem solving - Computational problem and it's classification - Logic and its types - Introduction to algorithms - Implementation of algorithms using flowchart - Flowcharts implementation through RAPTOR tool - Searching and sorting algorithms - Introduction and classification to Data Structures - Basic Data Structures - Advanced Data Structures

#### PROGRAMMING BASICS

Introduction to Programming Paradigms and Pseudo Code - Basic programming concepts - Program Life Cycle - Control Structures - Introduction and Demonstration of 1-D Array and 2-D Array - Searching and Sorting techniques - Demonstration Concept of memory references in arrays –Strings - Compiler Concepts - Code Optimization techniques. Structured Programming – Functions – Structures - File Handling - Introduction to Software Development Life Cycle - Industry Coding Standards and Best Practices - Testing and Debugging - Code Review

#### PROJECT PREPARATION

Project Specification - Preparation of High level design and Detailed design document, Unit Test Plan and Integrated Test Plan - Coding and Unit Testing activities - Integration Testing.

# **RDBMS**

 $\label{eq:database} Data\ processing-the\ database\ technology-data\ models-ER\ modeling\ concept-notations-Extended\ ER\ features-Logical\ database\ design\ -\ normalization\ -SQL-DDL\ statements-DML\ statements-DCL\ statements\ -\ DCL\ statem$ 

#### TEXT BOOKS

1. Information Technology Planning, Blokdyk Gerardus, Pearson 3<sup>rd</sup> Edition.

#### **REFERENCES**

- 1. "Computer Organization and Architecture" William Stallings, Pearson 8th Edition
- 2. "Database System Concepts"- Abraham Silberschatz, Hendry F Korth Indian 6<sup>th</sup>Edition.
- 3. "Computing Fundamentals and C Programming" Paperback 1 Jul 2017 by E Balagurusamy(Author)
- **4.** "How to solve it by computer" R G Dromey, Pearson Edition 2006.
- **5.** "Software testing Principle and Practices Desikan Srinivasan, Gopalaswamy Ramesh, Pearson Edition 2005.

| S.No. | Name of the Faculty | Designation         | Department   | Mail ID                 |
|-------|---------------------|---------------------|--------------|-------------------------|
| 1.    | Dr. K. Sasikala     | Associate Professor | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.    | Mr. K.Karthik       | Assistant Professor | CSE / AVIT   | karthik@avit.ac.in      |

| 17CS                         | P108                            |                                | IN                            | TROD     | UCTI            | ON TO               | MAIN             | I FRAI              | MES            |                                    | Catego   | ory I   | . 7    | Г     | P C       | redit  |
|------------------------------|---------------------------------|--------------------------------|-------------------------------|----------|-----------------|---------------------|------------------|---------------------|----------------|------------------------------------|----------|---------|--------|-------|-----------|--------|
| 1705                         | 1100                            |                                | 11                            | IKOD     |                 | J1 10               | 141/11           | 1 10/11             | VIL)           |                                    | PI       | 3       | 3 (    | )     | 0         | 3      |
| PREA                         | MBLE                            |                                |                               |          |                 |                     |                  |                     |                |                                    |          | l       |        |       |           |        |
| availab<br>widely<br>process | ility, se<br>used m<br>sing ver | erviceal<br>ainfrar<br>y large | bility, s<br>me oper<br>workl | calabili | ity, sectystem. | urity, a<br>z/OS is | nd perf<br>knowi | ormanc<br>n for its | e. The ability | er and an operating to serve anner | g system | taught  | in th  | is co | urse is z | /OS, a |
| PRER                         | EQUIS                           | ITE:                           | NIL                           |          |                 |                     |                  |                     |                |                                    |          |         |        |       |           |        |
| COUR                         | SE OB                           | JECT                           | IVES                          |          |                 |                     |                  |                     |                |                                    |          |         |        |       |           |        |
| 1.                           | To ge                           | t an ide                       | a abou                        | t the ma | ainfram         | e hard              | ware             |                     |                |                                    |          |         |        |       |           |        |
| 2.                           | To ge                           | t an ide                       | a abou                        | t z/OS   |                 |                     |                  |                     |                |                                    |          |         |        |       |           |        |
| 3.                           | To lea                          | ırn abo                        | ut JCL                        |          |                 |                     |                  |                     |                |                                    |          |         |        |       |           |        |
| COUR                         | SE OI                           | TCON                           | льс                           |          |                 |                     |                  |                     |                |                                    |          |         |        |       |           |        |
|                              |                                 |                                |                               | of 41s   |                 | 4                   |                  | 1 1 1 - 1           |                |                                    |          |         |        |       |           |        |
| On the                       |                                 |                                |                               |          |                 |                     |                  |                     |                |                                    |          |         |        |       |           |        |
| CO1. I                       |                                 | e Cond                         | cept of                       | Compu    | ter Arc         | hitectu             | re ,Mai          | nframe              | s OS ar        | nd                                 |          | Unders  | tand   |       |           |        |
| CO2. I                       |                                 | e Cond                         | cept of                       | virtual  | storage         | and its             | use in           | z/OS                |                |                                    |          | Unders  | tand   |       |           |        |
| CO3. U                       | Jnderst                         | and Jol                        | o Contr                       | ol lang  | uage- V         | arious              | statem           | ents in             | JCL- JO        | CL proce                           | edures   | Unders  | tand a | and A | Apply     |        |
| CO4. E                       |                                 |                                | •                             | relation | nal data        | base us             | sing Str         | uctured             | l Query        | Langua                             | ge       | Apply   |        |       |           |        |
| COS. A                       |                                 |                                | is form                       | s of dat | a repre         | sentatio            | on and           | structur            | es supp        | oorted by                          | the      | Apply a | and A  | naly  | ze        |        |
| MAPP                         | ING W                           | /ITH I                         | PROGI                         | RAMM     | IE OU           | ГСОМ                | ES AN            | D PRO               | OGRA           | MME SI                             | PECIFI   | C OUT   | COM    | 1ES   |           |        |
| COS                          | PO1                             | PO2                            | PO3                           | PO4      | PO5             | PO6                 | PO7              | PO8                 | PO9            | PO10                               | PO11     | PO1     | 2 PS   | SO1   | PSO2      | PSO3   |
| CO1                          | S                               | M                              | M                             | M        | -               | -                   | -                | -                   | -              | -                                  | -        | -       |        | S     | M         | M      |
| CO2                          | S                               | M                              | M                             | M        | -               | -                   | -                | _                   | -              | -                                  | -        | -       |        | S     | -         | M      |
| CO3                          | S                               | L                              | M                             | M        | -               | -                   | -                | -                   | -              | -                                  | -        | -       |        | S     | M         | -      |
| CO4                          | S                               | M                              | M                             | M        | -               | -                   | -                | -                   | -              | -                                  | -        | -       |        | S     | M         | M      |
| CO5                          | S                               | M                              | M                             | M        | -               | -                   | -                | -                   | -              | -                                  | -        | -       |        | S     | M         | -      |
| S- Stro                      | ng; M-                          | Mediur                         | n; L-Lo                       | ow<br>Ow | I               | <u> </u>            | <u> </u>         | l                   | <u> </u>       | l                                  |          | 1       |        |       | I         | 1      |

# **EVOLUTION OF MAINFRAME HARDWARE**

Overview of Computer Architecture - Classification of Computers - micro, mini, mainframes and super computer - Mainframe computer - key features - benefits - Evolution of Mainframes - Different hardware systems. Mainframes OS and Terminology: Operating systems on mainframes, Batch processing vs. online processing - mainframe operating system. - evolution - concepts of Address space, Buffer management - Virtual storage - paging - swapping - Dataset management inmainframes.

# Z/OS AND ITS FEATURES

Z-operating system (Z/OS) - Virtual storage - Paging process - storage Managers - Program execution modes - Address space - Multiple virtual system(MVS) , MVS address space, Z/OS address space - Dataset - sequential and partial dataset - Direct access storage device(DASD) -Access methods - Record formats - Introduction to virtual storage access methods(VSAM) - Catalog –VTOC.

#### INTRODUCTION TO JCL

Introduction to Job Control language - Job processing – structure of JCL statements - Various statements in JCL - JOB statement - EXEC statement – DD statement - JCL procedures and IBM utilityprograms.

#### COBOL PROGRAMMING

Introduction – History, evolution and Features, COBOL program Structure, steps in executing COBOL. Language Fundamentals – Divisions, sections, paragraphs, sections, sentences and statements, character set, literals, words, figurative constants, rules for forming user defined words, COBOL coding sheet.. Data division – Data names, level numbers, PIC and VALUE clause, REDEIFNES, RENAMES and USAGE clause. Procedure Division – Input / Output verbs, INITIALIZE verb, data movement verbs, arithmetic verbs, sequence control verbs.

# **OVERVIEW OF DB2**

Introduction to DB2 – System Service component, Database Service component, Locking Service component, Distributed Data Facility Services component, Stored Procedure component, catalogs and optimizer. DB2 Objects and Data Types - DB2 Objects Hierarchy, Storage groups, Database, Table space, Table, Index, Clustered index, Synonyms and aliases, Views, Data Types. DB2 SQL programming – Types of SQL statements, DCL, DDL, DML, SPUFI utility. Embedded SQL programming – Host variable, DECLGEN utility, SQLCA, single/multiple row manipulation, cursors, and scrollablecursors.

# **TEXT BOOKS**

- 1. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley,1992.
- 2. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech,2002.
- 3. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

# **REFERENCES**

- 1. MVS JCL, Doug Lowe, Mike Murach and Associates.
- 2. AS/400 Architecture and Application The Database Machine by Jill T. Lawrence (SPDPublications)
- 3. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech,
- 2002. 4.z/OS V1R4.0 MVS JCL Reference found onlineat

http://www-.ibm.com/support/docview.wss?uid=pub1sa22759706

- 5.z/OS V1R1.0 MVS JCL Reference found online
- 6.http://publibz.boulder.ibm.com/cgibin/bookmgr\_OS390/BOOKS/iea2b600/CCONTENTS
- 7. COBOL Language Reference, Ver 3, Release 2, IBMRedbook.
- 8. COBOL Programming Guide, Ver 3, Release 2, IBMRedbook.
- 9. Complete CL The Definitive Control Language Programming Guide by Ted Holt and Ernie Malaga (SPD Publication).
- 10. Nancy Stern & Robert A Stern, "Structured Cobol Programming", John Wiley & Sons, New York, 1973.
- 11. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.
- 12. Newcomer and Lawrence, Programming with Structured COBOL, McGraw Hill Books, New York, 1973.
- 13. Craig S Mullins, DB2 Developer's Guide, Sams Publishing, 1992.
- 14. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.
- 15. C J Date & Colin J White, A Guide to DB2, AddisonWesley.

| S.No. | Name of the Faculty | Designation                | Department   | Mail ID                 |
|-------|---------------------|----------------------------|--------------|-------------------------|
| 1.    | Dr. K. Sasikala     | Associate Professor        | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.    | Mr. S. Muthuselvan  | Assistant Professor (G-II) | CSE / AVIT   | muthuselvan@avit.ac.in  |

|        |          |           |          |          |          |          |          |          |          |                  | ~ .       |      |        |         |           |        |
|--------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|------------------|-----------|------|--------|---------|-----------|--------|
| 17CS   | SPI09    |           | MOE      | ILE A    | PPLIC    | CATIO    | N DEV    | ELOP     | MENT     | 7                | Categ     | _    | L      | T       |           | Credit |
|        |          |           |          |          |          |          |          |          |          |                  | PI        |      | 3      | 0       | 0         | 3      |
|        | MBLE     |           |          | ,        |          |          |          |          |          |                  |           |      |        | . •     | •         | ••••   |
|        |          |           |          | -        |          |          |          |          |          | andheld          |           |      |        | _       |           | -      |
|        |          |           |          |          |          | _        |          | -        |          | and em           |           |      |        |         |           | _      |
|        |          |           |          |          |          |          |          |          |          | atform a         |           |      |        |         |           |        |
| Windo  |          | iii give  | adequa   | ue kno   | wieuge   | III deve | enoping  | a moor   | не аррі  | ications         | ioi uiiic | erem | Sucii  | as Aliu | ioiu, ios | ο,     |
|        | REQUI    | SITE -    | - NIL    |          |          |          |          |          |          |                  |           |      |        |         |           |        |
|        | RSE OB   |           |          |          |          |          |          |          |          |                  |           |      |        |         |           |        |
| 1.     | Under    | stand s   | system   | require  | ments f  | or mob   | ile app  | lication | ıs       |                  |           |      |        |         |           |        |
| 2.     | Gener    | ate sui   | table de | esign us | sing spe | ecific m | nobile d | evelop   | ment fr  | ameworl          | ks        |      |        |         |           |        |
| 3.     | Gener    | ate mo    | bile ap  | plicatio | n desig  | n        |          |          |          |                  |           |      |        |         |           |        |
| 4.     | Imple    | ment th   | ne desig | gn using | g specif | ic mob   | ile deve | elopme   | nt fram  | eworks           |           |      |        |         |           |        |
| 5.     | Deplo    | y the n   | nobile a | applicat | ions in  | market   | place f  | or distr | ibution  |                  |           |      |        |         |           |        |
| COUF   | RSE OU   | TCON      | MES      |          |          |          |          |          |          |                  |           |      |        |         |           |        |
| On the | succes   | sful co   | mpletio  | n of the | course   | e, stude | nts will | be abl   | e to     |                  |           |      |        |         |           |        |
| CO1.   | Expose   | to tech   | nology   | and bu   | siness t | rends i  | mpactii  | ng mob   | ile appl | lications        |           | Und  | erstar | nd      |           |        |
| CO2.U  | Jndersta | and ente  | erprise  | scale re | equirem  | ents of  | mobile   | e applic | ations   |                  |           | Und  | erstar | nd      |           |        |
| CO3.   | Familia  | rize in 1 | the Gra  | phics u  | sed for  | Andro    | id appli | cation   | develoj  | oment            |           | App  | ly     |         |           |        |
| CO4.   | Compet   | ent wit   | h the cl | naracte  | rization | and ar   | chitectu | are of n | nobile a | application      | ons       | App  | ly     |         |           |        |
|        | _        |           | _        | _        |          | loping   | mobile   | applica  | itions u | sing one         |           | Anal | lvze   |         |           |        |
|        | ation de |           |          |          |          | EGON     | TC AN    | D DD     | ) CD A   | <b>43.43</b> . G | DECLE     |      |        |         |           |        |
|        |          | l         | l        | ı        | ı        |          | 1        | l        | l        | MME SI           | 1         |      |        | l       |           |        |
| COS    | PO1      | PO2       | PO3      | PO4      | PO5      | PO6      | PO7      | PO8      | PO9      | PO10             | PO11      |      | 012    | PSO1    | PSO2      |        |
| CO1    | S        | M         | M        | M        | M        | -        | -        | M        | -        | -                | -         |      | M      | S       | M         | M      |
| CO2    | S        | M         | M        | M        | M        | -        | -        | M        | -        | -                | -         | ]    | M      | S       | M         | M      |
| CO3    | S        | M         | L        | M        | L        | -        | -        | M        | -        | -                | -         |      | L      | S       | M         | M      |
| CO4    | S        | M         | M        | M        | M        | -        | -        | M        | -        | -                | -         | ]    | M      | S       | M         | M      |

M

M

CO5

S- Strong; M-Medium; L-Low

L

L

S

M

M

# **UNIT I INTRODUCTION**

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications –Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

# UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

# UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

#### UNIT IV TECHNOLOGY I - ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social mediaapplications.

#### UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

# **TEXT BOOKS**

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

#### REFERENCES

- 1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.
- 2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.
- **3.** David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

| S.No. | Name of the Faculty | Designation                    | Department   | Mail ID                 |
|-------|---------------------|--------------------------------|--------------|-------------------------|
| 1.    | Dr. K. Sasikala     | Associate Professor            | CSE / VMKVEC | sasikalak@vmkvec.edu.in |
| 2.    | Mrs. S. Leelavathy  | Assistant Professor (G-<br>II) | CSE / AVIT   | leelavathy@avit.edu.in  |

|                     |          |          |         | IN        | TERN      | ET O     | F THI    | NGS      |          | C         | ategory  | L         | T     | P C  | redit |
|---------------------|----------|----------|---------|-----------|-----------|----------|----------|----------|----------|-----------|----------|-----------|-------|------|-------|
| 17CS                | SPI10    |          |         |           |           |          |          |          |          | P         | PI       | 3         | 0     | 0    | 3     |
| PREA                |          |          |         |           |           |          |          |          |          |           |          |           |       |      |       |
|                     |          |          |         | chnolog   | gies inv  | olved in | n Intern | et of Tl | nings (I | oT) and a | pply the | m practic | ally. |      |       |
| PRERI               | EQUIS    | ITE :N   | IL      |           |           |          |          |          |          |           |          |           |       |      |       |
| COUR                | SE OB    | JECTI    | VES     |           |           |          |          |          |          |           |          |           |       |      |       |
| 1.                  | To und   | erstand  | the bas | ic conce  | epts of l | TOI      |          |          |          |           |          |           |       |      |       |
| 2.                  | To stud  | y the m  | ethodo  | logy of   | IOT       |          |          |          |          |           |          |           |       |      |       |
| 3.                  | To Dev   | elop IO  | T appli | cations   | using F   | Raspber  | ry PI    |          |          |           |          |           |       |      |       |
| 4.                  | To Dev   | elop IO  | T appli | cations   | using A   | Arduino  | and In   | tel Edis | on       |           |          |           |       |      |       |
| 5.                  | To appl  | y cloud  | conce   | ots in IC | PΤ        |          |          |          |          |           |          |           |       |      |       |
| COUR                | SE OU    | TCOM     | IES     |           |           |          |          |          |          |           |          |           |       |      |       |
| On the              | success  | ful com  | pletion | of the o  | course,   | student  | s will b | e able t | 0        |           |          |           |       |      |       |
| C <b>O1:</b> Uı     | nderstai | nd basid | s in IO | Т         |           |          |          |          |          |           |          | Understa  | nd    |      |       |
|                     |          |          |         |           | т         |          |          |          |          |           |          |           |       |      |       |
| CO2: U1             |          |          |         | •         |           |          |          |          |          |           |          | Apply     |       |      |       |
| CO4: De             |          |          |         |           |           |          | tal Edic | 200      |          |           |          | Analyze   |       |      |       |
| CO4: De             |          | • • •    |         |           |           | and in   | nei Eais | son      |          |           |          | Analyze   |       |      |       |
| CO5: A <sub>1</sub> |          |          |         |           |           |          |          |          |          |           |          | Apply     |       |      |       |
| MAPP                | ING W    | TTH P    | ROGR    | AMME      | COUT      | COME     | S AND    | PROG     | RAMI     | ME SPEC   | CIFIC C  | OUTCOM    | IES   | T    |       |
| COs                 | PO1      | PO2      | PO3     | PO4       | PO5       | PO6      | PO7      | PO8      | PO9      | PO10      | PO11     | PO12      | PSO1  | PSO2 | PSO   |
| CO1                 | M        | M        | M       | M         | -         | -        | -        | -        | -        | -         | -        | -         | M     | M    | M     |
| CO2                 | M        | M        | M       | M         | -         | -        | -        | -        | -        | -         | -        | -         | M     | M    | M     |
| CO3                 | M        | M        | S       | M         | -         | -        | -        | -        | -        | -         | -        | -         | M     | M    | M     |
| 004                 | S        | M        | M       | M         | -         | -        | -        | -        | -        | -         | -        | -         | M     | M    | S     |
| CO4                 |          |          |         |           |           |          |          |          |          |           |          |           |       |      |       |

#### INTRODUCTION

Introduction-Characteristics-Physical design - Protocols - Logical design - Enabling technologies - IoT Levels - Domain Specific IoTs - IoT vs M2M.

# IOT METHODOLOGY

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development.

#### IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device - Raspberry Pi Interfaces - Programming - APIs / Packages - Web services

# IOT WITH ARDUINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino-Interfaces - Arduino IDE - Programming - APIs and Hacks

# **APPLICATIONS**

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT–Software & Management Tools for IoT.

# **TEXT BOOKS**

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.
- **2.** Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

#### **REFERENCES**

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

| S.No. | Name of the Faculty | Designation              | Department   | Mail ID                 |
|-------|---------------------|--------------------------|--------------|-------------------------|
| 1.    | Dr.R.Jaichandran    | Assistant professor G-II | CSE / AVIT   | rjaichandran@avit.ac.in |
| 2.    | Dr.M. Nithya        | Professor                | CSE / VMKVEC | nithya@vmkv@edu.in      |

| To provide comprehensive insight in natural resources and protect natural resources  To create awareness on the various pollutions and their impact.  To educate the ways and means to manage natural calamities  To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M O - S M - M  CO2 S S S S S S S - M M O - S M - M  CO3 S M S M S M L - S S M - M  CO4 S M S M S M M - S M M - M  CO5 S M S M S M M - S M M - M  CO6 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S M M - M  CO7 S S M S S M M M - S S M - M  CO7 S S M S S M M M - S S M - M  CO7 S S M S S M M M - S S M - M  CO7 S S M S                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 | mental                          |                              |                             |                        | Catego                             | ry   I                         | L                          | T                                     | P                                            | Cr                          | edit              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|---------------------------------|---------------------------------|------------------------------|-----------------------------|------------------------|------------------------------------|--------------------------------|----------------------------|---------------------------------------|----------------------------------------------|-----------------------------|-------------------|
| Environmental science and Engineering is an interdisciplinary field that integrates physical, chemical, biological, information sciences and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protectit. Furthermore, it deals the social issues and ethics to develop quality engineer in our country.  PREREQUISITE: NIL  COURSE OBJECTIVES  1. Applying Science and Engineering knowledge to protect environment  2. To provide comprehensive insight in natural resources and protect natural resources 3. To create awareness on the various pollutions and their impact.  4. To educate the ways and means to manage natural calamities  5. To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6. Estimate the importance of conservation of resources.  CO6. Formate the importance of conservation of resources.  CO7. Conclude the importance of conservation of resources.  CO8 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO11 S M M S S M M M S M - M M M M                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17CHB                                     | SS01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | ()                | Comm                            | on to A                         | II Bran                      | iches)                      |                        | MC                                 |                                | -                          | -                                     | -                                            |                             | 0                 |
| COURSE OBJECTIVES  1. Applying Science and Engineering knowledge to protect environment 2. To provide comprehensive insight in natural resources and protect natural resources 3. To create awareness on the various pollutions and their impact. 4. To educate the ways and means to manage natural calamities 5. To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 S M - S S S S - S - S S S - S - S S S - S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Environment information under concerning to the | onment<br>nation<br>standin<br>orn for co | cal science science ag of report of the contract of the contra | ces and atural vironm | resou<br>ent that | vides t<br>rces, b<br>it will g | he basi<br>iodivers<br>generate | c know<br>sity and<br>pro-en | wledge<br>d their<br>wironm | of struconservental ac | ucture a<br>vation p<br>ction, ind | nd fun-<br>ractices<br>cluding | ction of<br>The cactivitie | ecos<br>course<br>es we c             | ysten<br>help<br>an d                        | n and<br>s to cr<br>o in ou | better<br>reate a |
| Applying Science and Engineering knowledge to protect environment  To provide comprehensive insight in natural resources and protect natural resources  To provide comprehensive insight in natural resources and protect natural resources  To create awareness on the various pollutions and their impact.  To educate the ways and means to manage natural calamities  To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  Apply  CO4. Practice to improve the environment and sustainability  Apply  CO5. Conclude the importance of conservation of resources.  Analyze  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03  CO1 S M M S S M M - S M - M  CO2 S S S S S S S S - M M  CO3 S S S S S S S S - M M  CO3 S M S S S M M - S S M - M  CO4 S M S S S M M - S S M - M  CO5 S M S S S M M - S S M - M  CO5 S M S S S M M - S S M - M  CO6 S M S S S M M - S S M - M  CO6 S M S S S M M - S S M - M  CO7 S S M S S S M M - S S M - M  CO7 S S M S S S M M - S S M - M  CO7 S S M S S S M M M - S S M - M  CO7 S S M S S S M M - S S M - M  CO7 S S M S S S M M - S S M - M  CO7 S S M S S S M M - S S M - M  CO7 S S M S S S M M - S S M - M  CO7 S S M S S S M M M - S S M - M  CO7 S S M S S S M M M - S S M - M  CO7 S S M S S S M M M - S S M - M  CO7 S S M S S S M M M - S S M - M  CO7 S S M S S S M M M |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        |                                    |                                |                            |                                       |                                              |                             |                   |
| To provide comprehensive insight in natural resources and protect natural resources  To create awareness on the various pollutions and their impact.  To educate the ways and means to manage natural calamities  To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  Apply  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  Analyze  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M - S M - M  CO2 S S S S S S S S - M M  CO3 S M S S S M M - S M - M  CO3 S M S S S M M - S M - M  CO4 S M S S M M M - S M M - M  CO5 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO7 S S M M M - S M M M M M  CO7 S M M M M M M  CO8 S M S S M M M - S M M M M  CO8 S M S S M M M - S M M M  CO9 S M S S M M M - S M M M  CO9 S M S S M M M - S M M M  CO9 S M S S M M M - S M M M                    | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   | ngineer                         | ing kno                         | wledge                       | to pro                      | tect env               | ironmen                            | t                              |                            |                                       |                                              |                             |                   |
| 3. To create awareness on the various pollutions and their impact.  4. To educate the ways and means to manage natural calamities  5. To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M M - S M CO2 S S - M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        |                                    |                                | 00114000                   |                                       |                                              |                             |                   |
| 4. To educate the ways and means to manage natural calamities  5. To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M - S M - M  CO2 S S S S S S M M M  CO3 S M S S M M M - S M M  CO3 S M S M S M L S M M M  CO3 S M S M S M M M - S M M M  CO4 S M S M S M M M - S M M M M  CO5 S M S S M M M - S M M M M  CO5 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO7 S S M S S M M M - S M M M M  CO7 S S M S S M M M - S M M M M  CO8 S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M  CO9 S S M S S M M M - S M M M M                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        |                                    | turai res                      | sources                    |                                       |                                              |                             |                   |
| To impart fundamental knowledge on human welfare measures  COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6. Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M S M - M  CO2 S S S S S S - M M  CO3 S M S M L S - M M  CO3 S M S M L S - M M  CO3 S M S M L S - M M  CO4 S M S M M - S M M - M  CO5 S M S M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M M - S M M M  CO6 S M S S M M M - S M M M - S M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO7 S S M M M - S M M M M M  CO7 S S M M M M M M  CO8 S M M M M M M  CO8 S M M M M M M  CO9 S M M M M M M  CO9 S M M M M M                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        |                                    |                                |                            |                                       |                                              |                             |                   |
| COURSE OUTCOMES  On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M - S M - M  CO2 S S S S S S S - M M  CO3 S M S M L - S M - M  CO3 S M S M L - S M - M  CO4 S M S S M M - S M - M  CO5 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M M - S M - M  CO6 S M S S M M M - S M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        |                                    |                                |                            |                                       |                                              |                             |                   |
| On the successful completion of the course, students will be able to  CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M - S M - M  CO2 S S S S S S M - M  CO3 S M S M L S M - M  CO3 S M S M L - S M - M  CO4 S M S S M M - S M L - S M - M  CO5 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO5 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M - M  CO6 S M S S M M - S M M - S M M - S  CO6 S M S S M M - S M M - S M M - M  CO6 S M S S M M M - S M M - S M M - M  CO6 S M S S M M M - S M M - S M M - M  CO6 S M S S M M M - S M M - S M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | entai k           | nowiec                          | ige on n                        | uman v                       | werrare                     | measur                 | es                                 |                                |                            |                                       |                                              |                             |                   |
| CO1. Comprehend the impact of engineering solutions in a global and societal context  CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems  CO3. Illustrate the importance of ecosystem and biodiversity  CO4. Practice to improve the environment and sustainability  CO5. Conclude the importance of conservation of resources.  CO6.Estimate the important role of IT in healthy environment for future generations  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES  COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3  CO1 S M M S S M M - S M - M  CO2 S S S S S S - M M  CO3 S M S M L S - M M  CO3 S M S M M - S M M - S M M M  CO4 S M S M M M - S M M M  CO5 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M - M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO6 S M S S M M M - S M M M M  CO7 S S M S S M M M - S M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ation o           | f tha aa                        | umaa atu                        | .donta v                     | will be a                   | hla ta                 |                                    |                                |                            |                                       |                                              |                             |                   |
| CO2. Illustrate the contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems         Understand           CO3. Illustrate the importance of ecosystem and biodiversity         Apply           CO4. Practice to improve the environment and sustainability         Apply           CO5. Conclude the importance of conservation of resources.         Analyze           CO6.Estimate the important role of IT in healthy environment for future generations         Analyze           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           CO5         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         -         -         -         M         M         -         S         M         -         M         M         -         S         M         -         M         M         -         -         M         M         -         S         -         -         M         M         -         S         -         -         -         M         M         -         S         -         -         -         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        | nd                                 |                                |                            | Under                                 | stanc                                        | <u>1</u>                    |                   |
| CO3. Illustrate the importance of ecosystem and biodiversity         Apply           CO4. Practice to improve the environment and sustainability         Apply           CO5. Conclude the importance of conservation of resources.         Analyze           CO6.Estimate the important role of IT in healthy environment for future generations         Analyze           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         -         -         M         S         S         M         M         -         S         M         -         M         M         PS02         PS03           CO3         S         -         -         -         S         S         M         M         -         M         M           CO3         S         -         -         -         M         S         S         M         M         -         M         M           CO3         S         -         -         -         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Illustra                                  | ate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                   |                                 |                                 |                              |                             |                        | l degrad                           | ation ar                       | nd                         | Under                                 | stanc                                        | i                           |                   |
| CO5. Conclude the importance of conservation of resources.         Analyze           CO6. Estimate the important role of IT in healthy environment for future generations         Analyze           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         -         -         M         S         S         M         M         -         S         M         -         M         M         -         M         M         -         S         M         -         M         M         -         S         M         M         -         S         M         M         -         M         M         -         S         -         -         M         M         M         -         S         -         -         M         M         M         -         S         -         -         -         M         M         -         S         -         -         -         M         M         - <td< td=""><td>CO3.</td><td>Illustra</td><td>te the i</td><td>mport</td><td>ance o</td><td>f ecosy</td><td>stem an</td><td>d biodi</td><td>versity</td><td></td><td></td><td></td><td></td><td>Apply</td><td>,</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Illustra                                  | te the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mport                 | ance o            | f ecosy                         | stem an                         | d biodi                      | versity                     |                        |                                    |                                |                            | Apply                                 | ,                                            |                             |                   |
| CO6.Estimate the important role of IT in healthy environment for future generations         Analyze           MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         -         -         -         M         S         S         M         M         -         S         M         -         M         -         M         M         -         S         M         -         M         M         -         S         M         -         S         M         M         -         S         M         -         M         M         M         -         S         M         M         -         S         -         -         M         M         M         -         S         M         M         -         M         M         -         S         M         -         M         M         -         S         M         -         -         M         M         -         -         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>CO4.</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Practic                                   | e to im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prove                 | the en            | vironm                          | ent and                         | sustain                      | ability                     |                        |                                    |                                |                            | Apply                                 | ,                                            |                             |                   |
| MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES           COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         -         -         -         M         S         S         M         -         S         M         -         M         -         M         M         -         S         M         -         M         M         -         M         M         -         M         M         -         M         M         -         M         M         -         M         M         -         M         M         -         -         M         M         -         -         -         M         M         -         -         -         M         M         -         -         -         M         M         -         -         -         M         M         -         -         -         M         M         -         -         -         -         -         M         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             | . C C                  | ,                                  |                                |                            |                                       |                                              |                             |                   |
| COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03           CO1         S         M         -         -         S         M         M         -         S         M         -         M         -         M         M         -         S         M         -         M         M         -         S         M         M         -         S         M         M         -         S         M         M         -         S         M         M         -         S         -         -         M         M         -         -         S         -         -         M         M         -         -         S         -         -         M         M         -         -         -         M         M         -         -         -         M         -         M         -         -         -         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 | -                            |                             |                        |                                    |                                |                            |                                       |                                              |                             |                   |
| CO1         S         M         -         -         M         S         S         M         M         -         S         M         -         M           CO2         S         -         -         -         -         -         S         -         M         M           CO3         S         -         -         -         -         M         M         L         -         -         S         -         -         M           CO4         S         -         -         -         -         M         S         S         M         M         -         S         M         -         M           CO5         S         -         -         -         -         M         S         S         M         M         -         S         M         M         M           CO6         S         -         -         -         -         M         S         S         M         M         M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WIAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IIIG                                      | **1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IKO                   | JKANI             | WIE O                           | OTCON                           | ILS AF                       | ID I K                      | JGKAN                  | INIE SI                            | ECIFIC                         |                            |                                       | <u>.                                    </u> |                             |                   |
| CO2         S         -         -         -         -         -         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         -         -         -         M         M         -         -         -         M         M         -         -         M         -         M         -         M         -         -         M         -         M         -         -         M         -         M         -         M         -         -         M         M         -         -         M         M         -         -         M         M         -         -         M         M         M         -         -         M         M         M         -         -         -         M         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO1                                       | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO3                   | PO4               | PO5                             | PO6                             | PO7                          | PO8                         | PO9                    | PO10                               | PO11                           | PO12                       | PSO                                   | )1                                           | PSO2                        | PSO3              |
| CO3       S       -       -       -       M       S       M       L       -       -       S       -       -       M         CO4       S       -       -       -       -       M       S       S       M       M       -       S       M       -       M         CO5       S       -       -       -       -       M       S       S       M       M       -       S       M       -       M         CO6       S       -       -       -       -       M       S       S       M       M       -       S       M       M       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                     | -                 | -                               |                                 |                              |                             | M                      | M                                  | -                              |                            | M                                     | I                                            |                             |                   |
| CO4         S         -         -         -         M         S         S         M         M         -         S         M         -         M           CO5         S         -         -         -         -         M         S         S         M         M         -         S         M         -         M           CO6         S         -         -         -         -         M         S         S         M         M         -         S         M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | -                 | -                               |                                 |                              |                             | -                      | -                                  | -                              |                            | -                                     |                                              | M                           |                   |
| CO5         S         -         -         -         M         S         S         M         M         -         S         M         -         M           CO6         S         -         -         -         -         M         M         M         -         S         M         M         M         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        | -<br>М                             |                                |                            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                              | -                           |                   |
| CO6 S M S S M M - S M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                   |                                 |                                 |                              |                             |                        |                                    |                                |                            |                                       |                                              | -                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                     | -                 | -                               |                                 |                              |                             |                        |                                    |                                |                            |                                       |                                              |                             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                   |                                 |                                 |                              |                             |                        |                                    |                                |                            |                                       |                                              |                             |                   |

#### ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

# **ECOSYSTEMS AND BIO - DIVERSITY**

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

#### **ENVIRONMENTAL POLLUTION**

Pollution-Definition,man made impacts and control measures of air, water and land pollution Water quality standards &characterization- Importance of sanitation - Nuclear hazards— Hazardous waste management: Solid waste, waste water and biomedical waste- Prevention of pollution and role of individual—Disastersmanagement: Floods, earthquake, cycloneand.

land slides - Clean technology options.

#### SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation - Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

#### HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights — Value education - Women and child welfare, Role of information technology in environment and human health.

#### **TEXT BOOKS:**

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

#### **REFERENCES:**

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- **3.** TrivediR.K."HandbookofEnvironmentalLaws",Rules,Guidelines,Compliancesand tandards Vol I &II, Environmedia.
- **4.** Dr.J.Meenambal, Environmental Science and Engineering, MJP Publication, Chennai Gilbert M. Masters.
- **5.** Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0,2004.

| S.No | Name of the                 | Designation         | Department         | Email ID                         |
|------|-----------------------------|---------------------|--------------------|----------------------------------|
|      | Faculty                     |                     |                    |                                  |
| 1.   | Dr. V. Anbazhagan           | Professor           | Chemistry / VMKVEC | anbu80@gmail.com                 |
| 2.   | Mr. A. Gilbert<br>Sunderraj | Assistant Professor | Chemistry / VMKVEC | asmgill80@gmail.com              |
| 3.   | Dr. R.<br>Nagalakshmi       | Professor           | Chemistry / AVIT   | nagalakshmi.chemistry@avit.ac.in |
| 4.   | Dr.K.Sanghamitra            | Associate Professor | Chemistry / AVIT   | sanghamitra.chemistry@avit.ac.in |

| . –          |          |                                         | ES      | SENC     | E OF     | INDIA     | N KNC     | WLE       | DGE      | Catego     | ry l      | L         | P          | Cr          | edit    |
|--------------|----------|-----------------------------------------|---------|----------|----------|-----------|-----------|-----------|----------|------------|-----------|-----------|------------|-------------|---------|
| 17           | MBHS1    | 1                                       |         |          |          | TRAD      | ITION     | N         |          | MC         |           |           | -          |             | 0       |
| PRE          | AMBLI    | $\Xi$                                   |         |          |          |           |           |           | l        | <u> </u>   |           |           |            |             |         |
|              |          |                                         | •       | •        | •        | •         | •         | •         |          | •          | d inferei | ncing. Su | ıstainabil | ity is at t | he core |
| of Ind       | lian Tra | ditiona                                 | l know  | vledge S | Systems  | s connec  | ting so   | ciety an  | d nature | е.         |           |           |            |             |         |
| PREF         | REQUI    | SITE:                                   | NIL     |          |          |           |           |           |          |            |           |           |            |             |         |
| COU          | RSE O    | BJEC                                    | rives   | 5        |          |           |           |           |          |            |           |           |            |             |         |
| 1.           | To fac   | cilitate                                | the stu | idents v | vith the | concept   | ts of Inc | dian tra  | ditional | knowled    | ge.       |           |            |             |         |
| 2.           | To un    | derstar                                 | nd the  | Importa  | ince of  | roots of  | knowle    | edge sys  | stem     |            |           |           |            |             |         |
| COU          | RSE O    | UTCO                                    | MES     |          |          |           |           |           |          |            |           |           |            |             |         |
| On           | the succ | cessful                                 | compl   | etion o  | f the co | urse, stu | idents v  | vill be a | ble to   |            |           |           |            |             |         |
| CO1.         | Unders   | tand th                                 | e conc  | cept of  | Fraditio | nal kno   | wledge    | and its   | importa  | ince       |           |           | Understa   | and         |         |
| CO2.         | Know     | the nee                                 | d and   | importa  | ince of  | protecti  | ng tradi  | tional k  | nowled   | ge.        |           |           | Understa   | and         |         |
|              |          |                                         |         |          |          |           |           |           |          | nal know   | ledge.    |           | Understa   | and         |         |
|              |          |                                         |         |          |          |           | •         |           |          | ditional l |           |           | Understa   |             |         |
|              |          |                                         |         |          |          |           |           |           |          |            |           | COUTO     | OMES       |             |         |
| WIAI .       | 11110    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | INO     | JIVAIVI  | WIL O    |           | ILS AI    | DIK       | JUKAN    |            | LCIFIC    | 0010      | ONIES      | 1           | i       |
| COS          | PO1      | PO2                                     | PO3     | PO4      | PO5      | PO6       | PO7       | PO8       | PO9      | PO10       | PO11      | PO12      | PSO1       | PSO2        | PSO3    |
| C <b>O</b> 1 | -        | -                                       | -       | -        | -        | S         | M         | M         | -        | -          | -         | -         | -          | -           | M       |
| C <b>O2</b>  | 1        | -                                       | -       | -        | -        | S         | M         | M         | _        | -          | -         | 1         | -          | _           | M       |
| CO3          | -        | -                                       | -       | -        | -        | S         | M         | M         | -        | -          | -         | -         | -          | -           | M       |
| C <b>O</b> 4 | -        | _                                       | -       | -        | _        | S         | M         | M         | _        | -          | -         | -         | -          | _           | M       |

S- Strong; M-Medium; L-Low

**INTRODUCTION TO TRADITIONAL KNOWLEDGE:** Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge

**PROTECTION OF TRADITIONAL KNOWLEDGE:** The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

**LEGAL FRAME WORK AND TK:** A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001. (PPVFR Act); B: The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indicators act 2003.

**TRADITIONAL KNOWLEDGE AND INTELLECTUAL PROPERTY:** Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

**TRADITIONAL KNOWLEDGE IN DIFFERENT SECTORS:** Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK. 139.

# **TEXT BOOKS:**

- 1. Traditional Knowledge System in India, by Amit Jha, 2009.
- 2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan, 2012.

# **REFERENCES:**

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor, Michel Danino.
- **3.** https://www.youtube.com/watch?v=LZP1StpYEPM
- 4. http://nptel.ac.in/courses/121106003

| S.No | Name of the Faculty | Designation            | Department   | Email ID                    |
|------|---------------------|------------------------|--------------|-----------------------------|
| 1.   | M. Manickam         | Associate<br>Professor | MBA / VMKVEC | manickam@vmkvec.edu.in      |
| 2.   | C. M. Muthukrishna  | Assistant<br>Professor | MBA / AVIT   | muthukrishna.mba@avit.ac.in |

|                |                               |                    |          |           | ***      |            |             |           |           | Catego     | ry l     | L '     | т Р                   | Cı   | edit |
|----------------|-------------------------------|--------------------|----------|-----------|----------|------------|-------------|-----------|-----------|------------|----------|---------|-----------------------|------|------|
|                | 17MBF                         | IS11               |          |           | IND      | IAN CO     | )NSTI       | TUTIC     | )N        | MC         |          | -       |                       |      | 0    |
| India<br>conve | rsant w                       | largest<br>ith its | Consti   | itution   | and its  |            | fully wo    |           |           |            | _        |         | of young<br>tematic w |      | -    |
| PREI           | REQUI                         | SITE:              | NIL      |           |          |            |             |           |           |            |          |         |                       |      |      |
| COU            | RSE O                         | BJEC               | TIVES    | S         |          |            |             |           |           |            |          |         |                       |      |      |
| 1.             | Unde                          | rstand t           | he nee   | ed for co | onstitut | ion.       |             |           |           |            |          |         |                       |      |      |
| 2.             | Appre                         | eciate tl          | he fun   | dament    | al dutie | s and rig  | ghts of t   | he citiz  | ens of I  | ndia       |          |         |                       |      |      |
| 3.             |                               |                    |          |           |          |            |             |           |           | c society  |          |         |                       |      |      |
| 4.             | _                             |                    |          |           |          | of state 1 |             |           |           |            | -        |         |                       |      |      |
| 5.             |                               |                    |          |           |          |            |             |           |           | state gov  | ernment  |         |                       |      |      |
| COU            | RSE O                         |                    |          | 25 01 111 | Consti   | tution, u  | inon ge     | overmine. | ont and s | state gov  | Crimicin | •       |                       |      |      |
| On             | the suc                       | cessful            | compl    | etion o   | f the co | urse, stu  | ıdents v    | vill be a | ble to    |            |          |         |                       |      |      |
|                | Create tution.                | awarer             | ness ab  | out the   | constit  | utional    | values a    | nd obje   | ectives w | vritten in | the Ind  | ian     | Understa              | nd   |      |
|                |                               | ndamer             | ntal rig | thts and  | fundar   | nental d   | uties of    | Indian    | citizens  |            |          |         | Understa              | nd   |      |
|                | •                             |                    |          | of legis  | slative, | executiv   | ve and f    | inancia   | l powers  | s betwee   | n the un | ion and | Understa              | nd   |      |
| CO4.           |                               | tand th            | e work   |           | Indian o | democra    | cy ,its i   | nstitutio | ons and   | processe   | s at the |         | Understa              | nd   |      |
|                | local,st<br>Explair<br>public | the fu             | nction   | s and re  | esponsil | bilities o | of election | on com    | mission   | of india   | and uni  | on      | Understa              | nd   |      |
| MAP            |                               |                    |          |           | ME O     | UTCOM      | IES AN      | ND PRO    | OGRAN     | ME SP      | ECIFIC   | COUTO   | COMES                 |      |      |
| cos            | PO1                           | PO2                | PO3      | PO4       | PO5      | PO6        | PO7         | PO8       | PO9       | PO10       | PO11     | PO12    | PSO1                  | PSO2 | PSO3 |
| CO1            | -                             | -                  | -        | -         | -        | -          | M           | -         | M         | -          | M        | -       | -                     | -    | -    |
| CO2            | -                             | -                  | -        | -         | -        | -          | M           | -         | M         | -          | M        | -       | -                     | -    | -    |
| CO3            | -                             | -                  | -        | -         | -        | -          | M           | -         | M         | -          | M        | -       | -                     | -    | -    |
| CO4            | -                             | -                  | -        | -         | -        | -          | M           | -         | M         | -          | M        | -       | -                     | -    | -    |
| CO5            | -                             | -                  | -        | -         | -        | -          | M           | -         | M         | -          | M        | -       | -                     | -    | -    |

#### HISTORY OF MAKING OF THE INDIAN CONSTITUTION

History of Making of the Indian Constitution: Introduction to the constitution of India, the making of the constitution and salient features of the constitution.

# PHILOSOPHY OF THE INDIAN CONSTITUTION

Philosophy of the Indian Constitution: Preamble Salient Features, Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties, Amendment of the constitutional powers and procedures.

#### UNION GOVERNMENT

Union Government: Union Government, Union Legislature (Parliament), Lok Sabha and Rajya Sabha (with powers and functions), president of India (with powers and functions), Prime minister of India (With powers and functions), Union judiciary (Supreme court), Jurisdiction of the supreme court.

# STATE GOVERNMENT

State Government: State Government, State legislature (Legislative Assembly/ Vidhan Sabha, Legislative council/ Vidhan parishad), powers and functions of the state legislature, State executive, Governor of the state (with powers and functions), The chief Minister of the state (with powers and functions), State Judiciary (High courts)

#### **ELECTION COMMISSION**

Election Commission: Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

#### **TEXT BOOKS:**

- 1. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd. New Delhi.
- 2. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012
- 3. The constitution of India, P.M.Bakshi, Universal Law Publishing Co.,
- 4. The Constitution of India, 1950 (Bare Act), Government Publication.
- 5. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

#### REFERENCES:

- 1. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 2. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.
- 3. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- **4.** nptel.ac.in/courses/109104074/8
- **5.** nptel.ac.in/courses/109104045/
- **6.** nptel.ac.in/courses/101104065/4.
- 7. www.hss.iitb.ac.in/en/lecture-details
- **8.** www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

| S.No | Name of the Faculty | Designation            | Department   | Email ID                    |
|------|---------------------|------------------------|--------------|-----------------------------|
| 1.   | M. Manickam         | Associate<br>Professor | MBA / VMKVEC | manickam@vmkvec.edu.in      |
| 2.   | C. M. Muthukrishna  | Assistant<br>Professor | MBA / AVIT   | muthukrishna.mba@avit.ac.in |