AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

NAAC Accredited

Faculty of Engineering and Technology

Department of Computer Science and Engineering

Programme: B.E/ B.Tech – Computer Science and

Engineering

Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS)

Curriculum & Syllabus

(Semester I to VIII)

Regulations 2017

VMKV ENGINEERING COLLEGE, SALEM 636 308

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

"To establish a centre of excellence in computer education and research and to create a platform for professionals thereby reaching a pinnacle of glory"

MISSION

Computer Science and Engineering is committed

- To develop innovative, competent and quality computer engineers by imparting the state-of the –art technology
- To enrich the knowledge of students through value based education
- To develop consultancy activities for industrial sectors
- To endeavour for constant up gradation of technical expertise of students to cater to the needs of the society

PROGRAMME OUTCOMES: (POS)

- **PO1. Engineering Knowledge:** Ability to apply the knowledge of Mathematics, Science and Computer Science and Engineering to solve complex engineering problems related to the design, development, testing and maintenance of computing systems.
- **PO2. Problem Analysis:** Ability to identify, formulate and analyze complex Computer Science and Engineering problems in the areas of hardware, software, theoretical Computer Science and applications to reach significant conclusions by applying Mathematics, Natural sciences, Computer Science and Engineering principles.
- **PO3. Design & Development of Solutions:** Ability to design and build a system, component, process or a program for complex engineering problems by factoring in all the requirements and various design tradeoffs, with appropriate consideration for the public health and safety, cultural, societal and environmental factors.

- **PO4. Investigation of Complex Problem:** Ability to use research based knowledge and research methods to perform literature survey, design experiments for complex problems in designing, developing and maintaining a computing system, collect data from the experimental outcome, analyze and interpret valid/interesting patterns and conclusions from the data points.
- **PO5. Modern Tool Usage:** Ability to create, select and apply state of the art tools and techniques in designing, developing and testing a computing system or its component.
- **PO6. Engineer and Society**: Ability to assess the societal, health, cultural, safety and legal issues that might arise in the context of the professional practice in Computer Science and Engineering, by applying the reasoning obtained based on the operational domain.
- **PO7. Environment and Sustainability:** Ability to demonstrate the knowledge of sustainable development of computing systems/products/solutions with an understanding of the impact of these solutions on the Society and Environment.
- **PO8. Ethics:** Ability to apply professional ethics and pledge to the norms/responsibilities in the engineering practice of Computer Science.
- **PO9. Individual and Team work:** Ability to function as an individual and as a team player or leader in multidisciplinary teams and strive towards achieving a common goal.
- **PO10. Communication:** Ability to communicate effectively on complex software/system engineering activities with the peer community and society through unambiguous spoken language, written reports, presentations and an ability to give and receive clear instructions.
- **PO11. Project Management and Finance:** Ability to apply the knowledge of Engineering and Management principles to manage projects as a team member or leader in multidisciplinary teams.
- **PO12. Life-long Learning:** Ability to spot the need for and engage in lifelong learning to cope up with the rapidly evolving disciplines of Computer Science and its allied engineering application domains.

PROGRAM SPECIFIC OUTCOMES (PSO)

The student will be able to:-

1. Demonstrate understanding of the principles and working of the hardware and software aspects of computer systems.

2. Understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics and networking for efficient design of computer-based systems of varying complexity.

3. Apply standard Software Engineering practices and strategies in software project development using open-source programming environment to deliver a quality product for business success and to be acquainted with the contemporary issues, latest trends in technological development and thereby innovate new ideas and solutions to existing problems.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- **PEO1**: Technical Expertise: Implement fundamental domain knowledge of core courses for developing effective computing solutions by incorporating creativity and logical reasoning.
- **PEO2**: Graduate will establish effective professionals by solving real world problems using investigative and analytical skills along with the knowledge acquired in the field of Computer Science and Engineering.
- **PEO3**: Graduate will prove a ability to work and communicate effectively as a team member and /or leader to complete the task with minimal resources, meeting deadlines.
- **PEO4**: Graduate will demonstrate his/her ability to adapt to rapidly changing environment in advanced areas of Computer Science and scale new height in their profession through lifelong learning.

PEO - PO Mapping

PEO/PO	1	2	3	4	5	6	7	8	9	10	11
1											
2											
3											
4											

Strong Correlation

Medium Correlation

Low Correlation

Credit Requirement for Course Categories

Sl. No.	Category of Courses	Credits
	A. Foundation Courses (FC)	54 - 63
0.1	i. Humanities and Sciences (English and Management Subjects)	12 – 21
01	ii. Basic Sciences (Maths, Physics and Chemistry Subjects)	24 - 33
	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen programme of study.	81
	C. Elective Courses (EC)	18 - 27
03	i. Programme Specific (Class Room or Online)	12 – 15
	ii. Open (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
	ii. Internship / Industry Supported Courses	9
05	E. Employability Enhancement Courses +	9 - 18
0.5	Co - Curricular Courses + Extra Curricular Courses (EEC)**	7 - 10
	Minimum Credits to be earned	180
** - Ma	undatory, Credits would be mentioned in Mark sheets but not included for C	GPA Calculations.

B.E/ B.TECH. – COMPUTERSCIENCE AND ENGINEERING- SEMESTER I TO VIII														
	CATEGORY	A – FOUNDATION COUF	RSES - HSS, BS AI	ND ES COUR	SES -	CRE	DITS (54-63)						
	(i) HUMA	NITIES AND SCIENCES (ENG	LISH AND MANAGEM	MENT SUBJECT	(S) - CF	REDITS	(12 - 21)							
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISI TE					
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL					
2.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL					
3.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HSS)	0	0	4	2	NIL					
4.	17MBHS01	ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL					
5.	17EGHS82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT	ENGLISH	FC (HSS)	0	0	2	1	NIL					
6.	17YMHS82	YOGA AND MEDITATION	PHYSICAL EDUCATION	FC (HSS)	0	0	4	2	NIL					
	(ii) BASIC SCI	ENCES (MATHS, PHY	SICS AND CHE	MISTRY SU	J BJE (CTS) -	CRE	DITS	(24 - 33)					
1.	I.ENGINEERING MATHEMATICSMATHEMATICSFC (BS)2203NIL													
2.	17MABS09	MATHEMATICS FOR COMPUTER ENGINEERS	MATHEMATICS	FC (BS)	2	2	0	3	NIL					
3.	17MABS14	NUMERICAL METHODS AND NUMBER THEORY	MATHEMATICS	FC (BS)	2	2	0	3	NIL					
4.	17MABS15	PROBABILITY AND QUEUING THEORY	MATHEMATCS	FC (BS)	2	2	0	3	NIL					
5.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL					
6.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL					
7.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL					
8.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL					
		(iii) ENGINEERING SCIENCE	CS (BASIC ENGINEER	RING COURSES) - CRE	DITS (1	8 - 27)							
1.	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL					
2.	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC(ES)	4	0	0	4	NIL					
3.	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	3	0	0	3	NIL					
4.	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL					
5.	17EEES82	ENGINEERING SKILLS PRACTICES LAB A. BASIC ELECTRICAL ENGINEERING B. BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2	NIL					

6.	17CMES81	ENGINEERING SKILLS PRACTICE LAB A.BASIC CIVIL ENGINEERING B.BASIC MECHANICAL ENGINEERING	CIVIL & MECH	FC(ES)	0	0	4	2	NIL
7.	17MEES84	ENGINEERING GRAPHICS (THEORY + PRACTICE)	MECH	FC(ES)	1	0	4	3	NIL
8.	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL

B.E/ B.TECH. – COMPUTER SCIENCE AND ENGINEERING - SEMESTER I TO VIII												
С	ATEGORY B	- CORE COURSES RI	ELEVANT TO T	THE PROGR	AMN	ЛЕ -	CRED	ITS (81)			
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISITE			
1.	17CSCC01	DATA STRUCTURES	CSE	CC	3	0	0	3	NIL			
2.	17CSCC02	OBJECT ORIENTED PROGRAMMING	CSE	CC	3	0	0	3	NIL			
3.	17CSCC03	DATABASE MANAGEMENT SYSTEM	CSE	СС	3	0	0	3	NIL			
4.	17CSCC04	COMPUTER ARCHITECTURE	CSE	CC	3	0	0	3	NIL			
5.	17CSCC05	SOFTWARE ENGINEERING	CSE	CC	3	0	0	3	NIL			
6.	17CSCC06	DESIGN AND ANALYSIS OF ALGORITHM	CSE	CC	3	0	0	3	DATA STRUCTURES			
7.	17CSCC07	OPERATING SYSTEM	CSE	CC	3	0	0	3	NIL			
8.	17CSCC08	COMPUTER NETWORKS	CSE	CC	3	0	0	3	NIL			
9.	17CSCC09	JAVA PROGRAMMING	CSE	CC	3	0	0	3	OBJECT ORIENTED PROGRAMMING			
10.	17CSCC10	OBJECT ORIENTED ANALYSIS AND DESIGN	CSE	CC	3	0	0	3	OBJECT ORIENTED PROGRAMMING			
11.	17CSCC11	COMPILER DESIGN	CSE	CC	3	0	0	3	NIL			
12.	17CSCC12	ADVANCED JAVA PROGRAMMING	CSE	CC	3	0	0	3	JAVA PROGRAMMING			
13.	17CSCC13	DATA WAREHOUSING AND DATA MINING	CSE	CC	3	0	0	3	DATABASE MANAGEMENT SYSTEM			
14.	17CSCC14	ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM	CSE	CC	3	0	0	3	DATABASE MANAGEMENT SYSTEM			
15.	17CSCC15	C# AND .NET APPLICATION DEVELOPMENT	CSE	CC	3	0	0	3	JAVA PROGRAMMING			
16.	17CSCC16	CLOUD COMPUTING	CSE	CC	3	0	0	3	NIL			
17.	17CSCC17	CYBER SECURITY	CSE	CC	3	0	0	3	ENGINEERING MATHEMATICS			
18.	17CSCC18	RICH INTERNET APPLICATION	CSE	CC	3	0	0	3	JAVA PROGRAMMING			
19.	17CSCC19	INTERNET OF THINGS	CSE	CC	3	0	0	3	NIL			
20.	17CSCC20	DATA STRUCTURES LAB	CSE	CC	0	0	4	2	NIL			
21.	17CSCC21	OBJECT ORIENTED PROGRAMMING LAB	CSE	CC	0	0	4	2	NIL			
22.	17CSCC22	DATABASE MANAGEMENT SYSTEM LAB	CSE	CC	0	0	4	2	NIL			
23.	17CSCC23	ALGORITHM LAB	CSE	CC	0	0	4	2	NIL			
24.	17CSCC24	OPERATING SYSTEM LAB	CSE	CC	0	0	4	2	NIL			
25.	17CSCC25	NETWORKING LAB	CSE	CC	0	0	4	2	NIL			
26.	17CSCC26	JAVA PROGRAMMING LAB	CSE	CC	0	0	4	2	NIL			
27.	17CSCC27	CASE TOOLS LAB	CSE	CC	0	0	4	2	NIL			
28.	17CSCC28	COMPILER DESIGN LAB	CSE	CC	0	0	4	2	NIL			

29.	17CSCC29	ADVANCED JAVA PROGRAMMING LAB	CSE	CC	0	0	4	2	NIL						
30.	17CSCC30	C# AND .NET APPLICATION DEVELOPMENT LAB	CSE	CC	0	0	4	2	NIL						
31.	17CSCC31	RICH INTERNET APPLICATION DEVELOPMENT LAB	CSE	CC	0	0	4	2	NIL						
32.	17CSCC32	DESIGN PATTERN	CSE	CC	3	0	0	3	NIL						
33.	17CSCC33	PROBLEM SOLVING USING COMPUTERS	CSE	CC	3	0	0	3	NIL						
B.E	/ B.TECH.	- COMPUTER SCII	ENCE AND	ENGINEE	RIN	G - SI	EME	STEI	R I TO VIII						
	CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)														
	(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)														
SL. NO	SL. NO CODE COURSE OFFERING DEPT. CATEGORY L T P C PREREQUISITE 1. ADHOC AND SENSOR EC(PS) COMPLITED COMPLITED														
1.	17CSEC01	ADHOC AND SENSOR NETWORKS	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS						
2.	17CSEC02	AGILE METHODOLOGIES	CSE	EC(PS)	3	0	0	3	SOFTWARE TESTING						
3.	17CSEC03	BIG DATA AND ANALYTICS	CSE	EC(PS)	3	0	0	3	DATA WAREHOUSING AND DATA MINING						
4.	17CSEC04	BIO METRICS	CSE	EC(PS)	3	0	0	3	NIL						
5.	17CSEC05	CLOUD COMPUTING SECURITY	CSE	EC(PS)	3	0	0	3	CLOUD COMPUTING						
6	17CSEC06	CRYPTOGRAPHY AND NETWORK SECURITY	CSE	EC(PS)	3	0	0	3	NIL						
7.	17CSEC07	DATA CENTRE VIRTUALIZATION	CSE	EC(PS)	3	0	0	3	DATABASE MANAGEMENT SYSTEM						
8.	17CSEC08	DISTRIBUTED COMPUTING	CSE	EC(PS)	3	0	0	3	OPERATING SYSTEM						
9.	17CSEC09	ETHICAL HACKING	CSE	EC(PS)	3	0	0	3	NIL						
10.	17CSEC10	GAME THEORY	CSE	EC(PS)	3	0	0	3	ENGINEERING MATHEMATICS						
11.	17CSEC11	GREEN COMPUTING	CSE	EC(PS)	3	0	0	3	NIL						
12.	17CSEC12	GRID COMPUTING	CSE	EC(PS)	3	0	0	3	ENGINEERING MATHEMATICS						
13.	17CSEC13	HUMAN COMPUTER INTERACTION	CSE	EC(PS)	3	0	0	3	ESSENTIALS OF COMPUTING						
14.	17CSEC14	INFORMATION RETRIEVAL TECHNIQUES	CSE	EC(PS)	3	0	0	3	DATA MINING AND DATA WAREHOUSING						
15.	17CSEC15	INTERNET SECURITY & COMPUTER FORENSICS	CSE	EC(PS)	3	0	0	3	CYBER SECURITY						
16.	17CSEC16	IT INFRASTRUCTURE MANAGEMENT	CSE	EC(PS)	3	0	0	3	ESSENTIALS OF COMPUTING						
17.	17CSEC17	KNOWLEDGE BASED DECISION SUPPORT SYSTEM	CSE	EC(PS)	3	0	0	3	SOFTWARE ENGINEERING						
18.	17CSEC18	MOBILE ADHOC NETWORK	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS						
19.	17CSEC19	MOBILE COMPUTING	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS						
20.	17CSEC20	MULTIMEDIA DATABASE MANAGEMENT SYSTEM	CSE	EC(PS)	3	0	0	3	DATABASE MANAGEMENT SYSTEM						
21.	17CSEC21	NANO TECHNOLOGY	CSE	EC(PS)	3	0	0	3	ARTIFICIAL INTELLIGENCE						
22.	17CSEC22	NETWORK DESIGN AND MANAGEMENT	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS						

r	1 1				1		1	r	T
23.	17CSEC23	NETWORK ROUTING ALGORITHMS	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS, DATA STRUCTURES
24.	17CSEC24	OPEN SOURCE SYSTEMS	CSE	EC(PS)	3	0	0	3	NIL
25.	17CSEC25	OPTIMIZATION TECHNIQUES	CSE	EC(PS)	3	0	0	3	ENGINEERING MATHEMATICS
26.	17CSEC26	SERVICE ORIENTED ARCHITECTURE	CSE	EC(PS)	3	0	0	3	COMPUTER ARCHITECTURE
27.	17CSEC27	SOFT COMPUTING	CSE	EC(PS)	3	0	0	3	ARTIFICIAL INTELLIGENCE
28.	17CSEC28	SOFTWARE QUALITY MANAGEMENT	CSE	EC(PS)	3	0	0	3	SOFTWARE ENGINEERING
29.	17CSEC29	TCP / IP TECHNOLOGY	CSE	EC(PS)	3	0	0	3	NIL
30.	17CSEC30	UNIX INTERNALS	CSE	EC(PS)	3	0	0	3	NIL
31.	17CSEC31	USER INTERFACE DESIGN	CSE	EC(PS)	3	0	0	3	OPERATING SYSTEM
32.	17CSEC32	VIRTUAL REALITY	CSE	EC(PS)	3	0	0	3	NIL
33.	17CSEC33	VIRTUALIZATION TECHNIQUES	CSE	EC(PS)	3	0	0	3	NIL
34.	17CSEC34	WEB DESIGN AND MANAGEMENT	CSE	EC(PS)	3	0	0	3	NIL
35.	17CSEC35	WIRELESS AND SENSOR NETWORK	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS
36.	17CSEC36	SOFTWARE TESTING	CSE	EC(PS)	3	0	0	3	SOFTWARE ENGINEERING
B.E /	B.TECH. –	COMPUTER SCIE	NCE AND E	NGINEER	ING	- SE	MES	TER	I TO VIII
		(ii) OP	EN ELECTIV	E CREDI	ГS -	(6 –	9)		
	1	× /		LCREDI	~~	(0	<i>_</i>)	r	
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	T	P	С	PREREQUISITE
SL. NO	CODE 17MBHS04	COURSE TOTAL QUALITY MANAGEMENT	OFFERING DEPT. MANAGEMENT	CATEGORY EC(OE)	L 3	T	P 0	C 3	PREREQUISITE NIL
SL. NO 1. 2.	CODE 17MBHS04 17MBHS03	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS	OFFERING DEPT. MANAGEMENT MANAGEMENT	CATEGORY EC(OE) EC(OE)	L 3 3	T 0 0	P 0 0	C 3 3	PREREQUISITE NIL NIL
SL. NO 1. 2. 3.	CODE 17MBHS04 17MBHS03 17MBHS05	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT	CATEGORY EC(OE) EC(OE) EC(OE)	L 3 3 3	T 0 0 0 0	P 0 0 0 0	C 3 3 3	PREREQUISITE NIL NIL NIL
SL. NO 1. 2. 3. 4.	CODE 17MBHS04 17MBHS03 17MBHS05 17CVEC07	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3	T 0 0 0 0 0	P 0 0 0 0 0 0	C 3 3 3 3	PREREQUISITE NIL NIL NIL NIL
SL. NO 1. 2. 3. 4. 5.	CODE 17MBHS04 17MBHS03 17MBHS05 17CVEC07 17ECCC14	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3	PREREQUISITE NIL NIL NIL NIL NIL
SL. NO 1. 2. 3. 4. 5. 6.	CODE 17MBHS04 17MBHS03 17MBHS05 17MBHS05 17CVEC07 17ECCC14 17ECCC05	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3	PREREQUISITE NIL NIL NIL NIL NIL NIL NIL
SL. NO 1. 2. 3. 4. 5. 6. 7.	CODE 17MBHS04 17MBHS03 17MBHS05 17MBHS05 17CVEC07 17ECCC14 17ECCC05 17EEEC21	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN NON CONVENTIONAL ENERGY SOURCES	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE ECE	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL NIL NIL NIL NIL NIL NIL NIL
SL. NO 1. 2. 3. 4. 5. 6. 7. 8.	CODE 17MBHS04 17MBHS03 17MBHS05 17MBHS05 17CVEC07 17ECCC14 17EEEC21 17MEPI04	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN NON CONVENTIONAL ENERGY SOURCES NON DESTRUCTIVE TESTING	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE EEE MECHANICAL	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL NIL NIL NIL NIL NIL NIL NIL NIL
SL. NO 1. 2. 3. 4. 5. 6. 7. 8. 9.	CODE 17MBHS04 17MBHS03 17MBHS05 17MBHS05 17CVEC07 17ECCC14 17EEC21 17MEPI04 17MESE17	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN NON CONVENTIONAL ENERGY SOURCES NON DESTRUCTIVE TESTING MODERN MANUFACTURING METHODS	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE ECE EEE MECHANICAL MECHANICAL	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL
SL. NO 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	CODE 17MBHS04 17MBHS03 17MBHS05 17MBHS05 17CVEC07 17ECCC14 17EEEC21 17MEPI04 17MESE17 17ECCC07	COURSE COURSE COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN NON CONVENTIONAL ENERGY SOURCES NON DESTRUCTIVE TESTING MODERN MANUFACTURING METHODS MICROCONTROLLE RS & ITS APPLICATIONS	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE EEE MECHANICAL ECE	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL
SL. NO 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	CODE 17MBHS04 17MBHS03 17MBHS05 17MBHS05 17CVEC07 17ECCC14 17EEEC21 17MEPI04 17MESE17 17ECCC07 17MBHS02	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN NON CONVENTIONAL ENERGY SOURCES NON DESTRUCTIVE TESTING MODERN MANUFACTURING METHODS MICROCONTROLLE RS & ITS APPLICATIONS FINANCE AND ACCOUNTING FOR ENGINEERS	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE EEE MECHANICAL MECHANICAL ECE MANAGEMENT	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL
SL. NO 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	CODE 17MBHS04 17MBHS03 17MBHS03 17MBHS05 17CVEC07 17ECCC14 17EEEC21 17MEPI04 17MESE17 17ECCC07 17MBHS02 17ECCC21	COURSE TOTAL QUALITY MANAGEMENT ENGINEERING MANAGEMENT AND ETHICS MARKETING TECHNIQUES FOR ENGINEERS DISASTER MITIGATION AND MANAGEMENT DIGITAL IMAGE PROCESSING DIGITAL LOGIC CIRCUITS & DESIGN NON CONVENTIONAL ENERGY SOURCES NON DESTRUCTIVE TESTING MODERN MANUFACTURING METHODS MICROCONTROLLE RS & ITS APPLICATIONS FINANCE AND ACCOUNTING FOR ENGINEERS DIGITAL SIGNAL PROCESSING	OFFERING DEPT. MANAGEMENT MANAGEMENT MANAGEMENT CIVIL ECE ECE EEE MECHANICAL MECHANICAL ECE MANAGEMENT ECE	CATEGORY EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE) EC(OE)	L 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PREREQUISITE NIL

		VEHICLE							
		SYSTEMS DEMOTE SENSING		EC(OE)	-				
		KEMOTE SENSING		EC(OE)					
14.	17CVSE55	AND GIS FOR	CIVIL		3	0	0	3	Nil
		ENVIRONMENTAL							
		APPLICATION							
15	17CVEC02	GEOGRAPHICAL	СІУШ	EC(OE)	2	0	0	2	NII
15.	1/CVEC05	SYSTEM	CIVIL		5	0	0	5	INIL
				EC(OE)					
16	17CVSE02	ENTERPRISE WIDE	CIVIL		3	0	0	3	NIL
10.	170 (5202	INFORMATION	CIVIL		5	0	0	5	T (IL)
		STSTEMS		FC(OF)	_				
17.	17CVSE47	INFRASTRUCTURE	CIVIL	EC(OE)	3	0	0	3	Nil
		PLANNING							
		BIOMEDICAL		EC(OE)		_			BASICS OF ELECTRICAL &
18.	17BMCC01	CIRCUITS & NETWORKS	BME		3	0	0	3	ELECTRONICS
		DIOSENSODS AND		EC(OE)					ENGINEERING
19.	17BMCC03	TRANSDUCERS	BME	EC(OE)	3	0	0	3	NIL
		APPLIED NEURAL		EC(OE)					
20.	17BMEC06	NETWORKS AND FUZZY LOGICSYSTEMS	BME		3	0	0	3	NIL
		IN MEDICINE							
21.	17BMSE17	BRAIN COMPUTER	BME	EC(OE)	3	0	0	3	NIL
		ROBOTICS &		EC(OE)					NIL
22.	17BMSE18	AUTOMATION IN	BME	LC(OL)	3	0	0	3	T (IL)
		MEDICINE							
23.	17ECCC04	SIGNALS AND	ECE	EC(OE)	3	0	0	3	NIL
24	17500001	SEMICONDUCTOR	ECE	EC(OE)			0	-	NIL
24.	1/ECCC01	DEVICES	ECE		3	0	0	3	
25	17ECCC15	ANALOG &	ECE	EC(OE)	2	0	0	2	NIL
23.	T/Eccc15	COMMUNICATION	ECE		3	0	0	5	
		SATELLITE		EC(OE)	3	0	0	3	DIGITAL
26.	17ECEC03	COMMUNICATION	ECE						COMMUNICATI
27		WEARABLE		BM(OE)	-	0	0	2	
27.	1/BMSE16	TECHNOLOGY	BME		3	0	0	3	NIL
20	17ECSE21	WIRELESS SENSOR	FOF	EC(OE)	2	0	0	2	NII
28.	1/ECSE21	IOT	ECE		3	0	0	3	NIL
		WIRELESS		EC(OE)					
29.	17ECSE22	TECHNOLOGIES	ECE		3	0	0	3	NIL
		FOR IOT		EC(OE)	-				
		TECHNOLOGY FOR		EC(OE)					
30.	17ECSE07	EMBEDDED	ECE		3	0	0	3	NIL
		SYSTEMS							
31	17MECC12	COMPUTER	MECH	EC(OE)	3	0	0	3	NII
51.	17MLCC12	MANUFACTURING	WILCH		5	0	U	5	IVIL
32	17BTSE05	INDUSTRIAL WASTE	BTE	EC(OE)	3	0	0	3	NIL
52.		MANAGEMENT		EQ(CE)	-		6		
22	17BMEC04	MEMS AND ITS	BWE	EC(OE)	3	0	0	3	NIL
55.	17DWLC04	APPLICATIONS	DIVIL						
34	17CVEC14	AIR POLLUTION	CIVIL	EC(OE)	3	0	0	3	NIL
54.		MANAGEMENT		EC(OE)					
35.	17BTPI05	BIOSAFETY	BIE	EC(UE)	3	0	0	3	NIL
		GREEN BUILDING	BTE	EC(OE)	3	0	0	3	NIL
36.	17BTEC29	AND SUSTAINABLE							
		ENVIRONMENT							
				1	1	1	1	1	

B.E/B.TECH. – COMPUTER SCIENCE ENGINEERING - SEMESTER I TO VIII

DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17BTCC02	CELL BIOLOGY	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
2.	17BTCC01	ESSENTIALS OF BIO CHEMISTRY	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
3.	17BTEC03	PRINCIPLES OF BIO- INFORMATICS	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
4.	17BTEC32	BIOLOGICAL DATABASE	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
5.	17CSSE01	COMPUTATIONAL BIOLOGY & DATA MINING	CSE	SE	3	0	0	3	NIL
6.	17CSSE02	CGI & WEB PROGRAMMING	CSE	SE	3	0	0	3	NIL
7.	17CSSE03	BIO INFORMATICS ALGORITHM	CSE	SE	3	0	0	3	NIL
			LAB						
8.	17CSSE04	JAVA & CGI PROGRAMMING LAB	CSE	SE	0	0	4	2	NIL
9.	17CSSE05	DATA MINING LAB	CSE	SE	0	0	4	2	NIL
10.	17BTCC82	CELL BIOLOGY LAB	BIO- TECHNOLOGY	SE	0	0	4	2	NIL
11.	17BTCC81	BIO CHEMISTRY LAB	BIO- TECHNOLOGY	SE	0	0	4	2	NIL
12.	17BTCC93	BIO INFORMATICS LAB	BIO- TECHNOLOGY	SE	0	0	4	2	NIL

(i) SPECIALIZATION – BIO-INFORMATICS

B.	B.E / B.TECH. – COMPUTER SCIENCE AND ENGINEERING - SEMESTER I TO VIII													
CA	TEGORY D –	PROJECT + INTERNS	HIP + INDUSTR	RY ELECTIV	ES (I	P + I +	I)- (CRED	ITS (18)					
	(i) PROJECT - CREDITS (9)													
	(i) INTERNSHIP + INDUSTRY ELECTIVES - CREDITS (9)													
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISITE					
1.	17CSPI01 PROJECT WORK CSE PI 0 0 18 9 NIL													
2.	17CSPI02	MINI PROJECT	CSE	PI	0	0	6	3	NIL					
3.	17CSPI03	INTERNSHIP	CSE	PI	0	0	0	3	NIL					
4.	17CSPI04	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	CSE	PI	3	0	0	3	DATA MINING AND DATA WAREHOUSING					
5.	17CSPI05	BUILDING ENTERPRISE APPLICATIONS	CSE	PI	3	0	0	3	NIL					
6.	17CSPI06	INTERNET AND WEB TECHNOLOGY	CSE	PI	3	0	0	3	RICH INTERNET APPLICATION					
7.	17CSPI07	LEARNING IT ESSENTIALS BY DOING	CSE	PI	3	0	0	3	NIL					
8.	17CSPI08	ESSENTIALS OF INFORMATION TECHNOLOGY	CSE	PI	3	0	0	3	NIL					
9.	17CSPI09	INTRODUCTION TO MAIN FRAMES	CSE	PI	3	0	0	3	COMPUTER ARCHITECTURE					
10.	17CSPI10	MOBILE APPLICATION DEVELOPMENT	CSE	PI	3	0	0	3	NIL					

B.TECH. – COMPUTER SCIENCE ENGINEERING - SEMESTER I TO VIII												
CA	TEGORY E –	EMPLOYABILITY	ENHANCEMEN	T COURSES,	, CO - (CURR	ICULA	AR C	OURSES			
<i></i>	Al	ND EXTRA CURRIC	ULAR COURSE	CS (EEC)** -	CRED	ITS (9	- 18)		~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~			
(** -	MANDATOR	Y, CREDITS WOUL	D BE MENTION	ED IN MARI	K SHE	ETS BU	UT NO	OT IN	CLUDED			
		(i) EMPLOVABI	ITV FNHANCE	MENT COLL	RSES ((FFC)						
SL						(EEC)			PREREQUISITE			
NO	CODE	COURSE	DEPT.	CATEGORY	L	Т	Р	С	TREALQUISTIE			
1.	17APEE01	PERSONALITY SKILLS DEVELOPMENT - I	MATHS	EE	2 WEEF	KS OF TR.	AINING	1	NIL			
2.	17APEE02	PERSONALITY SKILLS DEVELOPMENT - II	ENGLISH & MANAGEMENT	EE	2 WEEF	KS OF TR.	AINING	1	NIL			
3.	17CSEE01	APPLICATION SOFTWARE AND SYSTEM SOFTWARE INSTALLATION	EE	3	0	0	3	NIL				
4.	17CSEE02	WEB DESIGNING	CSE	EE	3	0	0	3	NIL			
5.	17CSEE03	DIGITAL MARKETING	CSE	EE	3	0	0	3	NIL			
6.	17CSEE04	MOBILE APPLICATION DEVELOPER	CSE	EE	3	0	0	3	NIL			
		(ii) C	O - CURRICULA	AR COURSES	G (CCC	!)						
1.	17APEE03	NCC	NCC	EE	2 WEE TRAIN CAMP	KS OF	NCC	1	NIL			
2.	17APEE04	NSS	NSS	EE	2 WEE IN NSS	KS OF S S CAMP	OCIAL	1	NIL			
3.	17APEE05	SPORTS AND GAMES (INTER – UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE				1	NIL			
4.	17APEE06	SPORTS AND GAMES (INTRA- UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE				2	NIL			
5.	17APEE07	SPORTS AND GAMES (STATE AND NATIONAL LEVELS)	PHYSICAL EDUCATION	EE				2	NIL			
		(iii) EX	FRA CURRICUI	LAR COURS	ES (EC	C)						
1.	17CSEE05	EXTRA CURRICULAR COURSES - I	CSE	EE	1	5 HOUR	S	1	NIL			
2.	17CSEE06	EXTRA CURRICULAR COURSES - II	CSE	EE	1	5 HOUR	S	1	NIL			
3.	17CSEE07	EXTRA CURRICULAR COURSES - III	CSE	EE	1	5 HOUR	s	1	NIL			
4.	17CSEE08	EXTRA CURRICULAR COURSES -IV	CSE	EE	1	5 HOUR	S	1	NIL			
5.	17CSEE09	EXTRA CURRICULAR COURSES –V	CSE	EE	1	5 HOUR	S	1	NIL			
6.	17CSEE10	EXTRA CURRICULAR COURSES VI	CSE	EE	1	5 HOUR	S	1	NIL			

17EG	ZEGHS01 TECHNICAL ENGLISH									Catego	ory L	Т	Р	Cr	edit	
1.20				-							HS	3	0	0		3
PREA Techni commi The of Writin scenar PRER	PREAMBLE Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario. PREREQUISITE – Nil															
COU	RSE OE	BJECT	IVES													
1	To en	able stu	udents (o deve	lop LSI	RW ski	lls in E	nglish.	(Listen	ing, Spe	aking, R	eading,	and Wr	iting.))	
2	To ma	ake the	m to be	come e	ffective	e comn	nunicat	ors.								
3	To en	sure th	at learn	ers use	Electro	onic me	edia ma	terials t	for deve	eloping l	anguage	•				
4	To aid	d the st	udents	with en	nployat	oility sk	tills.									
5	To me	otivate	student	s conti	nuously	to use	Englis	h langu	lage.							
6	To de	velop t	he stud	ents co	mmuni	cation s	skills ir	ı forma	l and in	formal s	ituations					
COU	RSE OU	JTCON	MES													
On the	succes	sful con	npletio	n of the	e course	e, stude	nts wil	l be abl	e to							
CO1. I	Listen, ı	underst	and and	l respoi	nd to ot	hers in	differe	nt scen	ario.		l	Understa	nd			
CO2. 5	Speak fl	uently	and con	rectly	with co	rrect pr	onunci	ation ir	differe	ent situat	tion.	Apply				
CO3. 7	Fo make	e the st	udents	experts	in prof	essiona	ıl writii	ıg.			1	Apply				
CO4. The busine	Fo make ss. tech	e the st nical ar	udents 1d scier	recogni ntific fie	ize the : eld.	role of	technic	al writ	ing in tl	heir care	ers in	Apply				
CO5. theore	To mal tically s	ke the trong.	studen	ts good	d comr	nunicat	ors at	the we	ork pla	ce and	to be	Apply				
CO6. 7	O6. To make the students in proficient technical communicator.										1	Apply				
MAPI	PING V	VITH	PROG	RAMM	IE OU'	ГСОМ	ES AN	D PR	OGRAI	MME S	PECIFI	C OUT	COME	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	502	PSO3
CO1	S M M M L S S									S	S	М				
CO2	S		L	М	S	S	М	L	М	S	М	S				

L

М

Μ

S

S

Μ

М

S

Μ

S

М

S

S

S

L

L

S

Μ

S

--

--

--

--

--

CO3

CO4

CO5

CO6

L

М

М

S- Strong; M-Medium; L-Low

L

L

S

М

L

L

--

S

М

L

Μ

Μ

М

--

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophymes - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXTBOOK

1. "English for Engineers", Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai.

REFERENCES

- 1. "English for Effective Communication", Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. "Practical English Usage", Michael Swan (III edition), Oxford University Press.
- 3. "Grammar Builder- I, II, III, and IV", Cambridge University Press.
- 4. Pickett and Laster, "Technical English: Writing, Reading and Speaking", New York: Harper and Row Publications, 2002.

С	ourse	e Designers:							
S	.No.	Name of the Faculty	Designation	Department	ent Mail ID				
	1.	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in				

17ECH802	RUSINESS ENCLISH	Category	L	Т	Р	С
17EGII502	BUSINESS ENGLISH	HSS	3	0	0	3

Preamble

Language is one of the most valued possessions of men. It acts as a repository of wisdom. Among all other English, the international language plays a vital role as a propeller for the advancement of knowledge in elds and as a telescope to view the dream of the future

Prerequisite Nil

	1 111
Course	Objectives

	•												
1	To impart and enhance corporate communication.												
2	To enable learners to develop presentation skills.												
3	To build confidence in learners to use English in Business context.												
4	To make them experts in professional writing												
5	To assist students understand the role of thinking in all forms of communication												
6	To equip students with employability and job searching skills												
Course	Outcomes:												
	After Successful completion of this course, the students will be able to:												
CO1.	1. Communicate with a range of formal and informal context Understand												
cor	Students will undergo in activities, demonstrating interaction skills and consider	Apply											
CO2.	ommunication is adjusted in different scenario												
CO3.	Strengthening of oral and written skills in the business context	Apply											
CO4.	Create interest among the students about a topic by exploring thoughts and ideas	Understand											
CO5.	Make the students to start with pleasing note and make them to give different	Apply											
CO6.	CO6. Make them in better performance in the art of communication Apply												
Mapping with Programme Outcomes and Programme Specific Outcomes													
60		DEO2 DEO2											

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	Μ	М	-	Μ	L	М	М	Μ	S	-	М	-	-	-
CO2	L	-	-	L	-	М	-	-	-	S	М	L	-	-	-
CO3	-	L	М	-	-	-	L	-	Μ	S	-	-	-	-	-
CO4	Μ	Μ	-	-	L	S	-	М	S	S	-	L	-	-	-
CO5	Μ	-	-	-	-	М	-	М	Μ	S	-	-	-	-	-
CO6	S	М	M	-	-	S	М	-	-	S	-	-	-	-	-

S- Strong; M-Medium; L-Low

Syllabus

SUBJECT -VERB AGREEMENT

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal is and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing legotiation Skills-Presentation Skills and Debating Skills.

STRESS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabularytompound Words (including Technical Terminology).

READING SKILLS

Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – tiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION

Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Making Presentations on given Topics -Preparing Power Point Presentations.

CRITICAL READING

Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters c Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXT BOOK:

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem Chennai

REFERENCES:

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

COURSE DESIGNERS:

17					
	S.No	Name of the Faculty	Designation	Department/College	Mail ID
	1	Dr. P. Saradha	Associate Professor	English / VMKVEC	saradhap@vmkvec.edu.in

17EG	HS81		ENGLISH LANGUAGE LAB									ry L	Т	Р	С	redit
1/20	PREAMBLE													4		2
PREA English produc	MBLE n Langu ing lang	age La guage sl	borator kills thr	y provi ough in	des tecl teractiv	nnologi ve lesso	cal sup	port to	student nicative	s. It acts mode of	as a pla f teachin	tform fo g.	r learni	ng, p	ractic	ing and
PRER	PRERQUISITE – NIL															
COUR	COURSE OBJECTIVES															
1	1 To understand communication nuisances in the corporate sector. 2 The device of the sector is a sector.															
2	2 To understand the role of mother tongue in second language learning and to avoid interference of mother tongue.															
3	3 To communicate effectively through different activities.															
4	4 To understand and apply the telephone etiquette.															
5	5 Case study to understand the practical aspects of communication.															
6	6 To improve the oral skills of the students.															
COUR	COURSE OUTCOMES															
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able t	to							
CO1. C	Give bes	t perfo	rmance	in grou	p discu	ssion a	nd inter	view.			1	Understa	nd			
CO2. E	Best perf	forman	ce in the	e art of	convers	sation a	nd publ	lic speal	king.			Apply				
CO3. C	Give bet	ter job	opportu	nities in	n corpo	rate cor	npanies	5.				Apply				
CO4.	Better u ence and	underst	anding activiti	of nua es.	inces o	of Engl	ish lan	guage	through	1 audio-	visual	Apply				
CO5.	Speakin	g skill skills	s with	clarity	and c	confide	nce wh	nich in	turn e	nhances	their	Understa	nd			
CO6. A	Acquire	strategi	ic comp	etence	to use l	ooth spo	oken an	d writte	en langi	uage in a	wide	Apply				
range o	of comm	unicati	on strat	egies.		COME	S A ND		DAM	ME SDE			MES			
COS		PO2	PO3		PO5		PO7					PO12	PSOI	р	502	PSO3
		102 S	105 М	5	105	100 I	107	100	s	s	M	1012	1501			1505
CO^2	М								M	S		м				
CO3	M									S		M				
CO4	M									M						
C05	M			S						M				_		
C06		М	м							M						
S- Stro	no· M-N	Medium): L-L o			_	_	_		141						_
5 500	<u>6</u> , 1 1 -1	-iculull	I, L-L0	**												

Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation.

Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

Case study of Etiquette in different scenario.

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1.	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in			

17MBHS01

ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT

CategoryLTPCreditHSS3003

PREAMBLE:

A startup is a company initiated by individual creator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Startups Management basics and its components.
- 2. To impart the startups fund management practices
- 3. To inculcate the various kinds of stocks and employment considerations in startups.
- 4. To inculcate the importance of intellectual property rights and its procedures.
- 5. Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Explain the concept of engineering startups, objectives and functions and its Understand												
components.												
CO2: Analyze the startups funding issues and remuneration practices in startups business.	Apply											
CO3: Analyze the various kinds of stocks and employment opportunities consideration in	Apply											
startups business.												
CO4: Compare and contrast the different forms of intellectual property protection in terms of	Apply											
their key differences and similarities.												
CO5: Explore the entrepreneurial mindset and culture that has been developing in	Apply											

companies of all sizes and industries.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
	CO1	М	-	-	-	-	М	S	S	-	М	-	-			
	CO2	S	S	S	М	М	М	-	-	-	-	-	-			
	CO3	S	S	S	М	М	М	-	-	-	-	-	-			
	CO4	S	S	S	М	М	М	-	-	-	-	-	-			
	CO5	S	S	S	М	М	М	-	-	-	-	-	-			
,	S- Strong; M-Medium; L-Low															

Elements of a successful Start up:

Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices:

Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – Employment Contracts.

Stock Ownership & startup Employment Considerations:

Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares – Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance.

Protecting Intellectual Property: Protecting your intellectual property:

Copyrights - patents-Trade secrets - Trademarks - The Legal Form of your Startup: Corporation - Partnership - Limited Liability Company - Sole Proprietorship - - Making the startup decision: commitment - Leaving a current employer - stay fit.

Entrepreneurship:

Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

Text Book:

1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, Professional Publications.inc

2. Donald F Kuratko, "Entreprenuership – Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.

2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. EDII "Faulty and External Experts – A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

Course Designers:

	8			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. G. Palaniappan	Asso. Professor	Management Studies	Palani.sunn@gmail.com
2.	Dr. G. Murugesan	Professor	Management Studies	selvasahana.m@gmail.com

17EG	HS82		PRO	FESSI	ONAL	COM	AUNIC)	Category	L	Т	Р	C	redit		
				PEK	SUNAI		JEVEL	OENI			HSS	0	0	2		1
To dev	To develop students with good presentation and writing skills (Professionally & technically). Articulate and enunciate words and sentences clearly and effectively. Develop proper listening skills. Understand different writing techniques and															
words	words and sentences clearly and effectively. Develop proper listening skills. Understand different writing techniques and styles based on the communication being used.															
styles t	styles based on the communication being used. PRERECUISITE															
PREREQUISITE																
COURSE OBJECTIVES																
1 To develop communication and personality skills. 2 To investigate the life state of																
2	2 To improve Aptitude skills, train to improve self-learning / researching abilities, presentation skills & technical															
2	writing.															
3	To improve students employability skills.															
4	To develop communication and problem solving skills.															
5	To develop professional with idealistic, practical and moral values.															
6	6 To produce cover letters, resumes and job application strategies.															
COUR	SE OU	TCOM	IES													
On the	success	ful con	pletion	of the	course,	student	ts will b	be able	to							
CO1. 1	Improve	comm	unicatio	on and j	persona	lity skil	ls.						Ap	ply		
CO2. I	Demonst	rate eff	ective u	use of to	eam wo	rk skill	s to con	nplete g	given ta	sks.			Ap	ply		
CO3. S	peaking	g with c	larity a	nd conf	idence	thereby	enhanc	cing em	nployab	ility skill	s of the stu	idents.	Ap	ply		
CO4. T	rain the	studen	ts in or	ganized	l and pr	ofessio	nal writ	ing					Ap	ply		
CO5. I	Develop	student	s readii	ng skill	s that co	ould be	adopted	d while	reading	g text			Ap	ply		
CO6. I	mprove	student	s their	vocabu	lary and	l use the	em in a	ppropri	ate situ	ation			Un	dersta	and	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO	GRAM	ME SPE	CIFIC O	UTCON	AES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	М	М	-	L	Μ	Μ	Μ	-	Μ	S	-	Μ				
CO2	М	М	L	-	-	-	-	L	S	М	L	-				
CO3	-	-	-	-	L	L	М	-	S	S	М	-				
CO4	4 S L L L - L - M M															
CO5	⁵ L L L -															
CO6	⁶ S - L L L - L - M S - M															
S- Stro	ng; M-N	Aedium	; L-Lov	W										•		

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication.

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

UNIT IV. SPEAKING SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an

effective Talk; how to make an effective oral presentation

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria & Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw – Hill.

Course Designers:

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1.	Dr. P.Saradha/Associate Professor - English	saradhap@vmkvec.edu.in

17MABS01	ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
		BS	2	2	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices have been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relations can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE -- Nil

COURSE OBJECTIVES

1	To rea	call the	advanc	ed mat	rix kno	wledge	to Eng	ineerin	g probl	ems.					
2	To eq	uip the	mselves	s famili	ar with	the fun	ctions	of seve	ral vari	ables.					
3	To im	prove t	heir ab	ility in	solving	geome	trical a	pplicati	ions of	different	ial calcu	lus probl	lems.		
4	To ex	amine l	knowle	dge in r	nultiple	e integr	als.								
5	To im	prove t	heir ab	ility in	Vector	calculu	s.								
COUR	SE OUTCOMES														
On the	successful completion of the course, students will be able to														
CO1. A	Apply the concept of orthogonal reduction to diagonalise the given matrix. Apply														
CO2. F	Find the radius of curvature, circle of curvature and centre of curvature for a given curve.Understand														
CO3. Costationa	Classify ary poir	the mants.	axima a	nd min	ima fo	r a give	en func	tion wi	th seve	ral varia	bles, thro	ough by	finding	Analyse	e
CO4. F	ind dou	uble into	egral ov	ver gen	eral are	as and	triple ir	ntegral	over ge	neral vol	lumes.			Unders	tand
CO5. A	Apply G	auss D	ivergen	ce theo	orem for	r evalua	ating the	e surfac	ce integ	ral.				Apply	
MAPP	'ING W	ITH P	ROGE	RAMM	E OUI	COM	ES AN	D PRO	GRAN	IME SP	ECIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	М												
CO2	L	S	М												
CO3	L	S	М												
CO4	L	S	М												
CO5	L	S	М												

S- Strong; M-Medium; L-Low

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.G.Selvam	Associate Professor	Maths	selvam@vmkvec.edu.in
2.	Dr. M.Vijayarakavan	Associate Professor	Maths	vijayarakavan@vmkvec.edu.in

17M	ABS	9	MA	ГНЕМ	ATICS	FOR	COMP	UTER		Categor	у	L	Т	Р	Credit
					ENGI	NEER	S			BS		2	2	0	3
PRE An e Engi appr cour trans	CAMB engine neerir aises l se aim	LE ering st ng. This nim the ns at giv , Fourie	udent n empha comple ring ade r transf	aeeds to asizes te proc equate orms a	have s the dev edure fo exposur nd Z-tra	some barelopme or solvi re in Or insform	asic ma ent of r ng diffe rdinary s.	thematio igorous erent kin differen	cal too logica ids of j itial eq	ols and teo al thinkin problems juations, I	chnique g and that occ _aplace	s to apj analytic cur in en transfo	ply in di al skills ngineerir rms, Ap	verse app of the s ng. Based plications	lications in tudent and on this, the of Laplace
PRE Engi	PREREQUISITE Engineering Mathematics														
COU	JRSE	OBJE	CTIVE	S											
1	To fa	miliariz	e with t	he app	lication	s of diff	ferentia	l equation	ons.						
2	To eq	quip the	nselves	famili	ar with	Laplace	e transfo	orm.							
3	To ga	ain good	knowl	edge in	the app	olication	n of Lap	blace tra	nsforn	18					
4	Fouri analy	er trans sis.	forms h	as the	wide ap	plicatio	on in the	e field of	fheat	diffusion,	wave p	ropagat	ion and i	in signal a	nd systems
5	To le	arn abou	ut Z- tra	nsform	is and it	s applic	cations.								
COU	JRSE	OUTC	OMES												
On t	he suc	cessful	comple	tion of	the cou	rse, stu	dents w	ill be ab	le to						
COI	. Pred	lict the s	uitable	method	l to solv	ve secoi	nd and l	nigher o	rder di	fferential	equatio	ns		Apply	
CO2	2. App	ly Lapla	ice tran	sform t	echniqu	e to sol	ve the g	given or	dinary	differenti	al equa	tion.		Apply	
CO3 equa	6. App tion.	oly App	lication	s of L	aplace	transfo	rm tech	inique to	o solv	e the giv	en ordi	nary di	fferentia	l Apply	
CO4	l. App	ly Fouri	er trans	form te	chniqu	e to eva	luate th	e given	integr	al				Apply	
CO5	5. Solv	e the gi	ven diff	erence	equatio	ons usin	g Z-trar	nsform.						Apply	
MA	PPIN	G WITI	H PRO	GRAM	IME O	UTCO	MES A	ND PR	OGRA	AMME S	PECIF	IC OU	ГСОМЕ	S	
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	М												
CO2	L	S	М												
CO3	L	S	М												
CO4		5	M												
		<u>.</u>	M												
2-21	trong	; M-Me	alum; I	L-LOW											
	5- Strong, M-Meulum, L-Low														

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems –Transform of periodic functions

INVERSE LAPLACE TRANSFORMS AND APPLICATIONS

Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms. **FOURIER TRANSFORMS**

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 1. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi (2011).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012)
- 3. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 4. Kandasamy .P, Thilagavathy. K. and Gunavathy. K., "Engineering Mathematics", Volumes I & II (10th Edition), S. Chand & Co., New Delhi (2014).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.V.T.Lakshmi	Asso.Prof	VMKVEC	lakshmi@vmkvec.edu.in
2	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in

17MA	BS14		NUME	RICAI	LMET	HODS	AND		Cate	gory	L	Т	P	Cred	lit
			N	UMBE	ER THI	EORY			FC(ES)	2	0	2	3	
PREA	MBL	E							- (
An Un	der Gr	aduate	Comp	uter Sc	ience E	Enginee	ering st	tudent	needs t	o know	sufficie	nt num	erical to	ols and	
technic	ques fo	r solvii	ng engi	neerin	g probl	ems ar	rises in	their fi	ield. T	his cours	se aims a	at deve	loping tl	ne ability	to
formul	ate an	engine	ering p	roblem	n in a n	nathem	atical f	form ap	opropri	ate for s	ubseque	ent con	putation	al treatm	ent
and to	choose	e an app	propria	te num	erical	approa	ch.								
Numbe	er theor	ry enco	odes pro	opertie	s of the	e intege	ers, pri	mes or	other 1	number-	theoretic	c objec	ts and it	has vario	ous
applica	ations i	n the fi	ield of	securit	y, men	nory m	anager	nent, a	uthenti	cation a	nd codir	ng theo	ry. Num	ber theor	y is
probab	ly one	of the	most 11	nporta	nt area	s of ma	athema	tics use	ed in co	omputer	science	, and the	ne basis l	behind al	most
all of n	nodern	crypto	graphy	/.											
PRER	QUIS	TE NG M			n										
ENGI	NEERI	NG M	ATHE	MAII	-2										
COUR	RSE O	BJEC	TIVES												
1	To kn differe	ow the ential eq	derivati Juation	ives, pro s.	operties	and in	plemer	ntation of	of funda	amental r	numerica	l metho	ds for a f	ew partial	
2	Abilit	y to Im	plemen	t advan	ced nur	nerical	method	ls for th	e soluti	ons of pa	rtial diff	erential	equation	s efficien	tly and
2	to mo	dify and	d adopt	numeri	cal algo	Different			4 4 : -						
3	To be	thoroug	gn with	the nur	nerical	Numbo	ntiatior	$\frac{1}{2}$ and $\frac{1}{2}$		n the know	ladge of	Divisio	n algoriti	mand	
4	10 giv Funda	ve an in mental	theorer	i Appro n of Δr	ithmeti	Numbe	r Theor	ry and to	o nave i	the know	leage of	DIVISIC	n algoriti	im and	
5	To be	familia	r with t	he class	sical the	eorems									
COUD			MEC												
On the			MES moleti	onoft	ha cou	rea etu	donte	will bo	abla to	<u> </u>					
$CO1 \Delta$	nnly fl		f nume	rical m	ethods i	in mode	rn scie	ntific co	able it) ησ		Δr	nlv		
CO2 A	nalvze	the nur	nerical	interno	lation a	nd annr	oximat	ion of f	unction	s		An	ply nlv		
CO3. A	nulyze	$\frac{1}{1}$ ols to f	ind inte	gration	deriva	tives of	one an	d two v	ariable	function	s.	An	ply		
CO4. D	Define a	nd inter	pret the	e concei	ots of d	ivisibili	ty. con	gruence	e. greate	est comm	on	An	ply		
divisor,	, prime,	and pri	ime-fac	torizati	on		,	D	, 5			P	P-J		
CO5. C	Compute	e solutio	ons to a	system	of line	ar cong	ruence'	s and so	ome ir	nportant	theorems	s. Ap	ply		
MAPP	PING V	NITH	PROG	FRAM	ME O	UTCO	MES .	AND F	ROG	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	-	М	-	-	-	-	-	-	-	-	-	-	-
CO3	S	S	-	-	S	-	-	-	-	-	-	-	-	-	-
CO4	S	М	-	-	-	-	-	-	-	-	-	L	-	-	-
CO5	S	S	-	М	-	-	-	-	-	-	-	М	-	-	-
S- Stro	ong; M	-Mediu	ım; L-I	LOW											
SYLL	ABUS														
COLU	TION	OFE		IONG	14.4	1 6 6 1					.1 1 0			0.1.1	C
SOLU	TION	OF E		IUNS:	Metho	d of fal	se posit	tion, Ne	wton-F	kaphson i	nethod f	or sing	e variable	e, Solution	ns of a
method	ystem t	by Gaus	sian, G	auss-J0	iuan, Ja	icodian	and Ga	iuss- Se	iuei me	moas. In	verse of	a matri	x by Gau	ss-jordan	
INTE	nethod NTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences. Lagrange's														

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagran polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both1/3rd and 3/8th) rules. Romberg's rule, two and three point Gaussian quadrature formula.

DIVISIBILITY THEORY AND CANONICAL DECOMPOSTIONS: Division algorithm - Base-b Representations - Number Patterns - Prime and Composite Numbers – GCD - Euclidean Algorithm - Fundamental Theorem of Arithmetic - LCM.

CONGRUENCES AND CLASSICAL THEOREMS: Congruence's - Linear Congruence's, Chinese Remainder Theorem, Wilson's Theorem - Fermat's Little Theorem - Euler's Theorem.

TEXT BOOKS:

- 1. Dr.B.S.Grewal, "Numerical Methods in Engineering & Science", Khanna Publishers, 2007.
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier publications, 2002.
- 3. David.M.Burton."Elementary Number theory", Tata McGraw Hill Edition, 2012.

REFERENCES:

1. T. Veerarajan, T. Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill, 2004. 2. Niven.I, Zuckerman.H.S and Montgomery.H.L, "An Introduction to Theory of Numbers", John Wiley and sons, 2004.

17PCBS02	PHYSICAL SCIENCES	Category	L	Т	Р	Credit
171 CD502	PART A - ENGINEERING PHYSICS	BS	2	0	0	2

PREAMBLE

Engineering Physics is the application of the concepts of physics to various technological applications. Understanding the concepts of laser, types of lasers, the propagation of light through fibers, applications of optical fibers in communication and different types of non-destructive techniques will help an engineer to analyze and design various equipments.

PRER	EQUIS	ITE – Ì	Nil												
COUR	SE OB	JECTI	VES												
1	To rec	call the	propert	ies of la	user and	to exp	lain pri	nciples	of laser						
2	To exa	amine t	he appl	ications	s of lase	er.									
3	To ou	tline the	e princi	ples of	fibre op	otics.									
4	To exa	amine t	he appl	ications	s of fibr	e optics	5.								
5	To exp	plain va	arious te	echniqu	es used	in Non	-destru	ctive te	sting.						
COUR	SE OU	тсом	IES												
On th	e successful completion of the course, students will be able to														
1.	Define	the pri	nciples	of laser	r.								Unde	erstand	
2.	Use las	ser in d	esigning	g equip	ments.								Appl	у	
3.	Explai	n the pr	rinciple	s of fibe	er optic	s & the	propag	ation of	f light i	n optical	fibers.		Unde	nderstand	
4.	Utilize	fibre o	ptics in	comm	unicatio	on syste	ms and	sensors	5.				Appl	у	
5.	Inspec	t materi	ials usir	ng non-	destruc	tive tes	ting tec	hnique	s.				Anal	yze	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	L	L											
CO2	S	S	М	М	S	М			L			М			
CO3	L	М	L	L											
CO4	S	S	М	М	S	М			L			М			
CO5	S	S	М	М	S	М			М			М			

S- Strong; M-Medium; L-Low

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

FIBRE OPTICS: Principle and propagation of light in optical fibres – numerical aperture and acceptance angle – types of

optical fibres (material, refractive index, mode) – Applications: Fibre optic communication system – fibre optic displacement sensor and pressure sensor.

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK:

1. "Engineering Physics", compiled by Department of Physics, Vinayaka Missions University, Salem.

REFERENCES:

- 1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.
- 2. Halliday. D, Resnick. R, Walker. J, Fundamentals of Physics, Wiley & Sons, 2013.

3.Gaur R. K. and Gupta S. L., Engineering Physics, Dhanpat Rai publishers, New Delhi, 2001.

- 4. Avanadhanulu. M. N., Arun Murthy. T. V. S, Engineering Physics Vol. I, S. Chand, 2014.
- 5. Rajendran. V, Engineering Physics, Tata Mc Graw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.C.Senthil Kumar	Professor	Physics	senthilkumar@vmkvec.edu.in
2	Dr.R.Sethupathi	Assistant Professor	Physics	sethupathi@vmkvec.edu.in

17PCBS02	PHYSICAL SCIENCES	Category	L	Т	Р	Credit
	(PART B - ENGINEERING CHEMISTRY)	BS	2	0	0	2

PREAMBLE

Engineering Chemistry explains the fundamentals of Engineering Chemistry and helps the learners to understand the applications of Engineering Chemistry. The electrodes, Cell and batteries study gives a clear idea about electrochemistry. Water technology study gives the initiative about softening of water, desalination and corrosion. Conventional and Non-conventional energy field is essential for the current scenario and the advanced engineering materials are needed for our fast growing life style.

PREREQUISITE - Nil

COUR	SE OB	JECTI	IVES												
1	To im can fa	part function	ndamen forthcoi	tal knov ning ye	wledge ars as v	in Che well as t	mistry s the indu	so that t 1stry eff	he stud	ent will ı y.	underst	and the eng	ineering	concept	and
2	To ha	ve a cle	ear know	wledge	of elect	rochem	nistry, c	ells and	electro	odes.					
3	To fa	miliariz	es the t	ype of t	oatterie	s and fu	iel cell.								
4	To lay	y found	ation fo	or practi	cal app	lication	s of wa	ter soft	ening a	nd desali	nation	in engineer	ing aspe	cts.	
5	To inc	culcate	the kno	wledge	of fuel	, this is	essenti	al for c	urrent s	cenario.					
COUR	SE OU	TCOM	1ES												
On the	success	sful con	npletior	n of the	course,	studen	ts will l	be able	to						
CO1. U future s	Jndersta studies.	and the	vital kr	lowledg	ge in En	gineeri	ng Che	mistry ł	nelps th	e learner	s in	Understar	nd		
CO2. E	Employ	the bas	ic know	ledge o	of cells	and ele	ctrodes	•				Apply			
CO3. E	Demons	trate the	e applic	ations of	of water	r soften	ing.					Apply			
CO4. A	Apply de	esalinat	ion pro	cess wi	th engi	neering	aspects	5.				Apply			
CO5. E	Discuss	about c	onventi	onal an	d non-c	convent	ional fu	uel for t	he curre	ent scena	rio.	Understar	nd		
CO6 G	eneraliz	ze poly	mers an	d smart	materi	als.						Apply			
MAPP	'ING W	/ITH P	ROGR	AMM	E OUT	COME	ES ANE) PRO	GRAM	ME SPE	CIFIC	COUTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М			М	М					М			
CO2	М	М	М			М	М					S			
CO3	М	S	М			S	М					S			
CO4	М	М	М			М	М					S			
CO5	М	М	L			М	S					S			
CO6	CO6 M M M M M S														
S- Stro	ng; M-l	Mediun	n; L-Lo	w							•				·

ELECTROCHEMISTRY, BATTERIES AND FUEL CELLS

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H_2 - O_2 fuel cell)

WATER TECHNOLOGY AND CORROSION

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite & Demineralisation) – Domestic water treatment – Desalination (Electrodialysis & ReverseOsmosis).

FUELS AND CHEMISTRY OF ADVANCED MATERIALS

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels – Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXTBOOK:

1. "Engineering Chemistry", Department of Chemistry, Vinayaka Missions University, Salem.

REFERENCES:

- 1. "A text book of Engineering Chemistry", S.S. Dara, S.Chand & company Ltd., New Delhi.
- 2. "Engineering Chemistry", Jain & Jain, 15th Edition, Dhanpatrai Publishing Company (P) Ltd., New Delhi.
- 3. "A text book of Engineering Chemistry", Shashi Chawla, Edition 2012, Dhanpatrai & Co., New Delhi.
- 4. "Engineering Chemistry", Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID			
1.	Dr.T.Shanthi	Professor	Chemistry	shantht@vmkvec.edu.in			

17MARS15	PROBABILITY AND OUFLIEING THEORY	Category	L	Т	Р	Credit
1/10/10/10		FC	2	2	0	3

PREAMBLE

Probability is the science of how likely events are to happen. It's concerned with the roll of a dice, or the fall of the cards in a game. But probability is also vital to science and life more generally. It's used in such diverse areas as weather forecasting and to work out the cost of your insurance premiums. Queuing theory is the mathematical study of waiting lines and it's a primary tool for studying the problem of congestion.

PREREQUISITE

NIL

COUR	SE OBJECTIVES					
1	To be thorough with probability concepts and random variables.					
2	To be familiar with different statistical distributions and the typical phenomena that each distribution often describes.					
3	To acquire skills in handling situations involving more than one random variable and functions of random variables.					
4	To get exposed to the concepts of random processes and discrete time Markov chain.					
5	To study queuing models to analyze real world systems.					
COURSE OUTCOMES						

On the successful completion of the course, students will be able to

CO1. Understand the concepts of random variable, probability distribution, distribution function, expected value, variance and higher moments, and calculate expected values and probabilities associated with the distributions of random variables.	Understand	
CO2. Classify the random variables to determine the appropriate distributions.	Understand	
CO3.Apply the concepts of independence, jointly distributed random variables and conditional distributions, and use generating functions to establish the distribution of linear combinations of independent random variables	Apply	
CO4. Classify and apply the concepts of probability, Random Process, Markov Process and their applications to answer quantitative questions about the outcomes of probabilistic systems.	Apply	
CO5. Derive and apply main formulas for some properties (such as stationary probabilities, average waiting and system time, expected number of customers in the que, etc.) M/M/1, M/M/C – finite and infinite capacity queuing systems.	Apply	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L		L			M				М			
CO2	S	Μ	L		L			M				М			
CO3	S	Μ	L		L			M				М			
CO4	S	S	Μ	Μ	L			Μ				М			
CO5	S	S	Μ	Μ	L			Μ				М			
S- Strong; M-Medium: L-Low															
PROBABILITY AND RANDOM VARIABLES

Probability concepts, Random variables, moments, Moment Generating function and their properties.

STANDARD DISTRIBUTIONS

Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

TWO-DIMENSIONAL RANDOM VARIABLES

Marginal and conditional distributions, Covariance, Correlation and regression, Transformation of random variables, Central limit theorem.

RANDOM PROCESSES, MARKOV CHAIN

Classification, Stationary process, Markov process, Binominal process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

QUEUEING THEORY

Markovian queuing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity.

TEXT BOOKS:

1.Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai ,2012.

2. P.Kandasamy, K.Thilagavathy, K.Gunavathy "Probability, Random Variables and Random Processes" S.Chand & Company Ltd., New Delhi, 2008.

REFERENCES:

1.T.Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi ,2008.

2. Kapur.J.N. and Saxena.H.C. "Mathematical Statistics", S.Chand & Company Ltd. New Delhi, 1997.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.M.Usha	Assistant Professor	Maths	usharadha85@gmail.com
2	Dr.S.Punitha	Assistant Professor	Maths	puni.jeeju80@gmail.com

17D(~ BS 07			Р	HYSIC	CAL SO	CIENC	ES			Categor	y L	Т	Р	Credit
1/1	_D302		Р	ART A	- ENG	SINEE	CS		BS	2	0	0	2		
PREA Engine concep and dif	MBLE ering Pl ts of las ferent ty	hysics i ser, typ ypes of	s the ap es of la non-de	oplications oplica	on of th e propa e techn	e conce agation iques w	epts of j of light vill help	physics t throug an eng	to vario gh fibers ineer to	ous techr s, applica analyze	ological ations of and desi	applicat optical gn vario	ions. U fibers in us equip	nderstar commu oments.	nding the inication
PRER	EQUIS	ITE – I	Nil												
COUR	SE OB	JECTI	VES												
1	To rec	call the	propert	ties of la	aser and	l to exp	lain pri	nciples	of laser						
2	To ex	amine t	he appl	ications	s of lase	er.									
3	To ou	tline th	e princi	ples of	fibre oj	ptics.									
4	To ex	amine t	he appl	ication	s of fibr	e optic	5.								
5	To ex	plain va	arious t	echniqu	ies used	l in Nor	n-destru	ictive te	esting.						
COUR	SE OU	TCOM	1ES												
On th	ne succe	essful co	ompleti	on of th	ne cours	se, stude	ents wil	l be abl	e to						
1.	Define	the pri	nciples	of lase	r.								Unde	erstand	
2.	Use la	ser in d	esignin	g equip	ments.								Appl	у	
3.	Explai	n the p	rinciple	s of fib	er optic	s & the	propag	ation o	f light i	n optical	fibers.		Unde	erstand	
4.	Utilize	fibre c	ptics in	n comm	unicatio	on syste	ms and	sensor	s.				Appl	у	
5.	Inspec	t mater	ials usi	ng non	-destruc	ctive tes	sting teo	chnique	s.				Anal	yze	
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	L	L											
CO2	S	S	М	М	S	М			L			М			
CO3	L	М	L	L											
CO4	S	S	М	М	S	М			L			М			
CO5	S	S	М	М	S	М			М			М			
S- Stro	ng; M-N	Mediun	n; L-Lo	w											

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

FIBRE OPTICS: Principle and propagation of light in optical fibres – numerical aperture and acceptance angle – types of optical fibres (material, refractive index, mode) – Applications: Fibre optic communication system – fibre optic displacement sensor and pressure sensor.

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK:

1. "Engineering Physics", compiled by Department of Physics, Vinayaka Missions University, Salem.

REFERENCES:

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday. D, Resnick. R, Walker. J, Fundamentals of Physics, Wiley & Sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, Dhanpat Rai publishers, New Delhi, 2001.

4. Avanadhanulu. M. N., Arun Murthy. T. V. S, Engineering Physics Vol. I, S. Chand, 2014.

5. Rajendran. V, Engineering Physics, Tata Mc Graw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

(PART B - ENGINEERING CHEMISTRY) BS 2 0 0 2 PREAMBLE Figineering Chemistry explains the fundamentals of Engineering Chemistry and helps the learners to understand the applications of Engineering Chemistry. The electrodes, Cell and batteries study gives a clear idea about electrochemistry. Water technology study gives the initiative about softening of water, desalination and corrosion. Conventional and Non-conventional energy field is essential for the current scenario and the advanced engineering materials are needed for our fast growing life style. PREREQUISITE - Nil COURSE OBJECTIVES 1 To impart fundamental knowledge in Chemistry so that the student will understand the engineering concept and can face the forthcoming years as well as the industry effectively. 2 To have a clear knowledge of electrochemistry, cells and electrodes. 3 3 To familiarizes the type of batteries and fuel cell. 4 To lay foundation for practical applications of water softening and desalination in engineering aspects. 5 5 To inculcate the knowledge of cells and electrodes. Apply COLO. Understand the vital knowledge of cells and electrodes. Apply COLO. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the applications of water softening. Apply </th <th>17PC</th> <th colspan="12">17PCBS02PHYSICAL SCIENCES (PART B - ENGINEERING CHEMISTRY)CategoryLTPCreditBS2002</th>	17PC	17PCBS02PHYSICAL SCIENCES (PART B - ENGINEERING CHEMISTRY)CategoryLTPCreditBS2002																	
PREAMBLE Engineering Chemistry explains the fundamentals of Engineering Chemistry and helps the learners to understand the applications of Engineering Chemistry. The electrodes, Cell and batteries study gives a clear idea about electrochemistry. Water technology study gives the initiative about softening of water, desalination and corrosion. Conventional and Non-conventional energy field is essential for the current scenario and the advanced engineering materials are needed for our fast growing interstates the sential for the current scenario and the advanced engineering materials are needed for our fast growing integrates by the sential for the current scenario and the advanced engineering materials are needed for our fast growing integrates by the sential for the current scenario and the advanced engineering materials are needed for our fast growing integrates by the sential for the current scenario. To impart fundamental knowledge in Chemistry so that the student will understand the engineering concept and can face the forthcoming years as well as the industry effectively. 2 To have a clear knowledge of electrochemistry, cells and electrodes. 3 To inculcate the knowledge of fuel, this is essential for current scenario. Ourdestitic completion of the course, students will be able to COI. Understand the vielge of cells and electrodes. Apply COI. Understand the vielge of cells and electrodes. Apply COI. Understa		2502		(PA	RT B -	ENGI	NEERI	ING CI	HEMIS	STRY)		BS		2	0	0		2	
PREREQUISITE - Nil COURSE OBJECTIVES 1 To impart fundamental knowledge in Chemistry so that the student will understand the engineering concept and can face the forthcoming years as well as the industry effectively. 2 To have a clear knowledge of electrochemistry, cells and electrodes. 3 To familiarizes the type of batteries and fuel cell. 4 To lay foundation for practical applications of water softening and desalination in engineering aspects. 5 To inculcate the knowledge of fuel, this is essential for current scenario. COURSE OUTCOMES On the successful completion of the course, students will be able to COL Understand the vital knowledge in Engineering Chemistry helps the learners in future studies. COL Employ the basic knowledge of cells and electrodes. Apply COL Apply desalination process with engineering aspects. Apply COTOOMES Mapply COL Apply desalination process with engineering aspects. Apply COS Discuss about conventional and non-conventional fuel for the current scenario. Understand COS PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 <td colspan<="" td=""><td>PREA Engine applica Water conver fast gro</td><td>MBLE eering C ations of technol ational e owing li</td><td>Chemist f Engin ogy stu energy f fe style</td><td>ry expl eering (dy give field is</td><td>ains the Chemist es the ir essentia</td><td>e funda try. The nitiative al for th</td><td>umental e electro e about ne curro</td><td>s of En odes, C softeni ent scer</td><td>ngineeri ell and ng of w nario an</td><td>ing Che batterie vater, de d the a</td><td>emistry a es study g esalinatic dvanced</td><td>and help gives a c on and co engineer</td><td>s the lear prrost</td><td>e lear idea a ion. (mater</td><td>ners to about e Conven ials are</td><td>unde lectro tional e need</td><td>erstar chen and led fo</td><td>nd the nistry. Non- or our</td></td>	<td>PREA Engine applica Water conver fast gro</td> <td>MBLE eering C ations of technol ational e owing li</td> <td>Chemist f Engin ogy stu energy f fe style</td> <td>ry expl eering (dy give field is</td> <td>ains the Chemist es the ir essentia</td> <td>e funda try. The nitiative al for th</td> <td>umental e electro e about ne curro</td> <td>s of En odes, C softeni ent scer</td> <td>ngineeri ell and ng of w nario an</td> <td>ing Che batterie vater, de d the a</td> <td>emistry a es study g esalinatic dvanced</td> <td>and help gives a c on and co engineer</td> <td>s the lear prrost</td> <td>e lear idea a ion. (mater</td> <td>ners to about e Conven ials are</td> <td>unde lectro tional e need</td> <td>erstar chen and led fo</td> <td>nd the nistry. Non- or our</td>	PREA Engine applica Water conver fast gro	MBLE eering C ations of technol ational e owing li	Chemist f Engin ogy stu energy f fe style	ry expl eering (dy give field is	ains the Chemist es the ir essentia	e funda try. The nitiative al for th	umental e electro e about ne curro	s of En odes, C softeni ent scer	ngineeri ell and ng of w nario an	ing Che batterie vater, de d the a	emistry a es study g esalinatic dvanced	and help gives a c on and co engineer	s the lear prrost	e lear idea a ion. (mater	ners to about e Conven ials are	unde lectro tional e need	erstar chen and led fo	nd the nistry. Non- or our
COURSE OBJECTIVES 1 To impart fundamental knowledge in Chemistry so that the student will understand the engineering concept and can face the forthcoming years as well as the industry effectively.	PRER	EQUIS	SITE - N	Nil															
1 To impart fundamental knowledge in Chemistry so that the student will understand the engineering concept and can face the forthcoming years as well as the industry effectively. 2 To have a clear knowledge of electrochemistry, cells and electrodes. 3 To familiarizes the type of batteries and fuel cell. 4 To lay foundation for practical applications of water softening and desalination in engineering aspects. 5 To inculcate the knowledge of fuel, this is essential for current scenario. OURDESE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the vital knowledge in Engineering Chemistry helps the learners in future studies. On the successful completion of the course, students will be able to CO2. Employ the basic knowledge of cells and electrodes. Apply CO4. Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. CO6 Generalize polymers and smart materials. Apply CO5 CO6 CO7 CO7 CO7<	COUR	RSE OB	JECTI	IVES															
2 To have a clear knowledge of electrochemistry, cells and electrodes. 3 To familiarizes the type of batteries and fuel cell. 4 To lay foundation for practical applications of water softening and desalination in engineering aspects. 5 To inculcate the knowledge of fuel, this is essential for current scenario. COURSE OUTCOMES On the successful completion of the course, students will be able to COL. Understand the vital knowledge of cells and electrodes. Apply CO2. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the applications of water softening. CO4. Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO6 Generalize polymers and smart materials. Apply MAPPING WTTH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 M M M <	1	To im can fa	part fui ce the f	ndamen forthcoi	ital knov ning ye	wledge ars as v	in Chei vell as t	mistry s he indu	so that t stry eff	he stude	ent will ı y.	ınderstar	nd the	e engi	ineerin	g cono	cept a	and	
3 To familiarizes the type of batteries and fuel cell. 4 To lay foundation for practical applications of water softening and desalination in engineering aspects. 5 To inculcate the knowledge of fuel, this is essential for current scenario. COURSE OUTCOMES On the successful completion of the course, students will be able to COL. Understand the vital knowledge in Engineering Chemistry helps the learners in future studies. CO2. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the applications of water softening. CO4 Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. CO6 Generalize polymers and smart materials. Apply MAPPING WTH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 CO3 PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 M M M A	2	To ha	ve a cle	ear know	wledge	of elect	rochem	istry, c	ells and	electro	odes.								
4 To lay foundation for practical applications of water softening and desalination in engineering aspects. 5 To inculcate the knowledge of fuel, this is essential for current scenario. COUNCESSION COMESSION COMPLETION of the course, students will be able to COL Understand the vital knowledge of cells and electrodes. Apply COL Second to apply desalination process with engineering aspects. Apply COL Second to apply desalination process with engineering aspects. Apply COL Second to apply desalination process with engineering aspects. Apply COL Second to apply desalination process with engineering aspects. Apply COL Second to apply desalination process with engineering aspects. Apply COL Second to apply desalination process with engineering aspects. POID 10 POID	3	To fai	miliariz	es the t	ype of b	oatteries	s and fu	el cell.											
To inculcate the knowledge of fuel, this is essential for current scenario. COURSEOUTCOMES On the successful completion of the course, students will be able to On the successful completion of the course, students will be able to COLUNderstand the vital knowledge of cells and electrodes. Apply CO3. Duronstrate the applications of water softening. Apply CO4. Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO5. Discuss about conventional fuel for the current scenario. Understand CO5. Discuss about conventional fuel for the current scenario. Understand CO5. MM M	4	To lay	y found	ation fo	or practi	cal app	lication	s of wa	ter soft	ening a	nd desali	nation ir	n engi	ineeri	ing asp	ects.			
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the vital knowledge in Engineering Chemistry helps the learners in future studies. Understand: CO2. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the application process with engineering aspects. Apply CO4. Apply dealination process with engineering aspects. Apply CO5. Discuss about conventional non-conventional fuel for the current scenario. Understand CO6 Generalize polymers at structuration. CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1	5	To inc	culcate	the kno	wledge	of fuel	, this is	essenti	al for c	urrent s	cenario.								
On the successful completion of the course, students will be able to CO1. Understand the vital knowledge in Engineering Chemistry helps the learners in future studies. Understand CO2. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the applications of water softening. Apply CO4. Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO6 Generalize polymers and smart materials. Apply MAPPLY MAPPLY MAPPLY MAPPLY MAPPLY CO4. Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand MAPPLY MAPPLY MAPPLY MAPPLY MAPPLY MAPPLY MAPPLY MAPPLY MAPPLY	COUR	URSE OUTCOMES																	
CO1. Understand the vital knowledge in Engineering Chemistry helps the learners in future studies. Understand CO2. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the applications of water softening. Apply CO4. Apply desalination process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO6 Generalize polymers and smart materials. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5. Discuss About Conventional and non-conventional fuel for the current scenario. Understand CO6 Generalize polymers and smart materials. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 M M M M M CO3 M S M M M<	On the	success	sful con	npletior	n of the	course,	studen	ts will l	be able	to									
OPUTE PROPERTIES IN TRADEPORTING OF CELLS and electrodes. Apply CO2. Employ the basic knowledge of cells and electrodes. Apply CO3. Demonstrate the application process with engineering aspects. Apply CO4. Apply desalination process with engineering aspects. Optimize the current scenario. Understand CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO6 Generalize polyments waterials. Apply MAPPLY MAPPLY VETHERETIES WETERETIES OPOT PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO6 PO1 PO1 <po1<po11< th=""> PO12 PS01 PS02 PS03 CO1 M M CO2 M M CO2 PO1 PO1<po1<po1<po1<po1<po1<po1<po1<po1<po1<< td=""><td>CO1. U</td><td>Jndersta studies.</td><td>and the</td><td>vital kn</td><td>lowledg</td><td>e in En</td><td>gineeri</td><td>ng Che</td><td>mistry ł</td><td>nelps the</td><td>e learner</td><td>s in</td><td>Unde</td><td>erstan</td><td>ıd</td><td></td><td></td><td></td></po1<po1<po1<po1<po1<po1<po1<po1<po1<<></po1<po11<>	CO1. U	Jndersta studies.	and the	vital kn	lowledg	e in En	gineeri	ng Che	mistry ł	nelps the	e learner	s in	Unde	erstan	ıd				
OPPORTANCE OF CONSTRUCTION OF WATER SOFTENTING. Apply CO3. Demonstrate the applications of water softening. Apply CO4. Apply description process with engineering aspects. Apply CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO6 Generalize polyments and mon-conventional fuel for the current scenario. Output: Second Colspan="6">Understand MAPPIY MAPPIY VENE VENE VENE VENE VENE VENE VENE VENE	CO2. I	Employ	the basi	ic know	ledge o	of cells a	and ele	ctrodes					Appl	y					
OPPONE OF COMPANIATION PROCESS WITH ENGINEERING ASSESSION OF COMPANIATION OF COMPA	CO3. I	Demons	trate the	e applic	ations o	of water	soften	ing.					Appl	y					
CO5. Discuss about conventional and non-conventional fuel for the current scenario. Understand CO5. Discuss about conventional and non-conventional fuel for the current scenario. Apply CO6 Generalize polyments and non-conventional fuel for the current scenario. Apply MAPPING WITH PROFENSION EXCOVED CO5 PO1 PO2 PO3 PO6 PO7 PO8 PO10 PO11 PO12 PS01 PS02 PS03 CO5 PO1 PO1 PO1 PO11 PO12 PS01 PS02 PS03 CO1 M M conspan="6">Conspan="6">M M PO1 PO11 PO12 PS01 PS02 PS03 CO2 M M Co1 Co1 S M M Co1 Co1 S <th colspan="</td> <td>CO4. A</td> <td>Apply de</td> <td>esalinat</td> <td>ion pro</td> <td>cess wit</td> <td>th engir</td> <td>neering</td> <td>aspects</td> <td>5.</td> <td></td> <td></td> <td></td> <td>Appl</td> <td>y</td> <td></td> <td></td> <td></td> <td></td>	CO4. A	Apply de	esalinat	ion pro	cess wit	th engir	neering	aspects	5.				Appl	y					
OC06 Generalize polywers and smart materials. Apply MARPINE VIEW SUPPORT SUPPORT SUPPORT SUPPORT SUPPORT COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M M M M M PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M M M M M M PO10 PO11 PO12 PS01 PS02 PS03 CO2 M M M M M M M PO10 PO11 PO12 PS01 PS02 PS03 CO2 M M M M M S S PO10 PO11 PO12 PS01 PO10 PO11 <t< td=""><td>CO5. I</td><td>Discuss</td><td>about c</td><td>onventi</td><td>onal an</td><td>d non-c</td><td>convent</td><td>ional fu</td><td>el for t</td><td>he curre</td><td>ent scena</td><td>rio.</td><td>Unde</td><td>erstan</td><td>ıd</td><td></td><td></td><td></td></t<>	CO5. I	Discuss	about c	onventi	onal an	d non-c	convent	ional fu	el for t	he curre	ent scena	rio.	Unde	erstan	ıd				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M M M M M M M M M	CO6 G	eneraliz	ze polyı	ners an	d smart	materi	als.						Appl	y					
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M M M M M M M M M M M M <td>MAPP</td> <td>PING W</td> <td>ITH P</td> <td>ROGR</td> <td>AMMI</td> <td>E OUT</td> <td>COME</td> <td>S ANE</td> <td>) PRO(</td> <td>GRAM</td> <td>ME SPE</td> <td>CIFIC</td> <td>OUT</td> <td>CON</td> <td>1ES</td> <td></td> <td></td> <td>[</td>	MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S ANE) PRO(GRAM	ME SPE	CIFIC	OUT	CON	1ES			[
CO1 M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M S M S I	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PSO	02	PSO3	
CO2 M M M M M I S I I I I CO3 M S M I I S M I	CO1	М	М	М			М	Μ					1	М		-	-		
CO3 M S M S M Image: S Image: S <thimage: <="" s<="" td=""><td>CO2</td><td>М</td><td>М</td><td>М</td><td></td><td></td><td>М</td><td>Μ</td><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td>-</td><td>-</td><td></td></thimage:>	CO2	М	М	М			М	Μ						S		-	-		
CO4 M M M M M S S S <td>CO3</td> <td>М</td> <td>S</td> <td>М</td> <td></td> <td></td> <td>S</td> <td>Μ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td>-</td> <td>-</td> <td></td>	CO3	М	S	М			S	Μ						S		-	-		
CO5 M M L M S I S I I I I CO6 M M M I M M I <t< td=""><td>CO4</td><td>М</td><td>М</td><td>М</td><td></td><td></td><td>M</td><td>M</td><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td>-</td><td>-</td><td></td></t<>	CO4	М	М	М			M	M						S		-	-		
CO6 M M M S S	CO5	M	M	L			M	S						S		-	-		
S- Strong; M-Medium; L-Low	CO6	М	М	М			Μ	М						S		-	-		
	S- Stro	Strong; M-Medium; L-Low																	

Category L T P

Credit

ELECTROCHEMISTRY, BATTERIES AND FUEL CELLS

Electrode potential - Nernst equation - Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H₂-O₂ fuel cell)

WATER TECHNOLOGY AND CORROSION

Sources of water - impurities - Hardness and its determination (problems to be avoided) - boiler troubles - water softening (Zeolite & Demineralisation) - Domestic water treatment - Desalination (Electrodialysis & ReverseOsmosis).

FUELS AND CHEMISTRY OF ADVANCED MATERIALS

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) - Calorific Value of a fuel -- Non Petroleum Fuels --Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXTBOOK:

1. "Engineering Chemistry", Department of Chemistry, Vinayaka Missions University, Salem.

REFERENCES:

- "A text book of Engineering Chemistry", S.S. Dara, S.Chand & company Ltd., New Delhi.
 "Engineering Chemistry", Jain & Jain, 15th Edition, Dhanpatrai Publishing Company (P) Ltd., New Delhi.
- 3. "A text book of Engineering Chemistry", Shashi Chawla, Edition 2012, Dhanpatrai & Co., New Delhi.
- 4. "Engineering Chemistry", Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Shanthi	Professor	Chemistry	shantht@vmkvec.edu.in

170	17CHBS01Environmental Science & Engineering (Common to All Branches)CategoryLTPCreditFC(BS)3003												Credit		
				((Commo	n to Al	l Bran	ches)			FC(BS)	3	0	0	3
PREA Enviror and at relation Enviror	MBLE nmental mosphe nships, a nmental	l scienc ric sci a soluti l engine	te is an i ences. on to the ering for	interdiso Enviro ne envir ocuses o	ciplinar onment onment on susta	y field al stud al and inable	that intended of the second se	egrates o incor elated poment fo	physica rporate problem or impro	I, chem the so is and c oving er	ical, biolo cial scier onserving wironmen	gical, inf aces for the envir tal qualit	ormatic unders ronmen y in eve	on, telen canding t for the ory aspe	nedicine human future. ct.
PRER NIL	EQUIS	ITE													
COUR	SE OB	JECT	IVES												
1	To cre	eate the	awaren	less of e	nviron	ment st	udies ar	nd its sc	ope						
2	To inc	culcate	the kno	wledge	of sign	ificance	e and co	onservir	ng the n	atural re	esources.				
3	To help the learners to know the value of ecosystem and food chain.														
4	To assess the importance of biodiversity														
5	To familiarizes the different pollution sources, consequences and its control measures.														
6	To educate the ways and means to manage natural calamities.														
7	To help the learners to know the urban energy related problems and social issues.														
COUR	SE OU	TCON	1ES												
On the	success	ful cor	npletion	of the	course,	student	ts will t	e able t	0						
CO1.Dis	scuss an ivironm	d appre ient.	eciate th	e unity	of life i	n all its	s forms,	, the im	plicatio	ns of lif	e style	Understa	nd		
CO2.Init	tiate the	aware	ness and	l recogr	ize the	social	respons	ibility i	n enviro	onmenta	al issues.	Apply			
CO3.Illu	istrate tl	ne impo	ortance	of ecosy	/stem a	nd biod	iversity	1				Apply			
CO4. Int	erpret t	he soci	ety on t	he varic	us poll	utions a	and thei	r impac	t.			Apply			
CO5.De	monstra	te the S	Solid wa	aste and	disaste	er mana	gement	•				Apply			
CO6.Red	cognize	the iss	ues of e	nvironn	nent an	d sustai	nable d	evelopr	nent			Understa	nd		
CO7.Scł	nedule t	he urba	n probl	ems and	l social	issues.						Apply			
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC C	OUTCON	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	S	S	S	-	-	-	S			
CO2	<u>S</u>	M	M	-	-	S	S	S	-	-	-	S			
CO4	<u>S</u>	S	S	- L	-	S	S	S	-	_	-	S			
CO5	S	S	S	M	-	S	S	S	-	-	-	S			
CO6	S	S	S	М	-	S	S	S	-	-	-	S			
CO7	S	S	S	М	-	S	S	S	-	-	-	S			
S- Stro	Strong; M-Medium; L-Low														

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION

Pollution - Definition , man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

TEXT BOOKS:

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES:

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India.
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I &II, EnviromediA.
- 4. Environmental Science and Engineering by Dr. J. Meenambal ,MJP Publication , Chennai Gilbert M. Masters : Introduction to Environmental Engineering and Science , Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.
- 5. Miller T.G. Jr Environmental Science Wadsworth Publishing Co.
- 6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Shanthi,	Professor and Head	Chemistry	shantht@vmkvec.edu.in

									Cate	gory	L	Т	Р		Credit
17PHB	BS05		SN	ART	MATE	RIALS	5								
									В	S	3	0	0		3
PREAM	IBLE												•		
Smart M	Aateria	ls give	es an o	utlook	about	various	types	of ma	terials	having]	potential	applicat	tion in l	Engineer	ing and
Technol	ogy. I	n partic	cular, S	tudents	learn a	bout Si	nart M	aterials	and the	eir applic	cations, I	Properties	s of Crys	talline N	Aaterials
& Nanoi	materia	als, Cha	racteris	stics of	Magnet	tic mate	rials. T	They als	so get a	clear pic	ture abo	ut superc	onductin	g mater	als.
PRERQ	UISII	E		-											
COURS	SE OB.	JECTI	VES												
1	To exp	olain th	e prope	rties of	smart r	naterial	S								
2	To demonstrate the structure of crystalline materials														
3	To examine the synthesis of Nano materials														
4	To explain the properties and classification of magnetic materials														
5	To out	line the	e conce	pt of su	percon	ducting	materia	als and	their pr	operties					
COURS	SE OU	тсом	IES												
On the s	uccess	ful con	pletion	of the	course,	student	s will b	e able	to						
CO1. Ut	ilize th	e smar	t materi	ials for	designi	ng equi	pments					Apply			
CO2. Int	terpret	the stru	icture o	of crysta	lline m	aterials						Apply			
CO3. De	evelop	equipn	nents us	ing nan	omater	ials						Analyze			
CO4. Us	se the p	oroperti	es of m	agnetic	materi	als in de	esigning	g equip	ments			Apply			
CO5. De	evelop	the effi	ciency	of supe	rcondu	cting m	aterials					Analyze			
MAPPI	NG W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				Μ			М			
CO2	S	М	S	М	S				М			М			
CO3	S	S	S	S	S				S			М			
CO4	S	М	S	М	S				М			М			
CO5	S	S	S	S	S				S			М			
S- Stron	g; M-N	/ledium	; L-Lov	N											-

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

1. Mani P, Engineering Physics II, Dhanam Publications, 2011.

REFERENCES:

1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2009.

2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Dr. C. SENTHIL KUMAR	senthilbdu@gmail.com
2	Dr. R. SETHUPATHI	sethupathivmkv@gmail.com

17000691	PHYSICAL SCIENCES LAB:	Category	L	Т	Р	Credit
1770581	PART A – REAL AND VIRTUAL LAB IN PHYSICS	BS	0	0	2	1

PREAMBLE

Real and Virtual Lab in Physics trains the students to take readings with precision. The experiments involve the calculation of physical parameters. In addition to the above, the students have the hands-on experience in performing the experiments through virtual laboratory.

PRER	QUISIT	re – N	IL												
COUR	SE OB	JECTI	VES												
1	To im	part ba	sic skill	s in tak	ing rea	ding wi	th preci	ision of	physics	s experin	nents.				
2	To inc	culcate	the hab	it of ha	ndling e	equipmo	ents app	propriat	ely.						
3	3 To gain the knowledge of practicing experiments through virtual laboratory.														
4	To kn	ow the	importa	ance of	units.										
5	To ob	tain res	ults wit	h accur	acy.										
COUR	SE OU	TCOM	1ES												
On th	e succe	essful co	ompleti	on of th	e cours	se, stude	ents wil	l be abl	e to						
CO1.	Operat	te the e	quipme	nts with	n precis	ion.							Apply		
CO2. Practice to handle the equipments in a systematic manner. Apply															
CO3.	CO3. Demonstrate the experiments through virtual laboratory. Apply														
CO4.	Recog physic	nize the al parai	e impor meters a	tance of and in o	f units v btainin	while pe g result	erformi s.	ng expe	riments	s, during	calculati	ng the	Under	stand	
CO5.	Calcul	ate the	result w	with acc	uracy.								Analy	ze	
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	S				М			М			
CO2	S														
CO3	S	S	М	М	S							S			
CO4	S	S													
CO5	S	S													
S- Strop	ng; M-N	Medium	n; L-Lo	W											
SYLLA	ABUS														

- 1. Young's modulus of a bar Non-uniform bending.
- Rigidity modulus of a wire Torsional Pendulum.
- 2. 3. Viscosity of a liquid - Poiseuille's method.

- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer.
- 5. Particle size determination using Laser.
- 6. Wavelength of spectral lines grating Spectrometer.
- 7. Thickness of a wire Air wedge Method.
- 8. Thermal conductivity of a bad conductor Lee's disc.
- 9. Band gap determination of a thermistor Post Office Box.
- 10. Specific resistance of a wire Potentiometer.

LAB MANUAL

1. Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual, prepared by the faculty of Department of Physics, Vinayaka Mission's Kirupananda Variyar Engineering College, Salem (2017).

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.C.Senthil Kumar	Professor	Physics	senthilkumar@vmkvec.edu.in
2	Dr.R.Sethupathi	Assistant Professor	Physics	sethupathi@vmkvec.edu.in

1700	PHYSICAL SCIENCES LABCategoryL17PCBS81PART B - ENGINEERING CHEMISTRY LABData0												L	Т	Р	Cı	redit
1/PC	D201		PART	B - EN	IGINE	ERINO	G CHE	MIST	RY LAI	B	BS		0	0	2		1
PREA Engine student applica disadva	MBLE ering C s to und tion ori antages.	hemist lerstand ented Now-a	ry Lab d the ap knowle a-days t	experin plication dge abo he prac	nents e ns of E out elec tical an	explains Engineer ctrocher d handl	s the ba ring Ch mistry. ling of e	sics a emistr Water equipn	nd esser y. The e r technol nents are	ntials o lectrode logy st needeo	f Enginee es, Cell ar udy gives 1 for our f	ering nd bat the fast gr	Chen tteries idea rowin	nistry. s study about g life s	It als give hard style.	so hel s clea ness a	ps the r basic and its
PRER	QUISI	Γ E – N	IL														
COUR	SE OB	JECT	IVES														
1	To im	part ba	sic skil	ls in Ch	emistry	y so that	t the stu	dent v	vill unde	rstand	the engine	eering	g con	cept.			
2	To inc	culcate	the kno	wledge	of wat	er and e	electroc	hemis	try.								
3	To lay	/ found	ation fo	or practi	cal app	olication	ns of ch	emistr	y in engi	neering	g aspects.						
COUR	SE OUTCOMES																
On the	e successful completion of the course, students will be able to																
CO1. U	Understand the basic skills for his/her future studies. Understand																
CO2 A	nalyze	the wat	er com	prehens	ively.							Appl	y				
CO3. A	Apply th	e pract	ical kno	owledge	in eng	ineerin	g aspec	ts.				Appl	y				
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	ES ANI) PRC	OGRAM	ME SI	PECIFIC	OUT	ICO I	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	D12	PSO1	PS	SO2	PSO3
CO1	S	М	М		L	М	М	S				I	М				
CO2	S	М	М		L	М	М	L				I	М				
CO3	S	S	М		L	М	М	М				I	М				
S- Stro	ng; M-N	Mediun	n; L-Lo	W													
SYLLA 1. Dete 2. Estir 3. Acid 4. Estir 5. Dete 6. Estir 7. Estir 8. Estir TEXT 1. Engi	'LLABUS Determination of Hardness by EDTA method. Estimation of Hydrochloric acid by conductometric method. Acid Base titration by pH method. Estimation of Ferrous ion by Potentiometric method. Determination of Dissolved oxygen by Winkler's method. Determination of Sodium by Flame photometer. Estimation of Copper from Copper Ore Solution. Estimation of Iron by Spectrophotometer. EXT BOOK: Emeineering Chemistry Leb Mergel by VML																
COUR	SE DE	SIGNI	ERS														
S.No.	N	ame of	the Fa	culty		Desig	nation		Departn	nent			Μ	ail ID			
1.	Dr.T.ShanthiProfessorChemistryshantht@vmkvec.edu.in																

17EEES03

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING A. BASIC ELECTRICAL ENGINEERING

Category	L	Т	Р	Credit
ES	2	0	0	2

PREAMBLE

It is a preliminary course which highlights the basic concepts and outline of Electrical engineering. The concepts discussed herein are projected to deliver explanation on basic electrical engineering for beginners of all engineering graduates.

PREREQUISITE – Nil

COURSE OBJECTIVES

1	To understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering.														
2	To g meas	ain kno uring ir	owledg nstrume	e about ents.	t the w	orking	princi	ple, co	nstructi	on, appl	ication	of DC a	and AC	machin	es and
3 To understand the fundamentals of safety procedures, Earthing and Power system.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1: Explain the evolution of electricity, name the inventors, electrical quantities and basic laws of electrical engineering.															
CO2: I	Demons	strate O	hm's a	nd Fara	day's L	.aw.						Apply			
CO3: U and its	CO3: Understand the basic concepts of measuring instruments, electrical machineries understand														
CO4: Analyze the various types of electrical loads, power rating of electrical Analyze machineries and energy efficient equipment.															
CO5: Explain the electrical safety and protective devices. Understand															
CO6: 0 of conv	Compar vention	re the v al and 1	various 10n-cor	types e	lectrica nal sour	l power ces.	genera	ation sy	stems b	oy applic	cation	Analyze			
MAPF	PING V	VITH I	PROGI	RAMM	E OUI	COM	ES AN	D PRO	GRAM	IME SP	ECIFI	C OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L		S							L			
CO2	S	М	S	S					М	-		М			
CO3	L	S	L		S					L		L			
CO4	S	М	S	L	L	S	S			S		L			
CO5 L M S M S M M S L															
CO6	S	L	S	L	М	S	S			М		L			
S- Stro	S- Strong; M-Medium; L-Low														

HISTORY OF ELECTRICITY, OUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor & vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials - Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments - Analog and Digital meters - Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domestic load. Energy Efficient equipments – star ratings.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
 R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in

		BA	SICS	OF EL	ECTRI	ICAL A	AND E	LECTI	RONIC	CS Category L T P Credit						redit
17EE	ES03		B. BA	SIC EI	LECTR	RONIC	S ENG	INEEF	RING		ES	2	0	0		2
PREAT The co engined transist etc. It c	'REAMBLE The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and ransistors. It enables the student to design small digital logics like multiplexer, demultiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems.															
PRER	QUISI	ΓΕ – Ν	IL													
COUR	SE OB	JECT	IVES													
1	1 To learn and identify various active and passive components and their working principles.															
2	To understand the number conversion systems.															
3	To lea	rn the c	ligital l	ogic pri	nciples	and rea	alize ad	lders, m	ultiple	ker, etc.	,					
4	To understand the application oriented concepts in the communication systems.															
COUR	JRSE OUTCOMES															
On the	In the successful completion of the course, students will be able to															
CO1. Odiodes	O1. Classify the electronic components and make out the working principle of Understand															
CO2. E	Explore	the wor	rking p	rinciple	of rect	ifiers, r	egulato	rs and t	ransisto	ors.		Analyze				
CO3. E	Execute	numbe	r syster	n conve	ersions	and dig	ital logi	ic opera	ations.			Apply				
CO4. I	Realize	the des	sign of	adders	, Multi	plexer,	De-Mu	ltiplexe	er, Enco	oder, D	ecoder	Analyze				
CO5. F	Familiar	ize witl	h applic	cation o	riented	concep	ts in th	e comm	nunicati	on syst	ems.	Understa	ind			
MAPP	'ING W	ITH P	ROGR	RAMM	E OUT	COME	ES ANI) PRO	GRAM	ME SI	PECIFIC	OUTCO	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P	SO2	PSO3
CO1	М	М											Μ			
CO2	S	М	М	L									S		L	
CO3	S	М	L										S			
CO4	S	М	М	L									S		L	
CO5	М	L										L	М			
S- Stro	ng; M-l	Mediun	n; L-Lo	W												
SYLL	SYLLABUS															

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2017.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in				
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in				

17CN	1ES02	E	BASICS OF CIVIL AND MECHANICAL ENGINEERING PART A- BASICS OF CIVIL					L VIL	Categ	gory	L	Т	Р	Credit	
					ENGIN	NEERI	NG			FC(F	ES)	2	0	0	2
PREAD	MBLE														
	The a	aim of t	he subj	ect is to	provid	le a fun	dament	al know	ledge o	of basic (Civil Eng	gineerin	g		
PRER	EQUIS	ITE													
	NIL														
COUR	SE OB	JECTI	VES												
1	1 To understand the basic concepts of surveying and construction materials.														
2	2 To impart basic knowledge about building components.														
COUR	SE OU	TCOM	IES												
On th	On the successful completion of the course, students will be able to														
CO1.	An abil	ity to a	pply kn	owledg	e of ma	themat	ics, scie	ence, ar	ıd engir	neering.				Apply	
CO2.	An abi	bility to design and conduct experiments, as well as to analyze and interpret data . Apply													
MAPP	ING W	ITH P	TH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO^2	S	M		-	M M	S	-	-	- M	-	-	-		-	-
S- Stroi	52 S M L S M S N S -														
SYLLABUS															
SURVI SURVI determi	EYING EYING ination ENGI	AND Obje of areas NEERI	CIVIL ects – s – illus NG M	ENGII types - trative (ATERI	NEERI - classi exampl	NG M ification es. Bricks -	ATERI n – pri – stones	ALS inciples = – sand	– me – ceme	easureme ent – con	nts of c crete – s	listance teel sec	s – ang tions.	es – lev	elling –
BUILD FOUN SUPER	DING C DATIC RSTRU	OMP ONS: T ₁	DNEN'I ypes, B E: Bric	earing c k maso	STRU capacity nry – st	JCTUR 7 – Req	ES : uiremen asonry -	nt of go	od four s – colu	ndations. mns – lir	ntels – ro	ofing –	flooring	– plasteri	ng –
Design	and La	ndscapi	ing.		1 ces - s	suess –	su ani -	- elastic	$\ln y - 1$	ypes of r	sindges a	ilu Dali	1S - Daste	s of filter	101
техт	BOOK	S:	U												
1. DEEE	1."Bas	sic Civi	l and M	lechanic	al Eng	ineerin	g", VM	U, (201	7). Cor	npany Lt	d., New	Delhi,2	009		
KEFE	Ramai	LS: nruthar	n S., "E	Basic Ci	vil Eng	ineerin	g". Dh	annatra	i Publis	shing Co.	(P) Ltd	. 2009.			
2.	Seetha	raman	S., "Ba	sic Civi	l Engin	eering'	', Anur	adha A	gencies			,			
COUR	COURSE DESIGNERS														
S. No.	Nam	e of the	e Facult	y	Desig	gnation		Depa	artment	t]	Mail ID			
1	S. Sı	upriya			Assis	t. Profe	ssor	CIV	IL		j	jansupri	yanair@	gmail.con	1
2	С. К	athirve	1	_	Assis	t. Profe	ssor	CIV	IL		1	geology	kathir@g	mail.com	

17CMES02	PART B-BASICS OF MECHANICAL	Category	L	Т	Р	Credit
1101111001	ENGINEERING	FC(ES)	2	0	0	2

Preamble

Basic Mechanical Engineering gives the fundamental ideas in the areas of engineering design, manufacturing and Automobile engineering. An engineer needs to understand, the basic manufacturing techniques and working principle of an Automobile Engineering Components.

PRERQUISITE

NIL

COURSE OBJECTIVES

1 To demonstrate the principles of casting and metal joining processes in manufacturing.

2 To describe and to apply the in depth knowledge in automotive engines and important components.

COURSE OUTCOMES

On the successful completion of the course, students will be able to	
Illustrate the application of casting and metal joining processes in manufacturing	Apply
Demonstrate the operation of automotive engines and important components	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	Μ	Μ	L	L	Μ	-	-	-	-	-	М	L	-	-	
CO2	S	Μ	L	L	L	Μ	-	-	-	-	-	Μ	L	-	-	
S- Stro	S- Strong; M-Medium; L-Low															

SYLLABUS

FOUNDRY AND WELDING

Foundry: Introduction to Casting - Types, Pattern- Definition, Function. Foundry tools. Green Sand Moulding application. Welding: Introduction to welding, Classification – Gas welding, Arc Welding, TIG, MIG, Plasma – Definitions. Arc Welding - Methods and Mechanisms – Applications.

AUTOMOTIVE ENGINES AND COMPONENTS

Introduction, Two stroke and four stroke cycle – Petrol and Diesel Engines - Construction and working, Fundamentals of automotive components - Brakes, Clutches, Governor, Flywheel, Axles, Drives etc., Fuel supply systems, Exhaust emission and control.

TEXT BOOKS:

1. Basic Civil and Mechanical Engineering, School of Mechanical Engineering Sciences, VMU, Salem **REFERENCES:**

1. K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai.

2. NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida .

3. TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai

S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.in							
2	T.Raja	Assistant Professor	Mech / VMKVEC	rajat@vmkvec.edu.in							

1500	601	Category L T										Р	Cre	edit		
1/05	E201		E88	ENTIA	ALS OI	COM	PUTI	NG		ES		3	0	0		3
PREAN This co emphas applica	PREAMBLE This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles application packages. Studying the fundamentals concepts of Algorithms, to resolve the real world application.															
PRER	RERQUISITE – Nil															
	OURSE OBJECTIVES															
1	To pro	ovide ba	asic kno	wiedge	e of har	dware a	ind soft	ware con	mpone	nts of co	mputers.					
2	To int	roduce	and der	nonstra	te vario	ous soft	ware ap	plication	n packa	ages.						
3	To stu	dy Prol	blem so	lving T	echniqu	ues and	progra	m develo	opment	t cycle.						
4	To lea	rn abou	it vario	us algoi	rithm ar	nd ident	tifying	the algor	rithm e	fficiency						
5	To lea	rn diffe	erent alg	gorithm	for var	ious ap	plicatio	on.								
COUR	RSE O	UTCO	MES													
On the	On the successful completion of the course, students will be able to															
CO1. E	Basic kr	nowledg	ge on ha	rdware	and so	ftware	ermino	logies.				F	Reme	mber a	nd Under	rstand
CO2. I	Demons	tration	about v	arious A	Applica	tion Pa	ckages	like MS	-word,	MS-Ex	cel etc.	A	Apply			
CO3. Technic	Unders ques.	tand P	rogram	Devol	vement	Cycle	e and	apply v	arious	Probler	n Solviı	ng (Under	stand,	Apply.	
CO4. I	dentifyi	ing and	analyzi	ng the	efficien	cy of A	lgorith	ms.				τ	Under	stand.		
CO5. I	mpleme	entation	of Alg	orithms	s for va	rious co	oncepts.					J	Under	stand a	nd Appl	у
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROG	RAMM	E SPEC	CIFI	C OU	JTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12 1	PSO1	PSO2	PSO3
CO1	S													S	М	
CO2	S	М												S	М	L
CO3	S	S	S		М									S	L	
CO4	S	S	S		S									S	М	
CO5	S	М	М		М									S	М	
S- Stro	Strong; M-Medium; L-Low															

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of

Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004

2004.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.V.Amirthalingam	Associate Professor	Computer Science and Engineering	amirthalingam@vmkvec.edu.in
2	Mrs.T.Geetha	Assistant Professor	Computer Science and Engineering	geetha@vmkvec.edu.in

17CSES05		PROGRAMMING IN PYTHON					(CATEC	GORY	L	Т	Р	CRE	EDIT	
							FC(E	ES)	3	0	0	-	3		
PREAM	PREAMBLE														
The purpo	ose of	f this c	ourse i	s to int	oduce	Python	, a rema	ırkably	power	ful dynai	mic pro	gramm	ing lang	uage to	write
code for c	differ	ent op	erating	system	s along	with a	pplicati	on don	nain. Py	ython has	s evolve	ed on m	ore pop	ular and	t
powerful	open	source	e progr	amming	g tool										
PRERQU	UISI	ГЕ													
NIL															
COURSE	E OB	JECT	IVES												
1 T	lo pro	ovide b	asic kn	owledg	ge on P	ython p	rogram	ming c	oncepts	5.					
2 T	lo inti	roduce	differe	ent metl	nods in	list, str	ing, tup	le, dic	tionary	and sets.	•				
3 T	lo cor	npute	differe	nt prog	ams us	ing pyt	hon cor	ntrol st	atemen	ts.					
4 T	To lea	rn abo	ut diffe	rent fu	nctions	in pyth	on.								
5 T	To cor	npute	the exc	eption	handlin	g funct	ions, fil	e conc	epts an	d CSV a	nd JSO	N.			
COURSI	E OU	TCO	MES												
On the su	iccess	ful co	mpletic	on of the	e cours	e, stude	nts will	be ab	le to						
CO1. Lea	CO1. Learn python statements, comments and indentation, tokens, input and output Remember and														
methods	using	variou	is exan	ple pro	ograms.							Under	stand		
CO2. Lea	arn th	e diffe	rent me	ethods i	nvolve	d in Lis	t, String	g, Tup	les and	Dictiona	ry.	Apply			
CO3. Des	sign s	olutio	ns for c	omplex	a progra	ams usi	ng decis	sion m	aking a	nd loopi	ng	Under	stand an	d Appl	у.
statement	ts.														
CO4. Dev	velop	the fu	nction	prograr	ns with	all the	concep	ts like	lambda	i, decorat	tors	Under	stand, A	pply ar	ıd
and gener	rators	1		1 11	•		C'1			1		analyz	e.		
CO5. Coi	mpute	e the ex	xceptio	n hand	ing pro	grams,	file cor	icept p	rogram	is and		Apply			
			PROC			N. TCOM	ES AN			MME SI	DECIE		TCOM	FS	
	NG W	11111	RUG						JGKA.		ECIF.			E0	
COS P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOI	PS O2	PSO 3
CO1	S	М	L	-	М	L	-	-	L	М	М	S	S	L	5
CO2	S	М	L	-	-	L	-	-	L	М	М	S	S	М	L
CO3	S	S	S	S	М	L	-	-	L	М	М	S	S	L	
CO4	S	S	S	S	-	L	-	-	S	М	М	S	S	М	
CO5	S	М	М	-	-	L	-	-	S	М	М	S	S	М	
S- Strong	g; M-N	Mediu	n; L-L	ow						·					

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionary operations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COURSE DESIGNERS							
S.No	Name of the Faculty	Designation	Department	Mail ID			
•							
1	K.Karthik	Assistant Professor	Computer science	karthik@avit.ac.in			
2	E.Srividhya	Assistant Professor	Computer science	arividhya @avit ag in			
2		Assistant Professor	and engineering	siiviuliya@avit.ac.ili			
			Computer science				
3	Mrs.T.Geetha	Assistant Professor	and engineering	geetha@vmkvec.edu.in			
4	Mrs. T . Narmadha	Assistant Professor	Computer science and engineering	narmadha@vmkvec.edu.in			

ENGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING

Category	L	Т	Р	Credit
ES	0	0	2	1

Apply

PREAMBLE

It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various types of earthing methods.

PRERQUISITE – NIL

COURSE OBJECTIVES

1	To learn the residential wiring and various types of electrical wiring.			
2	To measure the various electrical quantities.			
3	To know the necessity and types of earthing and measurement of earth resistance.			
COURSE OUTCOMES				

On the successful completion of the course, students will be able to

CO 1: Implement various types of electrical wiring.	Apply
CO 2: Measure fundamental parameters of AC circuits.	Analyze

CO 3: Measure the earth resistance of various electrical machineries.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L		S							L			
CO2	S	М	S	S					М			М			
CO3	L	S	L		S					L		L			

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring.
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual.

COURSE DESIGNERS							
S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in			
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in			

ENGINEERING SKILLS PRACTICES LAB **PART B - BASIC ELECTRONICS ENGINEERING**

		_	
)	0	2	1
arts	with	familia	arization o

Understand

Credit

PREAMBLE

This course is to provide a practical knowledge in Basic Electronics Engineering. It sta of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects.

PRERQUISITE – NIL

COUI	RSE OBJECTIVES
1	To familiarize the electronic components, basic electronic equipments and soldering techniques.
2	To study the characteristics of Diodes, BJT and FET.
3	To understand the principles of various digital logic gates.
4	To understand the concept of basic modulation techniques

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the basics of various electronic components and equipments and their working principles.	Understand
CO2. Understand the fundamentals of soldering techniques for active and passive components.	Understand
CO3. Know the characteristics of Diodes, BJT and FET.	Understand
CO4. Verify the truth tables of logic gates (AND, OR, NOT, NAND, NOR, XOR).	Understand

CO4. Verify the truth tables of logic gates (AND, OR, NOT, NAND, NOR, XOR).

CO5. Distinguish between amplitude and frequency modulation techniques.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L					М		L		М		М		
CO2	М	L					М		L		М		М		
CO3	М	L					М		М		М		М		
CO4	М	L					М		М		М		М		
CO5	М	L					М		М		М		М		

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Identifying Electronics Components.
- 2. Practicing of Soldering and Desoldering.
- 3. Characteristics of PN junction Diode.
- 4. Characteristics of Zener diode.
- 5. Input & Output characteristics of BJT.
- 6. Transfer characteristics of JFET.
- 7. Verification of Logic Gates.
- 8. Study of Amplitude Modulation.
- 9. Study of Frequency Modulation.

COUI	COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in						
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in						

17	C	Æ	S 8	1
1/			00	T

ENGINEERING SKILLS	PRACTICE LAB
PART A - BASIC CIVIL EN	NGINEERING LAB

Category	L	Т	Р	Credit
FC(ES)	0	0	2	1

PREAMBLE

Engineering Skills Practice is a hands-on training practice to Mechanical, Civil and Mechatronics Engineering students. It deals with fitting, carpentry, sheet metal and related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

PREREQUISITE

NIL

COUR	SE O	BJEC	TIVE	S				

1	To understand the ba	sic concepts of	surveying and	l construction materials.
---	----------------------	-----------------	---------------	---------------------------

2 To impart basic knowledge about building components.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Prepare the different types of fitting.

CO2. Prepare the different types of joints using wooden material

Apply Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	L	L	М	L	L	L	L	М	-	-
CO2	S	S	S	L	L	-	L	L	L	L	S	L	-	S	-
a a		3 6 11	T T												

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

BUILDINGS:

1. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

PLUMBING WORKS:

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- 3. Study of pipe connections requirements for pumps and turbines.
- 4. Preparation of plumbing line sketches for water supply and sewage works.
- 5. Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- 6. Demonstration of plumbing requirements of high-rise buildings.

CARPENTRY USING POWER TOOLS ONLY:

- 7. Study of the joints in roofs, doors, windows and furniture.
- 8. Hands-on-exercise: Wood work, joints by sawing, planning and cutting.

TEXT BOOKS:

1. "Laboratory Reference Manual by VMKVEC Civil Engineering Department

0001				
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1.	S.Supriya	Assist. Professor	Civil	jansupriyanair@gmail.com
n	A.Fizoor	Assist Professor	Civil	A frehmen 20@gmeil com
2	Rahman	ASSIST. F10105501	CIVII	Allalinali20@gillali.com

		ENC LAF	GINE	ERINO	G SKII	LLS P	RACT	TICE	Ca	tegory	L	,	Г	Р		Credit
I7CMES81B. BASIC MECHANICAL ENGINEERINGFC(ES)0021									1							
Prea Worl	Preamble Workshop is a hands-on training practice to Mechanical Engineering students. It deals with fitting, carpentry, foundry and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.															
Prer NIL	equisite															
Cou	se Object	tive														
1	To perfor	rm the p	oractice	e in di	fferent	types	of fitti	ng pro	ocesse	s.						
2	To execu	tive join	nts usi	ng wo	oden m	nateria	ls.									
3	To apply	in dept	h knov	vledge	in met	tal joiı	ning pro	ocess	es.							
4	To demo	nstrate (he pat	tern us	sing fo	undry	proces	ses								
Cou	se Outco	mes: Oi	n the s	ucces	sful co	mplet	ion of t	the co	ourse,	student	s will b	e able	to			
CO1	Perform	n the di	fferent	types	of fitti	ng usi	ing MS	plate	.					Ap	oly	
CO2	Practic	e the di	fferent	types	of join	its usii	ng woo	den n	nateria	ıl				Ap	oly	
CO3	Demor	strate tl	ne diff	erent t	ypes of	f joint	s in me	etal by	Arc V	Welding				Ap	oly	
CO4	Utilize	the diff	erent t	ypes c	of greer	n sand	mould	1						Ap	oly	
Мар	ping with	Progra	mme	Outco	omes ai	nd Pr	ogram	me Sj	pecific	: Outco	nes					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	-	L	-	-	-	-	-	М	-	-	-	I		-	-
CO2	S	-	L	-	-	-	-	-	М	-	-	-	I		-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	I	_	-	-
CO4	S	-	L	-	-	-	-	-	М	-	-	-	I	_	-	-
S- St	S- Strong; M-Medium; L-Low															

Syllabus

LIST OF EXPERIMENTS

Tee – Fitting Vee – Fitting Preparation of a mould for a single piece pattern Preparation of a mould for a split piece pattern Half- Lap Joint in Carpentry Dove Tail Joint in Carpentry Lap Joint – Welding Butt Joint – Welding

Text Books 1 **BASIC MECHANICAL ENGINEERING, LAB MANUAL Reference Books** 1 K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai 2 NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida **Course Designers** S.No **Faculty Name** Designation **Dept / College** Email id V K Krishnan vkkrishnan@vmkvec.edu.in Associate Mech / 1 Professor VMKVEC S. Duraithilagar sduraithilagar@vmkvec.edu.in Associate Mech / 2 Professor VMKVEC

17MEES84	ENGINEERING GRAPHICS	Category	L	Т	Р	Credit
	(Theory + Practice)	FC(ES)	1	0	4	3

Preamble

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Prerequisite NIL							
Course Ob	jective						
1	To implement the orthographic projections of points, straight lines, plane surfaces and solids.						
2	To construct the orthographic projections of sectioned solids and true shape of the s	sections.					
3	To develop lateral surfaces of the uncut and cut solids.						
4	To draw the pictorial projections (isometric and perspective) of simple solids.						
5	To sketch by free hand the orthographic views from the given pictorial view.						
Course Ou	tcomes: On the successful completion of the course, students will be able to						
CO1.	Execute in the form of drawing of the orthographic projections of points, straight lines, plane surfaces and solids.	Apply					
CO2.	Demonstrate in the form of drawing of the orthographic projections of sectioned solids and true shape of the sections.	Apply					
CO3.	Develop lateral surfaces of the solid section and cut section of solids.	Apply					
CO4.	Draw the pictorial projections (isometric and perspective) of simple solids.	Apply					
CO5.	Implement the free hand sketch of the orthographic views from the given pictorial view.	Apply					

Mapping with Programme Outcomes and Programme Specific Outcomes															
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	L	-	-	-	-	-	-	-	L		
CO2	S	S	L	S	L	-	-	-	-	-	-	-	L		
CO3	S	S	L	S	L	-	-	-	-	-	-	-	L		
CO4	S	М	L	S	S	-	-	-	-	-	-	-	L		
CO5	S	S	L	S	L	-	-	-	-	-	-	-	L		

S- Strong; M-Medium; L-Low

Syllabus

PLANE CURVES AND FREE HAND SKETCHING

Conics – Construction of ellipse– First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

PROJECTION OF POINTS, LINES

Projection of points, Projection of straight lines located in the first quadrant: inclined to both planes – Determination of true lengths and true inclinations – rotating line method only.

PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section. Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ISOMETRIC VIEW AND PERSPECTIVE PROJECTION

Principles of isometric View – isometric scale – isometric view of simple solids- Introduction to Perspective projection

Text Books							
1	Natarajan K V, "Engineering Graphics", Tata McGraw-Hill Publishing Company Ltd. New Delhi.						
2	K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International Private Limited.						

3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.										
Reference Books											
1	N.D. Bhat and V.M. Panchal, Engineering Graphics, Charotar Publishers 2013										
2	E. Finkelstein, "AutoCAD 2007 Bible", Wiley Publishing Inc., 2007										
3	R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.										
4	DhananjayA.Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw Hill Publishing Company Limited, 2008.										
5	G.S. Phull and H.S.Sandhu, "Engineering Graphics", Wiley Publications, 2014.										
Course De	Course Designers										
S.No	Faculty Name Designation Dept / College Email id										
1	Dr. S.VENKATESAN Professor Mech / VMKVEC venkatesan@vmkvec.edu.in										
2	Prof. N.Rajan Associate Professor Mech / VMKVEC rajan@vmkvec.edu.in										

		Category	L	Т	Р	Credit					
17CSES83	PROGRAMMING IN PYTHON LAB	FC(ES)	0	0	4	2					
PREAMBLE											
This laboratory	This laboratory enables the students clearly understand the basic concepts of python, control statements and file										
commands in p	ython.										
PRERQUISIT	Е										
NIL											
COURSE OUTCOMES											
On the successful completion of the course, students will be able to											
CO1. Learn pyt	hon statements, comments and indentation, toke	ens, input and outpu	t R	emer	nber an	d Understand					
methods using	various example programs.										
CO2. Learn the	CO2. Learn the different methods involved in List, String, Tuples and Dictionary. Remember and Understand										
CO3. Design so	CO3. Design solutions for complex programs using decision making and looping Understand, Apply,										
statements.	statements. analyze and evaluate										
CO4. Develop the function programs with all the concepts like lambda, decorators and Understand, Apply,											
generators. analyze and evaluate											
CO5. Compute	A	Apply									
understand the concepts of CSV and JSON.											

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PD9 PD10 PD11 PD12 PS01 PS02 PS02 PS03 3 CO1 S M L - - - - - - S M L - - - - - - S L L CO2 S M L - - - - - - S M L - - - - - - S M L - - - - - - S M L L - - - - - S M M - - - - - - S M M - - - - - - S M - - - - - -																
CO1 S M L - - - - - - - S L L CO2 S M L - - - - - - S L L CO2 S M L - - - - - S M L CO3 S M M - - - - - - S M L L CO3 S M M - - - - - - S M L L CO4 S M M - - - - - - S M L L CO5 S M M - - - - - S M I	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO2 S M L - - - - - - - S M CO3 S M M - - - - - - S M L L L CO3 S M M - - - - - - S L L CO4 S M M - - - - - - S M L L CO4 S M M - - - - - - S M M CO5 S M M - - - - - - S M M	CO1	S	М	L	-	-	-	-	-	-	-	-	-	S	L	L
CO3 S M M - - - - - - - S L L CO4 S M M - - - - - - S L L CO4 S M M - - - - - - S M - CO5 S M M - - - - - - S M -	CO2	S	М	L	-	-	-	-	-	-	-	-	-	S	М	
CO4 S M M - - - - - - - S M CO5 S M M - - - - - - S M	CO3	S	М	М	-	-	-	-	-	-	-	-	-	S	L	L
CO5 S M M S M	CO4	S	М	М	-	-	-	-	-	-	-	-	-	S	М	
	CO5	S	М	М	-	-	-	-	-	-		-	-	S	М	

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
 David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
 Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

S.No.	Name of the Faculty	Designation	Department	Mail ID												
1	K.Karthik	Assistant Professor	Computer science and engineering	karthik@avit.ac.in												
2	E.Srividhya	Assistant Professor	Computer science and engineering	srividhya@avit.ac.in												
3	Mrs.T.Geetha	Assistant Professor	Computer science and engineering	geetha@vmkvec.edu.in												
4	Mrs. T . Narmadha	Assistant Professor	Computer science and engineering	narmadha@vmkvec.edu.in												
170	SCC01			ПАТ	л сті	т	TIDES			CATEC	GORY	L	Т	Р	CRI	EDIT
---	---	-------------	--------------	-----------	---------	---------	------------	----------	-------	-----------	---------	---------	---------	--------	-------	--------
1/0										CO	2	3	0	0		3
PREA This struct	AMBLI course tures	E aims a	t unde	rstandin	g the 1	basic c	concepts	in pro	gram	ming stru	ctures,	linear	structu	res an	d non	linear
PRE	RQUIS	ITE														
COU	RSE O	BJEC	FIVES	5												
1. To remember and understand the basic concepts in linear structures																
2. To learn about tree structures.																
3.	3. To understand about balanced trees															
4.	To lear	rn abou	ıt hash	ing and	sets.											
5.	To lear	rn and	unders	tand abc	ut gra	phs										
COU	RSE O	UTCO	MES													
On th	e succe	ssful co	omplet	ion of th	e cour	se, stu	dents wil	ll be ab	le to							
CO1.	Able to	o reme	mber t	he basic	conce	pts in	linear str	ructures	5		Re	ememb	er and	Unders	stand	
CO2.	Able to	o learr	n about	tree stru	ictures	and tr	ee traver	sals			U	ndersta	nd			
CO3.	CO3. Able to understand about balanced trees Understand															
CO4.	Able to	o learr	about	hashing	and s	ets.					Re	ememb	er and	Unders	stand	
CO5. Able to learn and understand about graphs Apply																
MAP	PING	WITH	PROG	GRAMN	AE OU	UTCO	MES AN	ND PR	OGR	AMME	SPECI	FIC O	UTCO	MES		
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PS	01	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S		L	L
CO2	S	М	L	-	-	-	-	-	-	-	-	-	S		L	L
CO3	S	М	М	-	М	-	-	-	-	-	-	-	S		М	-
CO4	S	М	М	-	М	-	-	-	-	-	-	-	S		L	-
CO5	S	М	М	-	М	-	-	М	М	-	-	М	S		L	-
S- Sti	rong; M	-Mediu	ım; L-l	Low				1								

UNIT-I

Linear Structures : Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

UNIT-II

Tree Structures : Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.

UNIT-III

Balanced Trees : AVL Trees – Splay Trees – B-Tree - heaps – binary heaps – applications of binary Heaps .

UNIT-IV

Hashing and Set : Hashing – Separate chaining – open addressing – rehashing – extendible hashing – Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

UNIT-V

Graphs: Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

TEXT BOOKS:

1. M. A. Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education.

- 1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First Edition Reprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition,

COU	RSE DESIGNERS			
S.N	Name of the Faculty	Designation	Department	Mail ID
0.				
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Mrs. R. Latha	Assistant Professor	CSE	rlatha@avit.ac.in
3.	Dr. M. Nithya	Prof & Head	CSE	nithya@vmkvec.edu.in
4.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam @ vmkvec.edu.in

17CSCC02	OBJECT ORIENTED	Category	L	Т	Р	Credit
	PROGRAMMING	FC(ES)	3	0	0	3

PREAMBLE

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions.

PRERQUISITE

Nil

COURSE OBJECTIVES

0001	
1	To implement the concepts of object oriented programming.
2	To learn the syntax and semantics of C++ programming language
3	To design C++ classes for code reuse, Constructors and member functions
4	To learn how inheritance and virtual function implement dynamic binding with polymorphism
5	To learn and implement the concepts of Templates and Exception handling

COURSE OUTCOMES

On the successful completion of the course, students will be able to							
CO1. Construct object-oriented programs for a given scenario using the concepts Apply							
of abstraction, encapsulation, message-passing and modularity.							
CO2. Develop object-oriented programs for a given application using the concepts of	Apply						
compile-time and run-time polymorphism.							
CO3. Construct object-oriented programs for a given application by using	Apply						
constructors							
CO4. Develop object-oriented applications that can handle exceptions. Apply							
CO5. Construct object-oriented applications for a given scenario to persist Apply							
data using files and object-serialization.							

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	-	-	-	-	М	М	L	L	L	S	М	-
CO2	S	S	М	-	-	-	-	М	М	L	L	L	S	S	L
CO3	S	S	М	-	-	-	-	М	М	L	L	L	S	L	L
CO4	S	S	L	-	-	-	-	М	М	L	L	L	S	S	-
CO5	S	S	М	-	-	-	-	М	М	L	L	L	S	М	-
C Ctao	S. Steener M. Mediumi I. Low														

S- Strong; M-Medium; L-Low

INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

OBJECT INITIALIZATION AND FRIEND FUNCTION

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

OVERLOADING AND GENERIC PROGRAMMING

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keyword- limitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

INHERITANCE AND VIRTUAL FUNCTION

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function .

EXCEPTION HANDLING AND STREAMS

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file-file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

TEXT BOOKS:

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

REFERENCES:

1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

COURSE DESIGNERS

0001				
S.No	Name of the faculty	Designation	Department	Mail Id
1	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

17050	C03	БАТ	ABAS	F MAN	JACEN	AFNT (SVSTF	м	Cate	gory	L	Т	Р	Cre	edit
17050	.005	DAI	ADAS		AGEN		5151E	·· -	C	<u>_</u>	3	0	0	,	3
PREAM	PREAMBLE:														
This course aims at facilitating the student to understand the various concepts and functionalities of Database															
Manager	Management Systems, the method and model to store data and how to manipulate them through query languages, the														
effective	effective designing of relational database and how the system manages the concurrent usage of data in multi user														
environn	nent.	-					-		-		-				
PRERE	QUISI	TE:													
NIL															
COURS	SE OBJ	ECTI	VES												
1	Descrit	e a rela	ational	latabas	e and o	bject-oi	riented d	atabas	e.						
2	Create,	mainta	in and	manipu	late a re	elationa	l databa	se usin	g SQL.						
3	Descrit	e ER n	nodel a	nd norn	nalizati	on for d	latabase	design	•						
4	Examir	ie issue	s in dat	a storag	ge and o	query p	rocessing	g and c	an forn	nulate app	propria	te soluti	ons.		
5	Design	and bu	ild data	base sy	stem fo	or a give	en real w	orld p	roblem.						
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Illustrate the database design for applications and use of ER Diagram. Apply															
CO2. Bu relationa	uild and I langua	manipu ges.	late rela	ational	databas	se using	Structur	red Qu	ery Lar	iguage an	d	Apply			
CO3. De	evelop a	normal	ized da	tabase	for a gi	ven app	lication	by inc	orporati	ing variou	15	Apply			
constrair	nts like in	ntegrity	and va	lue con	straints					-					
CO4. Aj	pply con	curren	cy cont	rol & r	ecover	y mech	anism fo	or data	ibase pi	roblems.		Apply			
CO5. Co	onstruct	data st	ructure	s like i	ndexes	and ha	sh tables	s for th	ne fast i	retrieval	of	Apply			
data.															
MAPPI	NG WI	TH P	ROGR	AMM	E OU	TCOM	IES AN	D PR	OGRA	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	-	S	S	-
CO2	S	S	-	-	-	L	-	-	-	-	-	-	S	L	L
CO3	М	S	-	-	-	-	-	-	-	-	-	-	S	L	-
CO4	S	S	-	L	-	L	L	-	-	-	-	-	S	S	-
CO5	S	S	-	-	-	-	-	-	-	-	-	-	S	М	-
S- Stron	ig; M-M	ledium	; L-Lo	W											
SYLLA	BUS														
INTRO	DUCTIO	DN													
Database System Applications - Views of data - Data Models - Database Languages - Modification of the Database -															
Database	e System	Archit	ecture -	Databa	ase user	rs and A	dminist	rator-]	[ntrodu	ction to re	elationa	ıl databa	ses - St	ructure	of

Relational Databases - Entity-Relationship model (E-R model) - E-R Diagrams.

RELATIONAL APPROACH

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals - Structure of SQL Queries SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases.

DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form - Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery -Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols -Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing -Query Processing - Catalog Information for Cost Estimation – Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fourth Edition, Tata McGraw Hill, 2002.

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fourth Edition, Addision weskey, 2002.
- 2. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management, Fifth Edition, Thompson Learning, Course Technology, 2003.

COURSE DESIGNERS												
S.No	Name of the faculty	Designation	Department	Mail Id								
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@ vmkvec.edu.in								
2	Mrs. T. Geetha	Assistant Professor	CSE	geethat@vmkvec.edu.in								

15000									Cate	gory	L	Т	P	Cred	it
17080	CC04		COMP	UTER	ARCH	ІТЕСІ	URE		FC(ES)	3	0	0	3	
PREAM	BLE:														
This cour	se is ded	icated t	o numb	er syste	em, logi	ic desig	n, and	memory	and pr	ocessing	. This is	s the onl	y course	that is	
concerne	d with the	e hardw	vare of	a comp	uter, its	logic d	esign a	nd orga	nizatio	n. It aims	at mak	ing the s	student f	amiliar	with
digital log	digital logic and functional design of arithmetic and logic unit that is capable of performing floating point arithmetic operations														
operation	S.														
PRERE	QUISIT	'E:													
NIL															
COURS	E OBJI	ECTIV	/ES												
1	To learn	1 about	the des	ign of t	he proc	essors.									
2	To learn	1 about	the dat	a transf	er.										
3	Underst	and the	e functio	onal uni	ts of a	comput	ers, bus	s structu	ires and	l addressi	ing mod	les.			
4	Apply the	he knov	wledge	of algo	rithms t	o solve	arithm	etic pro	blems.						
COURS	COURSE OUTCOMES														
On the st	uccessfu	il comp	oletion	of the	course	, stude	nts wil	l be abl	le to						
CO1. Ex	plain abo	out com	puter o	rganiza	tion cor	nponen	ts.					Underst	and		
CO2. Co	mpute si	mple ar	rithmeti	c opera	tions fo	r fixed-	point a	nd float	ting-poi	nt additi	on,	Apply			
subtractio	on, multip	olicatio	n & div	ision.											
CO3. De	sign com	binatio	nal and	sequer	tial dig	ital fun	ctions.					Apply			
CO4. Co	nstruct a	n instru	ction se	et capa	ble of p	perform	ing a sp	pecified	set of o	operation	s.	Analyze	e		
CO5 Der	nonstrate	e a men	nory sys	stem for	r a give	n set of	specifi	cations				Analyze	e		
CO6 Exp	olain pipe	lining o	concept	S								Underst	and		
MAPPI	NG WI	FH PR	OGR	AMMI	E OUT	COM	ES AN	D PRO	OGRA	MME S	SPECI	FIC OU	JTCON	1ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L	-	-	-	-	-	-	-	-	-	S	L	-
CO2	М	S	L	L	-	-	-	-	-	-	-	-	S	L	-
CO3	S	L	М	L	-	-	-	-	-	-	-	-	S	М	-
CO4	S	М	L	-	-	-	-	-	-	-	-	-	S	М	-
CO5	М	L	М	-	-	-	-	-	-	-	-	-	S	М	L
CO6	CO6 S M L S M L											L			
S- Stron	g; M-Me	edium;	L-Lov	V											

INTRODUCTION

Computer Organization- Main memory – CPU operation – Interrupt concept – I/ O techniques – Bus concept – Computer performance factors – System performance measurement- High performance techniques – Comparison of Architecture and Organization – Study of Salient features and architectures of Advanced processors (80286, 80386, 80486, Pentium). **PROCESSOR DESIGN AND CONTROL UNIT**

Goals – Design process –Data path organization – Main memory interface – Data path for single instructions- Floating point unit data path – Role of control unit – Reset sequence – Interrupt recognition and servicing – Abnormal situation handling – Hardwired control unit – Micro programmed control unit.

MEMORY DESIGN & MEMORY MANAGEMENT

Memory types – Functional and usage modes – Memory allocation- Multiple memory decoding – Memory hierarchy – Instruction pre fetch – Memory interleaving – Write buffer – Cache memory –Virtual memory – Associative memory. INTRA SYSTEM COMMUNICATION AND I/O

I/O controller & driver- Case study : Hard disk controller in IBM PC – I/O ports and bus concepts – Case study : Keyboard interface – Bus cycle – Asynchronous and Synchronous Transfer – Interrupt handling in PC – I/O techniques in PC – Case Study : RS 232 interface – Modern serial I/O interface – Bus arbitration techniques – Hard disk interface in PC. ADVANCED ARCHITECTURE

Classification of parallelism – Multiple functional units – Pipelining – Vector computing – array processors –High performance architecture – RISC systems – Super scalar architecture – VLIW architecture – EPIC architecture – Multiprocessor systems – Cache coherence problem – Fault tolerance.

TEXT BOOKS:

1. Govindarajulu," Computer Architecture and Organization – Design principles and applications", Tata McGrawHill publications, New Delhi.

REFERENCES:

1. William Stallings, "Computer Organization And Architecture – Designing For Performance", Sixth Edition, Pearson Education, 2003.

2. David A. Patterson And John L. Hennessy, "Computer Organization And Design: The Hardware/Software Interface", Second Edition, Morgan Kaufmann, 2002.

3. John P. Hayes, "Computer Architecture And Organization", Third Edition, Tata McGraw Hill, 1998.

4. A.K.Ray & K.M.Bhurchandi, "Advanced Microprocessors and peripherals- Architectures, Programming and Interfacing", TMH, 2002 reprint.

COURSE DESIGNERS												
S.No	Name of the faculty	Designation	Department	Mail Id								
1	Mr. G. Seenivasan	Assistant. Professor	CSE	seenivasan@vmkvec.edu.in								
2	Mrs. T. Geetha	Assistant. Professors	CSE	geethat@vmkvec.edu.in								

1500			Category L T P Credit												
17CS	CC05		SOFT	WARE	ENGI	NEER	ING		C	С	3	0	0	3	
PREAN	ABLE:											1 1			
This cou	urse ain	ns at int	troducii	ng to th	e stude	ents abo	ut the	product	that is	to be er	gineered	and th	e process	that prov	vides a
framewo	ork for t	he engi	neering	g techno	ology. T	The cou	rse faci	litates t	he stud	ents to a	nalyze ri	sk in so	ftware des	sign and	quality
and to p	lan, des	ign, dev	velop ai	nd valid	late the	softwar	re proje	ect.			-			-	
PRERI	EQUIS	ITE:													
NIL	L														
COUR	SE OB	JECT	IVES												
1	To be aware of generic models to structure the software development process.														
2	To understand fundamental concepts of requirements engineering and requirements specification.														
3	To understand different notion of complexity at both the module and system level.														
4	To be aware of some widely known design methods.														
5	To understand the role and contents of testing activities in different life cycle phases.														
_	- · · ·														
COUR	RSE OUTCOMES														
On the s	On the successful completion of the course, students will be able to														
CO1. E	CO1. Explain a process model for a software project Development. Understand														
CO2. P	repare tl	he SRS	, Life C	ycle M	odels.						A	Apply			
CO3. A	pply De	esign do	ocumen	t, Proje	ct plan	of a giv	en soft	ware sy	stem, P	Project	τ	Understa	ind		
Manage	ment an	d Requ	iremen	t analys	is, Prin	ciples t	o S/W	project	develop	oment.					
CO4. A	nalyze 1	the cost	estima	te and p	oroblem	n compl	exity u	sing vai	rious es	timation	τ	Understa	ind		
CO5 G	enerate	test cas	es usin	σ the te	chnique	es invol	ved in	selectin	o. (a) 1	White Bo		Apply			
testing (b) Bloc	k Box t	esting.	5 110 10	enniqu		vea III	sereetin	g. (u)	of inter De	-	-FF-J			
CO6. E	xplain t	he adva	intages	of Desi	gn Proc	cess, co	nfigura	tion ma	nageme	ent and r	isk A	Analyze			
manager	ment ac	tivities			-				-						
MAPP	ING W	ITH F	PROG	RAMN	ЛЕ ОЦ	JTCO	MES A	ND P	ROGR	RAMMI	E SPEC	IFIC C	OUTCON	AES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L M M L M M M S S L									

									/						
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-
S- Stroi	S- Strong; M-Medium; L-Low														

SOFTWARE

Introduction – S/W Engineering paradigm -SDLC– Software Process.

LIFE CYCLE MODELS

Linear Sequential Model- Prototyping Model-RAD Model-Evolutionary Software Process Models-Component Based Development - Project Planning Objectives – Software Scope – Resources – Software Project Estimation – Empirical Estimation Models – Make/Buy Decision-Functional and Non Functional requirements –software requirement specification (SRS) – Requirement Engineering process-Feasibility studies.

PLANNING AND ESTIMATION

System Engineering-Analysis Concepts - Design Process & concepts – Design Principles –Effective Modular Design – Design Heuristics– Design Model – The status of software Architecture-Architecture Styles-case Study: Keyword in context- Software Design Description (SDD).

REQUIREMENT ENGINEERING TASKS

Requirements Management, Structured coding Techniques-Coding Styles-Standards and Guidelines- Software testing Fundamentals-Types of testing - Quality Concepts – Quality Movement - Software Quality Assurance – Software Reviews — Formal Approaches to SQA - Software Reliability – ISO 9000 Quality Standards – SQA Plan.

SOFTWARE CONFIGURATION MANAGEMENT

Introduction about software configuration management – the SCM process –identification of objects in the software configuration – version control – change control – configuration audit – status reporting – SCM standards –software Documentation-seven rules for sound documentation..

TEXT BOOKS:

- 1. Roger S. Pressman, "Software Engineering A practitioner's Approach", Fifth Edition, McGraw-Hill International Edition, 2005.
- 2. Ian sommerville," Software Engineering ", Seventh Edition, Pearson Education Asia, 2007.
- 3. Mary Shaw, David Garlan,"Software Architecture- a perspectives on an Emerging Discipline

- 1. WattsS.Humphrey,"A Discipline for Software Engineering", Pearson Education, 2007.
- 2. James F.Peters and WitoldPedrycz,"Software Engineering, An Engineering Approach", Riley-India, 2007

COURS	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Email Id									
1	Mr. B. Sundaramurthy	Assistant Professor	CSE	sundaramuthy@vmkvec.edu.in									
2	Mr. R. Bharanidharan	Associate Professor	CSE	bharanidharan@vmkvec.edu.in									

17CSCC06	DESIGN AND ANALYSIS OF	Category	L	Т	Р	Credit
	ALGORITHMS	CC	3	0	0	3

PREAMBLE:

This subject introduces students the concepts of design and analysis of algorithms. On completion of this course students will be able to:

- i) Learn the algorithm analysis techniques.
- ii) Become familiar with the different algorithm design techniques
- iii) Construct efficient algorithms for solving engineering problems by using appropriate algorithm design paradigms and data structures.

PREREQUISITE:

- 1. Problem Solving using Computers
- 2. Data Structures

COUR	SE	OI	BJE	CI	TVE	S	

1 To familiarize the student with good programming design methods, particularly Top- Down design.

2 To develop algorithms for manipulating stacks, queues, linked lists, trees, graphs

3 To create the data structures for implementing the above algorithms

4 To construct the recursive algorithms as they apply to trees and graphs

5 To familiarize the student with the issues of Time complexity and examine various algorithms from this perspective

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Analyze the correctness of algorithms using induction and loop invariants.	Analyze
CO2. Analyze the worst-case, best-case and average-case running time of algorithms	Analyze
using asymptotic.	
CO3. Analyze the performance of a sequence of operations using amortized analysis	Analyze
techniques like potential method and accounting method.	
CO4. Construct algorithms using design paradigms like divide and conquer, greedy and	Apply
dynamic programming for a given problem.	
CO5. Infer when a design scenario requires the application of the different algorithm	Analyze
design paradigms.	
CO6. Analyze how the performance of an algorithm is affected based on the choice of	Analyze
data structures the algorithm uses	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	М	L	-	-	-	-	-	-	М	S	L	-
CO2	S	S	L	L	L	-	-	-	-	-	-	L	S	L	L
CO3	S	S	L	-	-	-	-	-	-	-	М	М	S	М	-
CO4	S	М	S	М	М	М	L		L	-	L	М	S	М	L
CO5	S	S	М	L			L		L	-	-	М	М	S	М
CO6	S	S	М	S	-	L	М	-	-	-	-	L	S	S	L
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION TO ALGORITHMS

The role of algorithms in computing, Growth of functions, Asymptotic notations, Designing and Analyzing algorithms-an Introduction using insertion sort. Review on the Math needed for algorithm design and analysis.

DIVIDE AND CONQUER

Solving recurrences – The Substitution method, Recurrence Tree method and Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worst-case], Strassen's algorithm for Matrix Multiplication, The maximum sub-array problem.

GREEDY ALGORITHMS

Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees – Kruskal''s Algorithm and Prim''s Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis: The accounting method, The potential method.

DYNAMIC PROGRAMMING

Calculating the binomial co-efficient, The problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions.

GRAPH ALGORITHMS

Depth-first search & Breadth-First Search, Flow Networks, Topological sort, Strongly connected components Computational Complexity: Classes P and NP, Polynomial reductions, Classes NP-Complete and NP-Hard. Heuristics: Graph Coloring problem, Travelling Sales Person problem.

TEXT BOOKS:

1. Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction to Algorithms, Third edition, PHI, 2010

REFERENCES:

- 1. Gilles Brassard and Paul Bratley Fundamentals of Algorithmics PHI, 2000.
- 2. Sara Baase Computer algorithms: Introduction to Design and Analysis -, Addison Wesley publication, 1998.

COUR	COURSE DESIGNERS												
S.No	Name of the faculty	Designation	Department	Email Id									
1	Dr. M. Nithya	Associate Professor	CSE	hodcse@vmkvec.edu.in									
2	Mr. M. Annamalai	Associate Professor	CSE	annamalaim@vmkvec.edu.in									

17CSCC07	OPERATING SYSTEM	Category	L	Т	Р	Credit
1/05000/	OT EXTING STOLEN	FC	3	0	0	3

PREAMBLE

The student will be able to understand the concepts of operating system to distributed environment like cloud computing, mobile computing etc. This course also includes set of case studies that provides insight into some existing distributed operating systems.

PRER Opera	EQUIS ting Sy	ITE stems	Concep	ots											
COUR	SE OB	JECTI	IVES												
1	To be	aware	of the e	volutio	n of ope	erating	systems	5.							
2	To lea manag	rn wha ge proc	t proce esses.	sses are	, how p	rocesse	es comn	nunicat	e, how	process	synchr	onization	is done ar	nd how t	0
3	To ha	ve an u	ndersta	nding o	f the m	ain mer	nory an	d secor	ndary m	emory	manage	ement tech	niques.		
4	To un	derstan	d the I/	O Subs	ystem.										
5	To ha	ve an e	xposure	e to the	role of	operatii	ng syste	em in cl	oud and	d mobil	e enviro	onment op	erating sy	ystems.	
COUR	SE OU	TCON	1ES												
On the	success	ful con	npletior	n of the	course,	studen	ts will ł	be able	to						
CO1.A the feat	pply the tures spe	conce	pts of o	perating	g syster tems.	n to ane	evolutio	on of op	erating	system	is and ic	lentif∳ppl	у		
CO2.A system	pply the s enviro	e proces nment.	ss syncl	hroniza	tion cor	ncepts f	or the g	given sc	enario	in opera	ating	Appl	у		
CO3.Il second	lustrate ary mer	the diff nory m	ferent te anagen	echniqu nent tec	es of m hniques	anagen).	nent of	memor	y (the n	nain me	emory a	nd Appl	у		
CO4.A	pply the	e I/O Si	ubsyste	m conc	epts for	a giver	n scenai	rio.				Appl	у		
CO5. I	dentify	the role	e of ope	rating s	ystem i	n cloud	and m	obile er	nvironm	nent.		Appl	у		
MAPP	'ING W	TTH P	ROGR	AMM	E OUT	COME	CS AND	PROC	GRAM	ME SP	PECIFI	C OUTC	OMES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

003	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	S	М	L	-	-	-	-	-	-	-	-	-	L	М	S
CO2	S	М	L	-	-	-	-	-	-	-	-	-	L	М	S
CO3	S	М	М	-	М	-	-	-	-	-	-	-	L	М	S
CO4	S	М	М	-	М	-	-	-	-	-	-	-	L	М	S
CO5	S	М	М	-	М	-	-	-M	М		-	М	L	М	S
S- Stro	ong; M-l	Medium	n; L-Lo	W											

OPERATING SYSTEM

Introduction & Structure: Basics, OS Architecture, OS Operations, System calls.

PROCESSES & SYNCHRONIZATION

Process concept – Process scheduling – Operations on processes – Cooperating processes – Inter process communication – Communication in client-server Systems. Case study: IPC in Linux. Threads: Multi-threading models – Threading issues. Case Study: Threads library– Clock Synchronization – Event Ordering – Mutual Exclusion – Deadlock Modelling – Deadlock Prevention – Deadlock Avoidance – Deadlock Detection and Recovery - Election Algorithms.

STORAGE MANAGEMENT

Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation with paging. Virtual Memory: Background –Demand paging – Process creation – Page replacement – Allocation of frames – Thrashing. Case Study: Memory management in Linux.

I/O SYSTEMS

I/O Systems – I/O Hardware – Application I/O interface – kernel I/O subsystem – streams – performance. Mass-Storage Structure: Disk scheduling – Disk management – Swap-space management – RAID – disk attachment – stable storage – tertiary storage. Case study: I/O in Linux.

CLOUD OS & MOBILE OS

Introduction to Cloud Computing, Features of Cloud OS, Case Studies. - Introduction to Mobile Computing Features of Mobile OS, Case Studies.

TEXT BOOKS:

1.Silberschatz, Galvin, and Gagne, "Operating System Concepts", Sixth Edition, Wiley India Pvt Ltd, 2003.

REFERENCES:

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.
- 2. Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- 3. Harvey M. Deital, "Operating Systems", Third Edition, Pearson Education, 2004.
- 4. Fundamentals Of Mobile Computing, Patnaik, Prasant, Kumar, Mall, Rajib, PHI, 2012.
- 5. Mobile Computing Technology, Applications, and Service Creation 1st edition, Asoke K Talukder, Roopa Yavagal, McGraw-Hill, 2006.
- 6. The Practice of Cloud System Administration: Designing and Operating Large Distributed Systems, Thomas A. Limoncelli Strata R. Chalup, Christina J. Hogan, Addison-Wesley Professional; 1st Edition, 2014.
- 7. Cloud Computing: Concepts, Technology & Architecture, Thomas Erl, Ricardo Puttini, Zaigham Mahmood, Prentice Hall; 1st Edition, 2013.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Nitisha Aggarwal	Associate Professor	CSE	nitishaaggarwal@avit.ac.in
2	Dr.S.SenthilKumar	Assistant Professor	CSE	senthikumars@vmkvec.edu.in

17CSCC08	COMPLITER NETWORKS	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

The purpose of this course is to understand the concepts of data communication and computer networks. Identify the components required to build different types of networks. Choose the required functionality at each layer for given application. Identify the solution for each functionality for each layer. Trace the flow of information from one node to another node in the network.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	1 To provide basic knowledge in networking concepts.											
2	To introduce and demonstrate various bridges, switches and Ethernets.											
3	To introduce different methodologies in routing.											
4	To learn about transmission protocols and QOS.											
5	5 To provide knowledge about different application protocols.											
COUR	COURSE OUTCOMES											
On succe	On successful completion of the course, students will be able to											
CO1.Lea	rn the fundamentals of networks and different types of OSI Layers.	Remember and Understand										
CO2.Lea	rn the different Ethernet, wireless networks, switching and bridging concepts	Remember and Understand										
CO3.Des techniq	sign solutions for complex routing methods and different multicast routing ues.	Understand, Apply, analyse and evaluate										
CO4.Lea quality o	CO4.Learn the concepts of different protocols for transmission purpose and study the understand, Apply, analyse and evaluate											
CO5.Learn different types of application protocols and its architecture. Apply												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES												

COs	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POIO	POIT	PO12	PSOI	PSO 2	PSO3
CO1	S	Μ	L	S	Μ	-	-	-	-	-	-	-			
CO2	S	М	L	Μ	S	-	-	-	-	-	-	-			
CO3	S	S	S	S	Μ	-	-	-	-	-	-	-			
CO4	S	S	S	S	S	Μ	-	-	-	-	-	-			
CO5	S	М	Μ	-	Μ	-	-	-	М	L	-	L			
S- Stro	ong; M-l	Mediun	n; L-Lo	W											

FUNDAMENTALS & LINK LAYER

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance ; Link layer Services - Framing - Error Detection - Flow control.

MEDIA ACCESS & INTERNETWORKING

Media access control - Ethernet (802.3) - Wireless LANs - 802.11 - Bluetooth - Switching and bridging - Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP).

ROUTING

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6) - Multicast – addresses – multicast routing (DVMRP, PIM).

TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission – TCP Congestion control - Congestion avoidance (DECbit, RED) – QoS – Application requirements.

APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS – SNMP.

TEXT BOOKS:

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill, 2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016.

- 1. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education.
- 2. Knuth, D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	E.Srividhya	Assistant Professor	CSE	srividhya@avit.ac.in
2	Mr.G.Seenivasan	Assistant Professor	CSE	seenivasan@vmkvec.edu.in

17CSCC09	IAVA PROGRAMMING	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

This course of study builds on the skills gained by students in Java Fundamentals and helps to advance Java programming skills. Students will design object-oriented applications with Java and will create Java programs using hands-on, engaging activities.

PRER Basic	EQUIS program	ITE	Knowle	dge											
COUR	RSE OB	JECT	IVES												
1	Under	rstand f	undame	entals of	f progra	amming	such a	s variał	oles, co	nditiona	and iterated	ative exec	ution, m	ethods,	etc.
2	Under using	rstand f class li	undame braries,	entals of etc.	f object	oriente	ed prog	rammir	ıg in Ja	va, inclu	ding defi	ning class	ses, invol	king me	thods,
3	Be aw	are of	the imp	ortant t	opics a	nd princ	ciples o	f softwa	are dev	elopmen	t.				
4	Under	rstand H	Event H	andling	and Sv	wing Co	ompone	nts.							
5	Under	rstand C	Generic	Program	mming.										
COUR	RSE OU	TCOM	1ES												
On suc	cessful	comple	tion of	the cou	rse, stu	dents w	vill be a	ble to							
CO1.Kn	owledg	e of the	structu	ire and	model o	of the Ja	ava prog	grammi	ng lang	guage		Knowled	lge		
CO2.Us	e the Ja	va prog	rammir	ng langi	lage for	r variou	s progr	amming	g techn	ologies		Understa	ind		
CO3. Do	evelop s	oftware	e in the	Java pr	ogramr	ning lar	nguage					Apply			
CO4.Ev Java pro	aluate u grammi	ser requing lang	uiremer guage ca	nts for s an meet	oftware user re	e functio quirem	onality : ents	require	d to dec	cide whe	ther the	Analyse			
CO5.Ch knowled	oose an lge of p	engine rogram	ering aj ming ar	pproach nd know	to solv /ledge (ving pro	blems, ating sy	Starting stems.	g from	the acqu	ired	Evaluatio	on		
MAPF	PING W	/ITH P	ROGR	AMM	E OUT	COME	ES ANE) PRO	GRAM	IME SPI	ECIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S			S	S	М	S				S	S			
CO2	S		S	_	S			S	L	L		L			
CO3	S		M	L	S	M	a				L	L			
CO4	S		S	M	S		S				S	M			
005	2		2	M	2		M				3	M			
S- Stro	ong; M-l	Mediun	ı; L-Lo	W											

BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalize method.

ARRAYS, STRINGS & OBJECTS

Arrays – Strings - Packages – Java-Doc comments – Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes - The Object class – Reflection – interfaces – object cloning – inner classes – proxies.

EVENTS & GRAPHICS PROGRAMMING

I/O Streams - Filter and pipe streams - Byte Code interpretation - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Graphics programming - Frame - Components - working with 2D shapes.

SWING & GENERIC PROGRAMMING

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components – exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics.

THREADS & SOCKET PROGRAMMING

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

TEXT BOOKS:

- 1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.
- 2. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000 (UNIT II).
- 3. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999 (UNIT III and UNIT V).

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.
- 3. C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd., 2006.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	T.Vijila			<u>vijila@avit.ac.in</u>
2	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

170	CSCC10)	OBJI	ECT O	RIENT	'ED AN	JALYS	SIS ANI	D		Category	v L	L T P Cred								
					DE	SIGN					CC	3	0	0		3					
PREA	MBLE																				
This syl	labus is	s intend	led for	the Eng	gineerin	ig stude	ents and	d enabl	e them	to lean	about bas	sic conce	pts of	desig	ning	object					
oriented	system	s and i	ts appli	cation	in Prog	rammir	ng. Thi	s syllab	us help	s the st	udents to	develop s	softwa	re by	ident	tifying					
and imp	lementi	ng a set	t of obje	ects and	their ir	nteraction	ons to r	neet the	e desired	d object	ives.										
PRER	EQUIS	ITE																			
Basics	of obje	ct orier	ited pro	gramm	ing con	cepts a	nd good	d progra	amming	; skills.											
	SE OB	JECTI	IVES																		
1.	To imp	art basi	c know	ledge in	ı analyz	ing the	softwa	re syste	ems so t	hat the	student wi	ll underst	and th	e obje	ect ori	iented					
	concept	ts and th	hey can	design	the obj	ect orie	nted sy	stems e	effective	ely.											
					<u> </u>		(7.7. 1.0)				· ••										
2.	To incu	licate th	ie know	ledge c	of variou	is UMI	L (Unifi	ied Moo	leling la	anguage)diagrams										
3.	To lay i	foundat	ion for	practica	al applie	cations	of obje	ct orien	ted con	cepts in	programn	ning aspe	cts								
	5			1	11		5			1	1 0	6 1									
COUR	SE OU	TCOM	IES																		
On the	61100066	ful con	anlation	of the	0011800	studon	to will k	a abla	to												
On the	success		ipieuoi	or the	course,	studen	ls will t		10												
СО1: Т	o learn a	about v	arious I	UML di	agrams	and de	sign pa	tterns				Understa	nd								
СО2: Т	o do cas	se study	on var	ious rea	al time s	systems	and ap	plying	design j	patterns		Apply									
СО3: Т	o imple	ment th	e desig	n to coo	le and p	erform	testing					Apply									
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PRO(GRAM	ME SP	ECIFIC C	UTCON	1ES								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12									
<u> </u>	G	м					C				М	м									
COI	3	M					5				M	M									
CO2	М	М		L								L									
CO3	М	S	L	М				M		М											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12									
S- Stro	ng; M-I	Medium	n; L-Lo	W	<u> </u>	<u> </u>	1	I	1	1	<u> </u>	<u> </u>	1		1						

	INTROD	UCTION TO OOAD			9 - hours								
Introduction – State Diagr	to OOAD – U ams – Activit	nified Process - UML o y Diagrams – Package,	liagrams – Use Case – Class component and Deployment	Diagrams– Diagrams	Interaction Diagrams								
UNIT - II	DESIGN	PATTERNS			9 - hours								
GRASP: Des Cohesion – C behavioral –	igning object: ontroller - De Strategy – obs	s with responsibilities – esign Patterns – creatior server	Creator – Information exper nal - factory method - structur	t – Low Coı ral – Bridge	ıpling – High – Adapter -								
UNIT - III	CASE ST	UDY			9 - hours								
Case study – and generaliz Associations Composition	ase study – the Next Gen POS system, inception -Ose case Modeling - Relating Ose cases – include, extend ind generalization - Elaboration - Domain Models - Finding conceptual classes and description classes – ssociations – Attributes – Domain model refinement – Finding conceptual class Hierarchies - Aggregation and omposition NIT - IV APPLYING DESIGN PATTERNS 9 - hours												
UNIT - IV APPLYING DESIGN PATTERNS 9 - hours													
ystem sequence diagrams - Relationship between sequence diagrams and use cases Logical architecture and JML package diagram – Logical architecture refinement - UML class diagrams - UML interaction diagrams - Applying GoF design patterns													
UNIT - V	CODING	AND TESTING			9 - hours								
Mapping des – OO System	gn to code – Testing	Testing: Issues in OO T	esting – Class Testing – OO	Integration	Testing – GUI Testing								
TEXT BOO	KS												
TEXT BOOKS 1. Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development , Third Edition, Pearson Education 2.Object Oriented Analysis And Design By Brahama Dathan & Sranath Ramnath													
1. Craig Larn Iterative Dev 2.Object Orie	elopment, Th nted Analysis	And Design By Braha	ma Dathan & Sranath Ramn	ath									
1. Craig Larn Iterative Dev 2.Object Orie REFERENC	elopment, Th nted Analysis	s And Design By Braha	ma Dathan & Sranath Ramn	ath									
1. Craig Larn Iterative Dev 2.Object Orie REFERENC 1. Simon Ber UML , Fourtl 2. Erich Gam Object-Orien 3. Martin Foy Addison Wes	Elopment , Th nted Analysis EES nett, Steve M n Edition, Mc ma, and Rich ted Software vler, UML ley	c Robb and Ray Farme -Graw Hill Education ard Helm, Ralph Johnso , Addison-Wesley Distilled: A Brief Guid	ma Dathan & Sranath Ramn r, Object Oriented System on, John Vlissides, "Design p e to the Standard Object Mod	ath s Analysis a patterns: Ele deling Lang	nd Design Using ments of Reusable uage , Third edition,								
1. Craig Larn Iterative Dev 2.Object Orie 2.Object Orie REFERENC 1. Simon Ber UML , Fourt 2. Erich Gam Object-Orien 3. Martin Fov Addison Wes	Elopment , Th nted Analysis EES nett, Steve M n Edition, Mc ma, and Rich ted Software vler, UML ley SIGNERS	c Robb and Ray Farme -Graw Hill Education ard Helm, Ralph Johnso , Addison-Wesley Distilled: A Brief Guid	ma Dathan & Sranath Ramn r, Object Oriented Systems on, John Vlissides, "Design p e to the Standard Object Mod	ath s Analysis a patterns: Ele deling Lang	nd Design Using ments of Reusable uage , Third edition,								
1. Craig Larn Iterative Dev 2.Object Orie REFERENC 1. Simon Ber UML , Fourtl 2. Erich Gam Object-Orien 3. Martin Fov Addison Wes DURSE DE No. Na Fa	Elopment , Th nted Analysis EES nett, Steve M n Edition, Mc ma, and Rich ted Software vler, UML ley SIGNERS me of the culty	Tc Robb and Ray Farme -Graw Hill Education ard Helm, Ralph Johnso , Addison-Wesley Distilled: A Brief Guid Designation	ma Dathan & Sranath Ramn r, Object Oriented Systems on, John Vlissides, "Design p e to the Standard Object Mod	ath s Analysis a patterns: Ele deling Lang	nd Design Using ments of Reusable uage , Third edition, Mail ID								

170	CSCC11	<u>.</u>		CC	MPIL	ER DE	SIGN				Categor	ry L T P Cred						
											CC	3	0	0	3			
PREA This syl the stude table ma	MBLE labus is ents to s mageme	intende tudy ab ent, sem	ed for th bout pro hantic as	ne Engin ogramm nalysis	neering ing lang and coc	student guage ti le genei	s and e anslation	nable th	hem to l compile	ean abc er design	out Compil 1 concepts	er design , languag	. This e recog	syllat gnitio	ous helps n, symbol			
PRER	EQUIS	ITE																
•	Basic k	nowled	ge of D	iscrete	Mathen	natics, I	Regular	Expres	ssions, I	Finite A	utomata a	nd Conte	xt Free	Gran	nmars.			
•	Familia	arity wi	th work	ting and	l feature	es of hig	gh leve	l langua	ages.									
COUR	RSE OB	JECTI	IVES															
1.	To intro	oduce tl	he majo	or conce	pt areas	s of lang	guage ti	ranslati	on and o	compile	r design.							
2.	To deve	elop an	awaren	less of t	he func	tion and	d comp	lexity o	f compi	ilers.								
3.	To lear	n the ro	ole of a p	parser a	and to st	udy the	differe	ent way	s of rec	ognizin	g and pars	ing of tok	tens.					
4.	To stud transfoi	y the co mation	oncepts s.	of code	e genera	ation an	d conce	epts of (Code O	ptimiza	tion and al	out vario	ous cod	le imp	proving			
COUR	SE OU	TCOM	1ES															
On the	success	ful con	npletion	of the	course,	student	ts will b	be able	to									
CO1: D	esign a	nd impl	ement l	exical a	ınalyzeı							Understa	nd					
CO2: L	earn abo	out vari	ous typ	es of gr	ammar	and per	form v	arious p	parsing	techniq	ues	Apply						
СО3: Т	o under	stand al	bout ser	nantic a	analyzei	r and in	termed	iate cod	le gener	ation		Apply						
СО4: Т	o learn a	about co	ode opti	imizatio	on and s	torage	manage	ement				Apply						
СО5: Т	o know	about v	arious	error ha	Indling	techniq	ues					Understa	nd					
MAPP	PING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PRO(GRAM	ME SPI	ECIFIC C	UTCON	IES					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12						
CO1	М	S									L	L						
CO2	S	М		L								L						
CO3	М	М	L	L				М										
CO4	М	S	L			L				L		М						
S- Stro	ng; M-N	Medium	n; L-Lo	W	L			1	1	1		L	1		I			

UNIT - I INTRODUCTION TO COMPILERS

Translators-Compilation and Interpretation-The Phases of a Compiler- Lexical Analyzer: Transition Diagram of Keywords, Identifiers, Operators – Reserved Word Strategy.

UNIT - II SYNTAX ANALYZER

Types of Grammar -- Ambiguity in Grammar -- Parse Tree -- Syntax Tree -- Bottom Up (Shift Reduce) Parsing -- Operator Precedence Parser -- Top Down Parsing -- LL(0) Parsers -- FIRST and FOLLOW -- Bottom Up Parser LR(k) -- Construction of LR(1) Parser form a Grammar -- Shift Reduce Parsing.

UNIT - III SEMANTIC ANALYZER AND INTERMEDIATE CODE GENERATOR

Semantic Analyzer: Semantic Actions, Translation Fields, Values of Translation.Intermediate Code Generator: Virtual Machine – Three Address Code – Triple – Quadruple.

UNIT - IV CODE OPTIMIZATION AND CODE GENERATION

Code Optimization – Criterion of Optimization – Gain of Optimization – Program Flow Graph – Dead Code -- Local and Global Optimization – Safety of Local Optimization -- Optimization – Basic Block – Global Optimization Code Generation – Concept of Target Machine – Instruction Costs – Code Generation Algorithm – Run Time Store Management.

UNIT - V ERROR HANDLING

Error Handling: Lexical and Syntactic Errors – Error Handling in LL(1) and LR(0) Parsing – Table Driven and Panic Mode Error Recoveries – Overheads of Recovery -- Semantic Error Concepts, Examples and Recovery.

TEXT BOOKS

Alfred V.Aho, Ravi Sethi, Jeffrey D. Ullman, Compiler Principles, Techniques and Tools, Pearson education
 Seth D. Bergmann, Compiler Design : Theory, Tools and Examples, C/C++ edition
 REFERENCES

1. Yunlin Su, Song Y. Yan, Principles of Compilers: A New approach to Compilers including the Algebraic Method, Springer edition

2. Compiler Design in C – Holub, Prentice Hall.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. R. Latha	Assistant Professor	CSE	<u>rlatha@avit.ac.in</u>

170	CSCC12	2	ADV	ANCE	D JAV	A PRO	GRAN	/MIN(J		Category	L T P Credit							
											СС	3	0	0		3			
PREA To unde these pa	MBLE erstand t radigms	he conc using	epts of Advanc	object- ed Java	orienteo	l, netwo	orking,	multi-t	ier and e	enterpri	se applicat	ion and c	levelop	o skill	s in ı	using			
PRER Basic ia	EQUIS	ITE rammin	g Knov	vledge															
COUR	RSE OB	JECTI	VES	0															
1.	This mo	odule ai nents.	ims to i	ntroduc	e the st	udents t	to some	e concej	pts of ad	vanced	programn	ning and	practic	e on 1	eusi	ng			
2.	It focus	es on C	Braphica	al User	Interfac	e (GUI), multi	threadi	ng, netw	orking	, and datab	ase man	ipulatio	on.					
3.	3. A selected programming language is used such as Java.																		
4.	4. By completing this module, the students should be able to write sophisticated Java applications.																		
5.	5. Understand Generic Programming																		
COUR	COURSE OUTCOMES																		
On the	success	ful con	pletion	of the	course,	student	s will t	be able	to										
CO1. 1	Understa	and son	ne adva	nced pr	ogramn	ning co	ncepts.]	Deal wi	th comp	lex dat	a objects	Knowled	ge and	unde	rstan	ıd			
as whole	e entitie	s, rathe	r than b	y twidd	lling wi	th their	elemer	nts	•		5		0						
СО2. Г	Define th	e probl	em and	write l	arge pro	ograms	.Analys	se a pro	blem an	d deter	mine	Thinking	and a	nalysi	s				
what pro	oblem el	lements	to repr	esent as	s functi	ons or c	bjects												
CO3. 1	Write th	e simpl	est poss	sible pro	ogram t	hat solv	ves a gi	ven pro	blem wł	nile exp	laining to	Personal	and ac	adem	ic				
the read	er how i	it solves	s that p	roblem															
CO4. 1	Effective	ely use	parame	terizati	on and i	inherita	nce to j	promote	e reuse -	Develo	op	Transfera	able Sk	ills					
program	$\frac{1}{2}$ with r	network	ing and	l multitl	hreadin	g													
CO5.	Compos	se more	compl	ex prog	rams fr	om sim	pler pai	rts - Wi	rite prog	rams th	at	Transfera	able Sk	ills					
impleme MAPF	PING W	s /ITH P	ROGR	AMMI	EOUT	COME	S AND	PRO	RAMN	AE SPI	ECIFIC O	UTCON	/IES						
COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	PO11	PO12	PSO1	PS	02	PSO3			
CO1	s	102	105	S	S	M	S	100	105	1010	S	S	1501	15	02	1505			
CO2			М		M			S	S	М		S			5				
CO3	S		М	S	S	М					L	S	S		S				
CO4	S		S	S	S		S				S	М				S			
CO5	S		М	М	S		L				S	L				S			
S- Stro	ong; M-N	Medium	n; L-Lov	W															

JAVA FUNDAMENTALS:

Java I/O streaming – filter and pipe streams – Byte Code interpretation - reflection – Dynamic Reflexive Classes -Threading – Java Native Interfaces- Swing.

NETWORK PROGRAMMING IN JAVA:

Sockets – secure sockets – custom sockets – UDP datagrams – multicast sockets – URL classes – Reading Data from the server – writing data – configuring the connection – Reading the header – telnet application– Java Messaging services.

APPLICATIONS IN DISTRIBUTED ENVIRONMENT:

Remote method Invocation – activation models – RMI custom sockets – Object Serialization – RMI –IIOP implementation – CORBA – IDL technology – Naming Services – CORBA programming Models -JAR file creation.

MULTI-TIER APPLICATION DEVELOPMENT:

Server side programming – servlets – Java Server Pages - Applet to Applet communication – applet to Servlet communication - JDBC – Using BLOB and CLOB objects – storing Multimedia data into databases – Multimedia streaming applications – Java Media Framework.

ENTERPRISE APPLICATIONS:

Server Side Component Architecture – Introduction to J2EE – Session Beans – Entity Beans – Persistent Entity Beans -Transactions.

TEXT BOOK

- 1. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000 (UNIT II).
- 2. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999. (UNIT III and UNIT V).
- 3. ortsmann& Cornell, "CORE JAVA 2 ADVANCED FEATURES, VOL II", Pearson

Education, 2002. (UNIT I and UNIT IV).

REFERENCE BOOKS

- 1. Web reference: http://java.sun.com.
- 2. Patrick Naughton, "COMPLETE REFERENCE: JAVA2", Tata McGraw-Hill, 2003.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	T.Vijila	Assistant Professor	CSE	<u>vijila@avit.ac.in</u>
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

170	CSCC13	;	DAT	FA WA	REHO MI	USING	G AND	DATA			Category	ry L T P Credit 3 0 0 3							
											CC	3	0	0	3				
PREA	MBLE																		
Data wa	arehousi	ing and	l data	mining	is one	of the	e most	advanc	ed fiel	ds of c	computer s	science v	which	invol	ves use	of			
Mathem	atics, St	tatistics	, Inforr	nation [Fechnol	logy an	d infor	mation	Science	es in dis	covering r	iew infoi	matio	n and	knowled	lge			
from la	ge data	bases I	t is a n	ew eme	erging i	nterdis	ciplina	y area	of resea	arch and	d developi	nent whi	ich has	s crea	ted inter	est			
among s	cientist	s of var	ious dis	scipline	S .														
PRER	EQUIS	ITE																	
Datab	ase Ma	nageme	nt Syst	em															
COUR	SE OB	JECTI	VES																
1.	Disting	uish a d	lata wai	rehouse	from a	n opera	tional d	latabase	system	, and ap	preciate th	ne needs	for de	velopi	ng a data	a			
	wareho	use for	large co	orporati	on.				•						0				
2.	Describ	e the pr	roblems	s and pr	ocesses	involv	ed in th	e devel	opment	of a da	ta warehou	ise							
3.	To expl	ain the	process	s of data	a mining	g and it	s impoi	tance.											
COUR	SF OU	тсом	IFS																
COUR	SE UU	ICOM	IL'S																
On the	success	ful con	pletion	of the	course,	student	ts will t	e able t	0										
CO1:. 1	o under	stand tl	ne basic	s of dat	ta warel	nousing	, and m	ining				Understa	nd						
СО2: Т	o learn t	he data	prepro	cessing	. langua	ige, arc	hitectu	es. con	cept des	scription	1.	Apply							
	- 1	1			, 1011800			• • • • • •	eept ac	, en paros		A							
CO3: 1	o learn i	ne asso	clation	rules a	id its al	gorithn	ns.					Арргу							
CO4: T	o learn t	he class	sificatio	on and c	lusterir	ig rules	and the	e respec	tive alg	orithms		Apply							
CO5: To	o know t	he lates	st trend	s about	the dat	a warei	housing	and m	ining			Understa	nd						
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC O	UTCON	1ES						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12							
CO1	М	М									L	L							
CO2	М	М		L								L							
CO3	М	М		L		М													
			L																
CO4	М	S	L			L				L		М							
CO5	М	L				М					М	L							
S- Stro	ng; M-N	Medium	i; L-Lov	W															

UNIT I INTRODUCTION AND DATA WAREHOUSING

Introduction, Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Implementation, Further Development, Data Warehousing to Data Mining.

UNIT II DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Preprocessing, Cleaning, Integration, Transformation, Reduction, Discretization, Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces, Architectures, Concept Description, Data Generalization, Characterizations, Class Comparisons, Descriptive Statistical Measures.

UNIT III ASSOCIATION RULES

Association Rule Mining, Single-Dimensional Boolean Association Rules from Transactional Databases, Multi-Level Association Rules from Transaction Databases.

UNIT IV CLASSIFICATION AND CLUSTERING

Classification and Prediction, Issues, Decision Tree Induction, Bayesian Classification, Association Rule Based, Other Classification Methods, Prediction, Classifier Accuracy, Cluster Analysis, Types of data, Categorization of methods, Partitioning methods, Outlier Analysis.

UNIT V RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, World Wide Web, Applications and Trends in Data Mining.

TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India / Morgan Kauffman, 2001.

REFERENCES

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2004.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2003.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.
- 4. W.H.Inmon, "Building the Data Warehouse", 3rd Edition, Wiley, 2003.
- 5. Alex Bezon, Stephen J.Smith, "Data Warehousing, Data Mining & OLAP", MeGraw-Hill Edition, 2001.
- 6. Paulraj Ponniah, "Data Warehousing Fundamentals", Wiley-Interscience Publication, 2003.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in

170	CSCC14		ART	TIFICL	AL INT	TELLI	GENCI	E AND			Category	L	Т	Р	Cre	edit
				EX	KPERT	SYST	EMS				СС	3	0	0		3
PREA This syl contains represen know ab	MBLE labus is intellig t knowl oout AI a	intend gent ag ledge an and its c	ed for ent, Ki nd in m concept	the Eng nowledg achine s, applie	ineerin ge Repr learnin cation.	g stude resentat g conta	nts and ion and in som	enable d Mach e impor	e them the them the them the them the	to lean arning, ediction	about Art and appli method.	ificial Int cation. V Thus, thi	elliger Vhich s sylla	nce. T is use bus fo	[°] his sy eful to ocuses	villabus bo how son to
PRER	EQUIS	ITE	t Susta													
	SE Mana	JECTI	VES	111												
1.	To iden areas of	tify the compu	kind of ter scie	f proble ence.	ms that	can be	solved	using A	AI techn	nique: to	know the	e relation	betwee	en AI	and of	ther
2.	To have	e knowl	edge of	generi	c proble	em-solv	ing me	thods in	n AI							
3.	TO Des	ign sof	tware a	gents to	solve a	a proble	em.									
4.	Apply t	he knov	wledge	of algor	rithms t	o solve	arithm	etic pro	blems.							
5.	Assemt	ole an et	fficient	code fo	r engin	eering j	problem	ıs.								
COUR	SE OU	тсом	IES													
On the	success	ful com	pletion	of the	course,	student	s will b	e able t	0							
CO1:. I	dentify (the diffe	erent ag	ent and	its type	es to so	lve the	problen	ns			Understa	nd			
CO2: ki	now abo	out the p	oroblem	solving	g techni	que in	Artifici	al Intell	igence.			Apply				
CO3: C	onstruct	the nor	rmal for	rm and	represe	nt the k	nowled	ge.				Apply				
CO4: to environ	know a nent.	bout ex	tension	of con	dition p	robabil	ity and	how to	apply i	n the re	al time	Apply				
CO5: to	lean ab	out Infe	ormatio	n Retrie	eval and	d Speec	h Recoz	gnition				Understa	nd			
MAPP	PING W	TTH P	ROGR	AMME	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC (DUTCON	1ES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	М	М									L	L				
CO2	М	М		L								L				
CO3	М	М	L	L		М										
CO4	М	S	L			L				L		М				
CO5	М	L				М					М	L				
S- Stro	ng; M-N	Medium	; L-Lov	N												

UNIT - I INTRODUCTION

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

UNIT - II PROBLEM SOLVING

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

UNIT - III KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

UNIT - IV MACHINE LEARNING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

UNIT - V APPLICATION

AI Applications-Language Models-Information Retrieval-Information Extraction-Natural Language Processing-Machine Translation-Speech Recognition

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1.David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE D	ESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Rajaprakash			rajaprakash@avit.ac.in

170	CSCC15	;	(C# ANI	D .NET	APPL	ICATI	ON			Catego	ry L	, T	Р	Credit
				Ι	DEVEL	OPME	ENT				CC	3	L T P Cree 3 0 0 3 		
PREA To pro	MBLE wide an	introdu	ction to	the .N	ET fran	nework	and en	able the	e studen	t to pro	gram in (C#.			
PRER	EQUIS	ITE								-	-				
Java p	rogramn	ning													
COUF	RSE OB	JECTI	VES												
1.	To stud	y basic	and ad	vanced	feature	s of the	C# lan	guage							
2.	To crea	te form	based	and wel	b based	applica	ations								
3.	To stud	y the ir	ternals	of the .	NET fr	amewo	rk								
4.	To lear	n about	ADO.N	Net											
5.	To lear	n about	differe	nt web	service	8									
COUR	RSE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able	to						
СО1. 7	To learn	the bas	ics of .r	net Fran	ne work	and C	# langu	age				Knowle	edge		
СО2. 7	To learn	C# eler	nents a	nd OOF	PS conc	epts						Unders	tand		
СОЗ. 1	To learn	interfac	ce and i	nheritar	nce con	cepts in	C# lan	iguage				Analyz	e		
СО4. Т	o learn	fundan	nentals of	of wind	ow app	lication	progra	mming	and cre	eate a w	indow	Apply			
applicat	ion To deve	lon weł	applic	ations a	nd lear	n advar	nced					Evalua	tion		
MADI	DINC W	ити р				COME	S AND		TD A M	ME SD	FCIFIC		MES		
	PO1	PO2		PO4	PO5		5 AND PO7		PO9			PO12	PSO1	PSO2	PSO3
C03	5	102	105	104	r05 S	100	<u>и</u>	5	10)	s s	1011	S	1501	M	1505
$\frac{col}{col}$	5		C		6		M	5	c	3	c	5		M	C
CO2.	3		S M	T	C	C	IVI	3	S M		S M	3 0	M		
CO3.			M		5	5	~	5	M		M	5	M	8	M
CO4.			S	М	M		S					S			S
CO5.	S		М	М	S						S				M
S- Stro	ong; M-N	Medium	n; L-Lov	W											

INTRODUCTION: Overview Of .Net-Advantages Of .Net Over Other Languages-Assemblies-.Net Architecture-The Role of C# In The .Net Enterprise Architecture-The Common Language Runtime-C# Basics-Objects And Types-Inheritance –Arrays

OBJECT ORIENTED ASPECTS OF C#:

Operators and Casts: Operators - Type Safety - Operator Overloading - User-Defined Casts. Delegates and Events: Delegates – Events. Strings and Regular Expressions: System.String -Regular Expressions. Collections: Collection Interfaces and Types – Lists - Queues – Stacks -Linked Lists - Sorted Lists – Dictionaries – Hash Set - Bit Arrays – Performance-Indexers

I/O AND NETWORK PROGRAMMING:

Tracing and events - threading and synchronization - .Net security – localization – Manipulating XML - Managing the file system – basic network programming.

ADO.NET:

Data Access: ADO.NET Overview - Using Database Connections – Commands - Fast Data Access: The Data Reader -Managing Data and Relationships: The DataSet Class – XML Schemas: Generating Code with XSD – Working with ADO.NET. Windows Forms: Creating a Windows Form Application - Control Class - Standard Controls and Components – Forms. Data Binding: The Data Grid View Control - Data Grid View Class Hierarchy - Data Binding -Visual Studio .NET and Data Access.

ASP.NET AND WEB SERVICES:

ASP.NET Pages: ASP.NET Introduction - ASP.NET Web Forms - ADO.NET and Data Binding.ASP.NET Development: User and Custom Controls - Master Pages - Site Navigation – Security –Themes- Web Parts. ASP.NET AJAX: What Is Ajax - What Is ASP.NET AJAX - Using ASP.NET AJAX.

TEXT BOOK

1. Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Professional C# 2008, Wiley Publishing, Inc., 2008. ISBN: 978-8-126-51627-8.

REFERENCE BOOKS

- 1. Andrew Troelsen, "C# and the .NET Platform", A! Press, 2005.
- 2. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill, 2004.
- **3.** Kevin Hoffman, "Visual C# 2005", Pearson Education, 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs. T . Narmadha	Assistant Professor	Computer science and engineering	narmadha@vmkvec.edu.in

170	CSCC16	5		CL	OUD C	OMPU	TING				Categor	y L	Т	Р	Credit	
											CC	3	0	0	3	
PREA	MBLE															
To study	y and un	Iderstar	nd the co	oncepts	in clou	d comp	uting a	nd appl	y them	practica	lly.					
PRER	EQUIS	ITE														
NIL	SE OD	IFCTI	VFS													
COUR	SE UD	JEUH	VES													
1.	1. To understand cloud computing concepts.															
2.	To stud	ly vario	us clou	d servic	es.											
3.	To app	ly cloud	l compu	iting in	collabo	ration v	with oth	ner serv	ices.							
4.	To und	erstand	the clo	ud com	puting s	ervices										
5.	To appl	ly cloud	l compu	iting on	line.											
COUR	SE OU	TCOM	IES													
0 1		<u>c 1</u>	1.4	6.4		. 1 .	.11.1	1.1								
On the	success	stul con	npietion	or the	course,	student	s will t	be able t	.0							
CO1: A	ble to U	Indersta	and basi	cs in C	loud Co	mputin	g					Understa	nd			
CO2: A	Able to a	apply cl	oud cor	nputing	g concep	ots in re	al time					Apply				
CO3: A	ble to d	evelop	cloud c	omputi	ng proje	ects						Apply				
CO4: A	ble to a	pply clo	oud serv	vices								Apply				
C05: A	ble to c	ollabor	ate cloi	ıd servi	ces with	n other	applica	tions				Apply				
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPH	ECIFIC	OUTCOM	1ES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	М	М									L	L				
CO2	М	М		L								L				
CO3	М	М	T	L		М										
CO4	М	S	L			L				L		М				
CO5	M	L	_			M				_	М	L				
S- Stro	ng; M-N	Medium	n; L-Lov	W								-		1	I	

UNIT - I INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage –Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

UNIT - II DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

UNIT - III CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

UNIT - IV USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

UNIT - V COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

TEXT BOOKS

1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

REFERENCES

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	PROFESSOR	CSE	rjaichandran@avit.ac.in
2				

170	SCC17	7		C	YBER S	SECUE	RITY				Category	L	Т	Р	Credit
											CC	3	0	0	3
PREA To unde	MBLE rstand f	he need	l for Cv	ber Sec	urity in	real tir	ne and	to study	/ techni	aues inv	olved in i	t			
PRER	EQUIS	ITE	<u>. 101 C j</u>		<u>unty m</u>	<u>iour th</u>		to stady		ques my					
COUR	SE OB	JECTI	VES												
1.	To und	erstand	the fun	dament	als of C	yber So	ecurity								
2.	To stud	y vario	us attac	king teo	chnique	S									
3.	To appl	y explo	oitation	in cybe	r space										
4.	To stud	y about	t Malici	ous coc	les										
5.	Defend	ing aga	inst cyb	er attac	ks										
COUR	SE OU	TCOM	1ES												
On the	success	ful con	npletion	of the	course,	student	s will t	e able t	.0						
CO1: A	ble to U	Indersta	and basi	ics in cy	ber sec	urity						Understa	nd		
CO2: A	ble to a	apply at	tackers	techniq	ues in 1	eal tim	e					Apply			
CO3: A	ble to a	pply ex	ploitati	on in w	eb appli	ications						Apply			
CO4 : A	ble to u	ndersta	nd and	apply m	naliciou	s in net	works.					Understa	nd and	Appl	y
<i>C05:</i> A	ble to a	pply de	efense a	nd anal	ysis tec	hniques	s in real	time				Apply			
CO1: A	ble to U	Indersta	and basi	ics in cy	ber sec	urity						Understa	nd		
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC C	OUTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М									L	L			
CO2	М	М		L								L			
CO3	Μ	М	L	L		М									
CO4	М	S	L			L				L		М			
CO5	М	L				М					М	L			
S- Stro	ng; M-N	Medium	n; L-Lo	W						1	1				I

 UNIT - I
 INTRODUCTION

 Network and security concepts – basic cryptography – Symmetric encryption – Public key Encryption – DNS –

 Firewalls – Virtualization – Radio Frequency Identification – Microsoft Windows security Principles.

UNIT - II ATTACKER TECHNIQUES

Antiforensics – Tunneling techniques – Fraud Techniques - Threat Infrastructure.

UNIT - III EXPLOITATION

Techniques to gain a foot hold – Misdirection, Reconnaissance, and disruption methods.

UNIT - IV MALICIOUS CODE

Self Replication Malicious code – Evading Detection and Elevating privileges – Stealing Information and Exploitation.

UNIT - V DEFENSE AND ANALYSIS TECHNIQUES

Memory Forensics – Honeypots – Malicious code naming – Automated malicious code analysis systems – Intrusion detection systems – Defense special file investigation tools.

TEXT BOOKS

1. James Graham, Richard Howard and Ryan Olson, "Cyber Security Essentials", CRC Press, Taylor & Francis Group, 2011.

2. By Dan Shoemaker, Ph.D., William Arthur Conklin, Wm Arthur Conklin, "Cyber security: The Essential Body of Knowledge", Cengage Learning, 2012.

REFERENCES

1.. Ali Jahangiri, "Live Hacking: The Ultimate Guide to hacking Techniques & Counter measures for Ethical Hackers & IT Security Experts", 2009.

COUR	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	PROFESSOR	CSE	rjaichandran@avit.ac.in

170	SCC18	;		RICH	INTEI	RNET	APPLI	CATIC	DN		Category	L	Т	Р	Credit
											СС	3	0	0	3
PREA Uses of fundame	MBLE web si entals of	tes and CGI, S	portals CRIPT	s have ING LA	become ANGUA	e comn AGES,	non for Web A	knowle pplicati	edge sh ons.	naring a	nd busine	ess. The c	course	foc	cuses on the
PRER	EQUIS	ITE													
Basis of	HTML	IFCTI	VES												
	SE OD	JEUH	VE5												
1	To lear	n CGI	Concep	ts & CO	GI Prog	rammir	ng								
2	To Stu	dy DHI	ſML, X	ML,AJ	AX										
3	To Stu	dy On-I	Line we	b appli	cation	& Inter	net Cor	ncepts							
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the	course,	student	ts will b	e able t	0						
СО1: То	o unders	stand th	e basic	concep	t of HT	ML and	d Script	ing Lar	iguage			Understa	nd & .	Apply	ý
СО2: То	o learn t	he HTN	ML, Co	mmon (Gatewa	y Interf	ace.					Understa	nd &	Apply	ý
СОЗ: То	o learn t	he Java	Script	and AJ	AX							Understa	nd & .	Apply	ý
СО4 : То	o learn t	he Serv	er side	program	nming							Understa	nd & .	Apply	ý
СО5: Та) learn t	he data	base co	onnectiv	vity.							Understa	nd & .	Apply	ý
MAPP	'ING W	TTH P	ROGR	AMMF	E OUT	COME	S AND	PROG	RAM	ME SPI	ECIFIC (DUTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	S	S	М	М	L	S	S	М	S	L	S				
CO2	М	S	М	М	М	S	S	М	S	М	М				
CO3	S	S	S	S	М	S	S	S	S	М	S				
CO4	S	S	S	М	М	S	S	S	S	L	S				
CO5	S	S	М	М	L	S	М	М	S	L	М				
S- Stro	ng; M-N	Medium	i; L-Lov	N								1			
UNIT I -INTRODUCTION

Internet Principles – Basic Web Concepts – Client/Server model – retrieving data from Internet – HTML and Scripting Languages – Standard Generalized Mark –up languages – Next Generation – Internet –Protocols and Applications

UNIT II-COMMON GATEWAY INTERFACE PROGRAMMING

HTML forms – CGI Concepts – HTML tags Emulation – Server – Browser Communication – E-mail generation – CGI client Side applets – CGI server applets – authorization and security. Introduction to PERL

UNIT III -SCRIPTING LANGUAGES

Java Script Programming-Dynamic HTML-Cascading style sheets-Object model and Event model-Filters and Transitions-Active X Controls-Multimedia-Client side script.- Traditional web application vs AJAX application –creating full scale AJAX application - Forms – Scripting Object

UNIT IV -SERVER SIDE PROGRAMMING

Dynamic Web content – cascading style sheets – DHTML – XML – Server side includes – communication – Active and Java Server Pages - Ruby enabled applications

UNIT V -ONLINE

Simple applications – on-line databases – monitoring user events – plug-ins –database connectivity – Internet Information Systems – MICROSOFT IIS - EDI application in business – Internet Commerce – Customization of Internet Commerce.

TEXT BOOK

1. Jason Hunter, William Crawford, "Java Servlet Programming", O' Reilly Publications, 1999.

2. Ravi Kalakota and Andrew B Whinston, "Frontiers of Electronic Commerce", Addison Wesley, 1996

3.Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and Java", Prentice Hall of India – QUE,1999 **4.**Paul JDeitel and Harvey M Deitel, "AJAX, Rich Internet appliactions and web development", Prentice Hall, 2008.

REFERENCES

1. Jeffy Dwight, Michael Erwin and Robert Niles, "Using CGI", Prentice Hall of India QUE, 1999.

2. Scot Johnson, Keith Ballinger, Davis Chapman, "Using Active server Pages", Prentice Hall of India, 1999.

3. Ted coombs, Jason coombs, Brewer, "Active X source book", John wiley, 1999

4. Evangelos Petroutsos, "Mastering Visual Basic 6", BPB Publications, 1998

COURSE DESIGNER	RS		
Name of the Faculty	Designation	Department	Mail ID
Dr. K. Somasunadaram	PROFESSOR	CSE	ksomasundaram@avit.ac.in

17C	7CSCC19 INTERNET OF THINGS Category L T P Credit													Credit	
										C	CC	3	0	0	3
PREA	MBLE														
To study	and un	derstan	d the te	chnolog	gies inv	olved in	n Intern	et of Tl	nings (I	oT) and a	pply the	m practic	ally.		
PRER NIL	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1.	To und	erstand	the bas	ic conce	epts of l	OT									
2.	To stud	y the m	ethodo	logy of	IOT										
3.	3. To Develop IOT applications using Raspberry PI														
4.	To Dev	elop IO	T appli	cations	using A	Arduino	and In	tel Edis	on						
5.	To app	ly cloue	d conce	pts in I	OT										
COUR	SE OU	ТСОМ	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1: A	ble to u	ndersta	nd basio	cs in IO	Т							Understa	nd		
CO2: A	ble to u	ndersta	nd Met	hodolo	gy in IC)T						Understa	nd		
CO3: A	ble to c	lesign I	OT app	lication	s using	Raspbe	erry					Design			
CO4 : A	ble to de	esign IC	OT appl	ications	s using A	Aurdin	o and Ir	ntel Edi	son			Design			
C05: A	ble to a	pply Cl	oud con	nputing	in IOT	,						Apply			
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPEC	CIFIC O	UTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М									L	L			
CO2	М	М		L								L			
CO3	М	М	L	L		М									
CO4	М	S	L			L				L		М			
CO5	М	L				М					М	L			
S- Stro	ng; M-N	Aedium	i; L-Lov	W										1	I

UNIT - I INTRODUCTION

Introduction-Characteristics-Physical design - Protocols – Logical design – Enabling technologies – IoT Levels – Domain Specific IoTs – IoT vs M2M.

UNIT - II IOT METHODOLOGY

IoT systems management - IoT Design Methodology - Specifications Integration and Application Development.

UNIT - III IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

UNIT - IV IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

UNIT - V APPLICATIONS

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT.

TEXT BOOKS

 Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.
 Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.				

17050000	Category L T P Cred													edit	
1/CSCC20		D.	AIA	51 K	JCIU	KES I	LAB		C	CC	0	0	4		2
PREAMBL This laborat implement th	E ory en e searc	ables	s the g and s	stude: sorting	nts cle algorit	arly u thms.	ndersta	nd the	e conce	epts of	data st	ructures.	Also	student	s can
PRERQUIS NIL	ITE														
COURSE O	UTCC	ME	S												
On the succe	ssful c	ompl	letion	of the	course	, studei	nts will	be abl	e to						
CO1. Devel	op algo	orith	ms for	the co	oncepts	of data	a struct	ures.				Apply			
CO2. Able to	o Appl	y sea	rching	g and s	orting	technic	ques					Apply			
CO3. Constr appropriate I	uct imj Data St	plem ructu	entati ires	ons foi	Abstra	act Dat	а Туре	s (AD	Γ) usin	g		Apply			
CO4. Assess	the su	itabil	lity of	a data	structu	ure to s	olve a	problei	n, base	ed					
on the time a	nd spa	ce co	omple	xities o	of diffe	rent op	eration	s on th	e			Evaluate			
CO5 Impler	: nent al	gorit	hms v	which	ise sort	ing se	arching	and/o	r select	tion					
as sub-proce	lures.(CO5)	villen t	150 5011	ing, se	arennie	s and/0		.1011		Apply			
MAPPING	WITH	PRO	OGRA	AMMI	E OUT	COM	ES AN	D PR(OGRA	MME SI	PECIF	TC OUT	COME	ËS	
COS PO	1 PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 L	-		-	-	-	-	-	-	-	-	-	-	S	L	
CO2 -	-		-	-	-	-	-	-	-	-	-	-	S	М	
CO3 S	S	;		S	-	М	S	-	-	М	-	-	S	L	L
CO4													S	М	
CO5 S	S			S		М	S						S	М	L
S- Strong; M	-Media	um; I	L-Low	V											

_____, ____, ____

LIST OF EXPERIMENTS:

- 1. Exercises using Objects, Classes, Inheritance
- 2. Operator Overloading and Polymorphism
- 3. Array implementation of List Abstract Data Type (ADT)
- 4. Linked list implementation of List ADT
- 5. Cursor implementation of List ADT
- 6. Array implementations of Stack ADT
- 7. Linked list implementations of Stack ADT
- 8. Queue ADT
- 9. Search Tree ADT Binary Search Tree
- 10. Heap Sort
- 11. Quick Sort

REFERENCES:

- **1.** Laboratory Reference Manual.
- 2. Balaguruswami. E, "Programming in C", TMH Publications, 1997
- **3.** Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 4. Mahapatra , "Thinking in C", PHI publications, 2nd Edition, 1998.
- **5.** Subbura.R , "Programming in C", Vikas publishing, 1st Edition, 2000.

COURSE DESIGNERS S.No. Name of the Faculty Designation Department Mail ID Computer science Dr. R. Jaichandran Associate Professor jaichandran@avit.ac.in 1 and engineering Computer science Mrs. R. Latha 2 Assistant Professor rlatha@avit.ac.in and engineering Computer science 3 Dr. M. Nithya Prof & Head nithya@vmkvec.edu.in and engineering Computer science amirthalingam @ 4 Dr.V.Amirthalingam Associate Professor and engineering vmkvec.edu.in

170	CSEC01		AD	HOC A	ND W	IRELF	ESS SE		Category	L	Т	Р	Credit		
					NETV	VORK	S				EC	3	0	0	3
PREAD This synetword analyze netword PRER Basic	 PREAMBLE This syllabus is intended for the Engineering students and enables them to learn about adhoc and wireless sensor networks. This syllabus helps the students to study and identify different issues in wireless ad hoc and sensor networks , to analyze protocols developed for ad hoc and sensor networks , to Identify different issues in wireless ad hoc and sensor networks and to Identify and critique security issues in ad hoc and sensor networks. PREREQUISITE Basic knowledge of Discrete Mathematics, Regular Expressions, Finite Automata and Context Free Grammars Familiarity with working and features of high level languages 														
Familiarity with working and features of high level languages COURSE OBJECTIVES															
1	1 To learn about the issues in the design of wireless ad hoc networks														
2	To understand the working of protocols in different layers of mobile ad hoc and sensor networks														
3	I o understand the working of protocols in different layers of mobile ad hoc and sensor networks Identify different issues in wireless ad hoc and sensor networks														
4	To expose the students to different aspects in sensor networks														
5	5 To understand various security issues in ad hoc and sensor networks and solutions to the issues														
COUR	SE OU	TCON	1ES				- 110 0 ui								
On the	SUCCESS	ful con	nnletion	of the	course	student	te will h	e able i	to						
	aarn ab			of wire	less ad	hoc net			.0			Underst	and		
CO1: L	earn an	$\frac{d}{d}$ analy	ze the v	vorking	of prot	cocols d	evelope	ed for a	d hoc ar	nd sense	or	Apply	anu		
network	KS To undor	standa	boutan	d Idant	fy diff	ront is	uno in 1	wirolog	adhoo	and so	nsor	Apply			
network	s under	stanu a	ibout an	u luelli	iry unit		sues III	witcies	s au noc	and se	11501	Арргу			
СО4: Т	o Ident	ify diff	erent iss	sues in s	wireless	s ad hoc	:					Apply			
СО5: Т	o Ident	ify and	critique	e securi	ty issue	s in ad	hoc and	l sensor	networ	ks		Understa	and		
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMN	AE SPI	ECIFIC O	UTCON	1ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													_	
CO2	S	M		L								L			
<u>CO3</u>	M	M		L		т		M		T		N			
CO4	M	ь т								L	м			_	
S- Stro	CUS M L S- Strong: M-Medium: L-Low														
5- 5u0	S- Strong; M-Medium; L-Low														

SYLLABUS	
MAC & ROUTING IN AD HOC NETWORKS	9 - hours
Introduction - Issues and challenges in ad hoc networks - MAC Layer Protocols for wireless ad hoc networks	vorks –
Contention-Based MAC protocols – MAC Protocols Using Directional Antennas – MultipleChannel MAC	C Protocols –
Power-Aware MAC Protocols - Routing in Ad hoc Networks - Design Issues - Proactive, Reactive and H	łybrid
Routing Protocols.	
TRANSPORT & QOS IN AD HOC NETWORKS	9 – hours
TCP's challenges and Design Issues in Ad Hoc Networks - Transport protocols for ad hoc networks - Iss	ues and
Challenges in providing QoS – MAC Layer QoS solutions – Network Layer QoS solutions – QoS Model	
MAC & ROUTING IN WIRELESS SENSOR NETWORKS	9 - hours
Introduction - Applications - Challenges - Sensor network architecture - MAC Protocols for wireless sen	nsor networks
- Low duty cycle protocols and wakeup concepts - Contention-Based protocols - Sechedule Based Protoc	cols – Zigbee
– Topology Control – Routing Protocols.	
TRANSPORT & QOS IN WIRELESS SENSOR NETWORKS	9 - hours
Data-Centric and Contention-Based Networking – Transport Layer and QoS in Wireless Sensor Networks	s – Congestion
Control – In-network processing – Operating systems for wireless sensor networks – Examples.	
SECURITY IN AD HOC NETWORKS	9 - hours
Security Attacks – Key Distribution and Management – Intrusion Detection – Software based Anti-tamper	r techniques –
Water marking techniques - Defense against routing attacks - Secure Ad hoc routing protocols - Broadca	st
authentication WSN protocols – TESLA – Biba – Sensor Network Security Protocols – SPINS.	
TEXT BOOKS	
1. C.Siva Ram Murthy and B.S.Manoj, Ad hoc Wireless Networks Architectures and protocols, 2nd edition	on, Pearson
Education. 2007	
2. Charles E. Perkins, Ad hoc Networking, Addison – Wesley, 2000.	
REFERENCES	
1. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobile ad hoc networking, Wile	y-IEEE press,
2004.	
2. Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002.	

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Nitishagarwal	Asso. Prof	CSE	nitishaaggarwal@avit.ac.in
2	Dr.K.Sasikala	Asso. Prof	CSE	Sasikala@vmkvec.edu.in

170	CSEC02			AGILI	E MET	Category	L	Т	Р	Credit					
											EC-PS	3	0	0	3
PREA Softwar standar out, cro	PREAMBLE Software Development is an umbrella term for an arrangement of strategies and practices in light of the qualities and standards communicated in the Agile Manifesto. Arrangements advance through coordinated effort between self-sorting out, cross-utilitarian groups using the suitable practices for their specific circumstance.														
PRER Aware Expos	EQUIS eness of ure to an	ITE basics ny obje	of softw ct orien	vare eng ted pro	gineerin grammi	ig conce ing lang	epts and guage si	l wateri uch as J	fall met ava, C#	hodolog ŧ.	<u>y</u>				
COUR	SE OB	JECTI	IVES												
1	Under	stand t	he back	ground	and dri	ving fo	rces for	taking	an Agi	le appro	each to so	ftware de	evelopr	nent	
2	Under	stand t	he busii	ness val	ue of a	dopting	Agile	approac	hes						
3	Under	stand t	he Agil	e devel	opment	practic	es								
4	Drive	develo	pment v	with uni	t tests u	ising Te	est Driv	ven Dev	elopme	ent					
5	Apply design principles and refactoring to achieve Agility														
6	Deploy automated build tools, version control and continuous integration														
COUR	SE OU	TCOM	1ES												
On the	success	ful con	npletion	of the	course,	student	ts will t	be able	to						
СО1: Т	'o under	stand t	he fund	amenta	ls of ag	ile.						Underst	and		
СО2: Т	o learn	the bas	ics of a	gile scr	um fran	nework	•					Apply			
СО3: Т	'o learn	the agi	le testin	ıg.								Apply			
СО4: Т	o learn	the agi	le softw	vare des	ign and	develo	pment.					Apply			
СО5: Т	o learn	the ind	ustry tro	ends								Apply			
MAPP	ING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC (OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М		М							L	Μ			
CO2	М	S				Μ						L			
CO3	M	Μ	Ĺ		L		L				М				
<u>CO4</u>	M	т	S			L				L		<u>M</u>		_	
CO5		L										L			
5- Stro	ng; M-N	viedium	1; L-L0	W											

FUNDAMENTALS OF AGILE

The Genesis of Agile-Introduction and background-Agile Manifesto and Principles-Overview of Scrum-Extreme Programming- Feature Driven development- Lean Software Development- Agile project management- Design and development practices in Agile projects- Test Driven Development- Continuous Integration- Refactoring- Pair Programming- Simple Design- User Stories- Agile Testing- Agile Tools.

AGILE SCRUM FRAMEWORK

9 – hours Introduction to Scrum- Project phases- Agile Estimation- Planning game- Product backlog- Sprint backlog- Iteration planning- User story definition- Characteristics and content of user stories- Acceptance tests and Verifying stories-Project velocity- Burn down chart- Sprint planning and retrospective- Daily scrum- Scrum roles - Product Owner-Scrum Master- Scrum Team- Scrum case study- Tools for Agile project management. 9 - hours

AGILE TESTING

The Agile lifecycle and its impact on testing- Test-Driven Development (TDD)- xUnit framework and tools for TDD-Testing user stories - acceptance tests and scenarios- Planning and managing testing cycle- Exploratory testing- Risk based testing- Regression tests- Test Automation- Tools to support the Agile tester. 9 - hours

AGILE SOFTWARE DESIGN AND DEVELOPMENT

Agile design practices- Role of design Principles including Single Responsibility Principle- Open Closed Principle-Liskov Substitution Principle- Interface Segregation Principles- Dependency Inversion Principle in Agile Design- Need and significance of Refactoring- Refactoring Techniques- Continuous Integration- Automated build tools- Version control.

INDUSTRY TRENDS

Market scenario and adoption of Agile- Agile ALM- Roles in an Agile project- Agile applicability- Agile in Distributed teams- Business benefits- Challenges in Agile- Risks and Mitigation- Agile projects on Cloud- Balancing Agility with Discipline- Agile rapid development technologies

TEXT BOOKS

- 1. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", Pearson, 21 Mar 2008.
- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Prentice Hall, 25 Oct 2002.
- 3. Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", Addison Wesley, 30 Dec 2008
- 4. www.it-ebooks.info/tag/agile
- 5. http://martinfowler.com/agile.html

REFERENCES

- 1. Alistair Cockburn, "Agile Software Development: The Cooperative Game", Addison Wesley, 19 Oct 2006.
- 2. Mike Cohn Publisher, "User Stories Applied: For Agile Software", Addison Wesley, 1 Mar 2004

COURSE DESIGNERS												
S. No.	Name of the	Designation	Department	Mail ID								
	Faculty											
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in								
2	Dr.S.Senthilkumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com								

9 - hours

170	CSEC03		I	BIG DA		Category	L	Т	Р	Credit					
											EC-PS	3	0	0	3
PREA Big da safety, society	PREAMBLE Big data provides unprecedented opportunities to drive information-based innovation in economies, healthcare, public safety, education, transportation and almost every human endeavour. Big data also creates risk to both individuals and society unless effective governance is in place. PREREQUISITE														
DBMS	EQUIS 5 & Dat	ITE a Minir	ıg												
COURSE OBJECTIVES															
1	1 To understand how big data analytics can leverage into a key component														
2	To understand the big data tools with their applications														
3	To understand the big data reports for the existing tools														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
СО1: Т	'o under	stand t	he basic	s of dig	gital dat	a and ii	ntroduc	tion to	big data	l		Understa	and		
СО2: Т	'o learn	the bas	ic big d	ata cha	llenges,	import	ant and	techno	logies.			Apply			
СО3: Т	`o learn	the Ha	doop ar	chitectu	re and	technol	ogies.					Apply			
СО4: Т	'o learn	the big	data ap	plicatio	ons like	Mongo	DB, Ca	assandra	a and H	ive.		Apply			
СО5: Т	'o learn	the Pig	and Jas	sper Re	ports							Apply			
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPI	ECIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	M	М									L	L			
CO2	М		M	S		Μ						L			
CO3	M	M	L		L	L					М				
CO4	M	S	S			L				L		M			
CO5	M	L										L			
S- Stro	S- Strong; M-Medium; L-Low														

Types of Digital Data - Structured Data - Semi-Structured Data - Unstructured Data - Introduction to Big Data - What is Big Data - Why Big Data - Traditional Business Intelligence (BI) versus Big Data - Typical Hadoop Environment -Changes in the Realms of Big Data - Coexistence of Big Data and Data Warehouse.

BIG DATA ANALYTICS

9 – hours What's in Store? - Big Data Analytics - Classification of Analytics - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Big Data Analytics Important - Technologies for Meet the Challenges Posed by Big Data - Data Science - Data Scientist - Big Data Environment - Analytics Tools. 9 - hours

HADOOP

Introduction to Hadoop - Hadoop Components - Hadoop Conceptual Layer - High Level Architecture of Hadoop -Business Value of Hadoop -Hadoop Distributed File System - Processing Data with Hadoop - MapReduce Daemons -MapReduce working - MapReduce Example - Managing Resources and Application with Hadoop YARN - Hadoop Ecosystem.

MONGODB. CASSANDRA AND HIVE

MongoDB - RDBMS and MongoDB - Data Types in MongoDB-CRUD- Introduction to Apache Cassandra - Features of Cassandra - CQL Data Types -CQLSH- Keyspaces-CRUD-Collections- Using a Counter - Time To Live (TTL)-Alter - Import and Export - Export to CSV - Import from CSV - Import from STDIN - Export to STDOUT - System Tables - Practice Examples - Introduction to Hive - Hive Architecture - Hive Data Types - Hive File Format - Hive Ouery Language - RCFILE Implementation - SERDE - UDF.

PIG AND JASPER REPORTS

Anatomy of Pig - Pig on Hadoop - Pig Philosophy - Use Case for Pig: ETL Processing - Pig Latin Overview - Data Types in Pig - Running Pig - Execution Modes of Pig - HDFS Commands - Relational Operators - Eval Function -Complex Data Type - Piggy Bank - UDF (User Defined Function) - Parameter Substitution - Diagnostic Operator -Word Count Example - When to use Pig? - When NOT to use Pig? - Pig at Yahoo - Pig versus Hive - Hive Vs Pig -Introduction to Jasper Reports, Jaspersoft Studio - Connecting to MongoDB NoSQL database - Connecting to Cassandra NoSQL Databases

TEXT BOOKS

- 1. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 2. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 3. Hadoop: The Definitive Guide by Tom White
- 4. Hadoop in action Chuck Lam
- 5. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

REFERENCES

- 1. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007 2.
- Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007. 3.
- Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012. 4.
- 5. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	Dr.S.Senthil kumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com

9 - hours

9 - hours

170	CSEC04			Category	L	Т	Р	Credit							
											EC	3	0	0	3
PREA To expl be proce	MBLE ore how essed.	/ biolog	gical inf	ormatio	on could	l be sto	red in d	ligital fo	orm to c	create bi	ometric re	esources	and ho	ow the	e same may
PRER Basis	EQUIS of Senso	ITE or Netw	ork												
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the ba	usics of	Biome	rics and	d its fur	nctional	ities						
2	To get	t the exp	posure	the con	text of]	Biomet	ric App	lication	IS						
3	3 To learn to develop applications with biometric security														
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to						
CO1: 7	o under	stand t	he basic	es of bio	ometric	system	s					Understa	and		
СО2: Т	o under	stand a	nd lear	n the fir	ngerprir	nt, facia	l and ir	is recog	gnition.			Understa	and &	Apply	1
СО3: Т	o under	stand t	he mult	i-biome	etrics sy	stems.						Understa	and &	Apply	1
СО4: Т	o under	stand &	k learn	the bior	netric c	ryptogr	aphy					Underst	and		
СО5: Т	o under	stand tl	he ethic	al usag	e.							Underst	and		
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPI	ECIFIC (DUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М	S	М	L	М	Μ	S	S	L	S				
CO2	M	S	S	S	M	S	S	S	S	M	S				
CO3	М	M	S	S	M	S	S	S	M	L	S				
<u>CO4</u>	L	L	S	M	М	М	M	S	M	M	M				
CO5	CUS L M S M M M M L L M S. Stronger M. Mediumu L. Leuu Sector Sec														
S- Stro	ng; M-N	viedium	n; L-Lov	W											

Biometric systems –Biometric functionalities: verification, identificati	on – Biometric systems issues.
FINGERPRINT, FACIAL and IRIS RECOGNITION	9 – hours
FINGERPRINT: Friction ridge pattern- finger print acquisition: sensir	ng techniques, image quality –Feature Extraction
-matching -indexing. FACE RECOGNITION: Image acquisition: 2D	sensors, 3D sensors- Face detection- Feature
extraction -matching. Design of an IRIS recognition system-IRIS segn	nentation- normalization – encoding and
matching- IRIS quality –performance evaluation.	
BEHAVIORAL BIOMETRICS AND MULTIBIOMETRICS	9 - hours
Ear detection and - gait feature extraction and matching - hand geome	etry- soft biometrics - sources of multi-biometrics-
Acquisition and processing - Fusion levels.	
BIOMETRIC CRYPTOGRAPHY	9 - hours
Protection of biometric data -biometric data shuffling scheme- experin	mental results –security analysis - cryptographic
key Reservation - cryptographic key with biometrics-Revocability in k	key generation system-Adaptations of Generalized
key Regeneration scheme - IRIS Biometrics - Face Biometrics - Extens	sion of Key Regeneration scheme.
ETHICAL USAGE	9 - hours
Public sector Implementation – Border Control – Responsibilities –Cu	stomer service – Government sector –
Agriculture – Academic Research – Online Communications – Enviro	nmental situations – External pressure –
Distractions – Implementations issues – Future Works	
TEXT BOOKS	
1. Anil K Jain and Arun A Roass Karthik Nandedkar, "Introduction to	Biometrics", Springer, 2011.
2. David Check Ling Ngo, Andrew Beng Jin Teoh, Jiankun Hu "Biome	tric Security" Cambridge, 2015.

REFERENCES

SYLLABUS INTRODUCTION

1. LI, S. Z., AND JAIN, A. K., Eds. Handbook of Face Recognition. Springer, Heidelberg, Germany, 2011.

2. MALTONI, D., MAIO, D., JAIN, A. K., AND PRABHAKAR, S. Handbook of Fingerprint Recognition. Springer, 2009.

3. JAIN, L.C., HALICI, U., HAYASHI, I.; LEE, S.B., TSUTSUI, S. Intelligent Biometric Techniques in Fingerprint and Face Recognition. CRC Press, 1999.

COURSE DESIGNERS	
1	

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K. Somasunadaram	Associate Professor	CSE	ksomasundaram@avit.ac.in
2	R.Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu.in

INTRODUCTION 9 - hours The design cycle of biometric systems – Applications of Biometric systems – Security and priPerson Recognition –

170	CSEC05		CL	OUD (COMPU	UTING	SECU	RITY		(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREA To stud	MBLE dy and u	ndersta	and secu	irity co	ncepts a	and app	ly them	cloud	comput	ing.					
PRER NIL	EQUIS	ITE													
COUR	RSE OB	JECTI	VES												
1	To un	derstan	d cloud	compu	ting sec	curity c	oncepts								
2	To stu	dy vari	ous clo	ud serv	ices										
3	To app	ply clou	ud com	puting i	n collat	ooration	with o	ther ser	vices						
4	To un	derstan	d the cl	oud coi	nputing	g servic	es								
5	To apply cloud computing online														
COUF	OURSE OUTCOMES														
On the	success	ful con	pletion	of the	course,	studen	ts will t	be able	to						
CO1: <i>A</i>	Able to U	Jnderst	and sec	urity b	asics in	Cloud	Compu	iting				Underst	and		
CO2: <i>A</i>	Able to u	indersta	and and	apply s	security	issues	in clou	d comp	uting			Understa	and and	d App	ly
CO3: <i>A</i>	Able to u	Indersta	and virt	ualizati	on tech	niques						Understa	and		-
CO4: <i>A</i>	Able to a	pply at	tacks ir	n virtual	ization							Apply			
CO5: <i>A</i>	Able to u	indersta	and and	apply l	egal iss	sues in a	cloud a	oplicatio	ons			Apply			
MAPE	PING W	TTH P	ROGR	AMM	EOUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М									L	L			
CO2	М	Μ		L								L			
CO3	М	M	L	L		Μ									
CO4	Μ	S	L			L				L		M			
CO5	M	L				М					M	L			
S- Stro	S- Strong; M-Medium; L-Low														

9 - hours

Security in Cloud Services (PaaS, IaaS and SaaS), Authentication in cloud services, open SSL, key management and crypto systems in cloud services: stream ciphers, block ciphers, modes of operation, hashing, digital signatures. 9 – hours

SECURITY ISSSUES

Security Issues in Virtualization System: ESX and ESXi Security, ESX file system security, storage considerations, backup and recovery. Vulnerabilities in virtual machine, hypervisor vulnerabilities, hypervisor escape vulnerabilities, configuration issues, malware (botnets etc).

VERTUALIZATION TECHNOLOGY

IBM security virtual server protection, virtualization-based sandboxing; Storage Security- HIDPS, log management, Data Loss Prevention. Location of the Perimeter.

VERTUALIZATIONATTACKS

Guest hopping, attacks on VM (attack on control of VM, code injection into virtualized file structure), VM migration attack, hyperjacking.

LEGAL ISSUES

Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern Security Standards (eg PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloud provider vs. compliance for the customer

TEXT BOOKS

1. Tim Mather, SubraKumaraswamy, ShahedLatif, "Cloud Security and Privacy: An Enterprise Perspective on Risks nd Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765], 2009.

2. Ronald L. Krutz, Russell Dean Vines, "Cloud Security" [ISBN: 0470589876], 2010.

REFERENCES

1. John Rittinghouse, James Ransome, "Cloud Computing" CRC Press; 1 edition [ISBN: 1439806802], 2009.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in
2	S.Senthil kumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com

9 - hours

9 - hours

170	CSEC06		CL	OUD (COMPU	JTING	SECU	RITY		(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREA	MBLE	E													
To unde	erstand	the con	cepts in	crypto	graphy	and net	work s	ecurity	and the	ir applica	ations in	real time			
PRER	EQUIS	ITE													
COUR	RSE OB	JECTI	VES												
1	To un	derstan	d the ba	asic con	cepts in	unders	standing	g crypto	ography	and net	work sec	urity			
2	To stu	dy vari	ous alg	orithms	s used in	n crypto	graphy	T							
3	To un	derstan	d key e	xchang	e metho	ds used	l								
4	To stu	dy the	applica	tions of	cryptog	graphy	in auth	enticatio	on						
5	To un	derstan	d vario	us secu	rity thre	ats									
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletior	of the	course,	student	ts will t	be able t	to						
CO1: A	Able to u	Indersta	and bas	ic conce	epts in c	cryptog	raphy a	nd netw	ork sec	curity		Understa	and		
CO2: A	Able to u	Indersta	and and	apply o	cryptogi	raphy n	nethods					Apply			
CO3: A	Able to a	pply te	chnique	es in inf	formatio	on secu	rity					Apply			
CO4: A	Able to u	Indersta	and and	apply a	authenti	cation of	concept	S				Understa	and and	d App	oly
CO5: A	Able to a	apply se	ecurity a	and fire	wall co	ncepts						Apply			
MAPP	PING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Μ	М									L	L			
CO2	М	М		L								L			
CO3	М	M	L	L		М				-					
CO4	M	S	L			L				Ĺ		M			
CO5	M	L				М					Μ	L			
S- Stro	ong; M-N	viedium	n; L-Lo	W											

SYLLABUS	
INTRODUCTION	9 - hours
Security trends - Attacks and services - Classical crypto systems - Different types	of ciphers – LFSR sequences –
Basic Number theory - Congruences - Chinese Remainder theorem - Modular exp	onentiation – Fermat and Euler's
theorem – Legendre and Jacobi symbols – Finite fields – continued fractions.	
METHODS	9 – hours
Simple DES – Differential cryptanalysis – DES – Modes of operation – Triple DES	S – AES – RC4 – RSA – Attacks –
Primality test – factoring	
TECHNIQUES	9 - hours
Discrete Logarithms - Computing discrete logs - Diffie-Hellman key exchange -E	lGamal Public key cryptosystems –
Hash functions - Secure Hash - Birthday attacks - MD5 - Digital signatures - RSA	– ElGamal – DSA.
AUTHENTICATION	9 - hours
Authentication applications - Kerberos, X.509, PKI - Electronic Mail security - PC	GP,S/MIME – IP security – Web
Security – SSL, TLS, SET.	
SECURITY AND FIREWALLS	9 - hours
System security - Intruders - Malicious software - viruses - Firewalls - Security S	Standards
TEXT BOOKS	
1. Dr. S. Bose and Dr.P. Vijayakumar, "Cryptography and Network Security", First	t Edition, Pearson Education, 2016.
2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with cod	ling theory", 2nd ed, Pearson, 2007.
3. William Stallings, "Cryptography and Network Security Principles and Practices	", Pearson/PHI, 6th edition, 2013.
REFERENCES	

REFERENCES 1. W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition, 2007. 2. Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing Third Edition –Prentice Hall of India, 2006.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in
3				
4				

170	CSEC07	,	DAT	FA CEI	NTER	VIRTU	ALIZA	ATION	Ī	(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREA This co to virtu softwar	MBLE urse foc al mach re interf	uses on nines wi aces wi	the cha ill be co ll be dia	allenges overed i scussed	s in sett n depth in deta	ing up a in this il	a data c course.	enter. R Setting	Resource g up of a	e monito a virtual	ring usin data cent	g hyperv ter and ho	isors a ow to 1	nd ac nanag	cess control the them with
Databa	EQUIS se Mana	ITE agemen	t Syster	m											
COUR	SE OB	JECTI	VES												
1	To lea	rn the o	concept	s of We	b desig	n patter	ns and	page de	esign						
2	To un	derstan	d and le	earn the	scripti	ng lang	uages w	vith des	ign of v	veb appli	cations				
3	To learn the maintenance and evaluation of web design														
4	To lea	ırn aboı	ut Reso	urce mo	onitoring	g and v	virtual r	nachine	data P	rotection					
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	e able	to						
CO1: 7	o learn	the con	cepts o	f Web o	lesign p	oatterns	and pa	ge desi	gn			Understa	and		
СО2: Т	o under	stand a	nd lear	n the sc	ripting	languag	ges with	n design	of web	applicat	tions	Apply			
СО3: Т	o learn	the mai	intenan	ce and e	evaluati	on of w	veb desi	gn				Apply			
СО4: Т	o learn	about F	Resourc	e monit	oring a	nd virt	ual mac	chine da	ata Prot	ection		Understa	and and	d App	ly
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
	S	S				М				T		L			
C02	M			M		М		M	T			L			
CO4	S	S	М			IVI I				L		М			
CO5		Μ		<u> </u>		M	L				М	L	<u> </u>		
S- Stro	ng; M-N	Medium	n; L-Lov	W						1	11				

DATA CENTER CHALLENGES

How server, desktop, network Virtualization and cloud computing reduce data centre footprint, environmental impact and power requirements by driving server consolidation; Evolution of Data Centres: The evolution of computing infrastructures and architectures from standalone servers to rack optimized blade servers and unified computing systems (UCS).

ENTERPRISE-LEVEL VIRTUALIZATION

Provision, monitoring and management of a virtual datacenter and multiple enterprise-level virtual servers and virtual machines through software management interfaces; Networking and Storage in Enterprise Virtualized Environments -Connectivity to storage area and IP networks from within virtualized environments using industry standard protocols

VIRTUAL MACHINES & ACCESS CONTROL

Virtual machine deployment, modification, management; monitoring and migration methodologies. 9 - hours

RESOURCE MONITORING

Physical and virtual machine memory, CPU management and abstraction techniques using a hypervisor VIRTUAL MACHINE DATA PROTECTION 9 - hours

Backup and recovery of virtual machines using data recovery techniques; Scalability - Scalability features within Enterprise virtualized environments using advanced management applications that enable clustering, distributed network switches for clustering, network and storage expansion; High Availability : Virtualization high availability and redundancy techniques.

TEXT BOOKS

1. Mickey Igbal, "IT Virtualization Best Practices: A Lean, Green Virtualized Data Center Approach", MC Press ISBN: 978-15834735421 2012.

2. Mike Laverick, "VMware vSphere 4 Implementation" Tata McGraw-Hill Osborne Media; 1 edition [ISBN: 978-00716645231, 2012.

3. Jason W. McCarty, Scott Lowe, Matthew K. Johnson, "VMware vSphere 4 Administration Instant REFERENCES

1. Brian Perry, Chris Huss, Jeantet Fields, "VCP VMware Certified Professional on vSphere 4 Study Guide" Sybex; edition [ISBN: 978-0470569610], 2013.

2. Jason Kappel, Anthony Velte, Toby Velte, "Microsoft Virtualization with Hyper-V: Manage Your Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application Virtualization" McGraw-Hill Osborne [ISBN: 978-007161

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	R.Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu.in

9 - hours

9 – hours

170	CSEC08	3	I	DISTRI	BUTE	D CON	APUTI	NG		(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREA The stud This cou system,	MBLE dent wil urse also synchro	ll be abl includ nize, tra	e to un es the n ansactio	derstand etwork on and d	d the co interne listribu	ncepts t protoc ted dead	of distr col, rem dlocks	ibuted on the second se	computi thod inv	ing and c vocation,	communi peer to	cating in peer syste	distrib ems &	outed distri	systems. buted file
PRER Basis o COUR	EQUIS of Netwo SE OB	ITE orking JECTI	VES												
1	To lay	out fou	ndatior	ns of dis	tribute	l syster	ns								
2	To int	roduce	the idea	a of net	work re	lated is	sues								
3	To un	derstan	d in det	ail the r	emote	method	and ob	jects an	d suppo	ort requi	red for d	istributed	syster	n	
4	To int	roduce	the idea	a of mic	ldlewar	e and c	omputi	ng of di	stribute	ed system	ıs				
5	To un	derstan	d the sy	nchron	ization	and clo	ud com	puting	in distri	ibuted sy	stems				
COUR	SE OU	TCOM	IES	6.4		. 1		11							
On the	success	stul con	pletion	of the	course,	student	ts will t	be able t	:0						
СО1: Т	o under	stand th	ne basic	s of dis	tributed	l comp	uting					Understa	and		
СО2: Т	To learn	the inte	ernet pro	otocol &	k netwo	ork						Understa	and and	d App	oly
СО3: Т	To learn	the rem	note me	thod in	vocation	1						Understa	and and	d App	oly
СО4: Т	To learn	the pee	r to pee	r syster	ns and	distribu	ted file	system	L			Understa	and		
СО5: Т	o know	the syr	chroniz	zation,	transact	ion and	l distrib	uted de	adlocks	5		Understa	and		
MAPP	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М		М		М	S	S	S	М	S				
CO2	Μ	S		М		Μ	Μ	S	S	M	S				
CO3	M	S		M		М	M	M	S	L	S				
<u>CO4</u>	M	S	T	М		L	M	M	M	L	M			_	
CO5	M	M		М		М	М	L	М	L	М				
S- Stro	ng; M-I	vieaium	i; L-L0	N											

Introduction – Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing – Challenges, DCS design goals: Transparencies, Fundamental issues, Case study: World Wide Web. 9 – hours

COMMUNICATION IN DISTRIBUTED SYSTEM

System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI

REMOTE METHOD INVOCATION AND OBJECTS

Remote Invocation - Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches -Distributed objects - Case study: CORBA -from objects to components.

PEER TO PEER SERVICES AND FILE SYSTEM

Peer-to-peer Systems – Introduction - Napster and its legacy - Peer-to-peer – Middleware - Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems : Data-Intensive Computing, Distributed Hash Tables, Consistency Models, Fault Tolerance, Many-Core Computing

SYNCHRONIZATION AND REPLICATION

Introduction - Clocks, events and process states - Synchronizing physical clocks - Logical time and logical clocks -Global states - Coordination and Agreement - Introduction - Distributed mutual exclusion - Elections - Transactions and Concurrency Control- Transactions - Nested transactions - Locks - Optimistic concurrency control - Timestamp ordering -Distributed deadlocks – Replication – Workflow Systems: Grid Computing, Cloud Computing, Virtualization , IaaS Clouds, File systems, Networked File systems, Parallel File systems.

TEXT BOOKS

1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design" Fifth edition – 2011-Addison Wesley.

REFERENCES

1. 1. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.

2. Liu M.L., "Distributed Computing, Principles and Applications", Pearson and education, 2004.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K. Somasunadaram	Associate Professor	CSE	ksomasundaram@avit.ac.in
2	Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

9 - hours

9 - hours

9 - hours

170	CSEC09	ETHICAL HACKING Category L T P Credit													
											EC-PS	3	0	0	3
PREA To ana	MBLE lyze the	basic c	concepts	s of sec	urity an	d hacki	ng proo	cess							
PRER NIL	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the ba	asic con	cepts in	ethica	l hackiı	ng							
2	To ide	entify v	ulnerab	ilities u	sing eth	nical ha	cking to	echniqu	es						
3	To un	derstan	d securi	ity in w	eb appl	ications	3								
4	To un	derstan	d vario	us types	s of vulr	nerabili	ties in v	wireless	networ	:ks					
5	To dis	scuss at	out sec	urity to	ols and	its app	lication	S							
COURSE OUTCOMES															
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	0						
СО1: Т	o Unde	rstand	basics in	n ethica	l hackir	ng						Understa	and		
СО2: Т	To apply hacking techniques in real time problems							Apply							
СО3: Т	o apply	Securi	ty Featı	ures in v	web app	olication	ns					Apply			
СО4: Т	o under	stand a	nd appl	y secur	ity featu	ires in	wireles	s netwo	rks			Understa	and and	d App	oly
СО5: Т	o apply	inform	nation se	ecurity	features	in real	time					Apply			
MAPP	1APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	Μ	М									L	L			
CO2	M	М		L								L			
CO3	M	M	L	L		М									
CO4	M	S	L			L				L		<u>M</u>		_	
CO5	M	L	 			М					M	L			
S- Stro	ng; M-I	viedium	ı; L-Lov	W											

9 - hours Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HACKING TECHNIOUES

9 – hours Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

WEB SECURITY

9 - hours Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SOL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

9 - hours

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006. REFERENCES

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

170	CSEC10)		(GAME	THEO	RY			(Category	L	L T P Credit						
											EC-PS	3	0	0	3				
PREA	MBLE									ľ		1							
This sy	llabus is	intend	ed for t	he Engi	neering	studen	ts and e	enable t	them to	understa	ind the b	asics of C	Game T	Theory	ý				
PRER Prior k	EQUIS nowledge	TTE re of ba	vice of	the gan	he theo	rv													
	SE OB	JECTI	VES	the gan	le theo	1 y													
1	To int	roduce	the stud	dent to	the noti	on of a	game, i	its solut	tions co	oncepts, a	ind other	basic no	tions a	nd					
2	To stu tradin	dy tool g marke	s of gaı ets	ne theo	ry, and	the mai	in appli	cations	for wh	ich they	are appro	opriate, ir	ncludir	ng eleo	etronic				
3	3 To formalize the notion of strategic thinking and rational choice by using the tools of game theory, and to provide insights into using game theory in modeling applications																		
4 To draw the connections between game theory, computer science, and economics, especially emphasizing the computational issues																			
5 To introduce contemporary topics in the intersection of game theory, computer science, and economics																			
COUR	COURSE OUTCOMES																		
On the	SUCCESS	ful con	nletion	of the	course	student	s will b	e able i	to										
	success					studen			10										
CO1: T notions	learn	about t	he basic	c notior	of a ga	ame, its	solutio	ns conc	cepts, ar	nd other	basic	Understa	and						
СО2: Т	To study	tools o	f game	theory,	and the	e main a	applicat	tions				Apply							
СО3: Т	To forma	alize the	e notion	of stra	tegic th	inking	and rati	onal ch	oice by	using to	ols of	Apply							
game th	neory											rippiy							
СО4: Т	lo provi	de insig	ghts into	ousing	game tł	neory in	model	ing app	lication	IS		Apply							
CO5: 1	o draw	the con	inection	is betwe	en gan	ne theor	y, com	puter sc	cience, a	and econ	omics,	Apply							
MAPP	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PRO	RAM	ME SPE	CIFIC	OUTCO	MES						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12							
CO3	M	102	105	M	100	100	S	100	107	1010	1011	1012							
CO2	171	М		L			5			М									
CO3		=	L			S		М				М							
CO4	М			М		S				L									
CO5		Μ						S			L								
S- Stro	ng; M-N	Medium	n; L-Lov	W															

Making rational choices: basics of Games – strategy - preferences – payoffs – Mathematical basics - Game theory – Rational Choice - Basic solution concepts-noncooperative versus cooperative games - Basic computational issues finding equilibria and learning in games- Typical application areas for game theory (e.g. Google's sponsored search, eBay auctions, electricity trading markets).

GAMES WITH PERFECT INFORMATION

9 – hours Games with Perfect Information - Strategic games - prisoner's dilemma, matching pennies Nash equilibria- theory and illustrations - Cournot's and Bertrand's models of oligopoly- auctions mixed strategy equilibrium- zero-sum games-Extensive Games with Perfect Information repeated games (prisoner's dilemma)- subgame perfect Nash equilibrium; computational issues. 9 - hours

GAMES WITH IMPERFECT INFORMATION

Games with Imperfect Information - Bayesian Games – Motivational Examples – General Definitions –Information aspects – Illustrations - Extensive Games with Imperfect -Information - Strategies- Nash Equilibrium – Beliefs and sequential equilibrium – Illustrations - Repeated Games – The Prisoner's Dilemma – Bargaining. 9 - hours

NON-COOPERATIVE GAME THEORY

Non-cooperative Game Theory - Self-interested agents- Games in normal form - Analyzing games: from optimality to equilibrium - Computing Solution Concepts of Normal-Form Games - Computing Nash equilibria f two-player, zerosum games -Computing Nash equilibria of twoplayer, general-sum games - Identifying dominated strategies.

MECHANISM DESIGN

Aggregating Preferences-Social Choice – Formal Model- Voting - Existence of social functions - Ranking systems -Protocols for Strategic Agents: Mechanism Design - Mechanism design with unrestricted preferences- Efficient mechanisms - Vickrey and VCG mechanisms (shortest paths) - Combinatorial auctions - profit maximization Computational applications of mechanism design - applications in Computer Science - Google's sponsored search eBay auctions.

TEXT BOOKS

1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.

REFERENCES

1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.

2. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.

3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.

4. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress 2005.

5. Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Nitisha	Associate Professor	CSE	nitishaaggarwal@avit.ac.in
2	R.Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu.in

9 - hours

170	CSEC11			GR	EEN C	OMPU	TING			(Category L T P Credit							
											EC-PS	3	0	0	3			
PREA	MBLE	1 1	. 1			<i>.</i> •	<i></i>	1.00										
10 acqu PRFR	uire kno	wledge	to adop	ot green	compu	ting pra	actices	and Io	learn at	sout ener	gy savin	g practic	es					
NIL	LQUIS	1112																
COUR	RSE OB	JECTI	VES															
1	To ace	quire kr	nowledg	ge to ad	opt gree	en comj	puting p	practice	S									
2	2 To minimize negative impacts on the environment																	
3 To learn about energy saving practices and To understand the impact of e-waste and carbon waste																		
4 To learn about green compliance. And implementation using IT																		
COURSE OUTCOMES																		
On the	success	ful con	npletion	of the	course,	student	ts will t	be able	to									
CO1: 7	Гo acqui	re knov	vledge 1	to adop	t green	comput	ing pra	ctices				Understa	and					
CO2: 1	Го minir	nize ne	gative i	mpacts	on the	environ	ment					Apply						
CO3: T and car	Fo learn bon was	about e ste	energy s	aving p	oractices	s and To	o under	stand th	ne impa	ct of e-w	vaste	Understa	and					
CO4: 1	:O4: To learn about green compliance. And implementation using IT Understand and Apply												oly					
MAPF	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC	OUTCO	MES					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12						
CO1	М		S			М			S		L	L						
CO2	M	S	M		S					L		L						
CO3	М	M		М			М		L									
CO4	M	S						L		M		М						
S- Stro	ong; M-I	Vledium	n; L-Lov	W														

Environmentally Responsible Business: Policies, Practices, and Metrics.	
GREEN ASSETS AND MODELING	9 – hours
Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripheral	s, Greening Mobile
devices - Green Business Process Management: Modelling, Optimization, and Collaboration - Gree	n Enterprise
Architecture - Environmental Intelligence - Green Supply Chains - Green Information Systems: De	esign and
Development Models.	
GRID FRAMEWORK	9 - hours
Virtualizing of IT Systems - Role of Electric Utilities, Telecommuting, Teleconferencing and Telep	orting – Materials
Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Co	omputer Power
Management, Seamless Sharing Across Systems. Collaborating and Cloud Computing, Virtual Press	ence.
GREEN COMPLIANCE	9 - hours
Socio-Cultural Aspects of Green IT - Green Enterprise Transformation Roadmap - Green	
Compliance: Protocols, Standards, And Audits - Emergent Carbon Issues: Technologies and	
Future. Best Ways to Make Computer Greener.	
GREEN INITIATIVES WITH IT and CASE STUDIES	9 - hours
Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives.	- Green Initiative
Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green	en Initiative
Assessment with IT. The Environmentally Despensible Dusiness Strategies (EDDS) Case Study S	concrice for Trial

Scoop on Power-GreenITStrategies: Drivers Dimensions and Goals

Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, Green IT Strategies and Applications-Using Environmental Intelligence, CRC Press, June 2011 2.Carl Speshocky, Empowering Green Initiatives with IT, John Wiley and Sons, 2010.

REFERENCES

1. Alin Gales, Michael Schaefer, Mike Ebbers, Green Data Center: Steps for the Journey, Shoff/IBM rebook, 2011.

2. John Lamb, The Greening of IT, Pearson Education, 2009.

Green Computing and Green IT- Best Practices on Regulations and Industry, Lulu.com, 2008. 3. Jason Harris,

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in
2	B. Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

SYLLABUS

FUNDAMENTALS

Computing Carbon

Foot

Print

9 - hours Green IT Fundamentals: Business, IT, and the Environment - Benefits of a Green Data Centre - Green

170	CSEC12			GI	RID CO)MPU]	FING			(Category	L T P Credit							
											EC-PS	3	0	0	3				
PREA The stu	MBLE	ll be at	ble to u	nderstar	nd the c	oncepts	of grid	l compu	uting an	d over th	ne techno	ologies. T	his co	urse a	also includes				
PRER Basis o	EQUIS F Netwo	iting sy ITE orking	stems d	z archit	ectures,	securit	y or gi	ra comp	buting, d	uistribute	ed system	is and gr	id serv	ice ar	cmtecture.				
COUR	SE OB	JECTI	VES																
1	To un	derstan	d the co	oncept o	of Grid	comput	ing and	the ber	nefits of	f Grid co	mputing	over oth	er tech	nolog	gies				
2	To un	derstan	d the co	ompone	nts of g	rid con	puting	system	s and a	chitectu	res								
3	To un	derstan	d the se	curity o	of Grid	Compu	ting												
4	To int	roduce	the ide	a of mic	ldlewar	e and c	omputi	ng of di	istribute	ed system	ıs								
5	To un	derstan	d the is	sues an	d appro	aches ii	n Grid I	Deployı	nent										
COUR	SE OU	TCOM	IES																
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to										
СО1: Т	o under	stand tl	he basic	cs of gri	d, paral	lel and	distrib	uted con	mputing	5		Understa	and						
СО2: Т	o learn	the bas	ic grid	archited	ture an	d grid n	nonitor	ing syst	ems			Understa	and						
СО3: Т	o under	stand t	he grid	security	and sc	hedulin	ıg					Understa	and						
СО4: Т	o under	stand t	he data	manage	ement a	nd grid	portal					Understa	and						
СО5: Т	o learn	and un	derstan	d grid s	ervice a	rchitec	ture					Understa	and						
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12							
CO1	M	L	M M	S M		M	M M	M T	ь М		s S			_					
CO2	M	М	IVI L	M		IVI	M		M		S			-					
CO4	M		L	171			M		L		М								
CO5	М	L	М				Μ		L		L								
S- Stro	ng; M-N	Medium	n; L-Lo	W															

INTRODUCTION 9 - hours Introduction: Grid Computing –Key Issues –Potential Applications and Benefits – Grid Types, Topologies Comparison with other Approaches- Motivations for Grid Computing – Brief History (communication, computation, grid technology) -Parallel and Distributed Computing- Cluster Computing- Grid Computing - Anatomy and Physiology

of Grid-Review of Web Services-OGSA-WSRF. **GRID MONITORING**

SYLLABUS

9 – hours Grid Monitoring Architecture (GMA) - An Overview of Grid Monitoring Systems - Grid ICE - JAMM - MDS-Network Weather Service-R-GMA-Other Monitoring Systems- Ganglia and Grid Mon.

GRID SECURITY AND RESOURCE MANAGEMENT

Grid Security-A Brief Security Primer-PKI-X509 Certificates-Grid Security-Grid Scheduling and Resource Management-Scheduling Paradigms- Working principles of Scheduling -A Review of Condor, SGE, PBS and LSF-Grid Scheduling with QoS. 9 - hours

DATA MANAGEMENT AND GRID PORTALS

Data Management - Categories and Origins of Structured Data - Data Management Challenges - Architectural Approaches - Collective Data Management Services - Federation Services - Grid Portals - First - Generation Grid Portals - Second-Generation Grid Portals.

OPEN GRID SERVICES INFRASTRUCTURE

Introduction- Architectural Constructs-OGSI/OGSA Service Elements and Layered Model (Key Aspects, Ancillary Aspects, Implementations of OGSI)-Grid Service-WSDL Extensions and Conventions- Service Data-Core Grid Service Properties - Open Grid Services Architecture – Introduction - Functionality Requirements-OGSA Service Taxonomy-Service Relationships-OGSA Services-Security Considerations.

TEXT BOOKS

1. Maozhen Li, Mark Baker, The Grid Core Technologies, John Wiley & Sons ,2005.

2. Daniel Minoli, "A Networking Approach to Grid Computing", A John Wiley & Sons Inc., Publication,

Singapore, 2005.

REFERENCES

1. Ian Foster & Carl Kesselman, The Grid 2 – Blueprint for a New Computing Infrastructure, Morgan Kaufman – 2004 2. Joshy Joseph & Craig Fellenstein, "Grid Computing", Pearson Education 2004.

3. Fran Berman, Geoffrey Fox, Anthony J.G. Hey, "Grid Computing: Making the Global Infrastructure a reality", John Wiley and sons.

4. Ahmar Abbas, "Grid Computing, A Practical Guide to Technology and Applications", Firewall Media, 2004

5. D.Janakiraman, "Grid Computing- A Research Monograph", Tata McGraw Hill, New Delhi, 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K. Somasunadaram	Associate Professor	CSE	ksomasundaram@avit.ac.in
2	S.Senthil kumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com

9 - hours

170	CSEC13	;	HUM	IAN CO	OMPU	FER IN	NTERA	CTIO	N	(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREAD Human specific to cove PRER	MBLE -Compu- cally, th er all typ EQUIS	uter Int e assoc bes of d ITE	eraction iation b ata inno	n (HCI) between ovation	is a m people plan.	ultidisc (the us	iplinary sers) an	y field o d PCs.	of study While a	v concen at first w	trating o orried ab	n the platout PCs,	n of P HCI h	C inn as sir	ovation and, ace extended
COUR	SE OB	JECTI	or soft VES	compu	ing										
1	Learn	the fou	Indatior	is of Hu	ıman C	ompute	r Intera	ction							
2	Be far	niliar w	vith the	design	technol	ogies fo	or indiv	iduals a	and pers	sons with	n disabili	ties			
3	Be aw	are of 1	mobile	HCI											
4	Learn	the gui	delines	for use	r interfa	ace									
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able	to						
СО1: Т	o under	stand t	he foun	dations	of hum	an com	puter i	nteracti	on			Understa	and		
СО2: Т	o learn	the bas	ics of d	esign &	z softwa	ire proc	ess of l	numan o	compute	er intera	ction	Apply			
СО3: Т	To learn	the mo	dels and	d theori	es of H	CI						Apply			
СО4: Т	o learn	the mo	bile hui	nan coi	nputer	interact	ion					Apply			
СО5: Т	o learn	the wel	b interfa	ace desi	gn							Apply			
MAPP	ING W	ITH P	ROGR	AMMI		COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO^2	M M	M	м	c		М						L			
CO2	M	М	I	3	L	IVI					М				
CO4	M	S	S			L				L		М			
CO5	М	L										L			
S- Stro	ng; M-N	Medium	n; L-Lo	W										•	÷

SYLLABUS	
FOUNDATIONS OF HCI 9 - h	ours
he Human: I/O channels - Memory - Reasoning and problem solving; The computer: Devices - Memory	ry – processing
and networks; Interaction: Models - frameworks - Ergonomics - styles - elements - interactivity- Paradi	gms.
DESIGN & SOFTWARE PROCESS 9 – h	ours
Interactive Design basics - process - scenarios - navigation - screen design - Iteration and prototyping. I	HCI in
software process - software life cycle - usability engineering - Prototyping in practice - design rationale	. Design rules
- principles, standards, guidelines, rules. Evaluation Techniques - Universal Design.	
MODELS AND THEORIES 9 - h	ours
Cognitive models -Socio-Organizational issues and stake holder requirements -Communication and colla	aboration
models-Hypertext, Multimedia and WWW.	
MOBILE HCI 9 - h	ours
Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Application	tions, Games-
Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	
WEB INTERFACE DESIGN 9 - h	ours
Designing Web Interfaces - Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtu	al Pages,
Process Flow. Case Studies.	
TEXT BOOKS	
1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Ed	lition, Pearson
Education, 2004 (UNIT I, II & III)	
2 Brian Fling, "Mobile Design and Development", First Edition, O"Pailly Media Inc. 2000 (UNIT, IV)	
2. Brian Fing, whome Design and Development, First Educin, O Kerry Wedd $\operatorname{inc.}$, 2009 (ONTI -10)	

1. Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O"Reilly, 2009.(UNIT-V).

S. No.	Name of the Faculty	Designation	Department	Mail ID		
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in		
2	M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in		

17CSEC14			INFORMATION RETRIEVAL							(Category	L	Т	Р	Credit
			TECHNIQUES							EC-PS	3	0	0	3	
PREA This sy with pe PRER	MBLE /llabus i ertinenco EOUIS	is intene e to mo ITE	ded for deling,	the En query c	gineerii operatio	ng stude ns and i	ents and indexin	d enabl g.	e them	to under	stand the	e basics o	of Info	rmati	on Retrieval
Prior k	nowledg	ge of el	ementa	ry linea	r algebi	a woul	d be he	lpful							
COUR	COURSE OBJECTIVES														
1	To get an understanding of machine learning techniques for text classification and clustering														
2	To understand the various applications of Information Retrieval giving emphasis to Multimedia IR														
3	To lay foundation for learning the concepts of digital libraries														
COURSE OUTCOMES															
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to						
CO1: T Informa	CO1: To learn about the basic concepts, practical issues and impact of the web on Information Retrieval Understand														
СО2: Т	CO2: To understand about the various IR models Apply														
СО3: Т	o know	about	the stati	c and d	ynamic	indices	s and qu	aery op	erations	5		Apply			
СО4: Т	o learn	about c	lassific	ation aı	nd clust	ering						Apply			
СО5: Т	o learn	about s	earchin	g and r	anking	and dig	ital libr	aries				Apply			
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
$\frac{C01}{C02}$	M	• •		M			S			м					
C02		M	т	L		c		м		IVI		М			
CO4	М			М		s S		111		L		111			
CO5	111	М		171		2		S			L				
S- Stro	S- Strong; M-Medium; L-Low														

9 - hours

Motivation - Basic Concepts - Practical Issues - Retrieval Process - Architecture - Boolean Retrieval - Retrieval Evaluation - Open Source IR Systems-History of Web Search - Web Characteristics-The impact of the web on IR -IR Versus Web Search-Components of a Search engine.

MODELING

9 – hours

Taxonomy and Characterization of IR Models - Boolean Model - Vector Model - Term Weighting - Scoring and Ranking -Language Models - Set Theoretic Models - Probabilistic Models - Algebraic Models - Structured Text Retrieval Models - Models for Browsing.

INDEXING

9 - hours

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency. 9 - hours

CLASSIFICATION AND CLUSTERING

Text Classification and Naïve Bayes - Vector Space Classification - Support vector machines and Machine learning on documents. Flat Clustering – Hierarchical Clustering –Matrix decompositions and latent semantic indexing – Fusion and Meta learning.

SEARCHING AND RANKING

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking - Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR - Digital Libraries.

TEXT BOOKS

1. Ricardo Baeza – Yates, BerthierRibeiro – Neto, Modern Information Retrieval: The concepts and Technology behind Search (ACM Press Books), Second Edition

2. Textbook Retrieval Systems In Information Management by GG Chowdhury

REFERENCES

1. Christopher D. Manning, PrabhakarRaghavan, HinrichSchutze, Introduction to Information Retrieval, Cambridge University Press, First South Asian Edition

2. Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval Implementing and Evaluating Search Engines, The MIT Press, Cambridge.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID				
1	Mrs. R. Latha	Assistant Professor CSE		<u>rlatha@avit.ac.in</u>				
2	S.Senthil Kumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com				

17CSEC15		;]	INTERNET SECURITY AND COMPUTER							(Category	L	Т	Р	Credit
			FORENSICS							EC-PS	3	0	0	3	
PREA This co the stud PRER Cyber COUR	MBLE ourse pr dent to l EQUIS r Securi SE OB	ovides nave a f ITE ty JECTI	a way t foundati IVES	o unde on in th	rstand I nis emer	nternet rging ar	Securit rea.	ty and c	lifferen	t types o	of Cyber	forensic	techno	logie	s and enable
1	1 To study the Importance of Firewalls and their types														
2	To analyze and validate computer forensics data														
3	To study various threats associated with security and information warfare														
4	To study about evidence collection and forensics tools														
5	To study about various forensics and analysis and validation														
COUR	SE OU	TCOM	IES												
On the successful completion of the course, students will be able to															
CO1: To study the Importance of Firewalls and their types Understand															
СО2: Т	CO2: To analyze and validate computer forensics data Apply														
СО3: Т	o study	variou	s threats	s associ	ated wi	th secu	rity and	l inform	ation w	varfare		Understa	and		
СО4: Т	o study	about	evidenc	e collec	ction an	d foren	sics too	ols				Understa	and		
СО5: Т	To study	about	various	forensi	cs and a	analysis	and va	lidatior	ı			Understa	and an	d App	oly
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	Μ									L	L			
CO2	M	M		М						Ĺ		L			
CO3	М	M	L	М			M					N 4		_	
C04	M	3	L					м			м				
S- Stro	<u>Μ</u> 100° Μ-Ν	L Medium). T "I "	37				IVI			IVI	L			
5- Strong, Ivi-iviculum, E-Low															

SVI I ADIIS	
SILLADUS NETWORK I AVER SECURITV & TRANSPORT I AVER SECURITV	9 - hours
IPSec Protocol – IP Authentication Header – IP ESP – Key Management Protocol for IPSec Tr	ansport layer Security.
SSL protocol Cryptographic Computations – TLS protocol	unsport layer becarity.
F-MAIL SECURITY & FIREWALLS	9 – hours
PGP - S/MIME - Internet Firewalls for Trusted System: Roles of Firewalls - Firewall related term	inology- Types of
Firewalls - Firewall designs - SET for E-Commerce Transactions.	
INTRODUCTION TO COMPUTER FORENSICS	9 - hours
Computer Forensics Fundamentals – Types of Computer Forensics – Forensics Technology and S	ystems -
Understanding Computer Investigation – Data Acquisition.	•
EVIDENCE COLLECTION AND FORENSICS TOOLS	9 - hours
Processing Crime and Incident Scenes - Working with Windows and DOS Systems. Current Con	puter Forensic Tools:
Software/Hardware Tools.	_
ANALYSIS AND VALIDATION	9 - hours
Validating forensic data- Data Hiding Techniques - Performing Remote Acquisition - Network F	orensics – Email
Investigations – Cell Phone and Mobile Devices Forensics.	
TEXT BOOKS	
1. Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols"	, Wiley Publications,
2012	
REFERENCES	
1. Nelson, Phillips, Enfinger, Steuart, "Computer Forensics and Investigations", Cengage Learnin	g, India Edition, 2012
2.John R.Vacca, "Computer Forensics", Firewall Media, 2015	
3.Richard E.Smith, "Internet Cryptography", Pearson Education, 3 rd Edition, 2010	
4. Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction", Pearson Education,	1 ^a Edition, 2012.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID											
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in											
2	Dr.K.Sasikala	Associate Professor	CSE												
170	CSEC16	, ,		IT INF	RAST	RUCTI	URE A	ND		(Category	L	Т	Р	Credit
--------------------------	---	----------	----------	----------	----------	------------	------------	------------	------------	-------------	----------	-----------	---------	---------	---------------
				I	MANA	GEME	NT				EC-PS	3	0	0	3
PREA The pr and ma	MBLE roposed anageme	course	expose	s the st	udents t	o under	rstand t	he featu	res of a	different	technolo	gies invo	lved in	n IT iı	nfrastructure
Introd	EQUIS luction f	to Infor	mation	Techno	ology										
COUR	RSE OB	JECTI	VES		,108J										
1	To un	derstan	d the ba	usics of	IT infra	astructu	re								
2	To un	derstan	d the cu	irrent c	omputii	ng techi	niques i	n IT fie	elds						
3	To exp	plore th	e busin	ess mo	dels										
4	To understand the different security management and storage management in IT infrastructure														
5	To un	derstan	d the se	rvice d	elivery	concep	t in IT f	field							
COUR	RSE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able	to						
CO1: U	Jndersta	and the	basics o	of IT in	frastruc	ture						Understa	and		
CO2: U	Jndersta	ind the	current	compu	ting tec	hniques	s in IT f	fields				Understa	and		
CO3: E	Explore	the bus	iness m	odels								Apply			
CO4: U infrastr	Jndersta ucture	ind the	differer	it secur	ity man	agemer	nt and s	torage 1	nanage	ment in]	T	Understa	and		
CO5: U	Jndersta	nd the	service	deliver	y conce	pt in II	field					Understa	and		
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC (OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	S	М					L								
CO2	L	14			T										
CO3		M			L						M			_	
	S	L	T									λ.			
CO5		S										M			
S- Stro	ong; M-N	viedium	1; L-L0	W											

Common tasks in IT system management, approaches for organization Management, Models in IT system design, IT
management systems context diagram, patterns for IT system Management.
IT Infrastructure Management 9 – hours
Factors to consider in designing IT organizations and IT infrastructure, Determining customer's Requirements,
Identifying System Components to manage, Exist Processes, Data, applications, Tools and their integration, Patterns for
IT systems management, Introduction to the design process for information systems, Models, Information Technology
Infrastructure Library (ITIL).
Establishing business value of information system 9 - hours
Information system costs and benefits, Capital budgeting for information system, Real Options pricing models,
Limitation of financial models.
Service Delivery and Service Support Management 9 - hours
Service-level management, financial management and advantages of financial management -Service support process,
Configuration Management-Incident management.
Storage Management and Security Management9 - hours
Types of Storage management, Benefits of storage management, backups, Archive, Recovery, Disaster recovery-
Introduction Security, Identity management, Single sign-on, Access Management.
TEXT BOOKS
1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-
Hill, New York, 2006.
2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999
REFERENCES
1. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New
Delhi, 2009.
2 J. D. Finnerty, Project financing - Asset-based financial engineering, John Wiley & Sons, New York, 1996
2. 5. D. Finnerty, Froject manening Troset bused manenal engineering, some tricy & Sons, New Tork, 1990.

9 - hours

3. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.

COURSE DESIGNERS

SYLLABUS

IT system Management

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	E.Srividhya	Assistant Professor	CSE	srividhya@avit.ac.in
2	Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmvkec.edu.in
3				
4				

170	CSEC17	,	KN	OWL	EDGE	BASEI	D DEC	ISION		(Category	L	Т	Р	Credit
				SU	PPOR	TSYST	TEMS			Category L EC 3 t systems and implementation stics s cs Unders Apply Unders AMME SPECIFIC OUTCO O9 PO10 PO11 PO12 L M	3	0	0	3	
PREA	MBLE			•	(1	1.1	1	•			1. 1		•		
The pur	pose of	this cou	irse is t	o impai	t know	ledge of	n decis	ion sup	port sys	tems and	1 implem	entation.			
I KEK Softw	are Enc	ineerin	σ												
COUR	RSE OB	JECTI	VES												
1	To fa	niliariz	e decisi	ion supp	oort sys	tems ar	nd their	charact	teristics						
2	To stu	idy abo	ut Intel	ligent D	OSS and	l applic	ations o	of DSS							
3	To lea	arn the t	echnol	ogies re	lated to	decisio	on supp	ort syst	ems						
COUR	RSE OU	TCOM	IES												
On the	success	ful con	pletior	n of the	course,	studen	ts will l	be able	to						
CO1: 1	lo famil	iarize d	ecision	suppor	t syster	ns and t	their ch	aracteri	stics			Understa	and		
CO2: 7	Го study	about	Intellig	ent DSS	S and ap	oplicatio	ons of I	DSS				Apply			
CO3: 1	Го learn	the tecl	hnologi	es relat	ed to de	ecision	support	t system	IS			Understa	and		
MAPF	PING W	ITH P	ROGR	AMM	E OUT	COME	S ANI) PRO	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	S	Μ	S			М			L						
CO2	M	S			М			S							
CO3				M			Μ		L		M				
S- Stro	ong; M-l	Medium	n; L-Lo	W											
SYLL	ABUS														
	SION N	IAKIN	G ANI	D COM	PUTE	RIZED	SUPP	ORT	G		1		9 - ho	urs	
Manag DECIS	gement S	Support	System RT SV9	is: An (STEMS	Jvervie	w - Dec	cision N	viaking,	System	is, Mode	ling, and	Support	9 <u>–</u> ha	mrs	

Decision Support Systems: Overview - Modeling and Analysis – Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analysis, and Visualization - Decision Support System Development. COLLABORATION, COMMUNICATION, ENTERPRISE DECISION 9 - hours

Collaborative Computing Technologies: Group Support Systems - Enterprise Information Systems - knowledge Management.

EVIDENCE COLLECTION AND FORENSICS TOOLS

Artificial Intelligence and Expert Systems: Knowledge-Based System - Knowledge Acquisition, Representation, and Reasoning - Advanced Intelligent Systems - Intelligent Systems over the Internet. 9 - hours

IMPLEMENTING IN THE E-BUSINESS ERA

Electronic Commerce - Integration, Impacts, and the Future of the Management-Support Systems. **TEXT BOOKS**

1. Efraim Turban, Jay Aronson E., Ting-Peng Liang, "Decision Support Systems and Intelligent Systems", 7th Edition, Pearson Education, 2013.

9 - hours

COUR	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	R.Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkve.edu.in

17CSEC	18	N	IOBIL	E ADH	OC NE	ETWO	RKS		(Category	L	Т	Р	Credit
										EC	3	0	0	3
PREAMBI This syllab Networks, v	E Is is inte arious ty	nded fo pes of M	r the E Iobile A	ngineei Adhoc N	ring stu Jetwork	idents a s proto	and ena cols, th	ble the	m to lea gn issues	urn the b s, goals a	basic con nd classi	cepts (of Mo n.	obile Adho
PREREQU	ISITE	1 000					1 51							
Prior know	ledge of	the 802	.11 W1	reless	Lan (W	(1F1) at	nd Blue	etooth	standard	s, Knowl	edge of	sensor	r netv	works and
COURSE)BJECT	IVES												
1 Thirte	s course ourse	covers n	najor as	pects of	f adhoc	networ	ks fron	ı desigr	through	perform	ance issu	ues to a	applic	ation
2 It s app	tarts with lications	the desi	gn issu	es and o	challen	ges asso	ociated	with im	plement	ations of	ad hoc a	nd sen	sor ne	etwork
3 Th	This includes mobility, disconnections, and battery power consumption													
4 Kn apr	Knowledge of the 802.11 Wireless Lan (WiFi) and Bluetooth standards. Their designing, operations, plus approaches to interoperability													
5 Kn of	power	of senso manager	r netwo nent, a	rks and Juery	their cl process	haracter ing, and	ristics. d senso	Design r databa	ing of N uses	MAC la	yer prot	tocols,	und	erstanding
COURSE	DUTCON	MES												
On the succ	essful coi	npletion	of the	course,	student	ts will t	be able	to						
CO1: To lea	rn about	the basi	c conce	pts, pra	ctical is	ssues ar	ıd impa	ct of the	e MANe	ts	Underst	and		
CO2: To un issues to app	derstand a lication r	major as equirem	pects of ents	f adhoc	networ	ks fron	n desigr	n throug	gh perfor	mance	Apply			
CO3: To kn	ow about	the stati	c and d	ynamic	indice	s and qu	uery op	erations	5		Apply			
CO4: To lea	rn about	classific	ation ar	nd clust	ering						Apply			
CO5: To lea	rn about	searchin	g and r	anking	and dig	ital libr	aries				Apply			
MAPPING	WITH I	PROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1 M	[М			S								
CO2	M	T	L		0				М					
CO3 M			м		S		M		T		M			
CO5	М		141		5		S			L				
S- Strong; N	I-Mediur	n; L-Lo	W		I	1		1	1	1		1		1

9 – hours algorithms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15. 9 - hours 9 - hours Transport layer : Issues in desiging- Transport layer classification, adhoc transport protocols. Security issues in adhoc

Cross layer Design: Need for cross layer design, cross layer optimization, parameter optimization techniques. TEXT BOOKS

1. C.Siva Ram Murthy and B.S.Manoj, Ad hoc Wireless Networks Architectures and protocols, 2nd edition, Pearson Education. 2007

2. Charles E. Perkins, Ad hoc Networking, Addison - Wesley, 2000

REFERENCES

1. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobilead hoc networking, Wiley-IEEE press, 2004.

2. Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Nitisha	Associate Professor	CSE	nitishaaggarwal@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in

SYLLABUS INTRODUCTION

9 - hours Introduction to adhoc networks – definition, characteristics features, applications. Charectristics of Wireless channel, Adhoc Mobility Models.

MEDIUM ACCESS PROTOCOLS

MAC Protocols: design issues, goals and classification. Contention based protocols- with reservation, scheduling

NETWORK PROTOCOLS

Routing Protocols: Design issues, goals and classification. Proactive Vs reactive routing, Unicast routing algorithms, Multicast routing algorithms, hybrid routing algorithm, Energy aware routing algorithm, Hierarchical Routing, QoS aware routing.

END-END DELIVERY AND SECURITY

networks: issues and challenges, network security attacks, secure routing protocols.

CROSS LAYER DESIGN AND INTEGRATION OF ADHOC FOR 4G

9 - hours

170	CSEC19)		MO	BILE (COMPU	J TING	r		C	Category	L	Т	Р	Credit
]	EC	3	0	0	3
PREA	MBLE		1.			G				•					
To lear	$\frac{1}{1}$ m the state	andards	s and iss	sues in	Mobile	Compu	ting.								
Basis	of Netv	vork													
COUR	SE OB	JECTI	VES												
1	To Le	arn wir	eless tra	ansmiss	ion Bas	sics									
2	To lea	rn diffe	erent A	rchitect	ures of	Commu	inicatio	on Syste	ems						
3	To lea	rn prot	ocols ir	n Mobil	e Netwo	ork and	Transp	ort Lay	er						
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	student	s will t	be able	to						
СО1: Т	o under	stand t	he basic	cs of wi	reless ti	ransmis	sion an	d signa	l proces	ssing		Understa	and		
СО2: Т	o under	stand t	he conc	ept of c	ellular	networl	ĸ					Understa	and &	Apply	7
СО3: Т	o under	stand t	he conc	ept of v	vireless	lan net	work					Understa	and &	Apply	7
СО4: Т	o under	stand t	he conc	ept of r	nobile r	network	and tra	ansport	layer			Understa	and &	Apply	7
СО5: Т	o under	stand a	nd lear	n the ad	lhoc wi	reless n	etwork					Understa	and		
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC	DUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М	М	М	S	Μ	S	М	S	S	Μ	S				
CO2	Μ	S	S	М	Μ	S	S	S	Μ	Μ	S				
CO3	М	S	S	S	M	S	S	S	S	Μ	S				
CO4	Μ	S	S	S	М	S	S	S	S	M	S				
CO5	М	М	M	М	Μ	S	Μ	S	М	L	Μ				
S- Stro	ng; M-N	Medium	n; L-Lo	W											

SYLLABUS 9 - hours INTRODUCTION 9 - hours Introduction – wireless transmission – radio propagation – signals and propagation – antennas – multiplexing and modulation – spectrum - operation of cellular systems, planning a cellular system, analog & digital cellular systems. MOBILITY AND BANDWIDTH MANAGEMENT IN CELLULAR NETWORKS 9 – hours Call setup in mobile IP Network - Handoff Management - Mobility Models - Bounds on Bandwidth - Algorithms for Channel Assignment - Coalesced CAP - Localization of Mobile Nodes - Benchmark Instances
WIRELESS LAN 9 - hours
Wireless LAN – IEEE 802.11 standards – HIPERLAN – Blue tooth technology and protocols. Wireless Local Loop
technologies.
MOBILE NETWORK LAYER AND TRANSPORT LAYER 9 - hours
Reference model -Handover Location Management -Mobile QOS-Access Point Control Protocol, Mobile IP-DHCP-
Mobile transport layer-Traditional TCP-Indirect snooping-Mobile TCP- Wireless Application protocol.
ADHOC WIRELESS NETWORKS 9 - hours
Introduction-Issues in Adhoc Wireless Networks-Adhoc Wireless Internet-Routing protocols in Ad Hoc networks-
Security in Ad hoc networks. Case Studies: Automatic transfer of Plans- Identifying the callee.
TEXT BOOKS
1. Jochen Schiller, "Mobile Communications", Addison Wesley, 2000.
2. C.Siva Ram Murthy and B.S Manoj "Ad hoc Wireless Networks", Pearson Education, 2007.
3. K. Sinha, S.C. Ghosh and Bhabani P. Sinha "Wireless Networks and Mobile Computing", CRC Press, 2015.
REFERENCES
1. Mobile Computing Principles-Reza B'Far-Cambridge University Press-2005.
2. Uyless Black, "Mobile and Wireless Networks", Prentice Hall, 1996.
3. Willian C.Y.Lee, Mobile Communication Design Fundamentals, John Wiley, 1993.

COURSE DESIGNERS

Г

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K. Somasunadaram	Associate Professor	CSE	ksomasundaram@avit.ac.in
2	Dr.M.Nithya	Professor	CSE	nithya@vmkvec.edu.in

170	CSEC20)		MULI	IMED	IA DA'	TABAS	SE		(Category	L	Т	P C	Credit
				MANA	AGEMI	PC 3 0 0 e the student about the database storage, retrieval of Multimedia elements of Multimedia elements etements etements			0	3					
PREA The ma	MBLE	ose of t	this cou	rse is to	o provid	e the st	udent a	bout the	e databa	ase stora	ge, retrie	val of M	ultimed	ia eleme	ents.
PRER Basic	EQUIS knowle	TTE doe in 1	Databas	se is nre	ferred										
COUR	SE OB	JECTI	VES	se is pre	leneu										
1	To un	derstan	d basic	of data	base										
2	To un	derstan	d differ	ent type	es data s	structur	e								
3	To un	derstan	d Desig	n and A	Architec	ture of	a Multi	imedia	Databas	se					
4	To un	derstan	d Audio	o Storag	ge										
5	To un	derstan	d Video	o Storag	ge										
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	student	ts will t	be able t	to						
CO1: B	Basic co	ncepts o	of imag	e/video	coding	techno	logy an	d comp	ression	standard	ls	Knowled	dge &U	nderstar	ıd
CO2: F	Fundame	entals o	f multir	nedia c	ontent c	lescript	ion and	presen	tation			Knowled	lge &U	nderstar	ıd
CO3: F	Fundame	entals o	f conter	nt based	l image	and vic	leo retr	ieval te	chnique	es		Analyze			
CO4: B retrieva	Basic kn 1	owledg	e of mu	ıltimedi	a datab	ase syst	em i	ndexing	g, brows	sing and		Understa	and & A	pply	
CO5: In on the r	terpret and the nultime	and ana dia syst	lyze me tem and	easuren compo	nent res	ults obt	ained					Analyze	& Eval	uation	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		S	M	S		9	S	9	L					
	S		S M	S I	5 1		S T	c	S	S	S M	C	C	C	
CO3	3		M	L S	L S	S	L M	3	5 5		M	<u>5</u> S	S M	N N	S
CO4	S		S	I I	3	3	S		2 2	3	S	3	M	1V1	3
S- Stro	ng; M-N	Medium	1; L-Lov	W			5		5		5		141	I	1
	<i>U</i> , -														

INTRODUCTION TO DATABASE	9 - hours
Basics of Database Management Systems - Relational Model - SQL, Functional Dep	pendencies - Normal Forms –
Multivalued Dependencies, Join Dependencies - Examples - An introduction to Obj	ect-oriented Databases.
MULTIDIMENSIONAL DATA STRUCTURES	9 – hours
k-d Trees - Point Quadtrees - The MX-Quadtree - R-Trees - comparison of Different	Data Structures
IMAGE RETRIEVAL MECHANISMS	9 - hours
Text/Document Databases - Precision and Recall - Stop Lists - Word Stems and Free	quency Tables - Latent Semantic
Indexing - TV-Trees - Other Retrieval Techniques -Image Databases - Raw Images -	Compressed Image
Representations - Similarity-Based Retrieval - Alternative Image DB Paradigms - Re	epresenting Image DBs with
Relations - Representing Image DBs with R-Trees - Retrieving Images By Spatial L	ayout - Implementations.
AUDIO/VIDEO DATABASES	9 - hours
Audio Databases - A General Model of Audio Data - Capturing Audio Content	through Discrete Transformation
Indexing Audio Data. Video Databases - Organizing Content of a Single Video - Q	uerying Content of Video Libraries
- Video Segmentation.	
- Video Segmentation. MULTIMEDIA DATABASE DESIGN	9 - hours
- Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B	9 - hours ased on The Principle of
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data 	9 - hours ased on The Principle of a.
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS 	9 - hours ased on The Principle of a.
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS Multimedia Database Management Systems Authors: Prabhakaran, B. Publi 	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA.
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS 1. Multimedia Database Management Systems Authors: Prabhakaran, B. Publi 2. Multimedia Database Retrieval Technology and Applications Authors: Muneesa 	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA. wang , Paisarn, Zhang , Ning,
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS 1. Multimedia Database Management Systems Authors: Prabhakaran, B. Publi 2. Multimedia Database Retrieval Technology and Applications Authors: Muneesa Guan, Ling , Publisher Name Springer, Cham. 	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA. wang, Paisarn, Zhang , Ning,
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS 1. Multimedia Database Management Systems Authors: Prabhakaran, B. Publi 2. Multimedia Database Retrieval Technology and Applications Authors: Muneesa Guan, Ling , Publisher Name Springer, Cham. REFERENCES 	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA. wang, Paisarn, Zhang , Ning,
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS Multimedia Database Management Systems Authors: Prabhakaran, B. Publi Multimedia Database Retrieval Technology and Applications Authors: Muneesa Guan, Ling , Publisher Name Springer, Cham. REFERENCES 1.Subramanian V. S., "Principles of Multimedia Database Systems", Elsevier Publish	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA. wang, Paisarn, Zhang , Ning, hers, 2013.
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS Multimedia Database Management Systems Authors: Prabhakaran, B. Publi Multimedia Database Retrieval Technology and Applications Authors: Muneesa Guan, Ling , Publisher Name Springer, Cham. REFERENCES Subramanian V. S., "Principles of Multimedia Database Systems", Elsevier Publisl Elmasri and Navathe, "Fundamentals of Database Systems, 6th Edition, Addison. 	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA. wang, Paisarn, Zhang , Ning, hers, 2013.
 Video Segmentation. MULTIMEDIA DATABASE DESIGN Design and Architecture of a Multimedia Database - Organizing Multimedia Data B Uniformity - Media Abstractions - Query Languages for Retrieving Multimedia Data TEXT BOOKS Multimedia Database Management Systems Authors: Prabhakaran, B. Publi Multimedia Database Retrieval Technology and Applications Authors: Muneesa Guan, Ling , Publisher Name Springer, Cham. REFERENCES Subramanian V. S., "Principles of Multimedia Database Systems", Elsevier Publisl Elmasri and Navathe, "Fundamentals of Database Systems, 6th Edition, Addison. Wesley, 2003. Subramanian S., "Principles of Multimedia Database Systems", Elsevier Publisl 	9 - hours ased on The Principle of a. sher Name Springer, Boston, MA. wang, Paisarn, Zhang , Ning, hers, 2013.

4. Date C. J., "An Introduction to Database Systems", 8th Edition.

5. Khoshafian S. and Bakor A. B., "Multimedia and Imaging Databases", Elsevier, 1996.

6. Kingsley Nwosu C., "Multimedia Database Systems: Design and Implementation Strategies", Kluwer Academic Publishers, 1996.

7. Lynne Dunckley, "Multimedia Databases: An Object-Relational Approach", Pearson Education, 2003

COURSE DESIGNERS

SYLLABUS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K. Somasunadaram	Associate Professor	CSE	ksomasundaram@avit.ac.in
2	Dr.S.Senthil kumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com

17	MRHS0	4		Т	OTAL	QUA	LITY			Category	/	L	Т	Р	Credit
1/1		•]	MANA	GEMI	ENT			HSS		3	0	0	3
PREAM Total Q satisfacti processe PRERE	IBLE: uality M ion and, s. QUISIT	/Ianag is an i F E: No	ement ntegrat t Requ	(TQM ive phi) is a 1 losoph	nanage y of ma	ment a anagem	pproach ent for	descr	ibes to l uously in	ong–te nprovii	rm s ng th	ucces e qua	s throu lity of j	gh customer products and
COURS	E OBJ	ECTIV	'ES:												
-	1. To un	derstar	nd the i	ntrodu	ction at	out Qu	ality a	nd Tota	Quali	ty Mana	gement	•			
	2. To un	derstar	nd the T	ГQМ р	rinciple	es.									
	3. To understand the statistical process control														
4	4. To impart the various TQM tools														
	5. To understand the quality systems.														
COURSE OUTCOMES:															
After suc	After successful completion of the course, students will be able to														
CO1: U	nderstar	nd the i	mporta	nce of	quality	and TO	QM at 1	nanagei	ial lev	el.			ι	Underst	and
CO2: E	xplain tł	ne requ	ired to	ols to ii	npleme	ent TQI	М.						1	Apply	
CO3: A	nalyse v	various	TQM J	parame	ters wit	th help	of stati	stical to	ols.				1	Analysi	ng
CO4: E	valuatin	g vario	us TQI	M Tech	niques								I	Evaluat	e
CO5: Pi	opose tl	ne Qua	lity Ma	inagem	ent Sys	stems in	n a diffe	erent					1	Apply	
organiza	tion env	vironme	ent	U	•										
Μ	IAPPIN	G WI	ГН PR	OGRA	MME	OUT	COME	S AND	PRO	GRAMN	1E SPI	ECIE	FIC O	UTCO	MES
										_					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012	PSO1	PSO2
CO1	М	L	L	L	L	L	L	L	L	М	L		L		
CO2	S	S	М	L	М	L	L	М	М	L	L		L		
CO3	S	S	S	М	S	М	L	М	М	L	L		М		
CO4	М	S	S	L	М	L	L	М	М	L	L		М		┼──┤ │
CO5	S	S	S	L	М	М	S	М	М	S	М		S		+

S- Strong; M-Medium; L-Low

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management-Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers. **TOM PRINCIPLES**

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits. **TEXT BOOKS:**

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Hcinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	asmanimba@gmail.com
2	B. Rajnarayanan	Assistant Professor	Management Studies	Rajsachin.narayanan@gmail.com

17MBUS03		EN	IGINE	ERIN	J		Cat	egory	L	Т	Р	Credit	t
MANAGEMENT AND ETHICS HSS 3 0 0												3	
PREAMBLE: Engine	ering 1	nanage	ment is	s to del	iver a t	etter u	ndersta	nding ov	er the ba	asic mai	nagemer	t functio	ns
and its importance to b	ouild th	e organ	nizatior	n. Also,	they w	ere insi	isted to	learn the	e importa	ance of	rights ar	d duties	of
the employees through	gh bas	ic ethi	cs. It	allows	them	to unc	lerstanc	d variou	s occup	ational	crimes	happeni	ng
throughout the world,	which	educate	es them	to lear	n the m	oral lea	dership).					
PREREQUISITE: N	ot Requ	uired											
COURSE OBJECTI	COURSE OBJECTIVES:												
1. To Understand the importance of Planning at various levels of the organisation.													
2. To understand the fundamentals of organizing, staffing and its factors to higher productivity.													
3. To Understand and inculcate ethics for individual as well as society. And Practice moral responsibility and code													
of ethics of an Engineer.													
4. To Explore and Exp	bts and	lt vario	that on	al relate	the in	and K	l for lor	ne impor	tance of	etnics			
6 To apply the Experi	ences 1	earnt th	that Ca	the case	e studie	s at glo	hal con	itext and	apply th	e ethica	l issues	of global	
market at local enviror	nment t	o com	nough bete in t	the Glo	balizati	on.			appiy iii	e etifica	I Issues	oi giobai	
COURSE OUTCOM	ES:	o comp			<u>cuillau</u>								
After successful comp	letion of	of the c	ourse, s	students	s will b	e able t	0						
CO1: Understand the importance of planning in organization at all levels of employees. Understand													
CO2: Explain the imp	ortance	e of fitt	ing rigl	ht man	for the	right jo	b.			A	pply		
CO3: Analyse various	s leader	ship sk	tills and	d its im	portanc	e on sh	aping tl	he organi	ization.	A	nalysing	5	
CO4: Evaluating var	ious et	hical p	ractices	s. Propo	ose the l	Rights a	and duti	ies of eng	gineers i	na E	valuate		
different organization	enviror	nment											
CO5: Impart ethical p	ractice	s, colle	ctive b	argainiı	ng techi	niques a	and esse	entials of	leaders	nip A	pply		
in engineering													
MAPPING WI	TH PR	OGRA	MME	OUTO	COME	S AND	PROG	RAMM	E SPEC	CIFIC (OUTCO	MES	
COs PO1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1 S L	L	L	L	L	L	L	L	М	L	L			
CO2 S S	М	L	М	L	L	М	М	L	L	L			
CO3 M S	S	М	S	М	L	L	М	L	L	М			
CO4 M S	CO4 M S S L M L L M L L M												
S- Strong; M-Medium; L-Low													

PLANNING

9

Management – Nature & Scope – Functions of Management – Levels of Management – Role of Managers - Nature and purpose of planning - Planning process - Types of plans – Objectives Managing by objective (MBO) -Decision Making - Types of decision - Decision Making Process - Decision Making under different conditions. ORGANIZING & STAFFING 9 Nature and purpose of organizing - Organization structure - Formal and informal Organization - Line and Staff authority - Depart mentation - Span of control - Centralization and Decentralization - Delegation of authority -Staffing - Selection and Recruitment - Orientation - Career Development - Career stages – Training Methods -

Performance Appraisal. **DIRECTING & CONTROLLING**

Creativity and Innovation - Motivation and Satisfaction - Motivation Theories - Leadership Styles - Communication - Barriers to effective Communication – Controlling – Controlling Techniques - Organization Culture - Elements and types of culture – Managing cultural diversity.

INTRODUCTION TO ETHICS

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger Case Study.

ETHICS IN ENGINEERING

Employed Engineers Rights and Duties- Collective Bargaining-Occupational Crime- Global Issues- Multinational Corporation- Technology transfer-Engineers as managers-Consulting Engineers-Expert Witness-Moral Leadership. **TEXT BOOKS:**

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005). **REFERENCES:**

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

	00014				
	S.No	Name of the Faculty	Designation	Department	mail id
i	1	B.Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com
1	2	Dr. G. Murugesan	Professor	Management Studies	Selvasahana.m@gmail.com

COURSE DESIGNERS:

1714011505	MARKETING TECHNIQUES FOR	Category	L	Т	Р	Credit
17/01/18/18/05	ENGINEERS	EC-OE	3	0	0	3

PREAMBLE:

According to world-renowned management consultant, Peter Drucker, "Marketing is the only distinguishing and unique function of business...There is only one valid definition of business purpose and that is to create a customer."While the significance of marketing in today's business world can never be overstated, it is the precise understanding and appreciation of marketing management that needs to be accentuated. Marketing management allows an organization to track, review and analyze their marketing resources and activities.

In this marketing course, you will learn the fundamentals of marketing management, as you gradually learn advanced theories and applications through real world business examples, illustrations, cases and exercises. You will learn how marketing management tools can be used to increase your customer base, improve customer satisfaction and increase your company's overall perceived value. You will learn how marketing serves as a key element within an organization's strategy.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the students to learn the fundamental concept of Marketing for managers.

2. To analyse various indicators of marketing management through thoughts and practices

3. To explore and apply the Pricing Concepts and Strategies

4. To apply market channel driven strategies.

5. To motivate students to learn and practice ethical responsibilities of a promotional activities.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understanding the moral values that ought to guide management practice	Understand
CO2: Making the consciousness of marketing management process	Understand
CO3: Gaining the knowledge of analytical skills in solving marketing related problems.	Apply
CO4: Assessing and evaluating the marketing related problems	Analyse
CO5: Gaining and applying the skills and knowledge to solve the current problems and	Analyse
challenges in marketing management.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

(COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
(CO1	М	L	S	L	М	S	Μ	Μ	L	S	М	М
(CO2	L	М	М	S	L	М	L	S	S	М	L	L
(203	L	S	М	М	М	L	L	S	S	S	L	S
(CO4	L	М	М	L	М	L	S	М	S	S	L	М
(CO5	L	S	М	S	М	S	L	М	М	М	L	М
S-	S- Strong; M-Medium; L-Low												

Basics of Marketing

Meaning – Definition and Importance of Marketing – Difference between Selling and Marketing – Approaches to the study of Marketing – Marketing concept – Market Segmentation – Basic for segmenting the consumer market – Buyer Behaviour.

Product Mix

Product – Meaning and Definition – Product Policy – Classification of Products – Product mix – product line strategies – Branding– Product life cycle – New Product Development case studies.

Pricing

Pricing – Importance of Price – Objectives of Pricing- Factors affecting Price determination – Pricing Policies – kinds of Pricing – Pricing of New products – Discounts and Allowance- Resale – Price maintenance.

Distribution Channels

Channels of Distribution – Factors influencing the choice of a channel – Channel of Distribution for consumer and Industrial goods – Middlemen – Kinds of Wholesalers and retailers and their functions.

Promotion Mix

Promotional mix- Factors determining promotional mix – Sales promotion – Objectives – Types- Advertising Budget – Personal Selling – Kinds of Advertising – Benefits – Advertisement copy, Advertising Budget – Personal

selling - kinds of salesmen - Function - Qualities of a good salesmen- process of selling.

TEXT BOOK:

- 1. Philip Kotler, Marketing Management, Millennium Edition, Prentice Hall Publication.
- 2. KS Chandrasekar, "Marketing management Text and Cases", Tata McGrawHill Vijaynicole, First edition, 2010

REFERENCES:

- 1. Ramasamy & Namakumari, Marketing Management, Macmillan Pub.
- 2. Arunkumar, Meenakshi, Marketing Management, Vikas Pub.
- 3. Sherlaker.S.A, Marketing Management, HPH
- 4. Rajan Saxena, Marketing Management, TMH
- 5. Beri. C. G, Marketing Research, Sultan Chand Pub.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id			
1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in			

17CVEC07	DISASTER MITIGATION AND MANAGEMENT	Category	L	Т	Р	Credit
		EC	3	0	0	3

PREAMBLE

This course deals with the various disasters and to expose the students about the measures, its effect against built structures, and Hazard Assessment procedure in India. This course also deals with the methods of mitigating various hazards such that their impact on communities is reduced.

PREREQUISITE

NIL

1,112															
COUR	COURSE OBJECTIVES														
1 To Understand basic concepts in Disaster Management															
2	To Ur	Iderstan	d Defir	nitions a	and Ter	minolog	gies use	ed in Di	saster N	Managem	ent				
3	To Understand the Challenges posed by Disasters														
4	To understand Impacts of Disasters														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Understand the various types of disaster viz Hydrological, Coastal and Marine Disasters, Atmospheric Disasters, Geological, Mass Movement and Land Disasters, Wind and Water Understand Driven Disasters.															
CO2. Identify the potential deficiencies of existing buildings for Earthquake disaster and suggest suitable remedial measures.															
CO3.Do Earthqu	erive th 1ake dis	e guide aster.	lines fo	or the p	recautio	onary m	easures	and re	habilita	tion mea	sures for	,		Apply	
CO4. D	erive th	ne prote	ction m	leasures	s agains	t floods	s, cyclo	ne, lanc	l slides					Apply	
CO5. U	ndersta	and the o	effects	of disas	ters on	built st	ructures	s in Ind	ia				U	nderstan	ł
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	CO2 M M L L - M L														
CO3	CO3 S M S M - L - M M L -														
CO4	S	М	S	-	L	-	-	-	-	-	-	-	М	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-
S- Stron	S- Strong; M-Medium; L-Low														

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

TEXT BOOKS:

Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.

Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.

Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

REFERENCES:

Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.

Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.

Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.

Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.

Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.

National Policy on Disaster Management, NDMA, New Delhi, 2009.

Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com		
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com		

17ECCC14	DIGITAL IMAGE PROCESSING	Category	L	Т	Ρ	Credit
		CC	3	0	0	3

PREAMBLE

Digital Image Processing has applications in all walks of present day digital life. The student stands to gain knowledge of the basics of images, acquisition of images, enhancement of images, restoration of images, compression of images for efficient storage and transmission, color image processing, image segmentation and morphological image processing.

PREREQUISITE: Signal Processing

00110			-		-										
COUR	SE OBJ	JECTIV	<u>/ES</u>				<u></u>							<u> </u>	
1	l o ur	ndersta	and the	emath	ematio	s behi	nd ima	age sar	npling	, quar	itization a	nd imag	je trans	forms	
C	To ur	ndersta	and dif	ferent	filterin	ng tech	nnique	s both	in the	frequ	ency dom	ain as w	/ell as t	he time	
Z	doma	in and	analy	ze the	m										
3	To ur	ndersta	and no	ise rer	noval a	and oth	ner res	storatio	on tech	nnique	es and app	oly them	۱.		
4	To ur	ndersta	and and	d appl	y mult	i resolu	ution t	echnic	ues fo	r imag	ge compre	ession			
5 To understand morphological representation, image segmentation and representation															
COURSE OUTCOMES															
On the	succe	ssful co	omplet	tion of	the co	urse, s	tuden	ts will	be abl	e to					
CO1. U	01. Understand the mathematics behind image acquisition, sampling and														
transfo	sforms														
CO2. U	Understand the concepts of filtering in time domain and frequency domain Understand														
CO3. A	nalyze	e the ef	fect of	differ	ent filt	ers on	remov	ving di	fferen	t noise	es			Analyze	
CO4. U	Inderst	tand th	ne basi	cs beh	ind im	age re	storati	ion					Ur	nderstar	ld
CO5. D	15. Design an application for removing different types of noises in a set of given														
images	ages Apply														
CO4. U	04. Understand the different multiresolution techniques Understand														
CO5. A	pply n	nulti re	esoluti	on for	image	compr	ressior	า						Apply	
CO6. U	Inderst	tand m	orpho	logica	l repre	sentat	ion, in	nage se	egmen	tation	and			adorator	d
repres	entatio	on	-	-	-								UI	iuei stai	lu
CO7. A	.pply ir	mage s	egmer	tation	techn	iques f	for seg	menti	ng obje	ects in	given ima	ages		Apply	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT(COMES	S AND	PROG	RAMN	AE SP	ECIFIC OU	JTCOM	ES		
COS	P01	P02	PO	PO	P05	P06	P07	P08	P09	PO	P011	P012	PSO1	PSO2	PSO3
			3	4						10					
CO1	c	N/I	N/I									N/I			
001	<u>с</u>	IVI	IVI												
002	5	-										IVI			
03		5										M			
CO4	S	M										M			
CO5	S	S	M	L								M			
C06	S	M	L	<u> </u>								M			
CO7	S	S	Μ	L								Μ			
S- Stro	S- Strong; M-Medium; L-Low														

Introduction and Image transforms

Origin of digital image processing – Fundamental steps in digital image processing – Components of an image processing system – Elements of visual perception – Image sensing and acquisition – Image sampling and quantization – Basic relationships between pixels – Introduction to mathematical tools used in digital image processing – Fields that use digital image processing

Transforms for Image processing - Discrete Fourier transform – Discrete Cosine transform – Haar transform – Hadamard transform – Walsh transform

Intensity transformations & Filtering

Basic intensity transformation functions – Histogram processing – Fundamentals of spatial filtering – Smoothing spatial filtering – Sharpening spatial filters – Fuzzy techniques for intensity transformations and spatial filtering

Basics of filtering in frequency transforms – Image smoothing using frequency domain filters - Image sharpening using frequency domain filters.

Image Restoration & Color Image Processing

Image restoration model – Noise parameters – Restoration in the presence of noise only –spatial filtering – Periodic noise reduction by frequency domain filtering – Degrading functions- Estimating the degradation function – Inverse filtering – Wiener filtering – Constrained least square filtering – Geometric mean filtering – Image reconstruction from projections

Color fundamentals – Color models – Pseudo color image processing – Color transformations – Color image Smoothing and sharpening – Color image segmentation – Noise in color images – Color image compression

Wavelets and Multiresolution processing & Image Compression

Background – Multiresolution expansion – Wavelet transform in one dimension – Fast wavelet transform – Wavelet transform in two dimensions- Wavelet packets

Image compression models – Huffman coding – Arithmetic coding – LZW coding – Run length coding – Bit plane coding – Block transform coding – Predictive coding – Wavelet coding

Morphological Processing, Segmentation & Representation

Morphological Processing - Erosion and dilation - Opening and closing – Basic morphological operations – Grey scale morphology. Image Segmentation - Point, Line and Edge detection – Thresholding – Region based segmentation – segmentation using morphological watersheds – use of motion in segmentation. Image Representation – Boundary descriptors – Regional descriptors

TEXT BOOKS:

- 1) "Digital Image Processing", Rafael C Gonzalez & Richard E Woods, Pearson Education International, Third Edition, 2008, ISBN 0-13-168728-x, 978-0-13-168728-8
- 2) "Fundamentals of Digital Image Processing", A.K. Jain, PHI, 1995.

REFERENCE BOOKS:

1) Digital Image Processing, Bernd Jahne, Springer -Verlag, Fifth Edition, 2002, ISBN 3-540 - 67754 - 2

2) The Essential Guide to Image Processing", AI Bowik, 2009, Elsevier Inc, ISBN 978-0-12-374457-9

3) S. Jayarman, S. Esakkirajan and T. Veerakumar, "Digital Image Processing", Tata McGraw Hill, 2010.

COURSE DESIGNERS

S.No.	Name of the Faculty	Mail ID
1. Mr.	P. Subramanian	subramanian@avit.ac.in
2. Mrs	s.S.Valarmathy	valarmathy@vmkvec.edu.in
3. Mr.F	R.Ramani	ramani@vmkvec.edu.in

17ECCC05	DIGITAL LOGIC CIRCUITS & DESIGN	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

One of the most important reasons for the unprecedented growth of Digital Electronics and systems is the advent of integrated circuits(ICs).Developments in the IC technology have made it possible to fabricate complex digital circuits such as microprocessors, memories and FPGAs etc. This course provides various methods and techniques suitable for a variety of digital system design applications.

PREREQUISITE

Basic Electrical and Electronics Engineering

COUI	RSE OBJECTIVES								
1	To understand the various number systems and their conversions.								
2	To learn the Boolean expressions, Boolean postulates and Karnaugh map method	to reduce the variables.							
3	To impart the design knowledge of various combinational logic circuits and sequential circuits.								
4	To understand the basics of hardware descriptive language.								
5	5 To design the RTL for various logic circuits.								
COUI	COURSE OUTCOMES								
On the	e successful completion of the course, students will be able to								
CO1.	Explain the various number systems and their conversions.	Understand							
CO2.	Apply the principles of Boolean algebra to manipulate and minimize logic	Apply							
e	expressions								
CO3. Design various combinational logic circuits (adder, subtractor, multiplexer and Apply coders, etc.,)									
CO4. 3	Design various sequential circuits using flip flops (counters, shift registers, etc.,)	Apply							

CO5. Write the HDL programming for combinational and sequential circuits. Apply															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
														O2	
CO1	М	L	L	L	L	-	-	-	М	-	-	-	S	М	-
CO2	S	М	М	М	М	-	-	-	М	-	-	-	S	М	-
CO3	S	S	М	М	М	-	-	-	М	-	-	-	S	М	-
CO4	S	S	М	М	М	-	-	-	М	-	-	-	S	М	-
CO5	S	S	М	М	М	-	-	-	М	-	-	-	S	М	-
S- Stro	ong: M	-Medin	ım [.] L-I	ow											

Basics of digital system:

About Digital system, Analog versus Digital, Advantages of processing information in digital form, Number System-Binary,Octal,Decimal & Hexadecimal Number Systems & its Conversion, Complement Arithmetic, Signed Binary Numbers, Binary Codes, Binary Storage And Registers.

Boolean Algebra, Logic Gates & Gate –Level Minimization:

Introduction, Boolean Algebra, basic theorem & properties of Boolean Algebra, Boolean functions, canonical & standard forms, logical operations, logic gates, Integrated circuits, Map method-upto four variable K-maps, Product of Sums (POS) & Sum of Products (SOP) simplification, don't care conditions, NAND & NOR implementations, Exclusive-OR Function, Hardware Description Language(HDL).

Combinational logic:

Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder, Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Code Converters, Encoders, Decoders, Multiplexers.

Synchronous Sequential Logic, Register & Counters:

Sequential circuits, storage elements: latches, flip flops, Analysis of clocked sequential circuits, Moore and Mealy circuits ,state diagram, state reduction & Assignment, design procedure, shift registers, ripple counters, synchronous counters.

Design At The Register Transfer Level:

Register Transfer Level Notation, Register Transfer Level In HDL, ASM, Sequential Binary Multiplier, Control Logic, HDL Description Of Binary Multiplier, Design With Multiplexers, Race Free Design, Latch Free Design.

Text Books

- 1. Morris Mano, "Digital Design (with an introduction to the verilog HDL)", Prentice-Hall of India.
- 2. John F. Wakerly, "Digital Design Principles & Practices", 4th edition, Prentice-Hall, 2005.

REFERENCES:

- 1. Stephen D. Brown, and Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design, 2nd Edition," McGraw Hill, June, 2007.
- 2. William Kleitz, "Digital Electronics: A Practical Approach with VHDL", Ninth Edition, Pearson, 2002.
- 3. Floyd T.L., "Digital Fundamentals ", Charles E. Merrill publishing Company, 1982.
- 4. Tokheim R.L., "Digital Electronics Principles and Applications ", Tata McGraw Hill, 1999.
- 5. Jain R.P., "Modern Digital Electronics ", Tata McGraw Hill, 1999

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Departme nt	Mail ID						
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in						
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in						

17EEEC21		Category	L	Т	Р	Credit
	NON CONVENTIONAL ENERGY SOURCES	EC-PS	3	0	0	3

PREAMBLE

Non Conventional resources include solar energy, wind, falling water, the heat of the earth (geothermal), plant materials (biomass), waves, ocean currents, temperature differences in the oceans and the energy of the tides. Non Conventional energy technologies produce power, heat or mechanical energy by converting those resources either to electricity or to motive power. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on grid applications. Such commercial technologies include hydroelectric power, solar energy, fuels derived from biomass, wind energy and geothermal energy. Wave, ocean current, ocean thermal and other technologies that are in the research or early commercial stage, as well as non-electric Non Conventional energy technologies, such as solar water heaters and geothermal heat pumps, are also based on Non Conventional resources, but outside the scope of this Manual.

PREREQUISITE-NIL

COURSE OBJECTIVES

1	To learn about PV technology principles.								
2	To learn economical and environmental merits of solar energy for variet	y applications.							
3	To learn modern wind turbine control & monitoring.								
4	To learn various power converters in the field of renewable energy technologies.								
5	To study and analyse different types of Power converters for Renewable energy conversion								
COURSE OUTCOMES									
On the su	ccessful completion of the course, students will be able to								
CO1	Understand to Renewable Energy Sources, Principles of Solar Radiation, Different Methods of Solar Energy Storage and its Applications, Concepts of Solar Ponds, Solar Distillation and Photo Voltaic Energy Conversion								
CO2	Learn the Flat Plate and Concentrating Collectors, Classification of Concentrating Collectors Analyse								
CO3	Learn the Wind Energy, Horizontal and Vertical Access Wind Mills, Bio Conversion Analyse								
CO4	Types of Bio-Gas Digesters and Utilization for Cooking Geothermal Energy Resources	Understand and Apply							

CO5	Types of Wells and Methods of Harnessing the Energy, Ocean Energy and Setting of OTEC Plants	Understand
CO6	Tidal and Wave Energy and Mini Hydel Power Plant, Need and Principles of Direct Energy Conversion, Concepts of Thermo-Electric Generators and MHD Generators	Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S				М			L		М	S	М	S
CO2	М	L	L				М			М			S	L	М
CO3	S	М	S	S	М									М	S
CO4	L	L	L		S		М						L	L	S
CO5	S	S	S	М	М									М	
CO6												М	S	М	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Solar Energy-Energy available form Sun, Solar radiation data, Solar energy conversion into heat, Flat plate and Concentrating collectors, Mathematical analysis of Flat plate collectors and collector efficiency, Principle of Natural and Forced convection, Solar engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite.

WIND ENERGY CONCEPT

Wind energy conversion, General formula -Lift and Drag- Basis of wind energy conversion – Effect of density, frequency variances, angle of attack, and wind speed. Windmill rotors Horizontal axis and vertical axis rotors. Determination of torque coefficient, Induction type generators- working principle.

GEOTHERMAL AND BIOMASS ENERGY

Nature of Geothermal sources, Definition and classification of resources, Utilization for electric generation and direct heating, Well Head power generating units, Basic features Atmospheric exhaust and condensing, exhaust types of conventional steam turbines. Pyrolysis of Biomass to produce solid, liquid and gaseous fuels, Biomass gasification, Constructional details of gasifier, usage of biogas for chulhas, various types of chulhas for rural energy needs.

TODAL AND WAVE ENERGY

Wave, Tidal and OTEC energy- Difference between tidal and wave power generation, Principles of tidal and wave power generation, OTEC power plants, Operational of small cycle experimental facility, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC. Status of multiple product OTEC systems.

TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	e-Mail ID									
1	P. LOGANATHAN	Assistant Professor	EEE	loganathan@vmkvec.edu.in									
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in									

17	MEP104		NON-DI	ESTRU	ICTIV	E TE	STING	Cat	tegory	I	4	Т	Р	Cr	edit
					0111			(CC	3	,	0	0	í	3
Prea	mble														
To st	udy and	under	stand the	variou	s Non	Destr	uctive E	valuat	ion and	l Testin	g meth	ods, theo	ory and	their ind	lustrial
appii Pror	cations.														
NIL	equisite														
Cour	se Obje	ctive													
1	1 To expose to the concept of overview of NDT														
2	2 To familiarize with the applications of differential equations, surface NDE Methods														
3	To understand the concept of thermography and Eddy current testing														
4	To und	To understand the concept of ultrasonic testing and acoustic emission													
5	To und	erstan	d the con	cept of	Radio	ograph	y (RT)								
Cour	se Outco	omes:	On the	success	ful co	mpleti	on of th	e cour	se, stu	dents v	vill be a	ble to			
CO1.	Class	Classify the concept of overview of NDT Apply													
CO2.	To fa	To familiarize with the applications of differential equations, surface NDE Methods Understand													
CO3.	203. Explain the concept of thermography and Eddy current testing Understand														
CO4.	Expla	in the	concept	of ultr	asonic	testin	g and a	coustic	emissi	ion				Under	rstand
CO5.	Expla	in the	concept	of Rac	liograp	phy (R	T)							Under	stand
Map	ping wit	h Pro	gramme	Outco	mes ai	nd Pro	gramm	e Spec	ific Ou	itcome	5			-	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	S	L	L	S	S	М	S	М	М	L	М	М	L	М	S
CO2	2 S	М	L	S	S	М	S	М	М	М	S	М	L	М	М
COS	3 S	S	L	М	S	М	S	М	S	М	S	М	L	М	М
CO4	I S	М	L	М	S	М	S	М	S	М	L	М	М	S	S
COS	205 S M M M S M S M S M L L M								S	S					
S- St	rong; M	-Medi	ium; L-I	20W											

OVERVIEW OF NDT

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided

SURFACE NDE METHODS

Liquid Penetrant Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

THERMOGRAPHY AND EDDY CURRENT TESTING

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications.Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique –Principle, AE parameters, Applications

RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

Text Books

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House. 2.Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers.

Reference Books

1.ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.

2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey 3. Charles, J. Hellier, "Handbook of Nondestructive evaluation", McGraw Hill, New York.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	Ashokkumar@avit.ac.in

17MESE19	M	ODEF	RN MA	ANUF	ACTU	RING	Cate	egory	L		Т	Р	Cro	edit	
				ME	THO	DS		E	C	3		0	0	3	3
Prea	mble														
Th ma kne	This course aims to teach the physics, modelling, and mathematical inferences of various advanced manufacturing processes used in industries for making products. The students will get complete knowledge of the unconventional processes in terms of aspects stated above.														
Prero 1 2 3	Prerequisite 1. Basic Manufacturing Process 2. Manufacturing Technology 3. Computer Integrated Manufacturing														
Cour	Course Objective														
1	1 To discuss the basic concepts various unconventional machining processes														
2	To Demonstrate the Mechanical energy based unconventional machining processes.														
3	To Den	nonstra	ate the	Electi	rical e	nergy ba	ased un	conve	ntional	machin	ning pro	ocesse	es.		
4	To Den	nonstra	ate the	Chem	nical &	Electro	o-Chem	ical er	nergy t	based un	nconve	ntiona	l machini	ing proc	esses.
5	To Demonstrate the Thermal energy based unconventional machining processes.														
Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	Discuss the basic concepts various unconventional machining processes Understand														
CO2.	Dem proce	onstra esses.	te the	Mecha	nical	energy	based u	nconv	ention	al mach	ining		Apply		
CO3.	Dem proce	onstra esses.	te the	Electri	ical en	ergy ba	sed unc	onven	tional	machin	ing		Apply		
CO4.	Dem unco	onstra nventi	te the onal n	Chemi nachin	ical &	Electro ocesses.	-Chemi	cal en	ergy ba	ased			Apply		
CO5.	Dem	onstra	te the	Therm	al ene	rgy bas	ed unco	onvent	ional n	nachinii	ng		Apply		
Map	ping wit	h Pro	gramr	ne Ou	tcome	es and F	Program	nme S	pecifi	c Outco	omes				
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
CO2	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
CO3	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
CO4	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
CO5	М	L	-	-	-	М	S	-	-	-	-	М	М	-	М
S- St	S- Strong; M-Medium; L-Low														

INTRODUCTION

Unconventional machining Process - Need - classification - Brief overview-merits -demerits-Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits–Wire cut EDM – working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants-Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

Text B	Text Books									
1	Vijay.K. Jain "Adv	vanced Machining Pr	rocesses" Allied Publis	hers Pvt. Ltd.						
2	P.K.Mishra, "Non Conventional Machining " The Institution of Engineers (India) Text Books:									
	Series.									
Refere	rence Books									
1	Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., New York									
2	Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi.									
2	Paul De Garmo, J.T	Black, and Ronald.	A.Kohser, "Material and	nd Processes in Manufacturing"						
3	Prentice Hall of Ind	lia Pvt. Ltd., New De	elhi, 8th Edition.							
Course	e Designers									
S.No	Faculty Name Designation Department/Name Email id									
	·	5	of the College							
1	S PRAKASH	Assistant	Mech / AVIT	prakash@avit.ac.in						
1	5.1 10 110 1511	Professor (Gr-II)								

1750	CC07	M	ICRO	CONT	ROLL	ERS &	ITS	Cate	gory	Ι		Т	Р	Cre	edit
1720			A	PPLIC	CATIC	ONS		С	С	3	3	0	0	3	;
PREA	MBLI	E												1	
Micro	Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in														
VLSI	techno	logy, i	microc	ontroll	ers ev	olve wh	ich fun	ction si	milar to	microp	rocesso	rs but t	they hav	ve most	of the
periph	erals b	uilt on	i-chip.	This c	ourse i	makes the	he stude	ents to t	be famil	ar with	the arc	hitectur	e and p $C = 1 \in E^{2}$	rogramn	nng of
(LPC2148) microcontrollers.															
PRER	PREREQUISITE -														
COU	COURSE OBJECTIVES														
1	1 To learn the concepts of microprocessors and knowledge of interfacing devices.														
2	To st	udy the	e Arch	itecture	e of 80.	51 micro	control	ler							
3	To de	velop s	skill in	simple	progra	am writi	ng of m	icrocont	roller						
4	To study the interfacing and applications of microcontroller														
5	To stu	idy the	advan	ced mi	crocon	trollers.									
COUI	RSE O	UTCO	MES												
On the	e succes	ssful co	omplet	ion of t	he cou	rse, stud	lents wil	ll be abl	e to						
CO1. 1	Explair	the co	oncept	of mic	oproce	essor and	l interfa	cing dev	vices.					Unders	tand
CO2. 1	Explair	n the ar	chitect	ure and	l funct	ion of 80)51 mic	rocontro	oller					Apply	
CO3.]	Design	and in	npleme	nt prog	grams o	on 8051	Microco	ontroller						Analyz	e
CO4.]	Design	and in	npleme	nt appl	ication	s using	8051 M	icrocont	roller					Analyz	e
CO5. 1	Explair	n the ac	lvance	d Micr	ocontro	ollers use	ed in dif	ferent a	pplicatio	ons.				Unders	tand
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L	-	-	-	-	-	-	М	-	-	-
CO2	L	S	S	-	М	-	-	-	-	-	-	М	-	-	-
CO3	S	М	Μ	-	L	М	-	-	_	-	_	М	-	-	-
CO4	S	L	L	-	L	S	-	-	-	-	-	М	-	-	-
CO5	Μ	М	S	-	М	L	-	-	-	-	-	Μ	-	-	-
S-Stro	S- Strong; M-Medium; L-Low														

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes – Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simple programs- Programmable Peripheral Interface 8255 – Programmable Communication Interface 8251 USART – Programmable Interrupt Controller 8259A – Direct Memory Access Controller 8257- Programmable Interval Timer 8253 – Keyboard/Display Controller 8279.

INTEL 8051 MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- Serial Communication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing-DC Motor Interfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, I^2C – SPI – Watchdog timer – ARM7 (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2. Frank D. Petruzella. "Programmable Logic Controllers", McGraw-Hill Book, Company, 1989

REFERENCE BOOKS

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

COURSE DESIGNERS

0001									
1	Mr.S.Selvam	selvam@avit.ac.in							
2	Mr.R.Ramani	ramani@vmkvec.edu.in							
3	Mr.G.Sureshkumar	sureshkumar@vmkvec.edu.in							

	FINANCE AND	Category	L	Т	Р	Credit
17MBHS02	ACCOUNTING FOR	HSS	3	0	0	3
	ENGINEERS					

PREAMBLE:

Finance and accounting for engineers relating to money or the way money is managed financial stability, security, strength. Independent agencies perform rigorous analysis in order to assign financial strength. The present age is the age of trade business and commerce. After Globalisation, liberalization, and privatization, business is increasing day by day and becoming complex also. An organization cannot remember all its dealing for long.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To enable students to understand various assumptions underlying for the preparation of Income Statement, and Balance Sheet.

2. To understand the importance of accounting to apply while claiming depreciation and capital budgeting.

3.To understand the Cost analysis during decision making and explore the purpose of discounted cash flow analysis.

4. To apply Financial strategy including marginal costing and working capital management.

5.To Create model inventory management as techniques.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the role of accounting information in the collection, decision making	Understand	
and analysis of business performance.		
CO2: Explain the business performance related to financial accounting.	Apply	
CO3: Analyse various concept of depreciation, capital budgeting decision, cost	Analysing	
accounting and working capital Management.		
CO4: Evaluate the roles of cost accounting and working capital requirements for the	Evaluate	
business cycle.		
CO5 Create a Model financial strategy within the business model of a firm.	Create	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	L	L	L	L	L	L	L	L	М	L	L		
CO2	S	S	М	L	М	L	L	М	М	L	L	L		
CO3	S	S	S	М	S	М	L	М	М	L	L	М		
CO4	М	S	S	L	М	L	L	М	М	L	L	М		
CO5	S	S	S	L	М	М	S	М	М	S	М	S		
S- Strong: M-Medium: L-Low														

Introduction: Business Environment – Forms of business – Book Keeping and Accounting – Accounting Concepts and Conventions – Journal – Subsidiary books - Ledger – Trial Balance – Final Accounts **Deprecation:** Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Evaluation Techniques – Non-Discounting Cash Flow Techniques: Pay Back Period – Accounting Rate of Return – Discounting Cash Flow Techniques: NPV – IRR - Profitability Index.

Costing Accounting: Concepts - Elements of Cost - Preparation of Cost Sheet - Types of Costs – Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management –ACP, Aging schedule –Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- 1. Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

UUKSE DESIGNEKS:												
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	M.Manickam	Associate Professor	Management Studies	manickamannu@rocketmail.com								

COURSE DESIGNERS:

17EC	CCC21 DIGITAL SIGNAL PROCESSING							Catego	ry L	Т	Р	C	redit			
I'LC.			L	1011			INOC				CC	3	0	0	3	
PREA	MBLE	C														
Digital	l Signal	l Proce	ssing (DSP) i	s being	g used v	very w	idely ii	n appli	cations t	hat inclu	de teleo	commu	nicat	ion	
equipn	nent, m	ultime	dia sys	tems, e	electron	nic and	biome	edical i	nstrum	entation	, automo	otive sys	stems a	nd m	any	
militar	y and v	veapon	syster	ns. DS	P chips	s, gene	ral pro	cessors	or dec	licated A	ASIC chi	ps, are	now ab	ole to	proc	ess
wide b	andwic	lth sigr	nal of a	ll sorts	in rea	l-time.	The ap	oplicati	on of I	OSP is o	nly limit	ed by o	ur ima	ginati	ion ir	istead
of DSI	OF DSP technology itself.															
PRER	rkekequisite NIL															
COUF	COURSE OBJECTIVES															
1 To understand the basics of discrete time signals, systems and their classifications.																
2	2 To analyze the discrete time signals in both time and frequency domain.															
3	To de	sign lo	wpass	digital	IIR fil	ters ac	cording	g to pre	edefine	d specif	ications	based o	n analo	og filt	ter th	eory
	and a	nalog-t	o-digit	al filte	r transf	formati	on.			-				-		-
4	To de	sign Li	inear p	hase d	igital F	IR filte	ers usir	ng four	ier met	hod, wi	ndow tec	hnique				
5	To rea	alize th	ne conc	ept and	1 usage	e of DS	P in va	arious e	enginee	ering fie	lds.					
COU	RSE O	UTCO	MES													
On the successful completion of the course, students will be able to																
CO1.1	CO1. Understand about various types of signals and systems, classify them, Understand															
analyz	e them,	, and														
perform	m vario	us ope	rations	s on the	em											
CO2. 0	Comput	te vario	ous trai	nsform	analys	sis of L	inear T	Time In	varian	t System	1	Appl	ý			
CO3.	Design	and te	st sign	al proc	essing	algorit	hms fo	or vario	us app	lications	5.	Appl	/			
CO4. I	Design	and sir	nulate	digita	l filters							Appl	/			
CO5. ι	underst	and var	rious a	pplicat	ions of	DSP s	such as	s multi	i rate s	ignal		Unde	rstand			
proces	sing, te	lecom	munica	ation												
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	IFIC C	UTCO)ME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	SO2	PSO3
CO1	S	S	М	М	-	-	-	-	-	-	-	-	S	Μ		-
CO2	S	S	М	М	М	-	-	-	М	-	-	М	S	Μ		-
CO3	S	S	М	М	М	-	-	-	М	-	-	М	S	S		-
CO4	S	S	М	Μ	М	-	-	-	Μ	-	-	Μ	S	Μ		-
CO5	5 S S M M M M M S M -															
CO6	S	М	М	Μ	М	-	-	-	М	-	-	М	S	S		М
S- Stro	ong; M-	Mediu	m; L-I	LOW												
SYLL	ABUS															
UNIT I DISCRETE TIME SIGNALS AND SYSTEMS 9											9					

Introduction to DSP – Basic elements of DSP– Sampling of Continuous time signals–Representation, Operation and Classification of Discrete Time Signal–Classification of Discrete Time Systems–Discrete Convolution: Linear and Circular–Correlation.

UNIT II ANALYSIS OF LTI DISCRETE TIME SIGNALS AND SYSTEMS

Analysis of LTI Discrete Time Systems using DFT–Properties of DFT–Inverse DFT– Analysis of LTI Discrete Time Systems using FFT Algorithms– Inverse DFT using FFT Algorithm.

UNIT III DESIGN AND IMPLEMENTATION OF IIR FILTERS

Design of analog filters using Butterworth and Chebyshev approximations – IIR digital filter design from analog filter using impulse invariance technique and bilinear transformations – Matlab programs for IIR filters.

UNIT IV DESIGN AND IMPLEMENTATION OF FIR FILTERS

Linear phase response – Design techniques for FIR filters – Fourier series method and frequency sampling method –Design of Linear phase FIR filters using windows: Rectangular, Hanning and Hamming windows – Matlab programs for FIR filters.

UNIT V APPLICATIONS OF DSP

Multirate Signal Processing: Decimation, Interpolation, Spectrum of the sampled signal –Processing of Audio and Radar signal.

Text Books

1. John .G. Proakis and Dimitris C. Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Fourth edition, 2007.

2. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Third Edition, Tata Mc Graw Hill, 2007.

Reference Books

1. M.H.Hayes, "Digital Signal Processing", Tata McGraw Hill, New Delhi, Edition, 2009.

2. A.V.Oppenheim, R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, 8th Indian Reprint, Pearson, 2004.

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Mrs.A.Malarvizhi	malar.ece06@gmail.com
2		

9

9

9
COMPUTER CONTROLLED VEHICLE SYSTEMS	Category	L	Т	Р	С
	EC(PS)	3	0	0	3

Preamble

This course introduces the role of sensors and actuators for controlling the engine, drive line. It also provide knowledge about the transportation and safety devices controlled by computer

Prerequisite

Nil

Course Objectives

1	To kno	'o know the control Autonomy of vehicles													
2	To stue	ly com	puter co	ontrolle	d fuel,	Ignitio	n , Spe	ed and	knock s	system	of IC e	ngine			
3	To lear	n the c	ompute	er contro	olled di	rive lin	e systei	m of Au	ıtomob	ile					
4	To stue	ly abo	ut the c	ompute	er contr	ol trans	sportati	on syst	em						
5	5 To learn about the smart safety devices of Automobile														
Course Outcomes:															
After Successful completion of this course, the students will be able to:															
CO1.	Und	Understand the role of sensors and actuators used in vehicle control system Understand													
CO2.	Cor	Control fuel, Ignition , speed and knock in IC engine Apply													
CO3.	Con	trol Dri	ve line	system	, Steeri	ing and	susper	nsion sy	vstems					Ap	oply
CO4.	Und	erstand	intellig	gent tra	nsporta	tion sy	stem							Unde	rstand
CO5.	Ana	lyze the	e smart	safety]	Device	s used i	in Auto	mobile	s					Ana	alyze
		Μ	lapping	g with]	Progra	mme (Outcon	ies and	Progr	amme	Specifi	ic Outco	mes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	М	L	М	L							L		
CO2	S	L			М	L							L		
CO3	S	L				L							L		
CO4	S	L	М	М	М	М	Μ		L	L		L	L		

S- Strong; M-Medium; L-Low

М

--

--

Μ

М

М

--

--

--

--

М

--

--

S

CO5

Syllabus

INTRODUCTION

Understanding autonomy – Review of the role of control in autonomy (speed control, suspension control & integrated vehicle dynamics) - Role of sensors and actuators. Examples of autonomy cruise control

ENGINE CONTROL SYSTEM

Fuel control-Ignition control in SI engines- Lambda control- idle speed control- Knock control- cylinder balancing **DRIVE LINE CONTROL SYSTEM**

DRIVE LINE CONTROL SYSTEM

Speed control – gear shifting control – traction /braking- steering- suspension – vehicle handling and ride characteristics of road vehicles- adaptive cruise control

INTELLIGENT TRANSPORTATION SYSTEM

Overview – control architecture – collision avoidance, pitch, yaw, bounce control – traffic routing system- automated high way systems- lane warning system- driver information system- data

SAFETY IMPACTING DEVICES

Vision enhancement- driver conditioning warming- anti-lock braking systems – route guidance and navigation systems – in-vehicle computing – commercial vehicle diagnostic/ prognostics – hybrid/ electric and future cars- case study.

TEXT BOOK:

1. Automotive control systems, U.Kienckeand L. Nielson, SAE and springer-Verlag, 2000

REFERENCES:

- 1. Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, New Delhi.
- 2. Artamonov, M.D., Harionov, V.A. & Morin, M.M. Motor Vehicle, Mir Publishers, Moscow 1978.,
- 3. Heitner, J., Automotive Mechanics, CBS Publishers, New Delhi 1987.
- 4. Stockel Martin W and Stocker Martin T., Auto Mechanics Fundamentals, Goodheart Wilcox,

Course Designers:

Cours	be Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	A.Imithyas	Asst. Prof. Gr - I	Mechanical, AVIT	imthicyr @avit.ac.in
4				

			PF	MOTE	SENSI	NC AN	JD CIS	FOR		Catego	ory	L	Т	Р	Credit
17C	VSE55		EN	VIRON	MENT	AL AP	PLICA	TION		EC		3	0	0	3
PREAM	MBLE														
This Co	ourse he	lps in ga	ining kn	owledge	about r	emote s	sensing	and GI	S for en	vironmen	t application	tion.			
PRERI	E QUISI Nil.	TE													
COURSE OBJECTIVES															
1.	1. Be acquainted with the concepts of Remote sensing, EMR interaction with Environmental issues.														
2. Be familiar with remote sensing platform systems, its satellites and sensors.															
3. Gain knowledge on data processing using image processing software.															
4. Gain knowledge on GIS and GIS software.															
5.	Be fan	niliar wi	th monito	oring env	vironme	nt using	g remot	e sensii	ng and C	SIS.					
COUR	SE OU	ГСОМІ	ES												
On the	successf	ful comp	oletion of	the cour	rse, stud	lents wi	ill be at	ole to							
CO1. D	Develop	knowled	lge on co	ncept of	remote	sensin	g.							Underst	and
CO2. B	e aware	of rem	ote sensii	ng platfo	rms and	l sensor	s.							Underst	and
CO3. Io	dentify t	he steps	in Image	e process	sing sof	tware.								Apply	
CO4. R	elate the	e proble	ms in GI	S softwa	re.									Apply	
CO5. D	Describe	the env	ironment	al applic	ation us	sing ren	note sei	nsing ar	nd GIS.					Analyze	
MAPP	ING W	ITH PR	OGRAN	AME O	UTCON	MES A	ND PR	OGRA	MME S	SPECIFI	C OUTO	COMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-			
CO2	S	L	М	L	М	-	-	-	-	-	-	-			
CO3	S	М	М	L	М	-	-	-	-	-	-	-			
CO4	S	S	М	L	-	-	-	-	-	-	-	-			
CO5	S	-	М	-	М										
S_ Stro	na• M_I	Modium	· I J ou	7											

Strong; M-Medium; L-Low 2

PRINCIPLES OF ELECTRO MAGNETIC RADIATION:

Concepts of Remote Sensing - Energy sources and radiation principles, Energy interactions in the atmosphere - Spectral reflectance of earth surface features.

REMOTE SENSING PLATFORMS:

Aerial Photographs, Photographic Systems - Visible, Infra Red and Microwave sensing - Active and passive sensors - Satellites and their sensors, Indian Space Program - Satellite data products.

DATA PROCESSING:

Photogrammetry - Satellite data analysis - Visual Interpretation, Interpretation equipments - Digital Image Processing - Image rectification, enhancement, classification, data merging and biophysical modeling - Image Processing software.

GEOGRAPHIC INFORMATION SYSTEM :

Introduction to GIS concepts - Data base structure - Data analysis - GIS software

REMOTE SENSING AND GIS APPLICATIONS:

Management and monitoring of environment, conservation of resources, coastal zone management - Limitations.

TEXT BOOKS:

1.Lillesand, T.M. and Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 2004.

REFERENCES:

1. Burrough, P.A. and McDonnell, R.A., Principles of Geographic Information Systems, Oxford University Press, New York, 2001.

2. Lintz, J. and Simonet, Remote Sensing of Environment, Addison Wesley Publishing Company, New Jersey, 1998.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2.	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

17CVFC03	GEOGRAPHICAL INFORMATION	Category	L	Т	Р	Credit
170 12005	SYSTEM	EC	3	0	0	3

PREAMBLE

Geographical Information System is the application of the geologic sciences to engineering practice for the purpose of assuring that the geologic factors affecting the engineering works are recognized and adequately provided for. Engineering geologic studies may be performed during the planning and design. A civil engineer should be able to understand an engineering geologic report, and incorporate adequate measures into the design of engineering works.

PREREQUISITE

NIL	IL														
COU	RSE O	BJECTI	IVES												
1.	To pro	ovide exp	posure to	applicat	tions of (GIS in va	arious ap	plicatio	n domai	ns throug	th case stu	udies			
2.	Studen	nts will l	earn abo	ut the us	e of zon	e mappi	ng for w	ater bod	lies .						
3.	3. Students will learn about the use of mapping techniques for Agriculture and Earth sciences														
4.	Image: Students will also learn about the recent techniques used for GPS system														
5	The student shall also be able to appreciate the importance of geological formation in causing earthquakes and landslides														
5.	and literate the rural people														
COU	COURSE OUTCOMES														
On th	e succes	ssful con	npletion	of the co	ourse, stu	dents wi	ll be abl	e to							
CO1.	CO1. Acquire the knowledge of the topographical formation, interior earth, gradational														
activi	ivities and GIS Technique and data INPUT														
CO2.	D2. Understand the importance of advanced techniques involved														
in dat	a Analy	sis and r	nodellin	g									Chacible	ina	
CO3.	Study t	he impo	rtance of	f Data O	utput An	d Error A	Analysis.	•					Analyse		
CO4.	Unders	tand the	importa	nce of N	atural Re	esources	And Wa	asteland	Manage	ement usi	ng GIS		Understa	ind	
CO5.	Analys	is of RS	and GIS	data and	d interpro	eting the	data for	modeli	ng appli	cations			Analyse		
MAP	PING	WITH P	ROGRA	AMME	OUTCO	MES A	ND PRO	OGRAN	AME SI	PECIFIC	OUTCO	OMES			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	PO1
S															
CO1	S	Μ	L	S	S	М	S	М	М	S	S	S	L	L	-
CO2	S	М	М	L	L	М	М	L	L	L	L	М	L	S	-
CO3	S	S	S	S	L	L	М	L	L	L	L	L	-	-	М
CO4	S	S	S	М	М	S	S	L	L	L	М	М	М	М	-
CO5	S	S	S	S	S	S	S	S	S	S	S	S	L	-	-
S- Str	S- Strong; M-Medium; L-Low														
	-														

GIS TECHNIQUE AND DATA INPUT:

MAP – Types of Maps – Development of GIS – Components of GIS – Hardware, software, organisation – Types of data – Spatial and non-spatial data – Print, Line and Polygon – Vector and Raster data – Database structures – Files – Vector and Raster data structures.

DATA ANALYSIS AND MODELLING:

Data Retrieval – Query – Simple Analysis – Spatial Analysis – Overlay – Vector Data Analysis – Raster Data Analysis – Modelling using GIS – Digital Elevation Model – Cost and path analysis – Expert Systems – Artificial Intelligence – Integration with GIS.

DATA OUTPUT AND ERROR ANALYSIS:

Data Output – Types – Devices used – Raster and Vector Display Devices – Printers – Plotters – Photo write Devices – Sources of Errors – Types of Errors – Elimination – Accuracies.

GIS APPLICATIONS IN RESOURCE MANAGEMENT:

Fields of Applications – Natural Resources – Agriculture – Soil – Water Resources – Wasteland Management - Social Resources - Cadastral Records – LIS.

ADVANCED GIS APPLICATION:

AM/FM – Utility Network Management – Integration with Remote Sensing – Knowledge based techniques – Multicriteria Techniques – Introduction to Object Oriented Data base Model.

TEXT BOOKS:

- 1. Burrough P A, Principles of GIS for Land Resources Assessment, Oxford Publication, 2000
- 2. Michael N Demers, Fundamentals of Geographical Information Systems, Second Edition, John Wiley Publications, 2002.

REFERENCES:

1.Paul A Longley, Michael F Goodchild etal, Geographical Information Systems Volume I and II, Second Edition, John Wiley Publications, 1999.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	R.SATHIYARAJ	Asst. Professor	CIVIL	sathiyaraj.r.25@gmail.com
2.	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

170	7CVSE02 ENTERPRISE WIDE INFORMATION Category L T P SYSTEMS												Р	Credit	
					51	SIEM	3			EC		3	0	0	3
PREA	MBLE														
This	course i	is desig	ned to	provide	the stu	dent w	ith a th	orough	underst	tanding o	f both th	ne role th	at Enter	prise Res	ource
Plann	ing Sys	stems (ERPs) j	play in	an orga	nizatio	n and t	he chal	lenging	task of	managin	g the Inf	formation	n Systems	s (IS)
funct	ion.														
PRER	'REREQUISITE														
	Nil														
COUR	COURSE OBJECTIVES														
1.	To introduce Enterprise resource planning														
2.	To make students understand the financial accounting														
3.	Explain how 'best business practices' are incorporated in an ERP														
4.	Execute an entire business process chain in the areas of sales, Procurement, Production and Accounting														
5.	To stu	idy abo	ut the M	Iaterial	s requir	ement p	olannin	g, billin	ng & wo	ork center	s.				
COUR	SE OU	JTCON	AES												
On the	success	sful cor	npletion	n of the	course,	studen	ts will	be able	to						
СО1.Т	he intro	oduce E	Interpris	se resou	irce pla	nning								Apply	7
CO2. E	Definitio	on 'best	busine	ss pract	ices' ar	e incorp	porated	in an E	RP					Under	stand
СО3.Т	'he 'be	st busin	less pra	ctices'	are inco	rporate	d in an	ERP						Apply	7
CO4. A	n entir	e busin	ess proc	ess cha	in in th	e areas	of sale	es, Proc	uremen	t, Produc	tion and	Account	ing	Under	stand
CO5. /	Apply a	ppropri	ate met	hods to	collect	the Ma	terials	require	ment pl	anning, b	illing &	work cer	nters.	Under	stand
MAPP	PING W	VITH F	PROGR	RAMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPE	CIFIC	OUTCO	MES	•	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L						-						
CO2	М	М	L	L		М	L		М						
CO3	М	М	М			М	L		М		М				
CO4	М	М	М	М		М	М		М						
CO5	L		М	L											
S- Stro	ong; M	-Mediu	m; L-I	LOW											

INTRODUCTION:

Overview - database applications -Business function vs business process-Introduction to Enterprise Resource Planning (ERP).

FINANCIAL ACCOUNTING:

Financial Accounting basics – Balance sheet, Profit and Loss Statement- General Ledger, Chart of Accounts –Posting financial transaction-Controlling – Cost centers and cost elements-Allocating Costs – Assessments and distributions.

BUSINESS PROCESSES:

Sales and fulfillment cycle -Master Data and its role in ERP systems -Creating customer master data, material master data and pricing conditions -Implementing a Sales Cycle.

PROCUREMENT PROCESSES:

Forecasting raw material requirements using sales information, production requirements, sales forecast-Raw Material procurement-Vendors and pricing conditions-Payment.

PLANNING AND CONTROL:

MRP – Materials requirement planning-Independent and dependent materials requirements-Creating Production orders and schedules-Bill of Materials-Executing a Production process-Inventory and Goods movement-Routing and work centers.

TEXT BOOKS:

- 1. Enterprise Resource Planning, 3rd Edition, by Bret Wagner and Ellen Monk, ISBN: 9781423901792,2009
- 2. SAP R/3, Business Blueprint, 2nd Edition, by *Thomas A. Curran & Andrew Ladd*, Prentice Hall PTR, 2000, ISBN: 0-13-085340-2.

REFERENCES:

- 1. Essentials of Business Processes and Information Systems, by *Simha R. Magal and Jeffrey Word*, ©2010, ISBN: 978-0-470-23059-6
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by *Simha R. Magal and Jeffrey Word*, ISBN: 978-0-470-88424-9.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	<u>sudipdas@avit.ac.in</u>

17CVSE47 ICT BASED CITY AND INFRASTRUCTURE Category L T									Р	Credit					
	VSE4/				PL	ANNIN	G			EC	2	3	0	0	3
PREA	MBLE														
This co	ourse of	ffers th	e vario	us met	nods of	chang	ing sce	nario ir	n the sp	atial ord	ler of c	ities and	regions	as well a	s the
emerge	nce of	virtual	societi	ies in t	he wor	ld soci	al netw	orks a	nong c	ommunit	ties acr	oss the c	ity, coun	try and	globe
demand	for pa	radigm	shift in	the spa	tial pla	nning o	utlook	and gov	vernance	e edge.					
PRER	E QUIS Nil.	ITE													
COUR	COURSE OBJECTIVES														
1	To make students aware and exposed to changing scenario of virtual societies in the world														
2	The sp	patial o	rder of	cities li	ke drinl	king wa	ter prov	vision, t	ranspor	tation, sa	anitatio	n facility	etc.,		
3	The students will be in a position to understand the use and power of emerging new technologies														
4	Social	netwo	rks amo	ong con	muniti	es acros	s the ci	ity, cou	ntry and	globe					
5	Parac	ligm sh	ift in th	e spatia	l planni	ing outl	ook an	d gover	nance e	dge.					
COUR	SE OU	TCON	1ES												
On the	On the successful completion of the course, students will be able to														
CO1. S	tudents	are ab	le to cop	pe up w	ith the a	applicat	ion tec	hnology	/					A	Apply
CO2. \$	Student	s unde	erstand	its imp	oact on	the ir	ıfrastru	cture F	Planning	and de	evelopn	ent at th	he house	2, A	nalvze
neighbo	orhood	and cit	y levels	•											
CO3. A	ppraise	the sp	atial or	der of c	ities like	e drinki	ng wate	er provi	sion, tra	insportat	tion, sar	itation fa	cility etc.	, A	nalyze
CO4. E	Building	g smart	cities a	and sma	art com	munitie	s with	the hel	p of So	cial netv	works a	mong con	nmunitie	s	
across t	he city	count	ry and g	lobe										F	Apply
CO5. A	Ability	to Und	erstand	the Para	adigm s	hift in t	he spat	ial plan	ning ou	tlook and	d gover	nance edg	ge.	A	nalyze
MAPP	ING W	TTH F	ROGR	AMM	E OUT	COME	S AND	PROG	GRAMN	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	М	М	S	М	М	-			
CO2	-	L	-	-	М	М	М	-	-	L	-	-			
CO3	-	-	L	L	L	-	L	М	М	М	М	М			
CO4	М	М	-	L	-	L	-	L	L	L	-	M			
CO5	-	L	-	М	М	-	-	L	-	L	-	-			
Q Q4		Mall													
5- Stro	ng; M-	wiediu	in; L-L	JUW											

PLANNING VS TECHNOLOGY:

Tradition to modernity – Spatial planning and technology interface - Socio-economic planning and technology interface – Planning cities and local technologies - Technological innovations and responsive city planning - Planning responsive technology Vs technology responsive planning.

CITIES-TECHNOLOGY-INFRASTRUCTURE:

Transportation and technology, water, sanitation and technology, energy efficient technology for home, street, neighborhoods and city - Telecommunication, health and education – Security and safety for buildings and people in cities.

TECHNO CITIES:

Digital cities, virtual cities, technology parks - Smart planning and infill development – Planning, design and communication system - Socio-economic and environmental Impact of techno cities.

GOVERNANCE:

Role of law and technology, administration and organization, industry and corporate, communities and people in building smart cities and smart communities.

CASE STUDIES:

Best practices in India and around the world.

TEXT BOOKS:

1. Brkovic, M. B., 'Planning in the Information Age: Opportunities and Challenges of e-Planning, CORP, 2004.

2. City Government of Naga, 'The Naga City Citizen Chartes- A Guide Book of City Government Services. 2004.

REFERENCES:

Elizabeth, S. Frans, V. 'IDENSITY: Planning Paradigms for the Information Communication Age', Isocarp Congress, 2001.
 Intelligent Community forum, 'Innovation and Employment in the Intelligent Community', Intelligent Community forum, 2012.

3. Komakech, D., 'Achieving More Intelligent Cities", Municipal Engineer, 2005.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17BM	ICC01		BIOM	EDICA	L CIR	CUITS	& NE	ГWOR	KS	Categ	jory		P	Cr	ean
										CC		3 0	0		3
PREAD The fie electric as resid objectiv networ	PREAMBLE The field of engineering, such as electrical, electronics, communications, biomedical and instrumentation, are based on electric circuits and networks. An electrical network is an interconnection of electrical elements (Active and Passive) such as resistors, inductors, capacitors, transformers, diodes, sources, controlled sources and switches. One of the main objectives of a biomedical engineer is to acquire the knowledge about electric circuits, analyse and synthesize electric networks that improve the realization of electric networks and devices for a given biomedical application.														
PRER	EQUIS	ITE		10.5						0					
17EEE	17EEES03 - Basics of Electrical & Electronics Engineering COURSE OBJECTIVES														
	SE OD		VES		de efei			ain a M	ash 6 N	Jo dol Ar	alaudia				
1 To Express the basic methods of circuit analysis using Mesh & Nodal Analysis. 2 To describe the various Network theorem and apply them in biomedical circuits															
3		t an insi	ight int	o soluti	$\frac{\text{work un}}{2}$	LC circ	uits rea	sonance	as wel	l as Anal	vsis of c	oupled o	ircuits		
4	 3 To get an insight into solution of RLC circuits, resonance as well as Analysis of coupled circuits. 4 To explain the concept of complex frequency and Total responses of RL, RC & RLC circuits two Port network 														
5	 parameters. 5 To Analyse the stability & Synthesis of Network and understand about the filter design 														
COUR	COURSE OUTCOMES														
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1.	Discus	s the ci	rcuit's	behavio	or using	Ohm's	law an	d Kirch	hoff [*] s l	aws.		Uno	lerstand	l	
CO2.	Express theorem	ss the state the states the states of the st	source ndersta	transfor nd the c	rmation vircuit b	s, mes ehavior	h analy :	vsis, no	dal ana	ılysis an	d netwo	ork Uno	lerstand		
CO3.	Illustra hence	te the apply tl	series, ne conc	parallel epts in∣	resona biomed	nce and ical fiel	d magn d.	etically	couple	d circuit	s behavi	or App	oly		
CO4.	Relate conditi networ	the A ion for ks.	C circu dc and	its usir sinusoi	ng phas dal exc	or tech	iniques and dra	under matize	steady the two	state and -port par	d transie ameters	of Ap	oly		
CO5.	Use th filter f	e synth or varic	esis of ous rang	networl ge of fre	k and a quencie	ble to in es.	nitiate (the cond	cept of	filters an	d desigr	n a Apj	oly		
CO6.	Perfor	m circu	it analy	sis to p	rove cii	cuit lav	vs and t	heorem	is indep	endently		Ana	alyze		
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	М							М	L	L	L
CO2	S	М	L	L	М				М			М	М	L	L
CO3	М	М	L	L	L	М		М					S	L	L
CO4	S	М	L	L	L								S	М	L
CO5	M	М	L	L	L	М		М					S	М	L
CO6	М	М	Μ	S	S				М				S	S	L
S- Stro	S- Strong; M-Medium; L-Low														

BASICS OF CIRCUIT ANALYSIS

Circuit Laws, DC and AC excitation, series and parallel circuits, voltage division and current division Mesh current and Node Voltage method of Analysis, Matrix method of Analysis. Source Transformation Technique, Wheatstone bridge. Analyzing simple biomedical circuits by simulation. **Applications:** Resistive Sensors, Resistive Temperature Detector (RTD).

NETWORK THEOREMS

Star-Delta Transformation, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem, Superposition Theorem, Compensation Theorem, Reciprocity theorem, Duals and Duality, Analyzing theorems by simulation. **Applications:** Electro Surgery Unit (ESU).

AC CIRCUITS & COUPLED CIRCUITS

Power & Power factor, Series resonance-Q factor, Bandwidth, Parallel resonance-Q factor, Bandwidth, Mutual Inductance – Coefficient of coupling, dot rule, Analysis: Single-tuned, and Double-tuned circuits. **Applications:** Human Vocal cord and speech generation.

TRANSIENT ANALYSIS

Source free and forced responses of RL, RC, and RLC circuits with DC and Sinusoidal excitation. **Applications:** Prosthetic Limb device, Strain relaxation of a muscle fiber. **TWO PORT NETWORKS** – Impedance, admittance, Hybrid and Transmission parameter, Inter relation and interconnection of networks.

NETWORK SYNTHESIS & FILTER DESIGN

Causality and Stability analysis of network functions, Hurwitz polynomial, Positive Real Functions and Cauer Foster forms. **Applications:** Impedance Spectroscopy.

Filter Design: Filter networks – Constant K filters, m derived filters, composite filters. Butterworth and Chebyshev approximation.

TEXT BOOKS:

- 1. Hayt, Kemmerley & Durbin, "Engineering circuit Analysis", Tata McGraw Hill, 8th Edition 2012.
- 2. Sudhakar.A and Shyammohan.S P, "Circuits and Networks Analysis and Synthesis", Tata McGraw Hill, 4th Edition 2014.
- 3. Ali Ümit Keskin, "Electrical Circuits in Biomedical Engineering, Problems with Solutions", © Springer International Publishing AG 2017.

REFERENCES:

- 1. Franklin F. Kuo, "Network Analysis and Synthesis", John Wiley & Sons, 2nd Edition Reprint 2009.
- 2. Mahmood Nahvi & Joseph Edminister, "Schaum's Outline of Electric circuits", McGraw-Hill Education, 5th Edition 2011.
- 3. Umesh Sinha, "Network Analysis and Synthesis", Satyaprakashan Publishers, 2013.
- 4. Aatre V.K, "Network Theory and Filter Design", New Age International Publishers, 2nd Edition Reprint 2003.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Mathankumar	Associate Professor	BME	mathankumar@vmkvec.edu.in
2	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
3	Mr.R.Pathamuth	Assistant Professor (Gr-II)	BME	pathamuthu@avit.ac.in

17RM	Category									y L	Т	P C	Credit		
1 / D 1V1			D	DIUSE	ISOKS	AND .	IKANS	DUCE	185		CC	3	0	0	3
PREAD The cou used fo principl	MBLE urse is o or the de les of bi	lesigne etectior losenso	d to ma of an rs that a	ike the analyte are curre	student . The re ently de	acquire elation eployed	e conce betwee in the o	ptual kı n sensc clinical	nowledg or conce side are	ge of the epts and e introdu	transduce biologica ced.	ers and l l concep	biologio pts is h	cal comp ighlighte	oonents ed. The
PRER	PREREQUISITE – Nil														
COUR	OURSE OBJECTIVES														
1	To use the basic concepts of transducers, electrodes and its classification.														
2	To determine the recording of biological components.														
3	To employ the knowledge in electrochemical and optical biosensors.														
4	To outline the various biological components using biosensors.														
COUR	COURSE OUTCOMES														
On the	success	ful con	npletion	of the	course,	student	s will t	be able t	to						
CO1.	Respon	nd the v	working	g princip	ples of t	ransduc	cers.						Und	erstand	
CO2.	Explai	n the v	arious t	ypes of	electro	des.							Und	erstand	
CO3.	Utilize	variou	s FET s	sensors	for reco	ording c	of biolo	gical co	mpone	nts.			App	y	
CO4.	Disting	guish v	arious t	oiosenso	ors like	electroc	chemica	al and o	ptical b	iosensor	s.		Anal	yze	
CO5.	Analyz	ze the b	oiologic	al comp	onents	using b	iosenso	ors in va	arious a	pplicatio	ns.		Anal	yze	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC O	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L								L			L
CO2	S	М	М	М								L	L		L
CO3	S	М	М	М		L	L	L	L	L		L	М		L
CO4	S	S	S	М		L	L	L	L	L		L	S	L	L
CO5	S	S	S	S		L	L	L	L	L		L	S	М	L
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS: Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES: Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS: Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS: Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "**Principles of Applied Biomedical Instrumentation**", 3rd Edition, John Wiley Publications, 2008.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in
3	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in

1701	17BMEC06 APPLIED NEURAL NETWORKS AND FUZZY LOGIC Category L T P Credit														
1/DIV.	IECUO			SY	YSTEN	IS IN N	AEDIC	CINE			EC-PS	3	0	0	3
PREA To und biomed	MBLE lerstand lical app	about olicatio	the bas	sic con	cepts of	f Neura	ıl Netw	vorks a	nd Fuzzy	y Logic	and lear	n to des	sign an	d use t	hem for
PRER	EQUIS	ITE: N	Nil												
COUR	SE OB	JECTI	IVES												
1	To un	derstan	d the ba	asic con	cepts of	f artific	ial neu	ral netw	orks.						
2	2 To study the various ANN Models.														
3	3 To familiarize about the Self organizing maps and competitive networks.														
4 To study the basic concepts of fuzzy Logic systems.															
5 To apply the concepts of ANN and Fuzzy Logic in Biomedical applications.															
COURSE OUTCOMES															
On the	success	ful con	npletior	of the	course,	studen	ts will t	be able	to				1		
CO1. T	o get th	e basic	concep	ots of ar	tificial	neural 1	network	KS .					Unc	lerstanc	1
CO2. T	o Intro	duce ab	out the	Basics	To stu	dy the v	various	ANN N	Iodels				Unc	lerstand	1
CO3.T	o get f	amiliar	ize abo	ut the S	elf orga	nizing	maps a	nd com	petitive 1	network	5.8		Unc	lerstand	1
CO4. T	o get fa	miliari	ze abou	it the ba	sic con	cepts of	f fuzzy	Logic s	ystems				Ana	lyze	
CO5. T	o apply	the co	ncepts (of ANN	and Fu	ızzy Lo	gic in E	Biomedi	cal appl	ications			App	oly	
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAMN	AE SPE	CIFIC C	DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М		S	М	М					М			
CO2	S		М	L	S	М	М					S		L	
CO3	S		М		М	S	S	М				М			L
CO4	М		М	L	L	S	S	S				М	М	М	L
CO5	S		М		М	S	S	S				М	М		М
S- Stro	CO3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														

ARTIFICIAL NEURAL NETWORKS - AN OVERVIEW

Neural Networks Basics-Biological Neural nets, Processing elements-Mc Culloh Pitts Model, Types of Learning, Network Parameters-Weights, Activation, Threshold Functions, Hebb Rule, Delta Rule, Perception learning Algorithm.

ARTIFICIAL NEURAL NETWORKS MODELS

Mapping, training of Feed forward networks-Perception, Mapping, training of Recurrent Networks-Hopfield Network, Radial Basis Function Network, Training of Feed Forward Back Propagation Network, Applications of BPN.

SELF ORGANIZING MAPS (SOM)

Self organizing maps-Pattern clustering, SOM-Topological Mapping, Kohonen's SOM, K-means clustering algorithm, competitive models-Min, Max Net, Adaptive Resonance Theory (ART)-Introduction, Network and Processing in ART, Associative memory model.

INTRODUCTION TO FUZZY LOGIC

Fuzzy logic-Basic concepts -Fuzzy Vs Crisp set, Linguistic variables, Membership functions, Fuzzy IF-THEN rules, Variable inference techniques, De-fuzzification techniques, Basic fuzzy inference algorithm.

NEURAL NETWORK AND FUZZY LOGIC APPLICATIONS IN MEDICINE

Neural Networks in Biomedical Applications, Cancer, Cardiovascular Applications, Medical Image Analysis using neural networks, Fuzzy Logic Applications, Fuzzy Logic Controller, Neuro fuzzy systems- Applications in medicine.

TEXT BOOKS:

- 1. Mohamad H. Hassoun, "Fundamentals of Artificial Neural Network", Cambridge, The MIT Press, 1st Edition, 1995.
- 2. Laurene Fausett, **"Fundamentals of Neural Networks: Architectures, Algorithms, and Applications**", Pearson Education India, 3rd Edition, 2008.

REFERENCES:

- 1. C.M.Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag, 2006.
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", John Wiley and Sons, 2nd Edition, 1995.
- 3. B.Yegnanarayana, "Artificial Neural Networks", Prentice Hall of India, 3rd Edition 2006.

0001				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Dr.D.Vinodkumar	Professor	BME	vinodkumar@vmkvec.edu.in
3	Mr.R.Sureshkumar	Associate Professor	BME	sureshkumar@avit.ac.in

PREAMBLE															
Cell b	Cell biology deals with the structures, organization and functions of the cells and organelles, their physiological														
proper	properties, life cycle, metabolic processes, signaling pathways and their interactions with their environment at														
micros	scopic	and m	olecula	ar leve	l. The	subjec	t helps	s to ga	in kno	wledge in	fundame	entals of	f cells t	o all bio	ological
scienc	es, for	researc	ch in b	io-med	ical fie	lds suc	h as ca	ancer, a	and oth	er diseases	and also	o in rese	arch rela	ated to g	enetics,
bioche	emistry	, molec	cular bi	ology,	immun	ology,	and de	velopn	nental b	oiology.					
PRER	REQUI	SITE -	• NIL												
COUI	COURSE OBJECTIVES														
1	To understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially														
	macromolecules, membranes, and organelles														
2	2 Students will understand how these cellular components are used to generate and utilize energy in cells and the														
	concepts behind cell division.														
3	To give an overview of cell signaling molecules and their receptors.														
4	To understand the pathways and intracellular signal transduction														
5	5 To make students to apply their knowledge of cell biology to selected examples of changes or losses in cell														
	function														
COUI	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. 1	CO1. List the fundamental features of prokaryotic and eukaryotic cells, their structure, composition Understand														
and ro	le of ce	ell men	nbranes	and th	e majo	r stage	s of the	e cell cy	/cle						
CO2. '	CO2. To understand the specific processes and proteins involved in membrane transport Understand														
CO3. '	To und	erstand	l about	interce	llular c	hemica	al mess	engers,	recept	or subclass	ses and th	eir poss	ible	Unders	tand
uses in	n cell si	gnaling	g.												
CO4. '	To anal	lyze the	e mech	anisms	by whi	ich diff	erent n	nesseng	ger-rece	eptor intera	ctions br	ing abou	ıt long	Apply	
or sho	rt-term	change	es in ce	ell state											
CO5. '	To Inte	grate tl	he diffe	erent le	vels of	biolog	ical org	ganizati	on, fro	m molecul	es to cell	s to orga	nisms.	Apply	
CO6. '	To app	ly critio	cal thin	king ar	nd logic	cal ana	lysis in	the ass	sessmen	nt and eval	uation of	issues in	n cell	Apply	
biolog	y and g	genetics	s.												
MAPI	PING	WITH	PROC	RAM	ME OU	UTCO	MES A	AND P	ROGR	AMME SI	PECIFIC	COUTO	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	М	S	L	L	-	-	-	-	-	-	-	-	-
CO2	L	М	М	L	L	L	-	-	-	-	-	-	-	-	-
CO3	L	М	М	L	М	L	М	-	-	-	-	-	-	-	-
CO4	М	М	S	S	М	L	-	-	-	-	-	-	S	М	Μ
CO5	М	М	S	S	М	М	М	-	-	-	-	L	-	М	-
CO6	CO6 M M S S S S - - - - - S M														
S- Stro	S- Strong; M-Medium; L-Low														

17BTCC02

CELL BIOLOGY

Т

0

L

3

Category

CC

Р

0

Credit

3

CELL AND FUNCTIONS OF THE ORGANELLES

General structure – Prokaryotic and eukaryotic cell, Molecular organization of the cell membrane, Cell membrane – Proteins, Lipids and Carbohydrates, Cell organelles, Cytoskeletal proteins, Types of cell functions, Cell cycle - Mitosis and meiosis, apoptosis.

CELL MEMBRANE AND PERMEABILITY

Passive and active transport, Permeases, Sodium potassium pump, Ca2+, AT Pase pumps, Lysosomal and vacuolar membrane, Co-transport, Uniport, Symport, Antiport, Protein localization & Membrane trafficking, Endocytosis and exocytosis, Entry of viruses and toxins into cells.

CELL SIGNALING MOLECULES AND THEIR RECEPTORS

Cytosolic, Nuclear and membrane bound receptors, Examples of receptors, Modes of cell – cell signaling: Autocrine, Paracrine and Endocrine models of action, Secondary messenger's molecules, Quantitation and characterization of receptors.

PATHWAYS AND INTRACELLULAR SIGNAL TRANSDUCTION

Signal amplification – Different models of signal amplifications, Cyclic AMP, Role of inositol phosphates as messengers, Biosynthesis of inositol triphosphates, Cyclic GMP and G proteins role in signal transduction, Calcium ion flux and its role in cell Signaling, Current models of signal amplification, Phosphorylation of protein kinases. **CELL CULTURE**

Techniques for the propagation of prokaryotic and eukaryotic cells, Cell line, Generation of cell lines, Maintenance of stock cells, Characterization of cell, Morphological analysis techniques in cell culture, Explant cultures, Primary cultures, Contamination, Differentiation

TEXT BOOKS:

- 1. De Robertis E.D.P and De Robertis E.M.F, "Cell and Molecular Biology", 8th Edition, Lippincott Williams & Wilkins, New York, USA, 2001.
- 2. Harvey Lodish, Arnold Berk, Chirs A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, Hidde Ploegh and Paul Matsudaira, "Molecular Cell Biology", 6th Edition, W. H. Freeman and Company, New York, 2008.

REFERENCES:

- 1. B Alberts, A Johnson, J Lewis, M Raff, K Roberts and P Walter, "Molecular Biology of the Cell", (4th Edition) New York: Garland Science, 2002.
- 2. Kimball, T.W., "Cell Biology', Addision Wesley Publishers, 1989.
- 3. Geoffrey M. Cooper and Robert E. Hansman, "The Cell: A Molecular Approach", ASM Press and Sinauer Associates Inc., USA, 4th Edition, 2007.
- 4. Ian Freshney, R, "Culture of Animal Cells", Alan R. Liss Inc., New York, 4th Edition, 2005

COU	RSE DESIGNERS			
S.	Name of the Faculty	Designation	Department	Mail ID
No			_	
1	Mrs.C.Nirmala	Assistant	Biotechnology	nirmala@vmkvec.edu.in
1		Professor		
n	Dr.M.Sridevi	Professor &	Piotochnology	gridavi@umkuga adu in
2		Head	Biotechnology	shdevi@viiikvec.edu.iii

17B	ГСС01			ESS BIO	ENTL CHEN	ALS (/ISTI	OF RY			Categ	ory	L	Т	Р	Cree	dit
				DIO	CIILI					CC		3	0	0	3	1
PREA	MBLE															
Essenti	ials of b	oioche	emistry	deals v	vith th	e stud	y of bi	iomole	ecules	found i	n living	organis	sm. The	cours	e expos	ses
the stu	dents to	class	ificatio	on, prop	perties	, basic	struct	ture an	d func	ctions o	f biomo	lecules	like cart	ohyd	rate,	
amino	acid, lij	pids, i	ucleic	acid ar	id vita	mins.	Know	ledge	of this	course	will en	able stu	dents to	unde	stand t	the
biomol	ecules	DIOIII	olecule	es and g	give av	varene	ess to t	ne var	ious a	iseases	associat	ed witt	the defi	cienc	y 01	
PRER	EOUIS	SITE	- NIL													
COUR	SE OB	JEC	TIVES	5												
1	1 To understand the basic structure, properties and functions of Biomolecules															
2	To em	nphasi	ze the	role of	biomo	olecule	es by p	rovidi	ng bas	sic info	rmation	on spec	ific met	abolic	diseas	ses.
COUR	SE OU	JTCO	MES													
On the	On the successful completion of the course, students will be able to															
CO1. E	CO1. Explain the classification properties and biological importance of Understand															
carboh	ydrates															
CO2. I	Discuss	the cl	assific	ation, n	omen	clature	e, struc	cture a	nd pro	perties	of fatty	1	Understa	ind		
acids																
CO3. k	Knowle	dge al	oout an	nino ac	ids an	d prote	eins					1	Understa	ind		
CO4. k	Know al	bout t	he imp	ortance	e of nu	cleic a	ncid						Apply			
CO5. I	Distingu	uish th	e vitar	nins an	d its d	eficier	ncy					۱	Understa	ind		
CO6. k	Know al	bout t	he imp	ortance	e of mi	nerals						1	Understa	ind		
MAPP	ING W	VITH	PRO	GRAM	ME C	OUTC	OMES	S ANI) PRC	OGRAN	AME SI	PECIF	IC OUT	COM	IES	
COS	PO1	РО	PO	PO4	РО	PO	PO	PO	РО	PO1	PO1	PO12	PSO	PS	D P	SO3
		2	3		5	6	7	8	9	0	1		1	2		
CO1	S	-	L	-	-	-	-	-	-	-	-	-	L	L		-
CO2	S	-	L	-	-	-	-	-	-	-	-	-	L	L		-
CO3	S	-	L	-	-	-	-	-	-	-	-	-	L	L		-
CO4	S	I	L	-	-	-	-	-	I	-	-	-	L	L		-
CO5	S	I	L	-	-	М	-	-	I	-	-	-	L	L		-
CO6	S	-	L	-	-	М	-	-	-	-	-	-	L	L		-
S- Stro	- Strong; M-Medium; L-Low															

SYLLABUS CARBOHYDRATE

Biological importance, Classification and Properties of Monosaccharides, Disaccharides and Polysaccharides (Starch, Glycogen, Cellulose and their derivatives, Chitin, Peptidoglycans, Glycoaminoglycans, Glycoconjugates).

LIPIDS

Biological importance, Classification. Fattyacids: classification, nomenclature, structure and properties of saturated and unsaturated fatty acids. Essential fatty acids, Triacylglycerols: nomenclature, physical properties,

chemical properties. Glycerophospholipids (lecithins, cephalins, phosphatidyl serine, phosphatidyl inositol, sphingomyelins).

AMINO ACIDS AND PROTEINS

Amino acids – Classification, Structure, Properties and Biological importance. Proteins – Classification, Structural organization of Proteins – Primary, Secondary (-helix, -pleated structure, triple helix), Tertiary and Quaternary (Myoglobin and Hemoglobin), Factors stabilizing, Properties and Biological importance, Denaturation and Renaturation.

NUCLEIC ACIDS

Nucleosides and nucleotides, configuration and conformation, Composition of RNA and DNA, Physicochemical properties of nucleic acids – effect of alkali, acid and heat (denaturation and renaturation), features of phosphodiester bond, endonucleases. Complementary base pairing, secondary structure of RNA, features of DNA double helix (Watson-Crick model), Nucleoproteins – histone and nonhistone

VITAMINS

Nutritional importance of vitamin, classification, source, daily requirements and functions, Deficiency symptoms – hypervitaminosis of fat-soluble vitamins. Nutritional importance of Minerals – classification, source, daily requirement and deficiency symptoms.

TEXT BOOKS

 "Fundamentals of Biochemistry", Jain J.L., Sunjay Jain and Nitin Jain., S.Chand & Company Ltd., 6th Edition, 2005.

REFERENCES:

1. "Text Book of Biochemistry for Medical Students", Ambika Shanmugham, Lippin cott Williams & Wilkins, 7th Edition, 2012.

2. "Biochemistry", Rastogi S.C. Mc. Graw-Hill Publishing Company Ltd, 6th Edition, 2007.

3. "Principles of Biochemistry", David L. Nelson and Michael M. Cox, W. H. Freeman and Company, 4th Edition, 2005.

4. "Text book of Biochemistry", Sathyanarayana U and Chakrapani U., Uppala Author Publishers Interlinks, 3rd Edition, 2006.

COUR	COURSE DESIGNERS												
S.	Name of the Faculty	Designation	Department	Mail ID									
No.													
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in									
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									

17 RTEC03	PRINCIPLES OF	Category	L	Т	Р	Credit
17BIEC03	BIOINFORMATICS	EC (PS)	3	0	0	3

PREAMBLE

Principles of Bioinformatics is an interdisciplinary field that combines Computer Science, Molecular Biology, Genetics ,Mathematics, Statistics and Engineering etc. to analyze and interpret biological data. Bioinformatics has been used for *in silico* analyses of biological queries using mathematical and statistical techniques. This course includes the use computer programming as part of their methodology, in the field of genomics, the identification of candidate genes, genetic basis of disease etc. leading to specific drug discovery by molecular modelling.

PREREQUISITE - NIL

COUR	COURSE OBJECTIVES														
1.	Defir	ne the l	basis o	of Bioi	nforma	atics in	the bi	iologic	al fiel	d					
2.	Expla	ains th	e in-si	<i>lico</i> an	alysis	of bio	logical	l queri	es usin	ig math	ematica	l and st	atistical	l techni	ques.
3.	Implement the Bioinformatics software and tools based on its applications														
4.	Construct the phylogenetic tree based on the biological information and queries using bioinformatics														
	tools.														
5.	Develop bioinformatics tools in various field like medicine, agriculture etc.,														
COUR	JRSE OUTCOMES														
After th	er the successful completion of the course, learner will be able to														
CO1. F	Relate the basics of computer science and interdisciplinary subjects related to Remember														
CO2. [2. Demonstrate the importance of biological databases and their significance in Understand														
CO3. (3. Operate the various tools and software which can be adopted in different fields of Apply														
Biotech	<u>inolog</u> Jeasui	v re the s	ionifi	cance	ofevol	utiona	rv trai	ts usin	σ Rini	nforma	tics too	ls and s	oftware	- Fv	aluate
	7 1: 1						<u>1 · · · · · · · · · · · · · · · · · · ·</u>				105 100	is and s	ontware		1
CO5. \	alidat	the the v	arious	s bioin	format	ics too	ols in c	lifferei	nt field	ls				Ev	aluate
MAPP	ING V	WITH	PRO	GRAN	AME (OUTC	COME	S ANI	D PR(OGRAN	MME S	PECIF	TIC OU	TCOM	IES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	L	-	-	-	L	-	-	L	-	-	-
CO2	S	-	-	S	L	-	-	-	-	-	-	L	L	-	-
CO3	М	L	-	М	L	S	-	-	-	-	-	L	М	-	-
CO4	S	М	L	L	М	-	-	-	-	-	-	S	-	-	-
CO5	- L L L M L S														
S- Stro	ng• M	-Medii	ım· L-	Low											

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO BIOINFORMATICS

Introduction, Scope of bioinformatics – Introduction to UNIX- Files and processes, Basic UNIX commands for listing files and directories, Making directories, Changing to a different directory, Copying and moving files, Removing files in directories, Clear, CAT and Less commands, Word count, Help, Redirection, Access rights, Running background process and killing processes, ftp, telnet, Internet, http, Search engines.

DATABASES

Introduction to databases – Flat files, Relational databases, Object oriented databases and hypertext databases, Biological databases and their uses, Introduction to EMB net and NCBI, Classification of biological databases; Primary nucleic acid sequence databases – Gen Bank, EMBL, DDBJ; Primary protein sequence databases – PIR, SWISS-PROT; Composite databases – NRDB, OWL, SWISS-PROT+TrEMBL; Secondary databases – PROSITE, PRINTS; Structural databases – PDB, MMDB.

SEQUENCE ALIGNMENT

Introduction to sequence alignment and its significance, Types – Global, Local, Pairwise and Multiple alignment. DOT PLOTS, Scoring matrices – PAM, BLOSSUM. Dynamic programming algorithms, BLAST, FASTA. Multiple sequence alignment by PSI- BLAST.

PHYLOGENETIC ANALYSIS

Terminology and basics of Phylogenetics – Clades, Taxons, Baranches, Nodes; Orthologs and Paralogs. Steps to construct a Phylogenetic tree – Constructing a Multiple Sequence Alignment, Determining the substitution model, Tree building and tree evaluation.

APPLICATION OF BIOINFORMATICS

Application of bioinformatics in various fields – Medicine, Agriculture and Industries.

TEXT BOOKS:

- 1. Rastogi, S.C., Namita Mendiratta, Parag Rastogi. 2006. Bioinformatics Concepts, Skills, Application. CBS Publications.
- 2. Westhead, D.R., Parish, J.H., Twyman, R.M., 2000. Instant Notes in Bioinformatics. *BIOS Scientific Publishers*.
- 3. Teresa, K., Attwood and David J. Parry-Smith, 2007. Introduction to Bioinformatics. *Pearson Education Ltd.*

REFERENCES:

- 1. Bergeran, B., 2002. Bioinformatics Computing. PHI.
- 2. Richard Durbin, Sean Eddy, Anders Krogh and Graeme Mitchison, 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. *Cambridge University Press*.
- 3. Bishop, M.J., Rawlings, C.J., 1997. DNA and Protein Sequence Analysis. A Practical Approach. *IRL Press*, Oxford.
- 4. Gibas, C. and Jambeck, P., 1999. Developing Bioinformatics Skills. O'Reilly.
- 5. Dan Gusfield, 2007. Algorithms on Strings Tree and Sequence. *Cambridge University Press*.
- 6. Baldi, P. and Brunak, S., 1998. Bioinformatics: A Machine Learning Approach. MIT Press
- 7. Essential Bioinformatics. Jin Xiong. Cambridge University Press. 2006.
- 8. An Introduction ti Bioinformatics Algorithms. Neil C Jones, Pavel A Pevzner. MIT Press.2004.
- 9. The New Avenue in Bioinformatics. Joseph Seckbeck Eitan Rubin. Springer.2010.

COUR	COURSE DESIGNERS												
S.No.	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Dr.R.Devika	Professor	Biotechnology	devika@avit.com									
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									

1	7 DTEC	20		DIOLOCICAL DATADASE							Categ	gory	L	Т	Р	Credit
	/DIEC	.52			BIOL	JGICA	L DA I	ABASE	4		EC (I	PS)	3	0	0	3
PRF This infor	FREAMBLE This course is designed to impart the knowledge on Biological database and they deals with libraries of life sciences information, collected from scientific experiments, published literature, high-throughput experiment technology, and computational analysis.															
PRE		ISITE -	- NIL													
CO		DIEC	FIVES													
1.	1. To state the knowledge on Bioinformatics and Database management															
2.	To expl	ain the	basics of	of Genc	ome dat	abases			0							
3.	To dem	onstrate	the dif	fferent	method	s of sec	uence d	latabase	5							
4.	To outli	ne the l	basics o	of home	ology m	odellin	g		-							
5.	To asse	ss the re	egulator	rv of str	ructural	l simila	rities									
CO	URSE O		MES	.y 01 50	ueturu	i siiiiiu										
Afte	er the su	ccessfu	l compl	etion o	f the cc	ourse, le	arner w	ill be ab	le to							
CO	l: Recal	l the de	sign an	d Datal	oase ma	anagem	ent						Reme	embe	r	
CO2	2: Discus	ss the g	enome	browse	rs and o	databas	es						Unde	erstar	ıd	
CO	B: Classi	fy diffe	rent me	ethods c	of seque	ence da	tabases						Appl	у		
CO4	I: Infer t	he Mol	ecular r	nodelli	ng and	enzyme	e databa	ses					Anal	yse		
CO	S: Asses	s the se	quence	and m	otif -ba	sed sea	rch engi	nes					Evalı	ıate		
MA	PPING	WITH	PROG	RAMN	ME OU	JTCON	IES AN	D PRO	GRAM	ME SP	ECIFIC	OUTC	OMES	5		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	I	PSO2	PSO3
C01	L	-	-	-	-	-	-	-	-	-	-	-	-		-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-	-		-	-
CO3	M	M	-		L	-	-	-	-	-	-	L	L		-	-
CO4	M	M	- L	- L	S S	-		- L	-	-	-	-	-		M L	- L
S- S	trong; M	I-Mediu	ım; L-L	Low	5	5	l	2							<u> </u>	

INTRODUCTION TO BIOINFORMATICS DATA AND DATABASES

Types of Biological data:- Genomic DNA, Complementary DNA (cDNA), Recombinant DNA (rDNA), Expressed sequence tags (ESTs), Genomic survey sequences (GSSs). Primary Databases: - GenBank, EMBL, DDBJ, Composite Databases:-NRDB, UniProt, Literature Databases:- Open access and open sources, PubMed, PLoS, Biomed Central

GENOME DATABASES

Viral genome database (ICTVdb, VirGen), Bacterial Genomes database (Genomes OnLine Database –GOLD, Microbial Genome Database-MBGD), Organism specific Genome database (OMIM / OMIA, SGD, WormBase, PlasmoDB, FlyBase, TAIR), and Genome Browsers (Ensembl, VEGA genome browser, NCBI-NCBI map viewer, KEGG, MIPS, UCSC Genome Browser).

SEQUENCE DATABASES

Nucleotide sequence Databases (GenBank, EMBL, DDBJ).). Protein sequences Databases (Swiss-Prot, TrEMBL, UniProt Knowledgebase – UniProtKB, UniProt Archive –UniParc, UniProt Reference Clusters –UniRef, UniProt Metagenomic and Environmental Sequences –UniMES. Sequence motifs Databases:-Prosite, ProDom, Pfam, InterPro. Sequence file formats:- GenBank, FASTA, PIR, ALN/ClustalW2, GCG/MSF.

STRUCTURE AND DERIVED DATABASES

The primary structure databases (Protein Data Bank –PDB, Cambridge Structural Database –CSD, Molecular Modeling Database -MMDB). The secondary structure databases (Structural Classification of Proteins –SCOP, Class Architecture Topology Homology –CATH, Families of Structurally Similar Proteins –FSSP, Catalytic Site Atlas –CSA. Molecular functions/Enzymatic catalysis databases (KEGG ENZYME database, BRENDA).

BIOINFORMATICS DATABASE SEARCH ENGINES

Text-based search engines (Entrez, SRS, DBGET / LinkDB). Sequence similarity based search engines (BLAST and FASTA). Motif-based search engines (ScanProsite and eMOTIF). Structure similarity based search engines (VAST and DALI). Proteomics tools at the ExPASy server, GCG utilities and EMBOSS

TEXT BOOKS

1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004 2. Bioinformatics- a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009.

REFERENCES BOOK

1. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com									
2	Dr. R. Balachandar	Assistant Professor (Gr-II)	Biotechnology	balaclone1@gmail.com									
3	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in									

17CSSE01 COMPUTATIONAL BIOLOGY & DATA MINING Category L T											Т	Р	Cı	redit		
1.000		000				1020	01.00				SE	3	0	0		3
PREAM	PREAMBLE															
This cou mining, c	This course focuses on the fundamental techniques in data mining, including data warehousing, frequent pattern nining, clustering, classification, anomaly detection and feature selection methods.															
PREREC	'REREQUISITE -															
COURS	COURSE OBJECTIVES															
1	Expla	ain bioi	nforma	tics da	ta mini	ng con	cepts, p	orincipl	es and	methods	5,					
2	Learn cluste netwo	n data s ering, b ork infe	tructure io-mole erence,	es, algo ecular s	orithms structur	and to re predi	ols for iction,	sequen evoluti	ce mini onary ti	ing and a ree recor	alignmen	t, cluster 1, as wel	ring ar l as gr	nd bio aph a)- Ind	
3	Use a	wide r	ange o	f publie	cly ava	ilable s	oftwar	e packa	ages for	bioinfo	rmatics d	lata mini	ng,			
4	Evalu measure	ate the ures.	effecti	veness	and ef	ficienc	y of the	ese soft	ware pa	ackages	based on	differen	t perf	orma	nce	
COURS	RSE OUTCOMES															
On the successful completion of the course, students will be able to																
CO1. Un	CO1. Understand bioinformatics data mining concepts, principles and methods Understand															
CO2. Une clustering	derstan g and bi	d data s iocluste	structur ering, b	es, alg iomole	orithms cular s	s and to tructure	ools for e predie	sequer ction, e	nce min volutio	ing and nary tree	alignmer e reconst	nt, ruction.]	Unde Appl	rstand y.	1,
CO3. Hav mining	ve a cle	ar unde	erstand	ing and	l appreo	ciation	for sof	tware p	oackage	es for bio	oinformat	tics data		Appl	y	
CO4. Dev	velop b	ioinfor	matics	tools w	ith pro	gramm	ning ski	lls.						Appl	у	
CO5. Ap	ply con	nputatio	onal ba	sed sol	utions	for biol	logical	perspe	ctives.					Appl	y	
MAPPIN	IG WI	TH PR	OGRA	MME	OUT	COME	ES ANI) PRO	GRAM	IME SP	PECIFIC	OUTC	OME	S		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P	SO2	PSO3
CO1	S	S	S	S	S	L	-	L	L	-	-	L	L		М	S
CO2	S	S	S	М	S	S	S	L	-	S	L	-	-		L	L
CO3	S	L	L	L	S	L	L	L	-	М	L	L	L		L	L
CO4	S	S	L	L	М	L	L	L	-	S	S	L L L				L
CO5	S	S	S	М	S	S	S	L	-	L	L	-	-		L	L
S-Strong	ng: M-Medium: L-Low															

Data warehousing - model design, Frequent pattern mining - association rules mining

Clustering – partition-based, hierarchical-based, density-based approaches, spectral clustering, Feature selection – dimensionality reduction

Classification – decision-tree, Bayesian, rule-based, SVM, ensemble methods, Anomaly detection – statistics-based, density-based, clustering-based

Evaluation and validation of data mining result, Correlation analysis - metrics and analysis

Graph and network mining, Visualization of patterns – mapping between high-dimensional data and low-dimensional data, Multi-source information integration

TOTAL HOURS: 45

Text Books:

- 1. Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Addison Wesley.
- 2. Data Warehousing, Paulraj Ponniah, John Wiley & Sons, Inc.

References:

Course Designers

- 1. Bioinformatics: Managing Scientific Data, Zoe Lacroix and Terence Critchlow, 2003, Morgan Kaufmann Publishers.
- 2. Advanced Analysis of Gene Expression Microarray Data, Aidong Zhang, ISBN 981-256- 645-7, World Scientific Publishing Co.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

17CSSE02	CGI & WEB PROGRAMMING	Category	L	Т	Р	Credit
		SE	3	0	0	3

PREAMBLE

This course has a practical emphasis on the design and techniques for developing internet-based applications, mainly focusing on web programming. Topics include HTML, client-side scripting language (JavaScript), server-side programming (Servlets, JSP, and J2EE), and web services. This course will also cover some important topics needed for internet-based application developments, such as Internet architectures and web security.

PREREQUISITE – JAVA PROGRAMMING

COURSE OBJECTIVES

1	To provide basic knowledge of development of web applications							
2	To study CGI Techniques and Web development.							
3	Design and test simple programs in Servlet and JSP.							
4	To understand the J2EE framework							
5	To have an exposure to the role of CGI in web programming.							
COURSE OUTCOMES								

On the successful completion of the course, students will be able to

CO1. Understand the architecture of the Internet and the organization and standards that make it the
World Wide Web at both the underlying structure and the browser/server levels.UnderstandCO2. Understand many of the legal and ethical aspects of sharing with the public and referencing
information made available to the public over the web.Understand,
Apply.CO3. Have a clear understanding and appreciation for clear, accurate, and relevant content for web-
based publications.ApplyCO4. Have hands-on experience designing and writing web-based applications.Apply

Apply

CO5. Build and manipulate enterprise web application using J2EE technologies

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	L	-	L	L	-	-	L	L	М	S
CO2	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
CO3	S	S	S	S	S	S	S	L	-	L	L	-	-	L	L
CO4	S	S	S	S	М	S	S	L	-	L	L	-	-	L	L
CO5	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
S- Strong	S- Strong; M-Medium; L-Low														

Server-side Programming: Common Gateway Interface (CGI)—Internet Programming paradigm, Languages for CGI, Applications, Server Environment, Environment Variables, CGI Building Blocks, CGI Scripting Using java , Shell Script, Writing CGI Programs, CGI Security, Alternatives and Enhancements to CGI

Servlets: Server-side Java, Advantages Over Applets, Alternatives, Strengths, Architecture, Life Cycle, GenericServlet and HttpServlet, Passing and Retrieving Parameters, Server-Side Include, Cookies, Filters, Problems with Servlet, Security Issues

Java Server Pages: JSP and HTTP, JSP Engines, How JSP Works, JSP and Servlet, Anatomy of a JSP Page, JSP Syntax, JSP Components, Beans, Session Tracking, Database Connectivity, JDBC Drivers, Basic Steps, Loading a Driver, Making a Connection, Execute an SQL Statement, SQL Statements, Retrieving Result, Getting Database Information

Overview of J2EE—Introduction to JavaBeans, Bean Builder, Advantages of JavaBeans. BDK Introspection, Properties, BeanInfo Interface, Persistence, Customizer, JavaBeans API, EJB, Introduction to Struts Framework, MVC Framework

Web Services: SOA, SOAP, Cloud Computing

TOTAL HOURS: 45

TEXT BOOKS

- 1. J2EE The Complete Reference Jim Keogh, Tata McGraw Hill, 2007.
- 2. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How to Program, 5th Edition.

REFERENCES

•

- 1. The J2EE Tutorial Stephanie Bodoff et al, 2nd Edition, Pearson Education, 2004.
- 2. McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2005.

Course Designers													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. M. Nithya	Professor	CSE	hodcse@vmkvec.edu.in									
2	Mr. M. Annamalai	Associate Professor	CSE	annamalaim@vmkvec.edu.in									

17055	E03		BIC) INF()RM4	TICS	ALG	ORIT	нм		Catego	ry L	Т	F P Credi		redit
17000	205		DIC								SE	3	0	0)	3
PREAM	PREAMBLE															
This cou computat skills req	This course will introduce students to bioinformatics in the area concerning the development and application of omputational methods to address key problems in biology. It will introduce the students to a variety of methods and kills required to conduct research in this highly rising field.															
PRERE	PREREQUISITE – NIL															
COURS	COURSE OBJECTIVES															
1	It wil	ll focus	on DN	NA and	l protei	n sequ	ence da	atabase	s and a	inalysis,	seconda	ry struct	ures a	ind	3D stru	ictural
2	To st	udy ap	plication	ons suc	ch as p	redicti	on of j	protein	structu	ire, fold	ing rates	, stabilit	y upo	on r	nutation	n, and
3	Desig	nolecul gned to	ar inter nurtur	raction re skill	s. s and	knowle	edge re	quired	for as	piring st	udents,	young b	iologi	sts	and re	search
4	schol To ar	ars to d	levelop	algori	thms ar	nd tools	s in bio gical d	inform ata usi	atics.	nutation	al techni	aues				
COURS			FS				-Brour a			patation		ques				
On the successful completion of the course, students will be able to																
On the successful completion of the course, students will be able to																
CO1. Un	derstan	d the D	NA an	d prote	ein sequ	ience d	atabase	es						Uno	lerstan	d
CO2. Un	derstan	d BLA	ST and	FAST	A algo	rithms								Uno Apj	lerstand oly.	d,
CO3. An	alyze p	rotein s	structur	e for v	isualiza	ation ar	nd class	sificatio	on					App	oly	
CO4. Ha	ve hanc	ls-on ex	xperien	ce desi	gning	Robotic	es appli	ications	s in bio	informat	ics.			App	oly	
CO5. Bu	ild and	manipu	ılate en	terpris	e web a	applica	tion in	bioinfo	ormatic	s.				App	oly	
MAPPIN	NG WI	TH PR	OGR	AMMF	C OUT	COME	ES ANI	D PRO	GRAN	IME SP	PECIFIC	COUTC	OME	S		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	S	S	S	S	S	L	-	L	-	-	-	L	L		-	-
CO2	S	S	М	S	S	S	S	L	-	-	-	-	-		-	-
CO3	S	М	S	S	S	S	S	L	-	L	L	-	-		L	L
CO4	S	М	S	S	М	S	S	L	-	L	L	-	-		L	L
CO5	S	S	S	М	S	S	S	L	-	L	L	-	-		L	L
S- Strong	S- Strong; M-Medium; L-Low															

Introduction to molecular biology: basic concepts in biochemistry and bioinformatics, what are proteins and why they are important.

Database search and sequence alignment: BLAST and FASTA algorithms, the BLAST web server, Multiple sequence alignment. Introduction to protein structure: Protein structure, the protein folding problem, protein structure visualization and classification.

Protein folding: Folding methods homology modelling, threading, ab-initio folding. Folding models, folding vs. protein structure determination. Bio molecular simulations: Molecular dynamics Applications of MD, force fields and energy models. Geometry based methods: Transformations, distance measurement.

Introduction to geometric hashing. Geometry based methods: Geometric hashing in docking, Geometric hashing and its applications in protein structural alignment. Introduction to Robotics applications in bioinformatics.

Geometry based methods: Robotics-based methods and their applications in folding, flexible docking and conformational search. Other topics in bioinformatics: Systems biology, networks. Evolutionary biology, data mining.

TOTAL HOURS: 45

REFERENCES

1. Structural Bioinformatics, 2nd edition, Jenny Gu and Philip E. Bourne. Wiley - Blackwell, 2009.

2. Introduction to Bioinformatics by A. Lesk, 3rd edition, Oxford University Press, 2008.

Course Designers												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mrs.R.Kamatchi Priya	Assistant Professor	CSE	kamatchipriya@avit.ac.in								
2	Mr.P.K.Kumaresan	Professor	CSE	pkkumaresan@vmkvec.edu.in								

17CSSI	E 04	JAVA & CGI PROGRAMMING LAB									Categor	ry L	Т		P C	redit		
		SE 0 0											4	2				
PREAMBLE																		
This course will cover some important topics needed for internet-based application developments, such as Web development and design																		
PREREQUISITE – NIL																		
COURSE OBJECTIVES																		
1	To provide basic knowledge of development of web applications																	
2	To study CGI Techniques and Web development.																	
3	Design and test simple programs in Servlet and JSP.																	
4	To understand the J2EE framework																	
5	To have an exposure to the role of CGI in web programming.																	
COURSE OUTCOMES																		
On the successful completion of the course, students will be able to																		
CO1. Define Web and Implement the concept of web page development to design real world applications.																		
CO2. Compare the development of the web application performance using different set of web development tools. Understand, Apply.												d,						
CO3. Ap Internet.	CO3. Apply the usage of web development tools to serve the purpose of different end users of Apply Internet.																	
CO4. Int features of	CO4. Interpret an existing static web application to make it a robust one and integrate dynamic features of web development. Apply																	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO1 PSO2 PSO3				
CO1	L	L	S	S	S	L	-	L	L	L	L	-	-	- M S				
CO2	L	М	S	М	S	S	М	L	-	L	L	-	-		L	L		
CO3	М	S	S	S	S	S	М	L	-	L	L	-			L	L		
CO4	М	S	S	S	М	S	М	L	-	L	L	-	-		L	L		
S- Strong	S- Strong; M-Medium; L-Low																	

Develop and demonstrate, using Java script, a

- Common Gateway Interface
- Shell Script,
- Writing CGI Programs
- GenericServlet and HttpServlet,
- Passing and Retrieving Parameters,
- Cookies
- JDBC Drivers
- Getting Database Information
- JavaBeans

Reference Book:

- 1. Robert W. Sebesta: Programming the World Wide Web, 4th Edition, Pearson Education, 2008.
- 2. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program, 4th Edition, Pearson Education, 2004

Course Designers										
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr. M. Nithya	Professor	CSE	hodcse@vmkvec.edu.in						
2	Mr. M. Annamalai	Associate Professor	CSE	annamalaim@vmkvec.edu.in						

17CSSE05		DATA MINING LAB										y L	Т	Р	Cr	redit	
										SE	0	0	4		2		
PREAMBLE																	
This course will cover some important topics needed for internet-based application developments, such as Web																	
development and design.																	
PREREQUISITE – NIL																	
COURSE OBJECTIVES																	
1	To provide mining process and important issues around data cleaning, pre-processing and integration																
2	To learning performance evaluation of data mining algorithms																
COURSE OUTCOMES																	
On the successful completion of the course, students will be able to																	
CO1. Learning performance evaluation of data mining algorithms Understand																	
CO2. Handling a small data mining project for a given practical domain Understand, Apply.												1,					
CO3. Exposure to real life data sets for analysis and prediction Apply																	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																	
COS	S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS							PSO	1 PS	SO2	PSO3						
CO1	L	L	S	S	S	L	-	L	L	L	L	-	-		М	S	
CO2	L	М	S	М	S	S	М	L	-	L	L	-	-		L	L	
CO3	М	S	S	S	S	S	М	L	-	L	L	-	L				
S- Strong; M-Medium; L-Low																	

Develop and demonstrate, Databases/Data Warehouse Design Modelling: Conceptual and logical modelling of biomedical data System design of biomedical data warehouses Online Analytical Processing (OLAP) tools for biomedical data Cluster Analysis Implement several clustering algorithms that partition data points into groups based on their similarity Build classifiers that learn from training data and apply to test data to predict their class labels Select informative features that lead to a good classifier Evaluate the performance of the classification results

Reference Book:

- 1. Introduction to Data Mining. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Addison Wesley.
- 2. Data Warehousing. Paulraj Ponniah. John Wiley & Sons, Inc.

Course Designers										
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in						
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in						

17BTCC82		32		CELI	L BIOI	LOGY	0	Category		L	Т	Р		Credit		
										CC		0	0	4		2
PREA	PREAMBLE															
To of	To offer hands on training in the areas of cell culture, cell identification and to demonstrate various techniques to learn															
the morphology, identification and propagation of cells.																
PREF	PREREQUISITE - NIL															
COURSE OBJECTIVES																
1.	1. Demonstrate working principles of microscopy															
2.	Perform the basic techniques to work with cells.															
3.	Differentiate the cells by staining techniques.															
4.	Categorize the various stages of mitosis.															
5.	5. Differentiate the types of blood cells.															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1. Demonstrate the basic concepts of sterilization techniques Understand																
CO2	CO2. Interpret the behaviour of cells in their microenvironment Understand															
CO	CO3. Analyze scientific work and experimental results in of cell biology Analyse															
CO ²	CO4. Categorize the cell organelles Analyse															
CO	5. Exar	nine pl	hysiolog	ical pr	ocesses	s of cell	e.g. ce	ll divisi	ons				Analys	se		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-			-	-
CO2	S	М	-	-	-	-	-	-	-	-	-	-	-		М	-
CO3	М	S	-	L	-	-	-	-	-	-	-	-	L		L	-
CO4	S	М	-	-	-	-	-	-	-	-	-	-	-		-	-
CO5	М	L	-	-	-	-	-	-	-	-	-	-	-			-
S- Str	S- Strong; M-Medium; L-Low															

- 1. Introduction to principles of sterilization techniques and cell propagation.
- 2. Principles of Microscopy.
- 3. Isolation of Cell organelle Mitochondria, Microtubules, Actin and Myosin filaments.
- 4. Cell Fractionation Separation of peripheral blood mononuclear cells from blood.
- 5. Cell staining Gram's staining, Leishman staining
- 6. Cell counting Tryphan blue assay, Alamar blue assay.
- 7. Osmosis and Tonicity.
- 8. Staining for different stages of mitosis in Allium cepa (Onion).

REFERENCES

- 1. Rickwood, D. and J.R. Harris "Cell Biology: Essential Techniques", Johnwiley, 1996.
- 2. Davis, J.M. "Basic Cell Culture: A Practical Approach", IRL, 1994

COURSE DESIGNERS																
S. No	Name of the Faculty	Designation	Department	Mail ID												
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in												
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in												
17	втсо	C 81		BIC)CHE	MISTI	RY LA	AB		Categ	ory	L		Т	Р	Credit
---------	--	-------------	--------	----------	---------	----------	---------	----------	---------	----------	------------	----------	-------	--------------	--------	---------
										CC	1	0		0	4	2
PREA	AMBI	LE														
The c	ourse	is a lab	orato	ry cou	rse tha	t focus	es on o	develop	ing the	skills o	of the stu	idents b	oy pi	rovidi	ing ha	inds on
trainii	ng in v	various	techn	iques	in Bio	chemis	try									
PRE	PREREQUISITE - NIL															
COU	COURSE OBJECTIVES															
1.		To U	nderst	and la	borato	ory safe	ty and	standar	d oper	ating pi	ocedure	s of cor	nmc	on lab	orato	ry
		equip	ment'	s.												
2.	To impart skills in preparation of solutions and biological buffers.															
3.	3. To extend knowledge in analysis & estimation of biomolecules															
COU	COURSE OUTCOMES															
On th	e succ	essful	compl	letion	of the	course,	stude	nts will	be able	e to						
CO1.	Demo	onstrate	e safe	labora	tory p	ractices	s and h	nandle t	he equi	pment	safely			App	oly	
CO2.	Prepa	re solu	itions	and bi	ologic	al buff	ers							App	oly	
CO3.	Isolat	e biom	olecu	les fro	m var	ious soi	urce							Ana	lyze	
CO4.	Deter	mine t	he qua	ality aı	nd qua	ntity of	biom	olecules	5					Ana	lyze	
MAP	PING	WITI	H PR	OGRA	MMI	E OUT	СОМ	ES AN	D PRC	OGRAN	MME SI	PECIFI	IC C)UT (COM	ES
COS	PO	PO	РО	PO	РО	PO6	PO	PO8	PO9	PO1	PO1	PO12	PSC	01	PSO	2 PSO3
CO1	1 S	2	3	4	5 M	S	7 M	_	_	0	-	-		_	М	
CO2	S	S	М	-	-	-	_	_	-	-	-	-		-	S	_
CO3	S	S	S	М	S	-	-	-	-	-	-	-]	М	S	-
CO4	S	S	S	-	S	-	-	-	-	-	-	-		-	М	-
S- Str	ong; N	/I-Med	ium; l	L-Low	7	1	1	1		1	1 1		1			1

1. pH measurements and Buffer preparations.

TITRIMETRIC EXPERIMENTS

- 2. Estimation of Ascorbic acid by Titrimetric method using 2, 6 Dichloro phenol indophenols.
- 3. Determination of Saponification value of Edible oil
- 4. Determination of Acid number of Edible oils.
- 5. Determination of Iodine value of Oil.

BIOCHEMICAL PREPARATIONS

- 6. Isolation of Chloroplast from Spinach leaves.
- 7. Cheese Production from Milk.
- 8. Casein from Milk.
- 9. Starch from Potato.

REFERENCES:

1. Laboratory Manual.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
2.	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

[1	
17RT	2003			в	IOINI	ORM	ATICS	SLAR			Categ	ory	L	Т	Р	Credit
1/01				Ľ							CC		0	0	4	2
PREA	MBLE										-					
Bioinfo	ormatic	s is the	e field	emergi	ng froi	n biolo	ogy wh	ich is	the con	nbinatio	n of biolo	ogy and	comp	outer so	cience. T	here are
number	r of con	nputer	progra	ums dev	veloped	l to ma	aintain,	analys	se biolo	ogical da	ita to sup	port res	earch	and de	evelopme	ent. This
field of	f scienc	e is us	sed to	simulat	e vario	ous bio	logical	proces	ss in vi	rtual en	vironmen	t to invo	estiga	te the	already a	available
along w	vith nev	vly pro	duced	data to	predict	t new s	tructure	es and t	functio	ns of bio	molecule	s.				
PRER	QUISI	FE- NI	L													
COUR	SE OB	JECT	IVES													
1.	To St	ımmari	ze the	signific	ance o	f biolog	gical da	atabase	s.							
2.	2. To Perform sequence alignment using various sequence alignment tools.															
3.	To Distinguish the structure and functions of protein molecule using 3D structure of the protein.															
4.	4. To Construct phylogenetic tree to analysis the evolution.															
5.	5. To Generate, compare and analyse 3D structure of ligand and receptor complex.															
COUR	SE OU	TCON	MES													
On the	success	sful con	mpletio	n of th	e cours	e, stud	ents wi	ll be ab	ole to							
CO1. [Discuss	in deta	il abou	t impo	tence o	f biolo	gical da	atabase	s.			U	nders	tand		
CO2. I	Demons	strate se	equence	e alignı	nent by	y differ	ent ope	ensourc	e softw	are prog	grams	A	pply			
CO3. (Compar	e the st	tructure	e of pro	tein mo	olecule	to prec	lict its	functio	ns.		Α	nalys	e		
CO4. E	Evaluate	e the pl	nyloger	netic tre	e Cons	structio	n.					E	valuat	e		
CO5. A	Assemb	le ligar	nd and	recepto	r comp	olex usi	ng Doo	king p	rogram	s.		C	reate			
MAPP	ING W	ITH I	PROG	RAMN	IE OU	TCOM	IES AI	ND PR	OGRA	MME S	SPECIFI	C OUT	COM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	P	SO1	PSO2	PSO3
CO1	S	М	-	S	L	-	-	-	-	-	-	L		L	-	-
CO2	М	L	Μ	Μ	L	-	-	-	-	-	-	L		М	-	-
CO3	L	L	L	L	S	-	-	-	-	-	-	М		L	-	-
CO4	S	М	L	L	М	-	-	-	-	-	-	S		S	-	-
CO5	S	S	L	Μ	L	-	-	-	-	-	-	М		М	-	-
C Ctro	na. M	Vadin	m. T. T.		-											

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Biological Database (DNA) NCBI-Genbank, EMBL
- 2. Biological Database (Protein) Uniprot, Protein Data Bank
- 3. Sequence Alignment Programs BLAST, FASTA, Clustal W
- 4. Protein 3D Structure Prediction Programs Swissmodel, Rasmol
- 5. Phylogenetic Analysis Program Phylip
- 6. Docking Studies PatchDock

TEXT BOOKS

- 1. Algorithms on Strings, Trees and Sequences by Dan Gusfield, Cambridge University Press.
- 2. Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids by R.Durbin, S.Eddy, A.Krogh, G.Mitchison.
- 3. Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor Laboratory Press.

REFERENCES

1. Introduction to Bioinformatics by Arthur K. Lesk , Oxford University Press.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in
2.	Dr. R. Deepapriya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in

B.E/B.TECH. – COMPUTER SCIENCE ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17BTCC02	CELL BIOLOGY	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
2.	17BTCC01	ESSENTIALS OF BIO CHEMISTRY	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
3.	17BTEC03	PRINCIPLES OF BIO- INFORMATICS	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
4.	17BTEC32	BIOLOGICAL DATABASE	BIO- TECHNOLOGY	SE	3	0	0	3	NIL
5.	17CSSE01	COMPUTATIONAL BIOLOGY & DATA MINING	CSE	SE	3	0	0	3	NIL
6.	17CSSE02	CGI & WEB PROGRAMMING	CSE	SE	3	0	0	3	NIL
7.	17CSSE03	BIO INFORMATICS ALGORITHM	CSE	SE	3	0	0	3	NIL
			LAB						
8.	17CSSE04	JAVA & CGI PROGRAMMING LAB	CSE	SE	0	0	4	2	NIL
9.	17CSSE05	DATA MINING LAB	CSE	SE	0	0	4	2	NIL
10.	17BTCC82	CELL BIOLOGY LAB	BIO- TECHNOLOGY	SE	0	0	4	2	NIL
11.	17BTCC81	BIO CHEMISTRY LAB	BIO- TECHNOLOGY	SE	0	0	4	2	NIL
12.	17BTCC93	BIO INFORMATICS LAB	BIO- TECHNOLOGY	SE	0	0	4	2	NIL

(i) SPECIALIZATION – BIO-INFORMATICS

17CSDIA1	PROJECT WORK	Category	L	Т	Р	Credit
17C5P101	PROJECT WORK	PI	0	0	18	9

This course enables the students to exercise some of the knowledge and/or skills developed during the programme to new situation or problem for which there are number of engineering solutions. This course include planning of the tasks which are to be completed within the time allocated, and in turn, helps to develop ability to plan, , use, monitor and control resources optimally and economically. By studying this course abilities like creativity, imitativeness and performance qualities are also developed in students. Leadership development and supervision skills are also integrated objectives of learning this course.

PRERI	PREREQUISITE – Nil										
COUR	SE OBJECTIVES										
1	To develop quality software solution.										
2	To involve in all the stages of the software development life cycle like requirements engine analysis, systems design, software development, testing strategies and documentation.	ering, systems									
3	3 To understand and gain the knowledge of the principles of software engineering practices.										
4	To Get good exposure and command in one or more application areas and on the software.										
5 To participate and manage a large software engineering projects in future.											
COUR	SE OUTCOMES										
On th	e successful completion of the course, students will be able to										
1.	Describe the Systems Development Life Cycle (SDLC).	Understand									
2.	Complete a problem definition and its evaluations.	Apply									
3.	Perform coding for the project.	Understand									
4.	Documentation requirements and prepare and evaluate systems documentation.	Apply									
MAPP	ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOM	IES									

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	-	-	L	S	L	S		М	М	М
CO2	S	S	М	М	S	М	М	L	S	М	М		S	S	S
CO3	L	М	L	L	М	М	L	L	М	L	L		М	М	-
CO4	S	S	М	L	S	-	L	L	S	L	S		1	М	М

S- Strong; M-Medium; L-Low

- Not more than one student is permitted to work on a project.
- Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.
- Title of the project should be kept the same throughout the project.

Guidelines for preparing the Project Dissertation

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include them in your project report.

Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

Project execution:

Execute project preparation activities as per work allocation matrix.

Documentation and presentation:

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as per Annexure-II.)
- b. Certificate -As per Annexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Course outcomes.
- f. Project title.
- g. Assembly and detail production drawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.
- i. Plant layout with dimensions.
- j. List and specifications of machineries, equipments and tools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought out parts.
- m. Process sheets-As per format given in course Industrial engineering.
- n. Flow process charts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carried out.
- q. Details of rework / rectifications carried out.
- r. Cost estimation.
- s. Monitoring and control report/sheet.
- t. Notes on troubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References.
- w. Day to day logbook as per Annexure-V.
- x. Presentation including moments at work-video/photographs in action

Notes:

	Prepare project report with MS Office with following guidelines.										
	PAGE:		A4 (ON ONE SI	DE).							
	MARGINN:		TOP :15mm.								
			BOTTOM :15m	m.							
			RIGHT :15mm.								
			LEFT :30mm.								
	FONT:		ARIAL.								
	SIZE:		12-BOLD, CON	TENT12,							
			SPACING 18 PC	DINTS,							
	HEADER:		TITLE OF THE	PROJECT,							
			PAGE NUMBE	R ON TOP							
			RIGHT.								
	FOOTER:		ACADEMIC YE	EAR, SHORT							
			NAME OF THE	INSTITUTE							
SUGG	ESTED LEARNING RESO	DURCES.									
SUGGESTED LEARNING RESOURCES. i. Use of Library. ii. Reference books. iii. Hand books. iv. Encyclopedia. v. Magazines. vi. Periodicals. vii. Journals. viii. Visits of industry, organizations related as per the requirement. ix. Internet.											
COUR	SE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID							

Associate Professor

Associate Professor

CSE

CSE

hodcse@vmkvec.edu.in

annamalaim@vmkvec.edu.in

Dr.M.Nithya

Mr. M. Annamalai

1

2

17CSPI02 MINI PROJECT								Category	y L	Т	Р	Credit			
1708	SP102				MIN	I PRO.	JECT				PI	0	0	6	3
PREAM Engine	MBLE The prin	nary er	nphasis , so as t	of the j	project	work is nd mana	to und	erstand rge soft	and gai	in the kno	owledge 1g project	of the pr ts in futu	inciples	of softw	are
PRERI	EQUIS	ITE – 1	Nil					0		0					
COUR	SE OB	JECTI	VES												
1	1 To develop quality software solution.														
2	2 To involve in all the stages of the software development life cycle like requirements engineering, systems analysis, systems design, software development, testing strategies and documentation.														
3	To understand and gain the knowledge of the principles of software engineering practices.														
4	To Get good exposure and command in one or more application areas and on the software.														
5	5 To participate and manage a large software engineering projects in future.														
COURSE OUTCOMES															
On th	e succe	ssful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
1.	Descri	be the S	Systems	s Devel	opment	Life C	ycle (S	DLC).					Unde	erstand	
2.	Compl	ete a pi	roblem	definiti	on and	its eval	uations	•					Appl	у	
3.	Perfor	m codir	ng for th	ne proje	ect.								Unde	erstand	
4.	Docun	nentatio	on requi	rement	s and pi	epare a	and eval	luate sy	stems d	locument	ation.		Appl	у	
MAPP	ING W	ITH P	ROGR	AMMI	EOUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	-	-	L	S	L	S		М	М	М
CO2	S	S	М	М	S	М	М	L	S	М	М		S	S	S
CO3	L	Μ	L	L	М	М	L	L	М	L	L		М	М	-
CO4	S	S	М	L	S	-	L	L	S	L	S		1	М	М
S- Stroi	ng; M-N	Aedium	n; L-Lov	W											

- Individual / not more than one student is permitted to work on a project.
- Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.
- Title of the project should be kept the same throughout the project.

Guidelines for preparing the Project Dissertation

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section

names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include them in your project report.

Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

Project execution:

Execute project preparation activities as per work allocation matrix.

Documentation and presentation:

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as per Annexure-II.)
- b. Certificate -As per Annexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Course outcomes.
- f. Project title.
- g. Assembly and detail production drawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.
- i. Plant layout with dimensions.
- j. List and specifications of machineries, equipments and tools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought out parts.
- m. Process sheets-As per format given in course Industrial engineering.
- n. Flow process charts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carried out.
- q. Details of rework / rectifications carried out.
- r. Cost estimation.
- s. Monitoring and control report/sheet.
- t. Notes on troubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References.
- w. Day to day logbook as per Annexure-V.
- x. Presentation including moments at work-video/photographs in action

Notes:

	Prepare project report with MS Office with following guidelines.										
	PAGE:		A4 (ON ONE SI	DE).							
	MARGINN:		TOP :15mm.								
			BOTTOM :15m	m.							
			RIGHT :15mm.								
			LEFT :30mm.								
	FONT:		ARIAL.								
	SIZE:		12-BOLD, CON	TENT12,							
			SPACING 18 PC	DINTS,							
	HEADER:		TITLE OF THE	PROJECT,							
			PAGE NUMBE	R ON TOP							
			RIGHT.								
	FOOTER:		ACADEMIC YE	EAR, SHORT							
			NAME OF THE	INSTITUTE							
SUGG	ESTED LEARNING RES	DURCES.									
SUGGESTED LEARNING RESOURCES. i. Use of Library. ii. Reference books. iii. Hand books. iv. Encyclopedia. v. Magazines. vi. Periodicals. vii. Journals. viii. Visits of industry, organizations related as per the requirement. ix. Internet.											
COUR	SE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID							

Associate Professor

Associate Professor

CSE

CSE

hodcse@vmkvec.edu.in

annamalaim@vmkvec.edu.in

Dr.M.Nithya

Mr. M. Annamalai

1

2

17CSPI03 INTERNSHIP Categor	L	Т	Р	Credit
PI				3

The Engineering Internship course is a Canvas-based course that offers students the opportunity to explore and develop their careers through professional practice. The structured plan of education impacts student work readiness through a number of professional development skill-building activities, including goal setting; analysis and reflection; feedback from employer; informational interviewing and debriefing their experience.

PREREQUISITE – Nil

COURSE OBJECTIVES

1	An understanding of how liberal arts coursework ties to professional careers of interest.
2	Gain insight into a possible career path of interest while learning about the industry in which the organization resides, organizational structure, and roles and responsibilities within that structure.
3	Develop professional connections and identify a strategy for maintaining those connections
4	Identify and articulate next steps in their career trajectory.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Add details about your experience including new skills developed and results obtained .	Understand
CO2. Analyze your internship experience, reflecting on lessons learned and how your liberal arts education prepared you for the internship.	Apply
CO3. Identification of additional skills that will need to be developed to ensure career readiness.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	L	S	-	L	L	S	L	S		М	М	М
CO2	S	S	М	М	S	М	L	L	М	М	М		S	S	S
CO3	L	М	М	L	М	М	L	L	М	L	L		М	М	М
S- Stro	ng M_l	Medium	· I J o	W 7											

Strong; M-Medium; L-Low

General Procedure

Final Reflection Report:

I. <u>General Information Section</u>

Explain your role and how your work contributed to the company

II. <u>Technical Skills</u>

Document the technical experiences you had during your work experience and discuss technical problems that you assisted in solving

III. <u>Development of Professional Skills</u>

Describe team and leadership building opportunities on the job

IV. Assessments

- Discuss whether or not you met goals set out by your supervisor or that you set for yourself
- Evaluate your performance of assigned projects, noting both areas of strength and improvement

V. <u>Conclusion</u>

- Summarize by addressing the impact of the work experience on your education and career goals
- Provide two "lessons learned" to share with any student that is considering an internship

Course Designers:											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr.M.Nithya	Associate Professor	CSE	hodcse@vmkvec.edu.in							
2.	Mr. M. Annamalai	Associate Professor	CSE	annamalaim@vmkvec.edu.in							

17CS	17CSPI04 BUSINESS INTELLIGENCE AND ITS APPLICATIONS C											y L	Т	Р	Credit
	APPLICATIONS											3	0	0	3
PREA Busines and pre	PREAMBLE Business Intelligence (BI) refers to the tools, technologies, applications and practices used to collect, integrate, analyze, and present an organization's raw data in order to create insightful and actionable business information in Data mining.														
PRER	PREREQUISITE – DATA MINING AND DATA WAREHOUSING														
COUR	COURSE OBJECTIVES														
1	Introduce students to various business intelligence concepts														
2	To lea	rn the o	concept	s of dat	a integr	ation									
3	To int	roduce	enterpr	ise repo	orting										
COUR	SE OU	TCOM	1ES												
On th	n the successful completion of the course, students will be able to														
CO1 .E	CO1 .Examine The Concepts Of Data Warehousing And OLAP														
CO2. A Classifi	CO2. Apply The Concepts Of Bi And Dm Techniques For Clustering, Association, And Apply Classification.														
CO3. U	Indersta	and exis	sting da	ta colle	ction ar	nd opera	ational	systems	5				Unde	erstand	
CO4 I	Inderst	and key	v requir	ements	and vis	ion for	inform	ation m	anagem	ent			Unde	erstand	
СО5 Г)evelon	propos	al for r	ad-ma	n / time	scale fo	or imple	ementat	ion				Appl	у	
MAPP	ING W	TTH P	ROGR		E OUT		S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	L	-	L	L	-	-	L	L	М	S
CO2	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
CO3	S	S	S	S	S	S	S	L	-	L	L	-	-	L	L
CO4	4 S S S S M S S L - L L										-	-	L	L	
CO5	D5 S S M S S L - L L L L														
S- Stro	S- Strong; M-Medium; L-Low														
SYLLA	ABUS														

INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

BASICS OF DATA INTEGRATION

Concepts of Data Integration need and advantages of using Data Integration - Introduction to common data integration

approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications. INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

BI ROAD AHEAD

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

REFERENCES

1.Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2.David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3.Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.M.Nithya	Professor	CSE	nithyam@vmkvec.edu.in
2.	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

1705	SP105		RIII	DING	FNTE	RPRI	SF API	PLICA	TIONS		Catego	ory	L	Т	P C	Credit
1700	1/CSP105 BUILDING ENTERPRISE APPLICATIONS												3	0	0	3
PREA	PREAMBLE															
Enterp develo enterp	Enterprise Applications are complex systems. They require delicate planning and expertise for the right type of development Enterprise Applications are the instruments of administration, management, and planning for an enterprise															
PRER	PREREQUISITE – Nil															
COURSE OBJECTIVES																
1	1 To teach the students about various ways to build enterprise applications															
2	2 At the completion of the class, they should understand how to deploy systems to a number of different host platforms															
3	They	develo	p grapl	hical us	ser inte	erfaces,	as we	ell as cl	haracte	r-oriente	ed scree	ens. 1	Гhey	test a	nd debu	g their
COUF	RSE OU	n JTCON	MES													
On the successful completion of the course, students will be able to																
CO1 .	CO1 . Familiarize with concept of Enterprise Analysis and Business Modeling. Understand															
CO2. U docum	Understa ent the	and req applica	uireme tion arc	nts vali chitectu	dation, ire	planni	ng and	estimat	tion. De	esign and	1	Unde	erstar	nd		
CO3.	Underst	and th	e impo	ortance	of app	olicatio	n fram	ework	and de	signing	other	Unde	erstar	nd		
CO4.	Constru	ct and	develop	o differ	ent solu	ution la	yers.					Appl	у			
CO5. I	Perform	Code	review,	Code a	inalysis	, build	process	s.				Appl	у			
MAPH	PING V	ITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAI	MME SI	PECIFI	C OU	JTC	OMES	;	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	L	-	L	L	-	-	I	L	L	М	S
CO2 S S M S S S L - L L -										-	L	L				
CO3	S	S	S	S	S	S	S	L	-	L	L		-	-	L	L
CO4	CO4 S S S M S S L - L I									L	<u> </u>	-	-	L	L	
CO5	CO5 S S M S S S L - L L - L L															
S- Stro	ong; M-	Mediur	n; L-Lo	OW				·	·			·			·	<u> </u>

Introduction to enterprise applications and their types, software engineering methodologies, life cycle of raising an enterprise application, introduction to skills required to build an enterprise application, key determinants of successful enterprise applications, and measuring the success of enterprise application

Inception of enterprise applications, enterprise analysis, business modeling, requirements elicitation, use case modeling, prototyping, non functional requirements, requirements validation, planning and estimation

Concept of architecture, views and viewpoints, enterprise architecture, logical architecture, technical architecturedesign, different technical layers, best practices, data architecture and design – relational, XML, and other structured data representations, Infrastructure architecture and design elements - Networking, Internetworking, and Communication Protocols, IT Hardware and Software, Middleware, Policies for Infrastructure Management, Deployment Strategy, Documentation of application architecture and design

Construction readiness of enterprise applications - defining a construction plan, defining a package structure, setting up a configuration management plan, setting up a development environment, introduction to the concept of Software Construction Maps, construction of technical solutions layers, methodologies of code review, static code analysis, build and testing, dynamic code analysis – code profiling and code coverage

Types and methods of testing an enterprise application, testing levels and approaches, testing environments, integration testing, performance testing, penetration testing, usability testing, globalization testing and interface testing, user acceptance testing, rolling out an enterprise application.

TEXT BOOKS

1.Raising Enterprise Applications – Published by John Wiley, authored by Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, Veerakumar Esakimuthu

2. Building Java Enterprise Applications - Published by O'Reilly Media, authored by Brett McLaughlin

REFERENCE BOOK

- 1. Software Requirements: Styles & Techniques published by Addison-Wesley Professional
- 2. Software Systems Requirements Engineering: In Practice published by McGraw-Hill/Osborne Media
- 3. Managing Software Requirements: A Use Case Approach, 2/e published by Pearson
- 4. Software Architecture: A Case Based Approach published by Pearson

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.M.Nithya	Associate Professor	CSE	hodcse@vmkvec.edu.in
2.	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

17CSPI06	INTERNET AND WEB TECHNOLOGY	Category	L	Т	Р	Credit
		PI	3	0	0	3

This course is intended to teach the basics involved in publishing content on the World Wide Web. This includes the 'language of the Web' – HTML, the fundamentals of how the Internet and the Web function, a basic understanding of graphic production with a specific stress on creating graphics for the Web, and a general grounding introduction to more advanced topics such as programming and scripting.

PRER	EQUISITE – RICH INTERNET APPLICATION
COUR	SE OBJECTIVES
1	

	To introduce basic concepts of internet														
2	To lea	arn abo	ut HTN	/IL & X	ML										
3	³ To learn about internet security														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1 .	CO1 . Analyze a web page and identify its elements and attributes. Understand														
CO2. 0	Create web pages using XHTML and Cascading Style Sheets. Apply														
CO3. I	CO3. Build dynamic web pages using JavaScript (Client side programming). Apply														
CO4. 0	CO4. Create XML documents and Schemas Apply														
CO5. I	Build in	teractiv	ve web	applica	tions us	sing JS	Р					Apply			
MAPF	PING V	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAI	MME SI	PECIF	IC OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	L	-	L	L	-	-	L	L	М	S
CO2	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
CO3	203 S S S S S S S L - L L L I												L		
CO4 S S S M S S L - L L										L	-	-	L	L	
CO5	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
1		-	-		-	•	•				-				•

S- Strong; M-Medium; L-Low

INTRODUCTION TO INTERNET

Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure Http(Shttp) Internet Addressing – Addressing Scheme – Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP Addresses, Mapping . Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies: Three Tier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems

HTML CSS AND SCRIPTING

HTML – Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax, Class Selector, Id Selector Dom (Document Object Model) & Dso (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML form elements

XML

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS

INTERNET SECURITY & FIREWALLS

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI, Challenges–Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip- Packet Screening, Proxy Application Gateways, Aaa (Authentication ,Authorization And Accounting).

WEBSITE PLANNING & HOSTING

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous), FtpClients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat

TEXT BOOKS

1. Internet & Intranet Engineering,- Daniel Minoli, TMH.

2 .Alexis Leon and Mathews Leon – Internet for Every One, Tech World.

REFERENCES

1. Eric Ladd, Jim O'Donnel –"Using HTML 4, XML and JAVA"-Prentice Hall of India -1999.

2. "Beginning Java Script "- Paul Wilton - SPD Publications -2001

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

17CSPI07	LEARNING IT ESSENTIALS BY DOING	Category	L	Т	Р	Credit
		PI	3	0	0	3

The proposed elective course exposes the non-CS/IT students to IT Essentials. The core modules of this Elective includes programming ,Database and web Technology amongst other related topics. This course refers to the basic tools and technologies for the right type of website development and enable student to create simple web applications

PREREQUISITE – Nil
COURSE OBJECTIVES

1	To learn about the essentials of Information Technology
2	To get an idea about the scripting languages.
3	To get an idea about the internet protocols
COUR	SE OUTCOMES

On the successful completion of the course, students will be able to

CO1 understand the fundamentals of web applications and its modeling	Understand
CO2. To understand and learn the scripting languages with design of web applications.	Understand
CO3. To understand n the networking concept internet protocols, network routing	Understand
CO4. Analyze the process of mobile communication and network technologies	Analyze
CO5. Build simple interactive applications ,database applications and multimedia applications.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S				М	М	М	L	S	S	S	М			
	-		_					_							
CO2	S		L	M	S	S	M	L	M	S	M	S			
CO3	L	L		L	S	М		L	М	S		L			
CO4	L	М			М	М	S	М	М	М	S	S			
CO5	S	М	L		L		S	М	S	S	L	М			
S- Stro	S- Strong: M-Medium: L-Low														
2 540			, 그 고												

Fundamentals of Computer architecture-introduction-organization of a small computer Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

Operating system – introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS- data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts – object oriented programming -UML Class Diagrams– relationship – Inheritance – Abstract classes – polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool – Application of OOC using Alice tool.

Client server computing - Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers

URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

TOTAL HOURS: 45

REFERENCES

Course Designers:

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI, 1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

course						
S.No.	Name of the Faculty	Designation	Department	Mail ID		
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in		
2	Mr. R. Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu.in		

17CSPI08	ESSENTIALS OF INFORMATION TECHNOLOGY	Category	L	Т	Р	Credit
		PI	3	0	0	3

This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles application packages. This course aims at facilitating the student to understand the various concepts and functionalities of Database Management Systems, the method and model to store data and how to manipulate them through query languages, the effective designing of relational database and how the system manages the concurrent usage of data in multi user environment..

PREREQUISITE – Nil

COURSE OBJECTIVES

1	To pr	ovide b	asic kn	owledg	ge of ha	ırdware	and so	oftware	compo	nents of	compu	ters.			
2	To stu	udy Pro	blem s	olving '	Technie	ques an	d prog	ram dev	velopm	ent cycle					
3	Desig	n and t	est sim	ple pro	grams i	n C lar	iguage								
4	Docu	ment ar	tifacts	using c	ommor	n qualit	y stand	ards							
5	Design simple data store using RDBMS concepts and implement														
COUR	COURSE OUTCOMES														
On the	succes	sful coi	npletio	on of the	e course	e, stude	ents wil	l be abl	e to						
CO1 B	asic knowledge on hardware and software terminologies. Understand														
CO2. A information	Apply the knowledge of mathematics, science and computing in the core nation technologiesUnderstand, Apply.														
CO3. U Techni	Understand Program Devolvement Cycle and apply various Problem Solving Apply niques														
CO4. I	Develop	the fu	nction j	progran	ns with	all the	concep	ots in c				Apply			
CO5. I and rel	Build a ational	nd mar langua	nipulate ges	e relatio	onal da	tabase	using	Structu	red Qu	ery Lang	guage	Apply			
MAPP	'ING V	VITH H	PROG	RAMM	IE OU'	гсом	IES AN	ND PRO	OGRA	MME S	PECIF	IC OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	L	-	L	L	-	-	L	L	М	S
CO2	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
CO3	S	S	S	S	S	S	S	L	-	L	L	-	-	L	L
CO4	S	S	S	S	М	S	S	L	-	L	L	-	-	L	L
CO5	S	S	S	М	S	S	S	L	-	L	L	-	-	L	L
S- Stro	S- Strong; M-Medium; L-Low														

Unit I: Introduction to Computer Systems - Basics of computer systems - Various hardware components - Data storage and various Memory units - Central Processing Unit - Execution cycle - Introduce to software and its classifications. Operating system concepts- Introduction - Memory management - Process management - Interprocess Communication - Deadlocks - File management - Device management

Unit II: Problem Solving Techniques - Introduction to problem solving - Computational problem and it's classification - Logic and its types - Introduction to algorithms - Implementation of algorithms using flowchart - Flowcharts implementation through RAPTOR tool - Searching and sorting algorithms - Introduction and classification to Data Structures - Basic Data Structures - Advanced Data Structures

Unit III: Programming Basics - Introduction to Programming Paradigms and Pseudo Code - Basic programming concepts - Program Life Cycle - Control Structures - Introduction and Demonstration of 1-D Array and 2-D Array - Searching and Sorting techniques - Demonstration Concept of memory references in arrays –Strings - Compiler Concepts - Code Optimization techniques. Structured Programming – Functions – Structures - File Handling - Introduction to Software Development Life Cycle - Industry Coding Standards and Best Practices - Testing and Debugging - Code Review

Unit IV: Project - Project Specification - Preparation of High level design and Detailed design document, Unit Test Plan and Integrated Test Plan - Coding and Unit Testing activities - Integration Testing.

Unit V: RDBMS- data processing – the database technology – data models-ER modeling concept –notations – Extended ER features-Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements -Joins - Sub queries – Views-Database design Issues.

TEXT BOOKS

REFERENCES

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@vmkvec.edu.in
2	Mrs. T. Geetha	Assistant Professor	CSE	geethat@vmkvec.edu.in

17CSPI09	INTRODUCTION TO MAIN FRAMES	Category	L	Т	Р	Credit
		PI	3	0	0	3

The mainframe hardware and z/OS operating system grew up together and are highly complementary for reliability, availability, serviceability, scalability, security, and performance. The operating system taught in this course is z/OS, a widely used mainframe operating system. z/OS is known for its ability to serve thousands of users concurrently and for processing very large workloads in a secure, reliable, and expedient manner.

PRER	PREREQUISITE –														
Compu	iter Arc	hitectu	re												
COUR	COURSE OBJECTIVES														
1	To ge	t an ide	ea abou	t the ma	ainfram	he hard	ware								
2	To ge	t an ide	ea abou	t z/OS											
3	To learn about JCL														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1 T Termir	D1 To learn the Concept of Computer Architecture ,Mainframes OS and Understand														
CO2. 7	O2. To learn the Concept of virtual storage and its use in z/OS Apply														
CO3 Understand Job Control language- Various statements in JCL- JCL procedures Understand															
CO4. Understand various forms of data representation and structures supported by the COBOL language															
CO5. E and rel	CO5. Build and manipulate relational database using Structured Query Language Apply														
CO6. C Storage IBM M	ob Cont e (MVS Iainfrar	rol Lar b), which necom	nguage ch is the puters.	(JCL) i comm	s the co only us	omman sed Ope	d langu erating	age of System	Multipl in the	e Virtua	1	Apply			
MAPP	PING W	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAI	MME SI	PECIF	C OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S				М	М	М	L	S	S	S	М			
CO2	S		L	М	S	S	М	L	М	S	М	S			
CO3	L	L		L	S	М		L	М	S		L			
CO4	L	М			М	М	S	М	М	М	S	S			
CO5	S	М	L		L		S	М	S	S	L	M			
CO6	М				М				М	S		S			
S- Stro	ng; M-	Mediur	n; L-Lo	OW				1	1	1		1			

UNIT –I EVOLUTION OF MAINFRAME HARDWARE

Overview of Computer Architecture - Classification of Computers - micro, mini, mainframes and super computer - Mainframe computer - key features - benefits - Evolution of Mainframes - Different hardware systems. Mainframes OS and Terminology: Operating systems on mainframes, Batch processing vs. online processing - mainframe operating system. - evolution - concepts of Address space, Buffer management - Virtual storage - paging - swapping – Dataset management in mainframes.

UNIT-II Z/OS AND ITS FEATURES

Z-operating system (Z/OS) - Virtual storage - Paging process - storage Managers - Program execution modes - Address space - Multiple virtual system(MVS) , MVS address space, Z/OS address space - Dataset - sequential and partial dataset - Direct access storage device(DASD) - Access methods - Record formats - Introduction to virtual storage access methods(VSAM) - Catalog – VTOC.

UNIT-III INTRODUCTION TO JCL

Introduction to Job Control language - Job processing – structure of JCL statements - Various statements in JCL - JOB statement - EXEC statement – DD statement - JCL procedures and IBM utility programs.

UNIT-IV COBOL PROGRAMMING

Introduction – History, evolution and Features, COBOL program Structure, steps in executing COBOL. Language Fundamentals – Divisions, sections, paragraphs, sections, sentences and statements, character set, literals, words, figurative constants, rules for forming user defined words, COBOL coding sheet.. Data division – Data names, level numbers, PIC and VALUE clause, REDEIFNES, RENAMES and USAGE clause. Procedure Division – Input / Output verbs, INITIALIZE verb, data movement verbs, arithmetic verbs, sequence control verbs.

UNIT-V OVERVIEW OF DB2

Introduction to DB2 – System Service component, Database Service component, Locking Service component, Distributed Data Facility Services component, Stored Procedure component, catalogs and optimizer. DB2 Objects and Data Types - DB2 Objects Hierarchy, Storage groups, Database, Table space, Table, Index, Clustered index, Synonyms and aliases, Views, Data Types. DB2 SQL programming – Types of SQL statements, DCL, DDL, DML, SPUFI utility. Embedded SQL programming – Host variable, DECLGEN utility, SQLCA, single/multiple row manipulation, cursors, and scrollable cursors.

TEXT BOOKS

- 1. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.
- 2. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002.
- 3. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

REFERENCES

- 1. MVS JCL, Doug Lowe, Mike Murach and Associates.
- 2. AS/400 Architecture and Application The Database Machine by Jill T. Lawrence (SPD Publications)
- 3. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002.

4.z/OS V1R4.0 MVS JCL Reference found online at

http://www-.ibm.com/support/docview.wss?uid=pub1sa22759706

5.z/OS V1R1.0 MVS JCL Reference found online at

http://publibz.boulder.ibm.com/cgibin/bookmgr_OS390/BOOKS/iea2b600/CCONTENTS

6. COBOL - Language Reference, Ver 3, Release 2, IBM Redbook.

7. COBOL - Programming Guide, Ver 3, Release 2, IBM Redbook.

8. Complete CL The Definitive Control Language Programming Guide by Ted Holt and Ernie Malaga (SPD Publication).

9. Nancy Stern & Robert A Stern, "Structured Cobol Programming", John Wiley & Sons, New York, 1973.

10. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

11. Newcomer and Lawrence, Programming with Structured COBOL, McGraw Hill Books, New York, 1973.

12. Craig S Mullins, DB2 Developer's Guide, Sams Publishing, 1992.

13. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.

14. C J Date & Colin J White, A Guide to DB2, Addison Wesley.

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1.	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in			

17CSPI10	MOBILE APPLICATION DEVELOPMENT	Category	L	Т	Р	Credit
		PI	3	0	0	3

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

PREREQUISITE – NIL															
COURSE OBJECTIVES															
1.	Understand system requirements for mobile applications														
2.	Generate suitable design using specific mobile development frameworks														
3.	Generate mobile application design														
4.	Implement the design using specific mobile development frameworks														
5.	Deploy the mobile applications in marketplace for distribution														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. I	. Be exposed to technology and business trends impacting mobile applications									ons	Understand				
CO2.U)2 .Understanding enterprise scale requirements of mobile applications										Understand				
CO3. I applica	CO3. Be competent with the characterization and architecture of mobile applications Apply														
CO4. 1	CO4. Familiarize in the Graphics used for Android application development Apply														
CO5. applica	CO5. Be competent with designing and developing mobile applications using one application development framework.														
CO6. 7	CO6. Test the developed app and publish in Apply														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	S	S	М	S	S	S	S	М	М	М	S
CO2	S	S	М	L	S	S	S	М	М	S	М	М	М	М	S
CO3	S	М	М	L	S	М	М	М	S	S	М	М	М	М	S
CO4	S	S	М	М	S	М	М	М	S	S	S	М	М	М	S
CO5	S	S	М	М	S	М	М	М	S	S	S	М	М	М	S
CO6	S	S	М	L	S	М	М	L	S	S	S	М	М	М	S
S- Strong; M-Medium; L-Low															

UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications – Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Course Designers:									
S.No.	Name of the Faculty	Designation	Department	Mail ID					
1.	Mr. M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in					
2.	Mr. R. Bharanidharan	Assistant Professor	CSE						