

FACULTY OF ENGINEERING AND TECHNOLOGY

REGULATIONS 2021

Programme:

BE / B.Tech. - CIVIL ENGINEERING (PART TIME)

3 1/2 Years

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VII)

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY,PAIYANOOR & VINAYAKA MISSION'S KIRUPANANDA VARIYARENGINEERING COLLEGE, SALEM

Department of Civil Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	Graduates will perform as professional engineers in the various fields of Civil engineering.
PEO 2	Graduates will perform well in their specialized field and also trained in teamwork and leadership positions
PEO 3	Graduates will pursue lifelong learning in their specialized fields of Civil Engineering
PEO 4	Graduates will exhibit entrepreneurship qualities.
PEO 5	Graduates will contribute to the development of the profession, nation and society

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Civil Engineering graduates will be able:

PSO 1	To work independently as well as in team to formulate, design, execute solutions for engineering problems and also analyze, synthesize technical data for application to product, process, system design & development
PSO 2	To understand & contribute towards social, environmental issues, following professional ethics and codes of conduct and embrace lifelonglearning for continuous improvement
PSO 3	To develop expertise towards use of modern engineering tools, careers in industries and research and demonstrate entrepreneurial skill

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering
PO 3	problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based
PO 4	knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques,
PO 5	resources, and modern engineering and IT tools including prediction and
	modeling to complex engineering activities with an understanding of the
	Ilmitations.
PO 6	knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and
PO11	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
DO10	Life-long learning: Recognize the need for, and have the preparation and
PO12	of technological change.

Vinayaka Mission's Research Foundation -Deemed to be University

Faculty of Engineering & Technology

Aarupadai Veedu Institute of Technology, Chennai &Vinayaka Missions Kirupananda Variyar Engineering College, Salem

B.E./B.Tech. – Choice Based Credit System

2021 - 2022 onwards

Regulation: R2021

Name of the Board: Civil Engineering

Name of the Program: B.E./B.Tech. – Civil Engineering (Part-Time) <u>STRUCTURE OF UNDERGRADUATE</u> ENGINEERING PROGRAM PART-TIME STUDENTS

Sl. No.	Category of Course		Types of Courses	Breakup of Credits				
1	A. Foundation	Humanities and S courses	Social Sciences including Management	9-12				
2	Courses	Basic Science con	9-12					
3	B. Professional	Core courses		61				
		Professional Elec	tives	12-15				
4	C. Elective Courses	Open Electives	Innovation Entrepreneurship, Skill Development	3-6				
			Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	3-6				
5	D. Courses for presentation of technical skills related to the specialization	Project work		8				
6	E.**MandatoryCourses	Mandatory Courses [Gender Equity and Law, Indian Constitution, Essence of Indian Traditional Knowledge, Yoga and Meditation,NCC, NSS, RRC, YRC, Rotaract, Sports and Games, Science Clubs, Arts Clubs, Unnat Bharat Abbiyan Swachh Bharat etc.]		Mandatory Courses [Gender Equity and Law, Indian Constitution, Essence of Indian Traditional Knowledge, Yoga and Meditation,NCC, NSS, RRC, YRC, Rotaract, Sports and Games, Science Clubs, Arts Clubs, Unnat Bharat Abbiyan, Swachh Bharat etc.]		Mandatory Courses [Gender Equity and Law, Indian Constitution, Essence of Indian Traditional Knowledge, Yoga and Meditation, NCC, NSS, RRC, YRC, Rotaract, Sports and Games, Science Clubs, Arts Clubs, Unnat Bharat Abhiyan, Swachh Bharat etc.]		Zero credit course (Min. 2 courses to be completed)
	Minimum Credits to be earned							
	** Credits earned u	under this categor	y will not be considered for CGPA calc	culation				

			A. Foundat	ion Courses								
Humanities and Social Sciences including Management Courses -Credits (9-12)												
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.		UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL			
2.		TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL			
3.		ENGINEERING MANAGEMENT AND ETHICS	MANAG	FC-HS	3	0	0	3	NIL			
4.		OPERATIONS MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL			

Basic Science Courses –Credits (9-12)													
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1.		ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL				
2.		MATHEMATICS FOR CIVIL ENGINEERS	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATICS				
3.		PROBABILITY AND STATISTICS	MATH	FC-BS	2	1	0	3	NIL				
4.		NUMERICAL METHODS	MATH	FC-BS	2	1	0	3	ENGINEERING MATHEMATICS				
5.		SMART MATERIALS	РНҮ	FC-BS	3	0	0	3	PHYSICAL SCIENCES				
6.		GREEN BUILDING MATERIALS	CHEM	FC-BS	3	0	0	3	NIL				
7.		ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL				

B. Prof	essional								
Core Co	ourses –	Credits (61)							-
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1		DESIGN OF REINFORCED CONCRETE ELEMENTS	CIVIL	CC	2	1	0	3	STRENGTH OF MATERIALS
2		CONSTRUCTION MATERIALS AND TECHNIQUES (THEORY AND PRACTICALS)	CIVIL	CC	3	0	2	4	NIL
3		STRENGTH OF MATERIALS	CIVIL	СС	2	1	0	3	NIL
4		FLUIDS MECHANICS AND HYDRAULIC ENGINEERING	CIVIL	CC	2	1	0	3	NIL
5		ENGINEERING SURVEYING (THEORY AND PRACTICALS)	CIVIL	CC	2	1	4	5	NIL
6		ENVIRONMENTAL ENGINEERING AND DESIGN (THEORY AND PRACTICALS)	CIVIL	CC	2	1	2	4	NIL
7		DESIGN OF REINFORCED CONCRETE STRUCTURES	CIVIL	CC	2	1	0	3	DESIGN OF REINFORCED CONCRETE ELEMENTS
8		STRUCTURAL ANALYSIS	CIVIL	СС	2	1	0	3	STRENGTH OF MATERIALS
9		MODERN METHODS OF STRUCTURAL ANALYSIS	CIVIL	СС	2	1	0	3	STRUCTURAL ANALYSIS
10		GEOTECHNICAL ENGINEERING (THEORY AND PRACTICALS)	CIVIL	CC	2	1	4	5	NIL
11		DESIGN OF STEEL STRUCTURES	CIVIL	СС	2	1	0	3	STRENGTH OF MATERIALS
12		TRANSPORTATION ENGINEERING	CIVIL	CC	3	0	0	3	NIL
13		ESTIMATION COSTING AND VALUATION	CIVIL	CC	2	1	0	3	NIL
14		COMPUTER AIDED BUILDING DRAWING LAB	CIVIL	CC	0	0	4	2	NIL
15		STRENGTH OF MATERIALS LAB	CIVIL	CC	0	0	4	2	NIL
16		HYDRAULIC ENGINEERING LAB	CIVIL	СС	0	0	4	2	NIL
17		CONCRETE AND CONSTRUCTION TECHNOLOGY LAB	CIVIL	СС	0	0	4	2	CONSTRUCTION MATERIALS AND TECHNIQUES (THEORY AND PRACTICALS)
18		ENGINEERING MECHANICS	MECH	CC	2	1	0	3	NIL
19		WASTE WATER ENGINEERING	CIVIL	CC	3	0	0	3	NIL

20	COMPUTER AIDED							
	DESIGN AND DRAWING	CIVIL	CC	0	0	4	2	NIL
	LAB							

C.Elective Courses											
Profess	sional Elec	tive courses Credits (12-15	5)								
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1		REPAIR AND REHABILITATION OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	CONSTRUCTION MATERIALS AND TECHNIQUES (THEORY AND PRACTICALS)		
2		TRAFFIC ENGINEERING AND MANAGEMENT	CIVIL	EC-PS	3	0	0	3	TRANSPORTATION ENGINEERING		
3		HYDROLOGY	CIVIL	EC-PS	3	0	0	3	NIL		
4		DISASTER MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL		
5		HOUSING PLANNING AND MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL		
6		GROUND IMPROVEMENT TECHNIQUES	CIVIL	EC-PS	3	0	0	3	GEOTECHNICAL ENGINEERING (THEORY AND PRACTICALS)		
7		AIR POLLUTION MANAGEMENT	CIVIL	EC-PS	3	0	0	3	ENVIRONMENTAL ENGINEERING AND DESIGN (THEORY AND PRACTICALS)		
8		TALL BUILDINGS	CIVIL	EC-PS	3	0	0	3	DESIGN OF STEEL STRUCTURES		
9		STRUCTURAL DYNAMICS	CIVIL	EC-PS	3	0	0	3	STRUCTURAL ANALYSIS		
10		WIND ENGINEERING	CIVIL	EC-PS	3	0	0	3	NIL		
11		INDUSTRIAL STRUCTURES	CIVIL	EC-PS	3	0	0	3	DESIGN OF STEEL STRUCTURE		
12		FINITE ELEMENT TECHNIQUES	CIVIL	EC-PS	2	1	0	3	STRUCTURAL ANALYSIS		
13		GROUND WATER ENGINEERING	CIVIL	EC-PS	3	0	0	3	ENVIRONMENTAL ENGINEERING AND DESIGN (THEORY AND PRACTICALS)		
14		CONTRACT LAWS AND REGULATIONS	CIVIL	EC-PS	3	0	0	3	NIL		
15		SOLID WASTE MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL		
16		CONSTRUCTION PLANNING AND SCHEDULING	CIVIL	EC-PS	3	0	0	3	NIL		
17		CONCRETE TECHNOLOGY	CIVIL	EC-PS	3	0	0	3	CONSTRUCTION MATERIALS AND TECHNIQUES (THEORY AND PRACTICALS)		
18		PRESTRESSED CONCRETE	CIVIL	EC-PS	3	0	0	3	DESIGN OF REINFORCED CONCRETE ELEMENTS		

19	ENGINEERING GEOLOGY	CIVIL	EC-PS	3	0	0	3	NIL
20	IRRIGATION ENGINEERING	CIVIL	EC-PS	3	0	0	3	ENVIRONMENTAL ENGINEERING AND DESIGN (THEORY AND PRACTICALS)

Open subjects –Electives from Innovation, Entrepreneurship, Skill Development etc. Credits (3-6)													
S.NO	COURSE CODE	COURSE	OFFERING INDUSTRY	CATEGOR Y	L	Т	Р	С	PREREQUI SITES				
1.		INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL				
2.		NEW VENTURE PLANNING AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL				
3.		SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL				
4.		ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL				
5.		INTELLECTUAL PROPERTY RIGHTS	MANAG	OE-IE	3	0	0	3	NIL				

	Open subjects –Electives from other Emerging Areas Credits (3-6)													
S.NO	COURSE CODE	COURSE	OFFERING INDUSTRY	CATEGORY	L	Т	Р	С	PREREQUI SITES					
1.		GREEN POWER GENERATION SYSTEMS	EEE	OE-EA	3	0	0	3	NIL					
2.		INDUSTRIAL DRIVES AND AUTOMATION	EEE	OE-EA	3	0	0	3	NIL					
3.		PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL					
4.		BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL					
5.		INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL					
6.		FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL					
7.		FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL					
8.		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL					
9.		CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL					
10.		INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL					

11.	DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL
12.	3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL
13.	INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL
14.	BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL
15.	PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL

Projec	t Work - Ci	redits (8)							
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1		PROJECTWORK	CIVIL	PI-P	0	0	16	8	NIL

MAND	MANDATORY COURSES (NO CREDITS)										
(Not In S.No	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISITE		
1.		YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL		
	Any Two of The Following Courses										
2.		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL		
3.		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL		
4.		NCC/NSS/RRC/ /YRC/STUDENT CLUBS/UNNAT BHARAT ABHIYAN/SWATCH BHARAT	GEN	AC	0	0	2	0	NIL		
5.		SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL		
6.		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL		

Course Code	Course Title	Category	L	Т	Р	C
	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	FC-HS	3	0	0	3

Course Objectives:

1. Development of a holistic perspective based on self- exploration

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. -Understandingthe Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body- Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals – Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and selfregulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

Total Hours : 45 Hours

Text Book

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi,2010 **Reference Books** Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COUH	COURSE DESIGNERS								
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID					
1	Dr.S.P.Sangeetha	Vice Principal(Academics)	AVIT	sangeetha@avit.ac.in					
2	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin					

	TOTAL QUALITY	Category	L	Т	Р	Credit					
	MANAGEMENT				-						
		FC-HS	3	0	0	3					
PREAMBLE:											
Quality is the mantra for success or even for the survival of any organization in this competitive											
	giobal market. Total Quanty Management (TQM) is an emilancement to the traditional way of doing										
business. TQM integra	tes fundamental management techni	ques, existing im	prove	ment e	efforts	, and technical					
tools under a discipline	d approach for providing quality of	products and prod	cesses	It bec	comes	essential to					
survive and grow in glo	bal markets, organizations will be re	equired to develo	p cust	omer	focus	and involve					
employees to continual	ly improve Quality and keep sustain	able growth.									
PREREQUISITE: Not Required											
COURSE OBJECTIVES:											
1. To understand the Total Quality Management concepts.											

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply

CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	-	-	-	-	-	L	L	L	М	L	Μ	-	-	-	
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М	
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L	
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-	
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М	

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts- Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve- Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality -New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits-Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA - Business process reengineering (BPR) – principles, applications, reengineering process, benefits and limitations.

١

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Hcinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

		0.00	DATIONS	Cata	aoru	T		т	D			Cradit
		OPE	RATIONS	Cale	gory us			1	P			
		INAIN	AGENIENI	10-	115	3		0	0			3
Preamble												
The conte technique	empor s and	ary unc strateg	ertain business env ies for managing th	vironme eir reso	nt is fo ources	orcing in the p	the mos	organi st effec	izations to tive and	o adop efficie	t the l nt fas	atest tools, hion. The topics of
the course	e deal	s with t	he management of	resourc	es and	l activi	ties	that le	ead to pro	ductio	n of g	goods of right
quality, in	n righ	t quanti	ty, at right time and	l place	in the	most c	ost-	impre	essive ma	nner. '	The co	ourse focuses on
the basic concepts, issues, and techniques adopted worldwide for efficient and effective operations. The topics												
include of	perati	ons stra	itegy, product desig	in and c	leveloj	pment,	tor	ecastir	ng, facilit	y plan	ning a	ind layout,
aggregate production planning, capacity planning, project management, production control, materials management, inventory and quality management, JIT and Kanban System.												
Prerequis	ite											
Not Requi	red											
Course O	bjecti	ves										
1. To und	erstar	nd the F	fundamentals of Op	eration	s.							
2. To Unc	lersta	nd the i	mportance of Job I	Design a	and the	eir rela	tion	ship to	owards E	fficien	cy.	
3. To und	erstar	nd the in	mportance of Produ	iction, I	Plannii	ng and	Cor	ntrol.				
4. To eva	luate	the mat	erial requirement w	vith the	techni	ques.						
5. To imp	art th	e Opera	ation management	Fechniq	ues to	get ric	l of	the Co	ompetitiv	e adva	intage	•
Course O	utcon	nes										
After succ	essful	comple	tion of the course, stu	idents w	vill be a	able to					·· ·	
CO1. Un	dersta	and the	importance of Oper	rations	Manag	genet					Under	stand
CO2. Eva	aluati	ng the v	various organisation	n and st	affing	function	ons.				Eval	uate
CO3. Un Control.	dersta	and the	Impoprtance Of Pro	oductio	n Plan	ning a	nd				Under	rstand
CO4. Eva	aluate	e the Va	rious Operation Ma	anagem	ent Te	chniqu	ies.				Eval	uate
CO5. Ana	alyse	and Eva	aluating the various	Invent	ory M	anagen	nent	t			Anal	lyse
Technique	es to	take Co	mpetitive advantag	e								
Mapping	with l	Progran	nme Outcomes and	Program	mme S	pecific	Out	tcomes	5			
COs	PO1	PO2	PO3	PO4	PO5	PO6	Р О 7	PO8	PO9	P O 10	PO1 1	PO12
CO1.	S	S	L	L	S	L	S	L	L	L	L	
CO2.	S	S	М	L		L	L	М	М	L	L	
CO3.	S	S	S	М	S	М	L	S	М	L	L	
CO4.	Μ	М	S	L	М	L	L	М	М	L	L	
CO5.	S	S	S	L	М	М	S	L	М	М	S	
S- Strong; M-Medium; L-Low												
Syllabus												
UNIT- I INTRODUCTION TO OPERATIONS MANAGEMENT 9 Hours												
Operations Management- Nature & Scope – Evolution of Operatons Management – Types of Production												
System, C	System, Operations Stratergy – Product Life Cycle- Value Engineering concepts - Make or Buy Decision-											
Recent Tr	Recent Trends in Operations Management- Plant Capacity - Plant Location & Factors.											

UNIT- II JOB DESIGN & MATERIAL HANDLING 9 Hours

Layout- Princilpes of Layout- factory-Basic types of layout product layout, group technology layout, fixed position layout, Retail service layout.Principles of material handling-Material handling equipment.Job-design: Effective job design- Combining engineering and behavioral approaches, Work measurement- method analysis- Ergonomics-Case studies.

UNIT- III PRODUCTION, PLANNING & CONTROL

9 Hours

Basic types of production- Interminent, Batch, continuous-Routing, Scheduling, Activating and Monitoring-Production Planning and Control, Process Planning, Aggregate Production Planning, Capacity Planning: Introduction, Capacity Planning

UNIT IV OPERATION TECHNIQUES

9 Hours

Project Scheduling, Network Diagrams, Critical Path Method (CPM), Critical Path Method: Problems, Critical Path Method. Program Evaluation and Review Technique (PERT), PERT Problems, PERT Problems, Time Cost Trade Off Production Control, Sequencing, Sequencing Problems-I, Sequencing Problems-II, Master Production Scheduling- Concept of Quality, Total Quality Management (TQM), Total Productive Maintenance (TPM), Statistical Quality Control (SQC), Six Sigma.

UNIT- V INVENTROY MANAGEMENT 9 Hours

Materials Management, Inventory Control, Economic Order Quantity (EOQ) Models, Economic Order Quantity (EOQ): Problems, Production Quantity- Just in Time (JIT), Kanban System, Materials Requirement Planning (MRP)-I, Materials Requirement Planning (MRP)-II, Enterprise Resource Planning (ERP).

TOTAL HOURS : 45 HOURS

TEXT BOOKS

1. Operation Management: K. N. Dervitsiotis, McGraw-Hill International Company.

2. Operations Management: R.S. Russell, and B.W. Taylor, Pearson Education

3. Industrial Engineering and Production Management: M. Telsang, S. Chand & amp; Company Ltd.

REFERENCES

1. The Encyclopedia of Operations Management: A Field Manual and Glossary of Operations Management ARTHUR V HILL 1st Edition

2. Handbook of Industrial Engineering: Technology and Operations Management, Gavriel Salvendy 3rd Edition.

3. Quality and Operations Management: Revised Edition.

4. Operations Management: Theory and Practice by Mahadevan

5. Production and Operations Management by PANNEERSELVAM. R.

COURSE	DESIGNERS:

				7
S.No	Name of the Faculty	Designation	Department	mail id
1	Dr. B. Rajnarayanan	Associate Professor & Head	Management Studies	rajnarayanan@vmkvec.edu.in
2	Mr. T. Thangaraja	Associate Professor	Management Studies	thangaraja@avit.ac.in

ENGINEERING	Category	L	Т	Р	Credit
MANAGEMENT AND ETHICS	FC-HS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: Not Required **COURSE OBJECTIVES:**

1. To Understand the principles of planning at various levels of the organisation.

1. To Onderstand the principles of planning at various levels of the organisation.

2. To analyse and practice the concepts of organizing, staffing to higher productivity.

3. To apply the concepts related to directing and controlling.

4. To understand and apply the case studies to practice code of ethics in organisation.

5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of planning principles in organization	Understand
CO2: Apply the various strategies of organising and staffing process.	Apply
CO3: Analyse various leadership skills and control techniques for shaping the organization.	Analyse
CO4: Understand and apply best ethical practices in organization	Analyse
CO5: Analyse and Apply relevant ethical practices in engineering.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	L	S	М	М	L	S	S	S	S			
CO2	М	L	L	-	М	М	М	L	М	S	М	М			
CO3	М	М	L	-	М	М	М	L	L	S	S	М			
CO4	L	М	-	М	-	М	S	S	S	S	-	М			
CO5	М	М	-	L	-	М	S	S	S	S	-	М			

S- Strong; M-Medium; L-Low

SYLLABUS:

PLANNING

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management , Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational - Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership – Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

ETHICS IN ENGINEERING

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger - Employed Engineers Rights and Duties- Collective Bargaining -Occupational Crime - Global Issues- Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate Professor	Management Studies	manickam@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

ENGINEERING MATHEMATICS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PRER	PREREQUISITE														
NIL															
COUR	RSE OI	BJECT	FIVES												
1	To re	call the	e advan	iced ma	atrix kr	nowled	ge to E	Enginee	ring pi	oblems.					
2 To equip themselves familiar with the functions of several variables.															
3 To improve their ability in solving geometrical applications of differential calculus problems															
4 To examine knowledge in multiple integrals.															
5 To improve their ability in Vector calculus.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Apply the concept of orthogonal reduction to diagonalise the given matrix Apply															
CO2. Find the radius of curvature, circle of curvature and centre of curvature for a given curve. Apply															
CO3. 0 finding	Classify station	y the m nary po	naxima Dints	and m	inima f	for a gi	ven fu	nction	with se	everal va	riables,	through	by	Apply	
CO4.	Find do	ouble ir	ntegral	over g	eneral	areas a	nd trip	le integ	gral ov	er gener	al volun	nes		Apply	
CO5. /	Apply (Gauss l	Diverg	ence th	eorem	for eva	aluatin	g the su	irface	integral.				Apply	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROG	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М					L				М			
CO2	S	S	М					L				М			
CO3	S	S	М					L				М			
CO4	S	S	М					L	-			М			
CO5	S	S	М					L				М			
S- Stro	ong; M-	Mediu	m; L-I	LOW											

SYLLABUS

MATRICES:

Characteristic equation– Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES :

Curvature - Cartesian and Parametric Co-ordinates - Centre and radius of curvature - Circle of curvature.

Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method,

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration(in both Cartesian and polar coordinates)-Change of order of integration

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

1	COURSE	DESIGNERS				
	S.No	Name of the Faculty	Designation	Department	Mail ID	
	1	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics	bhuvaneswari@avit.ac.in	
	2	Dr.G.Selvam	Associate Professor	Mathematics	selvam@vmkvec.edu.in	

MATHEMATICS FOR CIVIL	Category	L	Т	Р	Credit
ENGINEERS	FC-BS	2	1	0	3

PREAMBLE

An engineering student needs to have some basic mathematical tools and techniques to apply in diverse applications in Engineering. This emphasizes the development of rigorous logical thinking and analytical skills of the student and appraises him the complete procedure for solving different kinds of problems that occur in engineering. Based on this, the course aims at giving adequate exposure in Ordinary differential equations, Laplace transforms, Applications of Laplace transforms, Fourier transforms and Z-transforms.

PREREQUISITE

Engineering Mathematics

COUR	RSE OI	BJECT	FIVES												
1	To equ	uip ther	nselves	familia	r with l	Laplace	transfo	orm.							
2	2 To gain good knowledge in the application of Laplace transforms														
3	3 Fourier transforms has the wide application in the field of heat diffusion, wave propagation and in signal and systems analysis.														
4 To learn about Z- transforms and its applications.															
5 To expose the concept of Analytical function.															
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. Apply Laplace transform technique to solve the given ordinary differential equation. Apply															
CO2. Apply Applications of Laplace transform technique to solve the given ordinary differential equation. Apply															
CO3. Demonstrate Fourier Transform as a tool for solving integral equations. Apply															
CO4.Used to solve second-order ordinary difference equations using Z-transform techniques															
Tools														A	pply
CO5: F	Predict a	an analy	tic fund	ction, w	hen its	real or	imagin	ary part	is know	wn					
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND P	PROG	RAMM	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М					L				М			
CO2	S	S	М					L				М			
CO3	S	S	М					L				М			
CO4	S	S	М					L				М			
CO5	S	S	М					L				М			
S-Stro	ong; M	-Medi	um; L	-Low											

SYLLABUS

LAPLACE TRANSFORMS

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems –Transform of periodic functions

INVERSE LAPLACE TRANSFORMS AND APPLICATIONS

Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms.

FOURIER TRANSFORMS

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

ANALYTICAL GEOMETRY

Equation of a sphere-Plane section of a sphere-Tangent Plane-Equation of a cylinder-Right circular cylinder,

TEXT BOOKS:

- 1. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2020)

REFERENCES:

- 3. "Engineering Mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 4. Dr.A. Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 5. Kandasamy. P, Thilagavathy. K. and Gunavathy. K., "Engineering Mathematics", Volumes I & II (10thEdition), S. Chand & Co., New Delhi (2014).

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L. Tamilselvi	Professor	Mathematics	ltamilselvi@avit.ac.in
2	Dr.G.Selvam	Asso.Prof	Mathematics	selvam@vmkvec.edu.in

PROBABILITY AND STATISTICS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

CO3

S

S

Μ

L

Probabilistic and statistical analysis is mostly used in varied applications in Engineering and Science. Statistical method introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests and designing the experiments with several factors. Statistical Quality control is a method of quality control which employs statistical methods to monitor and control a process and ensure the process operates efficiently, producing more specification-conforming product. Based on this, the course aims at giving adequate exposure in random variables, probability distributions, regression and correlation, test of hypothesis and statistical quality control.

PREREQUISITE – NIL

COUR	SE OB	JECTI	VES												
1	To ge statist	t the k ical dat	nowled a.	ge on c	concept	s of rai	ndom v	variable	s and d	listributio	ons with	respect	to how t	hey are	applied to
2	To acc	quire sk	tills in h	andling	g situati	ons inv	olving	more th	an one	random v	variable a	and func	tions of ra	undom va	ariables
3	To aco made	quire kr on the s	nowledg sample.	ge of Te	sting of	Hypot	hesis us	seful in	making	decision	and test	them by	means of	the mea	surements
4	To be uncert	expose ainty a	d to sta nd varia	tistical : tion	method	s desigi	ned to c	ontribu	te to the	e process	of maki	ng scient	tific judgr	nents in t	the face of
5	To un sampl	derstar ing.	nd the c	concept	of Qua	ality co	ontrol a	nd the	use of	operatin	g charac	eteristic	(OC) cur	ves in A	cceptance
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1. S	elect ar n.	n approj	priate p	robabili	ty distr	ibution	to dete	rmine p	robabil	ity functi	ion for so	olving en	gineering	Apply	/
CO2. I	Derive tl	he marg	ginal an	d condi	tional d	istribut	ions of	bivaria	te rando	om variat	oles.			Apply	/
CO3 . A	Apply th	ne conce	epts of l	arge/sn	nall sam	nple tes	ts into r	eal life	probler	ns				Apply	/
CO4. I more th	nterpret an two	results	from Andent p	Analysi opulatio	s of Va ons.	riance	(ANOV	′A), a t	echniqu	e used to	o compa	re means	s amongst	Apply	1
CO5. H accepta	Prepare ble or u	Contro inaccep	l charts table ba	and de	ecide oi accepta	n the in ance sar	-contro	ol status plans.	of the	process.	Estimat	e wheth	er a lot is	Apply	1
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L				L				Μ			
CO2	S	S	М	L				L				М			

L

--

--

Μ

CO4	S	S	М	L	 	 L	 	 М	 	
CO5	S	S	М	М	 	 L	 	 М	 	

S- Strong; M-Medium; L-Low

SYLLABUS

STANDARD DISTRIBUTION: Standard Distributions - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions.

TWO DIMENSIONAL RANDOM VARIABLES: Joint distributions – Marginal and conditional distributions – Covariance - Correlation and Regression Analysis.

TESTING OF HYPOTHESIS: Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attributes.

DESIGN OF EXPERIMENTS: Analysis of Variance - One Way Classification - Two Way Classification - Completely Randomized Design – Randomized Block Design – Latin Square Design.

STATISTICAL QUALITY CONTROL: Introduction – Process control – Control charts for measurements (X and R charts) - Control charts for attributes (p, c and np charts) - Tolerance limits - Acceptance sampling - single sampling, double sampling, multiple sampling and sequential sampling.

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", 45th Edition, Sultan Chand & Sons Publishers (2017).
- 2. Douglas C. Montgomery and George C. Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", 12th Edition, Sultan Chand & Sons, New Delhi (2020).
- 2. Miller, "Probability and Statistics for Engineers", 9th Edition, Freund-Hall, Prentice India Ltd. (2017).

COURS	DE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Vijayarakavan	Associate Professor	Mathematics	vijayarakavan@vmkvec.edu.in
2.	Dr. A.K.Bhuvaneswari	Associate Professor	Mathematics	bhuvaneswari@avit.ac.in
				•

COUDER DEGLENERS

NUMERICAL METHODS	Category	L	Т	Р	Credit
	FC-BS	2	1	0	3

PREAMBLE

This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. An under graduate of Engineering student needs to know sufficient numerical methods and techniques for solving engineering problems such as static or steady state problems, vibration or stability problems and initial value or transient problems etc.

PREREQUISITE

1. Engineering Mathematics

2. Mathe	ematics	for Civ	vil Engi	neers											
COUR	SE OB.	JECTI	VES												
1	To far	niliar w	ith nun	nerical	solution	of equa	ations								
2	To be get exposed to finite differences and interpolation														
3	To be	thoroug	gh with	the nur	nerical	Differe	ntiation	and in	tegratio	n					
4	To fin	d nume	rical so	lutions	of ordi	nary dif	ferentia	al equat	ions						
5	To fin	d nume	rical so	lutions	of parti	al diffe	rential	equation	ns						
COUR	SE OU	тсом	IES												
On the s	success	ful com	pletion	of the	course,	student	s will b	e able t	0						
CO1. S	olve th Enginee	e syster ering.	m of lir	near alg	ebraic	equation	ns and	single 1	non line	ear equat	ions aris	ing in th	e field of	Apply	1
CO2. A	2. Apply methods to find intermediate numerical value & polynomial of numerical data. Apply														
CO3 . A	pply m	ethods	to find	integrat	tion, de	rivative	s of one	e and tv	vo varia	ble funct	tions.			Apply	7
CO4. S	olve the	e initial	value p	oroblem	is using	single	step and	d multis	step me	thods.				Apply	7
CO5. S	olve the	e bound	lary val	ue prob	lems us	sing fini	ite diffe	rence n	nethods					Apply	1
MAPPI	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAM	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L			L					М			
CO2	S	S	М	L			L					М			
CO3	S	S	М	L			L					М			
CO4	S	S	М	М			L					М			
CO5	S	S	М	М			L					М			

S- Strong; M-Medium; L-Low

SYLLABUS

SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations – Fixed point iteration method – Newton Raphson method – Solution of linear system of equations – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel – Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS:

Finite diference methods for solving second order two point linear boundary value problems – Finite diference techniques for the solution of two dimensional Laplace's and Poison's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TEXT BOOKS:

- 3. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers (2015).
- 4. S.R.K. Iyengar, R.K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition (2012).
- 5. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).

REFERENCES:

- 3. Joe D. Hoffman , Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).
- 4. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education (2010).

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Gayathri	Assistant Professor	Mathematics	gayathri@avit.ac.in
2	Dr. M.Vijayarakavan	Associate Professor	Mathematics	vijayarakavan@vmkvec.edu.in

COURSE DESIGNERS

		<u> </u>								1			T		
				SI	MART	MATI	ERIAL	S		Categ	gory	L	Т	Р	Credit
			FC-BS 3										0	0	3
PREA	MBLE														
Smart	Materia	ls give	an outl	ook ab	out var	ious typ	bes of f	unction	al mate	rials hav	ing pote	ntial dev	vice appli	cations i	n different
engine alloys,	alloys, nanomaterials, magnetic materials and superconducting materials.														
PRER	EQUIS	SITE -	: Physi	cal Sci	ences –	Engine	eering l	Physics							
COUR	RSE OB	SJECT	IVES												
1	To im	part th	e basic	propert	ties of c	lifferen	t mater	ials.							
2	To un	dersta	nd the st	tructure	e of cry	stalline	materi	als.							
3	To un	dersta	nd the p	roperti	es of sn	nart ma	terials	and rea	lize its	industria	l applica	tions.			
4	To lea	arn the	synthes	is of N	ano ma	terials	and car	bon na	notubes						
5	To lea	arn the	propert	ies, cla	ssificat	ion and	releva	nt appli	ications	of magr	netic mat	erials.			
6	To un	dersta	nd the c	oncept	of supe	ercondu	ctivity,	proper	ties of a	super con	nductor a	and their	industria	al applica	tions.
COUR	RSE OU	JTCO	MES												
On the	success	sful co	mpletio	n of the	e course	e, stude	nts will	l be abl	e to						
CO1. u	understa	and the	basic p	oroperti	es of va	arious n	naterial	s.						Unde	rstand
CO2. le	earn the	struct	ure of C	rystalli	ne Mat	erials								Appl	7
CO3. g	ain the	basic k	nowled	lge and	recogn	ize the	applica	tions o	f Smart	Materia	ls			Appl	1
CO4. g	et an ex	posure	e about 1	the prop	perties	of Nano	o mater	ials						Appl	1
CO5. g	ain the	knowl	edge ab	out the	proper	ties of r	nagneti	ic mate	rials an	d familia	rize thei	r applica	ations.	Appl	1
CO6. g	ain the	knowl	edge ab	out Sup	percond	lucting	materia	ıls						Appl	1
MAPP	ING W	VITH	PROGI	RAMM	E OU	ГСОМ	ES AN	D PR(OGRAN	MME SI	PECIFI	C OUT	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO3	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO4	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO6	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-
S- Stro	ong; M	Medi	um; L-l	Low											
SYLL	ABUS														

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures – determination of interplanar distance (d).

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application – SMA in Actuators and Blood clot filters, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and industrial applications (Core of the Transformer).

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Industrial Applications of superconductors (SQUID, Cryotrons and Maglev Trains).

TEXT BOOKS:

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. A.K. Katiyar and C.K. Pandey, Engineering Physics Theory and Practical, Wiley Publisher, 2015.

REFERENCES:

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.

SE DESIGNERS			
Name of the Faculty	Designation	Department	Mail ID
Dr. G. Suresh	Associate Professor	Physics	suresh.physics@avit.ac.in
Dr. R. N. Viswanath	Professor	Physics	rnvishwanath@avit.ac.in
Dr. B. Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phys@avit.ac.in
	E DESIGNERS Name of the Faculty Dr. G. Suresh Dr. R. N. Viswanath Dr. B. Dhanalakshmi	E DESIGNERSName of the FacultyDesignationDr. G. SureshAssociate ProfessorDr. R. N. ViswanathProfessorDr. B. DhanalakshmiAssociate Professor	E DESIGNERSName of the FacultyDesignationDepartmentDr. G. SureshAssociate ProfessorPhysicsDr. R. N. ViswanathProfessorPhysicsDr. B. DhanalakshmiAssociate ProfessorPhysics

			(GREEN	N BUI	LDIN	G MA'	ΓERIA	LS		Catego	ory L	Т	Р	C	Credit
											FC-BS	3	0	0		3
Prea	mble															
This	course	is desig	ned to u	inderst	and the	princi	ples an	d mech	nanisms	s of gree	en buildi	ng con	epts. T	'o en	lighte	n
the s	tudents	to the c	urrent g	reen bu	ilding	trend a	nd to h	elp the	m reali	ze the p	ositive ii	npacts	of the a	ppli	cation	S
oi gi	een mat	erials a	is a prac	ctice in	the pre	esent s	cenario).								
PREI	REQUI	SITE	NI	T												
COU	RSE OI	RIFCI	IVES													
COU		JJLUI														
1	Τοι	inderst	and the	concep	ot of gre	een bui	lding a	nd its	charact	eristics						
2	То	categor	ies the c	lesign o	concept	ts of gr	een bu	ildings								
3	Τοι	inderst	and the	various	s green	buildi	ng mat	erials.								
4	Тос	categor	ies the v	various	green	materia	als for	the int	erior.							
5	Тое	emphas	ize the	role and	d signif	icance	ofnan	o mate	rials in	n green b	ouildings	5.				
COU	RSE O	UTCO	MES													
On the	e succes	sful co	mpletio	n of the	e cours	e, stud	ents w	ill be al	ole to							
CO1.	Gain k	nowled	ge in gr	een bui	ildings	concep	ot and	princip	les.			Under	stand			
CO2. cycle	Identify of susta	and and an	nalyse t building	he vari gs.	ous rat	ing sys	stems o	of green	n build	ings and	l life	Analy	se			
CO3	Underst	and an	d damo	netrata	tha ara	on huil	ding d	osian				Under	stand			
CO3.	Underst	and an	u uemo	listiate	the gre		unig u	esign								
<u>CO4</u>	Coin 1	morrila	las sha			amiala	and an	mly th		ant in		A				
CO4.	Gain K	nowiec of susta	ige abc	ut gre	en mai	eriais a	and ap	piy th	e conc	ept m		Арріу				
const	uetion	1 54514		Jananie												
CO5	To gai	n awar	eness a	hout th	e nano	techno	logy 2	nnlicat	ions in	n green						
buildings materials and apply for improved performance characteristics																
ounu	iigs inat	oriuis u	ind uppi	y 101 II	nprove	a perio)IIIIaiic	e entire		105						
MAP	PING V	VITH	PROGI	RAMN	IE OU	TCON	IES A	ND PF	ROGR	AMME	SPECI	FIC O	UTCO	MES	S	
			_								r					
COS	,							DOO	DOO	DO 10	DO11	DO 10		∖ 1 Τ	000	DCO2
002	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIO	POIT	POL	PSC		2802	PS03

-

-

-

-

-

-

-

-

-

CO2

L

-

-

-

-

-

CO3	-	М	-	-	М	L	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	S	-	-	-	-	-	-	-	-
CO5	S	-	М	-	-	М	-	-	-	-	-	-	-	-	-
S- Stro	ong: M-	Mediu	n: L-Lo)W	-						-				

SYLLABUS

UNIT -I CONCEPT OF GREEN BUILDINGS

Green building principles, characteristics and benefits of a green building, certification of green buildings rating systems (BREEAM, USGBC, LEED, IGBC) criteria for rating, sustainability. Sustainable green building, criteria for green selection product, current issues and trends in green building, green building tool, CASBEE (Comprehensive Assessment System for Built Environment Efficiency) and BEE (Building Environmental Efficiency), GRIHA.

UNIT -- II DESIGN OF GREEN BUILDINGS

Characteristics and principles of green building design, Intelligent and living buildings, passive and active solar design, Sustainable sites, life cycle assessment, site development and layout, building orientation and building system design, storm water system design, considerations of energy consumption, carbon emissions, water use, environmental performance target, indoor air quality, noise level, comfort.

UNIT -III GREEN BUILDING MATERIALS

Green materials - introduction, ICFs, SIPs, sustainable green building materials, product selection criteria, green cement, flyash, RHA, SBS, Depleting natural resources of building materials, renewable and recyclable resources, energy efficient materials - green cement, biomaterials, biopolymers, bioplastics, smart materials and Green composites.

UNIT –IV GREEN MATERIALS FOR INTERIOR

Natural clay plaster, Natural fiber flooring, green building materials for interiors(bamboo, hemp, wool, natural fibre), HVAC (Heating Ventilaiton Air Conditioning), construction materials and furnishings, cement substitutes for sustainable concrete, paving materials for green buildings, Low/no-VOC (volatile organic compound) paints, stains, and coatings, Paperless drywall-Heating and Air Conditioning, Solar hot water, Environmentally sustainable interior design (ESID).

UNIT -V NANOMATERIALS FOR GREEN SYSTEMS

Nano cement, BIPV(Building Integrated Photovoltaics), Nano insulating coating materials, nanotechnology and it's applications in construction, nano composites, nano particle reinforced materials, nano technology for green buildings, nano architecture, nanotechnology in concrete, Nanotechnology applications in Windows, Skylights, and Lighting-Paints, Roofs, Walls, and Cooling- Multifunctional GasSensors, Biomimetic Sensors, Optical Interference Sensors.

Text Book

- 1. Jerry Yudelson Green building Through Integrated Design. McGraw Hill, 2009.
- 2. Green Building Hand Book by Tomwoolley and Samkimings, 2009.
- 3. Green building materials by Ross Spiegel and Dru Meadows, 3rd Edition, 2011.

Reference

- 1. Complete Guide to Green Buildings by Trish riley.
- 2. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Prasad Vaidya, 2016.
- 3. Understanding Green building materials by <u>Traci Rose Rider</u>, <u>Stacy Glass</u> and <u>Jessica McNaughton</u>.
- 4. Green building materials, Energy & Civil Engineering by Jimmy C.M. Kao, Wen-Pei Sung, Ran Chen, 2014.

S.No	Name of the Faculty	Designation	Department	Mail Id
1	A. Gilbert Sunderraj	Assistant Professor	Chemistry	gilbertsunderraj@vmkve c.edu.in
2	Dr. K. Sanghamitra	Assistant Professor	Chemistry	sanghamitra.chemistry@ avit.ac.in

			ENVIRONMENTAL SCIENCES									L	Т	Р	Cr	edit
			(Common to An Drancnes)								FC-BS	3	0	0		3
Environmental science is an interdisciplinary field that integrates physical, chemical, biological, and atmospheric sciences. Environmental studies deals with the human relations to the environment and societal problems and conserving the environment for the future. Environmental engineering focuses on the various issues of environment and its management for sustainable development by improving the environmental quality in every aspect.																
PREREQUISITE NIL																
COURSE OBJECTIVES																
1 To inculcate the knowledge of significance of environmental studies and conservation of the natural resources.																
2	To	To acquire knowledge of ecosystem, biodiversity, it's threats and the need for conservation														
3	Тс	To gain knowledge about environmental pollution, it's sources, effects and control measures														
4	To en	To familiarize the legal provisions and the national and international concern for the protection of environment														
5	5 To be aware of the population on human health and environment, role of technology in monitoring human health and environment.														iuman	
COUI	RSE O	UTCC	OMES													
On the	succes	ssful c	ompletio	n of the	course	, studer	nts will	be able	to							
CO1.	Underst	tand th	ne impor	tance of	enviro	nment a	and alte	rnate en	ergy res	sources	U	ndersta	nd			
CO2. and bi	Initiate odivers	the avity con	wareness nservatio	and rec	cognize	the soc	ial resp	onsibili	ty in ec	osysten	n Aj	oply				
CO3. The pro	CO3. To develop technologies to analyse the air, water and soil pollution and solve the problems Apply															
CO4. To evaluate the social issues and apply suitable environmental regulations for a sustainable development Evaluate																
CO5. To identify and analyse the urban problems, population on human health and environment Analyse																
MAPI	PING V	ЛІН	PROG	KAMM	EOUI	COMI	LS ANI	J PRO	GKAM.	ME SP	ECIFI(JUUT	COM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	S	M	L	-	-	S	S	S	-	-	-	S	-	\square	-	-
CO2	S	M	Μ	-	-	S	S	S	-	-	-	S	-		-	-

CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	I	S	S	S	-	-	-	S	-	I	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S- Stro	ong; M-	Mediur	n; L-Lo	W											

SYLLABUS

UNIT –I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT -II ECOSYSTEMS AND BIO - DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity –Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

UNIT –III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation – rain water harvesting, watershed management -Resettlement and rehabilitation of people, case studies –Climate change - Global warming - Acid rain - Ozone depletion- Environment Protection Act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights – Value education –AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

- 2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

6 hrs

6 hrs

6 hrs

6 hrs

6 hrs

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.										
6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.										
COURSE	COURSE DESIGNERS									
S.No.	Name of the Faculty Mail ID									
1.Dr. K. Sanghamitrasanghamitra.chemistry@avit.ac.in										
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in								

DESIGN OF REINFORCED CONCRETE	Category	L	Т	Р	Credit
ELEMENTS	CC	2	1	0	3

PREAMBLE

The primary concern of an engineer is design. Structural design consists conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure. Idealization involves reducing the conceived structure into primary elements. Byanalysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear.

PRE-REQUISITE - STRENGTH OF MATERIALS																
COURSE OBJECTIVES																
1	To understand the basic concepts of all methods of design.															
2	To obtain the knowledge of using Indian standard codes and special publication.															
3	To know the design concepts of all the structural members and learn economical design for materialssaving															
4	To know the design methodologies by limit state design for the beams, slabs, column and footings															
5 To know the design methodologies for retaining walls, water tanks and concrete walls.																
COURSE OUTCOMES																
Upon completion of this course, the student will be able to																
CO:1	Understand the usage of IS codes in design of reinforced concrete structures														Understand	
CO:2	Apply the concepts of beams for shear, torsion and serviceability												Analyse & Apply			
CO:3	3 Identify the types and design of slabs.												Analyze			
CO:4	4 Design the uniaxial and biaxial bending of column.												Analyze			
CO:5	5 Design the simple footings and combined footings A												Analyze			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS		PO	PO	РО	PO	PO	PO	РО	Р	PO	PO10	PO	012	PSO	PSO	PSO03
		01	02	03	04	05	06	07	0	09		11		01	02	
									08							
CO:1		М	L	М	-	Μ	S	Μ	Μ	S	-	S	S	М	L	L
CO:2		М	Μ	L	-	S	Μ	L	S	S	-	Μ	S	L	S	L
CO:3		L	S	М	L	S	S	Μ	Μ	S	L	S	S	Μ	S	М
CO:4		S	Μ	S	-	Μ	S	L	S	S	-	Μ	S	S	М	S
CO:5		Μ	Μ	Μ	-	Μ	Μ	Μ	Μ	S	-	S	S	L	S	S
S - ST	RON	JG, M	– MEI	DIUM and	dL - L	.OW										
SYLL	ABU	IS														
INTR	ODU	CTIC	ON TO	RCC ST	RUCI	URES	AND	LIMIT	STA	TE M	ETHO	D				
Introdu	ictio	n abou	ut IS co	des - Cor	icept of	f elastic	e metho	od ultim	ate lo	ad me	thod and	1 limi	t state	method	- advanta	ages of limit
state m	netho	d over	r other 1	methods ·	- Analy	vsis and	design	of sing	gly an	d doul	bly reinf	orced	recta	ngular a	nd flange	d beams –
Plain Cement Concrete Materials.																
	1 51		DESIG	N OF BI	LAMS	FORS	HEAL	<u>, iok</u>	SION		<u>) SERV</u>			<u>1 Y</u>		
Limits	state	design	n of RC	beams f	or shea	r and to	rsion	- Desigi	n of R	C bea	ams for a	combi	ned b	ending,	shearand	torsion – Use
of desi	gn a	ias - L	Jesign r	requireme	ent for	bond al	nd anch	iorage a	as per	15 CO	ae – Des	sign c	Doint	gly Keini	forced Be	am – Design
Service	ony I	ty roc	nceu B	taill - De	anng	or reini	orceme	$-\mathrm{U}($	Jicep	1 01 56	i viceabi	my –	Reini		ement Cor	icrete Deam
	Caull F ST	ATE	DFSIC	N OF PA		n. ARS										

Behaviour of one way and two way slabs - Design of one way simply supported, cantilever and Continuous slabs - Design of two-way slabs for various edge conditions - Torsion reinforcement at corners - Design of flat slabs.
LIMIT STATE DESIGN OF RCC COMPRESSION MEMBERS

Types of columns-analysis and design of short columns for axial, uniaxial and bi axial bending due to external load-design of long columns- Design of Slender Column- Detailing of reinforcement - use of design aids

LIMIT STATE DESIGN OF RCC FOUNDATION

Design of footing for masonry and reinforced walls – Types of footing - Design of axially and eccentrically loaded square and rectangular footings – Design of combined rectangular footings for two columns – Design of wall footing - Detailing of reinforcement.

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

- 1. Subramanian, N. "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
- N.Krishna Raju, "Design of Reinforced Concrete Structures (IS: 456-2000)", CBS Publishers & Distributors Pvt Ltd., 2016

REFERENCE BOOKS

- 1. IS 456: 2000 Plain and Reinforced Concrete Code of Practice.
- 2. IS 800: 2007 General Constructions in Steel Code of Practice.
- 3. Devadoss Menon and Pillai S., "Reinforced Concrete Design", McGraw Hill Education India Private Limited; 3rd edition 2009.
- 4. VARGHEESE P C," Limit State Design of Reinforced Concrete", Prentice Hall of India, Private, Limited New Delhi, 2004
- 5. Dr.B.C. PUNMIA, Er.ASHOK KUMAR JAIN, Dr.ARUN KUMAR JAIN, "Limit State Design of Reinforced concrete (As per IS 456: 2000)", Laxmi Publications(P)Ltd.
- 6. Reinforced Cement Concrete Design by Neelam Sharma S K KATARIA & SONS-NEW DELHI.

Relevant NPTEL Course

Design of Reinforced Concrete Structures by Prof.Nirjhar Dhang, IIT Kharagpur.

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Dr.S.P.Sangeetha	Professor	Civil/AVIT	sangeetha@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

		С	ONSTI	RUCT	ION	MAT	'ERI/	ALS A	ND		Cate	gory	L	Т	Р	Credit
]	TECHN	IQUI	ES (T	heory	and	Pract	icals)		0	CC	3	0	2	4
PREA	AMBI	LE														
The a	im of	the cour	se is to	know	abou	t the v	variou	is con	struct	ion m	aterial	s, both	1 conv	entio	onal and	modern,
that ar	re con	monly u	sed in c	1V1l er	iginee	ring c	onstr	uction	A cc	onstruc	ction te	echniq	ue foc	uses	more on	detailed
unders	standi	ng of co	oncrete	maki	ng ma	aterial	is and	prod	uction	n proc	cess. A	and a	so kn	ow	about	
DDE	DEO			stures	like i	ormw	ork a		anoia	ing.						
COU	RSF (OBIECT	TVFS													
1	Tour	derstand	the role	e of ci	vil en	oineer	rs and	acco	mnlisł	ment	in civ	il engi	neerin	σnr	ofession	
2	Tour	derstand	the phy		and n	<u>echa</u>	nical	nrope	rties o	f cons	tructio	n mat	eriale	$\frac{s pr}{s nd}$	their rest	vective
2	testin	g proced	ure	sicai		leena	incar j	proper		i cons	silucit)11 111au	citais	anu	then resp	
3	To kr	ow the h	uilding	mater	ials a	vailab	le in 1	marke	t for c	onstru	uction	purpo	se.			
4	To le	arn the i	principl	es and	1 met	hods	to he	follo	wed i	n con	structi	on of	varion	is ci	vil engir	neering
	struct	ures.	principi	cs and	11100	nous		10110	weu i		structi	on or	varioe	15 01	vii engii	leering
5	To lea	arn diffei	ent type	es of s	caffo	lding	and ce	enteri	ng in t	ouildir	ng con	structi	on.			
COU	RSE (OUTCO	MES			0			0		0					
Upon	comp	letion of	this cou	irse, tl	ne stu	dent v	vill be	e able	to							
CO:1	Uı	nderstand	l the rol	e of ci	vil en	iginee	rs and	l acco	mplis	hment	in civ	il eng	ineerir	ng.	Unders	stand
CO:2	l Id	entify the	e relevai	nt phy	sical a	and me	echan	ical p	ropert	ies of	constr	uction	mater	ials.	Unders	stand
CO-3	O:3 Apply the modern construction materials and roofing materials appropriate to Understand															
0.5	the climate and functional aspects of the buildings.															
$CO^{\cdot}4$	Decide construction technique to be followed in brick, stone and hollow block Understand															
0.4	CO:4 masonry, concreting, flooring, roofing, plastering and painting etc. Understand												,tunu			
CO:5	Id	entify su	itable ty	pes of	fscaff	oldin	g and	its ap	plicat	ions ir	1 const	ructio	n.		Unders	tand
MAP	PING	WITH	PROG	RAM	ME C	DUTC	COMI	ES AN	ND PR	ROGR	RAMN	IE SP	ECIF		DUTCON	AES
COS	P	D PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSC		PSO	PSO
CO.1	0	1 02	03 M	04	05 M	06	0/	08	09	10	 	12	01 M		02 I	03
CO:1			IVI	-	NI	<u> </u>	IVI	IVI C	5 5	-	S M	3	IVI			
C0:2				-	2	5 5		S M	5 5	- T	NI S	2	L		M S	3 M
C0.3			M	-	S M	S I	M	IVI S	5 5	L	S M	2 C	L S		S M	IVI S
C0.4		\mathbf{M}	M	-	IVI		M	M	2	-	S IVI	2	с Т		S S	M S
S = S		$[G M_{-}]$		- Man			IVI	111	5	-	6	G	L		3	111
SYLI		$\frac{10}{S}$	WILDIO	Ivi an	1 L -	LUW										
INTR		CTION	TOCI	VIL F	ING	NEEI	RING									
Role	of Civ	il Engine	ers in S	ociety	$\cdot $ Outs	tandi	ng acc	romnl	ishme	nts of	the nr	ofessio	יות הי Fut	ture f	trends T	echno-
econo	mic c	onsiderat	tions	oenery	, out	Junan		lompi	1511110	1113 01	the pr	010551	511, I U	uitt	irenus. r	cenno
MAT	ERIA	LS & I	TS PRO	PER'	FIES											
Physic	cal an	d Mecha	nical p	operti	es of	const	ructio	n ma	terials	- con	nmonl	v usec	l types	of	stones - 7	Tests for
stones	s, roa	d aggreg	ates an	d con	ncrete	aggr	egate	s, pro	pertie	s of	sand,	BIS s	pecifi	catio	on for te	sting of
aggreg	gates -	-Bricks -	- Prope	rties a	nd tes	ting r	netho	ds for	Brick	ks, Re	cycled	Aggr	egates.	- Cer	ment-Cei	ment –
Manu	factur	ing -wet	and dry	proces	sses, c	constit	uents	and c	onstit	ution,	proper	ties - '	Гурез	of ce	ement – T	estingof
Ceme	nt	-	-													-
MOD	ERN	CONST	RUCT	ION I	MAT	ERIA	LS &	ROC)FIN	G MA	TERI	AL				
Mode	rn ma	terials –	Neoprei	ne, the	rmoc	ole, de	ecorat	ive pa	anels a	nd laı	minate	s, arch	itectu	ral gl	lass andc	eramics,
ferroc	ement	, PVC,	polyme	r base	e mate	erials,	fibre	e reint	forced	l plast	tics. S	tructu	al Ste	el a	nd Alum	ninium –
Roofi	ng Ma	terial – I	Physical	descr	iption	s of a	sbesto	os she	ets, G	[sheet	ts, tube	es and	light v	veigł	nt	
roofin	ig mat	erials - T	imber -	Туре	s, Sea	sonin	g and	vario	us pro	ducts.						

CONSTRUCTION COMPONENTS

Principles of construction – Selection of suitable type of masonry – Reinforced brick work – Stone masonry – Hollow block masonry - Pointing and Plastering- its purpose – Damp proof Course (DPC)- Anti-termite measures and treatments-Construction Joints- need and materials used.

SCAFFOLDING

Types of scaffolding and centering-its suitability as per situations and the type of structures.

LIST OF EXPERIMENTS

1. TEST ON BRICKS

- i. Shape and size test of brick.
- ii. Determination of water absorption of brick
- iii. Determination of compressive strength of brick.

2. TEST ON CEMENT

- i. Determination of fineness of cement by dry sieving/ by air permeability method.
- ii. Determination of normal consistency of cement.
- iii. Determination of initial and final setting time of cement.
- iv. Determination of specific gravity of cement by using specific gravity bottle. / by using Le- Chatelier Flask.
- v. Determination of soundness of cement.

3. TEST ON COARSE AGGREGATE AND FINE AGGREGATE

- i. Determination of fineness modulus and grain size distribution of fine aggregate.
- ii. Determination of fineness modulus and grain size distribution of coarse aggregate.
- iii. Determination of crushing value of coarse aggregate.

4. TEST ON STEEL

i. Tensile strength of Steel.

TEXT BOOK (S)

- 1. Rangwala, (2016), Building construction, Charotar Publishers.
- 2. M.S.SHETTY, Concrete Technology (Theory and Practice), S.Chand & Company Ltd, 2018.

REFERENCE BOOKS

- 1. Ken Ward-Harvey (2009) (fourth edition), Fundamental building materials, Universal Publisher.
- 2. Edward Allen, Joseph Iano (2013) Fundamentals of Building Construction; Materials and Methods, Willey Publications.
- 3. Rangwala, (2015), Engineering materials, Charotar Publishers.
- 4. Edward Allen, Joseph Iano (2014) (Sixth Edition), Fundamental building materials, John Wiley & sons inc (Publisher).

Relevant NPTEL Course

Building materials and Construction, Dr. B. Bhattacharjee, IIT Delhi

S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Dr.S.P.Sangeetha	Professor	Civil/AVIT	sangeetha@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

			STR	ENG	гно	F MA	TER	IALS			Cate	gory	L	Т	P	Credit
			J								C	C	2	1	0	3
PREAN	MBLE	C 1	c 1						• •		1 (•	1			
The me	chanic	s of de	formab	le sol	1ds 1s	more	conce	erned	with t	he int	ernal f	torces	and as	socia	ted ch	anges in
the geor	metry of	of the c	compon	ents 1	nvolv	ed of	partic	ular 11	nport	ance a	ire the	proper	rties of	the i	nateria	als used,
the strei	ngth of	which	n will d	eterm	ine w	hether	the c	ompo	nents	tail b	y breal	king ir	1 servic	e, ar	id the	stiffness
of which	h will c	leterm	ine whe	ther t	ne am	ount c	of defe	ormati	on the	ey sun	ter is a	ccepta	ble. In	herefo	ore, th	e subject
of meet	the of	of mat	erials c	or stre	ngin (51 mai	be the	s is ce	ntrai	tion o	whole f the c		ity of e	engin	eering	, design.
Dsually	the of	blectiv	es III al booroti	col on	olyco	will	ovnor	imont	ni rosi	uon o ilte he	vo ogu	al role	s, strat	ns, a		lections
PRF_P		SITE	Nil	cai ali	aryse	s anu (exper	menta	arrest	ins na	ve equ		5 III UI	is ne	lu.	
COURS	SE OB	JECT	TVES													
1 T	o prov	ide the	basic c	oncer	ots and	d prin	ciples	of str	ength	of ma	aterials					
2 T	o give	an abil	lity to c	alcula	te stro	esses a	and de	eformation	ations	of ob	jects u	nder e	xternal	load	lings.	
3 T	o give	an abi	lity to a	apply	the k	nowle	dge o	f strei	ngth c	of mat	erials	on eng	gineerir	ng ap	plicati	ions and
de	esign p	roblen	ns.				C		0					•	•	
COUR	SE OU	JTCO	MES													
Upon co	omplet	ion of	this cou	ırse, tl	he stu	dent v	vill be	e able	to							
CO:1	Unde	erstand	the fur	ıdame	ntal c	oncep	ts of s	stress	and st	train					Und	lerstand
	Evalu	late th	e probl	ems r	elatin	g to p	ure a	nd uni	form	bendi	ng of	beams	and ot	her		
CO:2	simp	le stru	ictures.	Exa	nine	the d	leflect	tion of	of bea	ams ı	ınder	variou	is load	ling	A	pply
	cond	ition.														
CO:3	CO:3 Understand the concept of hoop and radial stress in design of thin and thick Understand															
	cylinders. Solve torsional deformation of Shafts and Apply															
CO:4	Understand the concept of crushing and buckling of columns Understand and Apply															
CO:5	Appl	y the E	Energy	metho	ds in	the stu	ructur	al elei	nents	to sol	ve the	stress	/strain		Aj	oply
	value		DDOCI	DAN				76' A N				IF CD	FCIEL			MES
			PO										DSO			
COS	01	02	03	04	05	06	07	10	10	10	11	12	01		$\frac{30}{12}$	03
CO·1	M	L	03 M	-	M	S	M	M	S	-	S	S	M		L	
CO^2	M	M	L	-	S	M	L	S	S	-	M	S	L		S	
CO:3	L	S	M	L	S	S	M	M	S	L	S	S	M		S	<u> </u>
CO:4	S	M	S	-	M	S	L	S	S	-	M	S	S		~ M	S
CO:5	M	Μ	M	-	Μ	M	M	M	Š	-	S	Š	Ĺ		S	S
S - STF	RONG.	M – N	MEDIU	M and	1 L –	LOW	1									
SYLLA	BUS															
SIMPL	E STF	RESSE	S ANI) STR	AINS	5										
Stress -	Strain	-types	of stres	ses ar	nd stra	ain - F	łooke	's law	- ten	sion -	compr	ession	and sh	ear -	- stres	s - strain
diagram	ns - rela	ation b	etween	elasti	ic con	stants	- Ho	op str	ess - c	compo	osite ba	ars in t	tension	and	comp	ression -
Principl	e of su	perpos	ition - l	oars of	f vary	ing se	ctions	and c	of diff	erent 1	nateria	als - Tl	hermal	stres	ses an	d strains
- princip	pal stre	esses an	nd strai	ns - M	lohr's	circle	e. The	ory of	failu	res.						
SHEAF	R FOR	CE, B	ENDI	NG M	OME	ENT A	ND I	DEFL	ECT	ION (OF BE	CAMS				
Beams a	and Be	nding	- Types	of lo	ads, s	uppor	ts - Sł	near F	orce a	nd Be	ending	Mome	ent Dia	gran	s for s	statically
determi	nate be	eam w	ith con	centra	ted lo	oad, u	niforr	nly di	stribu	ted lo	ad, un	iform	ly vary	ing 1	oad -	Point of
Contra	flexure	e - The	ory of	Simpl	e ben	ding -	Dist	ributic	on of 1	bendir	ng stre	sses a	nd shea	r str	ess. Sl	ope and
deflecti	on of b	eams -	Macau	ilay's	meth	od - M	lomer	nt area	meth	10d - C	Conjug	ate be	am me	thod.		
THIN A	AND T	HICK	SHEI	LLS A	ND 7	rors	ION	IN CI	RCU	LAR	SHAF	T				
Introduc	ction -	Thin C	Cylindri	cal sh	ells -	hoop	stress	- long	gitudii	nal str	esses -	Lame	's theo	ry –	Desig	n of thin
& thick	cylind	rical sl	hells.													

Torsion - Torsion equation - solid and hollow circular shaft - Torsional rigidity - power transmitted by the shafts

THEORY OF COLUMNS

Theory of columns - Long column and short column - Euler's formula - Rankine's formula - Secant formula - Beam column

INTRODUCTION TO DETERMINATE AND INDETERMINATE STRUCTURES

Castigliano's I theorem - unit load method - Maxwell-Betti theorem

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.
- Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

1. R Subramanian, Strength of Materials, Oxford University Press, 2010.

REFERENCE BOOKS

- 1. Gere, J.M. and Goodno, B. J., "Strength of Materials", Indian Edition (4th reprint), Cengage Learning India Private Ltd., 2009.
- 2. 2. Beer, F.P., Johuston, Jr., E.R., Dewolf, J.T. and Mazureu, D.E., "Mechanics of Materials", Fifth Edition, McGraw Hill, 2009.
- 3. Timoshenko, S. P. and Young, D. H., "Elements of Strength of Materials", Fifth Edition, (In MKS Units), East-West Press Pvt. Ltd., 2009.
- 4. Bansal R. K, "Strength of Materials", Laxmi Publications, 2010.

Relevant NPTEL Course

Strength of Materials, IIT Roorkee, Dr. Satish C Sharma

000				
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in
2	Dr.R.Divahar	Associate Professor	Civil/AVIT	Divahar.civil@avit.ac.in

		FLU	JIDS M	ECH	ANIC	CS AN	DHY	DRA	ULI	C	Cate	gory	L	Т	Р	Credit
				EN	[GIN]	EERI	NG				C	C	2	1	0	3
PREA	MBL	Æ														
Fluid I	Mecha	inics and	l Hydra	ulic E	ngine	ering	is a su	ıbject	of eng	gineer	ing sci	ence d	leals wi	th th	e beha	viour of
fluids	at res	t as well	as in n	notion	. It is	an in	porta	nt sub	oject v	vith u	nlimite	ed prac	ctical ap	oplic	ations	ranging
from b	biolog	ical syste	em syst	ems t	o auto	omobi	lles, a	irplan	nes an	id spa	cecraf	t prop	ulsion.	Thu	is this	subject
is giv	en co	onsideral	ble imp	ortanc	e in (Civil,	Mech	anica	l and	Chem	nical E	inginee	ering at	core	e as w	ell as at
profes	sional	levels.	NT:1													
PRE-J	KEQU	DISTLE	– NII TIVES													
						la of a					fl: 4	flores		4.0	Enla	
1	TO ap Borno	piy nyar ulli oqur	ostatic I	aw, p	rincip	le of f	nass a	ina m	omen	um m	i IIuia	nows,	concep	us m	Eulei	's and
2	To pr	wide fu	ndamen	tal kn	owled	lge of	fluide	iter	roner	ties a	nd beh	aviour	under	vario		nditions
2	of inte	rnal and	extern	al flov	vs.		nunu	5, no p	лөрсі	ties ai		avioui	under	varn		nutions
3 '	To de	ermine	the loss	es in a	flow	syste	m. flo	w thro	ough r	pipes.	bound	larv lav	ver con	cepts	5.	
4 '	To mo	tivate th	ne stude	nts to	ident	ify. fo	rmula	te. so	lve th	e com	plex n	robler	n to ma	nage	the h	vdraulic
	relate	l issues.			100110			,		• • • • • • •	P ¹⁰¹ P	100101				jaraano
5 '	To pr	epare th	e stude	ents to	o synt	hesize	e data	and	techn	ical c	concep	ts to	apply i	n wa	ater r	esources
	engin	ering.			2								11 2			
COUI	RSE (OUTCO	MES													
Upon	comp	etion of	this cou	irse, tl	he stu	dent v	vill be	e able	to							
CO:1	Th	e studen	t is intro	oduce	d to th	ne defi	initior	n and j	proper	rties o	f fluid	•			Unc	lerstand
CO:2	Principles of fluid statics, kinematics and dynamics are dealt with subsequently. Apply															
CO.3	Th	e applica	ation of	simili	tude a	and m	odel s	tudy i	is cov	ered s	ubsequ	lently	and		Δ	nnly
0.5	Ap	plication	n to real	situa	tions of	of flui	d flov	v will	be lea	rned					1	тррту
CO:4	Ex	plain the	e variou	s type	s of o	pen cl	nanne	ls and	Unife	orm F	low A	nd Vai	ried Flo	W	Unc	lerstand
CO:5	De	scribe th	ne Dime	nsion	al Ana	alysis	and N	Iodel	Analy	ysis in	hydra	ulic ei	ngineeri	ng	A	Apply
NADI	pro	blems.	DDOO										ECIEL			
	PING		PROG.		VIE C			LS AN				IE SP	ECIFIC			DEC
COS			PO 02	PO 04	PO	PO	PO 07	PO	PO	PO 10	PO 11	PO	PSO	P	80	PSO 02
CO·1	<u> </u>	<u> </u>	03 M	04	05 M	00 S	07	08 M	<u> </u>	10	11 S	12 S	01 M	(<u>52</u>	<u> </u>
C0.1	2	M	S IVI	- S	S IVI	M	T	M	2	_	M	2	S IVI	1	M	<u><u> </u></u>
C0.2		M	M	-	S	S	-	M	S	T	S	S	L		S	<u> </u>
CO.3	S	M	M	-	M	S	-	M	S	-	M	S	S		M	S
CO·5		M	M	-	M	S	-	M	S	_	S	S	M		S	M
S - ST	- RON	G. M - 1	MEDIU	M and	1 L –	LOW			~	l	~	~			~	
SYLL	ABU	<u>S</u>														
FLUI	D PR	OPERT	IES AN	ND ST	ATIS	STICS	5									
Defini	tions	- Fluid a	nd Flui	d Mec	hanic	s - Di	mensi	ons a	nd un	its - F	luid pr	operti	es - Co	ntinu	um -	Concept
of syst	tem ar	d contro	ol volum	ie - Pa	scal's	law a	nd Hy	drosta	atic eq	uation	ı - For	ces on	plane a	nd c	urved	surfaces
- Buoy	<u>yan</u> cy	- Pressu	re meas	ureme	ent.		5			-			-			
FLUI	D KI	NEMAT	TICS A	ND FI	UID	DYN	AMI	CS								
Classi	ficatio	on of flow	ws -strea	am, st	reak a	nd pa	th line	es - Co	ontinu	ity equ	uation	- Strea	am and j	pote	ntial f	unctions
- Flow	v nets ·	Velocit	y meas	ureme	nt - E	uler a	nd Be	rnoull	li's equ	uation	s - Ap	plicati	on of B	erno	ulli's o	equation
- Discl	harge	measure	ment- N	Iomer	ntum l	Princi	ple - I	_amin	ar flov	ws thr	oughp	ipes a	nd betw	een	plates	- Hagen
Poiseu	iille eo	uation -	Darcy	Weist	ach f	ormul	a - M	oody	diagra	ım -Tı	urbule	nt flow	/			
BOUN	NDAF	Y LAY	ER AN	D FL	OW '	I'HR(JUGI	H PIP	ES							

Definition of boundary layer - Thickness and classification - Displacement and momentum thick nesses -Development of Laminar and Turbulent flows in circular pipes - - Major and minor losses of flow in pipes - Pipes in series and in parallel - Pipe network

OPEN CHANNEL FLOW, UNIFORM FLOW AND VARIED FLOW

Open channel flow - types and regime of flow - Velocity distribution in open channel - wide open channel - specific energy - critical flow and its computation -Uniform flow - Velocity measurement - Manning's and Chezy's formula - determination of roughness coefficients - determination of normal depth and velocity - most economical sections - minimum permissible velocity determination - non-erodible channels - Dynamic equation of gradually varied flow - assumptions - characteristics of flow profiles - drawdown and backwater curves - profile determination - graphical integration, direct step, standard step method-hydraulic jump - types - energy dissipation - surges - surge through channel transitions

TURBINES AND PUMPS

Impact of jets on plane and curved plates - turbines - classification - radial flow turbines - Positive displacement pumps - reciprocating pump - negative slip - flow separation conditions - air vessels - indicator diagram and its variation - savings in work done - rotary pumps.

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

- 1. R.K.Bansal,"Fluid Mechanics and Hydraulic Machines",Laxmi Publications,2005 \
- 2. Jain A.K., "Fluid Mechanics (including Hydraulic Machines) ", Khanna Publishers, 8th edition, 1995.

REFERENCE BOOKS

- 1. Kumar K.L., "Engineering Fluid Mechanics ", Eurasia Publishing House (P) Ltd., New Delhi, 2008
- 2. Streeter, Victor L. and Wylie, Benjamin E., "Fluid Mechanics ", McGraw-Hill Ltd., 1998.
- 3. Natarajan M.K., "Principles of Fluids Mechanics ", Anuradha Agencies, Vidayal Karuppur, Kumbakonam, 1995.
- 4. Subramanya K., "Flow in Open channels ", Tata McGraw Hill Publishing Company, 2001.
- 5. Ramamirtham S., "Fluid Mechanics, Hydraulics and Fluid Mechines ", Dhanpat Rai & Sons, Delhi, 1998

COURSE DESIGNERS

Relevant NPTEL Course

Hydra	Hydraulic Engineering, IIT Kharagpur, Prof. Mohammad Saud Afzal											
S.No	oName of the FacultyDesignationDept. / CollegeE-mail ID											
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in								
2	Dr.R.Divahar	Associate Professor	Civil/AVIT	Divahar.civil@avit.ac.in								

ENGINEERING SURVEYING Category L T P	Credit												
(Theory and Practicals) CC 2 1 4	5												
PREAMBLE													
Surveying is the process of determining by measurement, the relative positions of points on or	near the												
earth surface. The data collected from a survey is used in the preparation of plans, maps, profile	s, charts												
and diagrams. In addition survey may be used for the delineation of property boundaries, compu	tation of												
areas and volumes also to set out the proposed work on the ground.													
PRE-REQUISITE – N11													
COURSE OBJECTIVES													
1 To introduce the rudments of plane surveying and geodetic principles to Civil Engineers.													
² To learn the various methods of plane and geodetic surveying to solve the real world Civil Engineering problems													
3 To introduce the concepts of Control Surveying													
4 To introduce the basics of Astronomical Surveying													
5 Understand the importance of advanced techniques involved in surveying such as Total sta	tion and												
GPS	tion and												
COURSE OUTCOMES													
Upon completion of this course, the student will be able to													
CO:1 The use of various surveying instruments and mapping Und	lerstand												
CO:2 Measuring Horizontal angle and vertical angle using different instruments Und	lerstand												
CO:3 Methods of Leveling and setting Levels with different instruments. Apply													
CO:4 Concepts of astronomical surveying and methods to determine time, longitude, Apply													
CO:5 Concept and principle of modern surveying A	nalvze												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCO	OMES												
COS PO	PSO												
01 02 03 04 05 06 07 08 09 10 11 12 01 02	03												
CO:1 S L M L M S - S S M S	L												
CO:2 S M S L S M L M S - M S S s	S												
CO:3 M M M L S S - M S - S S L S	М												
CO:4 S M M L M S L M S - M S S M	S												
CO:5 S M M L M S - M S - S M S	М												
S – STRONG, M – MEDIUM and L – LOW													
SYLLABUS													
FUNDAMENTALS OF CONVENTIONAL SURVEYING AND LEVELLING													
Classifications and basic principles of surveying – Equipment and accessories for ranging and cr	aining –												
Magnetic Bearing – Levelling Principles and theory of Levelling Datum Banch Marks T	morary												
and Permanent Adjustments- Methods of Levelling- Booking – Reduction – Sources of errors in L	evelling												
- Curvature and refraction	evening												
THEODOLITE AND TACHEOMETRIC SURVEYING													
Horizontal and vertical angle measurements – Temporary and permanent adjustments – Hei	phts and												
distances – Tacheometer – Stadia Constants – Analytic Lens - Tangential and Stadia Tacheometry s	irveying												
- Contour - Contouring - Characteristics of contours - Methods of contouring - Tacheometric co	ntouring												
– Contour gradient – Uses of contour plan and map	Ũ												
COMPASS SURVEYING AND PLANE TABLE SURVEYING													

Prismatic compass - Surveyor's compass - Bearing - Systems and conversions - Local attraction – Magnetic declination - Dip - Traversing - Plotting - adjustment of error - Plane table instruments and accessories - Merits and demerits - Methods - Radiation - Intersection - Resection - Traversing.

ADVANCED TOPICS IN SURVEYING

Hydrographic Surveying – Tides – MSL – Sounding methods – Three point problem – Strength of fix – astronomical Surveying – Field observations and determination of Azimuth by altitude and hour angle methods –.Astronomical terms and definitions - Motion of sun and stars – Celestial coordinate systems - different time systems - Nautical Almanac - Apparent altitude and corrections - Field observations and determination of time, longitude, latitude and azimuth by altitude and hour angle method

MODERN SURVEYING:

Total Station : Advantages - Fundamental quantities measured - Parts and accessories – working principle - On board calculations - Field procedure - Errors and Good practices in using Total Station GPS Surveying : Different segments - space, control and user segments – satellite on figuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment -Hand Held and Geodetic receivers – data processing - Traversing and triangulation.

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.
- Tutorial Class for Module 1
- Tutorial Class for Module 2
- Tutorial Class for Module 3
- Tutorial Class for Module 4

LIST OF EXPERIMENTS

- 1. Finding Pace Value of Surveyor using Chaining and Ranging
- 2. Computation of Included Angle after adjustment of Local Attraction
- 3. Planimetric Mapping of an Area using Plane Table Surveying (Radiation, Intersection)
- 4. Fly leveling using dumpy level and tilting level.
- 5. Transfer of Bench Mark using Check Levelling.
- 6. Contour Mapping using Grid Levelling.
- 7. Study of Theodolite and Angle Observations by Repetition.
- 8. Observation of Angles by method of Reiteration and Station Adjustment.
- 9. Establishment of Horizontal Control Points by Traversing.
- 10. Area calculating by Total Station

TEXT BOOK (S)

- 1. Kanetkar.T.P and Kulkarni.S.V, Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha Prakashan, Pune, 2008
- 2. Punmia.B.C., Ashok K.Jain and Arun K Jain , Surveying Vol. I & II, Lakshmi Publications Pvt Ltd, New Delhi, 2005
- 3. James M. Anderson and Edward M. Mikhail, "Surveying, Theory and Practice", 7th Edition, McGraw Hill, 2001.

REFERENCE BOOKS

- 1. Alfred Leick, "GPS satellite surveying", John Wiley & Sons Inc., 3rd Edition, 2004.
- 2. Guocheng Xu, "GPS Theory, Algorithms and Applications", Springer Berlin, 2003.
- 3. SatheeshGopi, rasathishkumar, N. madhu, "Advanced Surveying, Total Station GPS and Remote Sensing" Pearson education, 2007

Relevant NPTEL Course

Surveying, IIT Kanpur, Dr. Bharat Lohani

Digital Land Surveying And Mapping (DLS&M), IIT Roorkee, Prof. J. K. Ghosh

00014				
S.No.	Name of the Faculty	Designation	Department	E-Mail ID
1	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in
2	Dr.P.S Aravindraj	Associate Professor	Civil/AVIT	Aravindraj.civil@avit.ac.in

DESIGN (Theory and Practicals)PC-CC2124PREAMBLEThis course work aims at imparting the knowledge on various stages of works involved in planning designing and execution of protected water supply system to a town / city. Starting from demand estimation identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatmer method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed.PRE-REQUISITE – NilCOURSE OBJECTIVES1The student is expected to know about the design principles involved in treatment of municipal wate 22The student will study about the Design principles of water treatment											
PREAMBLE This course work aims at imparting the knowledge on various stages of works involved in planning designing and execution of protected water supply system to a town / city. Starting from demand estimation identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatmer method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed. PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
This course work aims at imparting the knowledge on various stages of works involved in planning designing and execution of protected water supply system to a town / city. Starting from demand estimation identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatmer method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed. PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
designing and execution of protected water supply system to a town / city. Starting from demand estimation identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatmer method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed. PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatmer method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed. PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed. PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal water 2 The student will study about the Design principles of water treatment											
Individual dwelling units are well addressed. PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
PRE-REQUISITE – Nil COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
COURSE OBJECTIVES 1 The student is expected to know about the design principles involved in treatment of municipal wate 2 The student will study about the Design principles of water treatment											
 The student is expected to know about the design principles involved in treatment of municipal wate The student will study about the Design principles of water treatment 											
2 The student will study about the Design principles of water treatment											
3 At the end of the semester, the student shall conceive, design and draw the environmental engineering											
structures in detail showing the plan, elevation and Sections.											
4 The objectives of this course is to help students develop the ability to apply basic understanding o											
physical, chemical, and biological phenomena for successful design, operation and maintenance o											
sewage treatment plants.											
5 An ability to estimate sewage generation and design sewer system including sewage											
pumping stations											
COURSE OUTCOMES											
Upon completion of this course, the student will be able to											
CO:1 an understanding of water quality criteria and standards, and their relation to Understand											
public health											
CO:2 An ability to perform basic design of the unit operations and processes that are Understand											
used in sewage treatment											
CO:3 an ability to design the various functional units in water treatment Apply											
CO:4 the knowledge in various unit operations and processes in water treatment Appry											
CO:5 The students after completing this course will be able to design and draw various Analyze											
units of Municipal water treatment plants and sewage treatment plants.											
COS DO											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
O1 O2 O3 O4 O3 O6 O7 O6 O3 I0 I1 I2 O1 O2 O3 CO1 M L M S S M L - S S M S I											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
S – STRONG, M – MEDIUM and L – LOW											
SYLLABUS											
PLANNING FOR WATER SUPPLY AND CONVEYANCE SYSTEM											
Design Period – Population Forecasting – Water Demand – Sources of Water – Source Selection – Water											
Ouality- Intake Structures Pumps - Design of pumping mains.											
Quarty- make subcutes rumps - Design of pumping mains. DESIGN PRINCIPLES OF WATER TREATMENT											
DESIGN PRINCIPLES OF WATER TREATMENT											
DESIGN PRINCIPLES OF WATER TREATMENT Objectives – Selection of unit operations and processes – Principles of coagulation and flocculation											

Disinfection devices – Softening – Demineralisation – Aeration – Iron removal – Defluoridation – Operation and Maintenance aspects - Residue Management

SEWERAGE SYSTEM: COLLECTION & TRANSMISSION

Sources of wastewater - Quantity of sanitary sewage - Estimation of storm runoff - Wastewater

characteristics and significance - Effluent disposal standards - Design of sewers - Computer applications

- Laying, jointing and testing of sewers - Sewer appurtenances - Pump selection - Drainage in buildings

- Sanitary fixture and fittings - Systems of Sanitary plumbing - House Drainage - House Sewer connection.

WATER SUPPLY AND TREATMENT

Design and Drawing of flash mixer, flocculator, clarifier – Rapid sand filter – Service reservoirs – Pumping station – House service connection for water supply and drainage.

SEWAGE TREATMENT & DISPOSAL

Design and Drawing of screen chamber - Grit channel - Primary clarifier - Activated sludge process – Aeration tank – Trickling filter – Sludge digester – Sludge drying beds – Septic tanks and disposal arrangements.

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

LIST OF EXPERIMENTS

1. ANALYSIS OF WATER SAMPLE

- i. Sampling and preservation methods for water and wastewater (Demonstration only)
- ii. Measurement of Electrical conductivity and turbidity
- iii. Determination of fluoride in water by spectrophotometric method /ISE
- iv. Determination of iron in water (Demo)
- v. Determination of Sulphate in water
- vi. Determination of available Chlorine in Bleaching powder and residual chlorine in water

2. ANALYSIS OF WASTEWATER SAMPLE

- i. Estimation of suspended, volatile and fixed solids
- ii. Determination of Sludge Volume Index in waste water
- iii. Determination of Dissolved Oxygen
- iv. Estimation of B.O.D and C.O.D.
- v. Determination of Ammonia Nitrogen in wastewater
- vi. Determination of coliform (Demonstration only)

TEXT BOOK (S)

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

REFERENCE BOOKS

1. Peary, H.S., ROWE, D.R., Tchobanoglous, G., "Environmental Engineering", McGraw-

HillBook Co., New Delhi, 1995.

2. Metcalf and Eddy, "Wastewater Engineering, Treatment and Reuse", Tata McGraw-

Hill,New Delhi, 2010.

Relevant NPTEL Course

Environmental Engineering, IIT Roorkee, Dr. V. C. Srivastava

Water and Waste Water Engineering, IIT Madras, Prof. C. Venkobachar, Prof. Ligy Philip, Prof. B.S. Murty

S.No.	Name of the Faculty	Designation	Department	E-Mail ID
1	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in
2	Dr.P.S Aravindraj	Associate Professor	Civil/AVIT	Aravindraj.civil@avit.ac.in

		DE	SIGN ()F RF	CINF	ORCI	ED CO	ONCI	RETE	2	Cate	gory	L	Т	P	Credit
				ST	RUC	TUR	ES				C	С	2	1	0	3
PREA	MBI	E														
The pr	rimary	concer	n of an	engin	eer is	desig	gn. Sti	ructur	al des	ign co	onsists	conce	ptualiz	atior	ı, idea	lization,
analys	is, de	sign, co	nstructio	on and	l mair	ntenan	ice. C	oncep	tualiz	ation	is requ	uired t	o arriv	e at t	he fin	al shape
and siz	ze of t	he struc	ture. Ide	ealizat	ion in	volve	s redu	ucing	the co	nceiv	ed stru	icture	into pri	mary	elem	ents. By
analys	is inte	rnal for	ces like	bendi	ing m	omen	ts, she	ear, to	rsion,	comp	oressio	n and	tensior	ı in e	ach ai	nd every
elemen	nt is d	etermin	ed. Desi	gn as	signs	every	eleme	ent a p	oarticu	ılar m	aterial	and s	ize. Co	nstru	ction i	involves
putting	g all tl	ne eleme	ents toge	ether t	o perf	form 1	ike th	e orig	inally	conce	eived s	tructu	re. Mai	ntena	ance is	s needed
to keep	p the p	erforma	ince of the	he stru	icture	withc	out det	eriora	tion.	In this	cours	e, desi	gns of s	struct	tural e	lements,
like be	eam, v	valls an	d colum	ns, m	ade o	f spec	cific n	nateria	als lik	e timb	ber, m	asonry	and st	teel a	ire dea	alt with.
Furthe	er the e	elements	s are des	igned	for in	ternal	force	s like	tensic	on, cor	npress	ion, b	ending	mom	ient an	ıd shear.
PRE-I	REQU	JISITE	– DESI	GN C	OF RE	EINF(ORCI	ED CO	DNCI	RETE	ELE	MENT	ГS			
COU	RSE ()BJEC	FIVES													
1 '	To un	derstand	l the bas	ic cor	ncepts	of all	meth	ods of	desig	gn.						
2 '	To ob	tain the	knowled	lge of	using	g India	ın star	ndard	codes	and s	pecial	public	ation.			
3 '	To kn	ow the c	lesign co	oncept	ts of a	ll the	struct	ural m	lembe	rs and	l learn	econo	mical d	lesigr	n for n	naterials
5	saving	5														
4 '	To kn	ow the c	lesign m	nethod	lologi	es by	limit s	state d	lesign	for th	e bear	ns, sla	bs, colı	ımn a	and fo	otings
5 '	To kn	ow the c	lesign m	nethod	lologi	es for	retain	ing w	alls, v	vater t	tanks a	ind con	ncrete v	valls.	•	
COUH	RSE (OUTCO	MES													
Upon	comp	etion of	this cou	ırse, tl	he stu	dent v	vill be	e able	to						1	
CO:1	Ap	ply the	usage of	f IS co	des ir	n desig	gn of 1	reinfo	rced c	concre	te stru	ctures			Und	lerstand
CO:2	Ide	ntify th	e types a	and de	esign o	of slat	os and	stairc	ase						A	pply
CO:3	De	sign the	uniaxia	1 and	biaxia	l bene	ding o	of colu	mn.						A	pply
CO:4	De	sign the	simple	footin	gs an	d com	bined	l footi	ngs						A	pply
CO:5	De	velop sl	cills in d	lesign	of im	portai	nt con	crete	memb	ers.					Und	lerstand
MAPI	PING	WITH	PROG	RAM	ME C	DUTC	OME	ES AN	ID PR	OGR	AMN	IE SP	ECIFI	<u>C OI</u>	JTCO	OMES
COS	PO) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	P	SO	PSO
	01	02	03	04	05	06	07	08	09	10	11	12	01	()2	03
CO:1	N	L	М	-	Μ	S	Μ	Μ	S	-	S	S	Μ		L	L
CO:2	N	M	L	-	S	Μ	L	S	S	-	Μ	S	L		S	L
CO:3	L	S	М	L	S	S	Μ	M	S	L	S	S	M		S	М
CO:4	S	М	S	-	Μ	S	L	S	S	-	Μ	S	S	1	M	S
CO:5	N	M	Μ	-	Μ	Μ	Μ	Μ	S	-	S	S	L		S	S
S - ST	RON	G, M –	MEDIU	M and	d L –	LOW										
SYLL	ABU	5														
DESI	GN O	F RET	AININO	G WA	LLS											
Retain	ing w	all – Ty	pes of l	Retain	ing w	alls –	- Stud	y of C	Gravit	y Reta	aining	wall -	Desig	n of (cantile	ever and
counte	er fort	retainin	g walls													
DESI	GN O	F WAT	ER TA	NKS												
Introdu	uctior	– Join	ts in w	ater t	ank –	Desi	gn of	f Circ	ular 🛛	Fanks	restin	g on	the Gr	ound	– De	esign of
Rectar	ngular	water ta	ank – St	udy of	f Und	ergrou	ind w	ater ta	ınk an	d Ove	erhead	water	tank.			
DESI	GN O	F STAI	RCASI	ES AN	D RO	CC W	ALL	S								
Types	of sta	ircases ·	- Design	of do	g-leg	ged st	aircas	se - St	udy o	f Rein	forced	l conci	ete wa	lls		
INTR	ODU	CTION	ABOU	T PR	ESTF	RESSI	ED C	ONC	RETE	E DES	IGN					

Concept of Prestressing - Types of Prestressing - Advantages - Limitations -Prestressing systems - Anchoring devices - Materials - Mechanical Properties of high strength concrete - high strength steel - Stress-Strain curve for High strength concrete.

ADVANCED TOPICS

Introduction to computer aided RCC design – Study of Modeling, Analysis and designing software's like STAAD Pro, ETABS and Etc... - Study about Design of deep beams - Principles of design of road bridges for IRC loading

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

- 1. Subramanian, N. "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
- 2. N.Krishna Raju, "Design of Reinforced Concrete Structures (IS: 456-2000)", CBS Publishers & Distributors Pvt Ltd.

REFERENCE BOOKS

- 1. IS 456: 2000 Plain and Reinforced Concrete Code of Practice.
- 2. IS 800: 2007 General Constructions in Steel Code of Practice.
- 3. Devadoss Menon and Pillai S., "Reinforced Concrete Design", McGraw Hill Education India Private Limited; 3rd edition 2009.
- 4. VARGHEESE P C," Limit State Design of Reinforced Concrete", Prentice Hall of India, Private, Limited New Delhi, 2004
- 5. Dr.B.C. PUNMIA, Er.ASHOK KUMAR JAIN, Dr.ARUN KUMAR JAIN, "Limit State Design of Reinforced concrete (As per IS 456: 2000)", Laxmi Publications(P)Ltd.
- 6. Reinforced Cement Concrete Design by Neelam Sharma S K KATARIA & SONS-NEW DELHI.

Relevant NPTEL Course

Design of Reinforced Concrete Structures, IIT Kharagpur, Prof. N. Dhang

COUI	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in
2	Dr. D.S Vijayan	Assistant Professor II	Civil/AVIT	<u>Vijayan.has.siva@gmail.com</u>

				ST	RUCI		ΤΑΝ	JAT V	SIS			Cate	gory	L	Т	P	Credit
STRUCTURAL ANALISIS CC 2 1 0 3 PREAMBLE																	
PRE	AM	BLE												_		_	
This	cou	rse of	ffers th	ne vario	ous m	ethod	s of a	nalysi	s for	indete	ermina	ite bea	ms an	d porta	l fra	mes. I	t aims at
deter	mina	ation	of end	mome	nts an	d con	struct	ing sh	near fo	orce a	nd bei	nding	mome	nt diag	rams	for the	ie beams
and f	rame	es. Al	so, IL	D for 1	ideter	minat	e bear	ns wi	l be d	lealt w	/ith.						
PRE	-RE	QUIS	SITE -	STRE	CNGT	H OF	' MA '.	FERI	ALS								
COL	JRSI	E OB	JECT	IVES													
1	The	e basi	cs of a	a struct	ure su	bjecte	ed to i	intern	al for	ces lik	te axia	al forc	es, she	earing	force	s, ben	ding and
2	tors	sional	mome	ents wh	nile tra	inster	ring th	ne loa	ds act	ing or	it wi	ll be ta	ught				
2	Ana	$\frac{1}{1}$	$\frac{1}{1}$ the $\frac{1}{1}$	interna	1 force	$\frac{1}{1}$	ne me	mbers	s of th	e stru	ctures			(1 1			
3	То	calcu	late de	eflectio	n usin	g slop	e defl	lection	n and	mome	ent dis	tributi	on me	thod			
4	10	analy	1 C 1	terent t	ypes of	of arc	nes			· ·,	1 1	• 1	.1 1	C	1 .		
3	At	the er	nd of th	nis cou	rse stu	dents	W1II t	be con	versa	nt wit	n clas	sical n	nethod	of ana	Iysis		
COU	JKSI	EOU	TCO	MES		4	1		. 1. 1 .								
Upor	$\frac{1}{1}$ con	npleti	on of t	this cou	irse, ti	ne stu	dent v	vill be	able	to							1
CO:			llate th	le Defle	ection	Of De	termi	nate S	structu	ares						A	Apply
CO:	2.	Analy	yse bea	ams by	Slope	Defle	ection	Meth	od	1						A	nalyze
CO:	3	Analy	yse bea	ams by	Mom	ent D	istribu	ition I	Aetho	d			-			A	nalyze
CO:4 Draw influence line for Moving Loads and Influence Lines (Determinate & Apply																	
CO.4 Indeterminate Structures) Apply CO:5 Analyse three hinged, two hinged and fixed arches Analyze																	
	CO:5 Analyse three hinged, two hinged and fixed arches Analyze MARPING WITH PROCRAMME OUTCOMES AND PROCRAMME SPECIFIC OUTCOMES																
	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO PO																
COSPOPOPOPOPOPOPOPOPOPOPOPOPSOPSOPSO010203040506070809101112010203																	
<u> </u>	1	01 M	02	03 M	04	05	06	0/ M	08	09	10	11	12	01 M	(J2 I	03
<u>CO:</u>	1	M		IVI	-	NI	S M	IVI	N	<u> </u>	-	S M	2	IVI		L C	
	2	IVI	NI C		- T	3 5	IVI C		S M	3 5	- T	IVI C	3 5			5 5	
CO:	3	L C	S M	IVI S		S M	5 5	IVI	IVI S	5 5	L	S M	5 5	IVI S		S M	
<u> </u>	4 5	ы м	M	S M	-	M	S M		S M	5 5	-	IVI C	ວ ເ	<u>ь</u> т		vi c	<u> </u>
00:					-			IVI	IVI	3	-	3	3	L		3	3
<u>5-5</u>		JNG, DUS	NI - N	AEDIU	w and	1 L –	LUW										
DEE			NOF	DETE	DMI		CTD	TICT	TIDE	C							
DEF							- 0		UKL	5		11	C	1			<u></u>
Princ W:11		S OI VI	iriual V	NOFK 10	or delle	ection	s - De	enecu	ons o	I pin-j	ontec	1 plane	errame	es and i	igia	plane	Irames –
		agran D FF I	\mathbf{FCT}	$\frac{111}{100} \times \frac{100}{100}$	FTU												
Cont				nd rigi	d from		rith or	ad wi	hout	(THOM)	C:	malifi	ontion	for his	and	and	Support
displ	acen	us uc Jente	anns a	nu rigi	u man	165 (1	an a	lu wi	mout	sway,) – SI	mpinio	Jation	IOI IIII	igeu	enu –	Support
MO	MEN	JT D	ISTRI	BUTIO		ETH	OD										
Dietr	ibuti	on an	d carr	vover c	of mor	nente	_ Stif	fnecc	and c	arry	ver fa	ctore _	Analy	rsis of	conti	nuoue	heams_
Disu	- rigi	d frai	mes wi	ith and	witho	nemes	– Sui. av	mess	anu ca	arry O			- Anary	/515 01 0	contr	nuous	ocams –
MO	VIN	G LO	ADS	AND T	NFL I	IENC	ау. 'Е.ЦІ	NES									
Influ	ence	line	for re	actions	in eto	tically		rmino	te etri	leture	sinf	ไมอกอง	line	for mo	mhar	s forc	es in nin
ioint	ence ed fr	amee	_ Infl	lience	lines	for sh	ear fo	niiiid arce a	nd he	nding	mom	ent in	heam	section	ns M	uller	Breslau'e
nrine	jointed frames – influence lines for snear force and bending moment in beam sections. Muller Breslau's																
ARC	HE	S		mes l		inuo	15 UCA	ins al	ia sing		<i>n</i> cy 11	514 116					
Arch		etru/	rturol f	forme	Evan	mlee	of are	h etru	ctures	_ Tv	ner of	arche	s_An	alveie	of the	ee hin	and two
hing	ics as ad an	nd fiv	ed arel	iornis – ies ner	aboli/	ipics of a	or area	n su u ar arcl	hes -	– 1 y] Settle	ment "	and ter	5 — All mnerat	1170 off	л ин ecte		geu, two
TUT				ico, pai	abont		ul		- 601	SCIIC			nperat		uis.		
101																	

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis – Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.

REFERENCE BOOKS

- 1. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 2. Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 3. BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008
- 4. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

Relevant NPTEL Course

Structural analysis I, IIT Kharagpur, Prof. Amit Shaw

Structural Analysis II, IIT Bombay, Dr. P. Banerji

0001				
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in
2	Dr. D.S Vijayan	Assistant Professor II	Civil/AVIT	Vijayan.has.siva@gmail.com

		MO	DERN	MET	HOL	OS OF	STR	UCT	URAI		Cate	gory	L	Т	Р	Credit
					ANA	LYSI	S				(CC	2	1	0	3
PREA	AMBI	Æ														
This	course	e offers t	he vario	ous m	ethod	s of ai	nalysi	s for i	indete	rmina	te bea	ms an	d portal	fram	nes. It	aims to
learn	advan	ced meth	nods like	e matr	ix me	thods	of str	uctura	al ana	lysis o	of struc	ctures,	plastic	theor	y, ana	alysis of
specia	al struc	ctures lik	te arches	s and	suspe	nsion	cable	s and	influe	nce lii	ne for	indete	rminate	struc	tures	
PRE-	REQ	UISITE	- STRU	JCTU	RAL	ANA	LYSI	[S								
COU	RSE (DBJECT	FIVES													
1	This of	course is	s in con	tinuat	ion o	f Stru	ctural	Anal	ysis I	. Here	in ad	lvance	d meth	od of	analy	ysis like
	Matri	x metho	d and Pl	astic A	Analy	sis are	e cove	ered								
2	Adva	nced top	ics such	as FE	E metl	nod an	id Spa	ice Sti	ructur	es are	cover	ed				
3	Adva	nced me	thod of a	analys	is lik	e finit	e elen	nent a	nd ma	trix w	ill be	taught				
4	After	complet	ion of t	he co	irse t	he stu	dent	will b	e able	to D	ifferer	tiate b	petween	vario	ous st	ructural
	forms	such as	beams,	plane	trus	s, spac	ce trus	ss, pla	ne fra	ame, s	pace f	frame,	arches,	cable	es, pl	ates and
	shells															
5	The s	tudent st	udies to	calcu	late tl	ne deg	ree of	static	c and l	kinem	atic in	detern	ninacy of	of a g	iven s	tructure
	such a	is beams	s, truss a	ind fra	mes											
COU	RSE (DUTCO	MES			1.										
Upon	Upon completion of this course, the student will be able to															
CO:1Analyse beams and frames by moment distribution methodAnalyzeCO:2Analyse beams by matrix stiffness and flexibility methodsAnalyze																
CO:2	CO:2 Analyse beams by matrix stiffness and flexibility methods Analyze CO:2 Analyze continuous beams using theorem of three memory Analyze															
CO::	CO:3 Analyse continuous beams using theorem of three moments Analyze															
CO:4		astic ana	IVSIS OF	indete	rmin	ate bea	$\frac{1}{1}$	nd fra	mes		4				AA	nalyze
		alysis of	I Space	trusse	s usir	ig met		t tens	$\frac{100 \text{ CC}}{100 \text{ DC}}$		ents				AI	laiyze
MAP	PING	WITH	PROG		ME (ES AN	D PR	OGR		IE SP	ECIFI		TCO	MES
COS	P	D PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS	50	PSO
CO			03 M	04	05	06	0/	08	09	10	11 C	12	01 M	0	2	<u>03</u>
C0:1			IVI	-	NI	S M	IVI		3 5	-	ы М	3 0	IVI I		-	
C0:2				- T	2	N		S M	5 5	- T	NI	5 C				
C0:3			NI	L	ъ М	5	IVI	IVI C	5 5	L	S M	5 5	NI S		<u>л</u>	
CO:4			S M	-	M	S M		S M	3 5	-	IVI C	3 0	5 1	N		<u>S</u>
CU:2				- Mon	1VI 1 T		IVI	IVI	3	-	3	3	L		>	2
3-3		$\frac{\mathbf{U}, \mathbf{W} = \mathbf{U}}{\mathbf{C}}$	MEDIU	IVI allo	1 L –	LUW										
51LI FIF		<u>э</u> іту мі	TUOT	FOR		FTFI	DMIN	JATE	FD A	MES						
FLE/	ibrium		mnotihi					Indo	tormi	IVIES	tenatu	roc	Indator	mina	01/	Drimory
Equil	IUIIUII.	Compat	inipation	nty – onditi	Dell		lucio	of ind	lotorm	inate s	nin ic	intod	nlana f	romo	cy -	rinnary
beam	uie –	Compan Liointed	nlane fi	onun amec	uns - (with	redur	iysis idanci	u resti	ricted	inate	y hu-le	mieu	plane i	Tame	s, coi	iiiiuous
MAT	BIX S	TIFFN	FSS MI	FTH(TCuur	iuane _.	y iesu	icicu)).					
Flom	ant an	d global	stiffnor	s mat	rices	Δn	lucie	of co	ntinu	ous h	ame	Coo	rdinata	tranc	form	ations
Rotat	ion me	$r_{\rm 1}$ giodal	ansforn	s mai	e of st	- Alle	s mati	rices	load y	ectors	and d	- CO-0 lisnlac	ements	vecto	rs = 4	Analysis
of pin	ion me	ed plane	frames	and ri	oid fr	ames	5 mai	nees,	ioau v		, and c	nspiae	ements	veen	15 1	inary 515
FINI'	FINITE ELEMENT METHOD															
Introd	Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element.															
PLAS	PLASTIC ANALYSIS OF STRUCTURES															
Statio	Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic															
modu	1115 — 9	Shape fa	ctor = I	a pro	actor	– Plac	ans n	n purc	nd me	nng – chanie	m = 1	Plastic	analve	is of i	indete	rminate
beam	s and f	rames –	Upper :	and lo	wer h	ound	theore	ems		Chull		iustic	anarys	5 01 1		minate
SPA(D CAR	LE STI	RUCT	URF	S										
					- mL											

Analysis of Space trusses using method of tension coefficients – Suspension bridges- cables with two and three hinged stiffening girders

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

- TEXT BOOK (S)
 - 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.

REFERENCE BOOKS

- 1. Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 2. Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 3. BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008
- 4. Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

Relevant NPTEL Course

Matrix Method of Structural Analysis, IIT Kharagpur, Prof. Amit Shaw, Prof. Biswanath Banjerjee

COUI	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in
2	Mrs.P.Subathra	Assistant Professor	Civil/AVIT	Subathra@avit.ac.in
		II		

			GEOTI	ECHN	JICA	LEN	GINF	ERI	NG		Cate	gory	L	T	P	Credit
			01011	с <u>ст</u>	hoom		Ducat	ingle)			C	C	2	1	4	5
DDE	AMRI	F		(1	neory	and	Praci	(icais)								
This of	COURSE	is a bra	nch of	Civil	Engir	eering	o whi	ch de	als wi	th the	appli	cation	of lay	v of N	Mecha	nics and
Hvdra	aulics	to Engi	neering	probl	ems	relate	d wit	h soil	s like	Pern	neabili	tv. str	esses	withi	n soil	s. Shear
streng	gth and	l compres	ssibility	of soi	ils. Tł	nese fo	orm th	e basi	s for t	he coi	nputa	ion of	discha	arge tl	nrougl	n earthen
dams	, shea	r strength	n paran	neters	requi	red fo	or dete	ermini	ing th	e bea	ring c	apacity	y of s	oils a	nd cal	culating
settle	ment of	of structu	res.		•				U		C		, 			U
PRE-	REQ	UISITE	– Nil													
COU	RSE (OBJECI	TIVES													
1	To in	part the	fundam	ental	conce	pts of	soil r	necha	nics a	nd un	dersta	nd the	bearin	ig cap	acity	
2	To ur	derstand	the cor	ncept o	of con	npacti	on an	d cons	solida	tion o	f soils					
3	To ur	derstand	the des	ign as	spects	of for	ındati	on								
4	To ev	aluate th	e stress	devel	oped	in the	soil n	nediui	n							
5	To st	udy the s	tability	of slo	pes											
COU	RSE (OUTCO	MES			_										
Upon	comp	letion of	this cou	irse, t	he stu	dent v	vill be	e able	to .						**	
CO:		ompare th	ne vario	us eng	gineer	ing ar	nd ind	ex pro	opertie	es of s	01l.				Unc	lerstand
CO:2	2 Ex	plain the	hydrau		nduct	1vity (of the	soil a	nd see	epage	action	S.			Unc	lerstand
CO:3	$\frac{1}{3}$	scuss the	soil inv	vestiga	tion t	echnie	ques f	or adv	ancec	l explo	oration	is and	to con	duct	A	apply
CO	the the	e field tes	st like S	PT &	PLT.	oitu o	fahal	lowf	aundo	tions						nnly
CO.4	+ EV	timate li		nin a	g capa	icity of	nila	found		uond	to cor	anuta	tha la	tomo 1	P	рргу
CO:5	$5 \begin{vmatrix} \mathbf{E} \\ \mathbf{e} \\ \mathbf{e} \end{vmatrix}$	rth press	au can	ying	capac	ity of	pne	Touna	ations	and		npute	the la	lerai	A	pply
МАР	PING	WITH	PROG	RAM	ME (DITC	'OMF	ES AN	ID PR	OGR	AMN	IE SP	ECIF		UTCO)MES
COS	P	$\frac{1}{2}$ PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSC) P	so	PSO
	0	1 02	03	04	05	06	07	08	09	10	11	12	01		02	03
CO:1	l N	1 L	M	L	Μ	S	S	М	L	-	S	S	Μ		S	L
CO:2	2 N	1 M	S	L	S	Μ	S	Μ	L	-	Μ	S	S]	М	S
CO:3	3 N	1 M	Μ	Μ	S	S	S	Μ	L	-	S	S	L		S	М
CO:4	4 N	1 M	Μ	L	Μ	S	S	Μ	S	-	Μ	S	S]	М	S
CO:5	5 N	1 M	Μ	L	Μ	S	S	Μ	S	-	S	S	M		S	М
S - S'	TRON	IG, M – 1	MEDIU	M and	dL-	LOW										
SYLI	LABU	S														
SOIL	L PRO	PERTIE	ES ANI) COI	MPA	CTIO	N									
Basic	defin	tions; Ph	ase rela	ations;	Inde	x prop	oerties	; Grai	n size	distri	butior	1 & Inc	lex pro	operti	es; So	il
Class	ificati	on (IS) C	ompact	ion, L	abora	tory c	ompa	ction	tests d	& Fac	tors af	fecting	g comp	oactio	n.	
STR	ESS P	RINCIP	LE, PE	RME	ABI	LITY,	DIS	FRIB	UTIO	N AN	AD CC	NSO	LIDA'	TION	I	
Princi	iple of	effective	e stress;	Capil	larity	; Seep	age f	orce a	nd qu	icksar	id con	dition	One-d	imens	sional	flow;
Darcy	y's lav	; Labora	tory me	ethods	for p	ermea	bility	deter	minat	ion.						
Bouse	sinesq	stress di	stributi	on the	eory a	and N	ewma	rks cl	hart C	Compr	essibil	ity of	soils,	e-p d	lata ar	id stress
histor	y; No	rmally co	onsolida	ated a	nd ov	ver-co	nsolid	lated s	soils;	Terza	gh1's 1	theory	of on	e-dim	ensio	nal
CONSC	lidatio	on; Time-	rate of	conso	Indati	on; Ev	aluati	ion of	comp	ressib	oility a	nd con	Isolida	tion p	arame	sters.
SHE			H BEI				501					1		.1	1.4	• ,•
IVIONT	s stre	ss circle	, wonr-		omoth	anure	criter	10n; I	Labora	noth	hore of	or shea	ar stre	ngth (uetern	ination;
Chier	uve al	iu iotai si	ness sno	ar str		paran disita	neters	, snea	ir stre	ngth C	naraci	ploret	s of cl	ays al Donth	of ov	us.
- Fac	tore of	1 SILE IIIV(locatio	n and	denth	u site l	undat	igatio	II - IVI Type		ounder	pioral		reput	of Equ	ndation
Prepa	ration	of soil in	vestige	n and	enort	1 01 10	unual	- 1101	rype		ounua	10118 -	- Selec		лтоu	nuation.
Tiepa	auon	01 5011 11	ivestiga		cport											

BEARING CAPACITY AND SETTLEMENTS OF SHALLOW FOUNDATIONS

Terzaghi's theory of bearing capacity – General and local shear failure - Effect of Water table – Plate load test – Standard Penetration Test – Design of Footings – Settlement of footings - Immediate and Time dependent settlement – Permissible limits of total and differential Settlement.

PILE FOUNDATIONS AND SLOPE STABILITY

Classification and selection of piles – Static and dynamic formulae for single pile capacity – Efficiency and capacity of pile groups – Design of Pile group – Settlement of Pile Groups– Load test on piles Failure of infinite and finite slopes – Swedish circle method – Factor of safety - Slope stability of earth dams. Definitions – Earth pressure at rest – Rankin's active and passive earth pressures - Coulomb's earth pressure theories – Types of retaining walls

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

LIST OF EXPERIMENTS

1. DETERMINATION OF INDEX PROPERTIES

- i. Specific gravity of soil solids
- ii. Grain size distribution Sieve analysis
- iii. Grain size distribution Hydrometer analysis
- iv. Liquid limit and Plastic limit tests
- v. Shrinkage limit and Differential free swell tests

2. DETERMINATION OF INSITU DENSITY AND COMPACTION CHARACTERISTICS

i. Field density Test (Sand replacement method)

ii. Determination of moisture – density relationship using standard proctor compaction test.

3. DETERMINATION OF ENGINEERING PROPERTIES.

- i. Permeability determination (constant head and falling head methods)
- ii. One dimensional consolidation test (Determination of co-efficient of consolidation only)
- iii. Direct shear test in cohesionless soil
- iv. Unconfined compression test in cohesive soil
- v. Laboratory vane shear test in cohesive soil
- vi. Tri-axial compression test in cohesionless soil (Demonstration only)
- vii. California Bearing Ratio Test

TEXT BOOK (S)

1. K. R. Arora, "Soil mechanics and Foundation Engineering" Std. Publishers, New Delhi, 2011.

REFERENCE BOOKS

- Braja M. Das, "Principles of Geotechnical Engineering", Cengage learning Pvt. Ltd., 8th Edition, 2014.
- Holtz D. and Kovacs, W.D., "An Introduction to Geotechnical Engineering", Prentice Hall. 2nd Edition 2011.

Relevant NPTEL Course

Geotechnical Engineering - 1, IIT Bombay, Prof. Devendra Narain Singh

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in
2	Mrs.P.Subathra	Assistant Professor	Civil/AVIT	Subathra@avit.ac.in
		II		

			DESIC	NOF	STE	FT ST	DIIC	TID	FS		Cate	gory	L	Т	P	Credit
			DESIG	NUF	SIL	EL 91	πυ		E9		(CC	2	1	0	3
PREA	MBI	LΕ														
The p	rimar	/ conce	rn of an	engin	eer is	s desig	gn. St	ructur	al des	ign co	onsists	conce	eptualiz	zatior	n, idea	lization,
analys	sis, de	sign, co	onstructio	on and	l mai	ntenan	ice. C	oncep	tualiz	ation	is requ	uired to	o arriv	e at t	he fin	al shape
and size	ze of	he strue	cture. Ide	ealizat	ion ir	nvolve	s redu	ucing	the co	nceiv	ed stru	icture	into pr	imary	/ elem	ents. By
analys	sis inte	ernal for	rces like	bendi	ng m	oment	s, she	ear, to	rsion,	comp	ressio	n and	tensior	ı in e	ach ar	nd every
elemen	nt is d	etermin	ied.													
PRE-	REQ	JISITE	2 – STRI	ENGT	TH O	F MA	TER	IALS								
COU	RSE ()BJEC	TIVES													
1	The s	udent is	s expecte	ed to k	now a	about	the de	sign p	rincip	les in	volved	l in tre	atment	of m	unicip	al water
2	The s	udent v	vill study	/ abou	t the	Desig	n prir	nciple	s of w	vater t	reatme	ent				
3	At the	end of	the seme	ster, t	he stu	dent s	hall c	onceiv	ve, des	sign ai	nd drav	w the e	nviron	ment	al eng	ineering
4	The o	hiootiya	s of this		uie p	o holn	evalle	onte d		$\frac{10118}{2}$	hility	toon	Jy hog		lorator	nding of
4	nhuei	val cho	mical a	d bio	logic	o neip	nome	na for			design	to app	ny Das.	nd n	nointa	nance of
	sewar	e treatr	nent plai	nte 010	logica	ai pile	nome	1101	Succ	2551UI	uesigi	n, oper	anon	inu n	lame	
5	An ah	ility to	estimate	cewa		neratio	n and	desid	m ceu	er cue	tem ir	oludir	n sew	ane		
5	numn	ing stat	ions	sewaz			ni anc	i ucsig	sii sew	CI Syd		leiuum	ig sew	age		
COU	RSE (DUTCO)MES													
Upon	COURSE OUTCOMES Upon completion of this course, the student will be able to															
CO:1	Ur	derstan	d the co	ncepts	of va	arious	desig	n phil	osoph	ies					Und	lerstand
CO:2	De	sign co	mmon b	olted a	and w	elded	conne	ection	s for s	teel st	ructur	es			Unc	lerstand
CO:3	De	sign ter	nsion me	mbers	and	unders	stand	the ef	fect of	fshear	r lag.				A	oply
CO:4	Ur	derstan	d the de	esign c	once	pt of a	xially	load	ed co	olumn	s and	colum	n base			
C0.4	co	nnectio	ns.												P	фрту
CO:5	Ur	derstan	d specifi	ic prol	olems	relate	d to t	he des	sign of	flater	ally re	straine	ed and		Aı	nalyze
МАР	UN PINC	WITH	PROC	PAM	MF ('OMI	TC AN	ID PP			IF SP	FCIFI			MES
COS																
COS			PO 03	PU 04	PU 05	гО 06	PO 07			10	11	12	PSU 01	r	$\frac{30}{22}$	P30
CO·1			03		05 M	00 S	07 M	<u> </u>	S	10	11 S	12 S	M	,	JZ I	<u> </u>
C0.7	N N		I.	-	S	M	I.	S	S	_	M	S	I.		$\frac{1}{s}$	L
CO·3		S	M	L	S	S	M	M	S	L	S	S	M		ŝ	 M
$CO{\cdot}4$		M	S	-	M	S	L	S	s	-	M	S	S	1	M	S
CO:5		[M	M	-	M	M	M	M	S	-	S	S	L		S	
S - ST	FRON	G. M –	MEDIU	M and	1L –	LOW			~	l	~	~			~	~
SYLI	ABU	<u>S</u>				2011										
INTR	ODU	CTION	J													
Proper	rties of	of steel	– Struct	tural s	teel s	section	ns – I	Limit	State	Desig	n Coi	ncepts	– Loa	ds oi	ı Stru	ctures –
Conne	ection	using	rivets. w	elding	, bolt	ing –	Desig	n of h	olted	and w	/elded	ioints	– Ecce	entric	conne	ections -
Efficie	ency of	f joints		8	,,	0	32	,				5				
TENS	TENSION MEMBERS															
Tensio	Tension Members - Types of Tension members and sections –Behaviour of Tension Members modes															
of fail	of failure-Slenderness ratio- Net area – Net effective sections for Plates ,Angles and Tee in tension –															
Conce	pts of	Shear	Lag- De	sign o	f plat	e and	angle	tensi	on me	mber	s-desig	gn of b	uilt ur	tens	ion M	embers-
Conne	ction	s in tens	ion men	ibers -	– Ûse	of lug	g angl	es – L	Design	of ter	ision s	plice.	1			
COM	PRES	SION	MEMB	ERS					~							

Types of compression members and sections–Behaviour and types of failures-Short and slender columns-Current code provisions for compression members- Effective Length, Slenderness ratio – Column formula and column curves- Design of single section and compound Angles-Axially Loaded solid section Columns-Design of Built up Laced and Battened type columns – Design of column bases – Plate and Gusseted bases for Axially loaded colums- Splices for colums.

BEAMS

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices

DESIGN OF FLEXURAL MEMBERS

Types of steel Beam sections- Behaviour of Beams in flexure- Codal Provisions – Classification of cross sections- Flexural Strength and Lateral stability of Beams –Shear Strength-Web Buckling, Crippling and defection of Beams- Design of laterally supported Beams- Design of solid rolled section Beams- Design of Plated beams with cover plates - Design Strength of Laterally unsupported Beams – Design of laterally unsupported rolled section Beams- Purlin in Roof Trusses-Design of Channel and I section Purlins.

TUTORIAL

• A minimum of 3 problems to be worked out by students in every tutorial class.

• 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

TEXTBOOKS:

1. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

2. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013

3. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

REFERENCE BOOKS

1.Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002

2. Sai Ram. K.S. "Design of Steel Structures " Dorling Kindersley (India) Pvt. Ltd., New Delhi, 2nd Edition, 2015, www.pearsoned.co.in/kssairam

3. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013

4. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009

5. IS800 :2007, General Construction in Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

6. SP 6(1) Hand book on structural Steel Sections

Relevant NPTEL Course

Design of steel structures, IIT Kharagpur, Prof. Damodar Maity

00014				
S.No.	Name of the Faculty	Designation	Department	E-Mail ID
1	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in
2	Mrs.Pa Suriya	Assistant Professor I	Civil/AVIT	pasuriya1@gmail.com

		T	DANCI	оорт	ATIO		NCIN	FFD	INC		Cate	gory	L	Т	P	Credit
		11	KANSI	OKI	AIR	JIN EI	NGIIN	EEK.	ING		C	C	3	0	0	3
PREA	MBL	£														
The co	ourse a	ims to	make tl	ne stu	dents	learn	the p	rincip	les of	high	ways,	their c	ompon	ents	and c	lesign of
flexib	le and r	igid pay	vements	s. Furt	her, s	tudent	s will	get a	cquair	nted w	ith tre	atment	t for Fa	ilure	s and	remedial
measu	ires dur	ing mai	intenan	ce of p	aven	nents.										
PRE-	REQU	ISITE -	– Nil													
	<u>RSE O</u>	BJECI	IVES	•.1				<i></i>	1	1		1 /		1 1'	1	
1	To exp	ose the	student	s with	var10	$\frac{1}{1}$	nspor	tation	mode	$\frac{1}{1}$ s and	their	advant	ages an	nd dis	sadva	atages
2		litate st	udents	to dec	ide hi	ghwa:	y aligi	nment	and c	lesign	highv	vay ge	ometry			
3	$\frac{10 \text{ ena}}{\text{T}_{2} \text{ ena}}$	ble stud	ents to	select	suita	ble ma	aterial	s for	nignw	ay pa	vemen	its and	design	the	paven	ient.
4	$\frac{10 \exp}{T_0 \tan^2}$	h atuda	dents w	dontifi	rious	comp	onent	$\frac{1}{1}$	rallwa	iy trac	CK.		d dear			t lavout
5	$\frac{10}{\text{To}}$ illu	in stude	nts to 10		y the a	angnn	ient a	nd len	igin o	airpo	ort run	way ai	id draw	/ an a	arpor	l layout.
		strate st		with v	ariou	s com	poner	its of	a naru	our.						
Upon	KJE U	uicul tion of	this cor	1100 +1	no etri	dent v	vill be	able	to							
		cify bo	eic daci	$\frac{11}{30}$ or of	high:				ording	to th	e deci	an ence	cificati	one	Un	derstand
$\frac{CO.1}{CO.2}$		ion a fl	evible r	gii 01 .	ent us	vay ge	$\frac{1}{2}$ C m	thod	orum	3 10 11	e uesi	gn spe	cificatio	0115		Apply
$\frac{CO.2}{CO.3}$	Des	cribe va	arious c	omno	nents	of rai	lwave	and f	heir fi	inctio	ns					Apply
0.5		cify va	rious c	ompo	nente	of ar	i ways	ort ar	d ide	ntify	the ali	anmei	nt and	the	1	тррту
CO:4	real	ired ler	noth of	a runv	vav	or ar	i anp	ort ar	iu iuc	intity	ine an	giinei	in and	the	ŀ	Apply
CO:5	Ider	ntifv va	rious co	mpon	ents α	of a ha	rbour	and t	heir fi	inctio	ns.				Un	derstand
MAP	PING	NITH	PROG	RAM	ME (DUTC	OME	ES AN	D PR	OGR	AMN	IE SP	ECIFI	C O	UTCO	OMES
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	P	SO	PSO
	01	02	03	04	05	06	07	08	09	10	11	12	01		02	03
CO:1	S	L	Μ	-	Μ	S	-	Μ	S	-	S	S	Μ		S	М
CO:2	S	Μ	Μ	-	S	S	S	Μ	S	-	Μ	S	S		Μ	S
CO:3	S	Μ	Μ	-	S	S	S	Μ	S	-	S	S	L		S	М
CO:4	S	Μ	Μ	-	Μ	S	S	Μ	S	-	Μ	S	S		Μ	S
CO:5	S	Μ	Μ	-	М	S	-	Μ	S	-	S	S	Μ		S	М
S - ST	ΓRONC	B, M-N	MEDIU	M and	1 L –	LOW										
SYLL	LABUS															
HIGH	IWAY	ENGI	NEERI	NG												
Introd	uction	to Trans	sportati	on Sys	stems	, Clas	sificat	tion of	f Road	ls, Hi	ghway	Plann	ing - R	load	cross	section -
cambe	er, grad	ient, Su	per elev	vation	- Sig	ht dist	ance	- Hori	zonta	l and	Vertica	al curv	ve.			
HIGH	IWAY	MATE	ERIAL	S ANI) PA	VEM	ENT	DESI	GN							
Highv	vay mat	erials –	soil, ag	ggrega	te, bit	tumen	-test	ting a	nd spe	cifica	tions -	types	of pave	emen	ts – p	avement
design	1 - pave	ment co	onstruct	tion ar	nd ma	intena	nce.		EGIO	NT						
KAIL	WAY	ENGIN	<u>CEEKI</u>	NG A	ND G	EON	IEIK		ESIG	IN	11	1	1 11		1	
Histor	y and g	general	reatures	s of In	dian i	railwa	ys – I	erma	nent v	vay -	Kails,	sleepe	rs, ball	ast a	nd su	ograde –
types a	and fun	ctions -	Geome		esign	or rail	way t	rack -	Curv	es anc	super	eleva	10n - P	oints	and	rossings
	May Sta	NCIN	iu yarus FFDIN	- Sigi		$\frac{1}{100}$	FTD	C DE	'STCN	IOF	DINN	WAV				
AIKP		anglin.	India				tiona		ort of		nuin V	Dire-	VOL COT	fim	rotion	o wind
	nd orig	ntation	of rupy	Anpo vav	it clas	v long	$\frac{1000}{100}$	- Allp	tions t	o rur	CHOIL	- NUIIV	rupwor	iiigu	metri	s – willu
tovi		it tavim		vay - I one bi	angar	y tells	craft 1	arkin		o run figuro	tion or	ngui - nd narl	iunwa	y gel stem	- Lan	ding and
- iaxi	way, ex	n taxiw	ay, apr	0115, 11a	ingar	s - an	ciali	Jai Kill	ig con	inguia	uon al	nu pari	sing sys	stem	- L'all	ung anu

Visual aids

HARBOUR ENGINEERING

Water transportation – Harbours and ports - Classification – Features of harbour – Breakwaters – Docks – Wet and dry docks – Jetties.

TEXT BOOK (S)

- 1. Highway Engineering by S.K. Khanna, C.E.G. Justo, A. Veeraragavan, 10th edition, published by Nemchand and Bro., Roorkee, (2014)
- 2. Railway Engineering by Rangwala, 25th edition, Charotar publishing house private limited, Anand, India, (2015)
- 3. Harbour, Dock & Tunnel Engineering- R. Srinivasan; Charotar Publishers, Ahmedabad,2011 Airport Planning and Design- S. K. Khanna, M. G. Arora & S. S. Jain; Nem Chand & Bros, 2012

REFERENCE BOOKS

- 1. Planning & Design of Airports Robert Horonjeff, Francis McKelvey; Tata Mc Grawhill, 2010.
- 2. Dock & Harbour Engineering- H. P. Oza & G. H. Oza; Charotar Publishers, Ahmedabad, 2013.
- 3. Railway Engineering 2nd Edition Satish Chandra & M. M. Agarwal; Oxford University Press-New Delhi, 2013.

Relevant NPTEL Course

Introduction to Transportation Engineering, IIT Kharagpur, Dr. K.S. Reddy, Dr. Bhargab Maitra

S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Mrs.Pa Suriya	Assistant Professor	Civil/AVIT	pasuriya1@gmail.com
		II		

		беті	мати		остт			7 A T T T		N	Cate	gory	L	Т	P	Credit
		LOII		JNU	0511	NG A		ALU	AIR	JIN	C	С	2	1	0	3
PREA	MBL	E														
This co	ourse	helps to	o unders	stand	estim	ating o	of qua	antitie	s of i	tems of	of wor	ks inv	olved i	n bu	ilding	s, water
supply	and s	anitary	works, 1	coad w	orks	and ir	rigatio	on wo	rks							
PRE-R	REQU	ISITE	– Nil													
COUR	SE O	BJECT	FIVES													
1 T	o unc	lerstand	l the typ	es of	estima	ates										
2 7	To ide	ntify the	e metho	ds use	ed for	differ	ent sti	ructura	al con	npone	nts					
3 7	lo uno	lerstand	l road es	timat	e.											
4 T	lo uno	lerstand	l rate an	alysis	and p	process	s of p	repara	tion c	of bills						
5 1	lo im	oart kno	wledge	in ten	der p	ractice	es, cor	ntract	proce	dures,	valua	tion of	Civil E	Engir	neerin	g works.
COUR	SE O	UTCO	MES													
Upon c	ompl	etion of	this cou	irse, t	he stu	dent v	vill be	e able	to							
CO:1	Un	lerstand	the me	thods	of es	timate	es of l	buildi	ngs ai	nd Dev	velop 1	the spo	ecificati	on	Uno	lerstand
	for	the mat	erials us	sed in	const	ructio	<u>n.</u>	1	1		<u>c 1</u> .	<u></u>		6		
CO:2	Aco	ctures.	ie know	ledge	ofp	repare	e a d	etaileo	d esti	mate	for di	fferent	types	01	A	Apply
CO:3	Ace	quire th	e knowl	edge o	of pre	pare a	Road	l estin	nation	and c	ost an	alysis	for road	ls.	A	Apply
CO:4	Aco	uire the	e knowl ivil wor	edge ks	to cal	culate	rate a	analys	is and	d man-	-hours	requir	red for	the	A	Apply
	Ide	ntify the	e valuati	on for	build	ing an	d land	1. calc	ulatio	on of re	ent. mo	ortgage	e and lea	ise		
CO:5	and	Acqui	re the	knowl	edge	of co	nstru	ction	contra	acts a	nd coi	itract	docum	ent	Uno	lerstand
	pre	oaration	1.		0											
MAPP	ING	WITH	PROG	RAM	ME ()UTC	OME	ES AN	ID PR	ROGR	AMM	IE SP	ECIFI	C 01	UTCO	OMES
COS	PC	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	Р	SO	PSO
	01	02	03	04	05	06	07	08	09	10	11	12	01	(02	03
CO:1	S	L	Μ	-	Μ	S	-	Μ	S	-	S	S	Μ		S	М
CO:2	S	Μ	Μ	-	S	S	-	Μ	S	-	Μ	S	S]	М	S
CO:3	S	Μ	M	-	S	S	-	Μ	S	-	S	S	L		S	М
CO:4	S	Μ	Μ	-	Μ	S	-	Μ	S	-	Μ	S	S]	М	S
CO:5	S	Μ	Μ	-	M	S	-	Μ	S	-	S	S	M		S	М
S - ST	RON	G, M − 1	MEDIU	M and	d L –	LOW										
SYLL	ABUS												~			
INTRO)DU(CTION	, METH	HODS	5 OF 1	ESTI	MAT	ES AI	ND SI	PECII	FICA	TON	S			
Genera	l item	s of wo	ork in bu	ailding	g - st	andaro	1 units	s –prii	nciple	s of w	orking	g out o	juantitie	es fo	r deta	iled and
abstrac	t estir	nates –1	nethods	of est	timate	es of b	uildir	igs. Bi	lls of	Quant	ity (BC	DQ) - S	specific	atioi	1S - D	etailed
and ger	neral s	pecific:	ations	Trme	a of a	n a cifi	otion	~								
- Cons	TTT	0ns - 50 7 FSTI	MATIC	$\sim 1 \text{ ype}$	S OI S			<u>s</u> AND	STR	исті	ΙΡΛΙ	STFF	T			
Estimo	tion	f buildi	ng Ch	ort we	11 and	long	woll -	motho		ouro 1	ino m	thod	Donor	+ 1170	ting	Estimato
of R.C.	C and	l structu	iral Stee	el - Sc	hedul	ing - S	Slab -	beam	-colui	mn. Ba	ar Ben	ding S	Schedul	e (B	BS). (Cost
Estima	tes us	ing Cor	nputers	oftwar	e's.	C						U			,	
QUAN	TITY	ESTI	MATIC	N FC	OR R	OADS	5									
Road e	stima	ion - ea	arthworl	c fully	in ba	nking	g - cut	ting -	partly	cutti	ng & p	oartly f	filling –	Det	ailed	estimate
and cos	st ana	ysis for	roads.													
ANAL	YSIS	OF RA	TES													

Rate analysis & preparation of bills - Data analysis of rates for various items of works – Substructure components - Rate analysis for R.C.C. slabs, columns and beams.

VALUATION, TENDERS AND CONTRACTS

Valuation- Capitalized value - Depreciation - Various types of valuations – Valuation methods – Valuation of land – Buildings - Mortgage – Lease- Measurement book, Stores. BOT & EPC - Case studies.

Tenders-Tender document - Cost & quality control - Contracts - Contracts - Types of contracts-Arbitration and legal requirements

TUTORIAL

- A minimum of 3 problems to be worked out by students in every tutorial class.
- 4 problems to be given as homework per tutorial class.

Tutorial Class for Module 1

Tutorial Class for Module 2

Tutorial Class for Module 3

Tutorial Class for Module 4

TEXT BOOK (S)

1. Datta B.N. Estimating and costing, Charator Publishing House, 2012.

REFERENCE BOOKS

- 1. Kohli D.D and Kohli R.C, "Estimating and Costing", 12th Edition, S. Chand Publishers, 2014.
- 2. Rangwala, C. "Estimating, Costing and Valuation", Charotar Publishing House Pvt. Ltd., 2015.
- 3. Vazirani V.N and Chandola S.P, "Estimating and costing", Khanna Publishers, 2015.
- 4. PWD Data Book.
- 5. CPWD Schedule of Rates (SoR).

S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Mrs.R.Abirami	Assistant Professor I	Civil/AVIT	Abirami.civil@avit.ac.in

		С	OM	PUTE	R AII	DED H	BUIL	DING	DRA	WIN	G	Cate	gory	L	Т	Р	Credit
		LAB CC 0 0 4 2 LE															
PRE	AMB	LE															
The a	im of	this c	ours	e is to j	prepar	e the	plan,	elevat	ion ar	nd sect	tions of	of vari	ous ty	pes of b	uildi	ngs u	sing any
desig	n soft	ware					•							L		U	0.
PRE-	REQ	UISI	TE -	- Nil													
COU	RSE	OBJI	ECT	IVES													
1	1 To understand the National Building Code regulations																
2	2 To apply the AUTO CAD commands in layout and plans																
3	To identify the requirements for various building components																
COU	DURSE OUTCOMES																
Upon	Upon completion of this course, the student will be able to																
CO:1	CO:1Examine the dimensions and describe the types of building.Apply																
CO:2	CO:1Examine the dimensions and describe the types of building.ApplyCO:2Apply the AUTO CAD commands in preparation of detailed plan.Apply																
CO:	3 Identify the National Building Code standards for planning. Apply																
CO:4	4 U	Identify the National Building Code standards for planning. Apply Understand all the parts of the structure and its standard sizes Apply															
CO.4	5 E	Understand all the parts of the structure and its standard sizes. Apply Explain the types of roof and roofing materials Apply															
MAP	PIN	Explain the types of root and rooting materials. Apply PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	P	0 1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS	50	PSO
000	(1	02	03	04	05	06	07	08	09	10	11	12	01	0	2	03
CO:1		5	L	M	-	M	S	-	M	S	-	S	S	M		5	M
CO:2	2	5	M	M	-	S	S	-	Μ	S	-	M	Š	S	N	Л	S
CO	3	5	M	M	-	Š	S	-	M	S	-	S	S	- Z		5	M
CO·4	1	3	M	M	-	M	S	-	M	S	-	M	S	S	N	Л	S
CO-4	5	S	M	M	_	M	S	-	M	S	_	S	S	M		S I	M
S - S'		JG M	1 = N	/FDIU	M and	1L = 1	IOW		111	5		5	5	111	,	,	111
SYL		IS	1 1		IVI un	4 L											
Pren	aratic	n of l	ine	sketche	es in a	ecord	lance	with	funct	ional	reaui	reme	nts and	d buildi	nσ r	ules	for the
follox	ving 1	vnes	of h	nilding	i as ne	r Nat	tional	Build	ling (ionar ode•	rcqui	ii cinci	ns an	u Dullu	ing i	uics	
101101	Fl	t roof	resi	dential	build	ing	ionai	Duik	<u>6</u> (Jouc.							
2	. I k Pit	ched 1	roof	residen	tial b	uildin	σ										
3	. 1 M	ilti-sta	oreve	ed build	dino	anam	6										
4	. Inc	lustria	al Bu	ilding	anng												
Detai	led D	rawii	ngs (Plan. F	Elevat	ion a	nd see	rtion	for th	e foll	wing) hv n	naniia	l and b	v usi	ng	
Auto	CAD		-8 5 (210 / U		iid 50			0 1011	2000	,, <u>.</u> .		i unu s	, .	8	
1	. De	tailed	dray	wing fo	r dooi	s. wii	ndows										
2	. Pla	nning	. des	sign an	d deta	il drav	wings	of sta	ircase								
3	. Fla	t roof	buil	lding w	vith loa	ad bea	ring v	vall									
4	. Pit	ched 1	roof	with lo	ad be	aring	wall										
5	. Fra	med	struc	tures		-0											
6	6. Industrial Building with North light roof truss																
TEX	T BO	OK (S)	U			0										
1	. Cao	l man	ual –	- Depar	tment	of Ci	vil en	ginee	ring								
COU	RSE	DESI	[GN]	ERS				<u> </u>	0								
S.No	Na	me of	the	Faculty	7	Des	signati	ion		Dept.	/ Coll	ege		Е	-mail	ID	
1	Mr.	M.Sen	nthilk	umar	1	Assista	ant Pro	fessor	(Civil /	VMKV	VEC	sen	thilkum	ar@v	mkve	c.edu.in
2	Mrs	.R.Ab	iram	i	A	ssistan	t Profe	essor I	Ci	vil/AV	/IT		Abira	mi.civil	@avi	t.ac.ir	1

		STRENGTH OF MATERIALS LAB Category L T P Credit BL E CC 0 0 4 2														Credit
		r r	JINEIN	GIU	UF 1	VIAII	LNIA		AD		C	C	0	0	4	2
PREA	AMBI	E														
This la	aborat	ory cour	se work	is int	endec	l to pr	ovide	stude	nts wi	th opp	oortuni	ities to	acquir	e kno	owledg	ge and to
develo	op skil	ls in test	ing diff	erent 1	nater	ials us	ed for	the c	onstru	iction	of bui	lding	under tl	ne ac	tion o	f various
forces	and	determir	ning the	eir ch	aracte	eristics	s exp	erime	ntally	. The	exper	riment	al wor	k in	volved	l in this
labora	atory w	ill make	the stu	dent to	o dete	rmine	the m	nechar	nical a	nd ph	ysical	proper	ties of	mate	rials l	ike steel,
wood,	, alum	nium, ce	ement, f	fine ar	nd coa	arse ag	ggrega	ate, et	c. The	e stude	ents w	ill be a	able to	infer	the su	iitability
of the	se mat	erials for	r constr	uction	l .											
PRE-	REQU	JISITE ·	– Nil													
COU	RSE ()BJECT	IVES													
1	The E	xperime	ntal wo	ork in	volve	ed in	this	labora	atory	shoul	d mał	the the	stude	nt un	nderst	and the
	funda	nental m	nodes of	loadi	ng of	the st	ructur	es and	1 also	make	measu	iremer	nts of lo	ads,	displa	cements
	and st	rains			-										-	
2	Relat	ing these	e quanti	ties, tł	ne stu	dent s	hould	be at	le to	obtain	the st	rength	of the	mate	rial ar	ıd
	stiffne	ss prope	rties of	struct	ural e	elemer	nts.					÷				
3	To ex	oose the	student	s to th	e test	ing of	diffe	rent n	nateria	ls und	ler the	actior	ı of var	ious		
	forces	and dete	erminat	ion of	their	chara	cteris	tics ex	perin	nental	ly					
COU	RSE (DUTCO	MES													
Upon	comp	etion of	this cou	ırse, tl	ne stu	dent v	vill be	able	to							
	De	termine	the beh	avior	of str	ructur	al ele	ments	, such	as ba	ars, be	ams a	nd spri	ngs		
CO:1	su	Determine the behavior of structural elements, such as bars, beams and springs subjected to tension, compression, shear, bending, and torsion by means of Apply														
	Ex	periment	ts		_							-				
CO:2	2 De	termine	the phy	sical p	oropei	rties o	f cons	tituen	t mat	erials.					A	Apply
CO.2	De	termine	the pro	perties	s of n	nateria	als an	d harc	lened	inclu	ding st	rength	and			nnly
CO.5	du	ability.									-				P	тррту
CO:4	De	termine	the Def	lection	n stre	ngth o	f the	mater	ials.						A	Apply
CO.5	Th	e studen	ts will h	ave th	ne req	uired	know	ledge	in the	area	of test	ing of	materia	als		nnly
CO.5	an	l compo	nents of	struc	tural	eleme	nts ex	perin	nental	y.		-			P	тррту
MAP	PING	WITH	PROG	RAM	ME (DUTC	OMI	ES AN	ND PR	ROGE	RAMN	IE SP	ECIFI	C OI	UTCO)MES
COS	PO) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	Р	SO	PSO
	01	02	03	04	05	06	07	08	09	10	11	12	01	()2	03
CO:1	M	L	Μ	-	Μ	S	Μ	Μ	S	-	S	S	Μ		L	L
CO:2	2 M	Μ	L	-	S	Μ	L	S	S	-	Μ	S	L		S	L
CO:3	L	S	Μ	L	S	S	Μ	Μ	S	L	S	S	Μ		S	М
CO:4	S	Μ	S	-	Μ	S	L	S	S	-	Μ	S	S]	М	S
CO:5	M	Μ	Μ	-	Μ	Μ	Μ	Μ	S	-	S	S	L		S	S
S - S	ΓRON	G, M – I	MEDIU	M and	1 L –	LOW										
SYLI	ABU	5														
LIST	OF E	XPERI	MENTS	5												
1.	Ten	sion test	on mile	l steel	and t	tor ste	el rod	s								
2.	2. Compression test on wooden specimen															
3.	3. Double shear test on mild steel and Aluminium rods															
4.	4. Torsion test on mild steel rods															
5.	Imp	act test o	on meta	l spec	imen											
6.	b. Hardness test on metals															
7.	Def	ection te	est on m	etal b	eam											
8.	Cor	pression	n test or	n Heli	cal sp	ring										
9.	Cor	pression	n test or	n Heli	cal sp	ring										
10). Ten	sion test	on Heli	ical sp	ring											

11. Y deflection test on carriage spring (Study Experiment)

TEXT BOOK (S)

- 1. Strength of Materials Lab Manual by VMKV Engineering College
- 2. Crandall, Dahl, and Lardner, "An Introduction to The mechanics of Solids", McGraw-Hill, 1978.

S. P. Timoshenko, "History of Strength Of materials", Dover Publications, 1953.

REFERENCE BOOKS

1. Bansal, R.K., "A Text Book of Strength of Materials", Laxmi Publications (P) Ltd. New Delhi 2010

2. James M. Gere and Stephen P. Timoshenko, "Mechanics of Materials" (3rd edition),

McGraw Hill Book Company, Singapore, 2002.

3. IS 1608 : 1995 Mechanical testing of metals - Tensile Testing.

S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Mr.K.Naveenkumar	Assistant Professor	Civil/AVIT	naveen.civil@vait.ac.in

			Ц			° FN	CINE	FDI	NCI	٨R		Cate	gory	L	Т	Р	Credit
			1	I I DKA	ULI		GINE	-L'NI	IG L	AD		0	CC	0	0	4	2
PRE	AMB	LE									0						
The p	ourpos	se of	this c	ourse i	s to ge	et exp	osure	about	the fu	inctio	n of v	arious	hydra	ulic eq	uipm	ent	
PRE	-KEQ		SITE -	FLUI	DS M	ECH	ANIC	28 AF		Y DRA	AULI	C EN	JINE	ERING	Ĵ		
	Stud	OB opt (JECI bould	ho obl	to va	rify t	ho pri	nainla	o otuć	liad ir	thoor	w hw o	ondua	ting th	0.027	orimo	nto
$\frac{1}{2}$	Stud	ente	should	$\frac{1}{1}$ be ab	le to v	erify	the pr	incipi	es stuc	died i	n theo	y Uy C	nerfor	ming th	e exp	nerim	ents in
2	lab.	ents	siloun			cilly	uie pi	merp	ics stu	uicu i	in thee	ny Uy	perior	ining u		perm	
3 The students will be able to measure flow in pipes and determine frictional losses.																	
4 The students will be able to develop characteristics of pumps and turbines																	
COU	COURSE OUTCOMES Upon completion of this course, the student will be able to																
Upon completion of this course, the student will be able toCO:1Conducting experiments by using the principles studied in theoryApply																	
CO:1Conducting experiments by using the principles studied in theoryApplyCO:2Calculate flow in pipes and Frictional lossesApply																	
CO:2Calculate flow in pipes and Frictional lossesApplyCO:3Developing characteristic curves of pumps and turbinesApply																	
CO:3Developing characteristic curves of pumps and turbinesApplyThe students will be able to measure flow in pipes and determine frictional																	
CO:	CO:4 The students will be able to measure flow in pipes and determine frictional Apply																
CO:	5 T	'he s	tudent	s will t	e able	e to de	velop	char	acteris	stics o	f pum	ps and	l turbii	nes		A	nalyze
MAI	PPINO	G W	ITH I	PROG	RAM	ME C	OUTC	OMI	ES AN	ID PR	ROGR	AMN	IE SP	ECIFI	C O	UTCO	OMES
MAPPING WITH PROGRAMIME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOSPOPOPOPOPOPOPOPOPOPOCOSPOPOPOPOPOPOPOPOPOPOPOPO																	
ao	COS PO PO																
CO:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
CO:	4	S	M	S	-	M	S	L	S	S	-	M	S	S		M	S
CO:	5 I	M	Μ	M	-	Μ	M	M	M	S	-	S	S	L		S	S
S - S	TRO	NG,	M - N	AEDIU	M and	1 L –	LOW		L							I	
SYL	LABU	US															
INT	RODU	UCT	ION		_												
LIST	r of l	EXF	PERIN	AENTS	6												
1.De	termir	natio	on of co	o-effici	ent of	disch	arge f	for or	ifice								
2.De	termir	natio	n of c	o-effici	ent of	disch	arge f	for no	tches								
3.De	termir	natio	n of c	o-effici	ent of	disch	arge f	for ve	nturin	neter							
4 D			<u> </u>	<u> </u>	· · ·	1. 1		<u> </u>	· C'								
4.De		natio	$\frac{1}{1}$ of co		ent of $\frac{1}{1}$	disch	arge 1	$\frac{1}{\sqrt{1-1}}$		neter							
5.Stu	$\frac{1}{1}$	1mp	$\frac{1}{1}$	jet on f	lat pla	ite (no	ormal	/ incl	ined)								
6.Study of friction losses in pipes																	
7.Study of minor losses in pipes																	
8. Study on performance characteristics of Pelton turbine.																	
9. Study on performance characteristics of Francis turbine																	
10.St	tudy o	n pe	rtorm	ance ch	aracte	ristic	s of K	aplan	turbi	ne				•			
11.St	11.Study on performance characteristics of Centrifugal pumps (Constant speed / variable speed)																
12.St	tudy o	n pe	rform	ance ch	aracte	eristic	s of re	cipro	cating	g pum	p.						

TEXT BOOKS

1.Hydraulic Engineering Lab Manual by VMKV Engineering College

REFERENCE BOOKS

1 Sarbjit Singh. "Experiments in Fluid Mechanics", Prentice Hall of India Pvt. Ltd, Learning Private Limited, Delhi, 2009.

2. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2000.

3. Subramanya K. "Flow in open channels", Tata McGraw Hill Publishing. Company, 2001.

4. Hydraulics, Fluid Mechanics and Fluid Machines Ramamrutham, and Narayan, R.Dhanpat RaiPublishingCompany, New Delhi, ISBN:818743384

S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Mr.K.Naveenkumar	Assistant Professor	Civil/AVIT	<u>naveen.civil@vait.ac.in</u>

	CONCRETE AND CONSTRUCTION TECHNOLOGY LABCategoryLTPCreditCC0042															
			r	ГЕСН	INOI	LOGY	LA	B			C	C	0	0	4	2
PREA	MBL	E														
The pu	ırpose	of this of	course i	s to ge	et exp	osure	about	the fu	unctio	n of v	arious	hydra	ulic equ	ipme	ent	
PRE-I	REQU	ISITE	- CON	STRU	CTI	ON M	ATE	RIAL	S AN	D TE	CHN	QUE	S			
COU	RSE C	BJECT	TIVES													
1 '	To fac	ilitate th	ne under	stand	ing of	the b	ehavi	or of c	constr	uction	mater	ials.				
2	Studer	t knows	s the tec	hniqu	es to	charac	cterize	e vario	ous pa	vemer	nt mate	erials t	hrough			
relevant tests 3 To understand and perform various tests on cement aggregates and concrete																
3 To understand and perform various tests on cement, aggregates and concrete. COURSE OUTCOMES																
COURSE OUTCOMES Upon completion of this course, the student will be able to																
		aducting	uns cou	ments	by us	ving th	e nrii	ciple	e etud	ied in	theory	7			Δ	nnly
CO.1	De	velon th	e skille	in cor	nnres	sive ci	rengt	h test	$\frac{1}{2}$ on bri	icks	theory					nppry nply
C0.2		volop th		in Sot	ting T	Sive Si		n Cor	nont	icks					P	appiy apply
0.5	De Th	velop til			ung i	uined	lmore		in the		oftoot	ing of			P	рргу
CO:4 The students will have the required knowledge in the area of testing of Apply																
CO:4 construction materials and components of construction elements experimentally. Apply CO:5 Test on Impact Resistance Test on Aggregates Analyze																
MAPI	PING	WITH	PROG	RAM	ME (CMI	ES AN	JD PF	ROGR	AMN	IE SP	ECIFIC			MES
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO PO																
	01	02	03	04	05	06	07	08	09	10	11	12	01	0	2	03
CO:1	M	L	Μ	-	Μ	S	Μ	Μ	S	-	S	S	Μ	Ι		L
CO:2	Μ	Μ	L	-	S	Μ	L	S	S	-	Μ	S	L	S	5	L
CO:3	L	S	Μ	L	S	S	Μ	Μ	S	L	S	S	Μ	S	5	М
CO:4	S	Μ	S	-	Μ	S	L	S	S	-	Μ	S	S	Ν	1	S
CO:5	M	Μ	Μ	-	Μ	Μ	Μ	Μ	S	-	S	S	L	S	5	S
S - ST	RON	<u>G, M − </u>]	MEDIU	M and	d L –	LOW										
SYLL																
INTR	ODU	CTION		~												
LIST	OF E.	XPERI	MENTS	5												
1.	Tests	on vari	ous pro	pertie	s of th	ne ing	redier	nts of o	concre	ete: Ce	ement					
2.	Tests	on vari	ous pro	pertie	s of th	ne ing	redier	ts of o	concre	ete: Fi	ne agg	regate	;			
3.	Tests	on vari	ous pro	pertie	s of tł	ne ing	redier	ts of o	concre	ete: Co	oarse a	ggrega	ate			
4.	Work	ability t	ests on	concr	ete: S	lump	Cone	test, (Comp	action	factor	test a	and Cons	sister	ncy te	st (VB
5	<u>Con</u>	sistomer	er)	a of o	0.00.000	tar Ca	atima	of oor	orata	anka	aulind	0,000	aimana		~ ~ ~	1
5.	testi	anicai p	ropertie		oncre	ie. Ca	sting		letete	cube,	cynno	ier spe	cimens,	cuim	g and	1
6	Non-	destruct	ive Tes	ting [.] I	Existi	ng Be	am c	olumn	& sla	abs						
TEXT	BOC	KS				0.20	, 0		54							
1. Gan	nbir N	. L. Coi	ncrete T	echno	ology.	Tata	MC-0	Graw I	Hill-E	ducati	on. 20	13.				
2. She	tty M.	S., Con	crete Te	echnol	logy,	S. Ch	and &	Com	pany]	Ltd., 2	2010					
3. Met	ha P.	K, "Con	crete: N	licros	tructu	re, pr	operti	es and	l Mate	erials"	, McG	raw-H	[ill, 201-	4		
4. Prop	perties	of conc	rete by	A. M	. Nevi	ille, L	ongm	an Pu	blishe	ers.						
5. Concrete Technology by K.S. Varshney, Oxford, and IBH.																
REFE		CE BO	OKS	-1. IVI.	INCVII	ie, J.J	. D 10(JKS, P(zai 801	1.						
1. Zon	1. Zongjin Li, Advanced Concrete Technology, John Wiley & Sons – 2011															
2. IS:	12269	-1987, S	specification	ation f	For 53	grade	ordi	nary P	ortlan	d Cen	nent, E	BIS, No	ew Delh	ni.		
3. IS: 3	383 -	1970, Sj	pecifica	tion fo	or Coa	arse a	nd fin	e natu	ral so	urces	for Co	ncrete	, BIS, N	lew		
Delhi.																

4. IS: 10	4. IS: 10262-2009, Concrete Mix Proportioning - Guidelines.												
COURSE DESIGNERS													
S.No.	S.No. Name of the Faculty Designation Department E-Mail ID												
1	Mr C Kathirvel	Asso. Professor	Civil /	kathirvel@vmkvec.edu.in									
-		& Head	VMKVEC	internet of the vinit voc.odd.int									
2	2 Mrs.J.Srija Assistant Civil/AVIT Srija.civil@avit.ac.in												
Professor													

				E	NGI	NEER	RING		Ca	tegor	y	L	Т	Р	Cr	edit
					MEC	HAN	ICS			CC		2	1	0		3
Prea This and o	mb cou dyna	le Irse pr amic c	ovide condit	es the tions.	basic	know	ledge	about	t the b	ehavi	or of tl	he boo	lies wł	nich are	under st	atic
Prer NIL	equ	isite														
Cou	rse	Objec	ctive													
1	То	expla	in the	e basio	c laws	of m	echan	ics ar	d for	ces						
2	2 To relate the basic concepts and application of rigid bodies under equilibrium in two Dimension To employ the concepts of properties of surfaces and to find the Centroid and moment of															
3	To employ the concepts of properties of surfaces and to find the Centroid and moment of Inertia using various methods in solid sections.															
4	4 To practice problems in the areas of Friction and Rigid body dynamics by understanding the basic concepts of Friction and Rigid body dynamics.															
5	5 To calculate and categorize of problems in the area of dynamics of particles.															
Cou	Course Outcomes: On the successful completion of the course, students will be able to															
CO1	D1. Identify the engineering problems using the concept of static Understand Equilibrium															
CO2		Equilibrium Equilibrium Solve problems of rigid bodies under equilibrium in two dimension Apply and apply various conditions Apply														
CO3		Deter of boo inertia	rmine dy ano a	the C d mor	entroi nent c	d of a of iner	line, tia of	areas, comp	, and voosite	volum areas,	es, cer mass	nter of mome	mass ent of	App	ly	
CO4		Solve	prob	lems i	involv	ving fr	iction	al pho	enome	ena.				App	ly	
CO5	•	Solve equili	prob briun	lems i n and	in eng analy:	ineeri ze the	ng sy nume	stems erical	using result	g the c s	oncept	t of dy	mamic	Ana	lyze	
Map	pin	g witl	h Pro	gram	me O	utcon	nes ai	nd Pr	ograr	nme S	Specifi	c Out	comes			
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO	L	М	L	L	L		L							L		
CO2	2	S	L	L	М		L							L		
COS	3	S	М	М	М		L							М		
CO4	1	S	М	М	М		L							М		
COS	CO5 S S S S L S															
S- Sti	rong	; M-M	edium	i; L-Lo	W				·	I						

SYLLABUS

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium -Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area the Centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, I section, Hollow section by using standard formula - Parallelaxis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

Text Books

Іслі	
1	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II Dynamics, McGraw Hill International Edition, 1995.
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.
Refe	rence Books
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.
2	Irving H. Sharma, Engineering Mechanics - Statics & Dynamics, III Edition, Prentice Hall of India Pvt. Ltd., 1993.
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998

Course	e Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	J.Sathees Babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in
2	Dr. S.Arunkumar	Associate Professor	Mech / VMKVEC	arunkumar@vmkvec.edu.in

			,	WAST	E WAT	ER EN	GINEE	RING		Cate	egory	L	Т	Р	Credit
										C	C	3	0	0	3
PREA	MBLE														
The ob biolog	jectives ical pher	of this nomena	course i for suc	s to hel cessful	p studer design,	nts deve operatio	lop the a	ability to naintena	o apply b ance of so	asic und ewage tr	lerstand eatment	ng of phy plants	ysical, che	emical, an	d
PRER Envir	EQUIS onmental	ITE Enginee	ering and	Design	(Theory	And Pra	cticals)								
COUF	RSE OB	JECTI	VES												
1	To Ur	derstar	d basic	concep	ts in Tra	ansmiss	ion of w	ater sys	tem						
2	To Ur	derstar	d the p	rocess a	nd Trea	tment o	f waste	water.							
3	To Ur	derstar	d the m	ethods	of Sewa	ge Disp	osal								
4	To un	derstan	d the ad	vances	in sewa	ge treat	ment								
COUF	RSE OU	тсом	ES												
On the	success	ful com	pletion	of the c	ourse, s	tudents	will be	able to							
CO1. A	An abilit s	y to esti	imate se	ewage g	eneratio	on and d	esign se	ewer sys	tem inclu	uding se	wage pu	mping	Understar	nd	
CO2.	The requ	ired und	derstand	ling on	the char	acterist	ics and	composi	ition of s	ewage, s	self puri	fication	Understar	nd	
of strea	ams			0				1		0 /	1				
CO3. /	An abilit	y to per	form ba	isic desi	gn of th	e unit c	peration	ns and p	rocesses	that are	used in	sewage	Apply		
treatm CO4. I	ent Understa	nd the s	standard	l metho	ds for di	isposal	of sewas	ge.					Apply		
CO5. (Gain kno	wledge	on slud	lge trea	ment ar	nd dispo	sal.						Understar	nd	
марі	PINC W	TTH P				OMES		PROCR	AMME	SPECT	FIC OF	TCOM	S S		
														DGO2	DCO2
COS CO1	8 S	S PO2	PO3 S	P04 S	P05 S	S S	PO7 S	-	-	M	-	S	8 S	PS02 S	PS03 S
CO^2	M	M	S	S	 M	 S	S			S		5	 M	M	S
CO3	5	S	5	<u> </u>	S	 М	M		M	2			S	5	S
	M	5	M	р 	р М	ки С	C C	т	141				<u>р</u>	5	M
C04	IVI	3	IVI	NI G	ĨVI	3	<u>р</u>		-	-	-		NI ~	3	M Ő
CO5	S	S	S	S	S	S	S	-	-	-	М	S	S	S	S
S- Stro	ong; M-N	Aedium	; L-Lov	V											
SYLL	ABUS														

SEWERAGE SYSTEM: COLLECTION & TRANSMISSION

Characteristics and composition of sewage - population equivalent -Sanitary sewage flow estimation – Sewer materials - Sources of wastewater – Estimation of storm runoff – Wastewater characteristics and significance – Effluent disposal standards – Design of sewers – Computer applications – Laying, jointing and testing of sewers - Sewer appurtenances – Pump selection – Drainage in buildings - House Sewer connection.

SEWAGE TREATMENT – PRIMARY TREATMENT

Objectives – Unit Operations & Processes - Selection of treatment processes — Onsite sanitation — Septic tank- Grey water harvesting - Materials for sewers – Layout of wastewater Treatment Plant - Characteristics and composition of sewage – Principles, functions and design of screen, grit chambers and primary sedimentation tanks – Construction, Operation and Maintenance aspects.
SEWAGE TREATMENT - SECONDARY TREATMENT

Objectives – Selection of Treatment Methods – Principles, Functions - Secondary Treatment – Activated Sludge Process and Trickling filter Sequencing Batch Reactor(SBR) — Membrane Bioreactor – Stabilisation Ponds and Septic tanks - Recent Advances in Sewage Treatment – Construction, Operation and Maintenance aspects.

SEWAGE DISPOSAL

Methods – Dilution – Self purification of surface water bodies – Oxygen sag curve - deoxygenation and reaeration - Streeter– Phelps model – Land disposal – Sewage farming –Deep well injection – Soil dispersion system.

SLUDGE TREATMENT AND DISPOSAL

Objectives - Sludge characterization – Thickening – Sludge digestion - Standard rate and High rate digester design – Biogas recovery – Design of Drying beds – Conditioning and Dewatering- Sludge drying beds- ultimate residue disposal — recent advances.

TEXT BOOKS:

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

REFERENCES:

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering–Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2010.
- 3. Syed R.Qasim, Edward M. Motley and Guang Zhu Wastewater Treatment Plants: Planning, Design and Operation 2nd Edition, CRC Press, 2015.
- 4. Metcalf & Eddy, George Tchobanoglous and Franklin L. Burton, Wastewater Engineering:
- 5. Treatment and Resource Recovery (2013), 5th Edition, The McGraw-Hill Companies, Inc.

MAPPING COURSE WITH NPTEL

Water and Waste water treatment

S.No	Name of the Faculty	Designation	Department	Mai l ID
1	Mr.R.SanjayKumar	Assistant Professor	Civil Engineering/AVIT	Sanjay.civil@avit.ac.in
2	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.edu.in

COMPUTER AIDED DESIGN AND DRAWING LAB CC 0 0 4 2		Category	L	Т	Р	Credit
CC 0 0 4 2	COMPUTER AIDED DESIGN AND DRAWING LAB					
		CC	0	0	4	2

PREAMBLE

This course helps to know the design of R.C.C cantilever and counterfort retaining walls, Design of solidslab, Design of various types of steel structures

PREREQUISITE- Design Of Reinforced Concrete Elements

COURSE OBJECTIVES

- 1 The student acquires hands on experience in design and preparation of structural drawings for concrete structures normally encountered in Civil Engineering practice.
- 2 The student acquires hands on experience in design and preparation of structural drawings for steel structures normally encountered in Civil Engineering practice.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.	Develop drafting skills in drawing R.C.C. cantilever and counter fort typeretaining	Apply
walls v	vith reinforcement details.	
CO2.	Develop drafting skills in Design of solid slab and R.C. Tee beam bridges	Apply
CO3.	Design of rectangular, pressed and hemispherical bottomed steel tank -staging	Apply

CO3. Design of rectangular, pressed and hemispherical bottomed steel tank –staging –rivetedjoints detailed drawing

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	COS
CO1	S	L	L	L	М	L	L	L	L	L	L	L	-	-	CO1
CO2	S	L	S	L	L	L	L	L	L	L	L	L	-	-	CO2
CO3	S	S	S	L	L	L	L	S	L	L	L	L	-	-	CO3

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS :

- 1. Design and drawing of R.C.C. cantilever and counter fort type retaining walls with reinforcement details
- 2. Design of solid slab and R.C. Tee beam bridges for IRC loading and reinforcement detail
- 3. Design of rectangular, pressed and hemispherical bottomed steel tank –staging –riveted joints detailed drawing
- 4. Design of circular, rectangular and intze type water tank reinforcement details
- 5. Design of plate girder twin girder deck type railway bridge through type and deck type highway bridges Truss girder bridges detailed drawing riveted connection

REFERENCES:

1.Computer Aided Design And Drawing Lab Manual by VMKV Engineeing College 2.Structural

design & drawing (concrete & steel) - Krishnaraju, CBS Publishers.2005

3. Krishnaraju, N. "Structural Design & Drawing, Universities Press, 2009.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in	1
2	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com	1

			RE	PAIR A	AND RI	EHABL	ITATI	ION OF		Cate	gory	L	Т	Р	Credit
					STRU	CTUR	ES			EC-	PS	3	0	0	3
PREA	MBLE	2													
To im _l repairi	part kno ng and	wledge rehabili	about t itating i	the prop t.	erties o	f concre	ete, the	causes of	f its fail	lure, the	conseq	uences,	and the me	ethods for	
PRER	EQUIS	SITE													
Constr	uction	Materia	ls and T	Fechniq	ues										
COUF	RSE OF	BJECT	IVES												
1	To kno	ow abou	it the qu	ality as	surance	for con	crete co	onstructio	on.						
2	To unc	lerstand	labout	the influ	ience of	n servic	eability	and dura	ability.						
3	To kno	w abou	it the st	rategies	of mair	itenance	e and re	pair.	-						
4	To und	lerstand	labout	the pror	perties o	f repair	materia	als.							
5	To get	an idea	of ren	ur tech	niques	r ropun									
					nques.										
On the	succes	sful cor	npletion	n of the	course,	student	s will b	e able to							
Co1. E	Explicat	e the as	pects w	hich aff	ecting t	he stabi	lity of o	concrete	structu	res			Understar	nd	
Co2. I	dentify	the cau	ses and	effects	of distre	ess in co	oncrete	structure	S				Understar	nd	
Co3 Id	lentify o	listress	in conc	rete stru	actures a	and proj	pose ma	aintenanc	e tactic	s			Apply		
Co4. E	Enumera	ate the c	concept	and the	techniq	ues for	repair r	and prote	ection r	nethod			Apply		
Co5_S	luggest	suitable	e repair	rehabil	itation :	and retro	ofitting	of struct	ures an	d demo	lition m	ethods			
000.0	4556 51	surtuon	, repuir,	Tenuon	ination		onning	of bullet	ures un	a actino	intron in	curous	Apply		
Mapp	ing wit	h Prog	ramme	Outco	nes and	l Progr	amme	Specific	Outcor	nes					
						1 -									
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	L	-	L	-	-	-	_	-	-	М	_		L	-
CO2	М	М	L	М	-	L	М	-	-	-	М	-	-	М	-
CO3	S	S	S	М	-	-	L	-	-	-	S	-		L	-
CO4	L	М	М	М	-	L	L	-	-	-	S	-		L	-
CO5	L	L	L	М	-	S	М	L	М	М	М	-		М	-
S- Stro	ong; M-	Mediur	n; L-Lo	W	<u> </u>	-1	1		I	<u> </u>	1				

SYLLABUS GENERAL

Quality assurance for concrete construction as built concrete properties, strength, permeability, thermal properties and cracking.

INFLUENCE ON SERVICEABILITY AND DURABILITY

Effects due to climate, temperature, chemicals, wear and erosion, design and construction errors, corrosion mechanism, Effect of cover thickness and cracking, Method of corrosion production, corrosion inhibitors, corrosion resistant steels, coatings, cathodic production.

MAINTENANCE AND REPAIR STRATEGIES

Definitions: Maintenance, Repair and Rehabilitation, Facets of maintenance, Importance of maintenance, preventive measures on various aspects, assessment procedure for evaluating damaged structure, causes of deterioration-Testing techniques.

MATERIALS FOR REPAIR

Special concrete and mortar, Concrete chemicals, special elements for accelerator, strength gain, expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, fibre reinforced concrete.

TECHNIQUES FOR REPAIR

Rust Eliminators and Polymers coatings for rebars during foamed concrete, mortar and dry pack, vacuum concrete, Guniting, shotcrete epoxy injection, mortar repair for cracks, shoring and under pining. Examples of repairs to structures Repairs to overcome low member strength, deflection, cracking, chemical disruption, weathering wear, fire, leakage, marine exposure. **TEXTBOOKS**

- 1. M.S. Shetty. Concrete Technology-Theory and Practice, S.Chand and Company,2008.
- 2. Dr.B.Vidivelli.B, Rehabilitation of Concrete Structures Standard Publishes Distribution.1 stedition 2009.

REFERENCE BOOKS

1. Denison Cambell, Allen and Harold Roper, Concrete Structures, materials, maintenance and repair, Long man, Scientific and technical UK 1991.

 Santha Kumar A.R. Training Course Notes on Damage Assessment and Repair in Low Cost Housing, RHDC-NBO", Anna Univ July 91.

COUK														
S.NO	COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID										
1	Dr.S.P.Sangeetha	Vice Principal(Academics)	AVIT	sangeetha@avit.ac.in										
2	Dr.T.Subramani	HOD-Civil	VMKVEC	tsm2007@rediffmail.com										

MAPPING COURSE WITH NPTEL

Maintenance and Repair of Concrete Structures

		TR	AFFIC	ENGI	NEERI	NG AN	D MA	NAGEN	MENT	Cate	gory	L	Т	Р	Credit
										EC	2-PS	3	0	0	3
PREA	MBLE												I		
Studen origin a separat and ma	ts will and des and des and and anagem	gain a tl tination at-grad ent.	horough analys e inters	n unders is, park ections	standing ing, pec Studen	g of traf lestrian ts will g	fic surve , and ac gain fan	eys and cident s niliarity	studies, i urveys. T with var	includin Fhey wil Fious mo	g volum l gain ki des of tr	e counti nowledg affic coi	ng, speed e of the de ntrol	and delay esign of g	analysis, cade
PRERI	EQUIS	TE													
Highw	ay Eng	ineering	g and de	esign											
COUR	SE OB	JECTIV	/ES												
1	To ach	ieve kn	owledg	e on de	sign of '	at grad	e' and '	grade se	eparated'	intersec	tions.				
2	To bec	ome fai	niliar w	vith var	ious traf	fic cont	trol and	traffic r	nanagem	nent mea	sures				
3	To giv	e an ove	erview	of Traff	ic engin	eering			0						
4	To kno	w abou	t the Va	arious s	urvevs t	to be co	nducted	l. traffic	regulation	on. man	agement	and traf	fic safety		
COUR	SE OU	JTCON	IES					,	0	- 7					
On the	succes	sful cor	npletio	1 of the	course.	student	s will b	e able to	C						
Co1. A	nalyse	traffic 1	oroblem	is and p	lan for	traffic s	vstems	various	uses				Understa	nd	
Co2. S	peed ar	nd volur	ne stud	ies and	their rel	ationsh	ips						Understa	nd	
Co3 Er	nimera	te the v	arious r	oad saf	ety requ	iremen	-po						Understa	nd	
$Co_{1}D$	lesion o	eometr	ics of ir	tersect	ions	in emen							Apply	iu	
C_{04} , D	osign t	ha sign		ng ond	dociona	rotory							Apply		
C03. D								Cl	0-4				Аррту		
марр	ng wit	n Progi	ramme	Outcol	nes and	i Progr	amme	specific	Outcon	nes					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
001	9		T	r											
$\frac{CO1}{CO2}$	S	M	L	L	-	-	-	-	-	-	-	-	M	-	-
CO_2	s S	s S	-	s	-		-	- T	[[[-	M	-[[
CO4	L	L	L	L	-	-		-	-	_	-		L		-
CO5	S	s	M	-	-	-	-	L	-	-	-	_	M	-	-
S- Stro	ng; M-	Mediun	n; L-Lo	W	1	1	<u> </u>	_I		1	<u> </u>			1	

SYLLABUS INTRODUCTION

Road Characteristics – Components of Traffic Engineering- Road, Traffic and Land Use Characteristics –Road user characteristics – Significance and scope, Characteristics of Vehicles and Road Users – PIEV theory – Vehicle Performance characteristics – Fundamentals of Traffic Flow – Urban Traffic problems in India – Skid Resistance and Braking Efficiency (Problems)

TRAFFIC SURVEYS AND ANALYSIS

Surveys and Analysis - Volume, Capacity, Speed and Delays, Origin and Destination, Parking, Pedestrian Studies, Origin Destination Survey – Methods and presentation – Parking Survey – Type of Accident-Accident analyses -Methods, interpretation and presentation – Statistical applications in traffic studies and traffic forecasting

TRAFFIC CONTROL

Traffic signs, Road markings, Design of Traffic signals and Signal co-ordination (Problems), Traffic control aids and Street furniture, Street Lighting, Computer applications in Signal design

GEOMETRIC DESIGN OF INTERSECTIONS

Conflicts at Intersections, Classification of Intersections at Grade- Channelized and Non-Channelized Intersection - Grade Separators (Concepts only)- Traffic signs including VMS and road markings – Significant roles of traffic control personnel Principles of Intersection- Design

TRAFFIC MANAGEMENT

Traffic Management- Traffic System Management (TSM) and Travel Demand Management (TDM), Traffic Forecasting techniques, Restrictions on turning movements, One-way Streets, Traffic Segregation, Traffic Calming, Tidal flow operations, Exclusive Bus Lanes - Coordination among different agencies

– Intelligent Transport System for traffic management, enforcement and education- Introduction to Intelligence Transport System (ITS)

TEXTBOOKS

1.Kadiyali.L.R."TrafficEngineeringandTransportPlanning", KhannaPublishers, Delhi, 20132.IndianRoadsCongress(IRC)Specific ations: GuidelinesandSpecialPublicationsonTraffic Planning andManagement.

2.Salter.R.IandHounsellN.B,"HighwayTrafficAnalysisanddesign", MacmillanPressLtd.1996

3. Garber and Hoel, Traffic and Highway engineering, Cengage publisher, SI Edition.

REFERENCEBOOKS

FredL.Mannering,ScottS.WashburnandWalterP.Kilareski,PrinciplesofHighwayEngineeringandTrafficAnalysis,WileyIndiaPvt.Ltd., NewDelhi,2011

GarberandHoel,"PrinciplesofTrafficandHighwayEngineering",CENGAGELearning,NewDelhi,2010 SP:43-1994,IRCSpecification,"GuidelinesonLow-costTrafficManagementTechniques" for UrbanAreas,1994

MAPPING COURSE WITH NPTEL

• Traffic Engineering

COCHD					
S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Mr.D.Parthiban	Assistant Professor	CIVIL/AVIT	Parthiban.civil@avit.ac.in	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com	

HYDROLOGY	Category	L	Т	Р	Credit
	EC-PS	3	0	0	3

PREAMBLE

It is the science that deals the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and the environmental sustainability of watersheds. A hydrologist is a person who practices hydrology.

PREREQUISITE

Nil

COURSE OBJECTIVES												
The mechanics of rainfall will be comprehended, as well as its spatial and temporal measurement and applications.												
The mechanics of rainfall, its distribution and measurement of rainfall using Hydrograph.												
Simple statistical analysis and application of rainfall and runoff probability distributions shall also be understood.												
Student will also learn simple methods of flood routing and ground water hydrology.												
COURSE OUTCOMES												
In the successful completion of the course, students will be able to												
Co1. Hydrological cycle and the measurement and analysis of rainfall data Understand												
Co2. Figure out the quantity of runoff generated from a catchment Apply												
Co3.Develop hydrographs to measure the stream flow Apply												
Co4. Estimate floods and propose suitable control measures Apply												
Co5. Suggest methods of Managing and conserving the surface and groundwater storage Apply												
Aapping with Programme Outcomes and Programme Specific Outcomes												
Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3												
COILMLSLMLL-												
XO2 S M L L S M L L -												
CO3 S M L L M L L L -												
XO4 SM - L S L L L -												
собини и и и и и и и и и и и и и и и и и и												
- Strong; M-Medium; L-Low												

PRECIPITATION

Hydrological cycle- Meteorological measurements – Requirements, types and forms of precipitation - Rain gauges-Spatialmeasurementmethods–Thiessen and Isohyetal methods-Temporalmeasurementmethods–Frequencyanalysisofpointrainfall– Intensity,duration,frequencyrelationship – Probable maximumprecipitation.

ABSTRACTION FROM PRECIPITATION

Losses from precipitation–Evaporation process, Horton's equation, pan evaporation measurements and evaporation suppression – Reservoir evaporation–Infiltration process–Infiltration capacity–Measuremen tofiltration–Infiltration indices–Effective rainfall.

HYDROGRAPHS

Factors affecting Hydrograph–Base flow separation–Unit hydrograph–Derivation of unit hydrograph–Unit hydrograph of different deviations- Synthetic Unit Hydrograph–Instantaneous unit hydrograph (IUH)

FLOOD AND DROUGHTING

Flood frequency analysis–Recurrenceinterval–Gumbel'smethod–Floodrouting–Reservoirfloodrouting– Muskingum'sChannelRouting–Floodcontrol-DroughtProne AreaProgramme (DPAP)

GROUNDWATERHYDROLOGY&MANAGEMENT

Origin-ClassificationandTypesofaquifers–Darcy'slaw–Dupuit'sassumptions–steadyand unsteadyflow-ConfinedAquifer–UnconfinedAquifer–Recuperationtest–Transmissibility–Specificcapacity–Pumpingtest – Steadyflowanalysisonly-artificialrecharge-RWHinruralandurbanareas.

TEXTBOOKS

- 1. Subramanya, K., "EngineeringHydrology", TataMcGraw-HillPublishingCo., Ltd., 2006
- 2. JayaramiReddy.P."Hydrology", TataMcGrawHill, 2008.114
- 3. H.M Ragunath, Hydrology, principles, analysis and design, New age International publishers, Third Edition.

REFERENCEBOOKS

- 1. DavidKeithTodd."GroundwaterHydrology", JohnWiley&Sons, Inc. 2007
- 2. VenTeChow, Maidment, D.R. and Mays, L.W. "Applied Hydrology", McGraw Hill International Book Company, 1998.
- 3. Raghunath, H.M, Hydrology: Principles, Analysis & Design, New AgeInternational (P) Limited, Publishers.

MAPPING COURSE WITH NPTEL

• Engineering Hydrology

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.D.Parthiban	Assistant Professor	CIVIL/AVIT	Parthiban.civil@avit.ac.in		
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com		

DISASTER MANAGEMENT	Category	L	Т	Р	Credit
	EC-PS	3	0	0	3

PREAMBLE

This course deals with the various disasters and to expose the students about the measures, its effect against built structures, and Hazard Assessment procedure in India. This course also deals with the methods of mitigating various hazards such that their impact on communities is reduced.

PREREQUISITE

NIL															
COU	RSE OU	TCOM	MES												
1	To Und	lerstan	d basic	concep	ts in Dis	saster M	lanagen	nent							
2	To Und	lerstan	d Defin	itions a	nd Tern	ninologi	ies used	l in Disa	aster Ma	anagemer	nt				
3	To Und	lerstan	d the C	halleng	es posec	l by Dis	asters								
4	To und	erstanc	l Impac	ets of Di	sasters										
COU On the	RSE OU e success	TCON ful con	MES mpletio	on of the	course,	, studen	ts will b	be able t	0						
CO1. Disast Water	Understa ers, Atm Driven	and the cosphere Disaste	e variou ric Disa ers.	as types asters, C	of disas leologic	ter viz l al, Mas	Hydrolo s Move	ogical, C ment an	Coastal a 1d Land	and Marin Disasters	ne s, Wind a	ind	Understa	nd	
CO2. sugge	Identify st suitabl	the pot e reme	tential o edial m	deficien easures	cies of e	existing	buildin	gs for E	Earthqua	ıke disast	er and		Understa	nd	
CO3.I Earthc	Derive th Juake dis	e guid aster.	e lines	for the p	orecauti	onary m	leasures	s and rel	habilitat	tion meas	sures for		Apply		
CO4.	Derive th	ne prot	ection	measure	es again	st floods	s, cyclo	ne, land	l slides				Apply		
CO5.	Understa	ind the	effects	s of disa	sters on	built st	ructure	s in Indi	ia				Understa	nd	
Mapp	ing Wit	h Prog	gramm	e Outco	omes Ai	nd Prog	gramme	e Specif	fic Outo	comes					
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	_	-	L	-	-
CO2	М	М	L	L	-	М	-	-	-	-	-	-	L	-	-
CO3	S	Μ	S	Μ	-	L	-	Μ	-	-	-	-	М	L	-
CO4	S	М	S	_	L	-	-	-	-	-	_	-	М	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

INTRODUCTION:

Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

RISK ASSESSMENT AND VULNERABILITY ANALYSIS:

Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

DISASTER RESPONSE:

Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA:

Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

TEXT BOOKS:

1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]

Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011 Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010. REFERENCES:

Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.

Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.

Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.

Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.

National Policy on Disaster Management, NDMA, New Delhi, 2009.

Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

MAPPING COURSE WITH NPTEL

• Natural Hazards

Course	Designers				
S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com	

]	HOUSI	NG PL	ANNI	IG AN	D MAN	AGEME	ENT	Categ	gory	L	Т	Р	Credit
										EC-I	PS	3	0	0	3
PREA This co help of	MBLE ourse w f releva	ork imp nt code	parts kn s, manu	owledg als and	e requir guideli	ed for u nes.	ndersta	nding the	general	princip	les of bu	ilding p	lanning ar	d services	with the
PRER	EQUI	SITE													
	NIL														
COUF	RSE OF	BJECT	IVES												
1	An int	oductio	on to ho	using p	lanning										
2	Constr	uction a	and fina	ncing o	f housir	ig proje	cts.								
3	The co	urse foo	cuses or	cost et	ffective	constru	ction m	aterials a	nd meth	ods.					
4	Empha	sis has	also bee	en give	n on the	princip	les of su	ustainable	e housin	g policie	es and p	rogramr	nes.		
COUF	RSE OU	JTCON	AES												
On the	succes	sful cor	npletior	n of the	course,	student	s will b	e able to	. 1	1 0	1.00		A 1		
of buil	Apply ti dings.	ie gene	ral plan	ning co	nsidera	ions an	d develo	opment co	ontrol ru	iles for c	ifferent	types	Apply		
CO2. /	Apply t	ne princ	ciples of	electri	cal and	lighting	service	es for diffe	erent us	es in bui	ldings		Apply		
CO3. U needs	Underst	and and	l apply (he prin	ciples o	f plumt	oing ser	vices for o	domesti	c and ind	dustrial		Understar	nd	
CO4. I service	Plan and es for a	l desigr various	the rec	uireme uilding	nts for 1	HVAC	systems	, fire figh	ting and	l other n	ecessary	1	Apply		
CO5. I better	ncorpo usage o	rate the f buildi	integra ngs	ted plar	ning ar	d desig	ning of	necessary	y buildin	ng servic	ces for		Apply		
MAPI	PING V	VITH I	PROGR	AMM	E OUT	COME	S AND	PROGR	AMME	E SPEC	IFIC O	UTCON	AES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 I	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-			-	М	L	-	-
CO2	S	S	S	М	М	М	М	-	- I	L	-	М	L	М	-
CO3	S	S	S	М	М	-	L	-			-	L	-	-	-
CO4	S	S	S	М	М	L	L	-			-	L	L	М	М
CO5	S	S	S	М	М	L	L	-	-	-	-	L	L	-	М
S- Stro	ong; M-	Mediur	n; L-Lo	W											

INTRODUCTION TO HOUSING:

Definition of Basic Terms – House, Home, Household, Apartments, Multi storeyed Buildings, Special Buildings, Objectives and Strategies of National Housing Policies, Policy and Public Intervention, Principle of Sustainable Housing, All basic infrastructure consideration - Institutions for Housing at National, State and Local levels. Legal and Institutional Framework For housing

HOUSING PROGRAMMES:

Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighbourhoods, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programmes, Role of Public, Private and Non-Government Organisations. Slum improvement – Slum redevelopment and Relocation – Use of GIS and MIS in Slum Housing Projects

PLANNING AND DESIGN OF HOUSING PROJECTS:

Formulation of Housing Projects – Site Analysis, Layout Design, Planning for group housing Design of Housing Units (Design Problems) Building Byelawsand Rules, Zoning regulations – and Development Control Regulations CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS: New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept, Functions and Performance Evaluation, Different types of housing standards – spatial standards, safety standards,

HOUSING FINANCE AND PROJECT APPRAISAL:

Evaluation of Housing Projects for sustainable principles, Appraisal of Housing Projects – Housing Finance, Cost Recovery - Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems)

TEXT BOOKS:

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

REFERENCES:

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2002.
- 2. Dhir, B.M, Construction Planning And Management, New Age International (P)Limited, Publishers.
- 3. Lal,A.K,Hand Book Of Low Cost Housing, New Age International(P)Limited,Publishers. Panchdhari,A.C,Water Supply & Sanitary Installations,New Age International(P)Limited,Publishers.
- 4. All housing policy of Government of India and states related to urban development.

MAPPING COURSE WITH NPTEL

- Housing Policy And Planning
- Urban Goverance and Development Management

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in	
2	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.edu.in	

GROUND IMPROVEMENT TECHNIQUES	Category	L	Т	Р	Credit
	EC-PS	3	0	0	3

PREAMBLE

This course deals with the different ground improvement methods adopted for improving the properties of remolded and in-situ soils by adopting different techniques such as in- situ densification, consolidation and dewatering methods. This course enables the students to understand how reinforced earth walls can obviate the problems associated with conventional retaining walls. Also the students would be exposed to the concepts of grouting, soil stabilization and the use of geo textiles to improve the engineering performance of soils.

PREREQUISITE

Geotechnical Engineering

COUL	DEE OF	IFCT	WFS												
						ida mari				· :		:1 and :			
1	Further	r ne/sne	$15 \ln a$	positio	1 to dec	ide vario	bus way	/s and n	leans of	improvi	ng the so	m and m	npiementii	ig technic	jues of
2	About	the drai	nagaar	d down	toring	achniqu	oc ovoil	abla							
2	About	ule ulai	nage al	iu uewa	ttering t	leciniqu	es avan	lable							
3	About	the vari	ous trea	atments	availat	ole for so	oil								
4	About	the rein	forcem	ent and	grout t	echniqu	es								
5	Further	r he/she	is in a	positio	n to dec	ide vari	ous way	s of gro	ound im	proveme	nts.				
COUR	RSE OU	JTCON	AES												
On the	succes	sful con	npletior	n of the	course,	, student	s will b	e able t	0						
CO1. I	Enumer	ate the 1	role of g	ground	improv	ement a	nd selec	t appro	priate g	round im	proveme	nt	Understa	nd	
technie	que for	the give	en subso	oil cond	lition.			11	1 0		L				
	-	_													
CO2.	Suggest	t approp	oriate de	ewaterii	ng tech	nique fo	r loweri	ing the	ground	water tab	le		Apply		
CO3. I	Recomn	nend su	itable te	echniqu	es for d	lensifyin	gcohes	ionless	soil dep	oosit			Apply		
CO4. \$	Suggest	approp	riate tec	chnique	s for co	onsolidat	ing coh	esive de	eposits				Apply		
CO5.	Perfo	orm sim	ple desi	ign of r	einforce	ed earth	walls a	nd illus	trate the	e role of g	eo-textil	e in	Apply		
ground	l impro	vement	1	0									11 5		
MAPI	PING V	VITH P	ROGR	AMM	E OUT	COME	S AND	PROG	RAMN	AE SPEC	CIFIC O	UTCON	MES		
COS	PO 1	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
					5										3
CO1	S	М	L			L		L					S	М	L
CO2	S	М	L		L	М		L		L	L		S	М	L
CO3	S	М	L		L	М		L		L			S	М	L
CO4	S	М	М		L			L		L		L	S	М	М
CO5	S	М	М					М		М	L		S	М	М
S- Stro	ong; M-	Mediun	n; L-Lo	W	· .	· ·	•	· · · · · ·	· ·	· ·		· ·		·	

SYLLABUS INTRODUCTION:

Role of ground improvement in foundation engineering - methods of ground improvement –Emerging Trends in Ground Improvement– Geotechnical problems in alluvial, laterite and black cotton soils -Selection of suitable ground improvement techniques based on soil condition

DRAINAGE AND DEWATERING: Dewatering Techniques - Drainage techniques –Prefabricated Vertical drains- Well points - Vaccum and electroosmotic methods - Seepage analysis for two dimensional flow-fully and partially penetrating slots in homogenous deposits (Simple casesonly).

INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS:

Insitu densification of cohesionless and consolidation of cohesive soils -Dynamic compaction and consolidation - Vibrofloation - Sand compaction piles and deep compaction. - Preloading with sand drains and fabric drains – Stone columns – Case studies in stone columns-Lime piles - Simple design- Installation techniques only - relative merits of various methods and their limitations.

EARTH REINFORCEMENT:

Concept of reinforcement - Types of reinforcement material- laboratory behavior of reinforced soil-Reinforced earth wall – Mechanism, Simple design, stability analysis – Use in India- Applications of reinforced earth – use of Geotextiles for filtration, drainage and separation in road and other works.

GROUT TECHNIQUES:

Types of grouts - Grouting equipment and machinery - Injection methods - Grout monitoring -Stabilisation with cement, lime and chemicals - Stabilisation of expansive soils, Impermeability grouting seepage control in soil under dams and for cut off walls- seepage control in rock under dams-stabilization grouting for under pinning

TEXT BOOKS:

- 1. Purushothama Raj. P, "Ground Improvement Techniques", Lakshmi Publications, 2nd Edition, 2016.
- 2. Koerner, R.M. "Construction and Geotechnical Methods in Foundation Engineering", McGraw Hill, 1994. 3. Nihar Ranjan Patra, "Ground Improvement Techniques", Vikas Publishing House, First Edition, 2012.
- 3. Mittal.S, "An Introduction to Ground Improvement Engineering", Medtech Publisher, First Edition, 2013.

REFERENCES:

- 1. Das, B.M., "Principles of Foundation Engineering" (seventh edition), Cengage learning, 2010.
- 2. Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2011.
- 3. Koerner, R.M., "Designing with Geosynthetics" (Sixth Edition), Xlibris Corporation, U.S.A, 2012.
- 4. Foundation Analysis and Design by J.E. Bowles, MacGraw Hill, 1996
- 5. Principles of Geotechnical Engineering by B. M. Das, Thomson Publications.

MAPPING COURSE WITH NPTEL

Ground Improvement Techniques

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in
2	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.edu.in

			A	IR POI	LUTIO	ON MA	NAGE	MENT	I	Cate	gory	L	Т	Р	Credit
										EC	PS	3	0	0	3
PREA	AMBLI	E													
The co global and de have a	urse wo enviror sign of sustain	ork offe iment. l control able en	ers the bars It provic of parti vironme	asic kno les vari culate/ ent for	owledge ous tech gaseous future ge	on var iniques air poll eneratio	ious sou for sam lutants a m. In ad	arces of apling and and its e Idition.	air pollu nd analyz merging	tants and zing he p trends to	l their po follutants fulfil th	ossible e s. Also, i ne legal a	ffects on lait deals wi aspects of	ocal, regionation ocal, regionation the prination of the	onal and nciples ion to
PREF	REQUI	SITE													
Enviro	nmenta	l engin	eering a	nd Des	ign										
COUF	RSE OF	BJECT	IVES												
1	About	noise p	ollution	and the	e metho	ds of co	ntrollin	g the sa	ime.						
2	The stu	ident is	expecte	ed to kn	ow abo	ut sourc	e inven	tory and	d control	mechan	sm.				
3	To imp	art kno	wledge	on the	sources	effects	of air p	ollution	1						
4	The co	ntrol te	chnique	s of air	pollutio	ons and	prevent	tive mea	asures						
5	The stu	idy abo	ut noise	polluti	on and t	he effec	ts and c	ontrol n	neasures						
COUI	RSE OI	TCON	1ES	-											
On the	succes	sful cor	npletior	n of the	course,	student	s will b	e able to	0						
CO1. I	dentify	the sou	irces of	air poll	ution, ir	npacts	of air po	ollutants	s and the	ir measu	rements		Apply		
CO2. predict	ident the pol	ify the llutant o	signific: concent	ance of ration	meteoro	ological	factors	in pollu	utants dis	spersion	and to		Understar	nd	
CO3. S	Suggest	preven	tive and	l contro	l measu	res for a	air pollu	ution.					Apply		
CO4. S polluti	Suggest on man	locatio agemer	ns for in it of a c	ndustrie ity	es and ap	opropria	ate city j	planning	g tips for	the effect	ctive air		Apply		
CO5. 7 possibl	The cou le effect	rse offe ts on lo	ers the b cal, regi	asic kn ional ar	owledge id globa	e on var l enviro	ious sou onment.	urces of	air pollu	itants and	l their		Apply		
MAPF	PING V	VITH P	PROGR	AMM	E OUT	COME	S AND	PROG	RAMM	E SPEC	IFIC O	UTCON	1ES		
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L		L		L					М	М	S
CO2	S	М	L	L	L	М		L		L	L		М	М	S
CO3	S	М	L	L	L	М		L		L			М	М	S
CO4	S	Μ	М	S	L			L		L		L	М	М	S
CO5	S	М	М	S				Μ		М	L		S	L	S
S- Stro	ng; M-	Mediur	n; L-Lo	W											

SYLLABUS SOURCES AND EFFECTS OF AIR POLLUTANTS :

Structure and composition of Atmosphere, Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility – Particulates and gaseous pollutants – Sources of air pollution – – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling –

Analysis of pollutants – Principles. DISPERSION OF POLLUTANTS :

Global winds, Headley cells, , Effects of terrain and topography on winds, maximum mixing depths, Effects of meteorology on Air Pollution – Meteorological factors – Wind roses – Lapse rate – Atmospheric stability and turbulence Plume rise – Dispersion of pollutants – Dispersion models – Applications.

AIR POLLUTION CONTROL :

Air pollution monitoring and regularity control- Air Pollution control- at source -Factors affecting Selection of Control Equipment, Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - Operational Considerations. - Working principles advantages and disadvantages, design criteria and examples

AIR QUALITY MANAGEMENT:

Sources, types and control of indoor air pollutants- sick building syndrome and Building related illness- Air quality standards – Air quality monitoring – Preventive measures – Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

NOISE POLLUTION:

Basics of acoustics-Sources of noise pollution – Effects – Assessment – Noise Standards and limit values–Noise instrumentation and monitoring procedure- Control methods –Noise indices- Prevention-Case studies

TEXT BOOKS:

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002
- 4. Martin Crawford, Air Pollution Control Theory, TMH Publ.

REFERENCE BOOKS:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000. 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 2. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.

3. M.N Rao and HVN Rao, "Air Pollution", Tata Mcgraw Hill Publishing Company limited, 2007.

4.C.S.Rao, "Environmental Pollution Control Engineering", New Age International(P) Limited Publishers, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	Civil / AVIT	isparaxavier.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

					TALL	BUILD	INGS			Cate	gory	L	Т	Р	Credit
						DUILD	1100			EC	-PS	3	0	0	3
PREA The at earthc	MBLE im of the juake and	course l deflec	is to un tions of	derstan the stru	d the protection of the definition of the defini	oblems	associat	ed with	large heig	ts of str	ructures	with resp	ect to load	s (wind an	ıd
PREI Desig	REQUIS n of Stee	ITE l struct	ures												
COU	RSE OB	JECTI	VES												
1	Understa	and the	various	aspects	of plan	ning of	Tall bui	ildings.							
2	Know th	e differ	rent type	es of loa	ds cons	idered i	n the an	alysis of	f Tall stru	ctures.					
3	To intro	duce va	rious str	ructural	system	s for me	edium ri	se build	ings with	their beh	aviour a	nd analys	sis		
4	Impart k	nowled	lge abou	t the sta	ability a	nalysis	of vario	us struct	tural syste	ms.					
5	Understa	and the	concept	s of app	oroxima	te analy	sis of S	tructural	l system.						
COU	RSE OU	тсом	IES												
On th	e success	ful con	pletion	of the c	course, s	students	will be	able to					T		
Co1.	Descr	ibe the	various	structu	ral syste	ems used	d in the	construc	ction of Ta	all structu	ires		Understar	ıd	
Co2.	The s	tudents	should	have kn	owledg	e about	the desi	igning ta	ll buildin	gs			Understar	ıd	
Co3. 1	Rudimen	tary pri	nciples	of desig	ning tal	l buildi	ngs as p	er the ex	kisting coo	des.			Apply		
Co4. 4	Analysis	of Bear	ring Wa	ll Build	ings ,Th	e Cross	Wall S	tructure					Apply		
CO5. Buildi MAP	Explain t ings	he imp	ortance	of High	-Rise S	uspensi	on Syste	ems, Pne	eumatic H	igh -Rise		COMES	Understar	ıd	
COS	PO 1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	М		L	М	L	S				S	S	L
CO2	S	М	L	М	L	М	М	L	S	L	L		S	S	М
CO3	S	М	L	S	L	М	М	L		L			S	S	L
CO4	S	М	М	S	L		М	L	S	М		L	S	S	L
CO5	S	М	М	М			М	М		М	L		S	S	М
S- Str	ong; M-N	Aedium	n; L-Lov	V	<u> </u>					1				1	

INTRODUCTION:

The Tall Building and its Support Structure -Development of High Rise Building Structures - advantages and disadvantages - Vertical city concepts - essential amenities - fire safety - water supply -drainage and garbage disposal - service systems - structural and foundation systems. Factors affecting height, growth and form - Human comfort criteria

LOADS AND MATERIALS:

General Planning Considerations -Gravity loading - Dead and Live load - calculation - Impact and construction loads. Wind loading - static and dynamic approach - Analytical and wind tunnel experimental method. Earthquake loading - Equivalent lateral force, Modal analysis - combination of loading in various design philosophies. Materials for tall buildings - High strength concrete - Light weight concrete - Fibre reinforced concrete Composite Materials.

HIGH-RISE BUILDING STRUCTURES AND THEIR BEHAVIOUR UNDER LOAD:

The Bearing Wall Structure -Factors affecting growth, height and structural form. - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Shear Wall Building Systems - Flat Slab Building Structures - Shear Truss - Belt Trusses -Tubular Systems- Composite Buildings - Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift EfficientBuilding Forms

- The Counteracting Force or Dynamic Response.

APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDINGS:

Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading and Lateral Loading - Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings - Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure.

ADVANCED TOPICS :

Structural systems for future generation buildings – Expert systems for consultations – Economics – Research needs in tall building materials, systems and designs.

TEXT BOOKS:

- 1. WOLFGANG SCHUELLER "High rise building Structures", John Wiley and Sons.
- 2. Bryan Stafford Smith and Alex Coull, " Tall Building Structures ", Analysis and Design, John Wiley and Sons, Inc., 2015
- 3. Gupta.Y.P.,(Editor), Proceedings of National Seminar on High Rise Structures Design and Construction Practices for Middle Level Cities, New Age International Limited, New Delhi,2015.
- 4. Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications. Hel wany, S. (2007)

REFERENCE BOOKS:

- 1. Beedle.L.S., "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 2016.
- 2. LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers", John Wiley, 1994.
- 3. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 4. Taranath.B.S., Structural Analysis and Design of Tall Buildings, Mc Graw Hill 1998.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.R.Abirami	Assistant Professor	Civil / AVIT	abirami.civil@avit.ac.inv
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

										Cate	gory	L	Т	Р	Credit
				STR	UCTU	RAL D	YNAM	ICS		Cute	gory	Ľ	1	1	crean
										EC-F	PS	3	0	0	3
PREA	MBLE	E													
The p	urpose o	of the co	ourse is t	to under	stand h	ow to a	rive the	e dynam	ic force	s and stru	ictures				
PREF	REOUI	SITE													
Struct	ural ana	lysis													
COU	RSE OI	BJECT	IVES												
1	Unde	rstand t	he conce	epts inv	olved in	finding	g the res	sponse o	of Struct	ures for I	Dynamic	forces.			
2	To le	arn abo	ut the di	scritizat	ion of v	arious s	structure	es and d	egree of	ffreedom					
3	To ur	derstan	d about	the seis	mic des	ign of v	arious	structure	es						
4	They	also be	able to	interpre	t the res	ults.									
5	To le	arn how	to ideal	lise anal	lyse the	se syste	ms for t	the force	es.						
COU	RSE OI	UTCON	MES		5	2									
On the	e succes	sful con	npletion	of the	course,	students	s will be	e able to)						
CO1 I	Find out	the nat	ural free	quencies	and the	e mode	shapes	of struct	tures un	der dynar	nic load	ing.	Understa	nd	
CO2.	Solve p	roblems	s of sing	le degre	e of free	edom (S	SDOF)	systems				,	Apply		
CO3.	Solve d	ynamic	problem	ns in mu	ılti-degr	ee of fr	eedom (MDOF) system	IS			Apply		
CO4.	Apply s	tructura	al dynan	nic princ	ciples to	the ana	lysis of	structu	res for s	eismic ar	d wind		Apply		
loadin	ıg														
CO5.	Design	earthqu	ake resi	stant str	uctures	and add	pt appr	opriate	vibratio	n control	techniqu	ies.	Apply		
MAP	PING V	VITH I	PROGR	AMM	EOUTO	COMES	S AND	PROG	RAMM	E SPEC	FIC O	UTCOM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L		L		L					М	-	-
CO2	S	М	L		L	М		L		L	L		М	-	-
CO3	S	М	L		L	М		L		L			М	-	-
CO4	S	М	М		L			L		L		L	М	L	М
CO5	S	М	М	М				М		М	L		М	-	-
S- Str	ong; M-	Mediur	n; L-Lo	w							1		<u> </u>	1	1
SYL	LABUS														

PRINCIPLES OF DYNAMICS :

Difference between static loading and dynamic loading – Nature of dynamic loads –Wind, Earthquake and Impact Loads – Energy and Damping – Types of Damping- Viscous and structural damping – Degrees of freedom– Formulation of equation of motion – Newton's Law and D'Alembert's principles –.

SINGLE DEGREE FREEDOM SYSTEMS :

Undamped and damped free vibration systems, Natural frequency of physical systems. Response to harmonic loading, response to ground motion and vibration isolation, Transmissibility, Response to periodic loading, concept of response spectrum, Response to impulse loadings – Numerical evaluation of Duhamel's integral.

MULTIDEGREE OF FREEDOM SYSTEMS :

MDOF systems equation of motion– examples- Free vibration analysis of MDOF system, Natural mode, orthogonality condition, stiffness equations for shear buildings. Forced vibration of MDOF system using modal analysis. SUPERPOSITION PRINCIPLES: Principle of mode superposition (principle only) for dynamic analysis – vibration isolation – vibration measuring instruments.

DESIGN FOR WIND AND EARTHQUAKE:

Introduction, Cause, Earthquake waves Intensity, Magnitude, Earthquake Parameters, Seismographs and strong motion devices, Accelerogram and Seismogram- Effect of wind eon structures – Principles of aseismic design – Methods of Vibration control – codal provisions for design for wind and earthquake (explanation of Provisions only – no design)- Important points in mitigating effects of earthquake on structures.

TEXT BOOKS:

- 1. Mario Paz," Structural Dynamics Theory and Computation", Van Nostrand Reinhold, 2004
- 2. Anil K.Chopra, "Dynamics of Structures Theory and Applications to Earthquake Engineering" Pearson Education., 2003.
- 3. S.R.Damodarasamy, S.Kavitha "Basics of Structural dynamics and Aseismic Design", PHI Learning Private Limited.,

2009.

4.Pankaj Agarwal, "Earthquake Resistant Design of Structures", Prentice Hall of India, 2007

REFERENCE BOOKS:

- 1. Clough R.W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1990
- 2. Craig R.R. Jr., Structural Dynamics An Introduction to Computer Methods, John Wiley and Sons, 1981
- 3. Madhujit Mukhopdhyay, " Structural Dynamics, Vibrations and Systems", Anne Books India,

2006.

4. IS 1893 part 1 2002 Indian standard criteria for earthquake resistant design of structures.

MAPPING COURSE WITH NPTEL

Dynamics of Structures

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.R.Abirami	Assistant Professor	Civil / AVIT	abirami.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

										Cate	gory	L	Т	Р	Credit
				W	IND EN	NGINE	ERING	r J							
										EC-P	S	3	0	0	3
PREA The cc covere energy and wi wind f	MBLE ourse inc ed. An ir o, enviro ritten pro- farm is in	cludes s ntroduct nmenta esentati ncluded	tudies o ion to p l impact ons in a	f sustair rerequis t, locatio scientif	able de ites for on and e ic conte	evelopm wind pe economi ext will	ent and ower de c aspec be discu	l energy evelopm ets will b ussed an	sources ent incl be given id pract	s. Basic n luding ho l. The pha iced in th	nathemat w a wind ses of w e course	tical and l turbine ind pow . A site	physical works, pl er projects study visit	concepts v anning fo s is studied to an ope	vill be r wind d. Oral rating
PRER Nil	EQUIS	SITE													
COUF	RSE OB	JECTI	VES												
1	Under	stand th	ne basic	concept	s of wir	nd gener	ration a	nd flow.							
2	Under	stand th	ne respo	nse of d	ifferent	type of	structu	res to w	ind pres	ssure.					
3	Under	stand a	bout the	seismic	design	of vario	ous stru	ictures							
4	Study	the des	ign con	cepts of	towers	and roo	f trusse	s							
5	Get ex	posure	to wind	tunnel	experin	nents.									
COUF	RSE OU	TCON	IES												
On the	success	sful con	npletion	of the c	ourse, s	students	will be	able to					T		
CO1. (Give an	accoun	t of and	analyse	energy	sources	and th	eir susta	inabilit	У			Understa	nd	
CO2.	Desig	gn the st	ructure	for the	given w	ind forc	e condi	ition as j	per the	codal pro	visions		Apply		
CO3. I	Identify	and eva	luate fa	ctors af	ecting	wind en	ergy de	evelopm	ent				Apply		
CO4. /	Analyse	the siti	ng cond	itions fo	r wind	power d	levelop	ment					Apply		
CO5. I	Describe	e how th	ne struct	ural mo	dels car	n be test	ed in th	e wind	tunnel a	nd its use	es.		Apply		
MAPI	PING W	/ITH P	ROGR	AMME	OUTC	OMES	AND	PROGE	RAMM	E SPECI	FIC OU	JTCOM	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	S	S		L	S	L			L		S	М	S
CO2	L	S	S	S	L	М	S	L		L	L		S	М	S
CO3	S	S	S	S	L	М	L	L		L			М	S	S
CO4	L	S	L	S	L		S	L		L		L	М	S	S
CO5	S	S	S	S			S	М		L	L		S	S	S
S- Stro	ong; M-	Mediun	n; L-Lov	V	1		1		- I		1		1	1	

INTRODUCTION:

Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift- Local winds, Building codes, Terrains different types- Design wind speed and wind pressure.

EFFECT OF WIND ON STRUCTURES:

Static effect – Dynamic effect – Wind shear-Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only)..

EFFECT ON TYPICAL STRUCTURES:

Tail buildings – Low rise buildings -Stack Hight wind pressure – Roof and cladding – Chimneys, towers and bridges

APPLICATION TO DESIGN:

Design forces on high rise building, towers and roof trusses.

INTRODUCTION TO WIND TUNNEL:

Types of models (Principles only) – Applications- Basic considerations – Examples of tests and their use. Losses in the wind tunnel circuit.

TEXT BOOKS:

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

REFERENCE BOOKS:

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990.
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995
- 3. IS 875 : Part 3 : 1987 Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures Part 3 : Wind Loads.
- 4. Cook N J, Design Guides to wind loading of buildings structures. Part I and II, Butterworths, don, 1990.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

				INDU	JSTRIA	L STR	UCTU	RES		Cate	egory	L	Т	Р	Credit
				21 (2 0						EC-P	S	3	0	0	3
PREA To get	MBLE expose	d to th	e design	of indu	ustrial st	ructure	s and its	s functio	onal req	uirements	S.				1
PRER Design	EQUIS	SITE el struc	tures												
COUI	RSE OI	BJECT	TIVES												
1	Famili	arize w	ith plan	ning an	id layou	t of buil	dings a	nd its co	ompone	nts.					
2	Know	about (the funct	tional re	equirem	ents of	industri	es.							
3	Under	stand a	bout the	design	of Stee	l structu	ires.								
4	Desigr	and o	ptimizat	ion inv	olved in	prefab	ricated s	structur	es.						
5	Study	the ger	eral prin	nciples	of prefa	bricatio	n and th	he funct	ional re	quiremen	ts for Pr	ecast co	ncrete unit	ts.	
COUI	RSE OU	JTCO	MES												
On the	e succes	sful co	mpletio	n of the	course,	studen	ts will b	be able t	0						
CO 1.	Descrit	be the g	general r	equiren	nents fo	r indust	ries like	e cemen	t, chem	ical and s	teel plan	ts.	Understa	nd	
CO 2. indust	Descrit ries.	be the f	unction	al requi	rements	such as	s lightin	ıg, venti	lation a	nd fire sa	fety of		Understa	nd	
CO 3.	Design	the ste	el storag	ge struc	tures lil	ke bunk	ers and	silos.					Apply		
CO 4.	Design	the RO	CC stora	ge struc	cture lik	e bunke	ers and s	silos					Apply		
CO 5.	Descrit	be the f	unction	al requi	rements	of Prec	ast con	crete un	its.				Understa	nd	
MAPI	PING V	VITH	PROGI	RAMM	E OUT	COME	S AND	PROG	RAMN	ME SPEC	CIFIC O	UTCON	MES		
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	_	L	S	М	-	М	М	М	-	-	L	-	L
CO2	S	S	-	L	S	М	-	М	М	М	-	-	L	-	L
CO3	S	S	-	L	S	М	-	М	М	М	-	-	L	L	L
CO4	S	S	-	М	S	М	-	М	М	М	-	-	L	-	L
CO5	S	S	-	L	S	М	-	М	М	М	-	-	L	L	L
S- Stro	ong; M-	Mediu	m; L-Lo)w	1		1	1	1	1	1	1		1	

SYLLABUS

PLANNING:

Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

FUNCTIONAL REQUIREMENTS:

Lighting - Ventilation - Protection Against Noise and Vibration - Accounts - Fire safety - Guidelines from factories act

DESIGN OF STEEL STRUCTURES:

Industrial roofs - Crane girders - Mill buildings - Types of power Plants and Containment Structures - Transmission Towers

DESIGN OF R.C. STRUCTURES:

Design of Silos and bunkers - Design of Chimneys and Cooling Towers- Principles of folded plates and shell roofs.

PREFABRICATION:

Principles of prefabrication – Need for Prefabrication - modular coordination - advantages and limitations - Prestressed precast roof trusses - Functional requirements for Precast concrete units - beams - columns - walls - roof trusses - footings - joints in prefab elements

TEXT BOOKS:

 N. Subramanian, "Design of Steel Structures: Theory and Practice, Oxford University Press, Incorporated, Mar-2011
P.Dayaratnam - Design of Steel Structure - S. Chand and Company, 2008. Krishna Raju, "Advanced Concrete Structures", McGraw Hill, New Delhi, 2000

REFERENCES:

- 1. Henn W. Buildings for Industry, vols.I and II, London Hill Books, 1995
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of IndianStandards, New Delhi 1990

3. IS:3483-1965, "Code of practice for noise reduction in industrial buildings", BIS, 1965 IS:1642-1989, Code of practice

for fire safety of buildings (general): Details of construction, BIS, 1989.

4. IS:8640-1977, "Recommendations for dimensional parameters for industrial building", BIS, 1977

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

			F	INITE	ELEM	ENT T	ECHN	IQUES		Cate	egory	L	Т	Р	Credit
										EC	-PS	3	0	0	3
PREA	MBLE	2									I		1	1	
The pu finite	urpose o element	of the co methoo	ourse is d.	to unde	rstand &	kanalys	es linea	r elastic	e structur	es, that	has been	studied	about in c	ore course	es, using
PRER	REQUIS	SITE													
Struct	ural ana	lysis													
COUI	RSE OF	BJECT	IVES												
1.	To ana	lyze lin	ear elas	stic strue	ctures th	hat he ha	as studi	ed abou	t in core	courses	using fi	nite elem	ent metho	od.	
2.	To kno	w abou	it the co	oncepts	of finite	elemen	t analys	sis of or	ne-dimen	sional p	roblems				
3.	To und	lerstand	l about t	the conc	epts of	finite el	ement	analysis	s of two-c	limensio	onal prob	olems			
4.	To dea	ls with	finite el	lement a	analysis	of isop	erimetr	ic probl	ems and	its appli	cations	with soft	ware pack	ages	
COUI	RSE OU	JTCON	AES		-			_						-	
On the	e succes	sful cor	npletio	n of the	course,	student	s will b	e able t	0						
CO1.	Analyzi	ng with	the use	e of FE	Method								Analyze		
Co2. A	Analysis	of one	dimens	sional pr	oblems	with th	e use of	f FE Me	ethod				Analyze		
Co3. <i>A</i>	Analysis	of two	dimens	sional p	oblems	with th	e use o	f FE Me	ethod				Analyze		
Co4. I	Formula	te and a	analyses	sisopara	ametric	elemen	ts						Analyze		
Co5 F	Formula	te two :	and thre	e dimer	sional	solid fin	ite eler	nent usi	ng softw	are			Apply		
		-				,ona m	~		ing solution	ure			1 - PP1 /		
Mappi	ing with	Progra	imme O	utcome	s and Pi	ogramr	ne Spec	cific Ou	tcomes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	s		T	s	M	_	М	-	м	-	M	T	м	
CO2	S	s	-	L	S	M	-	-	М	M	-	-	M	M	-
CO3	S	S	-	L	S	М	-	М	-	М	-	-	М	М	-
CO4	S	S	-	L	S	М	-	М	-	М	-	-	-	М	L
CO5	S	S	-	L	S	Μ	-	Μ	L	М	-	-	М	S	L
S- Stre	ong; M-	Mediur	n; L-Lo	W											

INTRODUCTION - VARIATIONAL FORMULATION

Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method-Galerkin method, sub domain method, method of least square and collocation method, numerical problems.

FINITE ELEMENT ANALYSIS OF ONE-DIMENSIONAL PROBLEMS

General procedure of FEM, skeletal and continuum structures, descritization of domain, basic types of elements- truss, beam, triangular, quadrilateral and brick elements- shape functions, Rayleigh and Ritz method, formulation of element stiffness matrices -Isoparametric elements. One dimensional second order equations – discretisation of domain into elements – Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanic-heat transfer through simple fins, composite wall, bending of beams.

FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS

Global and natural coordinates-Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices – boundary conditions – solution techniques-problems on bending of plates and heat transfer in two dimensions.

ISOPARAMETRIC ELEMENTS AND FORMULATION

Natural coordinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional – Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration.

APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS

 $Equations \ of \ elasticity - plane \ elasticity \ problems - axisymmetric \ problems \ in \ elasticity - Bending \ of \ elastic \ plates - Time \ dependent \ problems \ in \ elasticity - Heat - transfer \ in \ two \ dimensions - incompressible \ fluid \ flow. \ Three \ dimensional \ problems, use \ of \ software \ packages.$

Text Books

Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003

S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.

Reference Books

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.Rao.S.S, "Finite Element Methods in Engineering", Pregamon Press, 1989.
- 3. Krishnamoorthy.C .S, "Finite Element Analysis Theory a n d Programming ", Tata McGraw-Hill Publishing Co, 1987.
- 4. NPTEL Finite Element Method By Prof. Biswanath Banerjee, Prof. Amit Shaw IIT Kharagpur

					1
S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	subathra@avit.ac.in	
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in	

			G	ROUN	D WAT	TER EN	IGINE	ERING	ŕ	Cate	egory	L	Т	Р	Credit
										EC	-PS	3	0	0	3
PREAMB	LE														
The purpos	e of the	course	is to un	derstan	d the gro	ound in	proven	nent tecl	hniques	and qual	ity of gro	ound wate	er.		
PREREQU	UISITE	1													
Environme	ntal eng	ineerin	g and D	esign											
COURSE	OBJEC	TIVES	5												
1.	To kno	ow the	types of	aquifer	'S										
2.	To un	derstand	d the su	rface an	d subsu	rface in	vestigat	tion in c	letail						
3.	To int	egrate t	he funda	amental	and bas	sic know	vledge	of grou	nd water	r moveme	ent				
4.	To int	roduce	the diffe	erent m	odel stu	dies.									
COURSE	OUTCO	OMES													
On the succ	cessful c	complet	ion of tl	he cours	se, stude	ents will	l be able	e to							
CO1. Analy	yzing th	e types	of aqui	fers									Analyze		
Co2. Analy	sis of th	ne surfa	ce and s	subsurfa	ce inve	stigation	n in deta	ail					Analyze		
Co3. Analy	sis of g	round v	vater mo	ovemen	t								Analyze		
Co4. Analy	zing dif	fferent 1	nodel st	tudies									Analyze		
Co5. Under	rstand th	ne Mana	agemen	t of Gro	ound wa	ter flow	·.]	Understa	nd	
Mapping v	vith Pro	ogramn	ne Outo	comes a	nd Pro	gramm	e Speci	ific Out	comes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	c		T	c	м		м		м		M	M		
CO2	S	s		L	S	M	-	-	-	M			L	M	
CO3	S	S	-	Ĺ	S	M	-	М	-	M	_	_	L	M	_
CO4	Š	ŝ	_	L	S	M	_	M	-	M	-	_	-	L	-
C05	S	S	_	L	S	М	М	М	-	М	-	_	-	L	-
S- Strong: 1	M-Medi	ium; L-	Low	1	1	1	1	_1	1	1	1				

HYDROGEOLOGICAL PARAMETERS

Introduction to hydrological cycle-origin and age of ground water-vertical distribution of ground water - Water bearing Properties of Rock - Properties of aquifer - Transmissivity and storage coefficient - Problems in Specific yield - specific capacity -Darcy's law and permeability - Methods of Estimation - Ground water table fluctuation and its interpretations - Type of aquifers - Groundwater development and Potential in India - groundwater legislation, GEC norms.

EVALUATION OF AQUIFER PROPERTIES

Darcy's equation - governing equation of ground water flow - steady and unsteady flow equations for confined and unconfined aquifer - water table aquifer - coefficient of Transmissibility and storage-Determination of hydraulic conductivity Dupit Forchheimer assumption - one dimensional flow - well hydraulics - hydrogeological boundaries - concept of image - image well - well theory - interference of wells - partial penetration of well- multiple well system. GROUNDWATER HYDRAULICS AND

EXPLORATION

Geological methods - Geophysical - electrical resistivity - seismic refraction - water wells classification - drilling of deep wells - well design, construction and maintenance-steady unidirectional flow-radial flow in confined and unconfined acquifer - well development. Pumping test analysis - well characteristics - draw down test - Tracer tests.-slug test- automatic water level recorder-jacob's method

GROUNDWATER QUALITY AND MOVEMENT

Measures of water quality-chemical analysis-graphical representation –physical analysis-Ground water chemistry - Origin, movement and quality - Water quality standards - Remediation of saline intrusion - Remediation schemes - Artificial recharge techniques - Ground water Pollution and legislation.

GROUNDWATER MANAGEMENT

Concepets of basin -Need for management model - database for groundwater management-water laws and policies type of groundwater models-simulation of two and three dimensional groundwater system-MODFLOW 2000 - protection zone delineation groundwater balance. Introduction

TEXT BOOKS

- 1. Todd D. K.," Ground water hydrology", John Wiley & Sons, 3rd Edition , 2005
- 2. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi, 2010. 3. Bouwer H., "Groundwater Hydrology", Tata Mc Graw Hill, Company Ltd, Indian Edition 1978
- 3. David K Todd and Larry W. Mays (2013), Groundwater Hydrology, Third Edition, JohnWiley & Sons Singapore.

REFERENCE BOOKS

- 1. Health R. C. and Trainer F.W., "Introduction of Ground water Hydrology", John Wiley and sons, 1985.Rastogi R K, Applied groundwater hydrology, (2011).
- 2. NPTEL Ground Water Hydrology, by Dr. Rajib K. Bhattacharjya IIT Guwahati

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	subathra@avit.ac.in	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com	

			CON	TRAC	T LAW	/S AND	REGU	JLATIO	ONS	Cate	egory	L	Т	Р	Credi
										E	C-PS	3	0	0	3
PREA	MBLF	E													
To stu legal r	dy the v equiren	various nent, ar	types o 1d labou	f constr ır regula	uction c ations.	contract	s and th	eir lega	l aspects	and pro	visions.	To study	the of ten	iders, arbi	tration,
PRER	EQUI	SITE													
Nil															
COUI	RSE OI	BJECT	IVES												
0002															
1.	To stu	dy the	various	types of	f constru	uction c	ontracts	s and the	eir legal	aspects,	provisio	n and pol	icies		
2.	To stu	dy the	tenders,	arbitrat	ion, leg	al requi	rement,	, and lat	our regu	lations.					
COUI	RSE OI		MES												
On the	e succes	sful co	mpletio	n of the	course,	, studen	ts will b	e able t	0						
Со1. Т	To knov	v about	the con	structio	n contra	acts							Understa	nd	
Co2 . '	To Stuc	ly abou	t the ter	nder doo	cuments	5.							Apply		
Со3. Т	o Knov	w abou	t the rul	es of ev	idence	of contr	act.						Apply		
Со4. Т	o Stud	v the p	lanning	about le	egeal rea	quireme	ents.						Apply		
<u> </u>		<u> </u>			<u>.</u>	1									
CO5. 1	Fo Und	erstanc	l about t	he labo	ur requi	rement	S						Understa	nd	
Марр	ing wit	h Prog	gramme	Outco	mes an	d Progi	amme	Specifi	c Outcon	nes					
a	b 01	D 00	D 00	D O (D 0 f	D O (207	200	D 00	DO10	DO11	2010	7000	Daoa	Daga
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	_	-	-	М	-	L	L	-	-	-	М
CO2	S	М	L	S	-	-	-	М	-	М	L	-	-	-	М
CO3	S	М	М	S	-	L	-	-	-	-	-	-	-	-	М
CO4	S	М	М	М	-	М	-	-	-	-	-	-	-	-	-
C_{05}	8	М	М	-	_	М	_	М	_	T	М	L	_	М	L

Syllabus

CONSTRUCTION CONTRACTS

Functions of Contracts in engineering- Introduction to Contract agreements, Terms involved in Contract agreements- Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability –Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts.

TENDERS

Tendering Process - tender documents – requirements for tendering –Methods of inviting tenders -Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual Problems – World Bank Procedures and Guidelines – Tamilnadu Transparency in Tenders Act.

ARBITRATION

Earnest Money Deposit (EMD) – Security deposits -Comparison of Actions and Laws – Agreements – Subject Matter – Violations – Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence –Enforcement of Award – Costs.

LEGAL REQUIREMENTS

Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land –Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and theirInfluence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law– Local Government Laws for Approval – Statutory Regulations.

LABOUR REGULATION

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes,Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act –Indian Factory Act – Tamilnadu Factory Act – Child Labour Act - Other Labour Laws.

Text Books

1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India,

2. Jimmie Hinze, Construction Contracts, McGraw Hill, 2001.

3. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, McGraw Hill, 2000. 4. Oxley Rand Posicit, "Management Techniques applied to the Construction Industry", Granda Publishing Ltd., 2000.

Reference Books

1. Kwaku, A., Tenah, P.E. Jose M.Guevara, P.E., Fundamentals of ConstructionManagement and Organisation, Printice Hall, 1985. M.M. Tripathi Private Ltd., Bombay, 1982.

2. Patil. B.S, Civil Engineering Contracts and Estimates, Universities Press (India) PrivateLimited, 2006.

Tamilnadu PWD Code, 1986

3. NPTEL - Advanced Contracts, Tendering and Public Procurement By Prof. Sairam Bhat - National Law School of India University.

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	subathra@avit.ac.in	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com	

			:	SOLID	WAST	'E MAI	NAGEN	MENT		Cate	gory	L	Т	Р	Credit
										EC	-PS	3	0	0	3
PREA	MBLE	Ē									·				
Structo or syst biolog	ure is an em so o ical org	n arrang organize ganisms,	ement a ed. Mate , minera	and orga erial str als and o	anizatio uctures chemica	n of inte include lls.	errelated man-m	d eleme ade obje	nts in a n ects such	naterial (as build	object or lings and	system, 1 machine	or the obj es and nat	ect tural obje	cts such as
PRER	EQUI	SITE													
Nil	-														
COLU															
COU	KSE UI	SJECT	IVES												
1.	The or	n-site/of	f-site p	rocessin	ig of the	e same a	and the	disposal	methods	5.					
2.	The st	udent is	expect	ed to kn	low abo	ut the v	arious e	effects a	nd dispos	sal optio	ns for th	e munici	pal solid	waste.	
3.	B. The collection and supply of water														
4.	The offsite processing involved in site														
COU	RSE OI	UTCON	AES												
On the	e succes	sful cor	npletio	n of the	course,	student	ts will b	e able to	0						
Co1. 7	o knov	v about	the type	es of wa	ste & S	ources							Understar	nd	
Co2 . '	To Stuc	ly the o	n site St	torage &	2 Proces	ssing							Apply		
Co3. 1	o study	about	the coll	ection &	& transfe	er the w	vaste						Apply		
Co4. 7	Co4. To Study the process of off site processing Apply														
CO5. '	Fo knov	w about	the soli	id waste	dispos	al							Apply		
Марр	ing wit	h Prog	ramme	Outco	nes and	l Progr	amme	Specific	e Outcon	nes					
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	COs	PO1
CO1	S	М	L	_	_	L	S	_		_	-			-	L
CO2	S	М	L	S	-	-	М	-	-	-	-	-	-	М	S
CO3	S	М	М	S	-	-	М	-	-	-	-	-	-	М	S
CO4	S	М	М	М	-	-	М	-	-	-	-	-	-	М	S
CO5	S	М	М	-	-	М	М	-	-	-	-	L	-	-	S
S- Stro	ong; M-	Mediur	n; L-Lo	w											

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– Requirement of Solid Waste Management - public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs - Legislation.

ON-SITE STORAGE & PROCESSING

On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options – Case Studies Under Indian Condition

COLLECTION AND TRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Thermal processing options - Risk assessment.

DISPOSAL

Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

TEXT BOOKS

George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

REFERENCE BOOKS

- R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997.Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.
- 2. Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002).Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development,
- 3. Government of India, New Delhi, (2000).
- 4. NPTEL Municipal Soild Waste Management by Prof. Ajay Kalamdhad IIT Guwahati.

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	Mrs.P.Subathra	Assistant Professor	Civil / AVIT	subathra@avit.ac.in	
2	Mr.Harish	Assistant Professor	CIVIL/ VMKVEC	harshk317@gmail.com	

PREAMI The purpo Quality co	BLE		CONS	STRUC	TION	DT ANT									
PREAMI The purpo Quality co	BLE			SC	CHEDU	ULING	NING A F	ND		E	C-PS	3	0	0	3
The purpo Quality co														I	
Quality co	ose of thi	s course	e is to l	earn abo	out the	Constr	uction p	lan and o	constru	ction me	thod. To	o develop	the kno	wledgeat	out
1 ° °	ontrol an	d safety	^y during	g constr	uction										
PREREQ	UISITE	NIL													
COURSE	E OBJEC	CTIVE	S												
1	Plan con	structio	n proje	cts											
2	Schedule	the act	ivities	using ne	etwork	diagraı	ns								
3	Control t	he cost	of the	project l	by crea	ting ca	sh flows								
4	Budgetin	g and h	low to	use the p	project	inform	ation as	an infor	mation	and deci	sion ma	king too	l.		
COURSE	E OUTC	OMES													
On the su	ccessful	comple	tion of	the cour	rse, stu	dents w	vill be at	ble to							
CO1. S	Study the Basic concepts in the development of construction plans Apply														
CO2. 5	Study the	Schedu	uling P	rocedur	es And	Techni	iques						τ	Inderstan	d
CO3. I	Know to	Cost Co	ontrol M	Monitor	ing An	d Accor	unting						A	pply	
CO4. I	4. Understand the Quality Control And Safety During Construction Apply														
CO5. U	Understa	nd the (Drganiz	ation A	nd Use	Of Pro	oject Info	ormation	l				A	pply	
MAPPIN	IG WITI	H PRO	GRAN	IME O	UTCO	MES A	AND PR	OGRA	MME S	SPECIF	IC OUT	COME	S		
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	L	М	S	М	М	S	S	S	-	-	L		-
CO2	S	М	L	-	-	-	-	S	S	S	-	-		L	-
CO3	S	М	М	-	-	-	-	S	-	S	-	-	L		-
CO4	S	М	М	-	-	-	-	S	S	S	-	-		L	М
CO5	S	М	М	-	-	-	-	L	-	L	-	L	L		-

CONSTRUCTION PLANNING:

Basic concepts in the development of construction plans-choice of Technology and Construction Method-Defining Work Tasks-Definition- Precedence relationships among activities- Collection of field data - Preliminary estimates - Approval and sanction of estimates- Budget provisions - Relationships between management and labour

SCHEDULING PROCEDURES AND TECHNIQUES:

Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads- Use of PERT -- Scheduling In Poorly Structured Problems - Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-

Crashing and time/cost tradeoffs -Improving the Scheduling Process- Introduction to application software

COST CONTROL MONITORING AND ACCOUNTING:

The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows- Planning for network construction - Modes of network construction - Work breakdown structure Hierarchies. Schedule control-Schedule and Budget updates-Relating cost and schedule information.

QUALITY CONTROL AND SAFETY DURING CONSTRUCTION:

Quality and safety Concerns in Construction- Organizing for Quality and Safety-Work and Material Specifications- Inspection of materials and machinery - Quality audits- Statistical quality control - Tools - Control chart – Site management with regard to safety

ORGANIZATION AND USE OF PROJECT INFORMATION:

Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow

TEXT BOOKS:

- 1. Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw-Hill Publishing Co., New Delhi, 1998.
- 2. Srinath,L.S., "Pert and CPM Priniples and Applications ", Affiliated East West Press, 2001

REFERENCES:

1. Chris Hendrickson and Tung Au, "Project Management for Construction – Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.

2. Hinze, Jimmie, Construction Planning and Scheduling, Pearson Prentice Hall.2012

3. Mubarak, S., Construction Project Scheduling and Control, Pearson Education, Inc. 2015

4. Sharma, J.L, "Construction Management and accounts" Satya Publications, 2013.

MAPPING COURSE WITH NPTEL

• Construction Planning and Management

S.No.	Name of the Faculty	Designation	Department	Mail ID											
1 Mr.R.SanjayKumar		Assistant Professor	Civil Engineering/AVIT	Sanjay.civil@avit.ac.in											
2	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.e du.in											
			,	WASTI	E WAT	ER EN	GINEE	RING		Cate	egory	L	Т	Р	Credit
-------------------	-----------------------	-------------------	---------------------	------------------------	---------------------	----------------------	-----------	------------------------	--------------------	------------------------	---------------------	----------------------	-------------	------------	--------
										EC	-PS	3	0	0	3
PREA	MBLE														
The ob biologi	jectives ical pher	of this nomena	course i for suc	s to helj cessful (o studen design,	its deve operatio	lop the a	ability to naintena	o apply ance of	basic und sewage tr	lerstand eatment	ing of phy plants	ysical, che	emical, an	d
PRER Envire	EQUIS onmental	ITE Engined	ering and	Design (Theory .	And Pra	cticals)								
COUR	RSE OB	JECTI	VES												
1	To Ui	nderstar	nd basic	concept	ts in Tra	nsmiss	ion of w	ater sys	stem						
2	To Ui	nderstar	nd the pr	ocess a	nd Trea	tment o	f waste	water.							
3	To Ui	nderstar	nd the m	ethods	of Sewa	ge Disp	osal								
4	To un	derstan	d the ad	vances	in sewa	ge treat	ment								
COUF	RSE OU	тсом	IES												
On the	success	ful con	pletion	of the c	ourse, s	tudents	will be	able to							
CO1. A	An abilit د	y to est	imate se	wage g	eneratio	n and d	esign se	ewer sys	stem inc	luding se	wage pu	mping	Understar	ıd	
CO2.	s The reau	ired un	derstand	ling on	the char	acterist	ics and	compos	ition of	sewage.	self puri	fication	Understar	nd	
of strea	ams			8				··· 1···			· · · ·				
CO3. A	An abilit ent	y to per	form ba	sic desi	gn of th	e unit o	peration	ns and p	rocesse	s that are	used in	sewage	Apply		
CO4. U	Understa	nd the	standard	metho	ls for di	sposal	of sewag	ge.					Apply		
CO5. 0	Gain kno	wledge	on slud	ge treat	ment ar	d dispo	osal.						Understar	ıd	
MAPF	PING W	TTH P	ROGR	AMME	OUTC	OMES	AND F	ROGR	AMMI	E SPECI	FIC OU	TCOM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	S	S	-	-	М	-	S	S	S	S
CO2	М	М	S	S	М	S	S	-	-	S	-	S	М	М	S
CO3	S	S	S	S	S	М	М	-	М	-	-	-	S	S	S
CO4	М	S	М	М	М	S	S	L	-	-	-	-	М	S	Μ
CO5	S	S	S	S	S	S	S	-	-	-	М	S	S	S	S
S- Stro	ong; M-N	Medium	i; L-Low	1											
SYLL	ABUS														

SEWERAGE SYSTEM: COLLECTION & TRANSMISSION

Characteristics and composition of sewage - population equivalent -Sanitary sewage flow estimation – Sewer materials - Sources of wastewater – Estimation of storm runoff – Wastewater characteristics and significance – Effluent disposal standards – Design of sewers – Computer applications – Laying, jointing and testing of sewers - Sewer appurtenances – Pump selection – Drainage in buildings - House Sewer connection.

SEWAGE TREATMENT – PRIMARY TREATMENT

Objectives – Unit Operations & Processes - Selection of treatment processes — Onsite sanitation — Septic tank- Grey water harvesting - Materials for sewers – Layout of wastewater Treatment Plant - Characteristics and composition of sewage – Principles, functions and design of screen, grit chambers and primary sedimentation tanks – Construction, Operation and Maintenance aspects.

SEWAGE TREATMENT - SECONDARY TREATMENT

Objectives – Selection of Treatment Methods – Principles, Functions - Secondary Treatment – Activated Sludge Process and Trickling filter Sequencing Batch Reactor(SBR) — Membrane Bioreactor – Stabilisation Ponds and Septic tanks - Recent Advances in Sewage Treatment – Construction, Operation and Maintenance aspects.

SEWAGE DISPOSAL

Methods – Dilution – Self purification of surface water bodies – Oxygen sag curve - deoxygenation and reaeration - Streeter– Phelps model – Land disposal – Sewage farming –Deep well injection – Soil dispersion system.

SLUDGE TREATMENT AND DISPOSAL

Objectives - Sludge characterization – Thickening – Sludge digestion - Standard rate and High rate digester design – Biogas recovery – Design of Drying beds – Conditioning and Dewatering- Sludge drying beds- ultimate residue disposal — recent advances.

TEXT BOOKS:

- 4. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 5. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 6. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

REFERENCES:

- 6. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development,Government of India, New Delhi, 2013.
- 7. Metcalf and Eddy- Wastewater Engineering–Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2010.
- 8. Syed R.Qasim, Edward M. Motley and Guang Zhu Wastewater Treatment Plants: Planning, Design and Operation 2nd Edition, CRC Press, 2015.
- 9. Metcalf & Eddy, George Tchobanoglous and Franklin L. Burton, Wastewater Engineering:
- 10. Treatment and Resource Recovery (2013), 5th Edition, The McGraw-Hill Companies, Inc.

MAPPING COURSE WITH NPTEL

Water and Waste water treatment

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Department	

1]	Mr.R.SanjayKumar	Assistant	Civil	Sanjay.civil@avit.ac.in
			Professor	Engineering/AVIT	
2]	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.edu.in

Mai l ID

			CONC	CRETE	ТЕСН	INOLO	GY		Cate	gory	L	Т	Р	Credit
									EC-	-PS	3	0	0	3
PREAMB	LE											1		1
The aim of design for	f the co concre	ourse is ete and	to imp special	art knov concret	wledge 1 tes.	to the st	udents	on the p	roperties	of mate	rials for	concrete b	y suitable	tests, mix
PREREQ	UISIT	E												
Nil														
COURSE	OBJI	ECTIV	ES											
1 To under	rstand	the pro	perties	of ingre	edients of	of concr	ete.							
2 To know	about	t the ch	emical	& mine	ral adm	ixtures	used in	concret	e.					
3 To study	about	t the co	ncrete d	lesign n	nix.									
4 To study	the be	ehavior	of cond	crete at	its fresh	and ha	rdened	state.						
5 To under	rstand	special	concre	te and the	heir use	S								
COURSE	OUT	COME	S											
On the suc	cessfu	l comp	letion o	f the co	urse, sti	udents v	will be a	ble to						
CO1. To io	dentify	v suitab	le mate	rials to	be used	in the c	ement c	concrete	e, aggrega	ates and	water	Understar	nd	
for making	g conc	rete by	conduc	ting var	ious tes	sts as pe	r BIS co	ode.				Understar	nd	
Co2. The e	effect of	of admi	xtures o	on prope	erties of	concre	te							
Co3. The o	concep	ot and p	rocedur	e of mi	x desigr	ı as per	IS meth	nod				Apply		
Cal That		ting of a		f 1	 .							Understar	nd	
C04. The p	proper	ues of c	concrete	e at fresi	n and na	ardened	state							
CO5 The	inne	tonoo or	ad annli	laction	of an aci	alaana	otas					Understar	nd	
CO3. The	mpor	tance a	na appn	cation	of specia		etes.							
MAPPIN	G WI	FH PR	OGRA	MME (OUTCO	OMES A	AND P	ROGR	AMME S	SPECIF	IC OUI	COMES		
Cos P F	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	COs	PO1	PO2
1														
CO1. S N	Л				L	L						CO1.	S	М
CO2. S L					М	М			L			CO2.	S	L
CO3 MS		S					L		М	L	L	CO3	М	S
CO4 S N	Л	L	М		L	L			L		L	CO4	S	М
CO5 S N	Λ	L	М		М	S	L		М	L	L	CO5	S	М
S- Strong;	M-Me	edium;	L-Low											

CONSTITUENT MATERIALS

Cement — Different types — Chemical composition and Properties — Hydration of cement — Bogue's compound — Tests on cement — IS Specifications — Aggregates — Classification — Mechanical properties and tests as per BIS — Grading requirements — Water — Quality of water for use in concrete.

CHEMICAL AND MINERAL ADMIXTURES

Accelerators — Retarders — Plasticizers — Super plasticizers — Water proofers — Air entraining admixtures — Mineral Admixtures like Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag and Metakaoline — Effects on concrete properties.

PROPORTIONING OF CONCRETE MIX

Principles of Mix Proportioning — Properties of concrete related to Mix Design — Physical properties of materials required for Mix Design — Design Mix and Nominal Mix — BIS Method of Mix Design — Design of high strength concrete. — Mix Design Examples

FRESH AND HARDENED PROPERTIES OF CONCRETE

Workability — Tests for workability of concrete — Segregation and Bleeding — Determination of strength Properties of Hardened concrete — Compressive strength — split tensile strength — Flexural strength — Stress-strain curve for concrete — Modulus of elasticity — durability of concrete — water absorption — permeability — corrosion test — acid resistance.

SPECIAL CONCRETES

Light weight concretes — foam concrete — self compacting concrete — vacuum concrete — High strength concrete — Fibre reinforced concrete — Ferro cement — Ready mix concrete — SIFCON — Shotcrete — Polymer concrete — High performance concrete — Geopolymer Concrete.

Text Books

- 1. Shetty, M.S, "Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.
- 2. Bhavikatti.S.S, "Concrete Technology", I.K. International Publishing House Pvt. Ltd., New Delhi, 2015
- 3. Santakumar A.R., "Concrete Technology", Oxford University Press, New Delhi.

REFERENCE BOOKS

- 1. Nevile," Properties of Concrete", Longman Publishers.
- 2. Gambhir. M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 3. IS10262-2009 Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, 1998.
- 4. Job Thomas, "Concrete Technology", Cengage Learning India Pvt. Ltd., Delhi, 2015.
- 5. Advanced Concrete Technology By Zongjin Li, 2011

MAPPING COURSE WITH NPTEL

Advanced Concrete Technology

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.C.Vaidevi	Assistant Professor	Civil Engineering/AVIT	vaidevi.civil@avit.ac.in
2	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.edu.in

				PRES	STRES	SED CO	ONCRI	ETE		Cate	egory	L	Т	Р	Credit
										EC-	PS	3	0	0	3
PREA	MBLE	E													
To intı be intr	roduce oduced	the nee to the	d for pr design	estressii of prestr	ng as we essed co	ll as the	e metho structur	ds, type es subje	es and ac	lvantages flexure a	s of prest and shear	ressing t	o the stud	ents. Stud	lents will
PRER	EQUI	SITE													
Design	ı of Rei	nforced	l Concr	ete Eler	nents										
COU	RSE OI	BJECT	IVES		iieiits										
		_													
1.	To une	derstand	d the be	haviour	of prest	ressed e	element	s.							
2.	To ide	ntify th	e possi	ble stres	s occuri	ence du	e to pre	estressir	ıg						
3.	To det	ermine	the app	propriate	e methoo	ls of pre	estressii	ng for v	arious c	ases.					
4.	To dev	velop a	prestres	ssed con	crete el	ement fo	or the g	iven loa	ding co	nditions.					
COU	RSE O	UTCO	MES												
On the	e succes	sful co	mpletic	on of the	course,	student	s will b	e able t	0						
CO1. (Calcula	te, mor	nent ca	pacity, c	crack wi	dth and	deflect	ions for	various	tendon p	orofile.		Apply		
CO2.1	Design	type I a	und type	e II post-	-tension	ed and 1	ore-tens	sioned b	eams ar	nd check	for stren	oth and	Apply		
shear a	as per c	odal pr	ovision	s.								6			
CO3. I beams	Evaluat	e Short	term, l	ong tern	n deflec	tion, caj	pacity o	of ancho	rage zoi	ne for pre	e-tension	ed	Apply		
	<u> </u>														
CO4. /	Analyse	e and de	esign of	compo	site bear	ns, seco	ondary 1	noment	s for co	ntinuous	beams.		Apply		
CO5. 1	Design	tension	and co	mpressi	on mem	bers an	d under	stand th	e conce	pt of par	tial prest	ressing.	Apply		
Марр	ing wit	h Prog	ramme	e Outco	mes and	l Progr	amme	Specific	: Outco	mes					
	8		' 		- 1	0	1	•	-	1				T	1
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	S	М	М	L	_	-	_	_	_	_	_	_	_	_
CO2	M	M	S	S	L	-	-	-	-	-	-	-	-	-	-
CO3	L	М	S	М	М	-	-	-	-	-	-	-	-	-	-
CO4	М	S	М	М	М	-	-	-	-	-	-	-	-	-	-
CO5	Μ	Μ	Μ	L	L	-	-	-	-	-	-	-	-	-	-
S- Stro	ong; M-	-Mediu	m; L-Lo	OW											

INTRODUCTION – THEORY AND BEHAVIOUR

Basic concepts – Advantages – Materials required – Systems and methods of prestressing – Analysis of sections – Stress concept – Strength concept – Load balancing concept – Effect of loading on the tensile stresses in tendons – Effect of tendon profile on deflections – Factors influencing deflections – Calculation of deflections – Short term and long term deflections – Losses of prestress–Estimation of crack width.

DESIGN FOR FLEXURE AND SHEAR

Basic assumptions for calculating flexural stresses – Permissible stresses in steel and concrete as per I.S.1343 Code – Principlesdesign of sections of Type I and Type II post-tensioned and pre-tensioned beams – Layout of cables in post-tensioned beams – Location of wires in pre-tensioned beams – Design procedure for shear based on I.S. 1343 Code.

DEFLECTION AND DESIGN OF ANCHORAGE ZONE

Factors influencing deflections – Short term deflections of uncracked members – Prediction of long term deflections due to creep and shrinkage – Check for serviceability limit state of deflection. Determination of anchorage zone stresses in post-tensioned beams by IS1343 code procedure– Design of anchorage zone reinforcement.

COMPOSITE BEAMS AND CONTINUOUS BEAMS

Analysis and design of composite beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments– Concordant cable and linear transformation – Calculation of stresses – Principles of design.

MISCELLANEOUS STRUCTURES

Design of tension and compression members – Tanks, pipes and poles – Partial prestressing – Circular Prestressing - methods of achievingpartial prestressing, merits and demerits of partial prestressing.

TEXT BOOKS

- 1. Krishna Raju N., "Prestressed concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012.
- 2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.

REFERENCE BOOKS

- 1. Rajagopalan.N, "Prestressed Concrete", Narosa Publishing House, 2002.
- 2. Dayaratnam.P., "Prestressed Concrete Structures", Oxford and IBH, 2013
- 3. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 4. IS1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012.

MAPPING COURSE WITH NPTEL

Prestressed Concrete Structures

COURSE	DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.S.Aravindraj	Associate Professor	CIVIL/AVIT	Aravindraj.civil@avit.ac.in
2	Mr.Senthilkumar	Assistant Professor	CIVIL/VMKVEC	senthilkumar@vmkvec.edu.in

			EN	CINE	TDIN			CV			Catego	ory	L	Т	Р	Credit
			LIN	GINE	ZKIN	GGE	ULU	GI			EC-PS		3	0	0	3
PREAM	BLE															
Engineeri	Engineering Geology is the application of the geologic sciences to engineering practice for the purpose of assuring that the															
geologic	geologic factors affecting the engineering works are recognized and adequately provided for. Engineering geologic studies may															
be perform	be performed during the planning and design. A civil engineer should be able to understand an engineering geologic report, and incorporate adequate measures into the design of engineering works.															
incorpora	Incorporate adequate measures into the design of engineering works.															
PRE-RE Nil	PKE-KEQUISITE Nil Course of Incenties															
COURSI	COURSE OBJECTIVES															
1 To demonstrate the importance of Geology to take Civil Engineering decisions to solve the earth related problems.																
2 To introduce the fundamental of the engineering properties of earth materials for the use of Civil Engineering																
COL	constructions.															
3 To	3 To develop quantitative skills and a frame work for solving Engineering Geological problems.															
COURSE OUTCOMES																
Upon con	Upon completion of this course, the student will be able to															
CO:1	CO:1 Know about the various internal structures of earth and plate tectonic movements. Understand															
CO:2	Chara	cterize	the eng	ineerir	ng prop	perties	of roc	ks, mi	nerals	and so	oil.				Unders	tand
CO:3	Use s	eismic	and elec	trical	metho	ds to ii	ivestig	gate th	e subsi	urface	of the ea	rth.			Apply	
CO:4	Apply	y Remo	te Sensi	ng kno	owledg	ge to in	ivestig	ate the	e Geol	ogical	structure	S			Apply	
CO:5	Devel Engin	lop a na ieering	ative con work.	struct	ion pla	n to ir	icorpo	rate al	l relev	ant asp	pects of C	ieolo	gy in Civ	il	Analyz	e
MAPPIN	IG WI	TH PF	ROGRA	MME	OUT	COM	ES AN	ND PR	ROGR	AMM	E SPEC	IFIC	OUTCO	MES		
COS												Р				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 11	0	PSO	PSO	PSO	
	01	02	03	04	05	06	07	08	09	10	1011	1	01	02	03	
												2				
CO:1	S	L	М	-	М	S	М	М	S	-	S	S	М	S	L	
CO:2	М	М	Ĺ	-	S	S	L	Μ	S	-	M	S	S	М	S	
CO:3	S	М	М	L	S	S	М	Μ	S	L	S	S	L	L	М	
CO:4	S	М	М	-	M	S	М	М	S	-	М	S	S	М	S	
CO:5	М	Μ	М	-	Μ	S	М	Μ	S	-	S	S	L	S	М	
S = STRC	DNG I	M – MF	EDIUM	and L.	-LOV	N										

GENERAL GEOLOGY

Geology in Civil Engineering - Branches of geology - Earth Structure and composition - Elementary knowledge on continental drift and plate tectonics.

MINERALOGY

Elementary knowledge on symmetry elements of important crystallographic systems - physical properties of minerals - study of the following rock forming minerals - Quartz family. Feldpar family, Augite, Hornblende, mica group of minerals- Fundamentals of process of formation of ore minerals - Coal and Petroleum

PETROLOGY

Classification of rocks - Distinction between Igneous, Sedimentatary and Metamorphic rocks. Decription occurence, engineering properties and distribution of following rocks. Igneous rocks – study of Granite, Sedimentary rocks sandstone, Limestone and Shale, Metamorphic rocks Marble and Slate.

GEOLOGICAL STRUCTURES AND REMOTE SENSING

Geological Structures - Folds, Faults and Joints – Engineering Considerations involves Structures. Seismic and Electrical methods for Civil Engineering investigations. Remote sensing techniques - study of air photos and satellite images

GEOLOGY FOR ENGINEERING STRUCTURES

Geological Investigations - Geophysical Investigations - Remote Sensing-Techniques - Geological Considerations for Dam Reservoirs, Tunnels and Road-Cuts - Practice in Geology - Demonstration for Clinometer, Electrical Resistivity Meter, Geological Maps - Identification of Crystals, Minerals and Rocks

TEXT BOOK (S)

1. Parbin Singh, Engineering & General Geology, S. K. Kataria and Sons- Delhi, 8th Edition. **REFERENCE BOOKS**

1. Garg, S. K., Physical and Engineering Geology, Khanna Publishers, New Delhi.

2. M. P. Billings (1972), Structural Geology, Prentice Hall, Eaglewood Cliffs.

3. Dimitri, P. Krynine and William, P. Judd, Principles of Engineering Geology and Geomechanics, CBS Publishers and Distributors, New Delhi.

4. Blyth – Edward Arnold F. G. H (1998), A Geology for Engineers, (7th Edition)

- 5. M. P. Billings (1972), Structural Geology, Prentice Hall, Eaglewood Cliffs.
- 6. Legeet, "Geology and Engineering ", McGraw Hill Book Company, 1998.

NPTEL

1. Structural Geology By Prof. Santanu Misra | IIT Kanpur

2. Engineering Geology, IIT Kharagpur Dr. Debasis Roy

COURSE DESIGNERS

00010				
S.No.	Name of the Faculty	Designation	Department	E-Mail ID
1	Ms.C.Vaidevi	Assistant Professor II	CIVIL/AVIT	Vaidevi.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

IRRIGATION ENGINEERING	Category	L	Т	Р	Credit
	EC-PS	3	0	0	3

PREAMBLE

This subject is concerned with the examination of irrigation practices and methods used in our country. Additionally, it is necessary to understand the irrigation water requirements in order to design structures such as dams, weirs, and canals.

PREREQUISITE

Environmental Engineering

COUR	SE OB	JECTI	VES												
1	To con	nprehe	nd the n	ecessity	and m	ethod of	f irrigati	ion.							
2	To kno	ow the i	irrigatio	n mana	gement	practice	es of the	e past, p	resent a	nd future	2.				
3	To gai	n an un	derstan	ding of	the effic	ciency a	nd effe	ctivenes	ss of wa	ter distril	oution an	d optim	ization tec	hniques	
COUR	SE OU	TCOM	IES												
On the	succes	sful co	mpletion	n of the	course,	student	ts will b	e able t	0						
Col. L	abel th	e prom	inence o	of Natio	nal Wa	ter Polic	ey.						Understa	nd	
Co2. R	egulate	e the sto	orage ca	pacity of	of reserv	voir for	a given	deman	d.				Understa	nd	
Co3. E	xplicat	e the di	iverse fo	orms an	d metho	ds of ir	rigation	practic	es				Apply		
Co4. C	Calculat	e the de	esign pa	rameter	rs of car	nal							Apply		
Co5. C	Convers	e the va	arious co	oncepts	of irrig	ation wa	ater ma	nageme	nt and s	oftware's	5		Understa	nd	
Mappi	ng Witl	h Progr	amme (Dutcom	es And	Progran	nme Spe	ecific O	utcome	8			I		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	-	-	L	-	L	-	L	-	-	-	-	L	L	-
CO2.	S	L	S	L	-	-	-	-	-	-	-	-	М	-	-
CO3.	S	М	М	М	-	-	-	-	-	-	-	-	-	-	-
CO4.	S	S	S	L	-	-	-	-	-	-	-	-	М	-	-
CO5.	L	-	-	-	L	-	-	-	-	-	-	-	L	-	-
S- Stro	ong; M-	Mediu	m; L-Lo	W											

SOIL – PLANT WATER RELATIONSHIP

Definition – Need – Benefits- developments – Historical - Scope in the country and state. Soil – Water relationship - Wilting point – Soil fertility- Principal crops – Crop rotation – Crops and cropping season. Ground water Hydrology

CROP WATER REQUIREMENTS

Duty, Delta and Base Period – Definitions – Factors affecting Duty – Methods of Improving Duty, Consumptive use of Crops (Evapo – Transpiration) – Estimation of Evapotranspiration using experimental and theoretical methods – Transpiration – Blaney and Criddle Method – Penman Methods – Lysimeter.

METHODS OF IRRIGATION AND DISTRIBUTION OF WATER

Sources of Water – Rivers – Streams – Reservoirs and Tanks. Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub-Surface and Micro Irrigation– design of drip and sprinkler irrigation – ridge and furrow irrigation- Irrigation scheduling – Water distribution system- Irrigation efficiencies.

CONTROL AND REGULAR WORKS

Canal regulation works – Necessity and location of falls – Head and cross regulator – Canal escapes. Cross drainage works – Types of cross drainage work. River training works – Classification of River training works – Groynes or Spurs – Bank protection.

IRRIGATION WATER MANAGEMENT

Modernization techniques- Estimation of Irrigation Demand- Rehabilitation – Optimization of water use-Minimizing water losses- On form development works-Participatory irrigation management- Need for optimization – Need for interdisciplinary andparticipation approach. Roles and responsibilities of farmer's and government agencies in Turn Over.

Text Books

 Dilip Kumar Majumdar, "Irrigation Water Management", Prentice-Hall of India, New Delhi, 2008.
 Punmia B.C., et. al; Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009.

NPTEL

COUDCED

1. "Irrigation and Drainage" By Prof. Damodhara Rao Mailapalli, IIT Kharagpur

REFERENCE BOOKS

- 1. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New Age International Publishers, 2005
- 2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw- Hill Inc., New Delhi, 1997.
- 3. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000
- 4. IRRIGATION ENGINEERING | N. N. BASAK | McGraw Hill

COURS	SE Designers			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.D.Parthiban	Assistant Professor	CIVIL/AVIT	Parthiban.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor	CIVIL/VMKVEC	kathirvel@vmkvec.edu.in

			INNOV DEV	ATIO	N, PRO MENT	DUCT		Cat	egory	L	Т	Р	Credit	
			COMN	MERCI		TION		0]	E-IE	3	0	0	3	
PREAM	MBLE													
Com	mercial	ization	of innov	vation a	nd new	products	s in fas	t-paced,	high-tech	markets and				
matcl	hingtec	hnologi	cal inno	vation	to mark	et oppor	tunities	s.						
PRERI	EQUIS	ITE – ľ	NIL											
COUR	SE OB	JECTI	VES											
1	To ma	ke stud	ents und	lerstand	l multip	le-persp	ective a	approach	in organiz	ation to capt	ure kr	lowle	dge and	
	creativ	vity to	develo	p succe	essful j	products	and	services	for Volat	tile, Uncerta	ain, C	ompl	lex and	
	Ambig	guous ('	VUCA)	world.										
2	Inculc	ate a di	sruptive	though	t proces	ss to gen	erate io	deas for	concurrent	and futuristi	ic prot	olems	of	
	societ	y in gen	eral and	l marke	ts in pa	rticular v	which f	focus on	commercia	alization				
3	Impro	ved und	lerstand	ing of o	organiza	tional be	est prac	ctices to t	transform e	exciting tech	nolog	y into		
	succes	sful pro	oducts a	nd serv	ices									
4	4 Critically assess and evaluate innovation policies and practices in organizations especially from a													
-	cultura	al and le	eadershi	p point	of view			-			-			
5	Explai	n why i	innovati	on ises	sential t	o organi	zationa	al strateg	y – especia	ally in a glob	al env	ironn	nent	
COUR	SE OU	тсом	IES											
On the	success	ful com	pletion	of the c	course, s	students	will be	able to						
CO1: U	Underst	and the	role of	innovat	ion in g	aining a	nd mai	ntaining	competitiv	e advantage		Unc	lerstand	
CO2: In	ntegrate	the inn	ovation	basis a	nd its ro	ole in de	cision 1	making e	specially u	under uncerta	ainty	Арр	oly	
CO3: A	nalyze	busines	s challe	nges in	volving	innovat	ion ma	nagemer	nt			App	oly	
CO4: H	laving p	roblem	solving	g ability	– solvi	ng socia	l issues	s and bus	siness prob	lems		App	oly	
CO5: C	Compreh	end the	differe	nt sourc	ces of in	novatio	n		•			App	oly	
MAPP	ING W	ITH P	ROGR	AMME	OUTO	COMES	AND	PROGR	AMME S	PECIFIC O	UTC	OME	S	
COs	Р	Р	Р	Р	Р	Р	Р	PO	PO9	PO10	PO	11	P012	
005	01	02	03	04	05	O6	07	8	107	1010	10			
CO1	М	_	_	_	_	М	S	S	_	М	-		-	
CO2	S	S	S	М	М	М	-	-	-	-	-		-	
CO3	S	S	S	М	М	М	-	-	-	_	-		-	
CO4	S	S	S	М	М	М	-	-	-	-	-		-	
CO5	S	S	S	М	М	М	-	-	-	-	-		-	
S- Stroi	ng; M-N	Aedium	; L-Lov	v										

Pre-launch, during launch and Post launchpreparations;

Introduction to Innovation Management - Innovation – What it is? Why it Matters? - Innovation as a Core Business Process – system thinking for innovation – Framework for System Thinking - system thinking tools

Creating New Products and Services - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture – Benefits of Innovation, and Learning from Innovation – Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

New Product Brand Development and Pricing Strategies - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

The Product offer Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

Text Book:

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and

Organizational Change, 5th edition, Wiley.

Reference Books:

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

		NEV	V VEN	TURE	PLANN	NING A	ND	Cat	egory	L	Т	Р	Credit	
			Μ	ANAG	EMEN	Т		OF	E-IE	3	0	0	3	
PREAM Conte ventu	MBLE emporation of the second	ry meth creation	ods and 1 of a bu	best pr	actices	for the e	entrepre	eneur to j	plan, launc	h, and opera	te a ne	W		
PRERI	EQUIS	ITE – N	NIL											
COUR	COURSE OBJECTIVES													
1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.														
2 Information and understanding necessary to launch and grow an entrepreneurial venture.														
3	3 A realistic preview of owning and operating an entrepreneurial venture.													
4	An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.													
5	5 The opportunity to develop a business plan.													
COURSE OUTCOMES														
On the successful completion of the course, students will be able to														
CO1: E	xplain t	he conc	cept of r	new ven	ture pla	nning, o	objectiv	es and fu	unctions ar	nd its		Unc	derstand	
compor	nents.													
CO2: A	nalyze	the bus	iness pl	an issu	es and r	emuner	ation pi	actices i	n startups	business.		App	oly	
whether	xpiore a	for it"	preneur	nai idea	to the p	boint wi	iere you	i can inte	emgently a	ind decide		Ар	bly	
CO4: C	ompare	and co	ntrast th	ne differ	ent for	ns entre	epreneu	rial envi	ronment in	terms of the	eir	Apr	oly	
key diff	erences	s and sin	nilaritie	es.			1					11		
CO5: E	xplore (the busi	ness pla	n and t	ousiness	model	canvas	for your	idea.			App	ply	
MAPP	ING W	ITH PI	ROGRA	AMME	OUTC	COMES	S AND I	PROGR	AMME S	PECIFIC O	UTC	OME	S	
COs	Р	Р	Р	Р	Р	Р	Р	РО	PO9	PO10	PO	11	P012	
	01	02	03	04	05	06	07	8						
CO1	М	-	-	-	-	М	S	S	-	М	-		-	
CO2	S	S	S	М	М	М	-	-	-	-	-		-	
CO3	S	S	S	М	М	М	-	-	-	-	-		-	
CO4	S	S	S	М	M	M	-	-	-	-	-		-	
CO5	S	S	S	Μ	М	М	-	-	-	-	-		-	

S- Strong; M-Medium; L-Low

SYLLABUS:

STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

METHODS TO INITIATE VENTURES: Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

THE SEARCH FOR ENTREPRENEURIAL CAPITAL: The venture capital market - Criteria for

evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing -Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations -Business incubators and facilitators - Informal risk capital - Angel investors.

THE MARKETING ASPECTS OF NEW VENTURE: Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

BUSINESS PLAN PREPARATION FOR NEW VENTURE: Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

Text Book:

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

Reference Books:

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

											1	1		
		SOCIAL ENTREPRENEURSHIP		TP	Cat	egory	L	Т	Р	Credit				
		50				LUNDI		0	E-IE	3	0	0	3	
PREA Socia entre	MBLE al entrep preneur	preneurs ship.	ship inv	olves th	ne creat	ivity, im	aginati	on and ir	nnovation of	often associa	ited wi	ith		
PRER	EQUIS	ITE – ľ	NIL											
COUR	SE OB	JECTI	VES											
1	To pro social	ovide s entrepr	tudents eneursh	with a ip	workii	ng know	ledge	of the c	oncepts, o	pportunities	and o	challe	enges of	
2	To den needs	monstra (e.g., hi	ite the r unger, p	ole of s overty,	ocial ei inner c	ntreprene ity educa	eurship ation, g	in creat global wa	ing innova arming, etc	tive respons)	ses to	critic	al social	
3	 3 To engage in a collaborative learning process to develop a better understanding of the context and domain of social entrepreneurship 4 To help prepare you personally and prefereionally for meaningful englasment by reflective on the 													
4	To help prepare you personally and professionally for meaningful employment by reflecting on the issues of social entrepreneurship.													
5	Engag	e with a	a divers	e group	of soci	al entrep	oreneur	s						
COUR	SE OU	тсом	ES											
On the	success	ful com	pletion	of the c	course,	students	will be	able to						
CO1: E	Explain t	the cond	cept soc	ial entr	epreneu	rship an	d distir	guish its	s elements	from across	a	Un	derstand	
continu	um of o	organiza	tional s	tructur	es from	traditior	nal non	profits to	o social ent	erprises to				
traditio	nal for	profits		<u> </u>		•	• ,•	•	• 1 4	• 1		•	1	
CO2: A	Analyze	the ope	rations	of a hui sment <i>s</i>	nan ser Ind diao	vice orga	anizatio	on using	social entr	epreneurial		Ap	bly	
CO3: A	Apply th	e Socia	l Busine	ess Mod	lel Can	vas and l	lean sta	rtup met	hods for p	lanning,		Ap	oly	
develop	bing, tes	sting, la	unching	g and ev	aluating	g social o	change	ventures	s. 1	U/		11		
CO4: C	Compare	e fundin	g option	ns for s	ocial ch	ange vei	ntures.					Ap	oly	
CO5: T	The outc	omes of	f social	entrepr	eneursh	ip are fo	cused of	on addre	ssing persi	stent social		Ap	oly	
probler	ns parti	cularly	to those	who a	re marg	inalized	or poor	r.						
MAPP	ING W	TTH P	ROGR	AMME		COMES	AND	PROGR	AMME S	PECIFIC C	DUTC	OME	ES	
COs	Р	Р	Р	Р	Р	P	Р	РО	PO9	PO10	PO	11	P012	
	01	02	03	04	05	06	<u>07</u>	8		14				
CO1	M	-	-	-	-	M	8	S	-	M	-		-	
CO2	S	S	S	M	M	M	-	-	-	-	-	-	-	
<u>CO3</u>	S	S	S	M	M	M M	-	-	-	-	-		-	
<u>CO4</u>	S c	S	S	M			-	-	-	-	-		-	
CO5	S	S	S	M	IVI	IVI	-	-	-	-	-		-	

S- Strong; M-Medium; L-Low

SYLLABUS:

Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venturesustainability model – feasibility study – planning – marketing challenges for social ventures

Microfinance– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

Angel Investors & Venture Capitalists – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

Corporate entrepreneurship – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

Text Book:

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

Reference Books:

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	A Mani	Associate	Management Studies	mani@ymkyec.edu.in
1	A. Ivialli	Professor		<u>Indiff@vinkvec.edu.in</u>
2	Dr. V. Shaala Maru	Associate	Management Studies	sheelamary@avit.ac.in
2	DI. V. SHEETA IVIALY	Professor	-	

ENGINEERING STARTUPS	Category	L	Т	Р	
AND ENTREPRENEURIAL	OE-IE	3	0	0	-
MANAGEMENT					

Credit 3

Evaluates

PREAMBLE:

A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: NIL

COURSE OBJECTIVES:

- 1. To understand the basics of Startups Management and components.
- 2. To analyze the startups fund management practices
- 3. To practice the various kinds of stocks and employment considerations in startups.
- 4. To apply the importance of intellectual property rights and its procedures.
- 5. To explore the entrepreneurial mindset and culture.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Explain the concept of engineering startups, objectives and functions and its components. Understand

CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse

CO3: Analyze the various kinds of stocks and employment opportunities and consideration in Analyse startups business.

CO4: Compare and contrast the various forms of intellectual property protection and practice. Analyse

CO5: Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	М	М	S	-	М	-	М	-	L	L
CO2	S	S	М	М	М	L	-	-	-	-	-	М	L	L	-
CO3	S	S	S	М	М	М	-	-	-	-	-	М	L	-	М
CO4	S	S	S	М	М	М	-	-	-	-	-	М	-	М	L
CO5	S	S	-	М	М	М	-	-	-	-	-	М	М	М	М
S- Stro	ng; M	-Medi	um; L	-Low											

Elements of a successful Start up: Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan - specific problems and challenge in startup.

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or dutiespayable for new ventures..

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COUI	RSE DESIGNERS:			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

								gory	L	Т	Р	Cı	redit			
				INT	ELLEC	CTUAL RIGHT	PROP FS	ERTY		OE-	IE	3	0	0		3
PREAM	PREAMBLE: The course is designed to introduce fundamental aspects of Intellectual property Rights to students															
who are	who are going to play a major role in development and management of innovative projects in industries.															
PRERE	QUISI	TE: N	IL													
COURS	SE OBJ	IECTI	VES:													
1.	To inti	oduce	funda	menta	l aspec	ts of I	ntellec	ctual p	ropert	y Rights	8					
2.	To dis	semina	te kno	wledg	ge on p	atents	and co	opyrigl	nts							
3.	3. To disseminate knowledge on trademarks, Design and Geographical Indication (GI),															
4.	To dis	semina	te kno	wledg	e on P	lant V	ariet,	Layout	Desi	gn Prote	ection a	nd crea	te awa	renes	s abo	out
	current trends in IPR															
5.	To dis	semina	te kno	owledg	e on L	egisla	tion of	f IPRs	and A	lternate	Disput	e Reso	lution			
COURS	SE OU	ГСОМ	ES:													
After su	ccessfi	ıl comp	oletion	of the	course	e, stud	ents wi	ill be al	ble to							
CO1: L	Inderst	and the	e impo	rtant o	fintelle	ectual p	oroper	ty right	S						Unde	erstand
CO2: A	pply fc	or the p	atents												Appl	ly
CO3: U	ndersta	and and	apply	for the	e copyr	ights									Unde	erstand
CO4: L	Inderst	and the	e impo	rtant o	f trade	marks									Appl	ly
CO5: A	ppreci	ate the	impor	tance o	of IPR a	nd its r	elated	issues							Unde	erstand
MAP	PING	WIT	H PRO	OGRA	MME	E OUI	COM	IES AI	ND PI	ROGRA	MME	SPEC	IFIC (OUT	COM	IES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSG	02	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	N	1	-
CO2	L	S	S	М	М	L	-	-	-	-	-	L	М	Ι	_	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	Ι	_	-

S- Strong; M-Medium; L-Low

S

S

L

L

SYLLABUS:

CO4

CO5

Unit 1 - Overview of Intellectual Property

S

S

S

М

М

-

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design -

-

-

_

-

-

-

_

-

L

L

L

М

L

L

-

-

L

L

_

-

Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967,the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

Unit 2 - Patents & Copyright

Patents - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

Copyright - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

Unit 3 – Trademarks, Design and Geographical Indication (GI)

Trademarks: Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

Design: Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

Geographical Indication (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

Unit 4 - Plant Varieties, Layout Design and Indian National Intelectual Property Policy

Plant Variety Protection: Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

Layout Design Protection: Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

Indian National Intelectual Property Policy: India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

UNIT – V: Legislation of IPRs and Alternate Dispute Resolution

Legislation of IPRs: The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for

Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

Text Books:

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

Reference Book:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

S.No	Name of the Faculty	Designation	Department	Mail ID				
1	P. S. Balaganapathy	Associate Professor	Management	dydirectormanagementstudies@avit.ac.in				
2	A. Mani	Associate Professor	Management	mani@vmkvec.edu.in				

		GRE	REEN POWER GENERATION SYSTEMS										T I	P Cred	t
										С	E-EA	3	0 () 3	
PRE. The c energ these of the	The course presents the various sources of renewable energy including wind, solar, and biomass as potential sources of energy and investigates the contribution they can make to the energy profile of the nation. The technology used to harness these resources will be presented. Discussions of economic, environment, politics and social policy are integral components of the course.														
PRE	REQUI	SITE:	NIL												
COU	RSE OI	BJECT	IVES												
1	Unders	tand the	e nexus t	betweer	n energ	y, envii	onmen	t, and sus	stainable o	develop	oment				
2	Appreciate energy ecosystems and its impact on environment Learn basics of various types of renewable and clean energy technologies														
3	Learn basics of various types of renewable and clean energy technologies														
4	Serve as bridge to advanced courses in renewable energy														
COU	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1:	Explain	renewa	able ener	rgy sou	rces &	system	s.						Unde	rstand	
CO2: Hydr	CO2: Apply engineering techniques to build solar, wind, tidal, geothermal, biofuel, fuel cell, Hydrogen, and sterling engine.														
CO3: probl	CO3: Analyze and evaluate the implication of renewable energy. Concepts in solving numerical problems pertaining to solar radiation geometry and wind energy systems. Analyze														
CO4:	Demons	strate se	elf -learr	ning cap	oability	to desi	gn & e	stablish r	enewable	energy	y systems	5.	Anal	yze	
CO5: Syste	Conduc ms	t exper	iments to	o assess	s the pe	erforma	nce of s	solar PV,	solar the	rmal an	d biodie:	sel	Appl	у	
MAP	PING V	VITH	PROGR	AMM	E OUI	COM	ES AN	D PROG	FRAMMI	E SPEC	CIFIC O	UTCC	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	М	-	-
CO2	S	М	S	L	М	-	L	М	-	Μ	-	-	-	-	-
CO3	S	-	-	-	М	-	-	М	М	-	-	-	L	-	-
CO4	S	-	-	-	М	-	L	-	-	-	-	М	-	-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	М	L	-
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-	-	-
S- St	S- Strong; M-Medium; L-Low														
SYL	SYLLABUS														
ENE	RGY														

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

RENEWABLE SOURCES OF ENERGY

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

TEXTBOOKS:

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

REFERENCE BOOKS:

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

000101				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

		IND	DUSTRIAL DRIVES AND AUTOMATION								(Category	r I		Т	Р	C
			USIN				DAU				(DE-EA	~	3	0	0	3
Preamble																	
To introdu	ice fou	Indatio	on on tl	he prin	ciples	of driv	ves & a	automa	ation a	nd thei	r elem	ents witl	h the ii	mpl	lemen	tatio	n.
PREREQ	UISIT	E : N	IL														
COURSE	C OBJI	ECTIV	VES														
1	To explore the various AC,DC & Special Machine Drives for industrial Application																
2		To s	To study about the various Open loop and closed loop control schemes for drives														
3		To k	o know about hardware implementation of the controllers using PLC														
4		To s	o study the concepts of Distributed Control System														
5		To u	Γο understand the implementation of SCADA and DCS														
COURSE	COURSE OUTCOMES																
On succes	ssful c	omple	tion of	f the c	ourse,	the st	udent	s will	be abl	e to							
CO 1		To u	ndersta	nd wor	king pi	rinciple	s of va	rious ty	pes of	motors	, differ	ences,		U	nderst	and	
		To a	pply the	e know	ledge i	n select	tion of	motors	, heatir	ng effec	ts and l	braking			1		
CO 2		conc	epts in	various	sindust	trial ap	plicatio	ons		0		C		A	рріу		
CO 3		To ex	xplain o	control	metho	ds of sp	becial d	rives						U	nderst	and	
CO 4		To ca prob	arry ou lems in	t progra indust	amming ries.	g using	PLC a	nd use	of vari	ous PL	Cs to A	utomatio	n	U	nderst	and	
CO 5		To d comp	iscuss s plex au	supervis tomatic	sory co on areas	ontrol an S	nd data	acquis	ition m	nethod a	and use	the same	e in	U	nderst	and	
CO6		To u devic	ndersta ces to e	nd and nhance	use log contro	gical el l & coi	ements nmuni	and us	e of Hu aspects	uman M of Auto	Iachine omatio	Interfaci n	ng	U	nderst	and	
Mapping	with Pr	ogran	nme ou	itcome	s and l	Progra	mme S	Specifi	c Outc	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO2	PS	303
CO1	S	S	L	-		S	S	-		L	-	-	-		-	L	
CO2	М	-	М	-	S	L	М	-	М	L	-	-	L		-	-	
CO3	М	-	М	-	S	L	М	-		L	-	-	-		М	-	

CO4	S	-	S	-	S	М	М	L	-	L	М	-	-	-	L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-	L	М

INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logic Relays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

TEXTBOOK

- 1. 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. Frank D.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008

REFERENCES

- 1. Pradheep kumar srivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.Srinivasan Special electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

Sl No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

PRINCIPLES OF BIOMEDICAL INSTRUMENTATION

Understand

Understand

PREAMBLE

To enable the students to develop knowledge of principles, design and applications of the Biomedical Instruments.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To know about bioelectric signals, electrodes and its types.
2	To know the various Biopotential recording methods.
3	To study about patient monitoring concept and various Physiological measurements methods.
4	To study the principle of operation blood flow meter, blood cells counter.
5	To study about bio chemical measurements and details the concept of biotelemetry and patient safety.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the different Bio signal or biopotential.

CO2. Discuss the working principles of diagnostic and therapeutic equipments.

CO3. Examine the various instruments like as ECG, EMG, EEG, X-ray machine.ApplyCO4. Illustrate medical instruments based on principles and application used in hospital.AnalyzeCO5. Analyze and calibrate fundamental biomedical instrumentation used in hospital.Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	S	М	М	М	L			L	S	L		S	М	S	S
CO5	S	S	М	М	L	Μ		L	S	L		S	М	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

BIOELECTRIC SIGNALS AND ELECTRODES

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

BIO AMPLIFIER AND BIOMEDICAL RECORDERS

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

BLOOD FLOW METERS, BLOOD CELL COUNTERS

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

TEXT BOOKS:

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

- 1. John G. Webster, **"Medical Instrumentation application and design"**, John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in								
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in								
3	Mrs. S. Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in								
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in								

			_								Catego	ry L	Т	P C	Credit
			J	BIOSE	NSOR	S AND	TRAN	SDUC	ERS		OE-EA	. 3	0	0 3	}
PREA The co used fo princip	MBLE ourse is c or the de oles of b	lesigne tection	ed to ma of an a ors that	ke the malyte.	student The re rently c	acquire lation b leploye	e conce etween d in the	ptual kı sensor clinica	nowledg concep l side an	ge of the ts and bio re introdu	transduc ological iced.	ers and concept	biologic s is high	al com lighted	ponents . The
PRER	EQUIS	ITE –	Nil												
COUR	RSE OB	JECT	IVES												
1	Tous	e the ba	asic con	cepts o	of transo	lucers,	electro	des and	its class	sification	l.				
2	To dis	scuss th	ne vario	us type	s of ele	ctrodes	•								
3	To de	termine	e the rea	cording	of bio	logical	compor	nents.							
4	To en	nploy tl	ne know	vledge i	in elect	rochem	ical and	l optica	l biosen	isors.					
5	To ou	tline th	e vario	us biolo	ogical c	ompon	ents usi	ng bios	ensors.						
COUF	RSE OU	TCON	AES												
On the	success	ful cor	npletio	n of the	course	, studer	nts will	be able	to						
CO1.	Descrit	be the v	working	, princij	ples of	transdu	cers.						Uno	lerstan	d
CO2.	CO2. Explain the various types of electrodes. Understand														
CO3.	Utilize	variou	s FET s	sensors	for rec	ording o	of biolo	gical co	ompone	nts.			App	oly	
CO4.	Disting	uish va	arious b	oiosenso	ors like	electro	chemic	al and c	ptical b	oiosensor	s.		Ana	lyze	
CO5.	Analyz	e the b	iologica	al comp	onents	using t	oiosenso	ors in v	arious a	pplicatio	ns.		Ana	lyze	
MAPF	PING W	TTH F	PROGE	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	ME SPH	ECIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S	L	s		S	М	М	S			М	М	М	S
CO5	S	S	L	s		S	М	М	S			S	Μ	М	S
S- Stro	ong; M-N	Mediun	n; L-Lo	W											
SYLL INTRO	ABUS ODUCT	FION: luctive	Genera transdu	l measu	iremen	t systen	n, Trans	sducers	and its	classifica	tion, Re	sistance	transdu	cers, ca	ipacitive

,

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

0001													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in									
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in									
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in									
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in									

INTRODUCTION TO BIOFUEL	Category	L	Т	Р	Credit
	OE-EA	3	0	0	3

PREAMBLE

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feedstocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

PREREQUISITE – NIL

COURSE OBJECTIVES

- 1 Students will recognize the types and differences between existing energy resources, understand their procurement and utilization, and their impacts on society and the environment
- 2 Students will be knowledgeable of the existing and potential future sources of renewable energy, and be able to intelligently analyze reported aspects of the energy and renewable energy fields.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. Understand the existing and emerging biomass to energy technologies														Remember		
CO2.	CO2. Understand the concept of 1 st generation, 2 nd generation and advance biofuels														Understand	
CO3. Appraise the techno-economic analyses of biofuel conversion technologies														Understand		
CO4. operat	CO4. To articulate the concept of a biorefinery system and be able to develop major unit operations of an integrated biorefinery												it	Apply		
CO5. 1	CO5. Illustrate the environmental implications													Apply		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OU											TCOMES					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L	
CO2	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L	
CO3	S	М	-	М	-	М	-	L	L	-	-	-	S	-	L	
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	М	
CO5 S M													L			
S- Stro	S- Strong; M-Medium; L-Low															

OVERVIEW OF BIOFUELS

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

BIOMETHANE AND BIOHYDROGEN

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

OTHER BIOFUELS

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

TEXT BOOKS:

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:**

 Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

COURD														
S.No	Name of the	Designation	Department	Mail ID										
	Faculty													
1	Dr.A.Balachandar	Assistant Professor – Gr-II	Biotechnology	Balachandar.biotech@avit.ac.in										
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in										

	FOOD AND NUTRITION TECHNOLOGY	Category	L	Т	Р	Credit	
		OE-EA	3	0	0	3	
DDEAMDLE						•	

PREAMBLE

The course aims to enable the students to understand the physicochemical, nutritional, microbiological and sensory aspects, To familiarize the students about the processing and preservation techniques. To emphasize the importance of food safety, food quality, food plant sanitation, food laws and regulations, food engineering and packaging in food industry.

PREREQUISITE – NIL																	
COURSE OBJECTIVES																	
1	Understand the tradition food processing techniques and the basics concept of food biochemistry																
2	Demonstrate the product development technique, quality and contaminant check																
3	To articulate their technical knowledge for industrial purpose																
4	Describe national food laws and standards																
5	5 Laws and qualities of standard for food products																
CO	COURSE OUTCOMES																
Afte	After the successful completion of the course, learner will be able to																
CO1	CO1: Recall the processing techniques practiced in olden days and the biological process Remember																
CO2	CO2. Illustrate the methods for animal product development, quality control and also screen the contaminant Understand																
CO3.Transfer the techniques in scaling up for industrial needs Apply																	
CO4	. Inter	pret	and T	roubles	hoot in	strume	ents to a	maintai	in accu	racy						Appl	y
CO5	. Deve	lop	standa	rds for	food ac	lditives	5									Appl	ly
MA	PPIN	GV	VITH	PRO	GRAN	IME (OUTO	COME	ES AN	D PRC	GRAM	IME S	PECIF	IC OUT	COM	IES	
COS	5 P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 P.	SO3
CO	S		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	2 -		М	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO	3 L		М	S	М	L	-	-	-	-	-	-	-	М	L	-	
CO ₂	O4 M S S M L S S -																
CO	205 - S S M M M L S -																
S- Strong; M-Medium; L-Low																	
SYLLABUS																	
INT	INTRODUCTION TO FOOD BIOTECHNOLOGY																

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

METHODS IN FOOD BIOTECHNOLOGY: Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

BIOTECHNOLOGY METHODS IN FOOD PROCESSING:

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

HURDLE TECHNOLOGY :

Principles and applications, Hurdle effect in fermented foods, shelf stable products, intermediate moisture foods, application of hurdle technology

FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

TEXT BOOKS:

1. Potter, Norman. M. Food Science, 5th Ed. Springer US

2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.

3. B. Srilakshmi., (2002) Food Science, New Age Publishers..

REFERENCES:

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press
| S. No. | Name of the | Designation | Department | Mail ID |
|--------|---------------|-------------------------|---------------|-----------------------|
| | Faculty | | | |
| | | | | |
| 1 | Dr.A.Nırmala | Assistant Professor GII | Biotechnology | nirmalabt@avit.ac,in |
| | | | | |
| 2 | Mrs.C.Nirmala | Associate professor | Biotechnology | nirmala@vmkvec.edu.in |
| | | | | |

		FUNDAMENTALS OF ARTIFICIAL Cate								Category	L	Т	P	Credit	
			L	NIELI	JIGEN	LE					OE-EA	3	0	0 3	
PRE This conta and	AMBI syllabu ains int its conc	LE is is inte elligent cepts .	ended fo agent,]	or the E Knowle	ngineeri dge Rep	ing stuc presenta	lents ar ation an	nd enabl d Game	e them e playin	to lean a g. Thus	about Arti , this sylla	ficial Int bus focu	elligend ses on t	ce. Thi to know	s syllabus v about AI
PRERI	EQUIS	ITE NI	Ĺ												
COUR	SE OB	JECTI	VES												
1.	To int	roduce t	he basi	c princi	ples, tec	hnique	s, and a	pplicati	ions of	Artificia	al Intellige	ence.			
2.	To hav	ve know	ledge o	of generi	ic proble	em-solv	ving me	thods in	n Artifio	cial Inte	lligence.				
3.	To des	sign soft	ware ag	gents to	solve a	problem	n.								
4.	Apply	the kno	wledge	of algo	orithms t	to solve	arithm	etic pro	blems.						
5.	Assem	nble an e	efficien	t code f	or engin	eering	probler	ns.							
COUR	SE OU	тсом	ES												
On the	success	ful com	pletion	of the c	ourse, s	students	will be	e able to)						
CO1: .]	ldentify	the diff	ferent a	gent and	d its typ	es to so	lve the	probler	ns			Underst	and		
CO2: k	now ab	out the	problen	n solvin	g techni	ique in	Artifici	al Intel	ligence.			Apply			
CO3: (Constru	ct the no	ormal fo	orm and	represe	nt the k	nowled	lge.				Apply			
CO4: to environ	o know ment.	about e	xtensio	n of cor	ndition p	orobabil	lity and	how to	apply i	n the rea	al time	Apply			
<i>СО</i> 5- т	o lean :	about In	formati	on Retr	ieval an	d Spee	ch Reco	ognition				Underst	and		
MAPP.	ING W	TTH P	ROGR	AMME		COMES	S AND	PROG	RAMN	IE SPE	CIFIC O	UTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3
CO1	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	_	-	-	-	-	-	М	S	М	М
CO5	s	М	М	М	М	-	-	-	-	-	-	М	S	М	-
S- Stroi	ng; M-N	Aedium	; L-Lov	V									•		

INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system – Production system – Characteristics – Problem Characteristics?

HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching

GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COURSE DESIGNERS													
No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in									
2	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.e du.in									

											Category	L	Т	P	Credit
			INTR	RODUC	CTION TH	TO IN	ITERN	NET O	F		OE-EA	3	0	0 3	
PRE Intro statis	EAMBI oduction stical la	LE n to lol nguage	for sta	atistical	data ma	nipulat	ion and	analys	is. It wa	as inspir	ed by and	is most o	compat	ible wit	h the
PRERI	EQUIS	ITE N	IL												
COUR	SE OB	JECTI	VES												
1.	To le	arn Intr	oductio	n to lo	Г										
2.	To St	udv me	thodolo	gy of Ic	оT										
3.	To De	velop Io	oT appl	ications	using A	Arduino	and In	tel Editi	ion						
COUR	SE OU	ТСОМ	ES		0										
On the	success	ful com	pletion	of the c	ourse, s	students	will be	e able to)						
CO1: 7 statem	ြဝ Unde ents, st	erstand ring fun	the bas ctions	ics in In	troduct	ion to I	oT in te	erms of	constru	icts, cor	itrol	Underst	and &	Apply	
CO2: k	now at	out the	probler	n solvin	g techn	ique in	Artifici	al Intel	ligence.	•		Underst	and &	Apply	
												Underst	and &	Apply	
CO2: 1	Րօ Unde	erstand	the use	ofIntro	oductio	n to lo	۲ funda	mental	s.			Underst	and &	Apply	
<i>СО5:</i> Т	o lean	about Ir	formati	on Retr	ieval ar	nd Spee	ch Reco	ognition	ı			Underst	and &	Apply	
MAPP	ING W	TTH P	ROGR	AMME	ουτα	COMES	5 AND	PROG	RAMN	1E SPE	CIFIC O	UTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1			1 1	N1								1V1	5		
CO2	M	M		M		-	-	-	-	-	M	IVI	<u>р</u>	M	M
CO3	M		<u>р</u>	M	M	-	-	-	-	-	-	M	b		M
CO4	s	М	М	М	М	-	-	-	-	-	-	М	S	М	М
CO5	S	М	М	М	М	F	-	-	F	F	-	М	s	М	-

SYLLABUSINTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network

Network & Communication aspects

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

TEXT BOOKS

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"

REFERENCES

1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

COURSE DESIGNERS												
No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mrs.R.Shobana	Assistant Professor	CSE	shobana@avit.ac.in								
2	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.e du.in								

				CY	BER SI	ECURI	TY			(Category	L	Т	P C	redit
											OE-EA	3	0	0	3
PREA	MBLE	2													
To und	erstand	the nee	ed for C	yber Se	curity i	n real ti	ime and	l to stud	ly techni	ques	involved	in it.			
PREF	REQUI	SITE :	NIL												
COU	RSE OI	BJECI	TVES			~	~ •								
1.	To und	lerstan	d the fu	ndamen	itals of	Cyber S	Security	and iss	sues						
2.	 2. To study various cyber crimes and legal remedies 3. To apply various privacy and security 														
3.	 apply various privacy and security To study E-Commerce and digital payments 														
4.	 4. To study E-Commerce and digital payments 5. To study the basic security aspects related to Computer and Mobiles 														
5. To study the basic security aspects related to Computer and Mobiles															
COU	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1: able to understand the concept of Cyber security and issues and challenges Understand associated with it.															
CO2: how rep	CO2: able to understand the cyber crimes, their nature, legal remedies and as to how report the crimes through available platforms and procedures														
CO3: a and und	CO3: able to appreciate various privacy and security concerns on online Social media and understand the reporting procedure of inappropriate content, underlying legal														
CO4: a	able to u	Inderst	and the	basic c	oncepts	s relate	d to E-C	Comme	rce and	digita	ıl	Apply			
paymer	nts.														
CO5: a	able to u	underst	and the	basic s	ecurity	aspect	s relate	d to Co	mputer a	and N	lobiles.	Apply			
MAP	PING V	VITH	PROG	RAMM	E OU	ГСОМ	ES AN	D PRO	GRAM	ME S	SPECIFI	C OUT	COMES	5	
COs	PO	РО	PO	PO	PO	PO	PO	PO	PO	Р	PO1	PO1	PS	PSO	PS
	1	2	3	4	5	6	7	8	9	0	1	2	01	2	O3
										1 0					
CO 1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO 2	М	М	М	М	М	-	-	-	-	-	-	-	М	М	М
CO 3	М	М	S	М	М	-	-	-	-	-	-	-	М	М	М
CO 4	S	М	М	М		-	-	-	-	-	-	-	М	М	S
CO 5	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
S- Str	ong; M-	Mediu	m; L-Lo	OW											

INTRODUCTION TO CYBER SECURITY 9 hours Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security. **CYBER CRIME AND CYBER LAW** 9 hours Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies. SOCIAL MEDIA OVERVIEW AND SECURITY 9 hours Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies. **E - C O M M E R C E AND DIGITAL PAYMENTS** 9 hours Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act, 2007. DIGITAL DEVICES S E C U R I T Y, TOOLS AND TECHNOLOGIES FOR CYBER SECURITY 9 hours End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions. REFERENCES 1. Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010. 2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure

and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7.

Fundamentals of Network Security by E. Maiwald, McGraw Hill

	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in										
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in										

INTRODUCTION TO INDUSTRY 4.0 AND	Category	L	Т	Р	Credit	_
INDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3	

PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

PREREQUISITE

NIL

COU	JRSE OBJECTIVES									
1	Industry 4.0 concerns the transformation of industrial processes the technologies such as sensors, communication, and computational p	rough the integration of modern rocessing.								
2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing,										
Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.										
3	3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.									
4	IIoT links the automation system with enterprise, planning and product lifecycle.									
5	Real case studies									
COU	JRSE OUTCOMES									
On tl	ne successful completion of the course, students will be able to									
CO1	. Apply & Analyzing the transformation of industrial process by	Analyze								
vario	bus techniques.									
CO2	. Evaluate the transformation technologies are considered to be the	Apply								
diffe	rent drivers.									
CO3. Existing industrial systems will adopt the applications of IIoT. Apply										
CO4. Intensive contributions over automation system with enterprise, Analyze										
planı	ning and product life cycle									
CO5	. Analyze of various Real time case studies.	Analyze								

MAI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	РО	PO2	PO3	РО	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
	1			4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S-St	rong; N	I-Med	ium; L	L-Low	•							•	•		

INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGSIntroduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

IIOT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

IIOT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

TEXT BOOKS:

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

REFERENCE BOOKS:

1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016 2.Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Muthumanickam	VMKEV/Professor	ECE	muthumanickam@vmkvec.
2.	Dr.L.K.Hema	AVIT/Professor	ECE	hemalk@avit.ac.in

		DES						Cate	gory	I	-	Т	Р	Cre	dit
				LLLCII		QUIFINIL	_111	OE	-EA	3	3	0	0	3	3
PREAN The ob Electri design	IBLE bjective cal asp and pr	of this ects like ototypi	course e mech ng and	is to se anical e ending	ensitise design a up in a	a regist and deta manufa	rant to ailing. Icturab	o variou Starting Ile phys	is aspec g from iical pro	cts of an a need 1 ototype.	electron translate	ics prod d into sp	uct. Spec pecificati	ifically o ons, lead	n non- ding to
PRERE	PREREQUISITE – BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING														
COURS	COURSE OBJECTIVES														
1	To un	derstar	nd the v	arious	Concep	t of Indu	ustrial I	Design	process	5.					
2	То ар	ply the	basic C	oncept	of elect	tronic Pr	roduct	designs	s metho	odology.					
3	To cla	ssify th	e Conce	ept of E	rgonon	nics & ae	estheti	cs in pr	oduct c	lesign.					
4	To un	derstar	nd the K	nowled	lge rega	arding th	ne desi	gn of p	roduct	packagin	g and wo	orking er	nvironme	nt.	
5 To understand the Knowledge of different industrial standard and value analysis.															
COURS	SE OUTO	COMES													
On the	succes	ssful co	mpletic	n of th	e cours	e, studei	nts wil	l be abl	e to						
CO1. V	/isualize	e the co	ncept f	or proc	luct des	ign with	n respe	ct to er	rgonom	ics and a	esthetic	s.		Remen	nber
CO2. A	nalyze,	design	and im	plemer	nt contr	ol panel	ls of el	ectroni	c equip	ment				Apply	
CO3. A compo	Apply c onents.	reativit	y in the	e desig	n of sys	stem by	formu	ulating	archite	cture wi	th prope	er placer	nent of	Apply	
CO4. A	pply th	e conce	ept of v	isual co	mmuni	cation te	echniq	ues in p	product	design.				Apply	
CO5. A	pply th	e proce	ess of va	alue an	alysis in	existing	g produ	uct.						Apply	
MAPP	NG WI	TH PRO	GRAMM	1E OUT	COMES	AND PR	OGRAN	MME SF	PECIFIC	OUTCON	1ES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	-	S	-	-	L	М	L	-	-	S	-	-
CO2	М	L	-	Μ	S	-	-	L	Μ	L	-	-	S	-	-
CO3	М	L	-	Μ	S	-	-	L	Μ	L	-	L	S	-	М
CO4	S	М	L	-	S	-	-	L	М	L	-	L	S	M	M
CO5	S	М	L	-	S	-	-	Μ	L	L	-	L	S	М	M
S- Stro	ng; M-l	Mediun	n; L-Lov	/											

MODULE 1: INTRODUCTION

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

MODULE 2: PRODUCT PROTOTYPES

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

MODULE 3: PRODUCT DESIGN AND PLANNING

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation.

Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

MODULE 4: ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

MODULE 5: CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

TEXTBOOKS:

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

REFERENCE BOOKS:

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", & Hall. London. Flurschiem C H, "Industrial

Design and Engineering Design ", Council, London and Springer Verlag, 1983

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

		31) PR	INTI	NG A	AND I	TS	Cate	gory	L		Т	Р	Cr	edit
			AP	PLIC	CATI	ONS	F	OE-	EA	3		0	0		3
Prean The co applica	nble urse is tions.	design	ed to	impar	t knov	vledge	and sk	tills rela	ated to	3D pri	nting to	echnol	ogies its	type	
Prere	quisite	- NI	L												
Cours	e Obj	ective													
1	To Kn	ow the	impo	rtance	of 3E) print	ing in 1	Manufa	cturing	g					
2	To kno	w abo	ut Va	t Phot	o Poly	meriza	ation 8	k Mater	ial Jett	ting.					
3	To kno	w abo	ut bin	ider je	etting	mater	rial ex	trusion	& she	eet lam	inatio	n			
4	To kno	w abo	ut the	meth	ods f	or pov	wder b	ed fusi	on &	direct	energy	/ depo	sition.		
5	To kno	w abo	ut the	appli	cation	s of 3I) Print	ing.							
Cour	rse Ou	tcome	es: O	n the	succ	essful	com	pletion	of th	e cour	se, sti	udents	s will b	e able	to
CO1.	O1. Importance of 3D printing in Manufacturing Remember														
CO2.	Vat P	hoto P	olym	erizati	on &	Materi	al Jetti	ng.				-	Unders	tand	
CO3.	Bind	er jetti	ing m	ateria	ıl extr	rusion	& she	et lam	inatio	n		-	Unders	tand	
CO4.	Powe	ler bed	d fusi	on &	direc	t ener	gy dep	position	1.				Unders	tand	
CO5.	Appli	cations	s of 3	D Prir	ting.								Unders	tand	
Map	ping v	vith P	rogra	amme	e Out	tcome	s and	Progr	amm	e Spec	ific O	utcon	nes		
	PO	РО	PO	PO	РО	PO	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	M	L	Μ	-	S	Μ	М	-	-	-	-	-	М	M-	М
CO3	М	L	М	-	S	М	М	-	-	-	-	-	М	M-	М
CO4	M	L	М	-	S	М	М	-	-	-	-	-	М	M-	М
CO5	М	L	L	-	-	-	-	-	-	-	-	-			
S- Str	ong; N	A-Me	dium	; L-I	20W										

INTRODUCTION

Need - Development of AM systems – AM process chain -Classification of AM processes- Applications-Advantages of AM and Types of materials for AM.Introduction to STL format, Pre & Post-processing of STL files, Various slicing methods, Part orientation and support generation, Support structure design, Tool path generation

VAT PHOTO POLYMERIZATION & MATERIAL JETTING

Vat Photo polymerization - Stereo lithography process, working principle, advantages and disadvantages, Material Jetting - process, working principle, advantages and disadvantages.

BINDER JETTING-MATERIAL EXTRUSION & SHEET LAMINATION

Binder Jetting- process, working principle, advantages and disadvantages. Material Extrusion –Fused Deposition Modeling process, working principle, advantages and disadvantages. Sheet Lamination – Laminated Object Manufacturing process, working principle, advantages and disadvantages.

POWDER BED FUSION & DIRECT ENERGY DEPOSITION

Powder Bed Fusion – Selective Laser Sintering process, working principle, advantages and disadvantages, Direct Energy Deposition- process, working principle, advantages and disadvantages.

APPLICATIONS OF 3D PRINTING

Applications for 3D Printing - Use of 3D Printing-Limitations of 3D Printing and Further Development of Medical 3D Printing Applications. Use of Multiple Materials in 3D Printing-Embedded Component 3D Printing, Commercial Applications Using Multiple Materials, Future Directions, Business Opportunities and Future Directions.

Text Books

1	Ian Gibson, David Ros Digital Manufacturing	en, and Brent Stucker, Ad , Springer, New York, NY	ditive Manufacturing Techr 7, 2015.	nologies: Rapid Prototyping to Direct								
2	Venuvinod, Patri K., a & Business Media, 20	and Weiyin Ma. Rapid pro 13.	ptotyping: laser-based and o	other technologies. Springer Science								
Refer	ence Books											
1	1 Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.											
2	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.											
3	Kumar, L. Jyothish, Pulak M. Pandey, and David Ian Wimpenny, eds. 3D printing and additive manufacturing technologies. Singapore: Springer, 2019.											
Cours	se Designers											
Sl.No	NoFaculty NameDesignationDepartment/ Name of the collegeEmail id											
1	S.Kalyanakumar Assistant Professor Gr II Mech / AVIT kalyanakumar@avit.ac.in											

							С	ategoi	y	L	Т	Р	0	Credit
	I	NDUS	STRI A	AL RO	OBO	ГICS	0	E-EA		3	0	0		3
Preamble			_											
The objective	of thi	s coui	rse is	to im	part k	nowl	edge	about	indus	strial r	obots	for their	contro	ol and
Prerequisite	•													
NIL	•													
Course Obje	ctive													
1 To introdu	aa ha	io oor	aanta	norta	ofrob	ota an	dtung	ofrob	ota					
2			icepts,	parts	01 100	ots and	utypes	5 01 100	ous					
To learn a	bout F	Robot l	kinema	atics a	nd dyn	amics								
3 To learn d	iffere	nt type	s of se	ancore	used in	n robo	ts and	its con	trol					
4		in type	5 01 50	113013	useu II	11000	ts and							
To unders	tand tl	he diff	erent t	ypes c	of actua	ation s	ystem	s used i	n robo	ots				
5				1.0				0						
To unders	tand th	he robo	ot cont	rol Sy	stems,	progr	ammır	ng of ro	bots a	nd its A	Applicat	ions.		
Course Outco	omes	: On t	he su	ccess	ful co	mplet	ion o	f the c	ourse	, stude	ents wi	ll be abl	e to	
CO1. Under	stand	the b	asic c	onfig	uratio	ns and	l kine	matic	systen	ns of re	obots	Unde	rstand	
CO2. Solve	probl	ems o	f robo	t kine	matic	s and	dynar	nics				Appl	у	
CO3. Under their a	stand pplica	the d	iffere diffe	nt typ rent t	es of s ypes c	sensor of cont	s used trol sy	l in rol stems	oot sy used	stems : in robo	and ots	Unde	rstand	
CO4. Under robot s	stand syster	and and a	applic	ations	ofthe	e diffe	erent t	ypes o	f actu	ators u	ised in	Unde	rstand	
CO5	2													
Under	stand	the R	lobot .	Appli	cation	s in v	arious	s fields	5			Unde	rstand	
Mapping with	Prog	ramn	ne Ou	tcom	es and	d Pro	gram	me Sp	ecific	Outco	omes		T	
СО ро1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	Μ	L	-	-	L	-	-	-	-	-	-	S	-	L
CO2 S	S	М	М	-	М	-	-	-	-	-	-	S	-	L
CO3 S	М	Μ	М	-	М	-	-	-	-	-	-	S	-	L
CO4 S	S	Μ	М	-	L	-	-	-	-	-	-	S	-	L
CO5 S	S	L	S	-	S	-	-	_	-	-	-	S	-	L
S- Strong: M-M	<u>CUS 5 5 L 5 - 5 - - - - - 5 - L</u>													

INTRODUCTION TO ROBOTICS

Introduction to Automation and Robotics– Basic concepts, Need, Law, History, Anatomy, specifications classification, present and future applications. Components of the Industrial Robotics: common types of arms. Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

ROBOT ARM KINEMATICS

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

ROBOT ACTUATION SYSTEMS

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

ROBOT APPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading- Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. Applications in Medical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

Text	Books
1	Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014.
2	Mikell P Groover, Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, "Industrial Robotics, Technology programming and Applications", McGraw Hill, 2012.
3	Mittal R.K. and Nagrath I.J., "Robotics and Control", Tata McGraw Hill.
Refe	rence Books
1	Ghosal, A., "Robotics", Oxford, New Delhi, 2006.
2	Niku Saeed B., "Introduction to Robotics: Analysis, Systems, Applications", PHI, New Delhi.
3	Steve Heath, "Embedded System Design", 2nd Edition, Newnes, Burlington, 2003
	Merzouki R., Samantaray A.K., Phathak P.M. and Bouamama B. Ould, "Intelligent Mechatronic System:
4	Modeling, Control and Diagnosis", Springer.
Cou	se Designers
	Department/Name

S.No	Faculty Name	Designation	of the College	Email id
1	P.KUMARAN	AP-II	MECH/AVIT	kumaranp@avit.ac.in

BIOMOLECULES – STRUCTURE AND	Category	L	Т	Р	C
FUNCTION	OE-EA	3	0	0	3

PREAMBLE

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

PREREQUISITE NIL

COURSE OBJECTIVES

1	To give an overview of importance of biomolecules
2	To elaborate the structure of proteins and nucleic acids and its role in disease.
3	To enumerate the role of carbohydrates and their cellular function in physiology and pathology
4	To enumerate the role of lipids and their cellular function in physiology and pathology.
5	To briefly cholesterol and its role in diseases

COURSE OUTCOMES

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1. F	Relate	the bas	sics of	fbiom	olecul	les in a	and ar	ound hi	m				Unde	Understand		
CO2. Understand the structure of biomolecules such as proteins and nucleic acids												Unde	Understand			
CO3. I	Discov	er the	role o	f carbo	ohydra	ates in	healt	hy and o	disease	ed cond	itions		Appl	y		
CO4. I	Relate	disfun	ctioni	ng of l	lipids	with d	lisease	;					Analyse			
CO5. 0	Criticiz	e the 1	ole of	f chole	sterol	in dis	eases.						Eval	Evaluate		
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	

005	101	102	105	101	100	100	107	100	107	1010	1011	1012	1501	1502	1505
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5	S	-	L	L	-	М	-	-	-	-	-	S	S	М	-
S- Stro	S- Strong; M-Medium; L-Low														

PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

COURSE DESIGNERS

S.No	Name of theFaculty	Designation	Department	Mail ID			
1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in			
2	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical Engineering	sowmiya.vmkvec@vmrf.edu.in			

		PHARMACOGENOMICS	Category	L	Т	Р	C
			OE-EA	3	0	0	3
PREAN	IBLE						
Pharma	cogenoi	mics involves the study of the relatio	nship betwe	en an	individual	's genet	tic
makeup	and his	or her response to a drug. Pharmaco	genetics, a c	ompo	onent of	U	
pharma	cogenoi	mics, is the study of the relationship	between a si	ngle s	pene and its	s respoi	nse to
a drug				6 0	<u> </u>	····	
PRERE	OUISI	TF – NII					
I KEKI	QUIDI						
COURS	SE OBJ	IECTIVES					
1	Discus	s about the basic knowledge about p	harmacogen	omic	s and drug		
	design	using genomicapplications for drug	action and t	oxicit	v.		
	U				5		
2	Perfor	m how individualization of drug ther	apy can be a	chiev	ed based o	n a pers	son's
	genetio	c makeupwhile reducing unwanted d	rug effects.				
3	Outlin	e the Pharmacogenomics studies on I	how genetic	diffe	ences betw	veen	
	indivio	luals can affectresponses to various of	lrugs.				
4	Formu	late on medicine skills acquired by t	he student a	nd hi	s action in	differer	nt
5	pathol	ogies op acquire knowledge about the influ	ence of gen	atic al	terations	n the	
5	theren	optic affect and due to a reactions of t	be drawe fre			of	
	individ	eutic effect and auverse reactions of t	ne drugs, no	om a j	berspective	01	
COUD		nualized therapy.					
COUR	SE OU	ICOMES					
After th	e succes	ssful completion of the course, learne	er will be ab	le to			
CO1 D	· · • - ·	· · · · · · · · · · · · · · · · · · ·		J1.		D	
outcome	cognize e of	e the effect of genetic differences bet	ween indivi	Juais	in the	r Re	membe
CO2. D	escribe	the role of single nucleotide polymor	rphism as a	bioma	rker for the	e Ur nd	Idersta
CO3. U as	tilize ar	ad manage the new genomics based to	ools as they	becor	ne availabl	e Un nd	Idersta
CO4. Ex	amine th	ne applications of genomics principles i	n drug action	and to	oxicology	Ar	alyze
CO5. Va	lidation	of case studies related to pharmacogene	omics			Ar	alyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO₂ PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO₂ PSO3 CO1 L L L L L L L L L L L L L Μ Μ Μ Μ L CO2 Μ L L L L CO3 S S S S L _ _ Μ L L L L _ M Μ М Μ Μ Μ -CO4 --S L L L Μ Μ Μ Μ S L S CO5 L L --

S- Strong; M-Medium; L-Low

SYLLABUS

PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

PHARMACOGENOMICS - CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

TEXT BOOKS

- Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in		

Course Code	Course Title	Category	L	Т	Р	C
	YOGA AND MEDITATION	AC	0	0	2J	0

OBJECTIVES:

Yoga is derived from a Sanskrit word 'yuj' which loosely means 'union.' It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes you realize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT

- Surya namaskar, Padmasana, Uttakatasana
- Surya pranayama, BrahmariPranayama
- Anjalimudra, Mahamudra, Chin Mudra
- Kapalabathikriya, Bhastrika, Tratakkriya
- Simple Meditation, YogaBreath awareness meditation,.

OUTCOMES :

- It incorporates breathing exercises, meditation and poses designed to encourage relaxation and reduce stress.
- Practicing yoga is said to come with many benefits for both mental and physical health.
- Yoga is known for its ability to ease stress and promote relaxation.
- Many people begin practicing yoga as a way to cope with feelings of anxiety.
- Could Improve Heart Health
- Improves Quality of Life.
- Could Promote Sleep Quality.
- Improves Flexibility and Balance.
- Could Help Improve Breathing.
- Promotes Healthy Eating Habits.
- Can Increase Strength.

TEXT BOOK:

YogacharyaSundaram, Sundra Yoga Therapy, Asana Publications, 2009

REFERENCES:

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri MathiNilayam, 2012.
- 2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.

- 4. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Dr.JohnB.Nayagam, *MudumaikkuMutrupulliVaikkumMuthiraigal*, SaaruPrabha Publications, 2010.

Course Code	Course Title	category	L	Т	Р	С
	INDIAN CONSTITUTION	AC	2	0	0	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

UNIT II -Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III – Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested

Total Hours:30 hours

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india
- 3. https://www.sci.gov.in/constitution

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/ Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL	NPTEL Course Title	Course Instructor
	ID		
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND	SCHOOL OF INDIA
		ADJUDICATORY PROCESS	UNIVERSITY

COURSE DESIGNER									
S.NO	NAME OF	DESIGNATION	NAME OF	MAIL ID					
	THE		THE						
	FACULTY		INSTITUTION						
1	Dr.Sudheer	Principal	AV School of	Sudheersurya18@gmail.com					
			Law						

Course Code	Course Title	Category	L	Т	P	C
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	AC	2	0	0	0

Course Objectives:

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

Course Outcomes:

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

UNIT-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

UNIT-2:

Protection of traditional knowledge:The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

UNIT-3:

Legal framework and TK: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

UNIT-4:

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

UNIT-5:

Traditional Knowledge in Different Sectors: Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

Text Books:

1. Traditional Knowledge System in India, by Amit Jha, 2009.

Reference Books:

1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.

2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

Subject Code	Gender Equity and Law	Category	L	Т	Р	Credit				
	(Common to all Branches)	AC	2	0	0	0				
Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between ,Men,										

Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males.Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

PREREQUISITE: NIL

COURSE OBJECTIVES

1	To sensitize the students regarding the issues of gender and thegender inequalities prevalent in society.
2	To raise and develop social consciousness about gender equity among thestudents.
3	To build a dialogueand bring a fresh perspective on transgender and gender non-conforming individuals.
4	To create awareness among the students and to help them face gender stereotype issues.
5	To help the studentsunderstand the various legal provisions that are available in our society.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the importance of gender equity	Understand
CO2. Initiate the awareness and recognize the social responsibility with regards to	Apply
gender equity.	
CO3.To develop a sense of inclusiveness and tolerance towards various genders	
without any discrimination.	Apply
CO4. To evaluate the social issues and apply suitable gender-related regulations	
for inclusive living.	Evaluate
CO5.To identify and analyze the existing gender inequality problems faced in	Analyse
various institutions.	-

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S- Stro	S- Strong; M-Medium; L-Low														

UNIT -I INTRODUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

UNIT –II - GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS

Gender Sensitization -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

REFERENCES:

6hrs

6 hrs

6 hrs

6 hrs

6hrs

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, andExploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6. Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.