AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

Faculty of Engineering and Technology

Department of Civil Engineering Programme:

M.E – STRUCTURAL ENGINEERING

REGULAR

CHOICE BASED CREDIT SYSTEM (CBCS)

Curriculum & Syllabus (Semester I to IV)

Regulations 2021

VINAYAKA MISSIONS RESEARCH FOUNDATIONS FACULTY OF ENGINEERING AND TECHNOLOGY AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Civil Engineering

CREDIT STRUCTURE FOR POST GRADUATE ENGINEERING PROGRAM (M.E – Structural
Engineering – REGULAR) - 2021

S.NO.	Category of courses	Type of courses	Break up of credits		
1.		Advanced Mathematical Methods	3		
	A. Foundation courses	Research Methodology and IPR	2		
2.	B. Program core courses	Core Courses	32		
3.		Program Electives	15		
	C. Elective courses	Open Electives (Courses on emerging areas)	03		
	D. Employability	Project Work Phase I	06		
4.	Enhancement Courses and courses for	cement Courses Project Work Phase II			
	presentation of Technical skills related to the				
	specialization	Technical Seminar	01		
5.	E. Audit courses	Any two courses on: 1. English for Research Paper Writing 2. Value Education 3. Constitution of India 4. Pedagogy Studies 5. Personality Development Through Life Enlighten Skills	Zero credit		
Tota	l credits to be earned for the a	ward of M.E /M.Tech degree	75		

S. No	Category of courses	Type of courses	Suggested breakup of credits	Course Title
1.	A. Foundation	Mathematics/ Applied Mathematics	3	Advanced Mathematical Methods
1.	courses	Research Methodology and IPR	2	Research Methodology and IPR
2.	B. Programme Core Courses	Core Courses	32	 Matrix Computer Method Of Structural Analysis Theory Of Elasticity And plasticity Structural Dynamics And earthquake Engineering Advanced Steel structures Advanced Concrete structures Finite Element Analysis In Structural Engineering Advanced Design Of Foundation Structures Construction engineering And techniques laboratory Structural Design Studio
3.	C. Elective courses	Program Electives	15	 Maintenance, Repair And Rehabilitation of Structures Mechanics of Fibre Reinforced Polymer Composite Materials Design of Steel Concrete Composite Structures Design of Masonry Structures Design of Masonry Structures Design of Industrial Structures Optimization of Structures Design of High Rise Structures Design of Offshore Structures Design of Structures With Soil Structure Interaction Design of Shell And Spatial structures Structural Stability Non-Linear Analysis of Structures Prefabricated Structures Advanced Prestressed Concrete Structures Reliability Analysis of Structures Design of Formwork
		Open electives (Courses on emerging areas)	03	 Management Information System Waste to Energy Biomedical Product Design and Development Advanced Cyber Security Bio Mems Solar and Energy Storage Systems Operations Research Metal Additive Manufacturing

4.	D. Employability Enhancement Courses and	Project work Phase-I	6	
	courses for presentation of	Project work Phase-II	12	
	Technical skills related to the	Internship	1	
	specialization	Technical Seminar	1	
5.	E. Audit Courses	 Any two courses on: English for Research Paper Writing Value Education Constitution of India Pedagogy Studies Personality Development Through Life Enlighten Skills 	Zero Credit	

CREDIT STRUCTURE FOR POST GRADUATE ENGINEERING PROGRAM (M.E- STRUCTURAL ENGINEERING – REGULAR) -2022

	FOUNDATION COURSES (FC)- Credits (5)											
S.No ·	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATEG ORY	L	Т	Р	С	PREREQUISI TE			
1.		Advanced Mathematical Methods	Mathematics	FC-BS	3	0	0	3	NIL			
2.		Research Methodology and IPR	Civil	FC-HS	2	0	0	2	NIL			
	TOTAL				5	0	0	5				

	PROGRAM CORE COURSES (PCC)- Credits (32)										
S. No.	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATEG ORY L T		Т	Р	С	PREREQUIS ITE		
1.		MATRIX COMPUTER METHOD OF STRUCTURAL ANALYSIS	CIVIL	СС	3	1	0	4	NIL		
2.		THEORY OF ELASTICITY ANDPLASTICITY	CIVIL	CC	3	1	0	4	NIL		
3.		STRUCTURAL DYNAMICS ANDEARTHQUAKE ENGINEERING	CIVIL	CC	3	1	0	4	NIL		
4.		ADVANCED STEELSTRUCTURES	CIVIL	CC	3	1	0	4	NIL		
5.		ADVANCED REINFORCED CONCRETESTRUCTU RES	CIVIL	CC	3	1	0	4	NIL		

6.			CIVIL	CC	3	0	2	4	NIL
7.		CED DESIGN NDATION TURES	CIVIL	CC	3	1	0	4	NIL
8.	NEERIN	CHNIQUESLA	CIVIL	CC	0	0	4	2	NIL
9.	STRUCI DESIGN	TURAL STUDIO	CIVIL	CC	0	0	4	2	NIL
	TOTAL				21	6	10	32	

	C. ELECTIVE COURSES (EC) - PROGRAM ELECTIVES- Credits (15)											
S.No ·	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATE GORY L		GORV		Т	Р	С	PREREQUI SITE	
1.		NON-LINEAR ANALYSIS OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL			
2.		WIND AND CYCLONE EFFECT ON STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL			
3.		PREFABRICATED STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL			
4.		ADVANCED CONCRETE TECHNOLOGY	CIVIL	EC-PS	3	0	0	3	NIL			
5.		ADVANCED PRESTRESSED CONCRETESTRUCTU RES	CIVIL	EC-PS	3	0	0	3	NIL			

					1	1	1	
6.	RELIABILITY ANALYSIS OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
7.	DESIGN OF FORMWORK	CIVIL	EC-PS	3	0	0	3	NIL
8.	MAINTENANCE, REPAIR AND REHABILITATION OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
9.	MECHANICS OF FIBER REINFORCED POLYMER COMPOSITE MATERIALS	CIVIL	EC-PS	3	0	0	3	NIL
10.	DESIGN OF STEEL CONCRETECOMPOSI TE STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
11.	DESIGN OF MASONRY STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
12.	DESIGN OF INDUSTRIAL STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
13.	OPTIMIZATION OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
14.	DESIGN OF HIGH RISE STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
15.	DESIGN OF OFFSHORE STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
16.	PERFORMANCE OF STRUCTURES WITHSOIL STRUCTURE INTERACTION	CIVIL	EC-PS	3	0	0	3	NIL
17.	DESIGN OF BRIDGE STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL
18.	DESIGN OF SHELL AND	CIVIL	EC-PS	3	0	0	3	NIL

	SPATIALSTRUCTURE							
19.	STRUCTURAL STABILITY	CIVIL	EC-PS	3	0	0	3	NIL

C. ELEC	C. ELECTIVE COURSES (EC) - Open electives (Courses on emerging areas) – Credits 03											
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.		METAL ADDITIVE MANUFACTURING	MECH	OE-EA	3	0	0	3	NIL			
2.		WASTE TO ENERGY	BTE	OE-EA	3	0	0	3	NIL			
3.		BIOMEDICAL PRODUCT DESIGN AND DEVELOPMENT	BME	OE-EA	3	0	0	3	NIL			
4.		ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL			
5.		BIO MEMS	ECE	OE-EA	3	0	0	3	NIL			
6.		SOLAR AND ENERGY STORAGE SYSTEMS	EEE	OE-EA	3	0	0	3	NIL			

C. EMPLOYABILITY ENHANCEMENT COURSES AND COURSES FOR PRESENTATION OF TECHNICAL SKILLS RELATED TO THE SPECIALIZATION- Credits (21)

S.N 0.	COUR SE CODE	COURSE TITLE	DEPT. OFFERI NG THE COURSE	CATEGO RY	L	Т	Р	С	PREREQUIS ITE
1.		PROJECT WORK PHASE I	CIVIL	EE-P	0	0	12	6	NIL
2.		PROJECT WORK PHASE II	CIVIL	EE-P	0	0	24	12	NIL
3.		INTERNSHIP	CIVIL	EE-I		3 weeks Training		1	NIL
4.		TECHNICAL SEMINAR	CIVIL	EE-S	0	0	2	1	NIL
			0	0	40	20			

D. MANDATORY COURSES/AUDIT COURSES

Any two courses on:

			DEDT		1				
S.N o.	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATEG ORY	L	Т	Р	С	PREREQUI SITE
1.		ENGLISH FOR RESEARCH PAPER WRITING	CIVIL	AC	2	0	2	0	NIL
2.		VALUE EDUCATION	CIVIL	AC	2	0	2	0	NIL
3.		INDIAN CONSTITUTION	CIVIL	AC	2	0	2	0	NIL
4.		PEDAGOGY STUDIES	CIVIL	AC	2	0	2	0	NIL
5.		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTEN SKILLS	CIVIL	AC	2	0	2	0	NIL
		TOTAL			0	0	10	0	

IMPLEMENTATION PLAN PROGRAMME STRUCTURE

SEMESTER –I

	COURSE		DEPT.					
S.No.	CODE	COURSE TITLE	OFFERING	CATEGORY	L	Т	Р	С
			THE COURSE					
		THE	ORY					
			1	1			r	
1.		ADVANCED MATHEMATICAL METHODS	MATHEMATICS	FC-BS	3	0	0	3
2.		MATRIX COMPUTER METHOD OF STRUCTURAL ANALYSIS	CIVIL	CC	3	1	0	4
3.		THEORY OF ELASTICITY ANDPLASTICITY	CIVIL	CC	3	1	0	4
4.		STRUCTURAL DYNAMICS ANDEARTHQUAKE ENGINEERING	CIVIL	CC	3	1	0	4
5.		ADVANCED CONCRETESTRUCTURES	CIVIL	CC	3	1	0	4
6.		EC - Program Electives-I	CIVIL	EC-PS	3	0	0	3
		PRAC	TICAL					
7		CONSTRUCTIONENGINEERING ANDTECHNIQUESLABORATORY	CIVIL	сс	0	0	4	2
		TOTAL	•		18	4	4	24

SEMESTER -II

S.No.	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATEGORY	L	Т	Р	С
1.		ADVANCED STEEL STRUCTURES	CIVIL	CC	3	1	0	4
2.		FINITE ELEMENT ANALYSIS IN STRUCTURAL ENGINEERING	CIVIL	CC	3	1	0	4
3.		ADVANCED DESIGN OF FOUNDATION STRUCTURES	CIVIL	CC	3	1	0	4
4.		Program electives-II	CIVIL	EC-PS	3	0	0	3
5.		Program electives-III	CIVIL	EC-PS	3	0	0	3
6.		AUDIT COURSES-I	CIVIL	AC	2	0	0	0
7.		STRUCTURAL DESIGN STUDIO	CIVIL	CC	0	0	4	2
8.		TECHNICAL SEMINAR	CIVIL	EE-S	0	0	2	1
		TOTAL			17	3	6	21

SEMESTER –III

S.No.	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATEGORY	L	Т	Р	С
	<u> </u>	THEOF	RY					
1.		RESEARCH METHODOLOGY AND IPR	CIVIL	FC-HS	2	0	0	2
2.		EC - Program electives-IV	CIVIL	EC-PS	3	0	0	3
3.		EC - Program electives-V	CIVIL	EC-PS	3	0	0	3
4.		EC - Open electives	CIVIL	OE	3	0	0	3
5		AUDIT COURSES- II	CIVIL	AC	2	0	0	0
		PRACTIC	CAL					
6.		PROJECT WORK PHASE I	CIVIL	EE-P	0	0	12	6
7.		INTERNSHIP	CIVIL	PI-I		weel rainir		1
	· · · · · ·	TOTAL			13	0	14	18

SEMESTER -IV

S.No.	COURSE CODE	COURSE TITLE	DEPT. OFFERING THE COURSE	CATEGORY	L	Т	Р	С
		PRA	CTICAL					
1.		PROJECT WORK PHASE II	CIVIL	EE-P	0	0	24	12
	<u> </u>	TOTAL			0	0	24	12

TOTAL CREDITS – 75

FOUNDATION COURSES

ADVANCED	Category	L	Т	Р	Credit
MATHEMATICAL METHODS	FC-BS	3	0	0	3

PREAMBLE

The main objective of this course is to demonstrate various analytical skills in applied mathematics and extensive experience with the tactics of problem solving in the engineering field. The lectures provide an introduction to the calculus of variations, covering both classical and more recent topics (action functional and isoperimetric problems). It also provides the required skills to apply the statistical tools&conformal mapping to engineering problems. Tensor analysis presents physical laws in a clear and compact form.

PREREQUISITE -

COURSE OUTCOMES: On the successful completion of the course, students will be able to
--

1	To familiarize the students in the field of differential equations
---	--

2	То	enable	them	to	solve	boundary	value	problems	associated	with	engineering
	appl	ications u	ising tra	nsfoi	m meth	ods					

- 3 To expose the students to the concepts of calculus of variations
- 4 To introduce conformal mappings and their applications to fluid flows and heat flows.
 - 5 To give the students a complete picture of tensor analysis

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. develop the mathematical methods of applied mathematics and mathematical physics	Apply
CO2. solve boundary value problems using integral transform methods	Apply
CO3. apply the concepts of calculus of variations in solving various boundary value problems	Apply
CO4. apply conformal mappings in fluid flows and heat flow problems	Apply
CO5. familiarize with the concepts of tensor analysis.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L				М				М			
CO2	S	S	М	L				М				М			
CO3	S	S	М	L				М				М			

	S S	Μ	L	 	 Μ	 	 М	 	
CO5 S	S S	М	L	 	 М	 	 М	 	

S- Strong; M-Medium; L-Low

SYLLABUS

LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

Laplace transform: Definitions, properties -Transform of error function, Bessel's function, DiracDelta function, Unit Step functions – Convolution theorem – Inverse Laplace Transform: Complexinversion formula – Solutions to partial differential equations: Heat equation, Wave equation

FOURIER TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIALEQUATIONS

Fourier transform: Definitions, properties – Transform of elementary functions, Dirac Deltafunction– Convolution theorem – Parseval's identity – Solutions to partial differential equations:Heat equation, Wave equation, Laplace and Poison's equations.

CALCULUS OF VARIATIONS

Concept of variation and its properties – Euler's equation – Functionals dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables– Variational problems with moving boundaries -Direct methods – Ritz and Kantorovich methods.

CONFORMAL MAPPING AND APPLICATIONS

Introduction to conformal mappings and bilinear transformations – Schwarz Christoffeltransformation – Transformation of boundaries in parametric form – Physical applications : Fluidflow and heat flow problems.

TENSOR ANALYSIS

Summation convention – Contravariant and covariant vectors – Contraction of tensors –Inner product – Quotient law – Metric tensor – Christoffel symbols – Covariant differentiation –Gradient, divergence and curl.

REFERENCES:

1. Andrew L.C. and Shivamoggi B.K., "Integral Transforms for Engineers", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.

2. Elsgolts L., "Differential Equations and the Calculus of Variations", MIR Publishers, Moscow, 2003.

3. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, New Delhi, 2017.

4. Gupta A.S., "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 2004.

5. James G., "Advanced Modern Engineering Mathematics", Pearson Education, 4th Edition, Horlow, 2016.

6. Sankara Rao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.

7. Ramanaiah ,G.T, Tensor Analysis ", S.Viswanathan Pvt. Ltd, Chennai

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr.P.Sasikala	Professor	Mathematics /VMKVEC	sasikala@vmkvec.edu.in	
2.	Dr.L.Tamilselv i	Professor	Mathematics /AVIT	ltamilselvi@avit.ac.in	

		R	ESEA	RCH	MET	THOD	OLO	GY	Ca	ategor	у	L	Т	P	C	redit
				A	ND I	PR			F	C-HS		2	0	0		2
PREA	AMBI	LE														
To im	ipart k	nowle	edge a	nd ski	lls req	uired	for res	search	and I	PR:						
•	Prot	olem f	ormul	ation,	analy	sis and	d solut	ions.								
•	Tecl	nnical	paper	writin	ng / pr	resenta	ation v	vithou	t viola	ating p	orofes	siona	l ethio	cs		
•	Pate	nt dra	fting a	and fil	ing pa	tents.										
PREI	REQU	ISIT	E													
Nil																
COU	RSE (OBJE	CTIV	ES												
1	To u	ndersta	and abo	out for	mulate	resear	ch pro	blem								
2	To de	etermi	ne the	researc	h anal	ysis										
3	To ui	ndersta	and abo	out rese	earch e	ethics										
4	To u	nderst	and th	at toda	ay's w	vorld i	s cont	rolled	by Co	ompute	er, Inf	ormat	ion T	echn	olog	y,but
-	tomo	rrow v	vorld v	vill be	ruled t	oy idea	s, con	cept, ai	nd crea	ativity						
5	To ui	ndersta	and abo	out IPF	and f	iling p	atents	in R &	D.							
COU	RSE (OUTO	COMI	ES												
On th	e succ	essful	l comp	letion	of the	e cour	se, stu	dents	will b	e able	to					
CO1	Abili	ty to f	ormula	ite rese	arch p	roblen	1						U	nder	stan	d
CO2	Abili	ty to c	arry ou	it resea	arch an	alysis							U	nder	stan	d
CO3	Abili	ty to f	ollowı	esearc	h ethic	cs							U	nder	stan	d
	Abili	ty to	unders	tand tl	hat too	lay's v	world	is con	trolled	by C	omput	ter,				
CO4	Infor	matior	n Tech	nology	,but t	omorro	ow wo	rld wi	ll be	ruled l	by ide	as,	U	nder	stan	d
	conce	ept, an	d creat	ivity												
CO5	Abili	ty to u	nderst	and ab	out IPI	R and f	filing p	atents	in R &	żD.			U	nder	stan	d
MAP	PING	WIT	'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MMI	E SPI	ECH	FIC	
OUT	COM	ES														
COs	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PO	PSC) PS	50	PSO
003	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3
CO1	S	М	-	-	-	-	-	-	-	-	-	-	-		-	-

~~~	a					r	r					1	r		
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	-	-	-	-	-	-	S	-	-	-	-	-	-	-
CO4	S	-	-	-	S	-	-	-	-	-	-	-	-	-	-
CO5	S	-	-	-	-	М	-	-	-	-	-	S	-	-	-
	S- St	rong				M-M	edium	1				L-J	Low		
SYLI	ABU	S													
UNIT	-I :	RES	EAR	CH P	ROBI	LEM	AND	SCOP	PE FO	R SO	LUT	ION		6	
Mean	ing of	resear	rch pr	oblem	, Sou	rces of	f resea	rch pr	oblem	n, Crit	eria C	haract	eristic	s of a	good
resear	-					-		-		-		-			
proble					-				for r	researc	ch pro	oblem	, data	colle	ction,
analys	sis, int	erpret	ation,	Nece	ssary	instru	mentat	tions							
UNIT	-II :	FOR	RMAT	[										6	
Effective literature studies approaches, analysis, Plagiarism, Research ethics. Effective															
	technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee														
UNIT	ш.	DDO	CES	S A NI			<b>PME</b>	NT						6	
UNII	-111 :	PRU	CES	5 ANI	JDE	VELU	PNIE	IN I						0	
Natur	e of Ir	ntellec	tual P	ropert	y: Pat	ents, I	Design	is, Tra	de and	d Cop	yright	. Proc	ess of	Patent	ting
		-		-					-	-		-		ernatio	
				coope	ration	on In	tellect	ual Pr	operty	v. Proc	cedure	e for g	rants c	of pate	nts,
patent	ing ui	nder P	CT.												
UNIT	-IV	PAT	ENT	RIGI	ITS									6	
Patent	Rig	hts: S	cone	of P	atent	Righ	ts. Li	censir	ig and	d trar	nsfer	of te	chnolo	ogv. F	Patent
inform	-		-			-			-	a titai	10101	01 00		·8j· 1	utont
UNIT	-V :	NEV	V DE	VELC	PME	ENTS	IN IP	R						6	
New 1	Devel	opmer	ts in ]	IPR: A	dmin	istrati	on of	Patent	Syste	m. Ne	ew dev	velopr	nents i	in IPR	: IPR
		-							•			-		es, IPI	
IITs.	0	J	,	ſ							0				
TOTAL : 30 PERIODS															
											Т	<b>UTA</b>	L:30	PERI	ODS
REFI	EREN	CES:													
1. Stu	art Me	elville	and V	Vayne	Godo	lard, "	Resea	rch m	ethodo	ology:	an in	troduc	tion f	or scie	ence
& eng	ineeri	ng stu	dents	"Juta I	Publis	hers,1	996.								
Asimo	₩ ₩	ntrodu	ction	to Des	ion"	Prenti	ce Ha	11 196	52						
1 101110	, <u>1</u>	mouu			··ə·· ,		11u	, 170							

2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.

3. Mayall, "Industrial Design", McGraw Hill, 1992.

4. Niebel, "Product Design", McGraw Hill, 1974.

5. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

2010

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.Sangeetha SP	Professor / Civil	AVIT	sangeetha@avit.ac.in
2	Mr.Kathirvel C	Asso.Professor / Civil	VMKVEC	kathirvel@vmkvec.edu.in

# PROGRAM CORE COURSES

IATRIX COMPUTER METHOD OF STRUCTURAL ANALYSIS	Category	L	Т	Р	Credit
	CC	3	1	0	4

## PREAMBLE

To introduce matrix force and displacement methods for two and three dimensional structures including programming aspects

## PREREQUISITE

Nil

#### **COURSE OBJECTIVES**

1	To introduce fundamental characteristics of elements and system by flexibility and stiffness matrices	v evaluation of its
2	To impart knowledge about analysis of system through direct and e flexibility method	lement approach of
3	Analysis of structures by direct and element approach of stiffness m included	nethod is to be
4	Programming techniques for simple problems and use of standard p practiced	rogrammes to be
5	Awareness to the use of advanced techniques of matrix methods are	to be created
COU	RSE OUTCOMES	
On the	e successful completion of the course, students will be able to	
CO1	introduce fundamental characteristics of elements and system by evaluation of its flexibility and stiffness matrices	Understand
CO2	Analysis of system through direct and element approach of flexibility method	Apply
CO3	Analysis of structures by direct and element approach of stiffness method is to be included	Apply
CO4	Programming techniques for simple problems and use of standard programmes to be practiced	Apply
CO5	Advanced techniques of matrix methods are to be created	Apply
	PING WITH PROGRAMME OUTCOMES AND PROGRAMM COMES	E SPECIFIC

	РО	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	М	-	-	-	-	-	-	-	-	-	S	S	-	-
CO2	S	S	-	-	-	М	L	-	-	М	-	-	S	-	-

CO3	S	S	М	М	М	_	L	М	М	М	_	М	S	Н	М
				101			L		IVI						
CO4	S	S	М	-	M	-	-	Μ	-	М	-	Μ	М	М	М
CO5	S	М	-	-	-	М	L	-	-	-	L	-	М	-	-
	S- St	rong				M-M	edium	 				L-l	Low		
SYLI	LABU	S													
UNIT	'-I :	FUN	JDAN	IENT	AL C	ONCI	EPTS							12	2
Force	and	disp	lacem	ont m	1000ur	ement	- 6	onera	lised	or in	dener	dent	measu	ureme	nte -
		-									-		using		
			-					-		•			and f	•	
		-	ureme		-						5				- 5
UNIT	, II .	БТБ	XIBI	T TTX/	MET									1/	<u> </u>
UNII	-11:	FLE	AIDI		NIE I	HOD								12	2
Direct	t metl	nod ap	pplied	to be	ams a	ind fra	ames	- Rela	tionsł	nip be	tween	elem	ent an	nd sys	tem -
Strain	Ener	gy in	terms	of fle	xibilit	y coef	fficien	ts - A	pproa	ch to	equiva	alent j	oint lo	oad co	ncept
-	-			Proble	ems in	bean	ns, fra	mes, 1	russes	s - inc	luding	g effe	ct of t	emper	ature
and su	upport	t sinki	ng.												
UNIT	-III :	STI	FFNE	SS M	ETH	)D								12	2
	4 at 66			40 h a	f		and a		4	- <b>C</b> 4				- of	
								-					n tern ndensa		
													is of 3		
	-		and pi									j ~~		_	
UNIT	-IV	PRC	OGRA	MMI	NG									12	2
-		-			-				-				<i>I</i> atrix	-	
1	1 1	0		1									omple		
of a solve			-					ies - l	Jse of	GIS	IKUI	JL / S	IAA	D / SA	AP to
Solve	proble		1 11 11 15	es, Dea	anns ai	iu iiai	nes.								
UNIT	'-V :	ADV	VANC	ED T	OPIC	CS								12	2
Sub	struct	uring	techr	iaues	- F	orce	and o	lisplad	emen	ts -	band	widt	h - r	educti	ion -
													lysis t		
	-		nethod	-									5		1
											Т	OTA	L:60	PERI	ODS
REFI	7 <b>DF</b> N	ICEC.													
				rmac	" Str	ucture	1 Ano	lysis	Usin	o Cla	sical	and M	Matrix	· Moth	nds"
1.			ey, Foi					<i>i y</i> 5 <i>i</i> 5.	USIII	, cius	sicui	ana 1	-1 <i>11111</i>	111011	ous,
-			,,_ ,	~ .		/		~	~						

2. Rajasekaran.S, Sankarasubramanian.G, "Computational Structural Mechanics",

Prentice Hall of India Pvt Ltd, New Delhi - 110 001, First Edition, 2001.

- 3. William McGuire, Richard. H, Gallagher and Ronald. D, Ziemian "Matrix Structural Analysis, With MASTAN2", John Wiley, Second Edition, 2000.
- 4. Beaufit F.W et al. "Computer Methods of Structural Analysis", Prentice Hall, 1970. John L.Meek, "Matrix Structural Analysis", Mc Graw Hill Book Company, 1971.
- 5. Bathe K.J, and Wilson. E.L, "Numerical Methods in Finite Element Analysis", Prentice Hall, Engle Wood Cliffs, New Jersey, USA, 1976.
- 6. Rubinstien. M.F, "Matrix Computer Analysis of Structures", Prentice Hall, 1966.

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in
2.	Mrs,Abirami R	AP/Civil	AVIT	abirami.civil@avit.ac.in

	THEORY OF ELASTICITY AND PLASTICITY	Category	L	Т	P	Credit
	PLASTICITY	CC	3	1	0	4
To de	AMBLE evelop the ability to use the principles of theory of roduce theoretical fundamentals of theory of plase	•	engine	ering	probl	ems and
<b>PREI</b> Nil	REQUISITE					
COU	RSE OBJECTIVES					
1	To determine the fundamental equations of elastic	ity.				
2	To understand the application of plane stress and p	olane strain				
3	To solve torsion problems in circular and non-c	ircular cross-	section	s		
4	To analyze beams resting on elastic foundations	8				
5	To solve analytically the simple boundary value.					
COU	RSE OUTCOMES					
On th	e successful completion of the course, students w					
CO1	Derive and write the fundamental equations of elas linear behavior of element and develop constitutive material behavior	•	-	U	nders	stand
CO2	Demonstrate the application of plane stress and pla situation in both cartesian and polar coordinate syste		given		App	oly
CO3	Solve torsion problems in circular and non-circular	cross-sections			App	oly
CO4	Analyse beams resting on elastic foundations				App	oly
CO5	Solve analytically the simple boundary value proplastic and strain hardening properties	oblems with e	lasto-		App	oly
	PING WITH PROGRAMME OUTCOMES A COMES	AND PROGR	AMM	E SPI	ECIH	<b>TIC</b>

CO	PO	PO	РО	PO	РО	РО	PSO	PSO	PSO						
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	М	-	-	-	-	-	-	-	-	-	S	S	-	-
CO2	S	S	-	-	-	М	L	-	-	М	-	-	S	-	-
CO3	S	S	М	М	М	-	L	М	М	М	-	М	S	Н	М

CO4	S	S	М	-	Μ	-	-	Μ	-	M	-	М	М	М	М
CO5	S	М	-	-	-	M	L	-	-	-	L	-	М	-	-
	S- St	rong				M-M	edium					L-]	Low		
SYLI	LABU	JS													
UNIT	`-I :	ELA	STIC	ITY										12	2
Analy	vsis of	stress	and s	train,	Equili	ibrium	n Equa	tions	- Com	patibi	lity E	quatio	ns - St	tress S	train
Relati	ionshi	p. Ger	neraliz	ed Ho	oke's	law-C	Constit	tutive	Equat	ions					
UNIT	'-II :	2D S	STRE	SS ST	RAI	N PRO	)BLE	MS						12	2
Plane	stress	s and p	lane s	train ·	- Simp	ole two	o dime	ension	al pro	blems	in Ca	rtesia	n and l	Polar	
Coord	linate	S													
UNIT	`-III :	TOI	RSIO	N OF	NON	-CIR(	CULA	R SE	CTIO	N				12	2
St Vo	nont'a		nach	Drand	tl's ar	nraaa	h M	ambre	no on	alogy	Tor	tion of	f Thin	Walle	d
					-	-							torsio		u
-		rence				pprom		·p•n ·	••• ••	•••••	, acjee		001510		
UNIT	W	BEA	MSO	)N FI	AST	IC FO	DUND		NS					12	2
01111	-1 v	DEA												14	2
								-						alizati	
														– Rigi	
flex1b	le –U	niforn	1 Cros	s Sect	10n –	Point	load a	na UI	)L – S	olutic	on by I	Finite	Differ	ences.	
UNIT	`-V :	PLA	STIC	ITY										12	2
Physi	cal A	ssump	tions	– Yie	ld Cri	teria -	– Fail	ure Tl	neorie	s –Th	ick C	ylinde	r – Pl	astic S	Stress
Strain	Relat	ionshi	р - В	Bendin	ig and	d Tor	sion i	n Ela	sto-Pl	astic	Mater	rials -	Strain	hard	ening
Mater	rials														
											Т	OTA	L : 60	PERI	ODS
REFI	EREN	ICES:													
				al and	l Saul	.K.Fe	nster,	"Adv	anced	Stren	gth a	nd Ap	plied	Elasti	city,"
	Fou	rth Ed	ition,	Prenti	ce Ha	ll Prot	fessior	nal tec	hnica	l Refe	rence,	New	Jersey	, 2003	3.
8.			-		-	of Pla	sticity	/", T	hird	Editio	n, E	lsevie	r But	terwoi	th –
~		nmanr					•.	1.51				<b>F</b>			
					•		•		•				i 2017		
				-	-		•		-				ork, 19 ion M	077. IcGrav	v <b>H</b> ill
11		ok Co.					. 1100	<i>J</i> <b>y U</b>	Liast	, icity	imit	. Luiti		Ulav	, 11111
	200				/	-									

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in
2.	Mrs,Abirami R	AP/Civil	AVIT	abirami.civil@avit.ac.in

	STRUCTURAL DYNAMICS AND	Category	L	Т	P	Credit
	EARTHQUAKE ENGINEERING	CC	3	1	0	4
To ma	<b>AMBLE</b> ake the students understand the basics of structur o develop the ability to design a earthquake resist	-	nd eart	hquak	eeng	ineering
<b>PREI</b> Nil	REQUISITE					
COU	RSE OBJECTIVES					
1	To analysis of system/structures with single deg method of damping the systems.	gree of freedor	n and	can ex	plair	1 the
2	To dynamic analysis of system/structures with and forced vibration	Multi degrees	of free	dom u	ındeı	free
3	To derive a mathematical model of continuous syste and forced vibration	em and do a dyr	namic a	nalysis	s und	erfree
4	To study the causes and effects of earthquake					
5	To design masonry and RC structures to the ear	thquake force	s.			
COU	RSE OUTCOMES					
On th	e successful completion of the course, students w	vill be able to				
CO1	Do vibration analysis of system/structures with freedom and canexplain the method of damping the	<b>e e</b>	e of	U	nder	stand
CO2	Do dynamic analysis of system/structures with freedom under freeand forced vibration	Multi degree	es of		App	oly

CO3

CO4

CO5

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

Apply

Apply

Apply

Derive a mathematical model of continuous system and do a dynamic

Design masonry and RC structures to the earthquake forces as per the

analysis underfree and forced vibration

Explain the causes and effect of earthquake

recommendations of IS codes of practice

COs	PO	РО	PO	РО	РО	РО	РО	РО	РО	PO	PO	PO	PSO	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	S	S	Μ	Μ	-	-	-	-	-	S	S	S	S

CO2	S	S	S	S	М	М	-	-	-	-	-	S	S	S	S
CO3	S	S	S	S	М	М	-	-	-	-	-	S	S	S	S
CO4	М	S	М	М	L	М	-	-	-	-	-	S	S	S	S
CO5	S	S	S	S	М	М	-	-	-	-	-	S	S	S	S
	S- St	rong				M-M	edium	 				L-I	Low		
SYLI	LABU	S													
UNIT	'-I :	PRI	NCIP	LES (	OF VI	BRA'	TION	ANA	LYSI	[S				12	2
Mathe	ematic	al mo	dels d	of sing	gle de	gree	of free	edom	syster	ms - ]	Free a	nd fo	rced v	vibrati	on of
					-	-			-					f dam	
Evalu	ation	ofdam	iping,	Trans	missit	oility,	vibrati	ion co	ntrol,	Tuneo	l mass	s damp	ber.		
UNIT	'-II :	DYN	IAMI	C RE	SPON	ISE O	F MU	JLTI-	DEG	REE	OF			12	2
		FRE	EDO	M SY	STEN	AS									
Mathe	Aathematical models of two degree of freedom systems and multi degree of freedom														
	systems, free and forced vibrations of two degree and multi degree of freedom systems,														
	normal modes of vibration, applications. orthogonality of normal modes, free and forced														
vibrat	vibrations of multi degree offreedom systems, Mode superposition technique, Applications.														
UNIT	'-III :	DYN	NAMI	C RE	SPON	NSE O	F CO	NTI	NUOU	JS SY	STEN	4S		12	2
Mathe	ematic	al mo	dels o	f cont	inuou	s syste	ems, F	ree an	d forc	ed vit	oration	of co	ntinu	ous	
														ormula	tion
-				-		-	-		F syste	ems, N	Ionlin	ear M	DOF	system	ıs,
and st	ep-by	-stepn	umeri	cal int	egrati	on alg	gorithr	ns.							
UNIT	-IV	EAF	RTHQ	UAK	E GR	OUN	D MC	OTIO	N ANI	D ITS	EFF	ECTS		12	2
		ON	STRU	UCTU	RES										
Engin	eering	g Sei	smolo	gy S	eismo	tecton	ics a	nd S	eismi	c Zo	ning	of In	idia,	Earth	juake
-	-	-									-			ke M	-
Estim	ation	ofEar	thqua	ke Pa	ramet	ers, N	Microz	zonati	on. E	ffect	of Ea	rthqua	ake o	n Dif	ferent
Types	s of S	Structu	ires -]	Lesson	ns Le	arnt F	From	Past 1	Earthq	luakes	-Eva	luatio	n of	Eartho	quake
Force	s as p	er cod	al pro	vision	s- Res	ponse	Spect	tra, Do	esign S	Spectr	a.				
UNIT	-V :	EAF	Forces as per codal provisions- Response Spectra, Design Spectra.         UNIT-V:       EARTHQUAKE RESISTANT DESIGN OF MASONRY AND       12												
														14	
			STRU	-										1	-
Struct	ural S	RCS	STRU	CTU	RES						- Plar			iderati	
		RC S System	<b>STRU</b> ns - T	YCTU	RES of Bu	ilding	s - Ca	auses	of da	mage		ning	Consi		ons –
effect Eartho	ofma quake	RC S System terial Resist	STRU ns - T of cor ant D	Ypes struct	RES of Bu ion or - Gu	ilding n perf	s - Ca orman es foi	auses ause of r Eart	of dan struct hquak	mage cures - ce Res	Philo sistant	nning osophy Desi	Consider and a gn -	ideratio Princij Eartho	ons – ple of quake
effect Eartho Resist	ofma quake tant D	RC S System terial Resist Design	STRU ns - T of cor ant D ofMa	ypes struct esign sonry	RES of Bu ion of - Gu Build	ilding n perf idelin lings a	s - Ca orman es for and R	auses ice of r Eart .C.C.	of dan struct hquak Buildi	mage tures - te Res ings. 1	Philo sistant Desigi	nning psophy Desi n cons	Consideration	ideratio Princij	ons – ole of quake Rigid

detailing

#### **REFERENCES:**

- 1. Anil K.Chopra, Dynamics of Structures, Fifth edition, Pearson Education, 2017.
- 2. Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 1986, IOS Press, 2006.
- 3. Mario Paz, Structural Dynamics -Theory and Computation, Kluwer Academic Publishers, Fifth Edition, 2006.
- 4. Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley &Sons, 2011.
- 5. Bruce A Bolt, "Earthquakes" W H Freeman and Company, New York, 2003.
- 6. Brebbia C. A., "Earthquake Resistant Engineering Structures VIII", WIT Press, 2011
- 7. Mohiuddin Ali Khan "Earthquake-Resistant Structures: Design, Build and Retrofit", ElsevierScience & Technology, 2012
- 8. Pankaj Agarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", Prentice Hall of India, 2009.
- 9. Paulay.T and Priestley M.J.N., "Seismic Design of Reinforced Concrete and MasonryBuildings", John Wiley and Sons, 1992.
- 10. Duggal S K, "Earthquake Resistant Design of Structures", Oxford University Press, 2007.

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.P.Sankar	AP/Civil	VMKVEC	sankarp@vmkvec.edu.in
2.	Mrs.Subathra P	AP/Civil	AVIT	subathra@avit.ac.in

		ADVANCED STEEL Category L T P Cree STRUCTURES											redit			
				STR	UCT	URES	)			CC		3	1	0		4
PREA To stu			viour	of me	mbers	and c	connec	ctions,	analy	sis and	d desi	gn of	Indu	strial	[	
buildi	ngs ar	nd to s	tudy t	he des	ign of	f with	cold f	ormed	steel	and p	lastic	analy	sis of	struc	ctur	es
<b>PREI</b> Nil	REQU	ISIT	E													
COU	RSE (	OBJE	CTIV	ES												
1	To de	esign tl	he stee	l mem	bers.											
2		To study about types of steel connections such as welded, boltedand moment resisting connections														
3		To Analyze and design the industrial structures such as trusses, portal framessubjected to eismic forces														
4		To Study the effect of axial force and shear force on steel structures and analyze the continuous eams, frames using plastic theory														
5	To de	etermir	ne the	behavi	or and	desigr	n of coi	mpress	ion an	d flexu	iral m	ember	S			
COU	RSE (	OUTC	COME	ES												
On th	e succ	essful	comp	letion	of the	e cour	se, stu	dents	will b	e able	to					
CO1	-	-	steel cted to				purlins	s, gabl	e win	d girde	ers, ba	ase	Ur	ders	stan	d
CO2							pes of connec		conne	ections	such	as		Арр	ly	
CO3			nd dest ected to				structu	res su	ch as	trusse	s, poi	tal		App	ly	
CO4	-						shear f using				ures a	ind		Арр	ly	
CO5	Evalı	ate the	e beha	vior an	d desi	gn of c	compre	ssion a	nd fle	xural r	nembe	ers		App	ly	
MAP OUT	PING COM		'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MMF	E SPE	CIF	TIC	
COs	РО 1	РО 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS 2		PSO 3

CO1	S	S	S	-	-	-	-	-	-	-	-	S	S	-	-
CO2	S	М	М	-	М	М	-	-	-	-	-	S	S	-	-
CO3	S	S	S	-	-	-	-	-	-	-	-	М	S	-	-
CO4	S	S	М	-	-	-	-	-	-	-	-	SM	S	-	-
CO5	S	S	S	-	-	-	-	-	-	-	-		S	-	-
	S- St	rong				M-M	edium	 				L-I	JOW		
SYLI	SYLLABUS UNIT-I : DESIGN OF MEMBERS 12														
UNIT	'-I :	DES	GIGN	OF M	EMB	ERS								12	2
Desig	n of 1	nembe	ers su	bjecte	d to c	ombir	ned fo	rces -	- Desi	gn of	Purli	ns, Lo	uver 1	rails, (	Gable
				d giro	der –	Desig	gn of	simp	le bas	ses, G	usset	ed bas	ses an	nd Mo	oment
Resist	ing B	asePla	ates.												
UNIT	-II :	DES	GIGN	OF C	ONNI	ECTI	ONS							12	2
UNIT Struct ofdiff nonsw	-III : tural C erent t vayfra	ANA Config types o mes –	uration of trus Crane	IS AN ns - Fu sses – e Gant	ID DE unctio Analy try Gir	nal an sis an ders -	N OF I Id Serv d desig	INDU viceab gn of i smic d	STRI ility R indust esign	AL B Require rial bu of stee	UILD ement ilding	ned Co PINGS s- Ana gs – Sv ldings.	llysis a	12 and de nd	esign
UNIT	-IV	PLA	STIC	C ANA	LYSI	S OF	STR	UCTU	JRES					12	2
frame	s, Eff remer	fect of nt–Mo	f axia ment	l forc resist	e - E ing c	affect	of sh ctions.	ear fo Desi	orce o gn of	n pla	stic n	isms, A nomen Cornei	t, Co	nnecti	ons -
UNIT	-V :	DES	IGN	OF L	IGHT	GAU	JGE S	TEEI	L STR	RUCT	URES	5		12	2
width	forloa ign of	ad and fwebs	l defle of be	ction ams –	detern · Flexu	ninatio ural m	on – B nember	ehavi rs – L	or of U ateral	Unstiff buckl	fened ing o	n Elen and St f bean	iffene	d Eler	nents
	TOTAL : 60 PERIODS														
REFI	REFERENCES:														
1.	Lyn	n S. B	eedle,	Plast	ic Des	ign of	Steel	Fram	es, Jol	nn Wil	ley an	d Sons	8, 199	0.	

- 2. Narayanan.R.et.al., Teaching Resource on Structural steel Design, INSDAG, Ministry ofSteel Publishing, 2000.
- 3. Subramanian.N, Design of Steel Structures, Oxford University Press, 2016.
- Wie Wen Yu, Design of Cold Formed Steel Structures, McGraw Hill Book Company, 1996
- 5. S.K. Duggal ,Limit State Design of Steel Structures, McGraw Hill Book Company, 2017

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Ms.R.Priyadharshini	AP/Civil	VMKVEC	priyadharshini@vmkvec.edu.in
2.	Mrs. Srija J	AP/Civil	AVIT	srija.civil@avit.ac.in

			ADV		ED C		RETE	C	Ca	ntegor	y	L	Т	Р	C	redit
				011			,			CC		3	1	0		4
PREA	AMBI	E														
To ma	ake the	e stude	ents be	e fami	liar w	ith bel	havior	of RC	CC bea	ams ar	nd col	umns	and t	o de	sign	1
specia	al struc	ctural	memb	ers wi	ith pro	oper de	etailin	g								
	REQU	JISIT	E													
Nil																
COU	RSE (	OBJE	CTIV	ES												
1	To st	To study about structural behavior of flexural members and columns														
2	To de	To design compression members and construct interaction diagrams														
3	To de	To design the special elements like corbels, deep beams and grid floors														
4	To de	To design flat slab and spandrel beams														
5	To Pi ducti		he mo	ment c	urvatu	re beh	avior a	nd des	ign an	d detai	l conc	rete el	emen	tsbas	sed o	on
COU	RSE (	OUTC	COME	ES												
On th	e succ	essful	comp	letion	of the	e cours	se, stu	dents	will b	e able	to					
CO1	Expla	ain stru	ıctural	behav	ior of 1	flexura	ıl mem	bers ar	nd colu	umns			Ur	ders	stan	d
CO2	Desig	gn com	pression	on mei	nbers	and co	nstruct	intera	ction o	liagran	ns			App	oly	
CO3	Desig	gn the	special	eleme	ents lik	e corb	els, de	ep bea	ms and	l grid f	loors			App	oly	
CO4	Desig	gn flat	slab ar	nd spar	ndrel b	eams								Арр	oly	
CO5	Predict the moment curvature behavior and design and detail concrete elementsbased on ductility Apply															
			H PR	OGR	AMM	ΕΟ	JTCO	MES	AND	PRO	GRA	MME	C SPE	CIF	FIC	
OUT	COM	ES														
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO		50	PSO
005	1     2     3     4     5     6     7     8     9     10     11     12     1     2     3															

S

-

-

-

S

S

S

S

S

-

-

-

CO1

CO2

CO3

S

S

S

-

S

S

М

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

CO4	S	S	-	-	-	-	-	-	-	-	-	-	S	-	S
CO5	S	-	М	-	-	-	-	-	-	-	-	-	S	S	-
	S- St	rong				M-M	edium	l				L-l	Low		
SYLL	ABU	S													
UNIT	·I :	BEE	IAVIO	OUR .	AND	DESI	GN O	F R.C	C. BEA	AMS				12	2
Proper	ties a	and be	ehavio	our of	conci	rete ai	nd ste	el – I	Behavi	iour a	nd de	sign c	of R.C	. bear	ns in
flexure		ar and	torsic	on - n	nodes	of fail	lure -	calcul	ations	s of de	eflection	ons ar	nd crae	ck wic	lth as
per IS	456.														
UNIT	·II :	BEH	IAVI	OUR .	AND	DESI	GN O	F R.C	C. CO	LUM	NS			12	2
Behav	iour	of sho	ort and	d long	ong columns - behaviour of short column under axial load with										
uniaxi				-	-										
colum	ns.														
UNIT	·III :	DES	IGN	OF SI	PECL	AL R.	C. EI	EME	NTS					12	2
				OF SPECIAL R.C. ELEMENTS 12											
-			valls - design of corbels - strut and tie method - design of simply supported deep beams - analysis and design of grid floors.											d	
andcol	ninuo	ous de	ep bea	ims -	anarys	and and	desig	n or g	ria iic	oors.					
UNIT	IV	FLA	T SL	ABS	AND	YIEL	D LIN	IE BA	SED	DESI	GN			12	2
Design	n of f	lat sla	bs acc	ordin	g to I	S metl	nod –	Checl	c for s	hear -	Desig	gn of :	spand	rel bea	ums –
Yieldl					-						-	-	-		
UNIT	·V :	INE	LAST	TIC B	EHAV	VIOU	R OF	CON	CRE	TE SI	RUC	TURI	ES	12	2
Inelast	ic be	haviou	ur of c	oncre	te bea	ms - N	Iomer	nt-cur	vature	curve	s - mo	oment	redist	ributio	on -
Conce	nt of	Duct	ilitv –	- Deta	iling	for di	uctility	v - D	esign	of be	ams, a	colum	ns for	· ducti	litv -
Design	-		•		-		<i></i>	2	001811	01 00			115 101	aaeti	iii)
											Т	OTA	L:60	PERI	ODS
REFE	REN	ICES.													
				"Des	ign of	f Rein	forced	l Con	crete S	Struct	ıres"	Prent	ice Ha	all of I	India
	2012			2.00	-8 01										
2.			aman, n", Tai					rete S	tructu	ral El	ement	s: Be	haviou	ur Ana	alysis
3.		-						"Reir	force	d Con	crete ]	Desig	n'. Th	ird Ed	ition.
			raw H									-	- ,		,
4.	Var 200	-	P.C,	"Adv	ancec	l Reir	nforce	d Cor	ncrete	Desig	gn", F	Prentic	e Hal	ll of 1	India,
5.			., Rei	nforce	ed Co	ncrete	e Desi	gn", 7	Fata N	AcGra	w Hi	ll pub	lishin	g com	ipany

	Ltd.2014			
S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.Divahar R	Asso. Professor/Civil	AVIT	divahar.civil@avit.ac.in
2.	Mr.K.Harish	AP/Civil	VMKVEC	harishk@vmkvec.edu.in

FINITE ELEMENT ANALYSIS IN	Category	L	Т	Р	Credit
STRUCTURAL ENGINEERING			-	-	
	CC	3	1	0	4

## PREAMBLE

To make the students understand the basics of the Finite Element Technique, and to coverthe analysis methodologies for 1-D, 2-D and 3-D Structural Engineering problems.

# PREREQUISITE

Nil

# **COURSE OBJECTIVES**

To determine the finite element problem using basic mathematical principl	es										
To study about the various types of elements and Select the appropriate ele	ement formodeling										
To Analyze a frame using truss element											
To Formulate and analyze two and three dimensional solid finite element p	oroblems										
To Analyze a shells, thick and thin plate and explain dynamic analysis in FEM											
RSE OUTCOMES											
e successful completion of the course, students will be able to											
Formulate a finite element problem using basic mathematical principles	Understand										
Explain the various types of elements and Select the appropriate element formodeling	Apply										
Analyze a frame using truss element	Apply										
Formulate and analyze two and three dimensional solid finite element problems	Apply										
Analyze a shells, thick and thin plate and explain dynamic analysis in FEM	Apply										
PING WITH PROGRAMME OUTCOMES AND PROGRAMMI	E SPECIFIC										
	To study about the various types of elements and Select the appropriate ele To Analyze a frame using truss element To Formulate and analyze two and three dimensional solid finite element p To Analyze a shells, thick and thin plate and explain dynamic analysis in F <b>RSE OUTCOMES</b> e successful completion of the course, students will be able to Formulate a finite element problem using basic mathematical principles Explain the various types of elements and Select the appropriate element formodeling Analyze a frame using truss element Formulate and analyze two and three dimensional solid finite element problems Analyze a shells, thick and thin plate and explain dynamic analysis in FEM										

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPEC OUTCOMES

COs	РО	PO	РО	PO	РО	PSO	PSO	PSO							
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Μ	S	S	S	S	Μ	L	-	-	L	-	Μ	Μ	L	Μ
CO2	Μ	S	S	М	S	Μ	L	-	-	L	-	Μ	S	L	Μ
CO3	S	S	S	S	S	Μ	L	-	-	L	-	Μ	Μ	S	Μ

CO4	S	S	S	М	S	М	L	-	-	L	-	M	S	S	М
CO5	М	S	S	М	S	М	L	-	-	L	-	M	М	S	М
	S- St	rong				M-M	edium	l	I			L-]	Low		
SYLL	ABU	S													
UNIT	-I :	INT	ROD	UCTI	ON									12	2
Bound	lary v	value	proble	ems -	Conc	ept of	f piece	ewise	appro	ximat	ion -	Varia	tional	Meth	ods -
-	-						-							n, Gale	
	-									-				it metl	
-							-			-	-			m pot	
		-				-		ary po	otentia	l ene	rgy -	Helli	nger -	- Reis	sner's
princi	pie - a	steps 1	n Fini	le Ele	ment	Analy	\$15.								
UNIT	-II :	BAF	R ANI	) TRI	ANG	ULAF	R ELF	EMEN	T PR	OPE	RTIE	S (2D)	)	12	2
Displa	aceme	nt fie	ld - c	ompat	tibility	and	conve	ergenc	e crit	eria -	Bar e	elemer	nts -	Analys	sis of
Displacement field - compatibility and convergence criteria - Bar elements - Analysis of framed structures - 2D and 3D truss and Beam elements - Analysis of plane strain / plane															
stress conditions - CST, LST and QST elements.															
UNIT	-III :	REC	CTAN	GUL	AR E	LEMI	ENT I	PROP	ERTI	ES (2	<b>(D)</b>			12	2
Lagra	ngian	. serer	dipity	and H	Iermi	tian fa	milv e	elemer	nts - R	ectan	gular a	and au	adrila	ateral	
•	U						•					-		ntegrat	ion
techni	ques	- Isopa	aramet	tric ele	ement	s - axi	symm	etric e	elemer	nts.				U	
UNIT	-IV	ELE	CMEN	T PR	OPE	RTIE	S (3D)	)						12	2
3D br	ick el	ement	s - eig	ht and	l twen	ty noc	lded e	lemen	ts - pl	ate be	nding	eleme	ents -	thin pl	ates -
Mindl	in's p	late th	eory -	thick	plate	eleme	nts								
UNIT	-V :	APP	LICA	TION	OT V	FIEL	D PR	OBLI	EM					12	2
Appli	cation	of fin	ite ele	ements	anal	ysis - '	Torsio	n. <b>PR</b>	ACTI	[CAL	S (30	hours			
					-									-1	1
					•			-		-				el ana esign-l	•
eleme	-	-		AD a	nu sz		iu uyi	lanne	anary	/ 515-IX	CC a	iiu si	eer u	esign-i	rinte
cicilie	int mo	aonne													
											Т	OTA	L:60	PERI	ODS
REFE	EREN	CES:													
1	Kric	hnom	oorthe	CS	"Fin	ito El	amant	Anal	lycie	Theo	m, ar	d Dra	aram	ming",	Toto
1.			-				y limit		-		-	u 170	grum	, , ,	1 ata
	11100		inn hr	.0113111	15 00	mpun.	,	, 1 W		, 20					

2. Zienkiewicz. O. C, Taylor. R. L, Zhu. J.Z, "The Finite Element Method: Its Basis and Fundamentals: Its Basis and Fundamentals", Butterworth-Heinemann, Sixth Edition,

2005.

- 3. Krishnamoorthy. C. S, Rajeev. S, Arunachalam Rajaraman., " Computer Aided Design: Software And Analytical Tools", U.K, 2005.
- 4. Rajesekaran .S, "Finite Element Methods in Engineering Design", Wheeler Publishers, Allahabad, 1999.
- 5. Chandrapatla. R.T, and Belagundu, A.D., "Introduction to Finite Elements in Engineering", Second Edition, Prentice Hall of India, 1997
- 6. Bathe. K.J, "Finite Element Procedures in Engineering Analysis", PHI, New Delhi, 1990.

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.P.Sankar	AP/Civil	VMKVEC	sankarp@vmkvec.edu.in
2.	Ms. Ispara Xavier S	AP/Civil	AVIT	isparaxavier.civil@avit.ac.in

	ADVANCED DESIGN OF	Category	L	Т	P	Credit								
	FOUNDATION STRUCTURES	CC	3	1	0	4								
PREA	AMBLE					I								
To de	sign various types of foundations to fulfill the	required criteria												
PREI	EQUISITE													
Nil														
COU	RSE OBJECTIVES													
1	To design shallow and deep foundations for varie	us types of struct	ures											
2	To design piles and pile caps													
3	To design well foundation for bridge piers and re	lated structures												
4	To gain knowledge on design and construction of	machine foundat	ion											

5	To de	esign f	oundat	tions fo	or bridg	ges, to	wers a	nd chi	mneys						
COU	RSE (	OUT	COMI	ES											
On th	e succ	essful	l comp	letion	of the	e cour	se, stu	dents	will b	e able	to				
CO1			llow ar										A	Apply	
CO2	Desi	gn pile	es and p	oile cap	ps								A	Apply	
CO3	Desi	gn wel	l founc	lation	for bric	lge pie	ers and	relate	d struc	tures			A	Apply	
CO4	Gain	know	ledge o	on desi	gn and	constr	ruction	of ma	chine	founda	tion		Unc	lerstar	nd
CO5	Desi	Design foundations for bridges, towers and chimneys													
MAP	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC														
OUT	СОМ	ES													
	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
COs	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													2	3
CO1	S M S S													М	S
CO2	S	М	S	-	S							S	М	S	
CO3	S	М	S	-	-	-	-	-	-	-	-	-	S	М	S
CO4	S	М	S	-	-	-	-	-	-	-	-	-	S	М	S
CO5	S	L	S	-	-	-	-	-	-	-	-	-	S	М	S
	S-St	rong	1			M-M	edium	l			1	L-]	Low		
SYLI	LABU	S													
UNIT	-I :	SHA	LLO	W FC	DUND	ATIC	DNS							12	2
-bear	ing ca	apacity		settler	nent e	estima	tes – s	structi	ural de	esign			pth of strip,		
UNIT	-II :	PIL	E FO	UNDA	TIO	NS								12	2
Types	s of Pi	le fou	ndatio	ns and	l their	appli	cation	s - Lo	ad Ca	rrying	capac	ity - p	oile loa	ad test	-
Settle pilefo			oup ac	tion -	pile c	cap - s	structu	iral de	esign o	of pile	es and	pile o	caps -	undre	amed
UNIT	-III :	WE	LL F(	DUNE	<b>DATIO</b>	ON								1	2
Types failur						-				-	-		ruction	of w	ells -

UNIT-IV	MACHINE FOUNDATIONS	12

Types - General requirements and design criteria - General analysis of machine foundationssoilsystem - Stiffness and damping parameters - Tests for design parameters - design of foundationfor reciprocating engines, impact type machines and rotary type machines.

#### UNIT-V : SPECIAL FOUNDATIONS

12

Foundations for towers, Chimneys and Silos - design of anchors - reinforced earth retaining walls -Advantages of earth retaining walls - Behaviour and field applications of earth retaining walls

#### **TOTAL : 60 PERIODS**

#### **REFERENCES:**

- 1. Tomlinson, M.J. and Boorman. R., Foundation Design and Construction, ELBS Longman, Seventh Edition, 2001.
- 2. Nayak, N.V., Foundation Design manual for Practicing Engineers, Dhanpat Rai and Sons,2012.
- 3. Brain J. Bell and M.J. Smith, Reinforced Concrete Foundations, George Godwin Ltd., 1981.
- 4. Braja M. Das, Principles of Foundations Engineering, Eighth Edition, Thomson Asia (P)Ltd., 2015.
- 5. Bowels J.E., Foundation Analysis and Design, Fifth Edition, McGraw-Hill International BookCo., 2017.

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID				
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in				
2.	Mr.Sanjaykumar R	AP/Civil	AVIT	sanjay.civil@avit.ac.in				

CONSTRUCTION ENGINEERING	Category	L	Т	Р	Credit
AND TECHNIQUES					
LABORATORY	CC	0	0	4	2

## PREAMBLE

To provide a thorough knowledge of material selection through the material testing basedon specification.

# PREREQUISITE

Nil

#### **COURSE OBJECTIVES**

1	To experimental study about the mix proportion using IS and ACI code p	rovisions.
2	To prepare the self-compacting concrete and study the flow characteristic	s.
3	To Identify the proper portion of mineral and chemical admixture for con-	crete.
4	To experimental study abouttest the concrete in a non-destructive manner hammer.	using rebound
5	To experimental study about the permeability characteristics of concrete	
COU	RSE OUTCOMES	
On th	e successful completion of the course, students will be able to	
CO1	Do the mix proportion using IS and ACI code provisions.	Understand
CO2	Prepare the self-compacting concrete and study the flow characteristics.	Apply
CO3	Identify the proper portion of mineral and chemical admixture for concrete.	Apply
CO4	Test the concrete in a non-destructive manner using rebound hammer.	Apply
CO5	Know the permeability characteristics of concrete	Apply

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COa	PO	PO	PO	PO	РО	РО	РО	PO	РО	PO	РО	РО	PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	-	S	-	М	М	-	S	L	-	L	S	S	-	М
CO2	S	-	-	-	I	-	L	-	L	-	L	-	S	-	М
CO3	S	М	-	-	-	М	-	S	L	М	L	-	S	-	-
CO4	S	-	-	S	-	-	-	-	L	-	L	-	-	-	-

CO5	-	-	-	-	-	-	-	-	L	-	L	-	-	L	-
	S- St	rong				M-M	edium	1				L-l	Low		
	LABU														
LIST	OF F	EXPE	RIME	NTS											
1			desigi crete.	n of co	oncret	e as po	er IS, .	ACI &	z BS n	nethod	ls for I	high p	berforr	nance	
2	2	_							ures in gth an				and h	ardene	d
3	3	Flow	v Char	acteri	stics o	of Self	Com	pacting	g conc	rete.					
4	ļ	Test	on Cu	ıbe an	d Cyl	inder s	strengt	th on o	concre	te.					
5	5	Pern	neabili	ty test	ts on l	narden	ied co	ncrete	•						
6	5	NDT	Γ – Ult	rason	ic flav	v dete	ctor								
7	7	NDT	Γ on ha	ardene	ed con	crete -	-Rebo	ound h	amme	r.					
8	3	NDT	Γ on ha	ardene	ed con	crete -	– UPV	and a	Rebou	nd ha	mmer.				
9	)	Ultra	asonic	interf	erome	eter –	ultraso	onic v	elocity	in lic	luids				
		1									Т	OTA	L:30	PER	OD
REFI	EREN	ICES:	:												
1				a. Dv	namic	s of S	tructu	res. Fi	fth edi	tion	Pearso	on Edi	icatio	n. 201′	7.

- 1. 1. Anil K.Chopra, Dynamics of Structures, Fifth edition, Pearson Education, 2017.
- Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 1986, IOS Press, 2006.
- 3. Mario Paz, Structural Dynamics -Theory and Computation, Kluwer Academic Publishers, Fifth Edition, 2006.
- 4. Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley &Sons, 2011.
- 5. Bruce A Bolt, "Earthquakes" W H Freeman and Company, New York, 2003.
- 6. Brebbia C. A., "Earthquake Resistant Engineering Structures VIII", WIT Press, 2011
- 7. Mohiuddin Ali Khan "Earthquake-Resistant Structures: Design, Build and Retrofit", ElsevierScience & Technology, 2012
- 8. Pankaj Agarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", Prentice Hall of India, 2009.
- 9. Paulay.T and Priestley M.J.N., "Seismic Design of Reinforced Concrete and MasonryBuildings", John Wiley and Sons, 1992.
- 10. Duggal S K, "Earthquake Resistant Design of Structures", Oxford University Press, 2007.

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.Sangeetha SP	Professor/Civil	AVIT	sangeetha@avit.ac.in
2.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in

		ST	RIIC	<b>FI IR A</b>		ISIGN	I STU	DIO	Ca	ategor	'y	L	Т	Р	C	redit
			KUU:							CC		0	0	4		2
To de	-	struct		•			vare too			e like i	ETAF	BS, ST	<u>C</u> AAI	D, S7	ΓR <i>A</i>	AP
etc. ai	nd pre	sent it	in the	e form	of co	mplete	e detai	l draw	ing							
<b>PREI</b> Nil	REQU	JISIT	£													
COU	RSE (	OBJE	CTIV	ES												
1	To P	lan a la	ayout c	of a stru	ucture											
2	To de	To determine the loads using IS codes and various computational tools														
3		To Analyze the structure for various loads and load combination according to therelevant IS codes														
4		To design and detail structures using computer software/tools and check thecorrectness using manual approximate methods														
5	То рі	repare	the con	mplete	struct	ural dr	awings	using	comp	uter so	ftware	¢				
COU	RSE (	OUTC	COME	ES												
On th	e succ	essful	comp	oletion	of the	e cour	se, stu	dents	will b	e able	to					
CO1	Plan	a layoi	ut of a	structu	ire								Ur	ders	stan	d
CO2	Calcu	ilate lo	oads us	ing IS	codes	and va	arious c	compu	tationa	l tools				App	oly	
CO3			e struct int IS c		r vario	us load	ds and I	load c	ombin	ation a	.ccordi	ng		Арр	oly	
CO4	-	-				•	ompute nate me			ools ai	nd che	eck		App	oly	
CO5	Prepare the complete structural drawings using computer software Apply															
	PING COM		'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIF	FIC	
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PSO	PS	50	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2	3
CO1	М	S	S	S	S	S	S	М	S	М	L	S	S	Ś	5	S
CO2	М	M M M S S S S M M M L M S S S										S				

S

Μ

S

CO3

S

S

S

S

Μ

М

Μ

L

S

Μ

S

М

CO4	S	S	S	S	S	S	S	М	S	M	L	S	S	S	S
CO5	М	М	М	М	S	S	S	М	М	М	L	S	S	М	S
	S- St	U				M-Me	edium					L-I	LOW		
SYLI	LABU	S													
	ents have to work individually with standard codes, computational tools and varepackages for analyzing, designing and detailing a structure. A detailed report on the t doneshall be submitted by individual student in the form of a report and presentation.														
S.No.	N	Name of the FacultyDesignationName of theMail IDCollege													
1.	Dr.Divahar R Asso.Professor /Civil AVIT divahar.civil@avit.ac.in									.in					
2.	Mr.Senthilkumar M					AP/C	livil	V	'MKV	EC	senth	nilkum	ar@vn	nkvec.e	edu.in

# ELECTIVE COURSE

**Program Electives** 

		N	ION-I				SIS (	OF	Ca	tegor	y	L	T	P	Credit
				STR	UCT	URES			E	C-PS		3	0	0	3
PREA	MBI	LE													
To stu	idy the	e conc	ept of	nonli	near b	ehavio	our an	d anal	ysis o	f elem	ents a	nd sir	nple s	struc	tures.
PREF	REQU	ISIT	E												
Nil															
COU	RSE (	<b>)BJE</b>	CTIV	ES											
1	To analyze bar system considering material and geometric nonlinearity.														
2	To study about inelastic analysis flexural members.														
3	To study about vibration analysis of flexural members.														
4	To study about elastic and inelastic analysis of Plates.														
5	To determine about nonlinear and instability analysis of elastically supported beams.														
COU	RSE OUTCOMES														
On the	e succ	essful	comp	letion	of the	cours	se, stu	dents	will b	e able	to				
CO1	Anal	yze baı	syster	m cons	idering	g mate	rial an	d geon	netric 1	nonline	earity		Un	ders	tand
CO2	Perfo	rm ine	lastic a	analysi	s flexu	ıral me	embers						1	App	ly
CO3	Perfo	rm vib	ration	analys	is of fl	exural	memb	pers					1	App	ly
CO4	Perfo	rm ela	stic an	d inela	stic an	alysis	of Plat	tes					1	App	ly
CO5	Perfo beam		onlinea	r and	instał	oility a	analysi	is of	elastic	ally s	upport	ed	1	App	ly
	DINIC				A								ODE		
	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC ICOMES														
	PO P														
COs	$ \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \end{vmatrix}$														
CO1	S	S	S	S	S	S	L	L	L	L	L	S	S	S	S
CO2	S	S	S	S	S	S	L	L	L	L	L	S	S	S	S
CO3	S	S S S S S S L L L L									L	S	S	S	S

S

S

L

L

S

S

CO4

CO5

S

S

S

S

S

S

S

S

L

L

L

L

L

L

L

L

S

S

S

S

S

S

S

S

S- Strong M-Medium L-Low SYLLABUS												
SYLL	ABUS											
UNIT-		CTION TO NONLIN	NEAR ANALYS	IS	9							
Materia	al nonlinearity,	geometric nonlinear	rity; statically	determinate an	d statically							
indeter	minate bar syster	ns of uniform and varia	ble thickness.									
UNIT-	II: INELAST	IC ANALYSIS OF FI	LEXURAL MEN	MBERS	9							
Inelasti	c analysis of	uniform and variabl	le thickness m	embers subjecte	d to small							
	deformations; inelastic analysis of bars of uniform and variable stiffness members with and without axial Restraints											
UNIT-	III : VIBRATI MEMBER	DN THEORY AND A S	NALYSIS OF F	LEXURAL	9							
Vibration theory and analysis of flexural members; hysteretic models and analysis of uniform												
and variable stiffness members under cyclic loading												
UNIT-IVELASTIC AND INELASTIC ANALYSIS OF PLATES9												
Elastic	and inelastic ana	lysis of uniform and va	riable thickness j	plates.								
UNIT-	V: NONLINI	AR VIBRATION AN	ID INSTABILIT	Ϋ́	9							
Nonlin	ear vibration and	Instabilities of elastica	lly supported bea	ims.								
				TOTAL:4	5 PERIODS							
REFE	RENCES:											
		-linear Mechanics, CR										
	•	-linear Finite Element	<b>.</b>	5	, 2008.							
3. Sathyamoorthy. M, Nonlinear Analysis of Structures, CRC Press, 2010.												
S.No.	Name of the F	culty Designation	Name of the College	Mail	ID							
1.	Mrs.Abirami R	AP/Civil	AVIT	abirami.civil	@avit.ac.in							
	Mr. Sankar P	AP/Civil										

ON STRUCTURESEC-PS300PREAMBLETo study the concept of wind and cyclone effects for the analysis and design of structurePREREQUISITENilCOURSE OBJECTIVES1To study about the characteristics of wind2To determine the intensity of wind on structures3To determine the intensity of wind on structures3To design some special structures subjected to wind loading4Design of structures for cyclone5Model and analyze a structure in a wind tunnelCOURSE OUTCOMESOn the successful completion of the course, students will be able toCO2Evaluate the intensity of wind on structuresApplyCO3Design some special structures subjected to wind loadingApplyCO4Design of structures for cycloneApplyCO4COV ROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCO5MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCO8PPPPPPPPPPPOPPPPPPPPPPPPCO2SSMSGTSSMCLLLLLMSSCO3SSSM	Credit	P C	T ]	L	<b>y</b> ]	itegory	Ca	CTS			-	. –	ND A	WI		
To study about the characteristics of wind         To study about the characteristics of wind         To study about the characteristics of wind         To design some special structures subjected to wind loading         To design some special structures subjected to wind loading         A design of structures for cyclore         To design of structures for cyclore         Structures for cyclore         Other colspan="4">Understand         Other colspan="4">Understand         COU         Explain the characteristics of wind         COU         Explain the characteristics of wind         COO         COO       Coo </th <th>3</th> <th>0</th> <th>0</th> <th>3</th> <th></th> <th>C-PS</th> <th>E</th> <th></th> <th>20</th> <th>IUN</th> <th>NUC</th> <th>11 91</th> <th>C</th> <th></th> <th></th> <th></th>	3	0	0	3		C-PS	E		20	IUN	NUC	11 91	C			
PREREVUSITE         NIL         COURSE OBJECTIVES         1       To study about the characteristics of wind on structures         2       To determine the intensity of wind on structures         3         7       determine the intensity of vind on structures         4         Design of structures for cyclone         4         On the structure for cyclone         COURSE OUTCOMES         On the structure for cyclone in a wind tunnel         COURSE OUTCOMES         On the characteristics of wind         COO         Explain the characteristics of wind       Understand         COO       Explain the characteristics of wind       Apply         COO       Explain the characteristics of wind       Apply         COO														LE	AMBL	PREA
NII         COURSE OBJECTIVES         1       To study about the characteristics of wind         2       To determine the intensity of wind on structures         3       To design some special structures subjected to wind loading         4       Design of structures for cyclone         5       Model and analyze a structure in a wind tunnel         OUTOOMES         OUTOOMES         OT key about the intensity of wind on structures         OT key about the characteristics of wind         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT key about the intensity of wind on structures         OT	es	lcture	of stru	lesign	and d	alysis	the an	ts for	e effec	yclone	and c	wind	ept of	e conc	idy the	To stu
COURSE OBJECTIVES         1       To study about the characteristics of wind         2       To determine the intensity of wind on structures         3       To design some special structures subjected to wind loading         4       Design of structures for cyclone         5       Model and analyze a structure in a wind tunnel         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO2       Explain the characteristics of wind on structures       Understard         On the successful completion of the course, students will be able to         COV         Coversity of wind on structures         Coversity of wind on structures         Coversity of coversity of wind on structures         Coversity of coversity of coversity t													E	ISITI	REQU	
1       To study about the characteristics of wind         2       To determine the intensity of wind on structures         3       To design some special structures subjected to wind loading         4       Design of structures for cyclone         5       Model and analyze a structure in a wind tunnel         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO2       Evaluate the intensity of wind on structures       Understar         CO2       Evaluate the intensity of wind on structures       Apply         CO4       Design some special structure in a wind tunnel       Apply         CO4       Design of structures for cyclone       Xapply         CO4       Design of structures for cyclone       Xapply         CO4       Design of structures for cyclone       Xapply         CO5       Model and analyze a structure in a wind tunnel       Xapply         CO4       Design of structures for cyclone       Xapply         CO5       Model and analyze a structure in a wind tunnel       Xapply         CO6       Model and analyze a structure in a wind tunnel       Xapply         CO5       Model and analyze a structure in a wind tunnel       Xapply         CO6       Model and analyze a structure in a wind tunnel </td <td></td> <td>EC</td> <td></td> <td></td> <td></td> <td></td>												EC				
2       To determine the intensity of wind on structures         3       To design some special structures subjected to wind loading         4       Design of structures for cyclone         5       Model and analyze a structure in a wind tunnel         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1       Explain the characteristics of wind on structures       understar         CO2       Evaluate the intensity of wind on structures subjected to wind loading       Apply         CO3       Design of structures for cyclone       Apply         CO4       Design of structures for cyclone       Apply         CO5       Model and analyze a structure subjected to wind loading       Apply         CO4       Design of structures for cyclone       Apply         CO4       Design of structures for cyclone       Apply         CO4       Design of structures for cyclone       Apply         CO5       Model and analyze a structure in a wind tunnel       Apply         CO4       Design of structures for cyclone       Apply         CO5       Model and analyze a structure in a wind tunnel       X         CO4       Design of structures for cyclone       X         CO5       Model and analyze a structure in a wind																COU
To design some special structures subjected to wind loading         4       Design of structures for cyclone         5       Model and analyze a structure in a wind tunnel         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1       Explain the characteristics of wind         CO2       Evaluate the intensity of wind on structures       Apply         CO3       Design of structures for cyclone       Apply         CO4       Pesign of structures for cyclone       Apply         CO5       Model and analyze a structure in a wind tunnel       Apply         CO6       Model and analyze a structure in a wind tunnel       Apply         CO5       Model and analyze a structure in a wind tunnel       Apply      CO5       Pol PO									wind	ics of v	cterist	e chara	out the	udy ab	To stu	1
4       Design of structures for cyclone         5       Model and analyze a structure in a wind tunnel         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO2         Evaluate the intensity of wind on structures         On the successful completion of the course, students will be able to         CO2         Evaluate the intensity of wind on structures         Students for cyclone         CO4       Design of structures for cyclone       Apply         CO5       Model and analyze a structure in a wind tunnel       Apply         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO8       PO       PO <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ures</td> <td>struct</td> <td>ind on</td> <td>ty of w</td> <td>ntensi</td> <td>ne the i</td> <td>etermir</td> <td>To de</td> <td>2</td>								ures	struct	ind on	ty of w	ntensi	ne the i	etermir	To de	2
Image: Second						ing	d load	to win	jected	res sub	structu	ecial s	ome sp	esign s	To de	3
OUTCOMES         Outoconstruction of the course, students will be able to         Outoconstruction of the course, students will be able to         Outoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to         OUtoconstruction of the course, students will be able to the course, student able to the course, student able to the course, student ab	Design of structures for cyclone											Desig	4			
On the successful completion of the course, students will be able to         CO1       Explain the characteristics of wind       Junderstar         CO2       Evaluate the intensity of wind on structures       Junderstar         CO3       Design some special structures subjected to wind loading       Apply         CO4       Design of structures for cyclone       SUPPONE       PON PO       PO       PO Apply         CO5       Model and analyze a structure in a wind turnel       VEENET PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO5       PO        PO <th colspan<="" td=""><td colspan="11">Model and analyze a structure in a wind tunnel</td><td>Mode</td><td>5</td></th>	<td colspan="11">Model and analyze a structure in a wind tunnel</td> <td>Mode</td> <td>5</td>	Model and analyze a structure in a wind tunnel											Mode	5		
On the successful completion of the course, students will be able to         CO1       Explain the characteristics of wind       Junderstar         CO2       Evaluate the intensity of wind on structures       Junderstar         CO3       Design some special structures subjected to wind loading       Apply         CO4       Design of structures for cyclone       SUPPONE       PON PO       PO       PO Apply         CO5       Model and analyze a structure in a wind turnel       VEENET PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO5       PO        PO <th colspan<="" td=""><td colspan="11">·</td><td>RSE (</td><td>COU</td></th>	<td colspan="11">·</td> <td>RSE (</td> <td>COU</td>	·											RSE (	COU		
Understand         CO1       Explain the characteristics of wind on structures       Understand         CO2       Evaluate the intensity of wind on structures       Apply         CO3       Design some special structures subjected to wind loading       Apply         CO4       Design of structures for cyclone       Apply         CO5       Model and analyze a structure in a wind tunnel       FO       PO					to	o oblo i	vill b	donta		0011	of the					
CO2       Evaluate the intensity of wind on structures       Apply         CO3       Design some special structures subjected to wind loading       Apply         CO4       Design some special structures for cyclone       Setter to wind loading       Apply         CO4       Design some special structures for cyclone       Setter to wind loading         CO5       Model and analyze a structure in a wind turne!       SetTempty       Apply         MAPPINE WITH PROFENSES       SetTempty       SetTempty         CO5       PO	and	leretai	Und		10		will be		se, stu							
ApplyCO3Design some special structures subjected to wind loadingApplyCO4Design of structures for cycloneApplyCO5Model and analyze a structure in a wind tunnelApplyCO5Model and analyze a structure in a wind tunnelApplyMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCO6P0P0P0P0P0P0POPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ctures</td> <td>on stru</td> <td>wind o</td> <td>sity of</td> <td>e inten</td> <td>ate the</td> <td>Evalu</td> <td>CO2</td>									ctures	on stru	wind o	sity of	e inten	ate the	Evalu	CO2
Note that the series of the s						r	ading	wind h								<u>CO3</u>
CO5       Model and analyze a structure in a wind tunnel       Apply         MAPPING WITH PROGRAMME OUTCOMES       AND PROGRAMME SPECIFIC OUTCOMES         CO8       PO       PO <t< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td>Juding</td><td>wind i</td><td></td><td>Ū</td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>						,	Juding	wind i		Ū			•			
MAPPING WITH PROGRAMME OUTCOMES         PO	r	pply	A								-					
OUTCOMES       PO	T	vpply	А					nel	nd tun	n a wi	icture i	e a stru	analyz	el and a	Mode	CO5
COs       1       2       3       4       5       6       7       8       9       10       11       12       PSO       PSO       PSO       2         C01       M       M       M       M       L       L       L       L       L       L       S       S       M         C02       S       S       M       S       M       L       L       L       L       L       L       S       S       M         C02       S       S       S       M       S       M       L       L       L       L       L       M       S       S       M         C03       S       S       S       S       M       L       L       L       L       L       M       S       S       S         C04       S       S       S       M       L       L       L       L       L       M       S       S         C04       S       S       S       M       L       L       L       L       L       M       S       S	C	CIFIC	SPEC	MME	GRAN	PROC	AND	MES	TCO	EOU	AMM	OGR	H PR			
COS       1       2       3       4       5       6       7       8       9       10       11       12       1       2         CO1       M       M       M       M       L       L       L       L       L       L       L       S       S       M         CO2       S       S       M       S       M       L       L       L       L       L       L       S       S       M         CO2       S       S       M       S       M       L       L       L       L       L       L       M       S       S       M         CO3       S       S       S       S       M       L       L       L       L       L       M       S       S       S         CO3       S       S       S       S       M       L       L       L       L       L       M       S       S       S         CO4       S       S       S       M       L       L       L       L       L       M       S       S       S	PSO	PSO	PSO	РО	PO	РО	PO	PO	РО	РО	РО	РО	РО	РО	РО	
CO2SSMSMLLLLLLLLMSSCO3SSSSMLLLLLLLMSSCO4SSSSMLLLLLLMSS	3			12	11	10	9	8	7	6	5	4	3	2	1	COs
CO3SSSMLLLLLLLLMSSCO4SSSSMLLLLLLMSS	L	М	S	S	L	M         M         M         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L										
CO4SSSMLLLLLLLMSS	S	S	S	М	L	L	L	L	L	L	М	S	М	S	S	CO2
	S	S	S	М	L	L	L	L	L	L	М	S	S	S	S	CO3
	S	S	S	М	L	L	L	L	L	L	М	S	S	S	S	CO4
CO5SSSMLLLLLLHSS	S	S	S	Н	L	L	L	L	L	L	М	S	S	S	S	CO5

S- Strong M-Medium L-Low SYLLABUS										
SYLLABUS										
UNIT-I : <b>INTRODU</b>	CTION			9						
Introduction, Types of v	wind – Characteristics	of wind – Met	hod of Measuren	nent of wind						
velocity, variation of win	d speed with height, si	hape factor, aspe	ct ratio, drag and	lift effects -						
Dynamicnature of wind -	-Pressure and suctions	- Spectral studie	es, Gust factor.							
UNIT-II : EFFECT C	OF WIND ON STRUC	CTURES		9						
Classification of structu	res – Rigid and Flex	ible – Effect of	f wind on structu	ures –Vortex						
shedding,translational vi	bration of structures -	Static and dynamic	mic effects on Ta	ll buildings -						
Chimneys.										
UNIT-III : <b>DESIGN O</b>	E SDECIAL STDUC	TUDES		9						
	OF SPECIAL STRUC	IUKES		9						
Design of Structures for	wind loading – as per	IS, ASCE and N	BC code provision	ns – design						
of -Industrial sheds - Ta	ll Buildings – Chimne	ys – Transmissio	on towers and stee	l monopoles						
				0						
UNIT-IV CYCLONE	EEFFECTS			9						
Cyclone effect on - low	v rise structures – slo	ped roof structur	res - Tall buildin	gs. Effect of						
	Cyclone effect on – low rise structures – sloped roof structures - Tall buildings. Effect of cyclone oncladdings – design of cladding – use of code provisions in cladding design –									
Analytical procedureand	modeling of cladding.									
UNIT-V : WIND TU	NNEL STUDIES			9						
	NINEL STUDIES			9						
Wind Tunnel Studies,	Types of wind the	unnels, Types	of wind tunnel	l models –						
Modellingrequirements -	Aero dynamic and Ae	ero-elastic mode	ls, Prediction of a	cceleration –						
Loadcombination factors	s – Wind tunnel data	analysis – Calcu	lation of Period a	and damping						
value forwind design										
			ΤΟΤΑΙ • 4	5 PERIODS						
				STERIODS						
<b>REFERENCES:</b>										
	e Designer's Guide	to Wind Loadi	ng of Building	Structures",						
,	Butterworths, 1989.									
	rner.M, Fischer.O a		"Wind Effects	s on Civil						
	tures", Elsevier Public		1 7711							
	"Wind Effects on E	suilding Vol. I	and II", Appl	lied Science						
Publishers,Londo		na" Dorgonos I	Praga Navy Varl-	1079						
4. reter Sachs, Wh	nd Forces in Engineeri	ng, reigamon i	TESS, INEW YOFK,	17/0.						
S.No. Name of the Fa	culty Designation	Name of the	Mail I	D						
		College								

1.	Mrs.Subathra P	AP/Civil	AVIT	subathra@avit.ac.in
2.	Ms.R.Priyadharshini	AP/Civil	VMKVEC	priyadharshini@vmkvec.edu.in

		PR	EFAR	RICA	TED	STR	UCTI	IRES	Ca	ategor	y	L	T	Р	Credit
							cert		F	C-PS		3	0	0	3
PREA															
To St	udy th	e desi	gn pri	nciple	s, ana	lysis a	and de	sign o	f elen	nents.					
<b>PREI</b> Nil	REQU	ISIT	E												
				TO											
	RSE (														
1	To st	udy de	sign p	rincipl	es invo	olved i	n prefa	ıbricati	on						
2	To st	udy ab	out typ	pes of o	connec	ction									
3	To de	esign f	or strip	ping f	orces o	luring	manuf	acture							
4	To de	etermin	ne the f	forces	in shea	ar wall	s								
5	To Id	lentify	the dif	ferent	roof tı	usses	used ir	n indus	trial b	uilding	s				
COU	RSE (	To Identify the different roof trusses used in industrial buildings <b>SE OUTCOMES</b>													
On th	e succ	essful	comp	letion	of the	e cour	se stu	dents	will h	e able	to				
CO1			-					efabric		• 4010			Ur	ders	tand
CO2	Detai	l the d	ifferen	t types	s of co	nnectio	on							Appl	
CO3	Desig	gn for s	strippi	ng forc	es dur	ing ma	nufact	ure						Appl	-
CO4	Deter	mine f	he for	ces in s	shear y	valls								Appl	
							d in in	dustria	1 6.011	ingo					
CO5		2								e				Appl	
MAP OUT	PING COM		H PR	OGR	AMM	E OU	JTCO	MES	AND	PRO	GRA]	MME	SPE	CIF	IC
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	DECO	DG	
COs	1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PSO 2	
CO1	М	-	М	-	-	-	-	-	-	-	М	М	-	-	-
CO2	М	S	S	-	М	-	-	-	-	-	М	М	-	-	-
CO3	S	S	S	-	S	-	-	L	-	S	М	М	S	S	S
CO4	S	S	S	-	S	-	М	М	-	-	М	M	S	S	S
CO5	S	-	S	-	М	-	М	М	-	-	М	M	S	S	S

S- Strong	M-Medium	L-Low								
SYLLABUS       UNIT-I:       DESIGN PRINCIPLES       9										
UNIT-I : DESIGN I	PRINCIPLES		9							
ofprefabrication plant. Disuniting ofPrefabrica	ring requirements, specific requi IS Code specifications. Modulates, production, transportation, ere s, material properties, Deflection co	ar co-ordination, star ection, stages of loadi	ndardization,							
UNIT-II : <b>REINFOF</b>	RCED CONCRETE		9							
	- Long wall and cross-wall large , Framed buildings with partial a umn to column.		-							
UNIT-III : FLOORS,	STAIRS AND ROOFS		9							
Types of floor slabs, analysis and design example of cored and panel types and two-way systems,Design analysis for product manufacture, handling and erection, staircase slab, types of roof slabsand insulation requirements, Description of joints, their behaviour and reinforcement requirements,Deflection control for short term and long term loads, Ultimate strength calculations in shear andflexure.										
UNIT-IV WALLS			9							
Types of wall panels, B	locks and large panels, Curtain, Par	tition and load bearing	g walls, load							
DesignCurves, types of	wall panels, vertical loads, Eccentr of wall joints, their behaviour an panels, Lateral load resistance, L hear walls.	d design, Leak prev	ention, joint							
UNIT-V: INDUSTR	RIAL BUILDINGS AND SHELL	ROOFS	9							
Components of single-storey industrial sheds with crane gantry systems, R.C. Roof Trusses, RoofPanels, corbels and columns, wind bracing. Cylindrical, Folded plate and paraboloid shells,Erection and jointing of components in industrial buildings										
		TOTAL:4	5 PERIODS							
<b>REFERENCES:</b>										
	nn and Alfred Steinle, Precast Cone al of Precast Concrete Construction		V Bauverlag,							
,	refabricated Concrete for Industrial	and Public Structures	s, Akademiai							
4. Lewicki.B, Building with Large Prefabricates, Elsevier Publishing Company, 1988.										

<ol> <li>Structural Design manual, Precast concrete connection details, Society for studies in theuse of Precast concrete, Netherland Betor Verlag, 2009.</li> </ol>												
S.No.	Name of the FacultyDesignationName of the CollegeMail ID											
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in								
2.	2.     Mrs.Srija J     AP/Civil     AVIT     srija.civil@avit.ac.in											

	ADVANCED CONCRETE TECHNOLOGY	Category	L T		Р	Credit
		EC-PS	3	0	0	3
PREAMBI	LE					

To study the properties of concrete making materials, tests, mix design, special concretes and various methods for making concrete.

# PREREQUISITE

Nil

COU	RSE OBJECTIVES	
1	To gain knowledge on various materials needed for concrete manufacture	
2	To study about the rules to do mix designs for concrete by various method	s
3	To study about the methods of manufacturing of concrete.	
4	To study about various special concrete	
5	To determine the various tests on fresh and hardened concrete	
COU	RSE OUTCOMES	
On th	e successful completion of the course, students will be able to	
CO1	Develop knowledge on various materials needed for concrete manufacture	Understand
CO2	Apply the rules to do mix designs for concrete by various methods	Apply
CO3	Develop the methods of manufacturing of concrete.	Apply
CO4	Explain about various special concrete	Apply
CO5	Explain various tests on fresh and hardened concrete	Apply

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

<u> </u>	РО	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	-	-	М	-	-	-	-	-	-	-	М	-	-	-
CO2	-	S	S	-	-	М	-	-	-	-	L	-	-	-	-
CO3	М	-	-	-	S	S	-	S	М	S	-	S	L	-	-
CO4	М	-	-	-	S	-	-	S	-	S	-	М	-	L	-

											-	L-]	Low		<u> </u>
SYLL	ABU	S								1					
UNIT	-I :	CON	NCRE	TE M	IAKI	NG M	IATE	RIAL	S					9	9
Aggre	gates	cla	ssifica	tion	IS	Spec	ificati	ons,	Prop	erties,	Gı	ading	, M	ethod	s c
combi	ninga	ggreg	ates, s	pecifi	ed gr	adings	s, Test	ting of	f aggr	egates	. Cer	nent, (	Grade	of ce	emen
		-	ition,		-			-					ture	of hy	drate
cemer	nt, spe	cialce	ments	. Wate	er Che	emical	admi	xtures	, Mine	eral ad	mixtu	ire.			
UNIT	-II :	MIX	DES	IGN										ļ	9
Princi	ples o	of cond	crete n	nix de	sign, I	Metho	ods of	concre	ete mi	x desi	gn, IS	Meth	od, A	CI M	etho
DOEN	Aetho	d – M	ix des	ign fo	r spec	ial co	ncrete	s- cha	nges i	n Mix	desig	n for s	specia	l mate	erials
UNIT	-III :	CON	ICRE	TINC	G ME'	ГНОІ	DS							9	9
Droce	ss of r	nanuf	acturir	ng of (	concre	te me	athods	of tra	nenori	ation	nlaci	ng ang	1 curii	nα	
			concre	0					-		-	U		0	ater
Concr			onere	ung, .	peelu	r conc	reting	metin	<b>Jub.</b> (	ucuun	1 40 11	atorni	5 01		uter
UNIT	T-IV	SPE	CIAL	CON	ICRE	TES									9
							e Fih	per rei	nforce	ed cor	ocrete	Sulr	bur i	-	
Light	weig	ht coi	ncrete	Fly a	ash co	oncret						-		mpreg	gnate
Light concre	weig ete,Po	ht coi lymer	ncrete Conc	Fly a rete –	ash co High	oncret perfo	rmanc	ce con	crete.	High	perfo	rmanc	e fibe	mpreg r reint	gnate force
Light concre	weig ete,Po ete, Se	ht con lymer elf-Co	ncrete Conc mpact	Fly a rete – ing-C	ash co High	oncret perfo	rmanc	ce con	crete.	High	perfo	rmanc	e fibe	mpreg r reint	gnate force
Light concre concre – Reae	weig ete,Po ete, Se dy mi	ht coi lymer elf-Co xedco	ncrete Conc mpact ncrete	Fly a rete – ing-C	ash co High oncre	oncret perfo te, Ge	rmanc	ce con	crete.	High	perfo	rmanc	e fibe	mpreg r reint	gnate force
Light concre concre – Reae	weig ete,Po ete, Se dy mi	ht coi lymer elf-Co xedco	ncrete Conc mpact	Fly a rete – ing-C	ash co High oncre	oncret perfo te, Ge	rmanc	ce con	crete.	High	perfo	rmanc	e fibe	mpreg r reint sed co	gnate force
Light concre concre – Reae UNIT	weig ete,Po ete, So dy mi -V :	ht con lymer elf-Co xedco <b>TES</b>	Conc mpact ncrete	Fly a rete – ing-C N CO	ash co High oncre	oncret perfo te, Ge ETE	ormanc o Pol <u>y</u>	ymer (	crete. Concre	High ete, W	perfor aste	rmanc nateri	e fibe al-bas	mpreg r reinf sed co	gnate force ncret
Light concre – Read UNIT Prope	weig ete,Po ete, Se dy mi -V : rties	ht coulymer elf-Co xedco TES of fr	ncrete Conc mpact ncrete <b>TS O</b> esh c	Fly a rete – ing-C N CO	ash co High oncre <b>NCR</b> te, H	oncret perfo te, Ge ETE	ed co	e con ymer (	crete. Concre e, Str	High ete, W ength,	perfor aste	rmanc materi	e fibe al-bas	mpreg r reinf sed co ties,	gnate force ncre 9 Cree
Light concre – Read UNIT Propes	weigl ete,Po ete, Se dy mit -V : rties rties	ht coulymer elf-Co xedco TES of fr	Conc mpact ncrete	Fly a rete – ing-C N CO	ash co High oncre <b>NCR</b> te, H	oncret perfo te, Ge ETE	ed co	e con ymer (	crete. Concre e, Str	High ete, W ength,	perfor aste	rmanc materi	e fibe al-bas	mpreg r reinf sed co ties,	gnate force ncre 9 Cree
Light concre – Read UNIT Prope	weigl ete,Po ete, Se dy mit -V : rties rties	ht coulymer elf-Co xedco TES of fr	ncrete Conc mpact ncrete <b>TS O</b> esh c	Fly a rete – ing-C N CO	ash co High oncre <b>NCR</b> te, H	oncret perfo te, Ge ETE	ed co	e con ymer (	crete. Concre e, Str	High ete, W ength,	Perfor aster Ela Fechn	rmanc materi	e fibe al-bas	mpreg r reinf sed co ties,	gnate force ncre 9 Cree
Light concre – Read UNIT Proper andshi	weigl ete,Po ete, So dy mit -V : rties rties rinkag ete	ht cor lymer elf-Co xedco <b>TES</b> of fr ge – D	ncrete Conc mpact ncrete <b>TS O</b> esh c urabil	Fly a rete – ing-C N CO	ash co High oncre <b>NCR</b> te, H	oncret perfo te, Ge ETE	ed co	e con ymer (	crete. Concre e, Str	High ete, W ength,	Perfor aster Ela Fechn	rmanc materi stic p iques	e fibe al-bas	mpreg r reinf sed co ties,	gnate force ncre 9 Cree
Light concre – Read UNIT Proper andshi concre	weigl ete,Po ete, So dy mit -V : rties rinkag ete	ht cor lymer elf-Co xedco TES of fr ge – D	ncrete Conc mpact ncrete <b>TS O</b> I esh c urabil	Fly a rete – ing-C N CO oncre ity of	ash co High oncre NCR te, H concr	encret perfo te, Ge ETE farden ete. N	ed co	e con ymer ( oncrete structi	crete. Concre e, Str ve Te	High ete, W ength, sting	Ela Techn	rmanc materi stic p iques <b>OTA</b>	e fibe al-bas proper micro L : 45	mpreg r reint sed co ties, ostruct	gnate force ncre 9 Cree ure
Light concre – Read UNIT Proper andshi concre	weigl ete,Po ete, So dy mit -V : -V : rties rinkag ete EREN Gam	ht cor lymer elf-Co xedco TES of fr ge – D	ncrete Conc. mpact ncrete <b>TS O</b> esh c urabil M.L. C	Fly a rete – ing-C N CO oncre ity of	ash co High oncre <b>NCR</b> te, H concr	ETE farden ete. N	ed co fon-de	e con ymer ( oncrete structi	crete. Concre e, Str ve Te dition,	High ete, W ength, sting '	raw H	rmanc materi stic p iques OTA	e fibe al-bas proper micro L : 45 ucatio	mpreg r reinf sed co ties, ostruct <b>5 PER</b>	gnate force ncre 9 Cree ure o
Light concre – Read UNIT Proper andshi concre <b>REFF</b> 1. 2.	weigl ete,Po ete, So dy mit -V : -V : rties rinkag ete <b>EREN</b> Gam Gup	ht cor lymer elf-Co xedco TES of fr ge – D [CES: nbhir.] ta.B.I	ncrete Conc mpact ncrete TS OI esh c urabil M.L. C	Fly a rete – ing-C N CO oncre ity of	ash co High oncre NCR te, H concr ete Teo ota, "C	ETE Farden ete. N	ed co fon-de	e con ymer ( oncrete structi ifth Ec	crete. Concre e, Str ve Te dition,	High ete, W ength, sting ' McG in Bo	Ela Fechn Taw H ok Ag	rmanc materi stic p iques OTAI	e fibe al-bas proper micro L : 45 ucatio	mpreg r reinf sed co ties, ostruct <b>5 PER</b>	gnate force ncre 9 Cree ure o
Light concre – Read UNIT Proper andshi concre <b>REFF</b> 1. 2.	weigl ete,Po ete, So dy mit -V : -V : rties rinkag ete EREN Gan Gup Nev	ht cor lymer elf-Co xedco TES of fr ge – D CES: bhir.l ta.B.I ille, A	ncrete Conc. mpact ncrete <b>TS O</b> esh c urabil M.L. C	Fly a rete – ing-C N CO oncre ity of	ash co High oncre <b>NCR</b> te, H concr ete Teo ta, "C ties of	ETE Farden ete. N chnolo	ed co fon-de	e con ymer ( oncrete structi ifth Ec chnolo Prentic	crete. Concre e, Str ve Te dition, agy, Ja	High ete, W ength, sting 7 McG in Boo l, 1993	T Taw H pok Ag 5, Lor	rmanc materi stic p iques OTAI	e fibe al-bas proper micro L : 45 ucatio 2010.	mpreg r reinf sed co ties, ostruct <b>PER</b>	gnate force ncree Q Cree ture o IOD
Light concre – Read UNIT Proper andshi concre <b>REFH</b> 1. 2. 3.	weigl ete,Po ete, So dy mit -V : -V : rties rinkag ete EREN Gan Gup Nev Shet	ht cor lymer elf-Co xedco TES of fr ge – D CES: bhir.l ta.B.I ille, A	TS OI esh c urabil	Fly a rete – ing-C N CO oncre ity of	ash co High oncre <b>NCR</b> te, H concr ete Teo ta, "C ties of	ETE Farden ete. N chnolo	ed co fon-de	e con ymer ( oncrete structi ifth Ec chnolo Prentic	crete. Concre e, Str ve Te dition, agy, Ja	High ete, W ength, sting 7 McG in Boo l, 1993	T Taw H pok Ag 5, Lor	rmanc materi stic p iques OTAI	e fibe al-bas proper micro L : 45 ucatio 2010.	mpreg r reinf sed co ties, ostruct <b>PER</b>	gnate force ncre 9 Cree sure o 10D

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.K.Harish	AP/Civil	VMKVEC	harishk@vmkvec.edu.in
2.	Mr.Sanjaykumar R	AP/Civil	AVIT	sanjay.civil@avit.ac.in

		I	ADVA	NCE			ESSI	ED	Ca	tegor	y	L	Т	P	Credit
				C	ONCI	(IE			E	C-PS		3	0	0	3
PREA Princi			ressing	g, anal	ysis a	nd des	sign o	f prest	ressec	l conci	rete st	ructu	res.		
<b>PREI</b> Nil	REQU	ISIT	E												
COU	RSE (	OBJE	CTIV	ES											
1	To st	udy ab	out va	rious n	nethod	s of pr	estress	sing							
2	To de	esign tl	he bear	ms for	shear,	bond a	and tor	sion							
3	To de	esign tl	he con	tinuous	s beam	IS									
4	To de	esign tl	he wat	er tank	, piles	and m	asts								
5	To A	nalyze	and d	esign t	he con	nposite	beam	S							
COU	RSE (	OUTC	COME	ES											
On th	e succ	essful	comr	oletion	of the	e cour	se, stu	dents	will b	e able	to				
CO1				is meth									Un	derst	and
CO2	Desig	gn the	beams	for she	ear, bo	nd and	l torsio	on						Appl	у
CO3	Desig	gn the	contin	uous be	eams									Appl	
CO4	Desig	gn the	water t	ank, p	iles an	d mast	S							Appl	у
CO5	Anal	yze an	d desig	gn the c	compo	site be	ams							Appl	у
MAP OUT			H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA]	MME	SPE	CIF	C
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PSO	PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	М	L	-	-	-	-	-	-	-	-	L	М	-	М
CO2	-	S	М	-	-	-	-	-	-	-	-	М	S	M	S
CO3	-	S	S	-	L	-	-	-	-	-	-	М	S	М	S
CO4	-	S	S	-	М	-	-	L	-	-	I	М	S	M	S
CO5	-	S	S	М	L	-	-	L	-	-	-	М	S	М	S

	ong	M-Medium	l	L-Low	
<b>SYLLABUS</b>	5				
UNIT-I :	PRINCIPLES (	OF PRESTRESS	ING		9
	erials, Analysis r	sing - Types and nethods, losses of	• •	-	-
UNIT-II :	DESIGN OF FI	LEXURAL MEN	IBERS		9
Codalprovis		bers, determinati flexural members		e	
UNIT-III :	<b>DESIGN OF C</b>	ONTINUOUS A	ND CANTILEVI	ER BEAMS	9
cantileverbe	ams.	dant cable profile			<b>9</b>
prestressedc	oncrete cylindric	ers - application cal water tanks - on in the design pi	Design of com	pression membe	ers with and
UNIT-V :	<b>DESIGN OF C</b>	OMPOSITE ME	MBERS		9
	booma analysi	is and design u			9
-	- its advantages a	-	ltimate strength	- their applicat	
-	-	-	ltimate strength		
-	its advantages a	-	ltimate strength		ions. Partial
REFERENCE 1. Arthur York 2. Krish 6 th Ec 3. Lin.7	CES: ur H. Nilson, "D ,2004. na Raju, "Prestru lition, 2018. G.Y.andBurns.H	nd applications. esign of Prestress essed Concrete", ' "Design of Prest	ed Concrete", Joh Tata McGraw Hil	TOTAL : 4	ions. Partial 5 PERIODS ons Inc, New , New Delhi,
REFERENCE 1. Arthur York 2. Krish 6 th Ec 3. Lin.T Sons 4. Rajag	- its advantages a CES: ur H. Nilson, "D ,2004. nna Raju, "Prestr lition, 2018. f.Y.andBurns.H Inc, 3rd Edition, gopalan.N, "Prestr a.N.C.and.Roy.S.	nd applications. esign of Prestress essed Concrete", ' "Design of Prest	eed Concrete", Joh Tata McGraw Hil ressed Concrete S , Narosa Publicati	<b>TOTAL : 4</b> In Wiley and So I Publishing Co. Structures", John ons, New Delhi,	ions. Partial 5 PERIODS ons Inc, New , New Delhi, n Wiley and 2014.

			College	
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in
2.	Dr.Vijayan D S	Asso.Professor /Civil	AVIT	vijayan.has.siva@gmail.com

		R	RELIA	BILI				OF	Ca	ategor	У	L	Т	P (	Credit
				51K	UCI	URES	•		F	C-PS		3	0	0	3
PREA	AMBI	LE LE													
To de	velop	know	ledge	to solv	ve stru	ictural	analy	sis pro	oblem	s usin	g relia	ability	conce	epts.	
PREI	REQU	JISIT	E												
Nil															
COU	RSE (	OBJE	CTIV	ES											
1	To ga	ain the	Know	ledge	of desi	gn and	devel	opmen	t of pr	oblem	solvin	g skill	s.		
2	To ui	ndersta	and the	princi	ples of	reliab	ility.								
3	To de	esign a	nd dev	elop a	nalytic	al skil	ls.								
4	To st	udy ab	out the	e Proba	ability	distrib	utions								
5	To ui	ndersta	unds th	e conc	ept of	Systen	n reliał	oility.							
	RSE (				1	5		5							
					0.1										
			-							e able em sol					
CO1	skills		10 11 10 4	50 01 0	lesign	und de	, eropi		proof	0111 501	, ing		Un	dersta	nd
CO2	Unde	erstand	the pr	inciple	s of re	liabilit	y.						Un	dersta	nd
CO3	Desig	gn and	develo	op anal	ytical	skills.							I	Apply	
CO4	Sum	marize	the Pr	obabili	ty dist	ributic	ons						Un	dersta	nd
CO5	Unde	erstand	s the c	oncept	of Sys	stem re	eliabili	ty.					Un	dersta	nd
MAP	PING	WIT	H PR	OGR	AMM	E OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIFI	C
OUT	COM	ES													
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	S	М	М	L	L	L	L	L	L	М	S	S	М
CO2	S	S	S	М	М	L	L	L	L	L	L	М	S	S	М
CO3	S	S	S	М	М	L	L	L	L	L	L	М	S	S	М
CO4	М	S	S	М	М	L	L	L	L	L	L	М	S	S	М
CO5	S	S	S	М	М	L	L	L	L	L	L	М	S	S	М

S- Sti	rong	M-Medium	L-Low	
SYLLABU	S			
UNIT-I :	DATA AN	ALYSIS		9
groupedand fitting and	ungrouped	n Histogram, frequency polygon, data, measures of dispersion, and Fitting a straight line, curve of n	d measures of asymr	netry. Curve
UNIT-II :	PROBABI	LITY CONCEPTS		9
ofprobabilit conditional	y-interpretat	probability tree diagram, statistica	tion rule, multiplie	cation rule,
UNIT-III :	RANDOM	I VARIABLES		9
Chebyshev'	stheorem. Pr	on, probability density function, Ma robability distributions: Discrete dis s distributions, Normal, Log norma	stributions- Binomial	
UNIT-IV	RELIABI	LITY ANALYSIS		9
andlimiting	state. Relia	factor of safety, safety margin, relia bility Methods-First Order Second , and Advanced First Order Second	Moment Method (F	OSM), Point
UNIT-V :	SYSTEM	RELIABILITY		9
andcombine revision o experiments	ed systems, freliability. s, sample siz	n coefficient, redundant and non- Uncertainty in reliability assessme Simulation Techniques: Monte eand accuracy, Generation of rando ution, continuous random variables,	ents- Confidence lim e Carlo simulation om numbers, random r , discrete random varia	its, Bayesian - Statistical numbers with ables
			TOTAL : 4	5 PERIODS
		bability, Random Variables and St	tochastic Processes, N	AcGraw-Hill,
		Structural Reliability Analysis and d, Chichester, England,2018.	d Prediction, Third H	Edition, John

- 3. O. Ditlevsen, H. O. Madsen, Structural Reliability Methods, Wiley, 1st Edition, 1996.
- 4. Srinivasan Chandrasekaran, Offshore Structural Engineering: Reliability and

RiskAssessment, CRC Press, Florida, 2016.

5. Jack R Benjamin ,C. Allin Cornell, Probability, Statistics, and Decision for Civil Engineers ,Dover Publications, Newyork, 2014.

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.P.Sankar	AP/Civil	VMKVEC	sankarp@vmkvec.edu.in
2.	Mrs.Abirami R	AP/Civil	AVIT	abirami.civil@avit.ac.in

			DFS	IGN (	)F F(	)BW/	VORI	7	Ca	ategor	y	L	T	Р	Credit
			DESI		ЛТС				E	C-PS		3	0	0	3
PREA	AMBI	LE													
	•						-	-				Desig	gn of	for	rms for
variou	uselen	ients s	such as	s toun	dation	i, slab	s, beai	ns, co	lumns	s and w	valls.				
<b>PREI</b> Nil	REQU	JISIT	E												
COU	RSE (	OBJE	CTIV	<b>'ES</b>											
1	To ui	ndersta	and the	formv	vork, a	ccesso	ories an	id mate	erial.						
2	To de	esign t	he form	n work	for B	eams,	Slabs,	colum	ns, Wa	lls and	Foun	dation	s		
3	To de	esign t	he form	n work	t for Sj	pecial	Structu	ires							
4	To de	escribe	the w	orking	of flyi	ing for	mwork	ζ.							
5	To st	udy ab	out the	e form	work f	ailures	throug	gh case	e studie	es					
COU	RSE (	OUTC	COME	ES											
On th	e succ	essful	comp	letion	of the	e cour	se, stu	dents	will b	e able	to				
CO1	Selec	t prop	er forn	nwork,	access	sories	and ma	terial.					Un	ders	tand
CO2		gn the dation		n wor	k for	Bean	ns, Sl	abs, c	columr	ns, Wa	alls a	nd		Appl	у
CO3	Desig	gn the	form w	vork fo	or Spec	ial Str	uctures	5						Appl	у
CO4	Desc	ribe th	e work	ing of	flying	formv	vork.							Appl	у
CO5	Judge	e the fo	ormwo	rk fail	ures th	rough	case st	udies					Un	ders	tand
			'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIF	IC
OUT	COM	ES													
COs	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PS 2	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	L	S	L	L	М	-	L	L	М	-	-	М	L	L
CO2	М	S	S	М	L	М	L	-	-	М	-	L	S	S	S
CO3	М	S	S	М	L	М	L	-	-	М	-	L	S	S	S
CO4	L	-	М	М	М	М	L	-	-	М	-	L	S	S	S

CO5	М	S	М	М	М	M	L	L	L	М	-	L	S	S	S
	S- St	5								L-J	Low		I		
SYLI	ABU	S													
UNIT	-I :	INT	RODI	UCTI	ON									9	)
		jective on - Re					-	-		of a I	Basic	Syster	n - K	ey Are	eas of
UNIT	-II :	FOR	RMW	ORK	MAT	ERIA	LS A	ND T	YPES	;				9	)
Timbe Formy Precas	vorkS														
UNIT	-III :	FOR	RMW	ORK	DESI	GN								9	)
Conce	epts, F	formw	ork S	ystem	s and	Desig	n for F	Founda	ations,	, Wall	s, Col	umns,	Slab	and B	eams.
UNIT	C-IV	FOR	RMW	ORK	DESI	GN F	OR S	PECI	AL S'	<b>FRU</b>	CTUR	ES		9	)
Shells	, Don	nes, Fo	olded	Plates	, Ove	rhead	Water	Tank	s, Nati	ıral D	raft C	ooling	g Tow	er, Bri	dges.
UNIT	-V :	FOR	RMW	ORK	FAIL	URE	S							9	)
Form															
Cases	tudies	in Fo	rmwo	rk Fai	lure, l	Formw	vork Is	ssues i	n Mul	ti stoi	ry Bui	lding	Const	ruction	1.
											Т	OTA	L:45	PER	<b>IODS</b>
REFI															
1. 2.		nwork nwork							•						otion
۷.	2012				ie Su	ucture	28, Ku		leeraj	JIIa, I	l ala IV	icora	w 1111	Luuc	ation,
3.	IS 1	4687:	1999,	False	work	for C	oncret	e Stru	ctures	- Gu	ideline	es, BIS	5.		
4.		d, M.H				r Cono	crete,	Specia	al Pub	olicatio	on No	.4, A	merica	in Coi	ncrete
5		tute,D				tion D	road I	ondor	and	Now N	Vorla	2002			
5.	MIC	hael P		st, C01	Istruc		less, L	.011001		New 1	I OIK, A	2003.			
								-							
S.No.	N	ame of	f the F	'aculty		Designa	ation		ne of t College			N	Aail II	)	
1.	Mrs	s.Subat	thra P			AP/C	ivil		AVIT		5	subath	ra@av	it.ac.in	
2.	Ms	.Priyad	lharshi	ni R		AP/C	ivil	VN	ИKVE	C	priyad	lharshi	ni@vr	nkvec.	edu.in

		M		'ENA HABI				ND	Ca	ategor	y	L	Т	Р	C	redit
			KĽ		UCT				E	C-PS		3	0	0		3
	AMBI ady the		ages, 1	repair	and re	habili	itation	of str	ucture	s					<u> </u>	
<b>PREI</b> Nil	REQU	ISIT	E													
COU	RSE (	OBJE	CTIV	ES												
1	To st	udy th	ne impo	ortance	e of ma	intena	nce as	sessme	ent of c	listress	ed stru	uctures	8			
2	To A	pply tł	ne kno	wledge	e on Qu	uality a	assurar	nce for	concre	ete bas	ed on	Streng	th and	dDur	abil	ity
3	To Id	lentify	variou	is repai	ir mate	rials a	nd adv	ancem	ents ir	n concr	ete					
4	To st	udy th	ne knov	wledge	on Co	oncrete	protec	ction m	nethods	s Struc	tural h	ealth 1	nonit	oring	3	
5	To st	udy ab	out Va	arious	strengt	hening	g and re	epair n	nethod	s for di	ifferen	t cases	8			
COU	RSE (	OUTC	COME	ES												
On th	e succ	essful	comp	oletion	of the	e cour	se, stu	dents	will b	e able	to					
CO1	Expla struct		e imp	ortanc	e of	mainte	enance	asses	sment	of d	istress	ed	Uı	nders	stan	d
CO2			know] dDura	•	on Qu	ality	assurai	nce fo	r cond	crete b	ased	on		App	oly	
CO3	Ident	ify var	rious re	epair m	aterial	s and a	advanc	ement	s in co	ncrete				App	oly	
CO4	<u> </u>		e knov itoring	•	on C	Concre	te pro	tectior	n meth	nods S	tructu	ral	Uı	nders	stan	d
CO5	Selec	t Vario	ous str	engthe	ning a	nd repa	air met	hods f	or diff	erent c	ases		Uı	nders	stan	d
	PING COM		'H PR	OGR	AMM	E OU	JTCO	MES	AND	PRO	GRA]	MME	SPF	CIF	FIC	
COs	PO	РО	PO	PO	РО	РО	PO	РО	РО	PO	РО	PO	PSC	PS	50	PSO
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3
CO1	М	М	-	S	-	М	-	-	-	-	L	-	M		-	-
CO2	М	М	-	S	-	М	L	-	М	S	-	-	M		-	-
CO3	-	-	S	-	S	-	-	М	М	-	-	М	-	Ś	5	М
CO4	-	-	М	-	S	-	-	S	М	S	-	М	-	,	5	S

CO5	M	-	S	-	М	-	-	М	-	М	-	М	-	М	М
	S-St	rong	<u> </u>		1	M-M	edium	1			1	L-]	Low		1
SYLI	LABU	S													
UNIT	?-I :	MA	INTE	NAN	CE A	ND R	EPAI	R STI	RATE	GIES	<b>,</b>			9	)
Main	tenanc	e, Re	pair a	nd Re	ehabil	itation	, retro	ofit ar	nd stre	ngthe	ning,	need	for re	ehabili	tation
	ictures		cets					-				enance	,		and
preve	ntiver	nainte	nance,	, cause	es of c	leterio	oration	. Non	-destru	ictive	Testi	ng Tec	chniqu	ues	
UNIT	?-II :	STR	ENG	TH A	ND D	URA	BILIT	TY OI	FCON	ICRE	TE			9	)
Quali	ty as	ssuran	ce fo	or co	oncret	e ba	sed	on S	Strengt	th ai	nd E	Durabi	lity	- Th	ermal
prope	rties,r	nicros	tructu	re of	concr	rete –	packi	ng de	nsity-	Crac	ks, di	fferen	t type	es, cau	ses –
Effec	ts due	toclin	nate, te	emper	ature,	Susta	ined e	levate	ed tem	peratu	re, Co	orrosic	on.		
UNIT	-III :	REP	PAIR	MAT	ERIA	LS A	ND SI	PECL	AL CO	ONCE	RETE	S		9	)
Renai	ir mate	riale_	Vario	is ren	air ma	torial	Crite	aria fo	r mate	rial c		on Me	thode	ology c	f
-				-										terials,	
								-	-	-		-		ounds,	
-					-							-	-	ylate a	
Ureth	ane gi	outs, ]	Bondi	ngage	nts-L	atex ei	nulsic	ons, Ep	poxy b	ondin	g age	nts, Pr	otecti	ive	
coatir	ngs-Pr	otectiv	ve coa	tings t	forCo	ncrete	and S	teel, F	FRP sh	leets					
		PRC	)TEC'	TION	ME'	ГНОІ	DS AN	D ST	RUC	ΓURA	LH	EALT	H		
UNI	ľ-IV	MO	NITO	RINO	5									9	)
Conc	rete p	rotect	ion m	nethod	ls – 1	reinfo	rceme	nt pro	otectio	n me	thods	- Cor	rosior	n prote	ection
techn	iques-	- Corr	osion	inhib	itors,	concr	ete co	atings	s-Corr	osion	resist	ant st	eels,	Coatin	igs to
reinfo	orceme	ent,cat	hodic	proteo	ction,	Struct	ural h	ealth 1	nonito	oring.					
UNIT	-V :	REP	PAIR,	REH	ABIL	ITAT	TON	AND	RETH	ROFI	ΓTIN	G OF		9	)
			UCT												
Vario		athod	s of	orac	ror	air	Grout	na	Poutir		nd sa	aling	Stit	ching,	Dry
					-			0		0		0		nant ci	•
-	0	U		0		•	-				· •			e, Rep	
									-				-	) Jack	
				-										ed con	-
jacket	ting, S	Steel ja	acketii	ng, FI	RPjacl	keting	, Strer	ngthen	ing, B	Beam :	shear	streng	theni	ng, Fle	exural
streng	gtheni	ng													
											T	'OTA]	L:45	5 PER	IODS
DELI	FDEN	CES:													
<b>KEF</b>				on (	Oncre	ete S	tructu	es I	Protect	ion	Renai	ir and	1 Re	habilit	ation
1.		50 V	oous	on, (			uctul	, 1	101001	,	repa			maonna	unon,

Butterworth-Heinemann, Elsevier, New Delhi 2012

- 2. DovKominetzky.M.S., Design and Construction Failures, Galgotia Publications Pvt.Ltd.,2001
- 3. Ravishankar.K., Krishnamoorthy.T.S, Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures, Allied Publishers, 2004.
- 4. Hand book on Seismic Retrofit of Buildings, CPWD and Indian Buildings Congress, NarosaPublishers, 2008.
- 5. Hand Book on "Repair and Rehabilitation of RCC Buildings" Director General worksCPWD ,Govt of India , New Delhi 2002

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in
2.	Mrs.Srija J	AP/Civil	AVIT	srija.civil@avit.ac.in

MECHANICS OF FIBER REINFORCED	Category	L	Т	Р	Credit
POLYMERCOMPOSITE MATERIALS	EC-PS	3	0	0	3

#### PREAMBLE

To study the behaviour of composite materials and to investigate the failure and fracturecharacteristics.

# PREREQUISITE

Nil

# COURSE OBJECTIVES

1	To study various types of composites and its constituents	
2	To Derive the constitutive relationship and determine the stresses and strain material	ns ina composite
3	To Analyze a laminated plate	
4	To study about failure criteria and fracture mechanics of composites	
5	To design simple composite elements	
COU	RSE OUTCOMES	
On th	e successful completion of the course, students will be able to	
CO1	Explain the various types of composites and its constituents	Understand
CO2	Derive the constitutive relationship and determine the stresses and strains ina composite material	Apply
CO3	Analyze a laminated plate	Apply
CO4	Explain the various failure criteria and fracture mechanics of composites	Understand
CO5	Design simple composite elements	Apply
MAP	PING WITH PROGRAMME OUTCOMES AND PROGRAMMI	E SPECIFIC

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	РО	PSO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	L	L	L	-	-	-	-	-	L	-	М	Μ	L	Μ
CO2	S	М	М	-	-	-	-	-	-	L	-	-	S	М	М

CO3					1	1	r			1			1	1	
	S	S	М	-	-	-	-	-	-	L	-	-	S	М	М
CO4	М	М	М	-	-	-	-	-	-	L	-	-	S	М	S
CO5	S	S	S	-	-	-	-	-	-	S	-	М	S	S	S
	S- St	rong	I			M-Me	edium	l	L		L	L-l	Low		
SYLI	ABU	S													
UNIT	-I :	INT	ROD	UCTI	ON									9	)
matrix	const	ituent		ompos	ite C	onstru								l fiber Long	
UNIT	-II :	STR	ESS S	STRA	IN RI	ELAT	TIONS	5						9	)
Conce	epts i	n sol	id me	echani	cs, H	ooke'	s law	for	ortho	tropic	and	aniso	tropic	mate	erials,
Linea	rElast	icity f	or Ani	isotroj	oic Ma	aterial	s, Rota	ations	of Str	esses,	Strain	ns, Re	sidual	Stress	ses
UNIT	-III :	ANA	LYS	IS OF	LAN	IINA'	FED (	COM	POSI	ГES				9	)
Gover	ining (	equali	0115 10	1 anns	ouopi	anu	ormou	iopic j	plates.	Aligi	e-pry	anu ci	055 pi	y lami	mates
–Stati lamin	arstre	sses			_							e plate	s, Inte		)
lamin UNI	arstres	sses FAI	LURF	E ANI	) FRA	CTU	RE O	F CO	MPO	SITE	S			9	
lamin UNI Nettir	arstres -IV ng Ana	sses FAI alysis,	LURF	E <b>ANI</b> re Cri	<b>FRA</b> terion	CTU , Max	RE O	F CO	MPO	SITE	S				
lamin UNIT Nettir	arstres <b>F-IV</b> ng Ana nposit	sses FAI alysis, tes, Sa	LURF Failu ndwic	E <b>ANI</b> re Cri h Con	<b>) FR</b> A terion	CTU , Max ion.	RE O	F CO Stres	MPO	SITE	S			9	anics
lamin UNIT Nettir ofCor UNIT	arstrea -IV ag Ana nposit -V : and	sses FAI alysis, tes, Sa APP Cerar	LURF Failu ndwic LICA nic N	E ANI re Cri h Con <b>TIO</b> Iatrix	<b>D FRA</b> terion istruct <b>NS AN</b> Comj	CTU , Max ion. ND DI posite	RE O iimum ESIGN	F CO Stres V	MPO s, Ma	SITE ximur	S n Stra	in, Fra	acture	9 Mech	anics
lamin UNIT Nettir ofCor UNIT Metal	arstrea -IV ag Ana nposit -V : and	sses FAI alysis, tes, Sa APP Cerar	LURF Failu ndwic LICA nic N	E ANI re Cri h Con <b>TIO</b> Iatrix	<b>D FRA</b> terion istruct <b>NS AN</b> Comj	CTU , Max ion. ND DI posite	RE O iimum ESIGN	F CO Stres V	MPO s, Ma	SITE ximur	<b>S</b> n Stra mposi	in, Fra	acture	9 Mech 9	oints,
lamin UNIT Nettir ofCor UNIT Metal	arstrea -IV ag Ana nposit -V : and n with	sses FAI alysis, alysis, tes, Sa APP Ceran	LURE Failu ndwic LICA nic M posites	E ANI re Cri h Con <b>TIO</b> Iatrix	<b>D FRA</b> terion istruct <b>NS AN</b> Comj	CTU , Max ion. ND DI posite	RE O iimum ESIGN	F CO Stres V	MPO s, Ma	SITE ximur	<b>S</b> n Stra mposi	in, Fra	acture	9 Mech 9 osite J	oints,

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.Senthilkumar M	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in
1.	Mr.Ispara Xavier S	AP/Civil	AVIT	isparaxavier.civil@avit.ac.in

DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES	Category	L	Т	Р	Credit
	EC-PS	3	0	0	3

# PREAMBLE

To develop an understanding of the behaviour and design concrete composite elements and structures.

# PREREQUISITE

Nil

## **COURSE OBJECTIVES**

1	To study composite action	
2	To design composite elements	
3	To design connections	
4	To understand the concept of design of composite box girder bridges	
5	To study and evaluate case studies	
COU	RSE OUTCOMES	
On th	e successful completion of the course, students will be able to	
CO1	Explain composite action	Understand
CO2	Design composite elements	Apply
CO3	Design connections	Apply
CO4	Explain the concept of design of composite box girder bridges	Apply
CO5	Study and evaluate case studies	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	РО	PO	PO	РО	PSO	PSO	PSO								
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	S	L	-	-	L	М	S	М	М	М	М	М	S
CO2	S	S	S	L	М	-	L	М	S	М	М	М	М	М	S
CO3	S	S	S	М	-	-	-	L	М	L	М	М	М	М	М
CO4	S	М	L	-	-	-	М	М	М	-	-	-	М	М	М
CO5	-	М	-	М	-	М	S	М	М	М	М	М	-	S	L

S- Strong M-Medium L-Low										
SYLLA	ABUS									
UNIT-I		UCTION			9					
		- concrete composi ruction issues in desi		– Codes – Comj	posite action					
UNIT-I	II: <b>DESIGN</b>	OF COMPOSITE N	IEMBERS		9					
Design	of composite be	ams, slabs, columns;	beam – columns	- Design of compo	site trusses.					
UNIT-I	III : <b>DESIGN</b>	OF CONNECTION	8		9					
Shear c	connectors – Typ	es – Design of conne	ctions in compos	site structures – Des	ign of shear					
connect	tors – Partial she	ar interaction								
UNIT-	IV COMPOS	ITE BOX GIRDER	BRIDGES		9					
Introdu	ction - behaviou	r of box girder bridge	es - design conce	pts.						
UNIT-V					9					
Case st		UDIES - concrete composit	e construction i		mic behavior					
Case st	tudies on steel		e construction i							
Case st ofcomp	tudies on steel		e construction i		mic behavior					
Case st ofcomp <b>REFE</b> 1.	tudies on steel posite structures. RENCES: Johnson R.P., " andFrames for 2018	- concrete composit Composite Structure Buildings", Vol.I, Fo	s of Steel and C ourth Edition, B	<b>TOTAL : 4</b> Foncrete Beams, Sla lackwell Scientific	mic behavior <b>5 PERIODS</b> abs, Columns Publications,					
Case st ofcomp <b>REFEH</b> 1. 2.	tudies on steel posite structures. RENCES: Johnson R.P., " andFrames for 2018 Oehlers D.J. a	- concrete composit	s of Steel and C burth Edition, B , "Composite	TOTAL : 4 oncrete Beams, Sla lackwell Scientific Steel and Concret	mic behavior <b>5 PERIODS</b> abs, Columns Publications, te Structural					
Case st ofcomp <b>REFEH</b> 1. 2. 3.	tudies on steel posite structures. RENCES: Johnson R.P., " andFrames for 2018 Oehlers D.J. a Members,Funda Owens.G.W an	- concrete composit Composite Structure Buildings", Vol.I, Fo and Bradford M.A. mental behaviour", F d Knowles.P, "Stee	s of Steel and C purth Edition, B , "Composite Revised Edition, el Designers M	<b>TOTAL : 4</b> Joncrete Beams, Sla lackwell Scientific Steel and Concret Pergamon press, Ox anual", Seventh E	mic behavior <b>5 PERIODS</b> abs, Columns Publications, te Structural cford, 2000.					
Case st ofcomp <b>REFEH</b> 1. 2. 3. 4.	tudies on steel posite structures. <b>RENCES:</b> Johnson R.P., " andFrames for 2018 Oehlers D.J. a Members,Funda Owens.G.W an ConcreteInstitut Narayanan R, '	- concrete composit Composite Structure Buildings", Vol.I, Fo and Bradford M.A. mental behaviour", F d Knowles.P, "Stee e(UK), Oxford Black 'Composite steel str	s of Steel and C ourth Edition, B , "Composite Revised Edition, ? el Designers M well Scientific P	<b>TOTAL : 4</b> Foncrete Beams, Sla lackwell Scientific Steel and Concret Pergamon press, Ox anual", Seventh E Publications, 2011.	mic behavior <b>5 PERIODS</b> abs, Columns Publications, te Structural aford, 2000. dition, Steel					
Case st ofcomp <b>REFEH</b> 1. 2. 3. 4.	RENCES: Johnson R.P., " andFrames for 2018 Oehlers D.J. a Members,Funda Owens.G.W an ConcreteInstitut Narayanan R, ' Elsevier,Applied	- concrete composit Composite Structure Buildings", Vol.I, Fo and Bradford M.A. mental behaviour", F d Knowles.P, "Stee e(UK), Oxford Black 'Composite steel str d science, UK, 1987	s of Steel and C ourth Edition, B , "Composite Revised Edition, el Designers M well Scientific P uctures – Adva	<b>TOTAL : 4</b> Concrete Beams, Sla lackwell Scientific Steel and Concret Pergamon press, Ox anual", Seventh E Publications, 2011. nces, design and c	mic behavior <b>5 PERIODS</b> abs, Columns Publications, te Structural cford, 2000. dition, Steel construction",					
Case st ofcomp <b>REFEH</b> 1. 2. 3. 4. 5.	tudies on steel posite structures. <b>RENCES:</b> Johnson R.P., " andFrames for 2018 Oehlers D.J. a Members,Funda Owens.G.W an ConcreteInstitut Narayanan R, ' Elsevier,Applied Teaching resou	- concrete composit Composite Structure Buildings", Vol.I, Fo and Bradford M.A. mental behaviour", F d Knowles.P, "Stee e(UK), Oxford Black 'Composite steel str	s of Steel and C ourth Edition, B , "Composite Revised Edition, el Designers M well Scientific P uctures – Adva Steel Design,"	<b>TOTAL : 4</b> Concrete Beams, Sla lackwell Scientific Steel and Concret Pergamon press, Ox anual", Seventh E Publications, 2011. nces, design and c	mic behavior <b>5 PERIODS</b> abs, Columns Publications, te Structural cford, 2000. dition, Steel construction",					

AP/Civil

AVIT

subathra@avit.ac.in

Mrs.Subathra P

1.

2.	Ms.Priyadharshini R	AP/Civil	VMKVEC	priyadharshini@vmkvec.edu.i n
----	---------------------	----------	--------	----------------------------------

			DE	SIGN					Ca	ategor	y	L	Т	Р	Credit
				51K		URES	)		E	C-PS		3	0	0	3
PREA	AMBI	LE													
To de	sign, o	detail	and re	trofit	a maso	onry s	tructu	re.							
PREI	REQU	U <b>ISIT</b>	E												
Nil															
COU	RSE (	OBJE	CTIV	ES											
1	To st	udy th	e prop	erties c	of a ma	sonry	unit ar	nd the	various	s comp	onents	5			
2	To de	esign a	masor	nry stru	icture	for con	npress	ion							
3	To de	esign a	masor	nry stru	icture	for late	eral loa	ads							
4	To de	esign a	earthc	juake r	esistar	nt maso	onry w	all							
5	To st	udy th	e techr	niques	for exi	sting r	nasonr	y wall	s						
COU	RSE (	OUTO	COME	ES											
					of the			danta	:11 h	o oblo	<u>to</u>				
CO1			-							e able compo			Ur	ders	tand
CO2	Desig	gn a ma	asonry	struct	ure for	comp	ression	1							
CO3			-	struct		-								Appl Appl	
			•												
CO4				ke resi										App	
CO5	Sugg	est reti	rofittin	g techi	niques	for ex	isting 1	masoni	ry wall	S			Ur	ders	tand
MAP OUT			H PR	OGR	AMM	ΕΟ	JTCO	MES	AND	PRO	GRA	MME	SPE	CIF	IC
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	1		
COs	1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PS 2	
CO1	M	L	L	-	-	-	-	-	-	-	-	M	M	M	[ M
CO2	S	S	S	_	_	_	_	-	-	_	_	M	S	M	
CO2	S	S	S									M	S	M	
				-	-	-	-	-	-	-	-				
CO4	S	S	S	-	S	-	-	-	-	-	-	M	S	S	
CO5	S	S	S	S	-	-	-	-	-	-	-	Μ	Μ	S	S

S- Strong M-Medium L-Low										
SYLLABU	S									
UNIT-I :	INTRODU	JCTION		9						
Historicalde concrete b	evelopment,	nry construction - National a Modern masonry, Material Prop r, grout and reinforcement, Bo	erties - Masonry uni	ts: clay and						
UNIT-II :	DESIGN (	DF COMPRESSION MEMBER		9						
Compressio	n -Prism st	design, Masonry standards: IS rength, Eccentric loading -Kern d Vall, Pier and Foundation – Prestre	istance. Structural Wa	•						
UNIT-III :	DESIGN (	DF MASONRY UNDER LATER	AL LOADS	9						
MasonryMe andrigiddia	embers Anal phragms. Be	oads - In-plane and out-of-plane lo ysis of perforated shear walls, Late haviour of Masonry - Shear and fle and unreinforced masonry Infill	ral force distribution -	flexible						
UNIT-IV	ASEISMI	C DESIGN OF MASONRY STR	UCTURES	9						
ofshear wall planeand ou	ls for seismi ut-of-plane o ingTechniqu	sonry - Consideration of seismic le c design -Code provisions- Workin lesign criteria for load-bearing an es, Static Push Over Analysis and	g and Ultimate strengt d infills, connecting e	h design In- elements and						
UNIT-V :	RETROF	TTING OF MASONRY		9						
		Retrofit of Masonry - In-situ and strengthening of techniques.	non-destructive tests f	or masonry -						
			TOTAL:4	5 PERIODS						
REFEREN	CES:									
&De 2. A.W	esign",Prent	Hamid, A. H. and Baker, L. R. ce Hall Hendry, 1994. .P. Sinha and Davis, S. R, "Design								
	Schneider on,1994.	and W.L. Dickey, "Reinforced Ma	asonry Design", Prent	ice Hall, 3rd						
		Priestley, M. J. N., "Seismic De	esign of Reinforced C	Concrete and						

MasonryBuildings", John Wiley, 1992.

5. A.W. Hendry, "Structural Masonry", 2nd Edition, Palgrave McMillan Press, 1998.												
S.No.	Name of the Faculty	Designation	Name of the College	Mail ID								
1.	Mr.P.Sankar	AP/Civil	VMKVEC	sankarp@vmkvec.edu.in								
2.	Mrs.Abirami R	AP/Civil	AVIT	abirami.civil@avit.ac.in								

			DES			DUST	<b>FRIA</b>	Ĺ	Ca	tegor	y	L	Т	Р	C	redit
				51 K		UKES	•		E	C-PS		3	0	0		3
PREA To o Indus	dissen	ninate		wledg	je ab	out	plann	ing a	and	desigr	n of	RC	C a	nd	ST	EEL
<b>PREI</b> Nil	REQU	JISIT	E													
COU	RSE (	OBJE	CTIV	ES												
1	To st	udy th	e conc	ept of	planni	ng & f	unction	nal req	uireme	ent of i	ndustr	ial stai	ndard	s.		
2		•	and c ircase.	U	of Ste	el Gan	ıtry gir	ders &	c Cran	e girde	ers and	I RCC	desi	gn o	f co	rbels,
3	To A	nalyse	& des	ign of	coolin	g towe	ers, bur	nker, si	los an	d pipe	suppo	rting s	tructu	ires.		
4	То А	nalyse	and d	esign c	of Steel	l transı	missio	n line t	owers	and ch	imney	ſS.				
5	To de	esign f	oundat	tions fo	or cool	ing tov	wer, ch	imney	s and t	urbo g	enerat	or.				
COU	RSE (	OUTC	COME	ES												
On th	e succ	essful	comp	letion	of the	e cour	se, stu	dents	will b	e able	to					
CO1	Deve stand	•	e conce	ept of j	planniı	ng & f	unction	nal req	uireme	ent of i	ndustr	ial	Uı	nders	stan	d
CO2		-	d desig rbels, 1	-		-	girders	s & Cr	ane gi	rders a	and RO	CC		App	oly	
CO3		yse & tures.	design	of co	oling t	owers,	bunke	er, silos	s and j	pipe su	pporti	ng		App	oly	
CO4	Anal	yse and	d desig	n of S	teel tra	insmis	sion lir	ne towe	ers and	l chimr	neys.			App	oly	
CO5	Desig	gn foui	ndatior	ns for c	ooling	tower	, chim	neys a	nd turt	o gene	erator.			App	oly	
	PING COM		'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRAI	MME	SPE	ECIE	FIC	
COs	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO		50	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1		2	3
CO1	S	-	-	М	-	-	М	S	М	-	-	М	S		-	S
CO2	-	S	S	М	L	М	L	S	-	М	-	М	S		S	S
		1	1			1	1					1	1			

CO3

М

S

S

Μ

L

Μ

L

S

-

Μ

Μ

-

S

S

S

CO4	-	S	S	М	L	М	L	S	-	М	-	М	S	S	S
CO5	-	М	S	М	L	М	L	S	-	М	-	M	S	S	S
	S- St	rong				M-M	edium	l				L-l	Low		L
SYLI	LABU	S													
UNIT		r	NNIN	IG AN	ND FU	UNCT	TIONA	AL RI	EQUI	REM	ENTS	5		9	)
	lingLi	ghting	g, Ver	ntilatic					-		-	•		equirer vibrat	
UNIT	'-II :	IND	USTF	RIAL	BUIL	DINC	<b>FS</b>							9	)
Steel Stairc		RCC -	Gant	ry Gir	der, C	Crane	Girde	rs - D	Design	of Co	orbels	and I	Nibs -	- Desi	gn of
UNIT	'-III :	POV	OWER PLANT STRUCTURES 9												
Types Pipesu	-	-			ainme	ent str	ucture	s - Co	oling	Tower	rs - Bi	unkers	and S	Silos –	
UNIT	Γ-IV	TRA	NSM	ISSIC	)N LI	INE S	TRUG	CTUR	ES A	ND C	HIM	NEYS		9	)
-	ations	s,Meth	ods of			-							-	nd Te ney, D	
UNIT	-V :	FOU	JNDA	TION	ſ									9	)
Desig Desig							ineys	and C	Cooling	g Tow	vers -	Mach	ine F	oundat	tion -
											Т	OTA	L:45	PERI	ODS
REFI	EREN	CES:													
2. 3. 4.	<ol> <li>REFERENCES:         <ol> <li>Jurgen Axel Adam, Katharria Hausmann, Frank Juttner, Klauss Daniel, Industrial Buildings: A Design Manual, Birkhauser Publishers, 2004.</li> <li>Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGraw Hill,1992.</li> <li>Swami saran, Analysis &amp; Design of substructures, Limit state Design second Edition.</li> <li>D, N. Subramaniyan, Design of Steel Structures 2016</li> <li>N. Krishna Raju, Advanced Reinforced concrete Design, 3rd edition 2016,</li> </ol> </li> </ol>														
S.No.	N	ame of	f the F	aculty		)esigna	ation		me of Colleg			]	Mail I	D	

1.	Mr.Sanjaykumar R	AP/Civil	AVIT	sanjay.civil@avit.ac.in
1.	Mr.Sankar P	AP/Civil	VMKVEC	sankarp@vmkvec.edu.in

			0	PTIM					Ca	itegor	y	L	Т	Р	C	redit
				21K	UCT	URES			E	C-PS		3	0	0		3
PREA	AMBI	LE										I_				
To stu	udy the	e optir	nizati	on me	thodo	logies	applie	ed to s	tructu	ral en	gineer	ing.				
<b>PREI</b> Nil	REQU	JISIT	E													
COU	RSE (	OBJE	CTIV	<b>ES</b>												
1				gineeri tion teo	-		ntals to	o form	ulate a	ind sol	ve the	engine	ering	pro	bler	ns by
2	To Id	lentify,	, formı	ılate aı	nd solv	ve engi	neering	g probl	lems b	y linea	r and 1	non-lir	earpr	ogra	.mm	ing.
3	To A	nalyse	the pr	oblem	and re	ducing	g G.P.F	to a s	et of si	multar	neous	equatio	ons.			
4	То А	pply tł	ne Eng	ineerin	ıg knov	wledge	e to uno	derstan	d the c	concep	t of dy	mamic	progra	amn	ning	
5	To de	esign v	arious	structu	ural ele	ements	with r	ninimu	ım wei	ight.						
COU	RSE (	OUTC	COME	ES												
On th	e succ	essful	comp	oletion	of the	e cour	se, stu	dents	will b	e able	to					
CO1	· · ·			•	•		g fund ssical (					nd		Арр	oly	
CO2		ify, for rprogra			solve e	engine	ering p	problem	ns by I	linear a	and no	on-	Un	ders	stan	d
CO3	Analy equat		e prot	olem a	nd rec	lucing	G.P.F	to a	set of	f simu	ltaneo	ous		App	oly	
CO4		y the micpro	-	-	g knov	wledge	to u	Inderst	and tl	he coi	ncept	of		App	oly	
CO5	Desig	gn vari	ous str	uctura	l eleme	ents wi	ith min	imum	weigh	t.				App	oly	
	PING COM		H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIF	FIC	
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS	so	PSO
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2	3
CO1	S	М	-	-	-	-	М	-	-	-	-	-	-		-	-
CO2	-	М	-	-	М	-	-	-	-	-	-	-	М	N	Λ	М

S

-

Μ

-

-

-

-

-

-

-

Μ

-

-

Μ

Μ

CO3

CO4	S	М	-	-	М	-	-	-	-	-	-	-	М	М	М
CO5	-	М	L	М	-	L	М	M	M	М	М	М	S	S	S
	S- St	rong				M-M	edium	1				L-J	Low		
SYLI	ABU	S													
UNIT	-I :		IC PI CHNI(			S AN	D CL	ASSIC	CAL (	OPTI	MIZA	TION	J	9	)
Side,N infeas calcul no co	Definition - Objective Function; Constraints - Equality and inequality - Linear and non-linear Side,Non-negativity, Behaviour and other constraints - Design space - Feasible and infeasible- Convexand Concave - Active constraint - Local and global optima. Differential calculus – Optimalitycriteria - Single variable optimization - Multivariable optimization with no constraints (LagrangeMultiplier method) - with inequality constraints (Khun - Tucker Criteria).														
UNIT	-II :	LIN	EAR	AND	NON	LIN	EAR F	PROG	RAM	IMIN	G			9	)
LINE	AR Pl	ROGR	AMN	1ING:											
surplu Two p metho NON One I	s and ohase od. LINE Dimen nrestr olatio	artific metho AR Pl sional icted s n meth	cial va od - Pe ROGF minifisearch hods.U	ariable enalty RAMM mizati -Dicl Jncon	es - Ca metho AING: fonme hotom straino	anonic od- Du thods: ous so ed opt	cal for uality : Unid earch	m – E theory imens - Fibo tion Te	Basic f -Prin ional	easibl nal – 1 - Uni Meth	esolut Dualal modal	ion - s lgorith	simple 1m, Du tion –	rm - S ex met ual Sir Exhau ion m	hod - nplex ustive ethod
UNIT	-111:	GEC	JNIE	RIC	PROG	GKAI	VIIVIII	IG						9	
-	nstrair	ned an	d con	strain	•		-							equati 1g proł	
UNIT	C-IV	DYN	JAMI	C PR	OGR	AMM	IING							9	)
	Bellman's principle of optimality - Representation of a multistage decision problem- concept of sub-optimization problems using classical and tabular methods.														
UNIT	UNIT-V:STRUCTURAL APPLICATIONS9									1					
storie	dfram ed de	es usi sign-	ing pl Optin	lastic nizatio	theory on prin	y -Mi	nimur	n wei	ight d	lesign	for t	russ 1	memb	and s ers - s multi	Fully

## **REFERENCES:**

- 1. Iyengar.N.G.R and Gupta.S.K, "Structural Design Optimization", Affiliated East West PressLtd, New Delhi, 1997
- 2. Rao,S.S. "Engineering Optimization: Theory and Practice", Fourth Edition, Wiley Eastern(P) Ltd., 2013.
- 3. Spunt, "Optimization in Structural Design", Civil Engineering and Engineering MechanicsServices, Prentice-Hall, New Jersey 1971.
- 4. Uri Kirsch, "Optimum Structural Design", McGraw Hill Book Co. 1981.
- 5. Haftka, R. T. and Gurdal, Z., Elements of Structural Optimization, Springer, 3 rd Edition,1992

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Ms.Priyadharshini R	AP/Civil	VMKVEC	priyadharshini@vmkvec.edu.i n
2.	Ms.Ispara Xavier S	AP/Civil	AVIT	isparaxavier.civil@avit.ac.in

			DE	SIGN					Ca	tegor	y	L	Т	P	Credit
				STR	UCT	URES	•		E	C-PS		3	0	0	3
PREA	AMBI	LE													
To stu	To study the behaviour, analysis and design of high rise structures.														
	PREREQUISITE														
Nil	Nil														
COU	RSE (	OBJE	CTIV	<b>'ES</b>											
1	To st build		bout f	fundam	entals	to un	dersta	nd the	desig	n crite	riaand	struc	tural	form	s of tall
2	To Id	lentify	the eff	fects of	f loadi	ng in h	igh ris	e struc	tures.						
3	To de	esign t	he spe	cial str	uctures	s such	as chir	nneys	and co	oling t	owers				
4	To A	nalyze	and d	esign t	he tran	ismissi	on tow	ver and	l TV to	owers.					
5	To st	udy ab	out so	ftware	to ana	lyze th	e engi	neering	g prob	lems.					
COU	RSE (	OUTC	COMI	ES											
On th	e succ	essful	comp	oletion	of the	e cour	se, stu	dents	will b	e able	to				
CO1	· · ·	•		•	•		•	lament ildings		unders	tand t	he	Un	ders	tand
CO2	Ident	ify the	effect	s of loa	ading i	n high	rise st	ructure	es.				Un	ders	tand
CO3	Desig	gn the	special	l struct	ures su	ich as	chimne	eys and	1 cooli	ng tow	ers.		1	App	ly
CO4	Anal	yze an	d desig	gn the t	ransm	ission	tower	and TV	/ towe	rs.			1	App	ly
CO5	Selec probl		moder	n soph	nisticat	ed sof	tware	to ana	alyze t	he eng	gineeri	ng	1	App	ly
			'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIF	IC
OUT	COM														
COs	PO	PO	РО	PO	PO	PO	PO	PO	PO	РО	РО	PO	PSO 1	PS 2	
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	-	-	-	-	-	-	М	-	М	-	-	М	-	-
CO2	-	М	-	-	-	-	-	-	-	L	-	-	S	N	1 M
CO3	-	М	S	-	М	М	-	-	-	М	-	-	S	S	Н
CO4	-	S	-	-	S	S	-	-	-	-	-	-	S	S	M

CO5	S	S	-	L	S	S	М	S	М	-	L	L	S	M	-
;	S- Sti	rong				M-M	edium	L				L-	Low	I	1
SYLL	ABU	S													
UNIT-	-I :	DES	IGN	CRIT	ERIA	<b>L</b>								ļ	)
High rise buildings – Structural systems and concepts, configurations - Design philosophy,Introduction to Performance based seismic design, Effect of openings. Large panel construction.Foundation - superstructure interaction.															
UNIT-	-II :	LOA	DIN	G										ļ	)
Gravity loading: Dead and live load, methods of live load reduction, Impact loads, Constructionloads. Wind loading: static and dynamic approach, Analytical and wind tunnel experimentationmethod. Earthquake loading: Equivalent lateral force, modal analysis - Combinations of loading. 9															
	-													-	•
Desigr Coolin													vision	s –	
UNIT	-IV	ANA	LYS	IS AN	D DI	ESIGN	N OF 1	ΓRAN	ISMIS	SSIO	N TO	WER		ļ	)
Mast a -TV to						racing	syste	m, ana	alysis	and d	esign	of Tra	ansmis	ssion t	owers
UNIT-	-V :	APP	LICA	TION	N OF	MOD	ERN	SOF	ſWAF	RE				ļ	)
Computanalyse Pro.											2000 °	), ETA	ABS a	nd ST	TAAD
											1	OTA	L:45	PER	IODS
REFE				~											
	Bee 198	dle.L.S 5.	S., "A	dvanc	es in	Tall	sis and Buildin ilding	ngs",	CBS 1	Publis	hers a	and D	istribu	itors,	Delhi,
5.		Sons, l			А, Т	all Du	nung	Suuci	uies -	Allar	y 515 ai		sigii ,	JOIIII	wney
4.		·			•		tures, '			· -		,	ondon,	2017	
5.	Schu	uller V	V. G, '	"High	rise t	ouildin	g strue	ctures	"- Joh	n Wile	ey,197	77.			
S.No.	N	ame of	f the F	aculty	7 <b>I</b>	Design	ation		ne of t College			ľ	Mail II	)	

1.	Ms.Priyadharshini R	AP/Civil	VMKVEC	priyadharshini@vmkvec.edu.in
2.	Ms.Ispara Xavier S	AP/Civil	AVIT	isparaxavier.civil@avit.ac.in

	DESIGN OF OFFSHORE STRUCTURES	Category	L	T	Р	Credit	
	STRUCTURES	EC-PS	3	0	0	3	
PREAMBI	E		C-1 (	· · · · · · · · · · · · · · · · · · · ·			

To impart knowledge about the concept of wave theories, forces, offshore foundation, analysis and design of jacket towers, pipes and cables.

## PREREQUISITE

Nil

## **COURSE OBJECTIVES**

1	To study about the concept of wave theories
2	To study about wave forces and offshore structures
3	To study about the modeling for offshore structure and its foundation
4	To Analyse offshore structures by means of static and dynamic methods
5	To design of jacket towers, mooring cables and pipelines

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1	Develop the concept of wave theories	Understand
CO2	Apply the knowledge of wave forces and offshore structures	Apply
CO3	Explain the modeling for offshore structure and its foundation	Understand
CO4	Analyse offshore structures by means of static and dynamic methods	Apply
CO5	Design of jacket towers, mooring cables and pipelines	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

PSO 2	PSO 3
2	5
L	S
L	S
S	S
S	S
S	S
-	L S S

	S- Strong	M-Medi	ium	L-Low		
SYLL	ABUS		I			
UNIT-	I: WAVE T	HEORIES			9	
Wave	generation proces	ss, small, finite amp	itude and nonlinea	r wave theories.	I	
UNIT-	II: FORCES	OF OFFSHORE S	TRUCTURES		9	
Wind equation		rces on small bodie	es and large bodi	es - current force	s – Morison	
UNIT-	III : OFFSHO	RE SOIL AND ST	RUCTURE MOD	ELLING	9	
	ent types of offsh ralmodeling.	ore structures, found	lation modeling, fi	xed jacket platform	1	
UNIT		9				
Static 1	method of analys	is, foundation analy	sis and dynamics o	f offshore structure	es.	
UNIT-V : DESIGN OF OFFSHORE STRUCTURES						
UNIT-	V:   DESIGN	OF OFFSHORE S	FRUCTURES		9	
	ı of platforms, l	OF OFFSHORE S			g cables and	
Design	ı of platforms, l				g cables and	
Design pipelin	ı of platforms, l					
Design pipelin <b>REFE</b> 1.	n of platforms, l les <b>RENCES:</b> Chakrabarti, S.k	nelipads, Jacket tov	ver, analysis and	TOTAL : 4	g cables and 5 PERIODS	
Design pipelin <b>REFE</b> 1. 2.	n of platforms, h les RENCES: Chakrabarti, S.F Chakrabarti, S.F	nelipads, Jacket tov	ver, analysis and	<b>TOTAL : 4</b> by, Elsevier, 2005, res, Springer – ver	g cables and 5 PERIODS	
Design pipelin <b>REFE</b> 1. 2. 3.	n of platforms, l les RENCES: Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k	nelipads, Jacket tov K., Handbook of Off K., Hydrodynamics of K. 1994, Offshore St	ver, analysis and shore Engineering of Offshore Structu ructure Modelling:	<b>TOTAL : 4</b> by, Elsevier, 2005 res, Springer – ver World Scientific	g cables and <b>5 PERIODS</b>	
Design pipelin <b>REFE</b> 1. 2. 3. 4.	n of platforms, h les RENCES: Chakrabarti, S.F Chakrabarti, S.F Chakrabarti, S.F Chakrabarti, S.F	helipads, Jacket tov K., Handbook of Off K., Hydrodynamics of K. 1994, Offshore St , S. 2017. Dynamic	ver, analysis and shore Engineering of Offshore Structu ructure Modelling: analysis and design	TOTAL : 4 by, Elsevier, 2005 res, Springer – ver World Scientific n of ocean structure	g cables and <b>5 PERIODS</b>	
Design pipelin <b>REFE</b> 1. 2. 3.	n of platforms, h les RENCES: Chakrabarti, S.F Chakrabarti, S.F Chakrabarti, S.F Chakrabarti, S.F	nelipads, Jacket tov K., Handbook of Off K., Hydrodynamics of K. 1994, Offshore St	ver, analysis and shore Engineering of Offshore Structu ructure Modelling: analysis and design	TOTAL : 4 by, Elsevier, 2005 res, Springer – ver World Scientific n of ocean structure	g cables and <b>5 PERIODS</b>	
Design pipelin <b>REFE</b> 1. 2. 3. 4.	n of platforms, l nes RENCES: Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chandrasekaran B. Gou, S.Song	helipads, Jacket tov K., Handbook of Off K., Hydrodynamics of K. 1994, Offshore St , S. 2017. Dynamic	ver, analysis and shore Engineering of Offshore Structu ructure Modelling: analysis and design	TOTAL : 4 by, Elsevier, 2005 res, Springer – ver World Scientific n of ocean structure	g cables and <b>5 PERIODS</b>	
Design pipelin <b>REFE</b> 1. 2. 3. 4.	n of platforms, l nes RENCES: Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chandrasekaran B. Gou, S.Song	helipads, Jacket tov K., Handbook of Off K., Hydrodynamics of K. 1994, Offshore St , S. 2017. Dynamic g, J Chacko and A.	ver, analysis and shore Engineering of Offshore Structu ructure Modelling: analysis and design Ghalambar, offsh	TOTAL : 4 by, Elsevier, 2005 res, Springer – ver World Scientific n of ocean structure ore pipelines, GP	g cables and <b>5 PERIODS</b>	
Design pipelin <b>REFE</b> 1. 2. 3. 4. 5.	n of platforms, l les RENCES: Chakrabarti, S.k Chakrabarti, S.k Chakrabarti, S.k Chandrasekaran B. Gou, S.Song 2006.	Anelipads, Jacket tow K., Handbook of Off K., Hydrodynamics of K. 1994, Offshore St J. S. 2017. Dynamic g, J. Chacko and A. Faculty Designation	wer, analysis and shore Engineering of Offshore Structu ructure Modelling: analysis and design Ghalambar, offsh	TOTAL : 4 by, Elsevier, 2005 res, Springer – ver World Scientific n of ocean structure ore pipelines, GP	g cables and IS PERIODS	

PERFORMANCE OF	Category	L	Т	Р	Credit
STRUCTURES WITH SOIL STRUCTURE INTERACTION	EC-PS	3	0	0	3

# PREAMBLE

To study the concept of soil-structure – interaction in the analysis and design of structures.

# PREREQUISITE

Nil

# COURSE OBJECTIVES

000									
1	To study the concept of soil structure interaction.								
2	To study the soil structure interaction and estimate the contact press and settlement	ure							
3	To study the dynamic analysis of soil structure interaction problems								
4	To study the various SSI models								
5	5 To Analyze structural elements like shallow, Raft and pile foundation and analyze highrise building bases								
COU	RSE OUTCOMES								
On th	e successful completion of the course, students will be able to								
CO1	Explain the concept of soil structure interaction.	Understand							
CO2	Do a static analysis of soil structure interaction and estimate the contact pressureand settlement	Apply							
CO3	Do a dynamic analysis of soil structure interaction problems	Apply							
CO4	Explain the various SSI models	Understand							
CO5	CO5 Analyze structural elements like shallow, Raft and pile Apply								
	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES								

COs	PO	PO	PO	PO	РО	PO	PO	РО	РО	PO	РО	PO	PSO	PSO	PSO
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	S	S	М	S	М	L	L	L	L	L	L	S	S	S	М
CO2	S	S	М	S	М	L	L	L	L	L	L	М	S	S	М

CO3	S	S	М	S	М	L	L	L	L	L	L	М	S	S	М
CO4	S	S	M	S	M	L	L	L	L	L	L	S	S	S	М
CO5	S	S	SS	S	М	L	L	L	L	L	L	М	S	S	Μ
	S- St	rong				M-M	edium	Ì				L-I	Low		
SYLI	LABU	S													
UNIT	'-I :	INT	ROD	UCTI	ON									9	
Introd	luction	n to S	oil-str	ucture	intera	ction	(SSI)	proble	ems, h	istory	- Stat	ic SSI	- Dyı	namic	SSI -
			lems a				• • •			2			2		
UNIT	'-II :	STA	TIC S	SSI Pl	ROBI	EMS								9	1
Conta	Contact pressure and its estimation - Estimation of the settlement from the constitutive lawsUNIT-III :DYNAMIC SSI PROBLEMS9														
UNIT	-III :	DYN	NAMI	C SSI	I PRO	BLE	MS							9	l
Free-f	Free-field response - Kinetic interaction - Inertial interaction														
UNIT-IV     SSI MODELS     9															
Winkler model - Elastic continuum-Multi parameter models -Codal provisions of India and others															
UNIT	-V :	STR	RUCT	URAI	L ANA	LYS	IS WI	TH S	SI					9	1
Shallo	ow fo	undati	on &	Raft f	ounda	tion p	oroble	ms - A	Analys	sis of I	high r	ise bu	ilding	g with	fixed
base a	undfle	xible l	base -	SSI co	onside	ration	in pil	e four	ndation	n - Lat	erally	loade	d pile	s	
											Т	OTAI	L:45	PERI	ODS
REFI	TDEN	ICES													
			• /olf, (1	985)	Soil-si	ructu	re inte	ractio	n Pre	ntice F	Hall 1	987			
			.Е., "А										cGrav	v Hill	Book
		-	York.,	-			1								
3.			S. and		stian .	J.T., '	'Nume	erical	Meth	ods in	Geo	techni	cal E	nginee	ring"
	Mc	GrawH	Hill Bo	ok Co	o. New	V York	ζ.								
4.			ucture Engin			n, the	e rea	l bel	haviou	ır of	stru	ctures	, Ins	titutio	n of
5.			elvadu			Analy	ysis o	f Soil	Four	ndation	n Inte	ractio	n, De	velopi	nents
			nnical											-	
6.			S., an				., "Pil	e Fou	indatio	ons in	Engi	neerir	ng Pra	ctice.'	'John
	W1l	ey &S	Sons, N	lew Y	ork, l	990.									

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Mr.Sankar P	AP/Civil	VMKVEC	senthilkumar@vmkvec.edu.in
1.	Mrs.Subathra P	AP/Civil	AVIT	subathra@avit.ac.in

		DESIGN OF BRIDGE	Category	L	Т	Р	Credit								
		STRUCTURES	EC-PS	3	0	0	3								
		PREAMBLE													
	To study the loads, forces on bridges and design of several types of bridges.														
	PREREQUISITE														
	Nil														
	COURSE OBJECTIVES														
1		To study the types of bridges a	nd design philo	sophies											
2		To design a RC solid sla	b culvert bridg	e											
3		To design a RC Tee Bean	n and Slab brid	ge											
4		To design the bridge bearin	gs and substruc	ture											

5			,	Fo des	sign of	PSC b	oridges	, box g	girder l	bridges	s, truss	bridge	es		
					(	COUR	SE O	UTC	OME	S					
		On t	the suc	ccessfi	ıl con	pletic	on of t	he cou	ırse, s	tudent	s will	be ab	le to		
CO1		Explai	n the c	lifferer	nt types	s of bri	idges a	ind des	sign ph	nilosop	hies		Unc	lerstar	nd
CO2			Ι	Design	a RC s	solid s	lab cul	vert bi	ridge				A	Apply	
CO3			D	esign a	RC T	ee Bea	ım and	Slab b	oridge				A	Apply	
CO4			Des	ign the	bridge	e beari	ngs an	d subs	tructu	re			A	Apply	
CO5	Ex	plain tl	he desi	gn of l	PSC br	idges,	box gi	rder b	ridges,	, truss l	oridges	5	A	Apply	
MA	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
						C	UTC	OME	S						
COs	РО	РО	PO	РО	РО	РО	РО	РО	PO	PO	РО	PO	PSO	PSO	PSO
COS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
CO1	S     S     S     L     M     S     S     L     M     L     S     S     S														
CO2	S     S     M     L     M     S     S     L     M     L     S     S														S
CO3	S	S	S	М	L	М	S	S	L	М	L	S	S	S	S
CO4	S	S	S	М	L	М	S	S	L	М	L	S	S	S	S
CO5	S	S	S	М	L	М	S	S	L	М	L	S	S	S	S
	S- St	rong				M-M	edium	Ì				L-l	Low		L
		-				S	SYLL	ABUS	5						
UNIT	Г-І:					INT	ROD	UCTI	ON					9	
										cess -				0	
										e Desi king S					
										d of D					
UNIT	`-II :			5	SUPE	RSTR	RUCT	URES	S – Pa	rt – I				9	)
Select	tion of	l f main	bridg	e para	meter	s, desi	ign me	ethodo	ologie	s -Cho	oices o	of supe	erstruc	ture ty	pes -
Ort	hotro	pic pla	ate the	ory, lo	oad dis	stribut	ion te	chniq	ues - (	Grillag	e anal	lysis -	Finite	elem	ent
analys Trans				-						Longi CC so			-		-
UNIT	-III :			S	UPEI	RSTR	UCT	URES	– <b>Pa</b>	rt – II				9	)
Desig	gn of	RCC 7	Tee be	eam ar	nd slat	bridg	ges - D	Design	princ	iples o	of cont	tinuou	ıs gird	er bric	lges,

boxgi	rder bridges, balanced o	cantilever bridge brid	-	s – Box culverts –	Segmental									
UNIT-	IV SUBSTRUC	TURE, BEARI	NGS AND DEC	CK JOINTS	9									
	er - Abutment - Wing v ations -Open foundation bearings ande	-	on - Well founda	ation Different typ	• 1									
UNIT-V : PRESTRESSED CONCRETE BRIDGES & STEEL 9 BRIDGES														
Introduction to Design of PSC bridges – PSC girders – Introduction to design of steel bridges														
Introduction to Design of PSC bridges – PSC girders – Introduction to design of steel bridges -Plate girder bridges – Box girder bridges – Truss bridges – Vertical and Horizontal stiffeners.														
		TOTAL : 45	5 PERIODS											
		REFER	ENCES:											
1.	Jagadeesh. T.R. and Jay	yaram. M. A., "I	Design of Bridge	e Structures", Seco	ond Edition,									
	Prentice Hall of India P													
	Johnson Victor, D. "E IBHPublishing Co. Nev		dge Engineering	g", Sixth Edition,	Oxford and									
	Ponnuswamy, S., "Brid		' Third Edition	Tata McGraw Hil	1 2017									
	Raina V.K." Concrete I													
	Delhi,1991.			0	I									
5.	Design of Highway B	ridges, Richard	M. Barker & J	ay A. Puckett, Jo	ohn Wiley &									
	Sons, Inc.,2007													
S.No.	Name of the Faculty	Designation	Name of the College	Mail	ID									
1.	Ms.Priyadharshini R	AP/Civil	VMKVEC	priyadharshini@v	mkvec.edu.in									
2.	Ms.Ispara Xavier S	AP/Civil	AVIT	isparaxavier.civi	10 1/ 1									

		STRUCTURES							L	T	P	Credit			
				518	UCI	UKES	•		E	C-PS	3	0	0	3	
PREA	AMBI	E													
To St	udy th	e beha	aviour	and c	lesign	of she	ells, fo	lded pl	ates,	space f	rames a	and ap	plicat	ion of	
FORM	MIAN	softw	are.												
<b>PRE</b> Nil	REQU	JISIT	E												
COU	RSE (	OBJE	CTIV	<b>ES</b>											
1	To st	udy ab	out the	e shell	s and c	lesign	the dor	nes and	shell	S					
2	To study about the shells and design the domes and shells         To study about the structural behaviour and design of folded plate structures         To study about the structural behaviour and design of folded plate structures														
3	To study about the various functional configurations of space frames														
4		lesign estructi		pace	frames	and	apply	the k	nowle	edge of	CAD	for t	ne an	alysis of	
5	To ar	nalyse	the co	nfigura	ations of	of spac	e struc	tures us	ing F	ORMIA	N softw	vare			
COU	RSE (	OUTC	COMI	ES											
On th	e succ	essful	comp	letion	of the	e cour	se, stu	dents v	vill b	e able to	C				
CO1	Expla	ain the	differ	ent for	ms of a	shells a	and des	ign the	dome	es and sh	nells	ι	Jnder	stand	
CO2	Evalı	late th	e struc	tural b	ehavio	our and	desigr	of fold	led pl	ate struc	tures		Арр	oly	
CO3	Expla	ain the	variou	ıs func	tional	config	uration	s of spa	ice fra	ames			Арр	oly	
CO4	-	-	space spaces			apply	the k	nowled	ge of	CAD 1	for the		Арј	oly	
CO5	Analy softw		ne con	ıfigura	tions	of spa	ace str	ructures	usir	ng FOR	MIAN		Ар	oly	
	PING COM		'H PR	OGR	AMM	IE OU	JTCO	MES A	AND	PROG	RAMN	ME SI	PECI	FIC	
	PO	PO	PO	РО	РО	PO	PO	РО	PO	PO	PO P	0 0		SO PSO	

COs	РО	РО	РО	РО	PO	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	S	S	S	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	S	S	-	-	-	-	-	-	-	-	-	М	-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CO4	S	М	М	-	-	-	-	-	-	-	-	-	М	-	-	
CO5	S	-	-	-	М	М	-	-	-	-	-	-	-	-	-	
	S- St	rong				M-M	edium	1 1				L-]	Low			
SYLI	ARI	S														
UNIT			SSIF	ICAT	TION	OF S	HELI	LS						9	)	
Classi	ficati	on of s	shells.	types	s of sł	nells, s	structu	ral ac	tion	Desi	gn of	circul	ar don	nes. co	onical	
roofs,				• •							6			,		
UNIT	-II :	FOL	DED	PLA'	TES									9	)	
Foldo		to st		<u>.</u>	matu	nol ha	havia			daaia				SCE	Tool	
Folde			- A	SCE	Task											
			nethod – pyramidal roof- Prismoidal roof.  INTRODUCTION TO SPACE FRAME  9													
UNIT	-111:														1	
Space	fram	es - configuration - types of nodes - Design Philosophy - Behaviour														
UNIT	UNIT-IV ANALYSIS AND DESIGN														)	
Analy	rsis of	f snac	e fran	nes –	Desi	on of	Node		Dines	- Sna	ce fra	mes -	– Intro	oducti	on to	
Comp		-			Desi	gii oi	TYOU	.5 1	ipes	- Spa		incs	muv	Juucti		
UNIT	-V·	SPF	CIAL	MF	гног	<u>)</u> S								9	)	
														,		
Appli	cation	of Fo	ormex	Algeb	ora, FO	ORML	AN fo	r gene	eration	of co	nfigur	ration.				
											Т	OTA	L:45	PER	ODS	
REFE	EREN	CES:														
				, "Th	in Sh	ell Co	oncrete	e Stru	ctures	", M	cGraw	Hill	Book	Co.,	New	
•		k, 198						-	•							
2.		-			-	Rein	force	d Coi	ncrete	Shel	ls and	d Fol	ded I	Plates,	PHI	
2		rningP				Strue	turasi	Driv	ainla	0.00	1 Dro	ation"	· M	ulti Co	ionoo	
5.		lishing				Suuc	tures.	<b>F</b> 111	leipies			ictice	', Mı	uni-se	lence	
4		-	-			sis D	esion	and	Const	ructio	n of	Steel	Space	e Fra	mes"	
		masTe			-		-		2 51100			~	~puo			
5.	Wi	by.C ʻ	"Conc	rete F	olded	Plate	Roofs	s", Els	evier,	1998.						
S.No.	N	ame o	f the F	aculty	y I	Designa	ation	Na	me of	the			Mail I	D		
									Colleg	e						

AP/Civil

VMKVEC

senthilkumar@vmkvec.edu.in

Mr.Senthilkumar M

1.

2.	Mrs. Srija J	AP/Civil	AVIT	srija.civil@avit.ac.in

			STRU	ICTU	RAL	STAI		Y	Ca	ategor	y	L	T	Р	Credit
						01111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	F	C-PS		3	0	0	3
PREA	AMBI	LE LE													
To stu	udy th	e conc	cept of	buck	ling ar	nd ana	lysis o	of stru	ctural	eleme	ents				
<b>PRE</b> Nil	REQU	JISIT	E												
COU	RSE (	OBJE	CTIV	<b>ES</b>											
1		udy al		f buckl	ing of	colum	ns and	l calcu	late th	e buck	ling lo	oad on	colum	n by	various
2	To de	etermi	ne the	bucklii	ng load	l of be	am – c	olumn	s and f	rames					
3	To ex	xplore	the co	ncepts	of tors	ional a	and late	eral bu	ckling	of thin	ı walle	d men	nbers		
4	Expl	ain the	pheno	menor	n of bu	ckling	of pla	tes							
5	Anal	yze the	e inelas	stic buo	ckling	of colu	umns a	nd pla	tes						
COU	RSE (	OUTO	COMI	ES											
On th	e succ	essful	comp	letion	of the	e cour	se, stu	dents	will b	e able	to				
CO1	_		e phen ad onc				-		ins and	d calcu	ulate t	he	Un	ders	tand
CO2	Estin	nate th	e buck	ling lo	ad of b	eam –	colum	ins and	l frame	es			1	Appl	у
CO3	Expl mem		e conc	epts of	f torsic	onal ar	nd late	ral bu	ckling	of thi	n wall	ed		Appl	У
CO4	Expla	ain the	pheno	menor	n of bu	ckling	of pla	tes					1	Appl	у
CO5	Anal	yze the	e inelas	stic buo	ckling	of colu	umns a	nd pla	tes				1	Appl	у
MAP	PING	WIT	'H PR	OGR	AMM	IE OU	JTCO	MES	AND	PRO	GRA	MME	SPE	CIF	IC
OUT	СОМ	ES													
COs	PO	РО	PO	РО	РО	РО	РО	PO	РО	PO	РО	РО	PSO 1	PS 2	
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	S	S	S	S	М	М	-	-	-	-	-	S	S	S	
CO2	S	S	S	S	М	М	-	-	-	-	-	S	S	S	S
CO3	S	S	S	S	М	М	-	-	-	-	-	S	S	S	S
CO4	М	S	М	М	L	М	-	-	-	-	-	S	S	S	S

CO5	S	S	S	S	Μ	М	-	-	-	-	-	S	S	S	S
	S- St	rong				M-M	edium	l				L-l	Low		
SYLI	LABU	S													
UNIT	`-I :	BUC	CKLIN	NG O	F CO	LUM	NS							1	2
States	of eq	uilibri	um - 0	conce	pt of e	equilit	orium,	energ	y, imp	erfect	ion an	d vib	ration	appro	aches
	•	•			-	-					-				using
-					-	-			ls - R	ayleig	h Ritz	z, Gale	erkins	appro	oach -
Nume	erical	Techni	iques ·	-Finite	e diffe	erence	metho	od							
UNIT	'-II :	BUC	CKLIN	NG O	F BE	AM-C	COLU	MNS	AND	FRA	MES			1	2
Theor	y of	beam	colu	mn -	Stabi	ility a	nalysi	s of	beam	colur	nn wi	ith si	ngle	and se	everal
conce	ntrate	dloads	s, disti	ribute	d load	and	end co	ouples	- An	alysis	of rig	gid joi	nted f	frames	s with
and w	rithout	t sway	–Use	of sta	bility	functi	on to	detern	nine th	ne crit	ical lo	ad.			
UNIT	-III :	TOF	RSION	NAL A	AND ]	LATE	RAL	BUC	KLIN	G				1	2
Torsi	IT-III : TORSIONAL AND LATERAL BUCKLING sional buckling – Combined Torsional and flexural buckling - Local buckli														ling
		tions -	-							-			-		0
UNIT	-IV	BUC	CKLIN	NG O	F PL	ATES								1	2
Gover	rning	differ	ential	equat	tion -	Buck	ling o	of thir	n plate	es wit	h vari	ous e	dge c	conditi	ions -
Analy	vsis by	equili	brium	and e	energy	appro	oach –	Finite	e diffe	rence	metho	d			
UNIT	-V :	INE	LAST	TIC B	UCK	LING								1	2
Doub	le mo	dulus	theor	<b>rx</b> / _	Tange	ent m	odulu	theo	rv -	Shan	ev's	mode	_ F	ccentr	rically
loade				-	-				-		-				leally
											U		•		
											T	OTAI	L:60	PER	IODS
		CES:													
1.			Kumar	, "Sta	bility	Theor	ry of S	Structu	ıres",	Allied	l publi	shers	Ltd.,	New 1	Delhi,
2	200		"D	.:.1.	6 04		G4-	1.:1:4	T1	" D.		TT - 11	1074		
		jes, A.		-											York,
5.	201		v1.L,	Stabl	inty P	marys	is and	Desi	gii 01	Struc	tures	, spin	liger,	INCW	TOIK,
4.			G.J an	d Ho	dges I	D.H, "	Funda	menta	als of	Struct	ural S	tabilit	y", El	sevier	Ltd.,
	200				C										-
5.	Tim	oshen	ko. S	. P, a	and C	Gere.	J.M,	"Theo	ry of	Elast	tic Sta	ability	", M	cGraw	/ Hill
	Boo	kCom	pany,	1963											

S.No.	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Ms.Priyadharshini R	AP/Civil	VMKVEC	priyadharshini@vmkvec.edu.in
2.	Ms.Ispara Xavier S	AP/Civil	AVIT	isparaxavier.civil@avit.ac.in

# OPEN ELECTIVES ON EMERGING AREAS

			MET	AL											
		ADDITI	VEMA	NUFA	ACTUR						т		D		odit_
			IN	G			OEE	A	3		0		0		3
						_									
Course	Ohioc	i.vo				Prere	auisi	te:-Ni							
Course			l tha k		rincin		aatha	de ar	ooc of			cibili	tiona	ad	
1		lerstand tations													3
2		ect suita n sound						ntof	parts ι	using	additi	ve m	anufa	cturir	ng
	Sele	ect suita	ble pr	ocess	es fro	m var	ious r	netal	additi	ve m	anufa	cturir	ng pro	cesse	s as
3	per	the pro	duct r	equir	ement	l									
4		elop an niques								cturir	ng and	post	proce	essing	5
•	Des	ign the	parts	for m	etal ac	ditiv	e mar	ufact	uring						
5															
<u>Course</u> CO1.	Unde	mes:On rstand ive mar	the ba	isic pr	inciple	es, ap								derst	and
CO2.	Understand how to select suitable materials from the existing or develop new materials for additive manufacturing       Understand							and							
CO3.		erstand applica		-	•	•	f vario	ous m	ethod	ls in N	MAM	and	Uno	dersta	and
CO4.		uce a de process			-	arts w	/ith su	iitable	e mate	erial s	electi	on an	id App	oly	
CO5.	Unde	rstand	the de	sign	and or	otimiz	ation	tech	niques	to d	lesign	and	Ap	ply	
		lop part		•									•	. ,	
	•••	_		<b>.</b> .		15		-		<b>.</b> .					
Mappi CO		Progra	mme		mesar		poram	mesr				PO	PS	PS	PS
0	PC	01 PO2	PO3	Р04 -	PO5	PU6	PO7	PO8	PO9 -	1	1	1 L	0 L	0	0
$CO^{\prime}$	1 1			-	NA	-	м	-	-	-		L		-	
		-	-	-		-	171	-	-	-	-	L	L	-	-
<u> </u>	2 м		ļ		М		м								
		-	-	-		-		-	-	-	-	L	L	-	N
<u> </u>	2 14	-	-	-	• •	-	N /	-	-	-	-	L	L	-	N
$CO_{4}$	4 м				М		м						<u> </u> .		
	1	-	-	-		-		-	-	-	-	L	L	-	N

Syllabus		
Module 1	Introduction	9
	n to metal additive manufacturing – classification and challenges – application	
for additive	e manufacturing – file formats, CAD CAM software, modelling and data p	
Module 2	<ul> <li>slicing – design consideration- machine set up</li> <li>Materials and properties of AM printed parts</li> </ul>	9
Manufactur	ing of metallic materials - Conventional vs AM process - Solidification o	of Metals
Equilibrium	and Non-equilibrium phases for solidificationfor AM	
Phase diagr	ams - Iron-Carbon - Aluminum alloy - Titanium alloy - Nickel alloy	
Module 3	Basic processes in metal additive manufacturing	9
Powder bea	fusion – direct energy deposition – binder jetting – metal extrusion	– material
jetting - she	et lamination	
Laser theory	y - Continuous vs pulsed laser - Laser types - Laser beam properties	
	ectron beam - Electron beam powder bed fusion and mechanism	
Module 4	AM process parameters	9
and BJ- Am Structures (	hing Strategies and Parameters for PBF and DED - Powder Properties for bient Parameters for PBF and DED - Geometry-Specific Parameters, Sup PBF) M Printed Parts - Need of Post Processing - Need for Surface Finishing	
		0
	Design for Additive Manufacturing	9
selection ar methods	als and principle -design techniques and steps - design optimization, m id consideration in application field- Part decomposition and Decompos ptimization techniques - Overhangs, and Bridging and cavities in design	
TextBooks		
1 Put Bal	ewski, J.O., 2017. Additive manufacturing of metals. Cham: Springer Inte blishing. asubramanian, K.R. and Senthilkumar, V. eds., 2020. Additive Manufactu	
2 App Reference	olications for Metals and Composites. IGI Global.  Books	
NEICICE		
1 Lea	ch, R. and Carmignato, S. eds., 2020. Precision Metal Additive Manufact	uring. CRC
Gel 2	phardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003	
· · · · ·		

	Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies:								
3	Rapid Prototyping to	Direct Digital M	anufacturing". Spr	inger. 2010					
4	Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer,								
	2006.								
Course	urseDesigners								
			Department/						
S.No	FacultyName	Designation		Emailid					
1	Mr.A.Elanthirayan	Asst. Prof. G-II	AVIT	aleanthirayan@avit.ac.in					

				WA	ASTE TO	) ENERG	ŝΥ		Cate	gory	L	Т	Р		Credit
									0	E-EA	3	0	0		3
PREAN	<b>/IBLE</b>														
				-			-		-		g the w	aste des	stined fo	or disp	osal and
encoui	raging tl	ne use o	of waste	e as a re	source	for alte	ernate e	nergy p	roducti	on.					
PRERE	QUISITE	– Nil													
COURS	SE OBJE	CTIVES													
1	То	enable s	students	to unde	erstand	of the c	oncept	of Wast	te to En	ergy.					
2	Tol	ink lega	al, techr	nical an	d mana	gement	princip	les for j	producti	ion of	energy f	orm was	ste.		
3	Tol	learn ab	out the	best ava	ailable	technol	ogies fo	or waste	to ener	gy.					
4	To a	analyze	of case	studies	for unc	lerstand	ling suc	cess an	d failur	es.					
COURS		OMES													
On the	succes	sful con	npletion	of the	course	, studer	nts will l	be able	to						
<b>CO1:</b> U	ndersta	nd the l	knowled	dge abo	ut the o	operatio	ons of V	Vaste to	Energy	y Plant	s.			Unde	rstand
<b>CO2:</b> A	nalyse t	he vario	ous aspe	ects of \	Naste t	o Energ	y Mana	igemen	t Syster	ns.					
<b>CO3</b> •C	arry out	Techno		mic foo	cibility	for Wa			ants					Anal	yze
	•				-									Appl	У
<b>CO4:</b> Ev	/aluate	plannin	g and o	peratio	ns of W	aste to	Energy	plants.						Evalı	iate
MAPP		TH PRO	GRAMN	/IE OUT	COMES	AND P	ROGRA	MME S	PECIFIC	Ουτα	OMES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО 10	PO11	PO12	PSO1	PS O2	PSO3
CO1	М	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	М	М	L	L	-	М	-	-	-	-	-	-	L	-	-
CO3	S	М	S	M	-	L	-	М	-	-	-	-	М	L	-
CO4	S	M	S	-	L	-	-	-	-	-	-	-	M	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-
S- Stro	ng; M-N	Nedium	ı; L-Low	,											
SYLLA	BUS														
	DUCTIC	N													

Reduce, Reuse and Recycle. Waste as a Resource and Alternate Energy source.

#### WASTE SOURCES & CHARACTERIZATION

Waste production in different sectors such as domestic, industrial, agriculture, postconsumer, waste etc. Classification of waste – agro based, forest residues, domestic waste, industrial waste (hazardous and non-hazardous). Characterization of waste for energy utilization. Waste Selection criteria.

#### **TECHNOLOGIES FOR WASTE TO ENERGY**

Biochemical Conversion – Energy production from organic waste through anaerobic digestion and fermentation. Thermo-chemical Conversion – Combustion, Incineration and heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and other newer technologies.

#### WASTE TO ENERGY OPTIONS

Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to fuel resources for other useful energy applicationsEnergy from Plastic Wastes – Non-recyclable plastic wastes for energy recovery. Energy Recovery from wastes and optimization of its use, benchmarking and standardization. Energy Analysis.

### CASE STUDIES -WASTE TO ENERGY PLANTS

Success/failures of waste to energy Global Best Practices in Waste to energy production distribution and use. Indian Scenario on Waste to Energy production distribution and use in India. Success and Failures of Indian Waste to Energy plants. Role of the Government in promoting 'Waste to Energy'. Waste activities – collection, segregation, transportation and storage requirements. Location and Siting of 'Waste to Energy' plants. Industry Specific Applications – In-house use – sugar, distillery, pharmaceuticals, Pulp and paper, refinery and petrochemical industry and any other industry. Centralized and Decentralized Energy production, distribution and use. Comparison of Centralized and decentralized systems and its operations.

#### REFERENCES

- Lee, James M., "Biochemical Engineering." PHI, 1st Edition, 1992. Yeh W.K., Yang H.C., James R.M., "Enzyme Technologies: Metagenomics, Biocatalysis and Biosynsthesis", Wiley- Blackwell, 1st Edition, 2010. Blanch H.W., Clark D. S., "Biochemical Engineering", Marcel Dekker, Inc. 2nd Edition, 1997.
- 2. Palmer, Trevor. "Enzymes: Biochemistry, Biotechnology, Clinical Chemistry." 2nd Edition, East West Press, 2008.

Course Designers		
0		

S.No	Name of the faculty	Designation	Department	Mail ID

•				
1.	Dr.R. Kirubakaran	Assistant Professor	Department of Biotechnology	kirubakaran@vmkvec.edu.in
2	Dr.M.Sridevi	Professor	Biotechnology	hodbte@vmkvec.edu.in

				CAL PR	RODUC	T DES	SIGN A	ND			Categor	ry L	Т	Р	Credi
		DEV	ELOP	MENT							OE-EA	A 3	0	0	3
	MBLE														
		-	•			-	-	•	-		res and its rate them				ent can
			-	e comm	ion reat	uies a p	nouuer	nas and				suitably	in prou	uct.	
	-														
	SE OB			alahal	turn da	- has				dalaaiaa					
	services		i the	giobai	trenas	and c	levelo	pment	metno	dologies	s of var	ious typ	bes of ]	products	s and
ŗ	Fo conc	eptual	-	• •		-	-		-	-	for a ne	-			• •
							t metl	nodolog	gy inte	egrating	the ha	rdware,	softwa	are, cor	ntrols,
	electron						and kn	ow ho	w to co	ollect a	nalyze ai	nd arriv	e at requ	uiremen	ts for
										ificatior			e ut req		101
							tem, s	ub-syst	em an	d their i	nterface	s and a	rive at	the opt	imum
system specification and characteristics.To develop documentation, test specifications and coordinate with various teams to validate and sustain															
										custom			vanuai		ustam
	SE OU			,				U	U						
On the	success	ful con	pletion	of the	course,	student	s will t	be able	to						
C <b>O1</b> .	Define,	formu	late ar	d anal	yze a p	roblem	for th	e produ	ict desi	ign.				Apply	
				knowle	dge of	produ	ct dev	elopme	nt and	regulat	ory requ	irement	s for	Apply	
	sign of		-	£			- 44	•	1	1.4	· · · · · 1 ·	1.1	1		
	pment.		proces	SS OI	manula	icturing	g, test	ing an	d van	uation 1	for scala	ible pro	auct	Apply	
			dge of	the In	nnovati	on &	Produ	ct Dev	elopme	ent proc	ess in t	he Bus	ness	Apply	
Conte													2		
	Discuss ercializ		conomi	cs in p	roduct	develo	pment	and b	usiness	strategi	ies for tu	Irnover	from	Apply	
			ROGR	AMMI	EOUT	COME	S AND	PRO(	GRAM	ME SPE	CIFIC O	UTCON	AES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
01	S	S	M	L				M				M	S	L	M
02	S	S	М	L				M				M	S	L	М
	S	S	М	L				M				M	S	L	М
03		S	S	- L				M				M	S	- L	M
O3 O4	S		-	-											
	S S	S	S	L				Μ				М	S	L	M

#### **PRODUCT DESIGN**

Definition, History and Modern Practice – Designs; Design and Product Life Cycle; Design Process; What is a medical device, Challenges in medical device, Understanding the innovation cycle, Good Design Practice.

Understanding, analyzing and validating user needs, Screening Needs, Technical Requirements, Concept Generation – Innovation Survey Questionnaire, Morphological Matrix, QFD, Concept Analysis and validation, Concept Modelling, Concept Screening & Validation.

#### PRODUCT DEVELOPMENT AND REGULATORY

Breakthrough Products, Platform Products, Front End of Innovations / Fuzzy Front End, Generic Product Development Process (Concept Development, System Design, Detailed Design, Test & Refinement, Production Ramp-up), Variants of Development Processes (Market Pull, Technology Push, Platform, Process-Intensive, Customized, High-Risk, Quick Build, Complex Systems), Good Documentation Practice, Prototyping Specifications, Prototyping, Medical Device standards, Quality management systems, Medical Device Classification, Design of Clinical Trials, Design Control & Regulatory Requirements, Documentation in Medical Devices, Regulatory pathways.

#### CALABLE PRODUCT DEVELOPMENT

Design for manufacturing, Design for assembly, Design for Serviceability, Design for usability, Medical Device Verification & Validation, Product Testing & Regulatory compliance, Clinical trial & validation, Device Certification.

#### MANUFACTURING AND BUSINESS STRATEGIES

Lean Manufacturing – Toyota Production System, Good Manufacturing Practices, Framework for Product Strategy – Core Strategic Vision (CSV), Characteristics of good CSV, Opportunity Identification Process & Generating Opportunities, Quality of Opportunities – Real-Win-Worth It (3M RWW), Product Planning Process, Technology S-Curve, Evaluating and Prioritizing Projects, Product-Process Change Matrix, Resource Planning, Total Available Market (Segmentation, Targeting & Positioning), Served Available Market, Product Platform Strategy, Market Platform Plan (Product Platform Management, Product Line Strategy).

#### PRODUCT ECONOMICS AND MARKET INFUSIONS

Economics/Finance in Product Development (Sales Forecasting – ATAR Model/ Bases Model, Pricing the product, Cash flow in Product Development, Categorizing the costs, Structuring Manufacturing Costs, Prototyping Costs, Development Costs, Cost Volume Profit Analysis, Breakeven Analysis, Common Return Metrics – Payback/ NPV/ IRR, Common Comparison Metrics – WACC/ RRR/ MARR). Business Model Canvas, Marketing Channels, Sales Models, Post Commercialization Surveillance, End of Life support.

#### **REFERENCES:**

- 1. Jones, J.C., Design Methods, John Wiley, 1981.
- 2. Cross, N., Engineering Design Methods, John Wiley, 1994.
- 3. Pahl, G., and Beitz, W., Engineering Design, Design Council, 1984.
- 4. Michael E. McGrath, Product Strategy for High-Technology Companies, 2ndEdition, McGraw Hill.
- 5. Ulrich, K.T., and Eppinger, S.D., Product Design and Development, Tata McGraw Hill, India.
- 6. Ehrelspiel. K, and Lindemann U Cost Efficient Design, Springer, 2007.
- 7. Paul H king, Richard C. Fries, Arthur T. Johnson, Design of Biomedical Devices and Systems. Third edition, ISBN 9781466569133.
- 8. Peter J. Ogrodnik, Medical Device Design: Innovation from Concept to Market, Academic Press Inc; Edition (2012), ISBN- 10:0123919428.
- 9. Stefanos Zenios, Josh Makower, Paul Yock, Todd J. Brinton, Uday N. Kumar, Lyn Denend, Thomas M. Krummel, Biodesign: the Process of Innovating Medical Technologies, Cambridbge University press; Edition (2009), ISBN- 10:0521517427.

#### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
-------	---------------------	-------------	------------	---------

1	Dr.L.K.Hema	Professor& Head	BME& ECE	hodbme@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Dr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

				ADVA	NCED (	YBER S	ECURIT	۲Y			Categor Y	L	т	Ρ	C	Credit
											OE-EA	3	0	0		3
PREA	MBLE									I			II			
To und	erstand	the ne	ed for (	Cyber Se	ecurity	in real t	ime an	d to stu	ıdy techı	niques i	nvolved ir	n it.				
PRERI	EQUISIT	E:NIL														
COUR	SE OBJI	ECTIVES	5													
1.	To uno	derstan	d the b	asic ter	minolo	gies rela	ated to	cyber s	ecurity a	and curr	ent cyber	security	threat	land	scap	e.
2.	To uns	serstan	d the cy	/beratta	icks tha	it targe	t compi	uters, n	nobiles a	nd pers	ons					
3.	To understand the legal framework that exist in India for cyber crimes and penalties and punishments for such crimes															
4.	To study the data privacy and security issues related to Social media platforms.															
5.	To understand the main components of cyber security plan															
COUR	COURSE OUTCOMES															
On th	e succe	ssful co	mpletio	on of th	e cours	e, stude	ents wil	l be abl	e to							
	ole to ur y threat			oasic ter	minolo	gies rela	ated to	cyber s	ecurity a	and curr	ent cyber	Underst	and			
	ble to o s and pe	•	e u n d	ersta	andin	g of the	e cyber	attacks	that targ	get com	puters,	Apply				
penaltie existing	es and p	ounishn 2000 l€	nents fo egal frai	or such mework	crimes, that is	It will a followe	lso exp	ose stu	cyber cr dents to atries and	limitatio	ons of	Apply				
	ble to g related	-				ction Bil	ll,2019 a	and dat	a privac <u>y</u>	y and se	ecurity	Apply				
	CO5: Able to understand the main components of cyber security plan.															
MAPF	PING W	TH PRO	DGRAM	IME OU	TCOM	S AND	PROGF	RAMME	SPECIFI	СОЛТС	OMES					
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO12	PSO		SO	PSO
	1	2	3	4	5	6	7	8	9	0	1		1	2		3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М		М	Μ

CO2         M         M         M         M         -         -         -         -         -         -         M         M         M         M         M         M         -         -         -         -         -         -         -         M         M         M         M         M         -         -         -         -         -         -         M         M         M         M         M         -         -         -         -         -         -         M         M         M         M         M         M         M         M         M         M         M         -         -         -         -         -         -         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M	M M M M	
CO4       S       M       M       M       -       -       -       -       -       M         CO5       S       M       M       M       S       -       -       -       -       -       M	М	
CO5         S         M         M         S         -         -         -         -         -         M         M         M		
	М	
S- Strong; M-Medium; L-Low		
LABUS:		
Overview of Cyber security 9 hours		
Cuber counity in pressing threat landscene. Cuber counity to principal size. Cuberrance, attack, attack	+	
Cyber security increasing threat landscape, Cyber security terminologies- Cyberspace, attack, attack vec attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism		
Protection of end user machine, Critical IT and National Critical Infrastructure, Cyberwarfare, Case Studi		
Cyber crimes <b>9 hours</b>		_
Cyber crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, Do	<u>S.</u>	
DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing,		
Smishing, Online job fraud, Online sextortion, Debit/ credit card fraud, Online payment fraud, Cyberbull	-	
website defacement, Cybersquatting, Pharming, Cyber espionage, Cryptojacking, Darknet- illegal trades,	, drug	
trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams,		
misinformation, fake newscyber crime against persons - cyber grooming, child pornography, cyber stalk	ing.,	
Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.		
Cyber Law 9 hours		
Cyber crime and legal landscape around the world, IT Act,2000 and its amendments. Limitations of IT Act	:t, 2000.	).
Cyber crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- A	I/ML,	
IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.		
Data Privacy and Data Security 9 hours		
Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and data security, P	ersonal	I
Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenge	es, Data	Э
protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal		
	issues.	
Information Protection and Electronic Documents Act (PIPEDA)., Social media- data privacy and security		
Information Protection and Electronic Documents Act (PIPEDA)., Social media- data privacy and security	ssment.	

REFERENCES

and strategy.

1. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by SumitBelapure and Nina Godbole, Wiley India Pvt. Ltd.

2. Information Warfare and Security by Dorothy F. Denning, Addison Wesley.

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.

4. Data Privacy Principles and Practice by Natraj Venkataramanan and Ashwin Shriram, CRC Press.

5. Information Security Governance, Guidance for Information Security Managers by W. KragBrothy, 1st Edition, Wiley Publication.

6. Auditing IT Infrastructures for Compliance By Martin Weiss, Michael G. Solomon, 2nd Edition, Jones Bartlett Learning.

	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr.R.Jaichandran	Assistant professor G- II	CSE	rjaichandran@avit.ac.in									
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu. in									

BIO MEMS	Category	L	Т	Р	Credit
	OE-EA	3	0	0	3

# PREAMBLE

The rapid development of the integrated circuit (IC) industry has led to the emergence of micro electronics process engineering as a new advanced discipline. The combination of MEMS and integrated intelligence has been put forward as a disruptive technology. Gives brief knowledge about applications of Bio-MEMS technology for therapeutics and diagnostics.

#### PREREQUISITE

Nil

	SE OBJECTIVES						
1	To train the students in the design aspects of Bio MEMS devices and Systems.						
2	To learn the basic principles of BioMEMS/Microfluidic device manufacturing.						
3	To make the students aware of applications in various medical specialists espe	cially the Comparison of					
	conventions methods and Bio MEMS usage.						
4 To Classify the different mechanisms of micro sensors and actuators.							
COUF	SE OUTCOMES						
On the	successful completion of the course, students will be able to						
CO1.	Understand the Micro fluidic Principles and study its applications.	Understand					
CO2.	Explain the principles and applications of Micro Total Analysis.	Understand					
CO3.	Discuss and realize the MEMS applications in Bio Medical Engineering	Understand					
CO4.	Classifying the principles of Micro Actuators and Drug Delivery system	Apply					
CO5	Utilizing the concept of MEMS with biological applications	Analyze					

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	-	-	-	-	-	-	-	-	-	-
CO2	S	L	L	L	М	-	-	-	-	-	-	-	-	-	-
CO3	S	L	М	L	М	-	-	-	-	-	-	-	-	L	-
CO4	S	Μ	М	L	М	-	-	-	-	-	-	L	L	L	-
CO5	S	S	М	L	М	-	-	-	-	-	-	L	L	L	-
C Char	N	3.7.1	т	т											

# S- Strong; M-Medium; L-Low

#### SYLLABUS

#### Unit I

Introduction-The driving force behind Biomedical Applications – Biocompatibility - Reliability Considerations-Regularity Considerations – Organizations - Education of Bio MEMS-Silicon Micro fabrication-Soft Fabrication techniques

#### Unit II

Micro fluidic Principles- Introduction-Transport Processes- Electro kinetic Phenomena-Micro valves –Micro mixers-Micro pumps.

#### Unit III

SENSOR PRINCIPLES and MICRO SENSORS: Introduction-Fabrication-Basic Sensors-Optical fibers-Piezo electricity and SAW devices-Electrochemical detection-Applications in Medicine

#### Unit IV

MICRO ACTUATORS and DRUG DELIVERY: Introduction-Activation Methods-Micro actuators for Micro fluidics-equivalent circuit representation-Drug Delivery

#### Unit V

MICRO TOTAL ANALYSIS: Lab on Chip-Capillary Electrophoresis Arrays-cell, molecule and Particle Handling-Surface Modification-Microsphere-Cell based Bioassay Systems Detection and Measurement Methods-Emerging Bio MEMS Technology-Packaging, Power, Data and RF Safety-Biocompatibility, Standards

#### Text Books/ References Books :

1. Steven S. Saliterman, Fundamentals of Bio MEMS and Medical Micro devices, Wiley Interscience, 2006.

- 2. Albert Folch , Introduction to Bio MEMS, CRC Press, 2012
- 3. Gerald A. Urban, Bio MEMS, Springer, 2006
- 4. Wanjunwang, steven A. Soper, Bio MEMS, 2006.
- 5. M. J. Madou, "Fundamentals of Micro fabrication", 2002.

6. G.T. A. Kovacs, "Micro machined Transducers Sourcebook", 1998.

# COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
2	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in

		SOL	ARAN	DENF	RGYST	ORA	GESY	ZSTE	Catego	ory	L	Т	Р	(	
		501			MS				OE-EA	<b>A</b>	3	0	0		3
PREA Thiss			iththeg	eneral	concepto	ofSolar	andEr	nergySto	orageSy	ystem	s,andii	mprove	ment.		
PRER	EQU	ISITE:	Nil												
COU	RSEO	BJEC	ΓIVE												
1.															
2.	J	Tounderstandtheconceptsandvariouscomponentsofstand-alonesystem													
3.	ר	TogainthesoundknowledgeaboutgridconnectedPVsystem													
4.	ר	oknowthedesignofvariousPV-interconnectedsystems.													
5.	נ	Coprovi	dethekı	nowled	lgeabout	thevar	riousaj	plication	onsofso	larsys	stem				
COURSEOUTCOMES															
Onthesuccessful completion of the course, students will be able to Understand															
CO1:E	Descri	betheba	sicsofs	olarsy	stem.									Unders	stand
CO2:F	Recog	nizetheo	concep	tsofsta	ndalone	PVsys	tem.							Analy	/sis
CO3:I	Desigr	thegrid	connec	tedsys	stemforv	arious	applic	ations.						Analy	/sis
CO4:S	Select	hesuita	blestor	agesys	temforp	articul	arapp	ications	5.					Analy	/sis
CO5:F	Recog	nizethev	various	applic	ationsof	solarsy	/stem.							Crea	ite
Mappi	ngwit	hprogra	ammeo	utcom	esandpro	ogrami	mespe	cificout	comes						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	М	S	S	М	-	-	L	-	М	-	М
CO2	S S M S S M L - L - I										L				
CO3	S	S	L	-	S	S	S	М	-	_	М	-	М	L	L
CO4	S	М	L	М	S	S	М	М	-	-	М	-	М	-	-
CO5	S	М	L	М	S	S	М	L	L	-	М	-	М	-	М
S-STR	ONG	,M-ME	DIUM	,L-LO	W							1			•

#### Introduction

Characteristics of sunlight: the sun and its radiation, Solar radiation, Direct and diffusion radiation,greenhouseeffect,solarisolationdataandestimation-semiconductorsandP-Njunctions:semiconductorsand types, absorption of light, recombination and PN junctions –behavior of solar cells – cell properties:efficiencyandlosses,Topcontactdesign,Lasergrooved,Buriedcontactsolarcell–PVcellinterconnection:Module and circuitdesign, Environmentaland thermal protection.

#### Stand-alonePVSystem

Solarmodules-storagesystems: Types, applications, requirements, efficiency, Leadacidbatteriespowerconditioning and regulation: Diodes, Regulators, Inverters- Balance of system components - protection -standalonePVsystems design-sizing: Reliability maps, sizing for high reliability, existing methods.

#### GridConnectedPVSystems

PV systems in buildings – Utility applications for photo voltaic – design issues for central power stations – safety– Economic aspect – Efficiency and performance - International PV programs – Integration of PV andWind –Indian SpecificStandard for Integration.

#### EnergyStorageSystems

Impactofintermittentgeneration:Wind,gasandcoalintegration,impactsofcycling,PSCOcasestudies–Battery energy storage–solar thermal energy storage–pumped hydroelectricenergystorage.

#### Applications

Waterpumping-batterychargers-solarcar-direct-driveapplications-Space-Telecommunications.1

#### TotalHours=45

#### Textbook(s):

1. SolarEnergy–S.P.Sukhatme, TataMcGrawHill, 2017.

2. StuartR.Wenham, MartinA.Green, MurielE.WattandRichardCorkish, "AppliedPhotovoltaics", 2011.

#### **Reference**(s):

1. FrankS.Barnes&JonahG.Levine, "LargeEnergystorageSystemsHandbook", CRCPress, 2017.

2. S.Sumathi, "SolarPVandWindEnergyConversionSystems(GreenEnergyandTechnology)", L.Ashok Kumar, P. Surekha, 2015.

3https://nptel.ac.in/courses/112/105/112105051/ 4<u>https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf</u>

#### COURSEDESIGNERS

	UNSEDESIGNERS			
S.	Nameofthe faculty	Designation	Department	Mail-id
No				
1.	Mr.A.Balamurugan	АР	EEE	balamurugan@vmkvec.edu.in
2.	Mr.V.Rattan Kumar	AP(Gr-II)	EEE	rattankumar@avit.ac.in

TECHNICAL SEMINAR		-	1	Р	Credit				
	EE-S	0	0	2	1				
COURSE OBJECTIVES									
• To work on a specific technical topic in advanced topics in Civil Engineering in order									
to acquire the skillsof oral presentation and to acquire technical writing abilities for									
d conferences.									
	a specific technical topic in advar	EE-S a specific technical topic in advanced topics in he skillsof oral presentation and to acquire tec	EE-S 0 a specific technical topic in advanced topics in Civil Er he skillsof oral presentation and to acquire technical v	EE-S00a specific technical topic in advanced topics in Civil Engine he skillsof oral presentation and to acquire technical writin	EE-S       0       0       2         ES       a specific technical topic in advanced topics in Civil Engineering         he skillsof oral presentation and to acquire technical writing abit				

# **Employability Enhancement Courses**

#### **COURSE OUTCOMES**

On completion of the course, the student is expected to be able to acquire the skills of oralpresentation and to acquire technical writing abilities for seminars and conferences.

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

1         2         3           CO1         S         -         M           S- Strong	M-Medium				
		L-Low			
	M - S S	M - M S - S			
1 2 3					
	4 5 6 7 8 9	10 11 12 1 2			
PO PO PO		PO PO PO PSO PSO PSO PSO3			

#### SYLLABUS

The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to advanced topics in Civil Engineering and toengage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirtyminutes on the technical topic. They will also answer the queries on the topic. The students asaudience also should interact. Evaluation will be based on the technical presentation and report submitted.

#### **TOTAL : 30 PERIODS**

# **AUDIT COURSES**

	ENGLISHFORRESEARCHPAPER	Category	L	Т	Р	Credit		
	WRITING	AC	0	0	2	0		
PREA	MBLE		•					
Thise	courseisdesignedtoimprove the writingskills, levelof readability of the	learner andskills	for writingt	hetitle.				
PRER	EQUISITE							
Nil								
COUD								
	SEOBJECTIVES							
1	Understandthathowtoimproveyourwritingskillsandlevelofreadability							
2	Learnabout whattowritein eachsection							
3	UnderstandtheskillsneededwhenwritingaTitle							
4	Ensurethegoodqualityofpaperatveryfirst-timesubmission							
COUR	SEOUTCOMES							
Onthes	uccessfulcompletionofthecourse, students will be able to							
	nderstandhowtoimproveyourwritingskillswithconcisenessso as	sto		Underst	tand			
	ovingredundancy							
CO2.C	lassifythesectionsinvolvedinresearchpaperwriting			Underst	and			
CO3.Ir	terpretthesequenceofresearchfindingswithresults			Apply				
	sevariousparaphrasingmethodtoprovide goodqualitypaperatvomission	eryfirst-		Apply				

MAPI	MAPPINGWITH PROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	-	-	-	-	-	-	М	-	-	М	-	-	S
CO2	L	Μ	-	-	М	-	-	-	М	-	-	М	-	-	S
CO3	L	Μ	-	-	М	-	-	-	М	-	-	Μ	-	-	S
CO4	L	М	-	-	М	-	-	-	М	-	-	Μ	-	-	S
S-Stro	ong;M-	Mediu	m;L-L	<b>JOW</b>											

# SYLLABUS

# UnitI

PlanningandPreparation,WordOrder,Breakinguplongsentences,StructuringParagraphsandSentences,BeingConciseandRe movingRedundancy,AvoidingAmbiguityandVagueness

# UnitII

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, SectionsofaPaper,Abstracts.Introduction

#### UnitIII

ReviewoftheLiterature,Methods,Results,Discussion,Conclusions,TheFinalCheck,keyskillsareneededwhenwritinga Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills neededwhenwritingaReviewoftheLiterature

#### UnitIV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing theDiscussion, skills are needed when writing theConclusions

#### Unit V

Usefulphrases, how to ensure paperis as good as it could possibly be the first- time submission

#### TextBooks/ReferencesBooks:

- $1. \ Goldbort R(2006) Writing for Science, Yale University Press(available on Google Books)$
- 2. DayR(2006)HowtoWriteandPublishaScientificPaper,CambridgeUniversityPress
- 3. HighmanN(1998), HandbookofWritingfortheMathematicalSciences, SIAM. Highman's book
- 4. AdrianWallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

#### COURSEDESIGNERS

00011				
S.No	Nameofthe Faculty	Designation	Department	MailID
1.	Dr.JenniferGJoseph	HoD-H&S	AVIT	Jennifer@avit.a.cin
2.	Mr.TyndaleCicil	AssistantProfessor	AVIT	tyndale.english@avit.ac.in

												Ŧ		D	C III
			V	ALUE	EDUC	ATIO	N				egory	L	T	P	Credit
										1	AC	0	0	2	0
PREA			L 4 - 41 1			. 1		- <b>f</b> 1		C					
			ntstnen	mporta	nceorv	aluesai	naetnic	sior nu	Imanii	feandorg	ganizatio	on.			
<b>PRER</b> Nil	EQUI	SITE													
COUR	RSEOB	BJECT	IVES												
1	Tound	erstand	l value	ofeduc	ationan	d self-	develo	pment							
2	Toincu	lcateg	oodval	uesinst	udents	tomake	themp	atriotic	withh	umanity					
3	Togroo	omthep	ersona	litywit	hpositi	vethink	cingwi	thunive	ersalbro	otherhoo	dandrel	igiousto	lerance.		
4	Toimpartthevalueoftruefriendshipandhappiness														
5	5 Toenhancethecharacterandcompetencefordevelopingintoself-control person														
COUR	RSEOU	JTCO	MES												
Onthes	success	fulcom	pletion	nofthec	ourse,s	student	swillbe	eableto							
CO1.Ic			-							ics			Rei	member	
							-			atrioticw	vithhum	anity	Un	derstand	1
<u>CO3 E</u>	vnlaint	haintaa	ration	coionti	ficattit	ida ov	oroll pc	roonal	ityyyith	labordi	anity		Lin	derstand	1
CO3.E	хріанни	nenneg	,ration,	scienti	incattitu	uue,ove	eran pe	21 SOIIa1	ity with	laborur	ginty			lueistain	1
CO4.D	Discuss	thevalu	eoftrue	efriend	shipano	dhappi	ness						Un	derstand	b
CO5.P	araphra	asethec	haracte	erandco	ompete	ncefor	develo	opingin	toself-	controlp	erson		Un	derstand	1
	r				·			- F 8		r					
MAPI	PINGW	VITH I	PROG	RAM	MEOU	TCON	/IESAI	NDPR	OGRA	MMES	PECIF	ICOUT	COME	S	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	L	L	-	-	-	-	-	S	-	L	-	-	-	-	-
CO2	L	L	- M	-	-	-	-	M	-	-	-	- T	- T	- T	-
CO3 CO4	L L	L S	M	-	-	-	-	M M	-	-	-	L -	L		-
C04 C05	L	S	M	_	_	_	_	M	_	L			L	L	-
S-Stro	ng;M-	Mediu	m;L-L	<b>JOW</b>				1	1	I	L			I	1

# SYLLABUS

#### UnitI

Valuesandself-development–Socialvaluesandindividualattitudes,Workethics,Indianvisionofhumanism,Moralandnon-moralvaluation.Standardsandprinciples,valuejudgements

# UnitII

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity. Poweroffaith, National Unity, Patriotism, Lovefornature, Discipline

#### UnitIII

PersonalityandBehaviorDevelopment-Soul andScientificattitude, Positive Thinking.Integrityanddiscipline.,Punctuality, Love and Kindness, avoid fault Thinking, Free from anger, Dignity of labor, Universal brotherhood andreligioustolerance

#### UnitIV

True friendship, Happiness Vssuffering, love for truth, Awareof self-destructive habits, Association and Cooperation, doing bestfors aving nature

#### Unit V

CharacterandCompetence-HolybooksvsBlindfaith,Self-

managementandgoodhealth, Scienceofreincarnation, Equality, Nonviolence, Humility, Role of Women, all religions and same message, mind your Mind, Self-control, Honesty, Studyingeffectively

#### TextBooks/ReferencesBooks:

1. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Ethics for organizations Theory and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Practice'', Oxford University Press, New Delhi I. Chakroborty, S.K. ``Values and Practice'', Oxford University Practice'', Oxford

Course Code	CourseTitle	category	L	Т	Р	С
	CONSTITUTION OF INDIA	AC	0	0	2	0

#### **CourseObjectives:**

Oncompletionofthiscourse, the students will be able:

1 TounderstandthenatureandthePhilosophyoftheConstitution.

2 TounderstandtheoutstandingFeaturesoftheIndianConstitutionandNatureoftheFederalsys tem.3ToAnalysePanchayatRajinstitutionsasatoolofdecentralization.
4 ToUnderstand andanalysethethreewingsofthestateinthecontemporaryscenario.5ToAnalyse RoleofAdjudicatoryProcess.
5 ToUnderstand andEvaluatetherecenttrendsintheIndianJudiciary.
Cours e
Conte ntUNI

ntUNI TI TheConstitution-Introduction

The Historical background andmaking of the Indian Constitution –Features of theIndian Constitution-PreambleandtheBasic Structure-FundamentalRightsandFundamentalDuties–DirectivePrinciplesStatePolicy

#### UNITII-GovernmentoftheUnion

The Union Executive-Powers and duties of President – Prime Minister and Council of Ministers-LokSabhaand Rajya Sabha

#### **UNITIII-Government of the States**

TheGovernor–RoleandPowers-CheifMinisterandCouncilofMinisters-StateLegislature

#### UNITIV-LocalGovernment

The Newsystem of Panchayats, Municipalities and Co-Operative Societies

#### **UNITV–Elections**

 ${\it Powers of Legislature-Role of Chief Election Commission er-State Election Commission}$ 

#### **TEXTBOOKSANDREFERENCEBOOKS:**

1EthicsandPoliticsofthe IndianConstitutionRajeevBhargavaOxford UniversityPress,NewDelhi,

20082TheConstitutionofIndiaB.L.FadiaSahityaBhawan;Newedition(2017)

 ${\tt 3} Introduction to the {\tt Constitution} of {\tt India DDB} as {\tt uLex} is {\tt Nex} is; {\tt Twenty-Fourth} 2020 edition {\tt Suggested}$ 

**TotalHours:30hours** 

#### Software/LearningWebsites:

1.https://www.constitution.org/cons/india/

const.html2.

http://www.legislative.gov.in/constitution-

<u>of-</u>

india3.https://www.sci.gov.in/constitution

4.https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/

### AlternativeNPTEL/SWAYAMCourse:

S.NO	NPTEL ID	NPTEL CourseTitle	CourseInstructor
1	12910600	CONSTITUTION OF INDIA	PROF.M.K.RAMESHN
		ANDENVIRONMENTAL	ATIONAL
		GOVERNANCE: ADMINISTRATIVE	LAWSCHOOL OF
		ANDADJUDICATORYPROCESS	INDIAUNIVERSITY

COURSE	DESIGNER			
S.NO	NAME OFTHEFA CULTY	DESIGNATION	NAMEOFTHEI NSTITUTION	MAILID
1	Dr.Sudheer	Principal	AVSchoolofLaw	Sudheersurya18@gmail.com

PEDAGOGYSTUDIES	Category	L	Т	Р	Credit
	AC	0	0	2	0

# PREAMBLE

The course is designed to provide pedagogical practices towards a cademic, research activities and professional the second sec

developments.

# PREREQUISITE Nil

# COURSEOBJECTIVES

1         Toprovide theories and methodologies related to curriculum development and research framework           2         Tofamiliarize with pedagogical practices informal and informal classrooms indeveloping countries           3         Toidentify evidence on the effective ness of the pedagogical practices for enhancing teaching and learning Methods
3 Toidentifyevidenceontheeffectivenessofthepedagogicalpracticesforenhancingteachingandlearning
providuous
4 Tounderstand thelearningandresourcebarriers while handlinglargeclasses
5 Toidentifycriticalevidencegapstoguidethedevelopment
COURSEOUTCOMES
Onthesuccessfulcompletionofthecourse, students will be able to
CO1.Identifytheoriesandmethodologiesrelatedtocurriculumdevelopmentandresearchfram Remember ework
CO2.Interpretpedagogicalpracticesinformalandinformalclassroomsindevelopingcountries Understand
CO3.Drawa chartonthe effectivenessofthepedagogicalpracticesforenhancingteaching Apply andlearningmethods
CO4.Explorethelearningandresourcebarrierswhilehandlinglargeclasses Analyze
CO5.Examinecriticalevidencegapstoguidethedevelopment Analyze
MAPPINGWITH PROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES
COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO1         PSO2         PSO3
CO1 L L L
CO2 L L
CO3 L L M L L L -
CO4 L S
CO5 L S M L L - L L -
S-Strong;M-Medium;L-Low

# SYLLABUS

#### UnitI

IntroductionandMethodology,Aimsandrationale,Policybackground,Conceptualframeworkandterminology,Theoriesof learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and searching.

#### UnitII

Thematic overview: Pedagogical practices are being used by teachers in formaland informal classrooms in developingcountries, Curriculum, Teachereducation.

#### UnitIII

Evidenceontheeffectivenessofpedagogicalpractices, Methodologyfortheindepthstage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials bests upport effective pedagogy, Theory of change, Strengthand nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogics trategies.

#### UnitIV

Professionaldevelopment:alignmentwithclassroompracticesandfollowupsupport,Peersupport,Supportfromthehead teacherand thecommunity,Curriculumandassessment,Barriers to learning: limitedresources and large classizes.

#### Unit V

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

#### TextBooks/ReferencesBooks:

- 1. AckersJ,HardmanF(2001)ClassroominteractioninKenyanprimaryschools,Compare,31(2):245-261.
- AgrawalM(2004)Curricularreforminschools:Theimportanceofevaluation,JournalofCurriculumStudies,36(3):361-379.
- 3. AkyeampongK(2003)TeachertraininginGhana-doesitcount?Multisiteteachereducationresearchproject(MUSTER)countryreport1.London:DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning ofbasicmaths andreading in Africa: Does teacher preparation count? International JournalEducational Development, 33 (3): 272–282.

Course Code	CourseTitle	Category	L	Т	Р	С
	PersonalityDevelopmentThrough LifeEnlightenSkills	AC	0	0	2	0

#### **CourseObjectives:**

- 1. TohelpthelearnerunderstandthebasicsofPersonalityanditscorrelationtosociety.
- 2. To understandtheroleofAttitudeandmotivationintheenhancementofpersonality.
- 3. Toapplytheconcepts learntin heighteningtheselfesteem.
- ${ 4. \ \ } To analyse the most efficient method to develop the personality and prepare for employment \\$

#### UNITI-IntroductiontoPersonalityDevelopment

The concept of personality - Dimensions of personality – Theories of Freud & Erickson-Significance of personalitydevelopment.Theconceptofsuccessandfailure:Whatissuccess?-Hurdlesinachievingsuccess-Overcominghurdles-Factorsresponsibleforsuccess–Whatisfailure-Causesoffailure.SWOTanalysis.

#### UNITIIAttitude&Motivation

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude – Advantages –Negative attitude-Disadvantages-Waystodeveloppositiveattitude-Differencesbetweenpersonalitieshavingpositiveandnegativeattitude.Concept of motivation -Significance – Internal and external motives - Importance of self- motivation- Factors leading tode-motivation

#### UNITIIISelf-esteem

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive selfesteem – Low self-esteem -Symptoms-Personalityhavinglowselfesteem-Positiveandnegativeselfesteem.InterpersonalRelationships–

Defining the difference between aggressive, submissive and assertive behaviours-Lateral thinking.

#### **UNITIVOtherAspectsofPersonalityDevelopment**

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills -Leadership and qualitiesofasuccessful leader– Characterbuilding-Team-work– Timemanagement-Workethics–Goodmannersand etiquette.**UNITVEmployabilityQuotient** 

Resume building- The art of participating in Group Discussion – Facing the Personal (HR & Technical) Interview -FrequentlyAskedQuestions-PsychometricAnalysis-MockInterviewSessions.

#### **Total:45Periods**

TextBooks:1.Hurlock,E.B(2006).PersonalityDevelopment,28thReprint.NewDelhi:TataMcGraw Hill.2.StephenP.RobbinsandTimothyA.Judge(2014),OrganizationalBehavior16thEdition:Prenti ceHall.

COURSEDESIGNERS			
COURSEINST RUCTOR	DESIGNATION	NAMEOFTHE INSTITUTION	MAILID
Dr.Jennifer GJoseph	HoD-H&S	AVIT	Jennifer@avit.a.cin
Mr.TyndaleCicil	AssistantProfessor	AVIT	tyndale.english@avit.ac.in