AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

Faculty of Engineering and Technology

Department of Civil Engineering Programme:

M.E – Construction Engineering and

Management

CHOICE BASED CREDIT SYSTEM (CBCS)

Curriculum & Syllabus (Semester I to IV)

Regulations 2021

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Civil Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	Graduates will perform as professional engineers in the field of Construction Engineering and Management.
PEO 2	Graduates will perform well in their specialized field and also trained in teamwork and leadership positions.
PEO 3	Graduates will pursue lifelong learning in the specialized fields of Construction Engineering and Management.
PEO 4	Graduates will exhibit entrepreneurship qualities.
PEO 5	Graduates will contribute to the development of the profession, nation and society

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Civil Engineering graduates will be able:

PSO 1	To work independently as well as in team to formulate, design, execute solutions for engineering problems and also analyze, synthesize technical data for application to product, process, system design & development
PSO 2	To understand & contribute towards social, environmental issues, following professional ethics and codes of conduct and embrace lifelong learning for continuous improvement
PSO 3	To develop expertise towards use of modern engineering tools, careers in industries and research and demonstrate entrepreneurial skill

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

VINAYAKA MISSIONS RESEARCH FOUNDATIONS FACULTY OF ENGINEERING AND TECHNOLOGY

CREDIT STRUCTURE FOR POST GRADUATE ENGINEERING PROGRAM (M.E / M.TECH –REGULAR) -2021

S.No	Category of courses	Type of courses	Suggested break up of credits
1.	A. Foundation courses	Statistical Methods and Queuing Theory	3
1.	A. Foundation courses	Research Methodology and IPR	2
2.	B. Program core courses	Core courses	32
		Program electives	15
3.	C. Elective courses	Open electives (Courses on emerging areas)	03
		Project work phase I	6
4.	D. Employability Enhancement Courses and courses for presentation of Technical skills related to the specialization	Project work phase II	12
7.		Internship	1
		Technical Seminar	1
5.	E. Audit courses	Any two courses on: 1. English for Research Paper Writing 2. Value Education 3. Constitution of India 4. Pedagogy Studies 5. Personality development through life enlighten skills	Zero credit
Т	Cotal credits to be earned for the award	d of M.E /M.Tech degree	75

CREDIT STRUCTURE FOR POST GRADUATE ENGINEERING PROGRAM (M.E / M.TECH – REGULAR) -2021

S.No	Category of courses	Type of courses	Suggested break up of credits	Course Title
1	A.Foundation	Mathematics/Appli ed Mathematics	3	Statistical Methods and QueuingTheory
1.	courses	Research Methodology and IPR	2	Research Methodology and IPR
2.	B.Program core courses	Core courses	32	 Construction Materials and ConcreteDesign Project Formulation and Appraisal Construction Planning, Schedulingand Control Computer Applications in Construction Engineering andPlanning Advanced Concrete Technology Modernistic approaches inconstruction Automation in ConstructionManagement Advanced Project Management Concepts Quality and safety in construction Quantitative Techniques inConstruction Management Quality Control and Assurance in Construction
3.	C.Elective	Program electives	15	Contract Laws and Regulations System Integration in Construction Energy efficient buildings Construction economics and FinancialManagement Construction Personnel Management Business Economics and FinanceManagement Resource Management and Control inConstruction Project Safety Management Maintenance and Rehabilitation ofStructures
	courses	Open electives (Courses on emerging areas.)	03	1.Management Information System 2.Waste to Energy 3. Biomedical Product Design and Development 4.Advanced Cyber Security 5. Bio Mems 6. Solar and Energy Storage Systems 7.Operations Research 8. Metal Additive Manufacturing
	D.Employabilit y Enhance Courses and	Project work phase	6	
4.	courses for presentation of Technical	Project work phase II		
	skills related to the	Internship	1	
	specialization ment	Technical Seminar	1	

		Any two courses	Zero credit	
5.	E.Audit courses	on: 1. English for Research Paper Writing 2. Value Education 3. Constitution of India 4. Pedagogy Studies 5. Personality Development Through Life Enlighten Skills		
Total		ned for the award of M.E /M.Tech degree	75	

	A. Foundation Courses - Credits (5)											
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE			
1.		STATISTICAL METHODS AND QUEUINGTHEORY	MATH	FC-BS	3	0	0	3	NIL			
2.		RESEARCH METHODOLOGY AND IPR	CIVIL	FC-HS	2	0	0	2	NIL			

	B. Program core courses - Credits 32									
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE	
1.		CONSTRUCTION MATERIALS AND CONCRETE DESIGN	CIVIL	CC	3	1	0	4	NIL	
2.		PROJECT FORMULATION AND APPRAISAL	CIVIL	CC	3	1	0	4	NIL	
3.		CONSTRUCTION PLANNING, SCHEDULING AND CONTROL	CIVIL	CC	3	1	0	4	NIL	
4.		COMPUTER APPLICATIONS IN CONSTRUCTION ENGINEERING AND PLANNING	CIVIL	CC	0	0	4	2	NIL	
5.		ADVANCED CONCRETE TECHNOLOGY	CIVIL	CC	3	1	0	4	NIL	
6.		MODERNISTIC APPROACHES IN CONSTRUCTION	CIVIL	CC	3	1	0	4	NIL	
7.		AUTOMATION IN CONSTRUCTION MANAGEMENT	CIVIL	CC	3	0	0	3	NIL	
8.		ADVANCED PROJECT MANAGEMENT CONCEPTS	CIVIL	СС	3	1	0	4	NIL	
9.		QUALITY AND SAFETY IN CONSTRUCTION	CIVIL	CC	3	0	0	3	NIL	
10.		QUANTITATIVE TECHNIQUES IN CONSTRUCTION MANAGEMENT	CIVIL	CC	3	0	0	3	NIL	
11.		QUALITY CONTROL AND ASSURANCE IN CONSTRUCTION	CIVIL	CC	3	0	0	3	NIL	

Elective courses

Program e	electives -	Credits	15
-----------	-------------	---------	----

S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1.		CONTRACT LAWS AND REGULATIONS	CIVIL	EC-PS	3	0	0	3	NIL
2.		SYSTEM INTEGRATION IN CONSTRUCTION	CIVIL	EC-PS	3	0	0	3	NIL
3.		ENERGY EFFICIENT BUILDINGS	CIVIL	EC-PS	3	0	0	3	NIL
4.		CONSTRUCTION ECONOMICS AND FINANCIAL MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
5.		CONSTRUCTION PERSONNEL MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
6.		BUSINESS ECONOMICS AND FINANCE MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
7.		RESOURCE MANAGEMENT AND CONTROL IN CONSTRUCTION	CIVIL	EC-PS	3	0	0	3	NIL
8.		PROJECT SAFETY MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
9.		MAINTENANCE AND REHABILITATION OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL

C. ELEC	C. ELECTIVE COURSES (EC) - Open electives (Courses on emerging areas) - Credits 03										
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE		
1.		METAL ADDITIVE MANUFACTURING	MECH	OE-EA	3	0	0	3	NIL		
2.		WASTE TO ENERGY	ВТЕ	OE-EA	3	0	0	3	NIL		
3.		BIOMEDICAL PRODUCT DESIGN AND DEVELOPMENT	ВМЕ	OE-EA	3	0	0	3	NIL		
4.		ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL		
5.		BIO MEMS	ECE	OE-EA	3	0	0	3	NIL		
6.		SOLAR AND ENERGY STORAGE SYSTEMS	EEE	OE-EA	3	0	0	3	NIL		

D. Employability Enhancement Courses and courses for presentation of technical skills related to the specialization (Credits - 21)

S.No	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	P	С	PREREQUISITE
1.		PROJECT WORK PHASE I	CIVIL	EE-P	0	0	12	6	NIL
2.		PROJECT WORK PHASE II	CIVIL	EE-P	0	0	24	12	NIL
3.		INTERNSHIP	CIVIL	PI-I	_	weel rainir		1	NIL
4.		TECHNICAL SEMINAR	CIVIL	EE-S	0	0	2	1	NIL

E. Audit	courses-Ze	ero Credit							
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1.		ENGLISH FOR RESEARCH PAPER WRITING	ENG	AC	0	0	2	0	NIL
2.		VALUE EDUCATION	HS	AC	0	0	2	0	NIL
3.		CONSTITUTION OF INDIA	LAW	AC	0	0	2	0	NIL
4.		PEDAGOGY STUDIES	HS	AC	0	0	2	0	NIL
5.		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTEN SKILLS	ENG	AC	0	0	2	0	NIL

IMPLEMENTATION PLAN PROGRAMME STRUCTURE

Semester I

SL. NO	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	С
THEORY	7							
1.		Statistical Methods and Queuing Theory	MATHS	FC	3	0	0	3
2.		Construction Materials and Concrete Design	CIVIL	CC	3	1	0	4
3.		Modernistic approaches in Construction	CIVIL	CC	3	1	0	4
4.		Project Formulation and Appraisal	CIVIL	CC	3	1	0	4
5.		Quantitative Techniques in Construction Management	CIVIL	CC	3	0	0	3
6.		Program Core Elective I	CIVIL	PE	3	0	0	3
PRACTIC	CAL							
7.		Computer Applications in Construction Engineering and Planning	CIVIL	CC	0	0	4	2

SEMESTER II

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	С
THEORY 1.		Automation in Construction Management	CIVIL	CC	3	0	0	3
2.		Advanced Project Management concepts	CIVIL	CC	3	1	0	4
3.		Quality and safety in construction	CIVIL	CC	3	0	0	3
4.		Advanced Concrete Technology	CIVIL	CC	3	1	0	4
5.		Program Core Elective II	CIVIL	PE	3	0	0	3
6.		Open Elective		OE	3	0	0	3
7.		Technical Seminar	CIVIL	PI	0	0	2	1
8.		Audit course I		AC	0	0	0	0

SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	C
THEORY								
1		Program Core Elective III	CIVIL	PE	3	0	0	3
2		Program Core Elective IV	CIVIL	PE	3	0	0	3
3		Program Core Elective V	CIVIL	PE	3	0	0	3
4		Project work phase I	CIVIL	PE	0	0	12	6
5		Internship	CIVIL	PI	3 v	veeks Ti	raining	1
6.		Audit course II	CIVIL	PE	0	0	0	0

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	С
1		Project work phase II	CIVIL	PE	0	0	24	12

TOTAL CREDITS: 75

		B. Pr	ogram core cour	ses – Credits 32					
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE
1.		CONSTRUCTION MATERIALS AND CONCRETE DESIGN	CIVIL	CC	3	1	0	4	NIL
2.		PROJECT FORMULATION AND APPRAISAL	CIVIL	CC	3	1	0	4	NIL
3.		CONSTRUCTION PLANNING, SCHEDULING AND CONTROL	CIVIL	CC	3	1	0	4	NIL
4.		COMPUTER APPLICATIONS IN CONSTRUCTION ENGINEERING AND PLANNING	CIVIL	CC	0	0	4	2	NIL
5.		ADVANCED CONCRETE TECHNOLOGY	CIVIL	CC	3	1	0	4	NIL
6.		MODERNISTIC APPROACHES IN CONSTRUCTION	CIVIL	CC	3	1	0	4	NIL
7.		AUTOMATION IN CONSTRUCTION MANAGEMENT	CIVIL	CC	3	0	0	3	NIL
8.		ADVANCED PROJECT MANAGEMENT CONCEPTS	CIVIL	CC	3	1	0	4	NIL
9.		QUALITY AND SAFETY IN CONSTRUCTION	CIVIL	CC	3	0	0	3	NIL
10.		QUANTITATIVE TECHNIQUES IN CONSTRUCTION MANAGEMENT	CIVIL	CC	3	0	0	3	NIL
11.		QUALITY CONTROL AND ASSURANCE IN CONSTRUCTION	CIVIL	CC	3	0	0	3	NIL

Elective courses

Program electives - Cred	dits	15
--------------------------	------	-----------

S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE
1.		CONTRACT LAWS AND REGULATIONS	CIVIL	EC-PS	3	0	0	3	NIL
2.		SYSTEM INTEGRATION IN CONSTRUCTION	CIVIL	EC-PS	3	0	0	3	NIL
3.		ENERGY EFFICIENT BUILDINGS	CIVIL	EC-PS	3	0	0	3	NIL
4.		CONSTRUCTION ECONOMICS AND FINANCIAL MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
5.		CONSTRUCTION PERSONNEL MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
6.		BUSINESS ECONOMICS AND FINANCE MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
7.		RESOURCE MANAGEMENT AND CONTROL IN CONSTRUCTION	CIVIL	EC-PS	3	0	0	3	NIL
8.		PROJECT SAFETY MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
9.		MAINTENANCE AND REHABILITATION OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL

C. ELEC	CTIVE COU	RSES (EC) - Open elective	es (Courses on er	nerging areas)	- Cre	dits	03		
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	T	P	С	PREREQUISITE
1.		METAL ADDITIVE MANUFACTURING	MECH	OE-EA	3	0	0	3	NIL
2.		WASTE TO ENERGY	ВТЕ	OE-EA	3	0	0	3	NIL
3.		BIOMEDICAL PRODUCT DESIGN AND DEVELOPMENT	ВМЕ	OE-EA	3	0	0	3	NIL
4.		ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
5.		BIO MEMS	ECE	OE-EA	3	0	0	3	NIL
6.		SOLAR AND ENERGY STORAGE SYSTEMS	EEE	OE-EA	3	0	0	3	NIL

D. Employability Enhancement Courses and courses for presentation of technical skills related to the specialization (Credits - 21)

S.No	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	P	C	PREREQUISITE
1.		PROJECT WORK PHASE I	CIVIL	EE-P	0	0	12	6	NIL
2.		PROJECT WORK PHASE II	CIVIL	EE-P	0	0	24	12	NIL
3.		INTERNSHIP	CIVIL	PI-I	_	weel rainir		1	NIL
4.		TECHNICAL SEMINAR	CIVIL	EE-S	0	0	2	1	NIL

E. Audit	E. Audit courses-Zero Credit										
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	C	PREREQUISITE		
1.		ENGLISH FOR RESEARCH PAPER WRITING	ENG	AC	0	0	2	0	NIL		
2.		VALUE EDUCATION	HS	AC	0	0	2	0	NIL		
3.		CONSTITUTION OF INDIA	LAW	AC	0	0	2	0	NIL		
4.		PEDAGOGY STUDIES	HS	AC	0	0	2	0	NIL		
5.		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTEN SKILLS	ENG	AC	0	0	2	0	NIL		

IMPLEMENTATION PLAN PROGRAMME STRUCTURE

Semester I

SL. NO	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	С
THEORY	Y							
1.		Statistical Methods and Queuing Theory	MATHS	FC	3	0	0	3
2.		Construction Materials and Concrete Design	CIVIL	CC	3	1	0	4
3.		Modernistic approaches in Construction	CIVIL	CC	3	1	0	4
4.		Project Formulation and Appraisal	CIVIL	CC	3	1	0	4
5.		Quantitative Techniques in Construction Management	CIVIL	CC	3	0	0	3
6.		Program Core Elective I	CIVIL	PE	3	0	0	3
PRACTIO	CAL							
7.		Computer Applications in Construction Engineering and Planning	CIVIL	CC	0	0	4	2

SEMESTER II

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	C
THEORY								
1.		Automation in Construction Management	CIVIL	CC	3	0	0	3
2.		Advanced Project Management concepts	CIVIL	CC	3	1	0	4
3.		Quality and safety in construction	CIVIL	CC	3	0	0	3
4.		Advanced Concrete Technology	CIVIL	CC	3	1	0	4
5.		Program Core Elective II	CIVIL	PE	3	0	0	3
6.		Open Elective		OE	3	0	0	3
7.		Technical Seminar	CIVIL	PI	0	0	2	1
8.		Audit course I		AC	0	0	0	0

SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	C
THEORY								
1		Program Core Elective III	CIVIL	PE	3	0	0	3
2		Program Core Elective IV	CIVIL	PE	3	0	0	3
3		Program Core Elective V	CIVIL	PE	3	0	0	3
4		Project work phase I	CIVIL	PE	0	0	12	6
5		Internship	CIVIL	PI	3 v	veeks Ti	raining	1
6.	Audit course II		CIVIL	PE	0	0	0	0

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	P	С
1		Project work phase II	CIVIL	PE	0	0	24	12

TOTAL CREDITS: 75

FOUNDATION COURSES

T P Category L Credit STATISTICAL METHODS AND **QUEUEING THEORY** FC-BS 3 3 0 0 **PREAMBLE** This course is designed to provide the solid foundation on various statistical methods which form the basis for many other areas in the mathematical sciences including statistics, modern optimization methods and risk modelling. Queuing theory is the mathematical study of waiting lines and it's a primary tool for studying the problem of congestion. PREREQUISITE - Nil **COURSE OBJECTIVES** To get the knowledge on concepts of random variables and distributions with respect to how they are applied to statistical data. To introduce the concepts of sampling distributions and the test statistics To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the 3 measurements made on the sample. 4 To train the students in design experiments and use these concepts for research To study queuing models for analyzing the real world systems. **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1; Select an appropriate probability distribution to determine the probability function for solving Apply engineering problem. **CO2:**Use the appropriate and relevant estimates Apply CO3:Make appropriate decisions using inferential statistical tools that are central to experimental Apply Research CO4: Construct standard experimental designs and describe statistical models Estimated using the data. Apply CO5: Derive and apply main formulas for some properties (such as stationary probabilities, average waiting and system time, expected number of customers in the queue, etc.) M/M/1, M/M/C – finite and Apply infinite capacity queueing system. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO PO PO PO PO PO PO PO PO PO₁ PO₁ PO₁ **PSO** PSO PSO₃ COS 5 7 9 2 2 1 2 3 4 6 8 0 1 1 CO₁ S S M M M M CO₂ S S M M M M CO₃ S S M M M M CO₄ S S M M M M CO₅ S M M M M S- Strong; M-Medium; L-Low

SYLLABUS

PROBABILITY AND RANDOM VARIABLES:

Probability Concepts – Bayes Theorem –Random Variable - Discrete and continuous random variables- Probability mass function – Probability density functions - Moment generating functions and their properties – Standard distributions – Binomial, Poisson, Uniform, Exponential, Normal distribution.

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments – Curve fitting by Principle of least squares – Regression Lines.

TESTING OF HYPOTHESES

Sampling distributions—Normal distribution — Area properties — Statistical hypothesis — Type I and Type II errors—Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) — Chi-square Tests for Goodness of fit —Independence of attributes.

DESIGN OF EXPERIMENTS

Analysis of variance – One-way and two-way classifications – Latin square design – 2^k Factorial Design - Fractional Factorial Design - Response Surface Methods – Central Composite Design

QUEUEING MODELS

Poisson Process – Markovian queues – Single and Multi Server Models – Little's formula Machine Interference Model – Steady State analysis – Self Service queue.

Text Book:

- 1. T.Veerarajan, "Probability and Statistics, Random Processes and Queueing Theory", 4th Edition, Tata McGraw Hill, (2018).
- 2. Milton J. S and Arnold J.C, "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition (2007).
- 3. Gupta P.K, Hira D.S, Problem in Operations Research, S.Chand and Co (2007)

REFERENCE:

- 4. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2017.
- 5. Kanti Swarup, P K Gupta, Man Mohan, "Operations Research", Sultan Chand & Sons (2014)

COURSE DESIGNERS

S.No Name of the Faculty Designation		Department	Mail ID	
1	1 Dr.P.Sasikala Professor		Mathematics/ VMKVEC	sasikala@vmkvec.edu.in
2. Dr.L.Tamilselvi Professor		Mathematics/ AVIT	ltamilselvi@avit.ac.in	

Course Code	Course Title	Category	L	T	P	С
	Research Methodology and IPR	FC-HS	2	0	0	2

Course Outcomes:

At the end of this course, students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information.
- 3. Follow research ethics.
- 4. Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis, the need of information about Intellectual Property Right to be promoted among students in general & Engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT I- RESEARCH PROBLEM AND SCOPE FOR SOLUTION

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT II- FORMAT

Effective literature studies approaches, analysis, Plagiarism, Research ethics. Effective technical writing, how to write report, Paper Developing a Research Proposal, Format ofresearch proposal, a presentation and assessment by a review committee

UNIT III- PROCESS AND DEVELOPMENT

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, patenting under PCT.

UNIT IV- PATENT RIGHTS

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT V- NEW DEVELOPMENTS IN IPR

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS

1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students" Juta Publishers, 1996.

- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta Publishers, 2004.
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

REFERENCES

- 1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 2. Mayall, "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.
- 4. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

PROGRAM CORE COURSES

		Cor	ıstruc	tion N	Aateri	ials aı	nd Con	ıcrete	Cat	tegory	L	T	P	Cre	edit
					Desig	gn				CC	3	1	0	2	1
PRE	AMBL	E							I			1		l	
This	course	famili	arize a	about	the va	rious	and late	est co	nstru	ction m	aterials	, and me	ethodo	ology o	of
	rete des		-												
PRE	REQU	ISITE	ì												
NIL															
cou	JRSE C)BJE(CTIVI	ES											
1												ality con	trol.		
2										onstructi					
3	61														
5												118.			
5 Concrete design procedure for desired strength and durability. COURSE OUTCOMES															
On the	e succes	sful co	omple	tion of	the c	ourse,	studen	ıts wil	l be a	ble to					
CO1 ·	O1 - Understand the typical and potential applications of basic construction materials Understand														
CO2	constr - Compa				of mo	et con	ımon a	nd ad	vance	ad.					
CO2 ·	buildi				01 1110	st con	illion a	iiu au	vance	ď		U	Inderst	and	
CO3 -	- Under Form	stand	the re	lation	betwe	en ma	iterial p	oroper	ties a	nd stru	ctural	U	Inderst	and	
CO4 -	Unders mater	stand t		-	nce of	expe	rimenta	al ver	ificati	on of		Ū	Inderst	and	
CO5 -	- Design the pr	-	ppropi	riate co	oncret	e as p	er the r	equir	ement	s of		Unders	tand ar	ıd Apı	ply
	PPING COME		H PR	OGR <i>A</i>	AMM	E OU	TCOM	ÆS A	AND	PROG	RAMM	IE SPE	CIFIC	C	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	_	L	-	L	-	-	_	_	-	-			
CO2	S	S	M	L	-	_	-	_	_	-	-	-			
CO3	S	M	S	M	_	_	-	_	_	-	-	-			
CO4	S	M	S	M	_	L	_	_	_	_	_	_			
CO5	S	S	L	L	_		_	_		_	_	_			
COS	3	٦		L	_	_	-	-	_	_	_	_			

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I SPECIAL CONCRETES

Concretes, Behaviour of concretes – Properties and Advantages of High Strength and High Performance Concrete – Properties and Applications of Fibre Reinforced Concrete, Self-compacting concrete, Alternate Materials to concrete on high performance & high Strength concrete.

UNIT II COMPOSITES

Types of Plastics – Properties & Manufacturing process – Advantages of Reinforced polymers Types of FRP – FRP on different structural elements – Applications of FRP.

UNIT III OTHER MATERIALS

Types and properties of Water Proofing Compounds – Types of Non-weathering Materials and its uses – Types of Flooring and Facade Materials and its application.

UNIT IV SMART AND INTELLIGENT MATERIALS

Types & Differences between Smart and Intelligent Materials – Special features – Case studies showing the applications of smart & Intelligent Materials.

UNIT V CONCRETE MIX DESIGN

Mix Proportioning – Mixes incorporating Fly ash, Silica fume, GGBS – Mixes for High Performance Concrete – High strength concrete – variations in concrete strength.

BOOKS:

- 1. Ashby, M.F. and Jones.D.R.H.H. "Engineering Materials 1: An introduction to Properties, applications and designs", Elsevier Publications, 2005.
- 2. Gambhir.M.L., Concrete Technology Tata McGraw Hill Book Co. Ltd., Delhi, 2004.

REFERENCES:

- 1. Deucher, K.N, Korfiatis, G.P and Ezeldin, A.S, Materials for civil and Highway Engineers, Prentice Hall Inc., 1998.
- 2. Mamlouk, M.S. and Zaniewski, J.P., Materials for Civil and Construction Engineers, Prentice Hall Inc., 1999.

S. No.	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.S.Aravind Raj	Associate Professor	AVIT	aravindraj.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i n

			DD 0		000				Ca	tegory	L	T]	P	C	redit
			PROJ		ORMU .PPRAI		ON AN	D		CC	3	1	(0		4
PRE	AMBL	E														
			the st	udents	s to un	dersta	and the	e com	olete p	project f	formula	tion, ap	praisa	l pro	cess fi	rom
proje	ct ident	ificati	on, to	projec	ct clear							ne stude				
	nisal, fir REQU I			SP pro	cess											
	KEQUI	SHE	1													
NIL .																
COURSE OBJECTIVES																
Study and understand the concepts of project formulation																
Study the role and methods of project cash flows and project costing.																
The students know about International Practice of appraisal.																
Expose the student's knowledge of Project Financing.																
Acquire the knowledge of Private Sector Participation																
COURSE OUTCOMES																
On th	ne succe	essful	compl	etion o	of the o	course	, stud	ents w	ill be	able to						
	wide k		_	•		•	•	-	cularly	Projec	t Estim	ates, Te	chno-	Unc	lerstar	nd
			-						have	an idea	of the o	cost of c	apital	Unc	lerstar	nd
												ing wor	_			
	sis the		sjeet a	ррган	our unc	ппрі	CITICITO	. 10 111	cvery	stage o	ii ongo	ing wor	K and	Арр)1 y	
	v about utions	the re	quiren	nent ai	nd sou	rce of	financ	ce to c	arried	out the	project	and fina	ncial	Unc	lerstar	nd
		know	ledge	in rest	ect of	exec	ution	of infr	astruc	ture dev	velonme	ent and	Scope	Apr	olv	
Develop the knowledge in respect of execution of infrastructure development and Scope of Technology Transfer																
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			PS O2	PS0
CO1	L	S	M	-	-	S	M	L	M	L	S	-	O1 L	-	O3 L	-
CO2	L	S	M		-	S	M	L	M	L	S	_	L	L	L	-
													T	e e	T	
CO3	M	S	M	L	-	S	L	M	M	L	S	-	L	S	L	-
CO4	M	S	S	L	-	M	L	M	S	L	S	-	L	M	L	-

M

L

S

M

L

S- Strong; M-Medium; L-Low

S

M

S

L

M

L

M

M

CO5

SYLLABUS

PROJECT FORMULATION: Project – Concepts – Capital investments - Generation and Screening of Project Ideas - Project identification – Preliminary Analysis, Market, Technical, Financial, Economic and Ecological - Pre-Feasibility Report and its Clearance, Project Estimates and Techno-Economic Feasibility Report, Detailed Project Report – Different Project Clearances required

PROJECT COSTING- Project Cash Flows – Time Value of Money – Cost of Capital

PROJECT APPRAISAL NPV – BCR – IRR – ARR – Urgency – Pay Back Period – Assessment of Various Methods – Indian Practice of Investment Appraisal – International Practice of Appraisal – Analysis of Risk – Different Methods – Selection of a Project and Risk Analysis in Practice

PROJECT FINANCING Project Financing – Means of Finance – Financial Institutions – Special Schemes – Key Financial Indicators - Ratios

PRIVATE SECTOR PARTICIPATION Private sector participation in Infrastructure Development Projects - BOT, BOLT, BOOT - Technology Transfer and Foreign Collaboration - Scope of Technology Transfer TEXTBOOKS

- 1. Prasanna Chandra, "Project-Planning Analysis Selection Implementation & Review 6 th Edition", Tata Mc Graw Mill Publishing Co., Ltd, Newdelhi 2016.
- 2.Joy.P.K., Total Quality Project Management The Indian Context, New Delhi, Macmillan India Ltd.,1992. **REFERENCES**
- 1. United Nations Industrial Development Organization (UNIDO) Manual for the Preparation of Industrial feasibility Studies, (IDBI Reproduction) Bombay 1987.
- 2.Barcus, SW. and Willison., Handbook of Management consulting Services, McGraw Hill, New York, 1986.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.R.Abirami	Asst.Professor	AVIT	abirami.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.ed u.in

			CONS	TRU	CTION	N PLA	NNIN	G,	Ca	tegory	L	T	P	C	redit
							ONTR			CC	3	1	0		4
PREAMB	LE														
Gai control	in a thor	ough	unders	standir	ng of t	he fin	er poi	nts of	constr	ruction j	project	planning	g, sche	edulin	ıg, ar
PREREQ	UISITE														
NIL															
COURSE	OBJE	CTIVI	ES												
1	т. с	.1		***							.1				
1	lo fam	iliarise	them	with	proje	ct mai	nagem	ient c	oncep	ts, from	planr	ning to ex	kecutio	on.	
2				m witl	h proj	ect fea	asibilit	y anal	lysis a	nd netw	ork aı	nalysis to	ols for	r cost	and
2	time e			.1	1.	1	1 1	•		. 1	• , .•	.•		11 1	
3	To eq	uip the	em wi	tn a w	orkin;	g knov	wiedge	e of co	ontract	t admini	ıstratıc	on, costin	g, and	bud	getin
4	To familiarise students with quality control.														
5	To gain an understanding of the various types of project information.														
3	10 ga	III ali (unders	tanun	ig of t	ne vai	ilous t	ypes c	л ргој	ect iiiio	manc)11 .			
COURSE	OUTC	OME	S												
On the suc	cessful	compl	etion o	of the	course	e, stud	lents w	vill be	able t	.0					
CO1. Reco	gnize th	e chara	cterist	ics of a	a proje	ct and	its var	ious st	ages.			Understa	nd		
CO2. Reco	_		-	•	with v	which p	project	s are o	rganis	ed and		Understa	nd		
feasibility a															
CO3. Anal techniques.	-	compr	ehend	projec	t planı	ning, s	chedul	ing, an	id exec	cution co	ontrol	Analyze			
CO4 Utiliz		k mana	geme	nt nlan	and c	onduc	f an an	alvsis	of the	stakeho	lders'	Apply			
roles.	the me	K IIIdii	ageme	nt piun	una c	onduc	t an an	iarysis	or the	Stakeno	Ideis	11001			
CO5. Cont		-	-				servio	ce leve	l agre	ements,		Understa	nd		
and produc							MEG	ANID	DDO	CDAM	ME C			TOO	N/T
MAPPIN	G WII	н РК	UGK	AWIIVI	E OU	ico	WIES	AND	PKU	GKAM	MIL S	PECIFI	C OU	100	WIL.
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO	PS	PS
G04				3.4		~	~						1	O2	03
CO1	M	M	L	M	L	S	S	L	L	M	M	M	L	L	L
CO2	S	S	M	L	M	S	M	L	L	S	L	S	S	M	M
CO3	M	M	M	L	M	M	S	M	M	L	S	L	M	S	S
CO4	L	L	M	L	M	S	M	M	M	L	S	L	M	L	L
] [I					

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT - I CONSTRUCTION PLANNING

Basic Concepts in the Development of Construction Plans - Choice of Technology and Construction Method - Defining Work Tasks - Defining Precedence Relationships among Activities - Estimating Activity Durations - Estimating Resource Requirements for Work Activities - Coding Systems

UNIT - II SCHEDULING PROCEDURES AND TECHNIQUES

Construction Scheduling, Work break down structure, activity cost and time estimation in CPM, PERT, RPM (Repetitive Project Modeling) techniques. LOB technique, Mass haul diagrams. Precedence Network Analysis, software in Construction scheduling (MSP, primavera, Construction manager).

UNIT - III SPECIFICATION OF PROJECT BUDGET

The Cost Control Problem - The Project Budget - Forecasting for Activity Cost Control - Financial Accounting Systems and Cost Accounts - Control of Project Cash Flows - Schedule Control - Schedule and Budget Updates - Relating Cost and Schedule Information.

. UNIT - IV SAFETY AND QUALITY MANAGEMENT

Safety and Quality Concerns in Construction - Organizing for Quality and Safety - Work and Material Specifications - Total Quality Control - Quality Control by Statistical Methods - Statistical Quality Control with Sampling by Attributes - Statistical Quality Control with Sampling by Variables - Safety

UNIT - V PROJECT INFORMATION

Types of Project Information - Accuracy and Use of Information - Computerized Organization and Use of Information - Organizing Information in Databases - Relational Model of Databases - Other Conceptual Models of Databases - Centralized Database Management Systems - Databases and Applications Programs - Information Transfer and Flow

BOOKS:

- 1. Chitkara. K.K. "Construction Project Management: Planning Scheduling and Control", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 2. Calin M. Popescu, Chotchal Charoenngam, "Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications", Wiley, New York, 2005.

REFERENCES:

- 1. Willis, E. M., "Scheduling Construction Projects", John Wiley & Sons, 2006.
- 2. Halpin, D. W. "Financial and Cost Concepts for Construction Management", John Wiley & Sons. New York, 2005

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.D.PARTHIBAN	Assistant Professor - I	AVIT	parthiban.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i n

COMPUTER APPLICATIONS IN	Category	L	T	P	Credit
CONFUTER APPLICATIONS IN CONSTRUCTION ENGINEERING AND PLANNING	CC	0	0	4	2
PREAMBLE					

This helps the students to utilize the optimized computer technology in the field of planning and construction. This subject also helps the project planning and scheduling in digitalized approach.

PREREQUISITE

NIL										
COURS	SE OBJECTIVES									
1	To study and understand the introduction of system hardware.									
2	To study the role and methods of optimization techniques.									
3	The students know about inventory models.									
4	To Expose the student's knowledge of scheduling application.									
5	To learn about project planning and scheduling.									
COURS	SE OUTCOMES									
On the s	successful completion of the course, students will be able to									
CO:1	To understand the about the optimization techniques and practice	Understand								
CO:2	To under the about the resource allocation and resource utilization	Understand								
CO:3	To utilize the software interface in project planning and scheduling.	Analyze								
CO:4	To perceive the Human Resource Management in the Construction Project	Apply								

MAPPI	NG W	TTH I	PROGI	RAM	ME C	UTC	OME	S AN	D PROG	RAMME SI	PECIF	JO OI	JTCOM	ES
COS	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PS

To perceive the Material Management in the Construction Project

C	OS	PO	PSO	PSO	PSO											
		01	02	03	04	05	06	07	08	09	10	11	12	01	02	03
	CO:1	M	M	L	M	L	S	S	L	L	M	M	M	L	L	L
	CO:2	S	S	M	L	M	S	M	L	L	S	L	S	S	M	M
	CO:3	M	M	M	L	M	M	S	M	M	L	S	L	M	S	S
	CO:4	L	L	M	L	M	S	M	M	M	L	S	L	M	L	L
(CO:5	M	M	L	M	L	M	S	M	M	M	M	M	S	M	M

Apply

S – STRONG, M – MEDIUM and L – LOW

SYLLABUS

INTRODUCTION

LIST OF EXPERIMENTS

- 1. Planning and Scheduling of Project using Microsoft Project
- 2. Project and Portfolio Management using Computer Application
- 3. Resources Management using Computer Application
- 4. Risk Management using Computer Application
- 5. Workflow of events and activities in Construction Project
- 6. Project templates and Web administration in Construction Industry
- 7. ERP in Construction Industry
- 8. Material Management in Construction industry using Computer Application

TEXT BOOKS

- 1. Billy E.Gillet., Introduction to Operations Research A Computer Oriented Algorithmic Approach, Tata Mc Graw Hill, 1990
- 2. Paulson, B.R., Computer Applications in Construction, Mc Graw Hill, 1995

REFERENCE BOOKS

- 1. Feigenbaum, L., Construction Scheduling with Primavera Project PlannerPrentice HallInc., 2002
- 2. Ming Sun and Rob Howard, "Understanding I.T. in Construction, Spon Press, Taylor and Francis Group, London and New York, 2004.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	E-mail ID	
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Mr.K.Naveenkumar	Assistant Professor	Civil/AVIT	naveen.civil@vait.ac.in

			AD	VANC	CED C	CONC	RETI	E	Cat	tegory	L	Т	P	Cr	edit
				TEC	CHNO	LOG	Y		(CC	3	1	Inderstand at Appl Appl Appl Inderstand at CIFIC OUT	,	4
PREAME	BLE												1		
This cours	se explai	ins abo	out the	mate	rials u	sed fo	or vari	ous ty	pes of	concre	te, thei	r behavi	iour ar	nd con	cretin
PREREQ	UISITE	E													
NIL															
COURSE	OBJE	CTIVI	ES												
1	To stu	dy and	under	stand t	he con	crete i	ngredi	ents.							
2	To stu	dy the	role of	fibre	reinfor	ced co	ncrete								
3	The st	udents	know	about	concre	te mix	design	n and h	nigh str	ength co	oncrete.				
4	To ex	pose th	e stude	ents kn	owled	ge of r	nechar	nical pı	roperti	es of coi	ncrete.				
5	To acc	quire th	ne knov	wledge	of dur	ability	y of co	ncrete.							
COURSE															
On the succ															
CO1 - Ur										nent		Under			ply
CO2 - Of															
											_		Appl	y	
CO4 - Un ar	derstand id its tes		-		resh a	ind ha	irdene	d con	crete	propert	ies		Appl	y	
CO5 - De	scribe a	bout t	he spe	cial co	oncrete	es						Under	stand a	nd Ap	ply
MAPPIN	G WIT	H PR	OGR/	MM	E OU'	TCO	MES A	AND 1	PROC	GRAMI	ME SP	ECIFIC	C OUT	ГСОМ	1ES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	M	-	-	-	-	-	-	-	-			
CO2	S	L	M	L	-	-	-	1	-	-	-	-			
CO3	S	S	M	L	-	-	-	S	1	-	-	-			
CO4	S	M	L	L	-	1	-	-	-	_	-	-			
CO5	M	M	L	M	-	1	_	ı	1	_		_			

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I CONCRETE INGREDIENTS

Composition of OPC – Manufacture – Modified Portland Cements – Hydration Process of Portland Cements – Structure of Hydrated Cement Pastes

Mineral Admixtures – Slags – Pozzolanas and Fillers – Chemical Admixtures – Solutes – Retarders – Air Entraining Agents – Water Proofing Compounds – Plasticizers and Super Plasticizers

Aggregates – Properties and testing of fine and course aggregates – combining of aggregates – Substitute material for aggregates – recent advancements.

UNIT II SPECIAL CONCRETES

Fibre Reinforced Concrete – Self Compacting Concrete – Polymer Concrete – Sustainable Concrete – Lightweight concrete.

UNIT - II CONCRETE MIX DESIGN

Mix Proportioning – Mixes incorporating Fly ash, Silica fume, GGBS – Mixes for High Performance Concrete – High strength concrete – variations in concrete strength.

UNIT IV MECHANICAL PROPERTIES OF CONCRETE

Interfacial Transition Zone – Fracture Strength – Compressive strength – Tensile strength - Impact strength - Bond strength.

UNIT V DURABILITY OF CONCRETE

Factors affecting durability – Chemical Attack – Permeability – Sulphate attack - chloride penetration – water absorption – creep – Shrinkage.

BOOKS:

- 3. Santhakumar.A.R., Concrete Technology, Oxford University press, New Delhi. 2007.
- 4. Gambhir.M.L., Concrete Technology Tata McGraw Hill Book Co. Ltd., Delhi, 2004.

REFERENCES:

- 1. Neville, A.M., Properties of Concrete, Longman, 1995.
- 2. Metha P.K. and Montreio P.J.M., Concrete Structure Properties and Materials, Prentice Hall, 1998.

S. No.	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.S.Aravind Raj	Associate Professor	AVIT	aravindraj.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i N

		МО	DER	NIST	IC Al	PPRO	ACHI	ES IN		tegory	L	T	P	Cr	edit
				CONS				approach approach ferent sus technolog logy in the construction process ed in mode the construction process AND PRO PO8 Position in the construction process AND PRO AND PRO		CC	3	1	0		4
PREAMB	LE	l													
Study and	_	hend t	the M	oderni	zed c	onstru	ction	approa	iches 1	practici	ng in th	e field	of civ	il	
engineerin PREREQ															
NIL	CIOIIL														
COURSE	OBJEC	CTIVI	ES												
1	To stu	dy and	d und	erstand	d the	usage	of diff	erent	sustaii	nable m	aterials	in cons	tructio	on	
2	To stu	dy the	conc	ept an	d usaş	ge of l	Nano t	echno	logy i	n the fie	eld of c	ivil engi	ineerin	ng	
3	To stu	dy the	e inevi	itable	role o	f biote	echnol	ogy in	the fi	eld of o	construc	ction			
4	To ren	dering	g the o	differe	nt aut	omatio	on pro	cess i	nvolve	ed in m	odern d	ay of co	nstruc	ction	
5	To acc	quire t	he rol	e of p	refab	constr	uction								
COURSE															
On the suc													T.T.		
	_											civil		lersta	
engine	eering.												Unc	lersta	nd
CO3. To val	idate the	basic l	knowl	edge o	f biote	chnolo	ogy in t	the con	structi	ion indu	stry		Ana	lyze	
CO4. To cl	•	ucidate	e abou	it the	variou	is auto	omatio	n proc	esses	that are	used i	n today'	s App	oly	
CO5. To cle		icate tl	he equ	ipmen	t's and	l metho	ods use	ed in m	odular	constru	ction		Unc	lersta	nd
MAPPING		I PRO	OGRA	MMI	E OU	ГСОN	IES A	ND P	ROG	RAMM	IE SPE	CIFIC	Tone	.cr sta	
OUTCON COs	IES PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	PS
													1	O2	O3
CO1	L	L	L	M	L	S	S	L	L	M	M	M	L	L	L
CO2	M	M	M	L	M	S	S	-	L	S	L	S	S	M	M
CO3	M	L	M	L	M	M	-	M	M	-	S	L	M	S	S
CO4	M	M	M	L	M	S	L	M	M	L	S	L	M	L	L
													S	M	

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT - I SUSTAINABLE BUILDING MATERIALS

Special alloys of steel and other metals- glass- polymer- fabric- Construction chemicals- Specialized equipment's-Market survey -collection of information about the materials

UNIT - II NANO CONCRETE

Concept of Nanotechnology- Nano Cement materials- Nanoscale Characterization -Silica Aerogels-Effect of Nano-SiO- Nano Clay- Graphene-Oxide- Electrochemical Injection- Cement Reinforcement by Nanotubes.

UNIT - III CONSTRUCTION BIOTECHNOLOGY

Basics of Biotechnology for Civil Engineering - Biotechnological Admixtures- Biotechnological Plastics- Bio cements- Bio coating of Surfaces- Bio grouts- Bio corrosion- Bio deterioration - Future Developments

UNIT - IV CONSTRUCTION AUTOMATION

Concept- Building Information Model- 3D Printing- Roles of artificial intelligence in construction engineering and management

UNIT - V MODULAR CONSTRUCTION

Modular construction- Types- prefabrication-Principles-Materials-Modular coordination-Standardization-Systems-Production-Transportation-Erection -Construction and erection of roof and floor slabs-Wall panels -Columns-Shear walls

BOOKS:

- 3. CBRI, Building materials and components, India, 1990
- 4. Nanotechnology in Construction, Konstantin Sobolev & Surendra P. Shah, Springer International Publishing, Switzerland 2015
- 5. Construction Biotechnology, Volodymyr & Ivanov Viktor Stabnikov, Green Energy and Technology (GREEN), 2017
- 6. Construction Automation. In: Castro-Lacouture D. (2009) , Springer Handbook of Automation, 2009

REFERENCES:

- 3. Henrick Nissen, "Industrial Building and Modular Design", Cement Concrete Association,
- 4. Roy Chudley& Roger Greeno, "Advanced Construction Techniques", Pearson Prentice Hall

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.D.PARTHIBAN	Assistant Professor - I	AVIT	parthiban.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

				AUT()MA]	ΓΙΟΝ	IN		Ca	tegory	L	T	P	Cı	edit
		CO					AGEN	MENT		CC	3	0	0		3
PREAMB	LE								l			ı			
Ha strong digi	ving the tal footp									seen or	r obser	ved, as	well a	s hav	ing a
PREREQ	UISITE														
NIL															
COURSE	OBJEC	CTIV	ES												
1	To gai	n insi	ght in	to the	use of	f auto	matior	and 1	robots	in cons	struction	n manag	gement	<u> </u>	
2	To uno	dersta	nd the	funda	amenta	als of	sensor	s and	inspe	ction					
3	To inv	estiga	ate exi	sting	and pi	rototyj	pe con	structi	ion eq	uipmen	t.				
4	Data r	etwoi	rking	for pre	efabric	ation	eleme	nts wi	ill be i	investig	ated.				
5	Roboti	ic tecl	hnolog	gies fo	r pref	abrica	tion el	ement	ts will	be inv	estigate	d.			
COURSE	OUTC	OME	S												
On the suc	cessful o	compl	etion	of the	course	e, stuc	lents v	vill be	able 1	to					
CO1. Unde	erstand h	ow bui	ilding	manag							sed in	Understa	nd		
both on-site					nstruct	ion pr	oblems	S.				A pply			
CO3. The	ise of coi	npute	rs in co	onstruc	ction T	he pro	cessin	g of da	ıta			Apply Apply			
CO4. Learn	n the fund	lamen	tals of	comm	unicat	ion an	d offic	e autor	nation	l .		Understa	nd		
CO5. To cl	early exp	olicate	the Ro	obotics	s in the	Const	ruction	ı Indus	stry			Apply			
M	APPIN(3 WI	TH P	ROG	RAM					D PRO			ECIF	IC	
COs	PO1	PO2	PO3	PO4	PO5		UTCO PO7			PO10	PO11	PO12	PSO	PS	PS
CO1	L	L	L	M	L	S	S	L	L	M	M	M	1 L	O2 L	O3 L
								L							
CO2	M	M	M	L	M	S	S	-	L	S	L	S	S	M	M
CO3	M	L	M	L	M	M	-	M	M	-	S	L	M	S	S

CO4	M	M	M	L	M	S	L	M	M	L	S	L	M	L	L
CO5	L	L	L	M	L	M	S	M	M	M	M	M	S	M	M

SYLLABUS

UNIT - I FUDAMENTAL OF BMS

Concept and application of Building Management System (BMS) and Automation, requirements and design considerations and its effect on functional efficiency of building automation system, architecture and components of BMS- Review and analysis of state- of –art in construction automation

UNIT-II OFF AND ON-SITE AUTOMATION IN CONSTRUCTION

Field sensors actuators- controllers- non-destructive evaluation- data acquisition- Off site automation in construction Information processing- Materials processing - Case study - Existing and prototype equipment for construction – case study

UNIT - III BUILDING AUTOMATION

Introduction to building automation systems – components– Heating, ventilation, and air Conditioning (HVAC)– Lighting – Electrical systems water supply and sanitary systems– Fire Safety – security -Communication and office automation system -Water pump monitoring & Control - Control of Computerized HVAC Systems

. UNIT - IV ROBOTICS IN CONSTRUCTION

Automation and robotic technologies for customized component, module and building Prefabrication- Elementary technologies and single – Task construction robots - Site automation robotic on site factories

UNIT - V DATA NETWORKING CONSTRUCTION AUTOMATION

Data networking– IBMS system and its components – Centralized control equipment's – substation and field controllers – Gamma building control – energy-efficient building and room automation.

BOOKS:

- 7. Javad Majrouhi Sardroud, (2011), "Automated Management of Construction Projects" LAP Lambert Academic Publishing.
- 8. Wang Shengwei, (2010), "Intelligent Buildings and Building Automation" Taylor & Francis Group.

- 5. Majrouhi Sardroud Javad, (2014), "Automation in Construction Management" Scholars' Press
- 6. HongleiXu and Xiangyu Wang, (2014), "Optimization and Control Methods in Industrial Engineering and Construction (Intelligent Systems, Control and Automation: Science and Engineering)" Springer.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.D.S.Vijayan	Associate Professor - I	AVIT	vijayan@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i n

			AI	OVAN	ICED	PRO.	IECT		Cat	tegory	L	T	P	Cr	edit
				AGE						CC	3	1	0		4
PREAM	BLE											l l			
In this Addinclude tas														epts	
	-		cai pai	n meu	iou, pi	amm	g, proje	ct tiiii	ennes,	and ong	going in	omtormg	•		
PRERE(2013111	_													
NIL		~													
COURSI	E OBJE	CTIV	ES												
1	To stu	dy and	under	stand t	he pro	ject lif	e cycle	and t	ypes of	constru	iction.				
2	To stu	dy the	role of	projec	et man	ageme	nt, ow	ners pe	erspecti	ive.					
3	The st	udents	know	about	organi	zing fo	or proje	ect mar	nageme	ent.					
4	To exp	ose th	e stude	nts kn	owled	ge of la	abour 1	nateria	al and e	equipme	ent utiliz	zation.			
5	To Ac	quire t	he Kno	wledg	ge of C	ost Est	timatic	n							
COURSI	L E OUTC	OME	S												
COCKSI		ONIL													
On the su															
CO1. Rec									•	e cycle	Ţ	Understar	d and	Appl	У
CO2. Eng Organizati	_	ead eff	ective	projec	t mana	gemer	it team	s in yo	our		I	Apply			
CO3. Und		roject 1	nanag	ement	design	, deve	lopme	nt, and	deploy	yment	1	Apply			
CO4. Use	project n	nanage	ment t	ools, te	echniq	ues, an	d skill	S				Apply			
CO5. Und	lerstand h	ow to 1	manag	e proje	ect cos	t, quali	ty, and	l deliv	erv			· ·			
MAPPIN				1 0			•			D A M/N/		Understar CIFIC	d and	App	ly
OUTCO		II I K(JGKA	11111111	2 001	CON	ILS A	прі	KOG	IXA IVIIV	IL SI L	CIFIC			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3
CO1	L	M	L	-	-	-	M	L	L	M	-	M	L	L	L
CO2	M	S	M	-	M	S	S	L	M	-	S	L	M	M	S
CO3	L	L	S	L	-	-	M	S	M	L	L	S	M	S	M
CO4	M	S	S	-	L	-	S	M	S	L	L	S	L	L	M
														1	

SYLLABUS

UNIT I THE OWNER'S PERSPECTIVE

Introduction - Project Life Cycle - Types of Construction - Selection of Professional Services - Construction Contractors - Financing of Constructed Facilities - Legal and Regulatory Requirements - Changing Environment of the Construction Industry - Role of Project Managers

UNIT II ORGANIZING FOR PROJECT MANAGEMENT

Project Management – modern trends - Strategic Planning - Effects of Project Risks on Organization - Organization of Project Participants - Traditional Designer-Constructor Sequence - Professional Construction Management - Owner-Builder Operation - Turnkey Operation - Leadership and Motivation for the Project Team

UNIT III DESIGN AND CONSTRUCTION PROCESS

Design and Construction as an Integrated System - Innovation and Technological Feasibility - Innovation and Economic Feasibility - Design Methodology - Functional Design - Construction Site Environment

UNIT – IV LABOUR, MATERIAL AND EQUIPMENT UTILIZATION

Historical Perspective - Labour Productivity - Factors Affecting Job-Site Productivity - Labour Relations in Construction - Problems in Collective Bargaining - Materials Management - Material Procurement and Delivery - Inventory Control - Tradeoffs of Costs in Materials Management. - Construction Equipment - Choiceof Equipment and Standard Production Rates - Construction Processes Queues and Resource Bottlenecks

UNIT V COST ESTIMATION

Costs Associated with Constructed Facilities - Approaches to Cost Estimation - Type of Construction Cost Estimates - Effects of Scale on Construction Cost - Unit Cost Method of Estimation - Methods for Allocation of Joint Costs - Historical Cost Data - Cost Indices - Applications of Cost Indices to Estimating - Estimate Based on Engineer's List of Quantities - Estimation of Operating Costs.

BOOKS:

- 1. Chris Hendrickson and Tung Au, Project Management for Construction Fundamental Concepts for Owners, Engineers, Architects and Builders, Prentice Hall, Pittsburgh, 2000.
- 2. Chitkara, K.K. Construction Project Management: Planning, Scheduling and Control, Tata McGraw-Hill Publishing Company, New Delhi, 1998.

- 1. Frederick E. Gould, Construction Project Management, Wentworth Institute of Technology, Vary E. Joyce, Massachusetts Institute of Technology, 2000.
- 2. Choudhury, S , Project Management, Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 3. George J. Ritz, Total Construction Project Management McGraw-Hill Inc, 1994.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	AVIT	isparaxavier.civil@avit. ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.ed u.in

			QUA	LITY	AND	SAFI	ETY I	N	Ca	tegory	L	Т	P	C	redit
			-		STRU					CC	3	0	0		3
PREAME	BLE														
The studen skilled to n					ledge a	bout t	he imp	ortanc	e of qu	ıality an	d safety	in const	ruction	and o	will b
PREREQ															
NIL															
COURSE	OBJE	CTIV	ES												
1	To un	dersta	nd the	elemer	nts of c	uality	planni	ng and	l the in	nplication	on.				
2	To bed	come a	ware o	of object	ctives	and ad	vantag	e of qu	iality a	ssuranc	e and m	anageme	ent.		
3	To stu	dy abo	ut safe	ety in c	onstru	ction.									
4	To stu	dy abo	ut vari	ous sa	fety op	eratio	ns in c	onstru	ction.						
5	To stu	ıdy ab	out ac	cident	s and	safety	meas	sures i	n cons	struction	indus	try.			
COURSE	OUTO	COME	S												
On the suc	ccessful	compl	letion	of the	cours	e, stud	lents v	will be	able	to					
CO1. Show								on.			1	Understa	nd		
CO2. Shou											1	Understa	nd		
CO3. Shou	ıld be ab	le to ta	ken sa	fety m	easure	s in co	nstruc	tion.			1	Understa	nd, Ap	ply	
CO4. The	concept	of othe	r vario	us ope	eration	s with	safety.				1	Understa	nd, Ap	ply	
CO5. Kno	w about	accide	nts & r	neasur	es take	en in co	onstruc	ction.			1	Understa	nd , A	pply	
MAPPING	WITH	PRO	GRAN	IME (OUTC	OMES	S AND) PRO	GRAN	MME S	PECIFI	C OUT	COME	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PS	PS
CO1	L	L	L		L	L		S	L		M	M	O1 M	O2 L	O3
	L	L	L	•	L	L	•	3	L	•	IVI	IVI	141		
CO2	L	L	M	-	M	L		S	L		M	L	M	M	M
CO3	M	M	M	L	M	L	M	M	M	-	L	M	M	S	S
CO4	S	M	S	M	M	M	M	M	M	M	L	S	S	M	S
	1	1									S	ļ	S	M	S

UNIT – I Construction Quality

Construction Quality, Inspection and Testing, Quality control, Quality Assurance, Quality Certification for companies and laboratories (ISO Certification, NABL certification)

UNIT – II Construction Quality Management

Total Quality Management, Critical factors of TQM, TQM in Projects, Benchmarking, concepts of quality policy, standards, manual - Needs Of QA/QC - Different Aspects of Quality-Appraisals, Factors Influencing Construction Quality-Critical, Standardization.

UNIT – **III** Construction Safety

Construction Safety-meaning and scope, Safety in construction- Roles of different groups in safety - Technological aspects, organizational aspects and behavioural aspects, Safety legislation and Standards, Contract conditions on safety in Civil Engineering projects.

UNIT – IV Safety in Various Construction Operations

Basic terminology in safety, safety pyramid- Safety in Construction: Causes, classification, cost and measurement of an accident, safety programme for construction, protective equipment, accident report, safety measure: (a)For storage and handling of building materials. (b) Construction of elements of a building (c) In demolition of buildings Safety lacuna in Indian scenario - National Building Code Provisions on construction safety, Construction safety manuals. Safety in Vehicles, Cranes, Tower Cranes, Wire Ropes, Pulley blocks, Mixers. SoPs (Safe Operating Procedures) – Construction equipment, materials handling-disposal & hand tools.

UNIT - V Accidents & Safety measures

Types of injuries, Factors affecting safety, Strategic Planning for safety provisions. Personal & Structural safety - Recording injuries and accident indices. Theories and principles of accident – frequency – rate – serviceability rate – incident rate – activity rate, first aid. Other hazards – fire, confined spaces, electrical safety. Method statement, SOPs, PPE, Inspections, Investigations. Site safety programmes - JSA, JHA, Root cause analysis, meetings, safety policy, manuals, training & orientation. Safety legislation regard to violation.

BOOKS:

- 1. John L. Ashford, The Management of Quality in Construction, E & F.N, Spon. New York, 2009.
- 2. K.N.Vaid, Construction Safety Management, National Institute of Construction

Management and Research, 1988

- 3. J.B.Fullman, Construction Safety Security & Loss Prevention, John Wiley & Sons Inc
- 4. Linger.L, Modern Methods of Material Handling
- 5. Hinze, J.W. (1997) Construction Safety, Prentice Hall.
- 6. MacCollum, D.V. (1995) Construction Safety Planning, John Wiley & Sons
- 7.Bhattacharjee, S.K. (2011) Safety Management in Construction, Khanna Publishers

- 1. David Gold Smith, "Safety Management in construction and Industry", Mc Graw Hill
- 2. K N Vaid, "Construction Safety Management", NICMAR, Bombay
- 3. D S Rajendra Prasad, "Quality Management System in Civil Engineering", Sapna Book

House, Bangalore

- 4. "The Building and Other Construction Workers (Regulation of Employment and Conditions of Service) Act, 1996, Universal Law Publishing Co. Pvt. Ltd.
- 5. James, J.O Brien, Construction Inspection Handbook Quality Assurance and Quality Control, Van Nostrand, New York, 1989. 11

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	VAIDEVI.C	Assistant Professor – II	AVIT	Vaidevi.c@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

		O	UANT	ITAT	IVE T	ECH	NIQU	ES IN	Ca	tegory	L	T	P	Cı	redit
						MAN				CC	3	0	0		3
PREAME	BLE														
The studen manageme	ts will be nt of ma	e able t terials	o gain and hi	knowl ıman r	edge a	ibout tl	he imp	ortanc	e of qu	antitativ	ve manaş	gement te	chnique	es and	
PREREQ															
NIL															
COURSE	OBJE	CTIV	ES												
1	To st	udy ar	nd und	erstan	d the	operat	tion re	esearcl	h, line	ar prog	rammi	ng.			
2	To stu	idy the	e role	of pro	ductio	on mai	nagen	nent.							
3	The s	tudent	s knov	v abou	ıt fina	incial	manag	gemen	t and	capital	budget	ing.			
4	To ex	pose t	he stu	dents	know	ledge	of pri	cing te	echniq	ues.					
5	To ac	quire	the kn	owled	ge of	manag	gerial	econo	mics.						
COURSE	OUTC	COME	S												
On the suc		•									ı				
CO1. Shou		•		_					nstruc	tion.	Ţ	Jndersta:	nd		
CO2. Show	ıld be ab	le to le	arn abo	out qua	ıntity r	nanage	ement.				τ	Jndersta	nd		
CO3. Shou	ıld be ab	le to ta	ken me	easures	s in co	nstruct	ion to	manag	ge reso	urces.	Į	Jndersta	nd. Ap	pply	
CO4. The	concept	of othe	r vario	us ope	rations	s with	constru	ction a	ctivities	and eve		Understa			
CO5. Knov	w about	measui	es tak	en in qu	uantity	accretic	on.				ī	Jndersta	nd Aı	nnlv	
MAPPING	WITH	PRO	GRAN	IME (OUTC	OMES	AND	PRO	GRAN	ME SI					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PS	PS
CO1	L	L	L	-	L	L	-	S	L	-	M	M	O1 M	O2 L	O3
CO2	L	L	M	-	M	L	-	S	L	-	M	L	M	M	M
CO3	M	M	M	L	M	L	M	M	M	-	L	M	M	S	S
CO4	S	M	S	M	M	M	M	M	M	M	L	S	S	M	S
	S	S	S	M	S	M	M	M	M	M	S	S	S	M	S
CO5	~														

UNIT I OPERATIONS RESEARCH

Introduction to Operations Research - Linear Programming - Graphical and Simplex Methods, Duality and Post - Optimality Analysis - Transportation and Assignment Problems

UNIT II PRODUCTION MANAGEMENT

Inventory Control - EOQ - Quantity Discounts - Safety Stock - Replacement Theory - PERT and CPM - Simulation Models - Quality Control

UNIT III FINANCIAL MANAGEMENT

Working Capital Management – Compound Interest and Present Value methods – Discounted Cash Flow Techniques – Capital Budgeting

UNIT IV DECISION THEORY

Decision Theory – Decision Rules – Decision making under conditions of certainty, risk and uncertainty – Decision trees – Utility Theory

UNIT V MANAGERIAL ECONOMICS

Cost Concepts – Break-even analysis – Pricing Techniques – Game theory Applications.

BOOKS:

- 1. Vohra, N.D., Quantitative Techniques in Management, Tata McGraw-HillCompany Ltd, New Delhi, 1990.
- 2. Schroeder, R.G, Operations Management, McGraw Hill, USA, 1982.
- 3. Levin, R.I, Rubin, D.S., and Stinson J., Quantitative Approaches to Management, McGraw Hill Book Co., 1988.

- 1. Frank Harrison, E., The Managerial Decision Making Process, Houghton MifflinCo., Boston, 1975.
- 2. Hamdy A.Taha, Operations Research: An Introduction, Prentice Hall, 2002.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	VAIDEVI.C	Assistant Professor – II	AVIT	Vaidevi.c@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

				~	TY CO			ND	Ca	itegory	L		T	P	Credit	
					SSUR A ONSTR					CC	3		0	0	3	
PRE	AMBL	Æ							I			ı	l			
	-	_	lity man	-	_	ity pla	nning	and it	s impi	roveme	nt te	chniqu	ies an	d to	study	
PREF	REQU	ISITE			-											
NIL																
COU	RSE (DBJEC	TIVES													
1		To stuc	ly and u	ındersta	nd the	quality	mana	igemei	nt, qua	ality pla	n.					
2		To stuc	ly the ro	ole of qu	uality sy	ystem	and pi	reparir	ng qua	lity sys	tem	docur	nents.			
3		The stu	dents k	now ab	out qua	lity pla	anning	5								
4		То ехр	ose the	student	s knowl	ledge o	of qua	lity as	suranc	e and c	ontr	ol.				
5		To ac	quire th	e know	ledge of	f quali	ty imp	roven	nent te	echniqu	es					
COU	RSE (OUTCO	OMES													
On the	e succe	essful co	ompletio	on of th	e course	e, stud	ents w	ill be	able to	0						
	-		quality s	•			-	reparat	ion of	docume	nts	Ţ	Jnders	tand a	and Apply	y
			ifferent vant cod					ality o	nality	policy						
	-		ion indu				-		•			A	Apply			
CO3	To und	lerstand	the elem	nents of	quality p	lannin	g and t	he imp	olicatio	on		A	Apply			
CO4.	To bec	ome aw	are of ob	ojectives	and adv	antage	of qua	ality as	suranc	ce		A	Apply			
on the	way a	nd able t	tify and to take ea	_				-	-			τ	Jnders	tand a	and App	ly
	zation. PING		PROG	GRAMN	ME OU	TCO	MES A	AND 1	PROG	GRAMI	ME S	SPEC	IFIC	OU'	ГСОМЕ	ZS .
COs	P ∩1	PO2	PO3	PO4	PO5	P06	PO7	DOδ	PO0	PO10	P	РО	PS	DC	PS	PS
COS	FOI	102	103	F U4	103	100	rU/	100	109	1010	0 11	12	01	O2		04
		ī	ļ	 		_	т	-				3.5	т	-	_	+
CO1	L	S	L	L	M	L	L	L	L	M	M	M	L	L	L	L

	CO3	L	S	L	L	L	M	M	M	M	L	S	S	M	S	M	L
C	CO4	L	S	L	S	L	L	S	M	L	L	S	S	L	S	M	M
C	CO5	L	L	M	M	M	S	S	L	M	M	M	M	M	S	S	L

SYLLABUS

UNIT - I QUALITY MANAGEMENT

Introduction – Definitions and objectives – Factor influencing construction quality - Responsibilities and authority - Quality plan - Quality Management Guidelines – Quality circles.

UNIT II QUALITY SYSTEMS

Introduction - Quality system standard – ISO 9000 family of standards – Requirements – Preparing Quality System Documents – Quality related training – Implementing a Quality system – Third party Certification.

UNIT III QUALITY PLANNING

Quality Policy, Objectives and methods in Construction industry - Consumers satisfaction, Ergonomics - Time of Completion - Statistical tolerance - Taguchi's conceptof quality - Codes and Standards - Documents - Contract and construction programming - Inspection procedures - Processes and products - Total QA / QC programme and cost implication.

UNIT IV QUALITY ASSURANCE AND CONTROL

Objectives - Regularity agent, owner, design, contract and construction oriented objectives, methods - Techniques and needs of QA/QC - Different aspects of quality - Appraisals, Factors influencing construction quality - Critical, major failure aspects and failure mode analysis, -Stability methods and tools, optimum design - Reliability testing, reliability coefficient and reliability prediction.

UNIT V QUALITY IMPROVEMENT TECHNIQUES

Selection of new materials - Influence of drawings, detailing, specification, standardization - Bid preparation - Construction activity, environmental safety, social and environmental factors - Natural causes and speed of construction - Life cycle costing -Value engineering and value analysis.

BOOKS:

- 1. James, J.O' Brian, Construction Inspection Handbook Quality Assurance and Quality Control, Van Nostrand, New York, 1989. Clarkson H. Oglesby, Productivity Improvement in Construction, McGraw-Hill, 1989.
- 2. Kwaku, A., Tena, Jose, M. Guevara, Fundamentals of Construction Management and Organisation, Reston Publishing Co., Inc., Virginia, 1985.
- 3. Juran Frank, J.M. and Gryna, F.M. Quality Planning and Analysis, Tata McGraw Hill, 1993

- 1. Hutchins.G, ISO 9000, Viva Books, New Delhi, 2000
- 2. Clarkson H. Oglesby, Productivity Improvement in Construction, McGraw-Hill, 1989.

- 3. John L. Ashford, The Management of Quality in Construction, E & F.N.Spon, New York, 1989
- 4. Steven McCabe, Quality Improvement Techniques in Construction, AddisonWesley Longman Ltd, England. 1998

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs J.Srija	Assistant Professor - I	AVIT	srija.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

ELECTIVE COURSES

			CO	NTD A	СТІ	ATTIC	S AND	<u> </u>	Car	tegory	L	T	P	Cr	edit
			CO			TION		,	Е	C-PS	3	0	0		3
To st	AMBL audy con	ntract		_		ons so	that ac	dequat	e knov	wledge	on for	mulating	and n	nanag	ging
PREI	REQUI	ISITE													
NIL															
	RSE O	RIE <i>(</i>	TIVE	ZS.											
					<u> </u>					1.1.	1 1		1		
1	To stu	idy the	e vario	ous typ	es of	constr	uction	contr	acts a	nd their	legal	aspects a	ind pr	OV1S1	ons.
2	To stu	idy the	e tende	ers, its	form	ation a	and la	bour r	egulat	ions.					
3	To stu	idy the	e elem	ents o	f cond	cluding	g, and	admii	nisteri	ng cont	racts.				
4	To ac	hieve	aware	ness o	n arbi	tration	s and	legal	proced	dures.					
5	To str	ıdv lal	our re	egulati	ons at	nd the	ir imp	act on	mana	iging of	contra	acts.			
	RSE C														
	e succe To stud		•							able to		Understar	nd.		
	To stud									ition.					
	To lear											Understar Apply	10		
CO4.	To inte	erpret	the stu	ident k	cnowle	edge o	n Tax	Laws	·			Apply			
CO5.	To acq	uire th	ne kno	wledg	e of L	abour	Regu	lations	s and			Understar	nd		
	re Leg)CD A	MAA	E OLI	TCOL	ATEC /	AND I	DDOCI		ME SPEC		1	
OUT	COME	ES													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PS O1	PS O2	P: O
CO1	M	-	L	-	L	L	-	-	M	S	M	L	-	M	M
CO2	M	L	L	-	L	L	-	-	M	S	M	L	-	M	M
CO3	M	M	-	-	M	-	-	M	L	M	M	L	L	L	L
CO4	L	M	M		S	S	L	M		L	M	M	M	L	M
CU4	L	1V1	1 V1	-	S	S	L	1 V1	-	L	IVI	IVI	1 V1	L	IVI
CO5	L	M	M	-	S	S	L	S		L	M	M	M	L	M

UNIT - I CONSTRUCTION CONTRACTS

Definition of Contract - Indian Contracts Act - Elements of Contracts - Types of Contracts - Features - Suitability - Design of Contract Documents -- Legal Issues in Contract - Standard Forms of Contracts - General and Special Conditions of Contracts - Project Management Consultants and the Contractor

UNIT-II TENDERS

Tendering Process - Tender Documents - Requirements for Tendering -Methods of Inviting Tenders-Evaluation of Tender from Technical, Financial Aspects- Contract Formation and Interpretation - Potential Contractual Problems - World Bank Procedures and Guidelines - Tamil Nadu Transparency in Tenders Act.

UNIT-III ARBITRATION

Earnest Money Deposit (EMD) – Security deposits - Arbitrator- Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence – Violations –

Certificates, Forms, Schedules

UNIT - IV LEGAL REQUIREMENTS

Insurance and Bonding – Types of Bonds - Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Fine and Liquidated Damages – Insurance Income Tax – Sales Tax – VAT – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval

UNIT - V LABOUR REGULATIONS

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations- Indian Contracts Act - Labour Laws - Minimum Wages Act – Child Labour Act- Industrial Dispute Act- Maternity Benefit Act – Workmen's Compensation Act – Indian Factory Act – Tamil Nadu Factory Act.

TEXT BOOKS:

- Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982.
- 2. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, McGraw Hill, 2000.
- Sharma M.R., (2013), Fundamentals of Construction Planning & Management S.K. Kataria& Sons, New Delhi.

- Kwaku, A., Tenah, P.E. Jose M.Guevara, P.E., Fundamentals of Construction Management and Organisation, Printice Hall, 1985.
- 2. Patil. B.S, Civil Engineering Contracts and Estimates, Universities Press (India) Private Limited, 2006.
- Martin Brook (2016), Estimating and Tendering for Construction Work, 5th Edition, Routledge, Taylor & Francis
- 4. Jimmie Hinze, (2013), Construction Contracts, 3rd Edition, McGraw Hill, New Delhi.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.R.Sanjay Kumar	Assistant Professor - I	AVIT	sanjay.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

			CVCT	ידאר ד	NTE	7D 4 7	TON	TNI	Ca	tegory	L	T	P	Cı	edit
			SYST	CONS				IN	EC	-PS	3	0	0		3
PRE	AMBL	Æ													
	This	cour	se coi	nsolida	ates th	ne fur	ndame	ntals	by ta	king a	holist	ic appro	ach to	o bu	ildin
												ourse is o			
	•											n perforn			
				10 111	ustrate	the c	oncep	t and	practio	ce, a cas	se stuc	ly approa	ich Wi	ii be	usec
PRE	REQU	ISITE	C												
NIL															
COU	JRSE ()BJE	CTIV	ES											
1							us con	structi	ion sys	stems, e	enviro	nmental f	factors	, serv	vices
2	mainte To co			-			stems	that r	nake r	ın a bui	ildino	design a	re inte	rwov	en i
_	order								nake t	ip a oui	name	acsign a	ic into	1 *****	
3									make	up a bi	uilding	design	are int	egrat	ed i
4	order				_				1:1.1:		:	tegration	:41-	. f	
4			design		ım an	under	Standi	ng or	Dullai	ng syste	21118 111	tegration	WILII	a 10C	us o
5	Throug	h case	e studi	es, gai	in an ı	unders	standir	ng of 1	buildir	ng syste	ms int	egration	with a	a foc	us o
COL	sustain														
COU	JRSE (JUIC	OME	Ď											
On th	he succe	essful	compl	etion o	of the	course	e, stud	lents v	vill be	able to					
CO1	. To und	erstan	d vario	us stru	ctural	systen	ns requ	ireme	nts in c	onstruc	tion	Understa	nd		
	complet														
	. To und			us Env	rironm	ental f	actor	in cons	structio	on after		Understa	nd		
-	leting the To und			oue Co	nioo a	tone re	anirar	nonto i	n conc	truction	ofter				
CUS				Jus Sei	vice s	teps re	quirei	nems i	ii coiis	at uction	anter	Understa	nd		
	ompleting this course.										iction	Understa	nd		
comp	. To uno	lerstan	ia vario				ротос	1411 0111		• • • • • • • • • • • • • • • • • • • •		Charlet			
comp	. To und														
comp CO4 after		ing thi	is cour	se.	fety sto	eps red	quirem	ents in	const	ruction		Understa	nd		
CO4 after CO5 after	. To und	ting thi derstanting thi	is cour nd vari is cour	se. ous sai se.	•		-					Understa			
CO4 after CO5 after	. To und	ting thi derstanting thi	is cour nd vari is cour	se. ous sai se.	•	MME	C OUT		IES A		ROGR	Understa AMME		CIFIC	
CO4 after CO5 after	. To und complete MAPP	ting thi derstanting thi	is cour nd vari is cour WITH	se. ous sai se.	•	MME	OUT	COM	IES A		ROGR PO1	AMME		PS	PS
CO4 after CO5 after	. To und complete MAPP	ting thi derstanting thi ING V	is cour nd vari is cour WITH	se. ous satse. I PRO	PO5	MME PO6	OUT OUT PO7	COM PO8	IES A ES PO9	ND PR	PO1	AMME 1 PO12	PSO 1	PS O2	PS O3
CO4 after CO5 after	. To und complete	ting thi derstanting thi	is cour nd vari is cour WITH	se. ous sai se.	GRA	MME	OUT	COM	IES A ES	ND PF		AMME	SPEC PSO	PS	PS

CO3

L

M

M

L

M

M

M

M

M

L

S

S

S

CO4	M	M	M	L	M	S	L	M	M	L	S	L	M	L	L
CO5	L	L	L	M	L	M	S	M	M	M	M	M	S	M	M

SYLLABUS

UNIT-ISTRUCTURAL INTEGRATION

Structural System, Systems for enclosing Buildings, Functional aesthetic system, Materials, Selection and Specification.

UNIT-II ENVIRONMENTAL FACTORS

Qualities of enclosure necessary to maintain a specified level of interior environmental quality – weather resistance – Thermal infiltration – Acoustic Control – Transmission reduction – Air quality – illumination – Relevant systems integration with structural systems.

UNIT - III SERVICES

Plumbing – Electricity – Vertical circulation and their interaction – HVAC

UNIT - IV MAINTENANCE

Component longevity in terms of operation performance and resistance to deleterious forces - Planning systems for least maintenance materials and construction – access for maintenance – Feasibility for replacement of damaged components – equal life elemental design – maintenance free exposed and finished surfaces.

UNIT - V SAFETY

Ability of systems to protect fire – Preventive systems – fire escape system design – Planning for pollution free construction environmental – Hazard free Construction execution

BOOKS:

- 1. A.J.Elder and Martiz Vinden Barg, "Handbook of Building Enclosure", McGraw-Hill Book Company, 1983.
- 2. David V.Chadderton, "Building Services Engineering", Taylar and Francis, 2007.

- 1. Jane Taylor and Gordin Cooke, "The Fire Precautions" Act in Practices, 1987.
- 2. Peter R. Smith and Warren G. Julian, "Building Services", Applied Science Publishers Ltd., London, 1993.
- 3. William T. Mayer, "Energy Economics and Building Design, McGraw-Hill Book Company, 1983.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.D.S.Vijayan	Associate Professor - I	AVIT	vijayan@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

		Category	L	T	P	Credit					
	ENERGY EFFICIENT BUILDINGS	EC-PS	3	0	0	3					
PR	EAMBLE										
spa	study the design of energy efficient buildings which ce conditioning and ventilation by providing a mix on the use of materials with low embodied energy.		_								
PR	EREQUISITE										
NIL											
CO	URSE OBJECTIVES										
1	To Study about the energy requirement of the built	lding constru	iction								
2	To Study about the key design elements for energ	gy efficient b	uilding	S							
	To learn the green buildings concepts applicable	to modern bu	ildings	•							
3		Acquaint students with the principle theories, materials, and construction techniques and to create energy efficient buildings									
3		terials, and co	onstruc	tion tec	hniqu	es and to					

Oı	n th	e successfu	l comp	letion	of	the	course,	students	will	be al	ole to	O
----	------	-------------	--------	--------	----	-----	---------	----------	------	-------	--------	---

CO1. To understand the concept effective utilization of energy in building.	Understand
CO2. To learn about energy efficiency through landscaping.	Understand
CO3. The learn the methods air regulation in buildings	Understand
CO4. To learn about how to develop a heat transfer mechanism in building	Apply
CO5. To Integrate the renewable energy systems in the buildings and passive cooling in buildings.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	PS	PS
													O1	O2	O3
CO1	L	M	-		-	L	M	-	L	-	L	L	L	ı	-
CO2	M	M	L	-	L	-	M	L	M	L	L	L	-	L	-
CO3	L	L	M	-	M	M	S	-	-	L	L	S	M	L	L
CO4	S	-	M	M	S	M	S	-	M	M	M	S	M	M	M
CO5	S	-	M	M	M	M	S	-	M	-	M	S	M	M	M

S- Strong; M-Medium; L-Low

UNIT I INTRODUCTION

Conventional versus Energy Efficient buildings – Historical perspective - Water – Energy – IAQ requirement analysis – Energy required for building construction - Heat Transfer Future building design aspects.

UNIT II LANDSCAPE AND BUILDING ENVELOPES

Energy efficient Landscape design - Micro-climates - various methods -Building materials, Envelope heat loss and heat gain and its evaluation, paints, Insulation, Design methods and tools - Air Filtration and odor removal -Heat Recovery in large buildings

UNIT III HEATING, VENTILATION AND AIR CONDITIONING

Natural Ventilation, Passive cooling and heating - Application of wind, water and earth for cooling, evaporative cooling, radiant cooling – Hybrid Methods – Energy Conservation measures, Thermal Storage integration in buildings.

UNIT IV HEAT TRANSMISSION IN BUILDINGS

Surface co-efficient: air cavity, internal and external surfaces, overall thermal transmittance, wall and windows; Heat transfer due to ventilation/infiltration, internal heat transfer; Sol-air temperature; Decrement factor; Phase lag. Design of day lighting; Computer packages for carrying out thermal design of buildings and predicting performance.

UNIT V PASSIVE COOLING & RENEWABLE ENERGY IN BUILDINGS

Passive cooling concepts: Evaporative cooling, radiative cooling; Application of wind, water and earth for cooling; Shading, paints and cavity walls for cooling; Roof radiation traps; Earth air tunnel. Introduction of renewable sources in buildings, solar water heating, small wind turbines, stand-alone PV systems, Hybrid system – Economics.

TEXT BOOKS:

- 1. Krieder J. and Rabi A., "Heating and Cooling of buildings: Design for Efficiency", Mc Graw Hill, 1994.
- 2. Ursala Eicker, "Solar Technologies for buildings", Wiley publications, 2003.
- 3. Moore, F., "Environmental Control System", McGraw Hill Inc. 2002

- 1. Brown, G.Z. and DeKay, M., "Sun, Wind and Light Architectural Design Strategies", John Wiley and Sons Inc, 2001.
- 2. Chilogioji, M.H., and Oura, E.N., "Energy Conservation in Commercial and Residential Buildings" Marcel Dekker Inc., New York and Basel, 2005.
- 3. Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com)
- 4. Energy Conservation Building Code, Bureau of Energy Efficiency", New Delhi, 2007.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	R,SANJAY KUMAR	ASSISTANT PROFESSOR - I	AVIT,VMRF	sanjay.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

CONSTRUCTION ECONOMIC	Category	L	T	P	Credit
AND FINANCE MANAGEMENT	EC-PS	3	0	0	3

PREAMBLE:

For any construction project to be successful, it must be technically sound and the resulting benefits must exceed the cost associated with the project. This course "Construction Economics and Finance" basically aims at describing various aspects of engineering economics. The field of construction economics and finance deals with the systematic evaluation of cost and benefit associated with different projects. The topics in this course cover principles of engineering economy followed by basic methods for carrying out economic studies considering the time value of money. The other topics include the demonstration of different methods namely present, future and annual worth method, rate of return, break-even comparison, capitalized-cost and cost-benefit analysis for the comparison of alternatives

PREREQUISITE: NIL

COURSE OBJECTIVES:

To study and understand the role of civil engineering industrial development

To study the role of construction economics and transport energy.

The students know about financing instruments..

To Expose the students knowledge of Cash basis of a accounting

To acquire the knowledge of Loans to Contractors

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the concept of Economy related to Engineering	Understand
CO2: Practice the Construction development in Housing, transport energy and other Infrastructures	Apply
CO3: Analyse the financial statements and Investment and financing decision	Analysing
CO4: Assess the Accounting for tax reporting purposes and financial reporting purposes	Analysing
CO5: Understand the Interim construction financing	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L	-	-	-	L	L	L	M	L	M	-	-	L
CO2	M	M	L	-	L	L	-	L	M	M	-	L	-	-	-
CO3	L	S	L	S	S	-	-	L	-	L	-	L	M	M	-
CO4	L	M	S	L	M	-	L	-	L	M	L	M	-	M	-
CO5	L	L	M	-	L	M	S	S	M	L	L	M	L	-	M

S- Strong; M-Medium; L-Low

UNIT I ECONOMICS:

Role of Civil Engineering in Industrial Development – Advances in Civil Engineering - Engineering Economics – Support Matters of Economy related to Engineering – Market demand and supply – Choice of Technology – Quality Audit in economic law of returns governing production.

UNIT II CONSTRCUTION ECONOMICS -Construction development in Housing, transport energy and other infrastructures – Economics of ecology, environment, energy resources – Local material selection – Form and functional designs – Construction workers – Urban Problems – Poverty – Migration – Unemployment – Pollution.

UNIT III FINANCING The need for financial management - Types of financing - Financing instruments—short term borrowing - Long term borrowing - Leasing - Equity financing - Internal generation of funds - External commercial borrowings - Assistance from government budgeting support and international finance corporations - Analysis of financial statements - Balance Sheet - Profit and Loss account - Cash flow and Fund flow analysis - Ratio analysis - Investment and financing decision - Financial Control - centralized management

UNIT IV ACCOUNTING METHOD -General Overview – Cash basis of a accounting – Accrual basis of accounting – Percentage completion method – Completed contract method – Accounting for tax reporting purposes and financial reporting purposes – Accounting Standards.

UNIT V LENDING TO CONTRACTORS Loans to Contractors – Interim construction financing – Security and risk aspects.

TEXT BOOKS:

- 1. Prasanna Chandra, Project Selection, Planning, Analysis, Implementation and Review, Tata McGraw Hill Publishing Company, 1995.
- 2. Halpin, D.W., Financial and Cost Concepts for Construction Management, John Wiley & Sons, New York, 1985.

- 1. Warneer Z Hirsch, Urban Economics, Macmillan, New York, 1993.
- 2. Kwaku A, Tenah and Jose M.Guevara, Fundamental of Construction
- 3. Management and Organisation, Prentice Hall of India, 1995.
- 4. Madura, J and Veit, E.T., Introduction to Financial Management, West Publishing Co., St. Paul, 1988.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.R.Abirami	Asst.Professor	AVIT/Civil	Abirami.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

	Category	L	T	P	Credit
CONSTRUCTION PERSONNEL MANAGEMENT	EC-PS	3	0	0	3

PREAMBLE

To study and execute the importance of events and activities management in construction projects

PREREQUISITE

Construction Planning, Scheduling and Control

COURSE OBJECTIVES

- 1 To study the various aspects of manpower management.
- 2 To study the man power planning management
- To study the various aspects of organization management
- 4 To study the human relations management
- 5 To study the welfare and development methods in construction

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. know various processes in manpowerplanning	Understand and, Apply
CO2. handle organizational and welfare measures.	Apply
CO3. tackle problems in execution.	Apply
CO4. find the route to complete the target when difficulties arise.	Apply
CO5. to know the value of manual power	Understand and Apply

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOM ES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	PS	PS
													O1	O2	O3
CO1	L	M	L		S	S	S	L	L	M	M	M	L	L	L
CO2	L	L	S	-	S	S	S	L	M	M	\mathbf{S}	L	M	M	S
CO3	M	L	S	L	L	-	M	M	M	L	L	S	M	S	M
CO4	M	L	S	L	L		S	M	S	L	L	S	L	L	M
CO5	M	M	M	M	M	S	M	M	M	L	M	M	M	M	S

S-Strong;M-Medium;L-Low

SYLLABUS

UNIT I MANPOWER PLANNING

Manpower Planning process , Organising, Staffing, directing, and controlling – Estimation, manpower requirement – Factors influencing supply and demand of human resources – Role of HR manager – Personnel Principles.

UNIT II ORGANISATION

Requirement of Organisation - Organisation structure - Organisation Hierarchical charts - Staffing

Plan - Development and Operation of human resources - Managerial Staffing - Recruitment - Selection strategies - Placement and Training.

UNIT III HUMAN RELATIONS AND ORGANISATIONAL BEHAVIOUR

Basic individual psychology – Approaches to job design and job redesign – Self managing work teams – Intergroup – Conflict in organizations – Leadership-Engineer as Manager – al aspects of decision making – Significance of human relation and organizational – Individual in organization – Motivation – Personality and creativity – Group dynamics, Team working – Communication and negotiation skills

UNIT IV WELFARE MEASURES

Compensation – Safety and health – GPF – EPF – Group Insurance – Housing - Pension – Laws related to welfare measures.

UNIT V MANAGEMENT AND DEVELOPMENT METHODS

Wages and Salary, Employee benefits, Employee appraisal and assessment – Employee services-Safety and Health Management – Special Human resource problems – Productivity in human resources – Innovative approach to designing and managing organization – Managing New Technologies – Total Quality Management – Concept of quality of work life – Levels of change in the organizational Development – Requirements of organizational Development – System design and methods for automation and management of operations – Developing policies, practices and establishing process pattern – Competency upgradation and their assessment – New methods of training and development – Performance Management.

- 1. Charles D Pringle, Justin Gooderi Longenecter, Management, CE Merril Publishing
- 2. Dwivedi R.S, Human Relations and Organisational Behaviour, Macmillian India Ltd.,2005.
- 3. Josy.J. Familaro, Handbook of Human Resources Administration, McGraw-Hill International Edition, 1987.
- 4. Memoria, C.B., Personnel Management, Himalaya Publishing Co., 1997.
- 5. Carleton Counter II and Jill Justice Coutler, The Complete Standard Handbook of Construction Personnel Management, Prentice-Hall, Inc., 1989.

S.No	NameoftheFaculty	Designation	Name of the College	MailID
1	Mrs.P.Subathra	Assistant Professor - II	AVIT	subathra@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

				JSINES						ategor y	L	Т		P	Credit	
			I	FINAN	CE MA	NAG]	EME	NT	E	C-PS	3	0		0	3	
PRE	AMBL	E	•						1						•	
	-		constru		conomic	s and	its rol	e and	to exp	osure c	n fir	nancia	ıl instr	ume	ntation	
		ISITE	or accou	inting_												
NIL																
COU	RSE ()BJEC	TIVES													
1		To stuc	ly and u	ındersta	nd the	role of	civil	engin	eering	industr	ial d	evelo	pment	•		
2		To stud	ly the ro	ole of co	onstruct	ion ec	onomi	ics and	d trans	port en	ergy.					
3		The stu	idents k	now ab	out fina	ncing	instru	ments								
4		То Ехр	ose the	student	s know	ledge	of Cas	sh basi	is of a	accoun	ting.					
5		To acc	quire th	e know	ledge of	f Loan	s to C	ontrac	tors							
COU	RSE (OUTCO	OMES													
On the	e succe	essful co	ompletio	on of the	e course	e, stud	ents w	ill be	able t	0						
			e econor				-	d prici	ng pol	icies		Un	dersta	nd an	d Apply	
		-	lements										ply			
C O3	To stud	ly the ne	eed for fi	inancial	manage	ment a	nd me	ans of	achiev	ing the s	ame.	Ap	ply			
CO4.	To stud	ly a few	account	ing met	hods							Ap	ply			
CO5.	To stud	ly the el	ements	of lendir	ng to the	contra	ctors									
								AND	PROG	GRAMN	ME S				d Apply TCOME	S
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P O 11	PO 12	PS O1		PS O3	PS O4
CO1	L	S	L	L	L	L	L	L	L	M	L	M	M	L	S	L
CO2	S	M	M	S	L	L	S	S	M	M	S	S	M	S	S	L
CO3	L	L	L	L	-	M	S	S	S	L	S	S	M	S	S	M
CO4	L	S	S	M	L	M	M	M	L	L	S	S	L	S	S	M

CO5	L	M	M	M	S	S	S	L	M	S	M	M	L	S	S	L

SYLLABUS

UNIT I ECONOMICS

Role of Civil Engineering in Industrial Development – Advances in Civil Engineering - Engineering Economics – Support Matters of Economy related to Engineering – Market demand and supply – Choice of Technology – Quality Audit in economic law of returns governing production.

UNIT II CONSTRCUTION ECONOMICS

Construction development in Housing, transport energy and other infrastructures —Economics of ecology, environment, energy resources — Local material selection —Form and functional designs — Construction workers — Urban Problems — Poverty —Migration — Unemployment — Pollution.

UNIT III FINANCING

The need for financial management - Types of financing - Financing instruments-short term borrowing - Long term borrowing - Leasing - Equity financing - Internal generation of funds - External commercial borrowings - Assistance from government budgeting support and international financecorporations - Analysis of financial statements - Balance Sheet - Profit and Loss account - Cash flow and Fund flow analysis - Ratio analysis - Investment and financing decision - Financial Control - centralized management.

UNIT IV ACCOUNTING METHOD

General Overview – Cash basis of a accounting – Accrual basis of accounting – Percentage completion method – Completed contract method – Accounting for tax reporting purposes and financial reporting purposes – Accounting Standards

UNIT V LENDING TO CONTRACTORS

Loans to Contractors – Interim construction financing – Security and risk aspects.

BOOKS:

- 1. Prasanna Chandra, Project Selection, Planning, Analysis, Implementation and Review, Tata McGraw Hill Publishing Company, 1995.
- 2. Halpin, D.W., Financial and Cost Concepts for Construction Management, John Wiley & Sons, New York, 1985.

- 1. Warneer Z Hirsch, Urban Economics, Macmillan, New York, 1993.
- 2. Kwaku A, Tenah and Jose M.Guevara, Fundamental of Construction
- 3. Management and Organisation, Prentice Hall of India, 1995.
- 4. Madura, J and Veit, E.T., Introduction to Financial Management, West Publishing Co., St. Paul, 1988

3	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
	1	Mrs J.Srija	Assistant Professor – I	AVIT	srija.civil@avit.ac.in
2	2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

		RE	SOUI	RCE N	MANA	AGEN	MENT	AND		tegory	L	Т	P	Cı	redit
							RUCT			C-PS	3	0	0		3
PRE	AMBL	E										1	I	I	
	tudy abe						ce Mar	nagen	nent ai	nd Cont	rol in (Construc	ction a	nd to	aply
PRE	REQU	ISITE	C												
NIL															
COU	JRSEO	BJEC	TIVE	ES											
1	To stuc	ly and	unde	rstand	the re	source	e planr	ning a	nd typ	oes of re	esource	s.			
2	To stud	ly the	role o	f labo	ur ma	nagen	nent an	d lab	our sc	hedule.					
3	The stu	dents	know	about	mate	rials a	nd equ	ipme	nt.						
4	То ехр	ose th	e stud	ents k	nowle	dge o	f time	mana	gemer	nt.					
5	To acq	uire th	ie kno	wledg	e of re	esourc	e alloc	ation	and le	eveling					
COL	J RSEO	UTCO	OMES	5											
	ne succe				of the	cours	e stud	ents v	vill be	able to)				
	To be v											Understa	ndand	Appl	. y
	. To clea	ırly un	derstai	nd the	labour	costs	and sch	edule	in			Apply			
	ruction. To be v	well ve	rsed to	mana	ge the	mater	ials at s	ite							
	. To den								projec	ets.		Apply Apply			
	. To inco														
chang	ges in pr	oject c	bjecti	ves and	d to tra	ck reso	ource u	tilizat	ion.			Understa		• •	ly
	PPING COMI		H PR	OGRA	AMM	E OU	ITCON	MES	AND	PROG	RAMN	ME SPE	CIFIC	C	
COs			PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PS	PS
CO1	M	M	L	M	S	S	S	M	L	M	M	M	O1 L	O2 L	O3 L
CO2	M	L	S	M	S	M	M	L	M	M	S	L	M	M	S
														S	
CO3	M	M	S	L	L	M	M	M	M	L	L	S	M	3	M

CO4	L	L	S	L	L	-	S	M	M	L	L	M	L	L	M
CO5	M	M	M	M	M	S	M	M	M	L	M	M	M	M	S

SYLLABUS

UNIT - I RESOURCE PLANNING

Resource Planning, Procurement, Identification, Personnel, Planning for material, Labour, time schedule and cost control, Types of resources, manpower, Equipment, Material, Money, Time.

UNIT - II LABOUR MANAGEMENT

Systems approach, Characteristics of resources, Utilization, measurement of actual resources required, Tools for measurement of resources, Labour, Classes of Labour, Cost of Labour, Labour schedule, optimum use Labour

UNIT - III MATERIALS AND EQUIPMENT

Material: Time of purchase, quantity of material, sources, Transportation, Delivery and Distribution, Planning and selecting by optimistic choice with respect to cost, Time, Source and handling

UNIT – IV TIME MANAGEMENT

Personnel time, Management and planning, managing time on the project, forecasting the future, Critical path measuring the changes and their effects - Cash flow and cost control

UNIT- V RESOURCE ALLOCATION AND LEVELLING

Time-cost trade off, Computer application - resource leveling,resource list, resource allocation, Resource loading, Cumulative cost - Value Management

BOOKS:

- 1 Andrew, D., Szilagg, Hand Book of Engineering Management, 1982.
- 2. James.A., Adrain, Quantitative Methods in Construction Management, American Elsevier Publishing Co., Inc., 1973.

- 1. Harvey, A., Levine, Project Management using Micro Computers, Obsorne
- 2. Glenn .A, Sea's and Reichard, Clough .H, "Construction Project Management", John Wiley and Sons, Inc, 2009.

S.No	Name of the Faculty	Designation	Name of the	Mail ID
			College	
1	Ms.S.Monisha	Assistant	AVIT	monisha.civil@avit.ac.in
		Professor - I		
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

			I	PROJ	ECT :	SAFE	TY		Cat	tegory	L	Т	P	Cr	edit
			-			MEN			Е	C-PS	3	0	0	3	
PRE	AMBL	E										<u> </u>	1		
DDE	DEOL	ICIDE	ı												
PKE NIL	REQU	1211E	ı												
COU	JRSEO	BJEC	TIVE	S											
1	To stud	-	under	stand	the co	onstru	ction a	ccide	nts and	d cost o	of cons	truction			
2	To stud			f safet	y prog	gramn	nes an	d elen	nents (of effec	tive sa	fety			
3	The stu			about	Interi	nation	al Pra	ctice o	of appi	raisal					
4	То Ехр	ose th	ne stud	ents k	nowle	edge o	f desig	gn for	safety	7.					
5		,			e of o	wners	' and	design	iers' o	utlook.					
	JRSEO														
	ne succe To und											Understa	ınd and	d Apr	olv
	. To clea								-			Apply		- 11	<u> </u>
	. To elat											Apply			
	. To cle	-	-		wners	respo	nsibilit	ty and	safety	y and ro	ole of	Apply			
CO5.	. To und								•			Understa			
	PPING COMI		TH I	PROG	RAM	ME	OUT	'COM	ES .	AND	PROC	GRAMN	TE S	SPE(CIFIC
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1		PS O3
CO1	M	M	L	M	S	S	S	L	L	M	M	M	L		M
CO2	M	L	S	-	S	S	S	L	M	M	S	L	M	M	S
CO3	M	S	S	L	L	L	M	M	M	M	L	M	M	S	M
CO4	M	L	S	M	L	-	S	M	S	L	L	S	L	L	M
CO5	M	M	M	M	M	S	S	M	M	L	M	M	M	M	S
S-Stro	ong;M-	Mediu	ım;L-	Low											

UNIT - I CONSTRUCTION ACCIDENTS

Accidents and their causes – Human factors in construction safety – costs of construction injuries-occupational and safety hazard assessment-legal implications

UNIT – II SAFETY PROGRAMMES

Problem areas in construction safety- Elements of an Effective Safety Programme-Job –Site safety assessment- Safety Meetings- Safety Incentives

UNIT - III CONTRACTUAL OBLIGATIONS

Safety in construction contracts- Substance Abuse- Safety record keeping

UNIT – IV DESIGNING FOR SAFETY

Forklifts Safety Culture – Safe Workers – Safety and First Line Supervisors – Safety and Middle Managers – Top Management Practices, Company Activities and Safety – Safety Personnel – Sub contractual Obligation – Project Coordination and Safety Procedures - Workers Compensation

UNIT- V OWNERS' AND DESIGNERS' OUTLOOK

Study of various case studies.

BOOKS:

- 1. Jimmy W. Hinze, Construction Safety, Prentice Hall Inc., 1997.
- 2. Richard J. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and Health Management, Prentice Hall Inc., 2001.

REFERENCES:

1. Tamilnadu Factory Act, Department of Inspectorate of factories, Tamil nadu.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.S.Monisha	Assistant Professor - I	AVIT	monisha.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

		MAINTENANCE AND									L	T	P	Cr	edit
				CHAB	ILITA		N OF		E	C-PS	3	0	0		3
PRE	PREAMBLE														
To stu	idy the c	lamage	es, repa	air and	rehab	ilitatio	n of st	ructure	es						
PRE	REQUI	SITE	,												
NIL															
COU	RSE O	BJEC	CTIVE	ES											
1	To stu	ıdy an	d unde	erstand	the 1	nainte	nance	repai	r and	rehabili	tation.				
2	To stu	idy the	e role	of ser	viceab	ility a	nd du	rabilit	y of co	oncrete					
3	The st	udent	s knov	v abou	ıt mate	erials	and te	chniq	ues fo	r repair					
4	To Ex	pose t	he stu	dents	know	ledge	of rep	air to	structi	ures.					
5	To acq	uire t	he kno	wledg	ge of c	lemoli	tion o	f struc	ctures.						
COU	RSE C	UTC	OMES	S											
On th	e succe	ssful o	comple	etion o	of the	course	, stud	ents w	rill be	able to					
	Describ		ous ph	ases of	maint	enance	e and b	e able	to eval	luate	1	Understa	nd		
CO2.		e the ir		e of di	fferen	t envir	onmen	tal ele	ments,	, fire and	l ,	Understar	nd and	apply	7
-	Identify		_	e mate	rial use	ed in re	epair w	ork.			1	Understar	nd and	apply	7
CO4.	Describ	e vario	ous pro	cedure	es and	technic	ques in	streng	gthenin	ng measi		Understaı			
	Explain											Understa			у
	PING COME	S		OGRA	MMI	E OU '	TCON	MES A	AND 1	PROGI	RAMN	IE SPE	CIFIC	2	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3
CO1	M	M	L	-	S	L	S	L	M	-	M	M	L	L	L
CO2	L	L	-	M	-		M	L	M	-	S	L	M	L	S
CO3	M	L	-	L	-	-	-	-	M	-	L	S	L	S	M
CO4	S	L	S	-	M	-	-	-	S	L	L	S	L	L	M
CO5	M	S	M	-	M	-	-	-	M	L	M	M	S	L	L

SYLLABUS

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance, repair and rehabilitation, Facets of Maintenance, importance of Maintenance various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration-

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

Quality assurance for concrete construction concrete properties- strength, permeability, thermal properties and cracking. - Effects due to climate, temperature, chemicals, corrosion - design and construction errors - Effects of cover thickness and cracking- Impact of Pollution on Buildings.

UNIT III MATERIALS AND TECHNIQUES FOR REPAIR

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement and polymers coating for rebars loadings from concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels and cathodic protection.

UNIT IV REPAIRS TO STRUCTURES

Strengthening Measures - Repair of structures distressed due to earthquake – Strengthening using FRP Strengthening and stabilization techniques for repair.

UNIT V DEMOLITION OF STRUCTURES

Planning, Precautions and Protective Measures In Demolition Work-Sequence Of Operations Demolition Of Structural Elements. Engineered Demolition techniques for dilapidated structures - Case studies.

BOOKS:

Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

Allen R.T and Edwards S.C, "Repair of Concrete Structures", Blakie and Sons, UK, 1987.

REFERENCES:

M.S. Shetty, "Concrete Technology - Theory and Practice", S. Chand and Company, New Delhi, 6th Edition, 2005.

N.Palaniappan, "Estate Management, Anna Institute of Management", Chennai, 1992.

Lakshmipathy, Metal Lecture notes of Workshop on "Repairs and Rehabilitation of Structures", 29 - 30th October 1999.

Raikar, R.N., "Learning from failures - Deficiencies in Design, Construction and Service" - R&D Centre (SDCPL), Raikar Bhavan, Bombay, 1987.

Santhakumar A.R., "Concrete Technology" Oxford University Press, Printed in India by Radha Press, New Delhi, 2007.

Peter H.Emmons, "Concrete Repair and Maintenance Illustrated", Galgotia Publications pvt. Ltd., 2001.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Ms.S.Ispara Xavier	Assistant Professor	AVIT	isparaxavier.civil@avit. ac.in			
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in			

OPEN ELECTIVES ON EMERGING AREAS

		IETA IANU				(Catego	ory	L		T		P	Cr	edit
	147	IAITO	TAC	IOMI	110		OEl	EA	3		0		0	3	3
Prereq	uisite:-N	Vil													
Course	Objecti	ive													
1					rincipl ironme										
2	sound	mech	anica	l prop											
3		Select suitable processes from various metal additive manufacturing processes as per the product requirement													
4	techni	iques	for me	etal ad	able p	manı	ufactu	ring p	parts	turing	and p	ost p	roces	sing	
5	Desig	n the	parts 1	for me	etal ado	ditive	manı	ıfactu	ring						
Course	Outcon	nes: C	n the	succ	essful	comj	pletio	n of t	he co	urse,	stude	ents w	ill be	able	to
CO1.	Unders						olicatio	ons ar	nd lim	itatio	ns me	etal	Uı	ndersta	and
CO2.	Underst									existi	ing or		Ur	ndersta	and
CO3.	Unders			_			f vario	ous m	ethod	s in N	IAM :	and	Uno	dersta	nd
CO4.	Produce post pro				-	rts w	ith su	itable	mate	rial se	electio	n and	Apı	oly	
CO5.	Undersidevelop							echni	ques 1	to de	sign a	nd	Ap	ply	
Mappi	ng with	Progr	amm	e Out	comes	s and	Prog	ramn	ne Sp	ecific	Outo	comes	;		
СО	PO1	РО	РО	РО	РО	РО	РО	РО	РО	PO 1	PO 1	PO 1	PS O	PS O	PS O
CO1	. M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO2	2 M	-	-	-	M	-	M	-	-	-	-	L	L	-	-
CO3	CO3 M M - M L		L	-	M										
CO4	M	-	-	-	M	-	M	-	-	-	-	L	L	-	M
CO5	i M	-	-	-	M	-	M	-	-	-	-	L	L	-	M
S-Stron	ıg;M-M	ediun	n;L-L	ow											

Syllabus		1
J		
Module	1 Introduction	9
for addit	tion to metal additive manufacturing – classification and challenges – applicative manufacturing – file formats, CAD CAM software, modelling and data properties and consideration – machine set up	
Module	2 Materials and properties of AM printed parts	9
Equilibrii Phase dia Methods	uring of metallic materials - Conventional vs AM process - Solidification and Non-equilibrium phases for solidification for AM grams - Iron-Carbon - Aluminum alloy - Titanium alloy - Nickel alloy of Powder Particles Production and Powder Properties - Wire Properties for eposition - Mechanical properties of AM printed parts	y
Module	3 Basic processes in metal additive manufacturing	9
sheet lam Laser the Basics of Powder f	ed fusion – direct energy deposition – binder jetting – metal extrusion – materiation ory - Continuous vs pulsed laser - Laser types - Laser beam properties electron beam - Electron beam powder bed fusion and mechanism seders and their classification - Delivery Nozzles - Powder bed delivery and ire Fed Systems - Positioning Devices - Print-heads	
Module	4 AM process parameters	9
DED, and Support S Defects in Common	anning Strategies and Parameters for PBF and DED - Powder Properties for BJ - Ambient Parameters for PBF and DED - Geometry-Specific Parameters (PBF) AM Printed Parts - Need of Post Processing - Need for Surface Finishing Post Processing for MAM - Potential Hazards of Additive Manufacturing sof MAM	eters,
Module	5 Design for Additive Manufacturing	9
selection methods Topology Key char	ntals and principle -design techniques and steps - design optimization, may and consideration in application field - Part decomposition and Decomposition techniques - Overhangs, and Bridging and cavities in design acteristics and considerations in topology optimization - Topology optimization recreating and manufacturability - Industry 4.0 future with AM	sition
Text Bo	oks	
1	Milewski, J.O., 2017. Additive manufacturing of metals. Cham: Springer In	ternational
2 F	Balasubramanian, K.R. and Senthilkumar, V. eds., 2020. Additive Manufactory Applications for Metals and Composites. IGI Global.	turing
Referen	ce Books	
	each, R. and Carmignato, S. eds., 2020. Precision Metal Additive Manufacter Press.	cturing.
2	Gebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003	

3	Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010									
4	Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.									
Cours	CourseDesigners									
	FacultyName Designation Department/ Emailed									
S.No	FacultyName	Designation	College	Emailid						
S.No 1	FacultyName Mr.A.Elanthirayan	Designation Asst. Prof. G-II	•	Emailid aleanthirayan@avit.ac.in						

WASTE TO ENERGY	Category	L	T	P	Credit
	OE-EA	3	0	0	3

PREAMBLE

This course is to provide insights into waste management options by reducing the waste destined for disposal and encouraging the use of waste as a resource for alternate energy production.

PREREQUISITE – Nil

COURSE OBJECTIVES

- To enable students to understand of the concept of Waste to Energy. To link legal, technical and management principles for production of energy form waste. 2 To learn about the best available technologies for waste to energy. 3 To analyze of case studies for understanding success and failures.
 - 4

COURSE OUTCOMES

On the successful completion of the course, students will be able to

11: Understand the knowledge about the operations of Waste to Energy Plants.	Understand
12: Analyse the various aspects of Waste to Energy Management Systems.	Analyze
)3: Carry out Techno-economic feasibility for Waste to Energy Plants	Apply
)4: Evaluate planning and operations of Waste to Energy plants.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO1 1	PO1 2	PSO 1	PS O2	PSO3
CO1	M	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	M	L	L	-	M	-	-	-	-	-	-	L	-	-
CO3	S	M	S	M	-	L	-	M	-	-	-	-	M	L	-
CO4	S	M	S	-	L	-	-	-	-	-	-	-	M	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

The Principles of Waste Management and Waste Utilization. Waste Management Hierarchy and 3R Principle of Reduce, Reuse and Recycle. Waste as a Resource and Alternate Energy source.

WASTE SOURCES & CHARACTERIZATION

Waste production in different sectors such as domestic, industrial, agriculture, postconsumer, waste etc. Classification of waste - agro based, forest residues, domestic waste, industrial waste (hazardous and non-hazardous). Characterization of waste for energy utilization. Waste Selection criteria.

TECHNOLOGIES FOR WASTE TO ENERGY

Biochemical Conversion - Energy production from organic waste through anaerobic digestion and fermentation. Thermo-chemical Conversion – Combustion, Incineration and heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and other newer technologies.

WASTE TO ENERGY OPTIONS

Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to

fuel resources for other useful energy applications Energy from Plastic Wastes – Non-recyclable plastic wastes for energy recovery. Energy Recovery from wastes and optimization of its use, benchmarking and standardization. Energy Analysis.

CASE STUDIES - WASTE TO ENERGY PLANTS

Success/failures of waste to energy Global Best Practices in Waste to energy production distribution and use. Indian Scenario on Waste to Energy production distribution and use in India. Success and Failures of Indian Waste to Energy plants. Role of the Government in promoting 'Waste to Energy'. Waste activities – collection, segregation, transportation and storage requirements. Location and Siting of 'Waste to Energy' plants. Industry Specific Applications – In-house use – sugar, distillery, pharmaceuticals, Pulp and paper, refinery and petrochemical industry and any other industry. Centralized and Decentralized Energy production, distribution and use. Comparison of Centralized and decentralized systems and its operations.

EFERENCES

- 1. Lee, James M., "Biochemical Engineering." PHI, 1st Edition, 1992. Yeh W.K., Yang H.C., James R.M., "Enzyme Technologies: Metagenomics, Biocatalysis and Biosynsthesis", Wiley- Blackwell, 1st Edition, 2010. Blanch H.W., Clark D. S., "Biochemical Engineering", Marcel Dekker, Inc. 2nd Edition, 1997.
- 2. Palmer, Trevor. "Enzymes: Biochemistry, Biotechnology, Clinical Chemistry." 2nd Edition, East West Press, 2008.

Cours	Course Designers											
S.No	Name of the faculty	Designation	Department	Mail ID								
•												
1.	Dr.R. Kirubakaran	Assistant Professor	Department of	kirubakaran@vmkvec.edu.in								
			Biotechnology									
2	Dr.M.Sridevi	Professor	Biotechnology	hodbte@vmkvec.edu.in								

		BION	MEDIC	AL PR	ODUC	T DES	SIGN A	ND			Categor	y L	T	P	Credit
		DEV	ELOPI	MENT							OE-EA	3	0	0	3
	urse ain	_	_			_	_	_	_		res and its				ent can
PRERI	EQUIS	ITE – ì	Nil												
COUR	SE OB	JECTI	VES												
	Γo unde	erstand	the glo	obal tre	nds an	d deve	lopme	nt meth	odolog	gies of v	arious ty	pes of p	roducts	and ser	vices.
2 t	To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems.														
r	To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification.														
	To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics.														
	To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer.														
COUR	SE OU	TCOM	IES												
On the															
CO1. 1	Define,	formu	late an	d analy	ze a p	roblem	for th	e prodi	ict desi	ign.				Apply	
	Obtain to			owled	ge of p	roduct	develo	pment	and re	gulatory	requiren	nents fo	r the	Apply	
CO3.		n the		s of 1	manufa	cturin	g, test	ing an	d valid	dation f	for scala	ble pro	duct	Apply	
	Gain k		dge of	the Ir	novati	on &	Produ	ct Dev	elopme	ent proc	cess in t	he Busi	ness	Apply	
	CO5 Discuss the economics in product development and business strategies for turnover from commercialization. Apply														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L				M				M	S	L	M
CO2	S	S	M	L				M				M	S	L	M
702	S	S	M	L				M				M	S	L	M
CO3	3	<u>s</u>	IVI	L				171				171	5	1	171

S

SYLLABUS

CO5

PRODUCT DESIGN

Definition, History and Modern Practice – Designs; Design and Product Life Cycle; Design Process; What is a medical device, Challenges in medical device, Understanding the innovation cycle, Good Design Practice.

M

M

L

M

Understanding, analyzing and validating user needs, Screening Needs, Technical Requirements, Concept Generation – Innovation Survey Questionnaire, Morphological Matrix, QFD, Concept Analysis and validation, Concept Modelling, Concept Screening & Validation.

PRODUCT DEVELOPMENT AND REGULATORY

Breakthrough Products, Platform Products, Front End of Innovations / Fuzzy Front End, Generic Product Development Process (Concept Development, System Design, Detailed Design, Test & Refinement, Production Ramp-up), Variants of Development Processes (Market Pull, Technology Push, Platform, Process-Intensive, Customized, High-Risk, Quick Build, Complex Systems), Good Documentation Practice, Prototyping Specifications, Prototyping, Medical Device standards, Quality management systems, Medical Device Classification, Design of Clinical Trials, Design Control & Regulatory Requirements, Documentation in Medical Devices, Regulatory pathways.

CALABLE PRODUCT DEVELOPMENT

Design for manufacturing, Design for assembly, Design for Serviceability, Design for usability, Medical Device Verification & Validation, Product Testing & Regulatory compliance, Clinical trial & validation, Device Certification.

MANUFACTURING AND BUSINESS STRATEGIES

Lean Manufacturing – Toyota Production System, Good Manufacturing Practices, Framework for Product Strategy – Core Strategic Vision (CSV), Characteristics of good CSV, Opportunity Identification Process & Generating Opportunities, Quality of Opportunities – Real-Win-Worth It (3M RWW), Product Planning Process, Technology S-Curve, Evaluating and Prioritizing Projects, Product-Process Change Matrix, Resource Planning, Total Available Market (Segmentation, Targeting & Positioning), Served Available Market, Product Platform Strategy, Market Platform Plan (Product Platform Management, Product Line Strategy).

PRODUCT ECONOMICS AND MARKET INFUSIONS

Economics/Finance in Product Development (Sales Forecasting – ATAR Model/ Bases Model, Pricing the product, Cash flow in Product Development, Categorizing the costs, Structuring Manufacturing Costs, Prototyping Costs, Development Costs, Cost Volume Profit Analysis, Breakeven Analysis, Common Return Metrics – Payback/ NPV/ IRR, Common Comparison Metrics – WACC/ RRR/ MARR). Business Model Canvas, Marketing Channels, Sales Models, Post Commercialization Surveillance, End of Life support.

REFERENCES:

COLIDGE DEGLCNEDG

- 1. Jones, J.C., Design Methods, John Wiley, 1981.
- 2. Cross, N., Engineering Design Methods, John Wiley, 1994.
- 3. Pahl, G., and Beitz, W., Engineering Design, Design Council, 1984.
- 4. Michael E. McGrath, Product Strategy for High-Technology Companies, 2nd Edition, McGraw Hill.
- 5. Ulrich, K.T., and Eppinger, S.D., Product Design and Development, Tata McGraw Hill, India.
- 6. Ehrelspiel. K, and Lindemann U Cost Efficient Design, Springer, 2007.
- 7. Paul H king, Richard C. Fries, Arthur T. Johnson, Design of Biomedical Devices and Systems. Third edition, ISBN 9781466569133.
- 8. Peter J. Ogrodnik, Medical Device Design: Innovation from Concept to Market, Academic Press Inc; Edition (2012), ISBN- 10:0123919428.
- 9. Stefanos Zenios, Josh Makower, Paul Yock, Todd J. Brinton, Uday N. Kumar, Lyn Denend, Thomas M. Krummel, Biodesign: the Process of Innovating Medical Technologies, Cambridbge University press; Edition (2009), ISBN- 10:0521517427.

COURS	COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						

1	Dr.L.K.Hema	Professor & Head	BME & ECE	hodbme@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Dr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

			Al	OVANO	CED C	YBER	SECUI	RITY			Categor	L	T	P	Credit
											OE-EA	3	0	0	3
	MBLE														
				yber Se	curity i	n real ti	me and	to stuc	ly techn	iques in	volved in	it.			
	REQUI														
	RSE O			-:- 4		1	. 1 4	.1		1	.41	41 41-		. 1	
1.	 To understand the basic terminologies related to cyber security and current cyber security threat landscape. To unserstand the cyberattacks that target computers, mobiles and persons 														
											s d penaltie	a and nu	nichmo	nta for	woh
3.	crimes		ı ille leş	gai iraii	iework	mat exi	St III III	uia ioi	cyber ci	illies an	и репаппе	s and pui	IIISIIIIIE	iits ioi :	sucii
4.	To stu	dy the	data pri	vacy an	d secur	ity issu	es relate	ed to So	ocial me	edia plati	forms.				
5.				ain com	ponent	ts of cyl	oer sec	urity pla	an						
	RSE O														
On the	e succes	sful co	mpletio	n of the	course	, studei	nts will	be able	to		-				
	able to ι y threat			basic to	erminol	ogies re	elated to	cyber	security	y and cu	rrent cybe	Underst	and		
	Able to		ete u n	derst	andi	n g of th	ne cybe	rattack	s that ta	arget con	nputers,	Apply			
penaltion existing	es and p	ounishn ,2000 le	nents fo egal frar	or such onework	crimes, that is	It will a	lso exp	ose stu	dents to	crimes a limitation d legal a	ons of	Apply			
CO4 : A	•	get insi	ght into	the Dat	a Prote	ection B	ill,2019	and da	ta priva	icy and s	ecurity	Apply			
	СО	<i>5:</i> Able	to und	erstand	the ma	in com	oonents	of cyb	er secu	rity plan.		Apply			
MAP	PING V	VITH 1	PROG	RAMM	E OUT	COM	ES ANI	D PRO	GRAM	IME SP	ECIFIC (OUTCO	MES		
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PSC	
60	1	2	3	4	5	6	7	8	9	0	1	2	01	2	3
CO 1	M	M	M	M	-	-	-	-	-	-	-	-	M	М	M
CO 2	M	M	M	M	M	-	-	-	-	-	-	-	М	М	M
CO 3	M	М	S	M	М	-	-	-	-	-	-	-	М	М	М
CO 4	S	М	M	M		-	-	-	-	-	-	-	М	М	S
CO 5	S	М	M	M	S	-	-	-	-	-	-	-	М	М	S
S- Str	ong; M-	-Mediu	m; L-Lo	OW											•

SYLLABUS:

Overview of Cyber security

9 hours

Cyber security increasing threat landscape, Cyber security terminologies- Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyberwarfare, Case Studies.

Cyber crimes 9 hours

Cyber crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/ credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cybersquatting, Pharming, Cyber espionage, Cryptojacking, Darknet- illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake newscyber crime against persons - cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.

Cyber Law 9 hours

Cyber crime and legal landscape around the world, IT Act,2000 and its amendments. Limitations of IT Act, 2000. Cyber crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies-AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.

Data Privacy and Data Security

9 hours

Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA)., Social media- data privacy and security issues.

Cyber security M a n a g e m e n t , Compliance and Governance

9 hours

Cyber security Plan- cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.

REFERENCES

- 1. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd.
- 2. Information Warfare and Security by Dorothy F. Denning, Addison Wesley.
- 3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform.
- 4. Data Privacy Principles and Practice by Natraj Venkataramanan and Ashwin Shriram, CRC Press.
- 5. Information Security Governance, Guidance for Information Security Managers by W. KragBrothy, 1st Edition, Wiley Publication.
- 6. Auditing IT Infrastructures for Compliance By Martin Weiss, Michael G. Solomon, 2nd Edition, Jones Bartlett Learning.

	COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1.	Dr.R.Jaichandran	Assistant professor G- II	CSE	rjaichandran@avit.ac.in								
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in								

	BIO MEMS	Category	L	T	P	Credit
		OE-EA	3	0	0	3
PREA	MBLE					1
	pid development of the integrated circuit (IC) industry has led to the	•		-	_	
	dvanced discipline. The combination of MEMS and integrate					a disruptiv
techno	logy. Gives brief knowledge about applications of Bio-MEMS techn	ology for therape	utics and c	liagnostic	es.	
PRER	REQUISITE					
	Nil					
COUI	RSE OBJECTIVES					
1	To train the students in the design aspects of Bio MEMS dev	vices and Systen	ns.			
2	To learn the basic principles of BioMEMS/Microfluidic device m	anufacturing.				
3	To make the students aware of applications in various medic	al specialists es	pecially tl	ne Comp	arison	of
	conventions methods and Bio MEMS usage.					
4	To Classify the different mechanisms of micro sensors and actuat	ors.				
COUI	RSE OUTCOMES					
On the	e successful completion of the course, students will be able to					
	Understand the Micro fluidic Principles and study its application	ons.		Understa	nd	
CO2.	Explain the principles and applications of Micro Total Analy	rsis.		Understa	nd	
CO3.	Discuss and realize the MEMS applications in Bio Medical E	ngineering		Understa	nd	
<u>CO4</u>	Classifying the principles of Micro Actuators and Drug Del	vory system		Annly		
CO4.	Classifying the principles of where Actuators and Drug Der	ivery system	-	Apply		

Analyze

CO5.Utilizing the concept of MEMS with biological applications

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	-	-	-	-	-	-	-	-	-	-
CO2	S	L	L	L	M	-	-	-	-	-	-	-	-	-	-
CO3	S	L	M	L	M	-	-	-	-	-	-	-	-	L	-
CO4	S	M	M	L	M	-	-	-	-	-	-	L	L	L	-
CO5	S	S	M	L	M	-	-	-	-	-	-	L	L	L	1

SYLLABUS

Unit I

Introduction-The driving force behind Biomedical Applications – Biocompatibility - Reliability Considerations-Regularity Considerations – Organizations - Education of Bio MEMS-Silicon Micro fabrication-Soft Fabrication techniques

Unit II

Micro fluidic Principles- Introduction-Transport Processes- Electro kinetic Phenomena-Micro valves –Micro mixers-Micro pumps.

Unit III

SENSOR PRINCIPLES and MICRO SENSORS: Introduction-Fabrication-Basic Sensors-Optical fibers-Piezo electricity and SAW devices-Electrochemical detection-Applications in Medicine

Unit IV

MICRO ACTUATORS and DRUG DELIVERY: Introduction-Activation Methods-Micro actuators for Micro fluidics-equivalent circuit representation-Drug Delivery

Unit V

MICRO TOTAL ANALYSIS: Lab on Chip-Capillary Electrophoresis Arrays-cell, molecule and Particle Handling-Surface Modification-Microsphere-Cell based Bioassay Systems Detection and Measurement Methods-Emerging Bio MEMS Technology-Packaging, Power, Data and RF Safety-Biocompatibility, Standards

Text Books/ References Books:

- 1. Steven S. Saliterman, Fundamentals of Bio MEMS and Medical Micro devices, Wiley Interscience, 2006.
- 2. Albert Folch, Introduction to Bio MEMS, CRC Press, 2012
- 3. Gerald A. Urban, Bio MEMS, Springer, 2006
- 4. Wanjun wang, steven A. Soper, Bio MEMS, 2006.
- 5. M. J. Madou, "Fundamentals of Micro fabrication", 2002.
- 6. G.T. A. Kovacs, "Micro machined Transducers Sourcebook", 1998.

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID						
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in						
2	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in						

		SC	DLAR .		ENERG		ORA(GE _	Catego		L	T	P		С
PREA	MDI	E		S	YSTEMS	<u>S</u>			OE-EA	4	3	0	0		3
			with th	e gene	ral conce	ept of	Solar	and Ene	rgy Sto	rage	Systen	ns, and	improve	ement.	
PRER	EQU	ISITE:	Nil												
COUL	RSE ()BJEC	TIVE												
1.	Г	o expla	in basi	cs of s	olar pho	tovolta	aic sys	stems ar	nd energ	gy sto	rage s	ystem			
2.	Г	o unde	o understand the concepts and various components of stand-alone system												
3.	Т	o gain the sound knowledge about grid connected PV system													
4.	Г	To know the design of various PV-interconnected systems.													
5.	Г	To provi	de the	knowl	edge abo	out the	vario	us appli	cations	of so	lar sys	tem			
COUL	RSE (OUTCO	OMES												
On th	ne suc	cessful	comple	etion o	f the cou	ırse, st	udents	s will be	e able to)				Unders	stand
CO1: 1	Descr	ibe the l	basics (of sola	r system	•								Unders	stand
CO2:F	Recog	nize the	conce	pts of	standaloı	ne PV	syster	n.						Anal	ysis
CO3: 1	Desig	n the gr	id conr	nected	system f	or var	ious a	pplication	ons.					Anal	ysis
CO4: \$	Select	the suit	table st	orage	system f	or part	icular	applica	tions.					Anal	ysis
CO5: 1	Recog	nize the	e vario	us app	lications	of sol	ar syst	tem.						Crea	ate
Mappi	ng wi	th prog	ramme	outco	mes and	progra	amme	specific	outcor	mes					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	M	S	S	M	-	-	L	-	M	-	M
CO2	S	S	-	-	M	S	S	M	-	-	L	-	L	-	L
CO3	S	S	L	1	S	S	S	M	-	-	M	1	M	L	L
CO4	S	M	L	M	S	S	M	M	-	-	M	-	M	-	-
CO5	S	M	L	M	S	S	M	L	L	-	M	-	M	-	M
S-STRONG ,M-MEDIUM,L-LOW															

Introduction

Characteristics of sunlight: the sun and its radiation, Solar radiation, Direct and diffusion radiation, greenhouse effect, solar isolation data and estimation-semiconductors and P-N junctions: semiconductors and types, absorption of light, recombination and PN junctions —behavior of solar cells — cell properties: efficiency and losses, Top contact design, Laser grooved, Buried contact solar cell — PV cell interconnection: Module and circuit design, Environmental and thermal protection.

Stand-alone PV System

Solar modules – storage systems: Types, applications, requirements, efficiency, Lead acid batteries – power conditioning and regulation: Diodes, Regulators, Inverters- Balance of system components - protection – standalone PV systems design – sizing: Reliability maps, sizing for high reliability, existing methods.

Grid Connected PV Systems

PV systems in buildings – Utility applications for photo voltaic – design issues for central power stations – safety– Economic aspect – Efficiency and performance - International PV programs – Integration of PV and Wind –Indian Specific Standard for Integration.

Energy Storage Systems

Impact of intermittent generation: Wind, gas and coal integration, impacts of cycling, PSCO case studies – Battery energy storage – solar thermal energy storage – pumped hydroelectric energy storage.

Applications

Water pumping – battery chargers – solar car – direct-drive applications –Space – Telecommunications.1

Total Hours = 45

Text book(s):

- 1. Solar Energy S.P. Sukhatme, Tata McGraw Hill, 2017.
- 2. Stuart R. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics", 2011.

Reference(s):

- 1. Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2017.
- 2. S. Sumathi, "Solar PV and Wind Energy Conversion Systems (Green Energy and Technology)", L. Ashok Kumar, P. Surekha, 2015.
- 3 https://nptel.ac.in/courses/112/105/112105051/
- 4 https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf

COURSE DESIGNERS

S.No	Name of the faculty	Designation	Department	Mail-id
1.	Mr.A.Balamurugan	AP	EEE	balamurugan@vmkvec.edu.in
2.	Mr.V.Rattan Kumar	AP(Gr-II)	EEE	rattankumar@avit.ac.in

Employability Enhancement Courses

TECHN	TANT	CEMIN	J A D
TECHN	IICAL	SEMIN	NAK

Category	L	T	P	Credit
EE-S	0	0	2	1

COURSE OBJECTIVES

 To work on a specific technical topic in advanced topics in Civil Engineering in order to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences.

COURSE OUTCOMES

On completion of the course, the student is expected to be able to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

													L-Low				
C	CO1	S	-	M	M	-	S	S	-	-	M	-	M	S	-	S	
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	

SYLLABUS

The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to advanced topics in Civil Engineering and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and report submitted.

TOTAL: 30 PERIODS

AUDIT COURSES

	ENGLISH FOR RESEARCH PAPER	Category	L	T	P	Credit
	WRITING	AC	0	0	2	0
PREA	MBLE		<u> </u>			
This	course is designed to improve the writing skills, level of readability	of the learner a	nd skills fo	or writing	the title).
PRER	EQUISITE					
Nil						
COLIT	OCE OD IECTIVEC					
	RSE OBJECTIVES					
1	Understand that how to improve your writing skills and level	of readability				
2	Learn about what to write in each section					
3	Understand the skills needed when writing a Title					
4	Ensure the good quality of paper at very first-time submission	l				
COUF	RSE OUTCOMES					
On the	successful completion of the course, students will be able to					
CO1.	Understand how to improve your writing skills with concisenes ancy	ss so as to and re	emoving	Underst	and	
CO2. 0	Classify the sections involved in research paper writing			Underst	and	
CO3. I	nterpret the sequence of research findings with results			Apply		
CO4. U	Use various paraphrasing method to provide good quality papersion	r at very first-t	ime	Apply		

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	M	-	-	-	-	-	-	M	-	-	M	-	-	S
CO2	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S
CO3	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S
CO4	L	M	-	-	M	-	-	-	M	-	-	M	-	-	S

SYLLABUS

Unit I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check, key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

Unit IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

Unit V

Useful phrases, how to ensure paper is as good as it could possibly be the first-time submission

Text Books/ References Books:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin
2.	Mr. Tyndale Cicil	Assistant Professor	AVIT	tyndale.english@avit.ac.in

	VALUE EDUCATION	Category	L	T	P	Credit				
		AC	0	0	2	0				
	AMBLE course highlights the importance of values and ethics for hum	nan life and org	anization.	1						
PREF Nil	REQUISITE									
COU	RSE OBJECTIVES									
1	To understand value of education and self- development									
2	To inculcate good values in students to make them patriotic with humanity									
3	To groom the personality with positive thinking with universal	al brotherhood	and religio	ous toler	ance.					
4	To impart the value of true friendship and happiness									
5	To enhance the character and competence for developing into	self-control pe	rson							
COU	RSE OUTCOMES									
On the	e successful completion of the course, students will be able to									
CO1.	Identify the value of education and self- development with wo	ork ethics		Rem	ember					
CO2.	Interpret sense of duties with good values in students to make humanity	ke them patriot	ic with	Und	erstand					
CO3.	Explain the integration, scientific attitude, overall personality v	vith labor digni	ty	Und	erstand					
CO4.	Discuss the value of true friendship and happiness			Und	erstand					
CO5.	Paraphrase the character and competence for developing into s	self-control pers	son	Und	erstand					

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	S	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	-	M	-	-	-	-	-	-	-
CO3	L	L	M	-	-	-	-	M	-	-	-	L	L	L	-
CO4	L	S	-	-	-	-	1	M	-	-	-	-	-	-	-
CO5	L	S	M	-	-	-	-	M	-	L	-	-	L	L	-

SYLLABUS

Unit I

Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non- moral valuation. Standards and principles, value judgements

Unit II

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity. Power of faith, National Unity, Patriotism, Love for nature, Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude, Positive Thinking. Integrity and discipline., Punctuality, Love and Kindness, avoid fault Thinking, Free from anger, Dignity of labor, Universal brotherhood and religious tolerance

Unit IV

True friendship, Happiness Vs suffering, love for truth, Aware of self-destructive habits, Association and Cooperation, doing best for saving nature

Unit V

Character and Competence –Holy books vs Blind faith, Self-management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of Women, all religions and same message, mind your Mind, Self-control, Honesty, Studying effectively

Text Books/ References Books:

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford UniversityPress, New Delhi

Course Code	Course Title	category	L	Т	P	С
Code	CONSTITUTION OF INDIA	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

- 1 To understand the nature and the Philosophy of the Constitution.
- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.
- 3 To Analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To Understand and analyse the three wings of the state in the contemporary scenario.
- 5 To Analyse Role of Adjudicatory Process.
- 5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution—Features of the Indian Constitution—Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties—Directive Principles State Policy

UNIT II –Government of the Union

The Union Executive-Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III –Government of the States

The Governor –Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV - Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

- 1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008
- 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested

Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india
- 3. https://www.sci.gov.in/constitution
- 4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL	NPTEL Course Title	Course Instructor
	ID		
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND	SCHOOL OF INDIA
		ADJUDICATORY PROCESS	UNIVERSITY

COURSE DESIGNER												
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID								
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.com								

	PEDAGOGY STUDIES	PEDAGOGY STUDIES Category L										
		AC	0	0	2	0						
	MBLE											
The	course is designed to provide pedagogical practices towa	rds academic, r	esearch ac	ctivities	and pr	ofessional						
develo	pments.											
PRER Nil	REQUISITE											
COUR	RSE OBJECTIVES											
1	To provide theories and methodologies related to curriculum	development an	d research	framev	vork							
2	To familiarize with pedagogical practices in formaland informal classrooms in developing countries											
3	To identify evidence on the effectiveness of the pedagogical practices for enhancing teaching and learning Methods											
4	To understand the learning and resource barriers while handle	ng large classes	3									
5	To identify critical evidence gaps to guide the development											
COUF	RSE OUTCOMES											
On the	successful completion of the course, students will be able to											
CO1.Id	dentify theories and methodologies related to curriculum devework	lopment and res	search	Reme	mber							
CO2.II	nterpret pedagogical practices in formaland informal classrocies	oms in developi	ng	Unde	rstand							
	O3.Draw a chart on the effectiveness of the pedagogical practices for enhancing teaching and learning methods Apply											
CO4.E	Explore the learning and resource barriers while handling large	classes		Anal	yze							
CO5.E	5.Examine critical evidence gaps to guide the development Analyze											

MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	L	M	-	-	-	-	-	1	-	-	L	L	L	1
CO4	L	S		-	-	-	-	-	1	-	-	-	-	-	1
CO5	L	S	M	-	-	-	-	-	-	L	-	-	L	L	-

SYLLABUS

Unit I

Introduction and Methodology, Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and searching.

Unit II

Thematic overview: Pedagogical practices are being used by teachers in formaland informal classrooms in developing countries, Curriculum, Teacher education.

Unit III

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the schoolcurriculum and guidance materials best support effective pedagogy, Theory of change, Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.

Unit IV

Professional development: alignment with classroom practices and followupsupport, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Text Books/ References Books:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher educationresearch project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning ofbasicmaths and reading in Africa: Does teacher preparation count? International JournalEducational Development, 33 (3): 272–282.

Course Code	Course Title	Category	L	T	P	С
	Personality Development Through Life Enlighten Skills	AC	0	0	2	0

Course Objectives:

- 1. To help the learner understand the basics of Personality and its correlation to society.
- 2. To understand the role of Attitude and motivation in the enhancement of personality.
- 3. To apply the concepts learnt in heightening the self esteem.
- 4. To analyse the most efficient method to develop the personality and prepare for employment.

UNIT I- Introduction to Personality Development

The concept of personality - Dimensions of personality - Theories of Freud & Erickson-Significance of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles -Factors responsible for success - What is failure - Causes of failure. SWOT analysis.

UNIT II Attitude & Motivation

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages - Negative attitude - Disadvantages - Ways to develop positive attitude - Differences between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self- motivation-Factors leading to de-motivation

UNIT III Self-esteem

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem - Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self esteem. Interpersonal Relationships - Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

UNIT IV Other Aspects of Personality Development

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader – Character building -Team-work – Time management - Work ethics –Good manners and etiquette. **UNIT V Employability**

Quotient

Resume building- The art of participating in Group Discussion – Facing the Personal (HR & Technical) Interview - Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

Total: 45 Periods

Text Books: 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill. 2. Stephen P.Robbins and Timothy A. Judge(2014), Organizational Behavior 16th Edition: Prentice Hall.

COURSE DESIGNERS				
COURSE INSTRUCTOR	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID	

Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin
Joseph			
Mr. Tyndale Cicil	Assistant Professor	AVIT	tyndale.english@avit.ac.in