AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

Faculty of Engineering and Technology

Department of Civil Engineering Programme:

M.E – Construction Engineering and

Management

Part Time (3 Years)

CHOICE BASED CREDIT SYSTEM (CBCS)

Curriculum & Syllabus (Semester I to VI)

Regulations 2021

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR &

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Civil Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	Graduates will perform as professional engineers in the field of Construction Engineering and Management.							
PEO 2	Graduates will perform well in their specialized field and also trained in teamwork and leadership positions.							
PEO 3	Graduates will pursue lifelong learning in the specialized fields of Construction Engineering and Management.							
PEO 4	Graduates will exhibit entrepreneurship qualities.							
PEO 5	Graduates will contribute to the development of the profession, nation and society							

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Civil Engineering graduates will be able:

PSO 1	To work independently as well as in team to formulate, design, execute solutions for engineering problems and also analyze, synthesize technical data for application to product, process, system design & development
PSO 2	To understand & contribute towards social, environmental issues, following professional ethics and codes of conduct and embrace lifelong learning for continuous improvement
PSO 3	To develop expertise towards use of modern engineering tools, careers in industries and research and demonstrate entrepreneurial skill

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

VINAYAKA MISSIONS RESEARCH FOUNDATIONS FACULTY OF ENGINEERING AND TECHNOLOGY

CREDIT STRUCTURE FOR POST GRADUATE ENGINEERING PROGRAM (M.E / M.TECH –PART TIME) -2021

S.No	Category of courses	Type of courses	Suggested break up of credits
1	A Foundation courses	Statistical Methods and Queuing Theory	3
1.	A. Foundation courses	Research Methodology and IPR	2
2.	B. Program core courses	Core courses	32
		Program Electives	15
3.	C. Elective courses	Open Electives (Courses on Emerging Areas)	03
4.		Project Work Phase I	06
	D. Employability Enhancement Courses and courses for presentation of Technical skills related to the specialization	Project Work Phase II	12
		Technical Seminar	1
		Research Presentation Skills	1
5.	E. Audit courses	 Any two courses on: 1. English for Research Paper Writing 2. Value Education 3. Constitution of India 4. Pedagogy Studies 5. Personality Development Through Life Enlighten Skills 	Zero credit
Т	otal credits to be earned for the award	d of M.E /M.Tech degree	75

CREDIT STRUCTURE FOR POST GRADUATE ENGINEERING PROGRAM (M.E / M.TECH – PART TIME) -2021

S.No	Category of courses	Type of courses	Suggested break up of credits	Course Title
1.	A.Foundation	Mathematics/ Applied Mathematics	3	Statistical Methods and QueuingTheory
	courses	Research Methodology and IPR	2	Research Methodology and IPR
2.	B. Program core courses	Core courses	32	 Construction Materials and ConcreteDesign Project Formulation and Appraisal Construction Planning, Schedulingand Control Computer Applications in Construction Engineering andPlanning Advanced Concrete Technology Modernistic approaches inconstruction Automation in Construction Management Advanced Project Management Concepts Quality and safety in construction Quality Control and Assurance in Construction
3.	C. Elective courses	Program electives	15	 Contract Laws and Regulations System Integration in Construction Energy efficient buildings Construction economics and Financial Management Construction Personnel Management Business Economics and FinanceManagement Resource Management and Control in Construction Project Safety Management Maintenance and Rehabilitation of Structures
		Open electives (Courses on emerging areas)	03	 Management Information System 2.Waste to Energy Biomedical Product Design and Development Advanced Cyber Security Bio Mems Solar and Energy Storage Systems Operations Research Metal Additive Manufacturing

	D. Employability Enhancement	Project work phase I	6	
4.	Courses and courses for presentation of	Project work phase II	12	
	Technical skills related to	Technical Seminar	1	
	the specialization	Research Presentation Skills	1	
5.	E.Audit courses	 Any two courses on: English for Research Paper Writing Value Education Constitution of India Pedagogy Studies Personality Development Through Life Enlighten Skills 	Zero credit	
Total c	credits to be earr N	ned for the award of M.E /M.Tech degree	75	

	A. Foundation Courses - Credits (5)										
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1.		STATISTICAL METHODS AND QUEUINGTHEORY	MATH	FC-BS	3	0	0	3	NIL		
2.		RESEARCH METHODOLOGY AND IPR	CIVIL	FC-HS	2	0	0	2	NIL		

	B. Program core courses – Credits 32									
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE	
1.		CONSTRUCTION MATERIALS AND CONCRETE DESIGN	CIVIL	CC	3	1	0	4	NIL	
2.		PROJECT FORMULATION AND APPRAISAL	CIVIL	CC	3	1	0	4	NIL	
3.		CONSTRUCTION PLANNING, SCHEDULING AND CONTROL	CIVIL	СС	3	1	0	4	NIL	
4.		COMPUTER APPLICATIONS IN CONSTRUCTION ENGINEERING AND PLANNING	CIVIL	СС	0	0	4	2	NIL	
5.		ADVANCED CONCRETE TECHNOLOGY	CIVIL	CC	3	1	0	4	NIL	
6.		MODERNISTIC APPROACHES IN CONSTRUCTION	CIVIL	CC	3	1	0	4	NIL	
7.		AUTOMATION IN CONSTRUCTION MANAGEMENT	CIVIL	CC	3	0	0	3	NIL	
8.		ADVANCED PROJECT MANAGEMENT CONCEPTS	CIVIL	СС	3	1	0	4	NIL	
9.		QUALITY AND SAFETY IN CONSTRUCTION	CIVIL	CC	3	0	0	3	NIL	
10.		QUANTITATIVE TECHNIQUES IN CONSTRUCTION MANAGEMENT	CIVIL	CC	3	0	0	3	NIL	
11.		QUALITY CONTROL AND ASSURANCE IN CONSTRUCTION	CIVIL	CC	3	0	0	3	NIL	

Elective courses									
Progran	n electives	- Credits 15							
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.		CONTRACT LAWS AND REGULATIONS	CIVIL	EC-PS	3	0	0	3	NIL
2.		SYSTEM INTEGRATION IN CONSTRUCTION	CIVIL	EC-PS	3	0	0	3	NIL
3.		ENERGY EFFICIENT BUILDINGS	CIVIL	EC-PS	3	0	0	3	NIL
4.		CONSTRUCTION ECONOMICS AND FINANCIAL MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
5.		CONSTRUCTION PERSONNEL MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
6.		BUSINESS ECONOMICS AND FINANCE MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
7.		RESOURCE MANAGEMENT AND CONTROL IN CONSTRUCTION	CIVIL	EC-PS	3	0	0	3	NIL
8.		PROJECT SAFETY MANAGEMENT	CIVIL	EC-PS	3	0	0	3	NIL
9.		MAINTENANCE AND REHABILITATION OF STRUCTURES	CIVIL	EC-PS	3	0	0	3	NIL

Open e	Open electives (Courses on emerging areas) - Credits 03										
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1.		METAL ADDITIVE MANUFACTURING	MECH	OE-EA	3	0	0	3	NIL		
2.		WASTE TO ENERGY	BTE	OE-EA	3	0	0	3	NIL		
3.		BIOMEDICAL PRODUCT DESIGN AND DEVELOPMENT	BME	OE-EA	3	0	0	3	NIL		
4.		ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL		
5.		BIO MEMS	ECE	OE-EA	3	0	0	3	NIL		
6.		SOLAR AND ENERGY STORAGE SYSTEMS	EEE	OE-EA	3	0	0	3	NIL		

D. Employability Enhancement Courses and courses for presentation of technical skills related to the specialization (Credits - 21)

operation									
S.No	CODE	COURSE	OFFERING DEPT.	CATEG ORY	L	Т	Р	С	PREREQUISITE
1.		PROJECT WORK PHASE I	CIVIL	EE-P	0	0	12	6	NIL
2.		PROJECT WORK PHASE II	CIVIL	EE-P	0	0	24	12	NIL
3.		TECHNICAL SEMINAR	CIVIL	EE-S	0	0	2	1	NIL
4.		RESEARCH PRESENTATION SKILLS	CIVIL	EE-D	0	0	2	1	NIL

E. Audit	E. Audit courses-Zero Credit									
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE	
1.		ENGLISH FOR RESEARCH PAPER WRITING	ENG	AC	0	0	2	0	NIL	
2.		VALUE EDUCATION	HS	AC	0	0	2	0	NIL	
3.		CONSTITUTION OF INDIA	LAW	AC	0	0	2	0	NIL	
4.		PEDAGOGY STUDIES	HS	AC	0	0	2	0	NIL	
5.		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTEN SKILLS	ENG	AC	0	0	2	0	NIL	

IMPLEMENTATION PLAN PROGRAMME STRUCTURE

S	Semester I							
SL. NO	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	Р	С
THEORY								
1.		Statistical Methods and Queuing Theory	MATHS	FC	3	0	0	3
2.		Construction Materials and Concrete Design	CIVIL	CC	3	1	0	4
3.		Modernistic approaches in Construction	CIVIL	CC	3	1	0	4
4.		Program Core Elective I	CIVIL	PE	3	0	0	3

S	EMESTER I	[
SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERIN G THE COURSE	CATEGO RY	L	Т	Р	С
THEORY								
1.		Project Formulation and Appraisal	CIVIL	CC	3	1	0	4
2.		Construction Planning, Scheduling and Control	CIVIL	CC	3	1	0	4
3.		Quantitative Techniques in Construction Management	CIVIL	CC	3	0	0	3
4.		Program Core Elective II	CIVIL	PE	3	0	0	3

SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	Р	С
1		Advanced Project Management concepts	CIVIL	CC	3	1	0	4
2		Advanced Concrete Technology	CIVIL	CC	3	1	0	4
3		Program Core Elective III	CIVIL	PE	3	0	0	3
4		Program Core Elective IV	CIVIL	PE	3	0	0	3
PRACTICA	AL							
5		Computer Applications in Construction Engineering and Planning Laboratory	CIVIL	CC	0	0	4	2
6		RESEARCH PRESENTATION SKILLS	CIVIL	EE-D	0	0	2	1

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERING THE COURSE	CATEGORY	L	Т	Р	С
1		Quality and safety in construction	CIVIL	CC	3	0	0	3
2		Program Core Elective V	CIVIL	PE	3	0	0	3
3		Open Elective		OE	3	0	0	3
4		Technical Seminar	CIVIL	PI	0	0	2	1
5		Audit Course I		AC	0	0	0	0
6		Audit Course II		AC	0	0	0	0

SEMESTER V

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERIN GTHE COURSE	CATEGORY	L	Т	Р	С
1		Research Methodology and IPR	CIVIL	FC	2	0	0	2
2		Project work phase I	CIVIL	PI	0	0	12	6

SEMESTER VI

SL. NO.	COURSE CODE	COURSE TITLE	DEPT OFFERIN GTHE COURSE	CATEGORY	L	Т	Р	С
1		Project Work phase II	CIVIL	PI	0	0	24	12

TOTAL CREDITS : 75

FOUNDATION COURSES

			ST	ΓATIS	TICA	L MEI	THOD	S ANI)	Categ	ory	L	Т	Р	Credit
				QU	JEUEI	NG TI	HEOR	Y		FC-I	BS	3	0	0	3
PREA	MBLI	E											I		_
This co other Queuin conges	ourse is areas in ng theo stion.	s desig n the 1 ory is	ned to j mathen the ma	provide natical athema	e the so scienc tical st	olid fou es incl udy of	ndatio uding `waitii	n on va statisti ng line	rious s cs, mo es and	statistica dern opt it's a pr	l meth timizat rimary	ods whic tion meth tool for	ch form t nods and studyin	the basis l risk m g the pr	for many odelling. oblem of
PRER	EQUI	SITE	– Nil												
COU	RSE O	BJEC	TIVES	5											
1 To get the knowledge on concepts of random variables and distributions with respect to how they are applied to statistical data.															
2 To introduce the concepts of sampling distributions and the test statistics															
3	3 To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the measurements made on the sample.														
4	4 To train the students in design experiments and use these concepts for research														
5	5 To study queuing models for analyzing the real world systems.														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1; Sengine	Select a ering pi	n appro	opriate	probabi	ility dis	tributio	on to de	termine	e the pro	obability	functio	on for solv	ving	Appl	у
CO2:	Use the	approp	oriate ar	nd relev	ant esti	mates								Appl	у
CO3:N Resear	/lake ap ch	propria	ate deci	sions u	sing inf	erential	l statist	ical too	ls that a	are centra	al to ex	perimenta	ıl	Appl	y
CO4: (Constru	ct stan	dard ex	perime	ntal des	igns an	d descr	ibe stat	istical 1	nodels E	stimate	ed using t	he data.	Appl	y
CO5: 1 waiting infinite	Derive a g and sy e capaci	and app stem ti	oly main me, exp ueing s	n formu pected 1 ystem.	llas for number	some p of cust	roperti	es (sucl in the q	h as stat jueue, e	ionary p tc.) M/M	robabil [/1, M/]	ities, aver M/C – fin	age ite and	Appl	y
MAPI	PING Y	WITH	[PRO	GRAM	IME (OUTCO	OMES	S AND	PROG	GRAMN	AE SF	PECIFIC	OUTC	OMES	
COS	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	S	S	M	М				М				М			
CO2	S	S	Μ	М				Μ				М			
CO3	S	S	Μ	Μ				Μ				М			
CO4	S	S	Μ	Μ				Μ				М			
CO5	S	S	М	М				М				М			
S- Str	ong; N	/I-Med	lium; I	L-Low											
SYLL PROB	ABUS ABILI	гу ал	ID RAI	NDOM	VARI	ABLES	5:								

Probability Concepts – Bayes Theorem –Random Variable - Discrete and continuous random variables- Probability mass function – Probability density functions - Moment generating functions and their properties– Standard distributions – Binomial, Poisson, Uniform, Exponential, Normal distribution.

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments – Curve fitting by Principle of least squares – Regression Lines.

TESTING OF HYPOTHESES

Sampling distributions–Normal distribution – Area properties – Statistical hypothesis – Type I and Type II errors– Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) – Chi- square Tests for Goodness of fit –Independence of attributes.

DESIGN OF EXPERIMENTS

Analysis of variance – One-way and two-way classifications – Latin square design – 2^k Factorial Design - Fractional

Factorial Design - Response Surface Methods - Central Composite Design

QUEUEING MODELS

Poisson Process – Markovian queues – Single and Multi Server Models – Little's formula Machine Interference Model – Steady State analysis – Self Service queue.

Text Book:

- T.Veerarajan, "Probability and Statistics, Random Processes and Queueing Theory", 4th Edition, Tata McGraw Hill, (2018).
- 2. Milton J. S and Arnold J.C, "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition (2007).
- 3. Gupta P.K, Hira D.S, Problem in Operations Research, S.Chand and Co (2007)

REFERENCE:

- 4. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2017.
- 5. Kanti Swarup, PK Gupta, Man Mohan, "Operations Research", Sultan Chand & Sons (2014)

COURSE DESIGNERS

S.No	Name of the Faculty Designation		Department	Mail ID
1	Dr.P.Sasikala	Professor	Mathematics/ VMKVEC	sasikala@vmkvec.edu.in
2.	Dr.L.Tamilselvi	Professor	Mathematics/ AVIT	ltamilselvi@avit.ac.in

Course Code	Course Title	Category	L	Т	Р	С
	Research Methodology and IPR	FC-HS	2	0	0	2

Course Outcomes:

At the end of this course, students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information.
- 3. Follow research ethics.
- 4. Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis, the need of information about Intellectual Property Right to be promoted among students in general & Engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT I- RESEARCH PROBLEM AND SCOPE FOR SOLUTION

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT II- FORMAT

Effective literature studies approaches, analysis, Plagiarism, Research ethics. Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT III- PROCESS AND DEVELOPMENT

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, patenting under PCT.

UNIT IV- PATENT RIGHTS

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT V- NEW DEVELOPMENTS IN IPR

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS

1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students" Juta Publishers, 1996.

2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta Publishers, 2004.

3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

REFERENCES

1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.

2. Mayall, "Industrial Design", McGraw Hill, 1992.

3. Niebel, "Product Design", McGraw Hill, 1974.

4. Asimov, "Introduction to Design", Prentice Hall, 1962.

5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

PROGRAM CORE COURSES

	Construction Materials and Concrete	Category	L	Т	Р	Credit					
	Design	CC	3	1	0	4					
PRE	AMBLE										
This conci	course familiarize about the various and latest conrete design.	nstruction ma	aterials,	and me	ethodo	logy of					
PRE	REQUISITE										
NIL											
COU	COURSE OBJECTIVES										
1	Criteria for choice of the appropriate material and the various tests for quality control.										
2	Characterization of uses and application of the differ	ent constructi	on mate	erials							
3	Detail the manufacturing process of the construction	and building	materia	ls							
4	Special Materials and advanced technology in constr	uction fabric	ation un	its.							
5	Concrete design procedure for desired strength a	and durability	у.								
COU	URSE OUTCOMES										
On the	e successful completion of the course, students will	be able to									
CO1 -	- Understand the typical and potential applications construction materials	of basic		U	nderst	and					
CO2 -	- Compare the properties of most common and adv building materials	vanced		Ŭ	Inderst	and					
CO3 -	CO3 - Understand the relation between material properties and structural Form										
CO4 -	Understand the importance of experimental veri material properties	fication of		Ŭ	nderst	and					
CO5 -	Design an appropriate concrete as per the require the project	ments of		Unders	tand an	d Apply					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	L	-	L	-	-	-	-	-	-			
CO2	S	S	М	L	-	-	-	-	-	-	-	-			
CO3	S	М	S	М	-	-	-	-	-	-	-	-			
CO4	S	М	S	М	-	L	-	-	-	-	-	-			
CO5	S	S	L	L	-	-	-	-	-	-	-	-			
S- Str	S- Strong; M-Medium; L-Low											•			

SYLLABUS

UNIT I SPECIAL CONCRETES

Concretes, Behaviour of concretes – Properties and Advantages of High Strength and High Performance Concrete – Properties and Applications of Fibre Reinforced Concrete, Self-compacting concrete, Alternate Materials to concrete on high performance & high Strength concrete.

UNIT II COMPOSITES

Types of Plastics – Properties & Manufacturing process – Advantages of Reinforced polymers Types of FRP – FRP on different structural elements – Applications of FRP.

UNIT III OTHER MATERIALS

Types and properties of Water Proofing Compounds – Types of Non-weathering Materials and its uses – Types of Flooring and Facade Materials and its application.

UNIT IV SMART AND INTELLIGENT MATERIALS

Types & Differences between Smart and Intelligent Materials – Special features – Case studies showing the applications of smart & Intelligent Materials.

UNIT V CONCRETE MIX DESIGN

Mix Proportioning – Mixes incorporating Fly ash, Silica fume, GGBS – Mixes for High Performance Concrete – High strength concrete – variations in concrete strength.

BOOKS:

- 1. Ashby, M.F. and Jones.D.R.H.H. "Engineering Materials 1: An introduction to Properties, applications and designs", Elsevier Publications, 2005.
- 2. Gambhir.M.L., Concrete Technology Tata McGraw Hill Book Co. Ltd., Delhi, 2004.

- 1. Deucher, K.N, Korfiatis, G.P and Ezeldin, A.S, Materials for civil and Highway Engineers, Prentice Hall Inc., 1998.
- 2. Mamlouk, M.S. and Zaniewski, J.P., Materials for Civil and Construction Engineers, Prentice Hall Inc., 1999.

S. No.	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.S.Aravind Raj	Associate Professor	AVIT	aravindraj.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i n

									Ca	tegory	L	Т]	P	C	redit
			PROJ	ECT FO	ormu .PPRA	ILATIC ISAL)N AN	D		CC	3	1	(0		4
PRE	AMBL	E														
This a project appra	subject ct ident isal, fin	helps ificationance a	the st on, to and PS	udents projec SP pro	s to un et clea cess	dersta rance.	nd the It als	e com o give	plete p better	project f r expos	formulature to th	tion, ap	praisa nts in	l proo the a	cess fi rea of	om f
PRE	REQUI	ISITE	1													
NIL																
COU	RSE O)BJE(CTIVI	ES												
Study	and unc	lerstar	d the o	concep	ts of p	roject	formul	ation								
Study	the role	e and n	nethod	s of pr	oject c	ash flo	ws and	d proje	ct cost	ing.						
The st	tudents	know a	about I	nterna	tional	Practic	e of ap	opraisa	1.							
Expos	se the stu	udent's	s know	ledge	of Proj	ect Fii	nancin	g.								
Acqui	ire the k	nowle	dge of	Privat	e Secto	or Parti	icipati	on								
COU	RSE O	OUTC	OME	S												
On th	e succe	ssful o	compl	etion o	of the	course	, stud	ents w	ill be	able to				-		
Have Econo	wide k mic Fea	nowle asibilit	dge ir y Repo	n respe ort, De	ect of tailed	the p Project	rojects Repo	s partio rt	cularly	Projec	t Estim	ates, Te	chno-	Und	erstar	nd
Follo	w the m	nethod	s of ca	ash flo	w in tl	ne pro	ject ar	nd also	have	an idea	of the c	cost of c	apital	Und	erstar	nd
Under analys	rstand t sis the 1	he pro	oject a	apprais	sal and	l impl	ement	it in	every	stage o	n ongoi	ing worl	k and	App	ly	
Know Institu	about utions	the real	quiren	nent ai	nd sou	rce of	financ	ce to c	arried	out the	project	and fina	incial	Und	erstar	nd
Devel of Tec	lop the	know y Tran	ledge sfer	in resp	pect of	fexec	ution	of infr	astruc	ture dev	velopme	ent and	Scope	Арр	ly	
MAP	PING	WITI	H PR	OGRA	MM	e ou	TCOI	MES	AND	PROG	RAMM	E SPE	CIFIC	C OU	TCO	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS O1	PS O2	PS O3	PS0 4
CO1	L	S	М	-	-	S	М	L	М	L	S	-	L	-	L	-
CO2	L	S	М	-	-	S	М	L	М	L	S	-	L	L	L	-
CO3	М	S	Μ	L	-	S	L	М	М	L	S	-	L	S	L	-
CO4	М	S	S	L	-	М	L	М	S	L	S	-	L	М	L	-
CO5	М	S	S	L	-	М	L	М	М	L	S	-	М	М	L	
S- Str	ong; M	-Med	ium; 1	L-Lov	V									<u> </u>		

SYLLABUS

PROJECT FORMULATION: Project – Concepts – Capital investments - Generation and Screening of Project Ideas - Project identification – Preliminary Analysis, Market, Technical, Financial, Economic and Ecological -Pre-Feasibility Report and its Clearance, Project Estimates and Techno-Economic Feasibility Report, Detailed Project Report – Different Project Clearances required

PROJECT COSTING- Project Cash Flows – Time Value of Money – Cost of Capital

PROJECT APPRAISAL NPV – BCR – IRR – ARR – Urgency – Pay Back Period – Assessment of Various Methods – Indian Practice of Investment Appraisal – International Practice of Appraisal – Analysis of Risk – Different Methods – Selection of a Project and Risk Analysis in Practice

PROJECT FINANCING Project Financing – Means of Finance – Financial Institutions – Special Schemes – Key Financial Indicators - Ratios

PRIVATE SECTOR PARTICIPATION Private sector participation in Infrastructure Development Projects -BOT, BOLT, BOOT - Technology Transfer and Foreign Collaboration - Scope of Technology Transfer **TEXTBOOKS**

1. Prasanna Chandra, "Project-Planning Analysis Selection Implementation & Review 6 th Edition", Tata Mc Graw Mill Publishing Co., Ltd, Newdelhi 2016.

2.Joy.P.K., Total Quality Project Management – The Indian Context, New Delhi, Macmillan India Ltd., 1992. **REFERENCES**

1. United Nations Industrial Development Organization (UNIDO) Manual for the Preparation of Industrial feasibility Studies, (IDBI Reproduction) Bombay 1987.

2.Barcus, SW. and Willison., Handbook of Management consulting Services, McGraw Hill, New York, 1986.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.R.Abirami	Asst.Professor	AVIT	abirami.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.ed u.in

			CONS	TRU	TION	J PL A	NNIN	G	Ca	tegory	L	Т	Р	С	redit
			SCHE	DULI	NG AI	ND CO	ONTR	OL OL		CC	3	1	0		4
PREAMB	LE	•							•						
Gai	n a thor	ough	unders	standiı	ng of t	he fin	er poi	nts of	constr	ruction]	project	planning	g, sche	edulir	ng, and
control															
PREREQ	UISITE														
NIL															
COURSE	OBJE	CTIV	ES												
1	To fam	iliarise	e then	ו with	proje	ct mai	nagen	nent c	oncep	ts, from	n plann	ing to ex	kecutio	on.	
2	To far time e	niliari stimat	ise the tion.	m wit	h proj	ect fea	asibilit	y ana	lysis a	nd netv	vork an	alysis to	ols fo	r cos	t and
3	To eq	uip th	em wi	th a w	vorkin	g knov	wledge	e of co	ontract	t admin	istratio	n, costin	g, and	l bud	geting.
4	To far	niliari	ise stu	dents	with c	luality	contr	ol.							
5	To gai	in an	unders	standir	ng of t	he vai	rious t	ypes o	of proj	ect info	rmatio	n.			
COURSE	OUTC	OME	S												
On the succ	cessful	compl	letion	of the	course	e, stud	lents v	vill be	able t	0					
CO1. Reco	gnize the	e chara	acterist	ics of	a proje	ct and	its var	ious st	ages.		1	Understa	nd		
CO2. Recog	gnize the	e conc	eptual nducte	clarity d	with v	which p	project	s are o	rganis	ed and	١	Understa	nd		
CO3. Analy	yze and	compr	ehend	nrojec	t planı	ning, s	chedul	ing, ar	nd exec	cution co	ontrol	A			
techniques.												Anaryze			
CO4 Utiliz	e the ris	k man	ageme	nt plar	n and c	onduc	t an ar	nalysis	of the	stakeho	lders'	Apply			
CO5. Contr	ract mar	nagem	ent, pr	oject j	procur	ement,	servio	ce leve	el agree	ements,		Indersta	nd		
and product	ivity all	requir	e an u	ndersta	inding							Understa	nu		
MAPPIN	G WIT	H PR	ROGR	AMN	IE OU	JTCO	MES	AND	PRO	GRAM	IME SI	PECIFI	C OU	тсс	OMES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS	PS
CO1	М	М	L	М	L	S	S	L	L	М	М	М	L	02 L	L
CO2	S	S	М	L	М	S	М	L	L	S	L	s	S	М	М
C03	м	м	м	L	м	м	S	М	м	L	s	T.	М	S	S
	141	141	141	Ľ	141		6	141	111	Ľ	2			_	~
CO4	L	L	Μ	L	М	S	Μ	Μ	М	L	S	L	М	L	L
CO5	М	Μ	L	Μ	L	М	S	Μ	М	Μ	М	М	S	М	M

SYLLABUS

UNIT – I CONSTRUCTION PLANNING

Basic Concepts in the Development of Construction Plans - Choice of Technology and Construction Method - Defining Work Tasks - Defining Precedence Relationships among Activities - Estimating Activity Durations - Estimating Resource Requirements for Work Activities - Coding Systems

UNIT - II SCHEDULING PROCEDURES AND TECHNIQUES

Construction Scheduling, Work break down structure, activity cost and time estimation in CPM, PERT, RPM (Repetitive Project Modeling) techniques. LOB technique, Mass haul diagrams. Precedence Network Analysis, software in Construction scheduling (MSP, primavera, Construction manager).

UNIT - III SPECIFICATION OF PROJECT BUDGET

The Cost Control Problem - The Project Budget - Forecasting for Activity Cost Control - Financial Accounting Systems and Cost Accounts - Control of Project Cash Flows - Schedule Control - Schedule and Budget Updates - Relating Cost and Schedule Information.

. UNIT - IV SAFETY AND QUALITY MANAGEMENT

Safety and Quality Concerns in Construction - Organizing for Quality and Safety - Work and Material Specifications - Total Quality Control - Quality Control by Statistical Methods - Statistical QualityControl with Sampling by Attributes - Statistical Quality Control with Sampling by Variables – Safety

UNIT - V PROJECT INFORMATION

Types of Project Information - Accuracy and Use of Information - Computerized Organization and Use of Information - Organizing Information in Databases - Relational Model of Databases - Other Conceptual Models of Databases - Centralized Database Management Systems - Databases and Applications Programs - Information Transfer and Flow

BOOKS:

- 1. Chitkara. K.K. "Construction Project Management: Planning Scheduling and Control", Tata McGraw Hill Publishing Company, New Delhi, 2008. .
- 2. Calin M. Popescu, Chotchal Charoenngam, "Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications", Wiley, New York, 2005.

- 1. Willis, E. M., "Scheduling Construction Projects", John Wiley & Sons, 2006.
- 2. Halpin, D. W. "Financial and Cost Concepts for Construction Management", John Wiley & Sons. New York, 2005

S.No	Name of the Faculty	Designation	Name of the College	Mail ID	
1	Mr.D.PARTHIBAN	Assistant Professor - I	AVIT	parthiban.civil@avit.ac.in	
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i <u>n</u>	

		C	омрі	TER	АРР	LICA	TIO	NS IN		Category	L		Т	Р	C	redit
		C C PI	ONN C ONST LANN	RUC' ING	FION	LICA I ENC	GINE	ERIN	G AND	CC	0		0	4		2
PREAM	BLE															
This help This subj	os the ect al	studer so help	nts to u s the p	utilize roject	the of th	optim ning a	ized of and sc	comput heduli	ter technong in digi	ology in the italized appro	field o bach.	of plar	nnin	ıg an	dconstru	uction.
PREREC	QUIS	ITE														
NII																
COURS	E OB	JECTI	IVES													
1	To st	udy an	d unde	rstand	the	introd	uction	n of sy	stem har	dware.						
2	To st	udy the	e role a	and m	ethod	s of c	optimi	zation	techniqu	es.						
3	The s	student	s know	v abou	ıt inv	entory	v mod	els.								
4	To E	xpose t	the stu	dent's	knov	vledge	e of s	chedul	ing appli	cation.						
5 COUDG	To le	arn abo	out pro	ject p	lanni	ng an	d sch	eduling	5.							
On the su		ICON ful con	/IES nnletio	n of tl		irce c	tuder	ts will	be able i	to						
CO:1	To un	derstan	d the a	hout th	ne opti	mizat	ion te	chnique	es and pra	ctice					Unc	derstand
CO:2	Toun	der the	about t	he res	ource	alloca	tion a	nd reso	urce utiliz	zation					Unc	derstand
CO:3	To uti	ilize the	e softwa	are inte	erface	in pro	ject p	lanning	g and sche	duling.					Ana	alyze
CO:4	To pe	rceive t	he Hur	nan Re	esourc	e Mar	nagem	ent in t	he Constr	uction Project					App	ply
CO:5	To pe	rceive t	the Mat	erial N	Aanag	ement	t in the	e Const	ruction Pr	oject					Appl	ly
MAPPIN	IG W	ITH P	ROGI	RAMN	ME O	UTC	OME	S ANI	D PROG	RAMME SP	ECIF	IC OL	JTC	COM	ES	
COS	PO 01	PO 02	PO 03	PO 04	PO 05	PO	PO 07	PO	PO	PO 10	PO 11	PO 12	P	PSO 01	PSO 02	PSO 03
CO·1	M	02 M	05 L	04 M	05 L	<u> </u>	5 5	L	09 L	10 M	M	M		L	02 L	<u> </u>
CO:2	S	S	M	L	M	S	M	L	L	S	L	S		S	M	M
CO:3	Μ	М	Μ	L	М	Μ	S	Μ	М	L	S	L	I	М	S	S
CO:4	L	L	Μ	L	Μ	S	М	Μ	М	L	S	L	l	М	L	L
CO:5	Μ	М	L	Μ	L	М	S	Μ	М	М	Μ	Μ		S	Μ	М
S - STRC	<u>DNG,</u>	M - M	EDIU	M and	l L – 1	LOW										
SYLLAP INTROI		ION														
LIST OF	F EXP	PERIM	IENTS	}												
1. Planning	g and	Schedu	ling of	f Proje	ect us	ing M	licros	oft Pro	ject							
2. Project	and Po	ortfolio	Mana	geme	nt usi	ng Co	mput	er App	lication							
3. Resourc	es Ma	anagem	nent us	ing Co	omput	er Ap	plicat	ion								
4. Risk Ma	anager	ment us	sing Co	omput	er Ap	plicat	ion									
5. Workflo	ow of	events	and ac	tivitie	s in C	Constr	uctior	n Proje	et							
6. Project	templa	ates and	d Web	admi	nistra	tion ir	n Con	structio	on Industr	ry						
7. ERP in	Const	ruction	Indus	try												
8. Materia	l Man	agemei	nt in C	onstru	ction	indus	try us	sing Co	omputer A	Application						

TEXT	BOOKS													
1. E A	 Billy E.Gillet., Introduction to Operations Research – A Computer Oriented Algorithmic Approach, Tata Mc Graw Hill, 1990 Paulson B.R. Computer Applications in Construction. Mc Graw Hill, 1995 													
2. F	Paulson, B.R., Computer Ap	plications in Constru	uction, Mc Graw H	Iill, 1995										
REFEF	REFERENCE BOOKS													
1. F F	Feigenbaum,L., Construction Scheduling with Primavera Project PlannerPrentice HallInc., 2002													
2. N	Ming Sun and Rob Howard, Group, London and New Yo	"Understanding I.T. rk, 2004.	in Construction, S	pon Press, Taylor and Francis										
COUR	SE DESIGNERS													
S.No	Name of the Faculty	Designation	Dept. / College	E-mail ID										
1	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in										
2	Mr.K.Naveenkumar	Assistant Professor	Civil/AVIT	naveen.civil@vait.ac.in										

ADVANCED CONCRETE	Category	L	Т	Р	Credit
TECHNOLOGY	CC	3	1	0	4

PREAMBLE

This course explains about the materials used for various types of concrete, their behaviour and concreting methods.

PREREQUISITE

NIL

COURSE	OBJE	CTIVI	ES												
1	To stu	dy and	under	stand t	he con	crete i	ngredi	ents.							
2	To stu	dy the	role of	fibre	reinfoi	ced co	oncrete	•							
3	The st	udents	know	about	concre	ete mix	desig	n and h	nigh str	ength c	oncrete.				
4	To exp	pose th	e stude	ents kn	owled	ge of r	nechar	nical p	roperti	es of co	ncrete.				
5	То асс	quire th	ne kno	wledge	e of du	rabilit	y of co	ncrete.							
COURSE	OUTC	OME	S												
On the succe	essful c	omple	tion of	f the c	ourse,	stude	nts wi	ll be a	ble to						
CO1 - Uno	lerstand	the c	hemic	al and	l mech	nanica	l prop	erties	of cen	nent		Under	stand a	nd Ap	ply
CO2 - Uno	lerstand	the r	ole of	differ	ent ad	lmixtu	res in	concr	ete				Appl	ly	
CO3 - Des	ign for	vario	us con	crete	grades	using	g coda	l prov	isions				Appl	ly	
CO4 - Und and	erstand d its tes	l the c ting Pi	concep roced	ot on f ures	resh a	and ha	ardene	ed con	crete	propert	ies		Appl	y	
CO5 - Des	cribe a	bout tl	he spe	cial co	oncret	es						Under	stand a	nd Ap	ply
MAPPING	WIT	H PR	OGRA	AMM	E OU	TCO	MES	AND	PROC	GRAM	ME SP	ECIFIC	C OU	ГСОМ	IES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	М	-	-	-	-	-	-	-	-			
CO2	S	L	М	L	-	-	-	-	-	-	-	-			
CO3	S	S	М	L	-	-	-	S	-	-	-	-			
CO4	S	М	L	L	-	-	-	-	-	-	-	-			
CO5	М	М	L	М	-	-	-	-	-	-	-	-			
S- Strong; N	M-Med	ium;	L-Lov	V		•	•					•		•	

SYLLABUS

UNIT I CONCRETE INGREDIENTS

Composition of OPC – Manufacture – Modified Portland Cements – Hydration Process of Portland Cements – Structure of Hydrated Cement Pastes

Mineral Admixtures – Slags – Pozzolanas and Fillers – Chemical Admixtures – Solutes – Retarders – Air Entraining Agents – Water Proofing Compounds – Plasticizers and Super Plasticizers

Aggregates – Properties and testing of fine and course aggregates – combining of aggregates – Substitute material for aggregates – recent advancements.

UNIT II SPECIAL CONCRETES

Fibre Reinforced Concrete – Self Compacting Concrete – Polymer Concrete – Sustainable Concrete – Lightweight concrete.

UNIT – II CONCRETE MIX DESIGN

Mix Proportioning – Mixes incorporating Fly ash, Silica fume, GGBS – Mixes for High Performance Concrete – High strength concrete – variations in concrete strength.

UNIT IV MECHANICAL PROPERTIES OF CONCRETE

Interfacial Transition Zone – Fracture Strength – Compressive strength – Tensile strength - Impact strength - Bond strength.

UNIT V DURABILITY OF CONCRETE

 $Factors\ affecting\ durability\ -\ Chemical\ Attack\ -\ Permeability\ -\ Sulphate\ attack\ -\ chloride\ penetration\ -\ water\ absorption\ -\ creep\ -\ Shrinkage.$

BOOKS:

- 3. Santhakumar.A.R., Concrete Technology, Oxford University press, New Delhi. 2007.
- 4. Gambhir.M.L., Concrete Technology Tata McGraw Hill Book Co. Ltd., Delhi, 2004.

- 1. Neville, A.M., Properties of Concrete, Longman, 1995.
- 2. Metha P.K. and Montreio P.J.M., Concrete Structure Properties and Materials, Prentice Hall, 1998.

S. No.	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.S.Aravind Raj	Associate Professor	AVIT	aravindraj.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	<u>Senthilkumar@vmkvec.edu.i</u> <u>n</u>

		м	NFD	NICT			АСШ	76 IN	Ca	tegory	L	Т	Р	Cı	edit
		WIC	JDEN	CON	STRU	CTIC)N	29 11		CC	3	1	0		4
PREAMB	LE														
Study and engineering	comprei	hend	the M	oderni	zed c	onstru	ction a	approa	ches	practici	ng in th	e field	of civ	il	
PREREQ	UISITE														
NIL															
COURSE	OBJEC	CTIV	ES												
1	To stu	dy an	d und	erstan	d the	usage	of diff	erent	sustai	nable m	naterials	in cons	structio	on	
2	To stu	dy the	e conc	ept an	d usag	ge of l	Nano t	echno	logy i	n the fi	eld of c	ivil eng	ineerii	ng	
3	To stu	dy th	e inevi	itable	role o	f biote	echnol	ogy in	the fi	ield of o	construc	ction			
4	To ren	derin	g the	differe	nt aut	omati	on pro	cess i	nvolve	ed in m	odern d	ay of co	onstruc	ction	
5	To acc	quire 1	the rol	e of p	refab	constr	uction								
COURSE	OUTC	OME	S												
On the suc	cessful o	compl	etion	of the	course	e, stud	lents w	vill be	able t	0					
CO1. Investi	gate and	comp	rehend	the us	se of v	arious	sustair	able b	uildin	g materi	als.		Unc	lersta	ınd
CO2. Analy engine	ze the o ering.	conce	pt of I	Nanote	chnol	ogy ar	nd its	applic	ation i	in the f	ield of	civil	Uno	lersta	ind
CO3. To vali	idate the	basic	knowl	edge o	f biote	chnolo	ogy in t	he cor	structi	ion indu	stry		Ana	alyze	
CO4. To cl	early elu	ıcidat	e abou	t the	variou	is auto	omatio	n proc	esses	that are	e used i	n today	s App	oly	
constru	uction	•	1			1 (1	1	1.	1 1				_		
CU5. 10 clea	ariy expi	icate t	ne equ	ipmen	t's and	metho	oas use	a in m	odular	constru	ction		Und	lersta	ınd
MAPPINO OUTCON	5 WITH IES	I PRO	OGRA	MMI	E OU	ГCON	AES A	ND P	ROG	RAMN	IE SPE	CIFIC			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS O2	PS O3
CO1	L	L	L	М	L	S	S	L	L	М	М	М	L	L	L
CO2	М	М	М	L	М	S	S	-	L	S	L	S	S	М	М
CO3	М	L	Μ	L	М	Μ	-	М	М	-	S	L	М	S	S
CO4	М	М	М	L	М	S	L	М	М	L	S	L	М	L	L
CO5	L	L	L	М	L	М	S	М	М	М	М	М	S	М	М

SYLLABUS

UNIT - I SUSTAINABLE BUILDING MATERIALS

Special alloys of steel and other metals- glass- polymer- fabric- Construction chemicals- Specialized equipment's-Market survey -collection of information about the materials

UNIT - II NANO CONCRETE

Concept of Nanotechnology- Nano Cement materials- Nanoscale Characterization -Silica Aerogels-Effect of Nano-SiO- Nano Clay- Graphene-Oxide- Electrochemical Injection- Cement Reinforcement by Nanotubes.

UNIT - III CONSTRUCTION BIOTECHNOLOGY

Basics of Biotechnology for Civil Engineering - Biotechnological Admixtures- Biotechnological Plastics- Bio cements- Bio coating of Surfaces- Bio grouts- Bio corrosion- Bio deterioration - Future Developments

UNIT - IV CONSTRUCTION AUTOMATION

Concept- Building Information Model- 3D Printing- Roles of artificial intelligence in construction engineering and management

UNIT - V MODULAR CONSTRUCTION

Modular construction- Types- prefabrication–Principles–Materials–Modular coordination– Standardization–Systems–Production–Transportation–Erection –Construction and erection of roof and floor slabs–Wall panels –Columns–Shear walls

BOOKS:

- 3. CBRI, Building materials and components, India, 1990
- 4. Nanotechnology in Construction, Konstantin Sobolev & Surendra P. Shah, Springer International Publishing, Switzerland 2015
- 5. Construction Biotechnology, Volodymyr & Ivanov Viktor Stabnikov, Green Energy and Technology (GREEN), 2017
- 6. Construction Automation. In: Castro-Lacouture D. (2009) , Springer Handbook of Automation, 2009

- 3. Henrick Nissen, "Industrial Building and Modular Design", Cement Concrete Association,
- 4. Roy Chudley& Roger Greeno, "Advanced Construction Techniques", Pearson Prentice Hall

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.D.PARTHIBAN	Assistant Professor - I	AVIT	parthiban.civil@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

				ATITO	тал	TION	IN		Ca	tegory	L	Т	Р	Cı	edit
		СО	NSTE	RUCT	ION 1	MAN	AGEN	MENT		CC	3	0	0		3
PREAMB	LE														
Ha [*] strong digi	ving the tal foot	e abili print i	ty to c n the f	create ield of	uniqu f const	e insig tructio	ghts fi on mar	rom w nagem	hat is ent	seen or	r observ	ved, as v	well as	s hav	ing a
PREREQ	UISITE	2													
NIL															
COURSE	OBJE	CTIV	ES												
1	To ga	in insi	ght in	to the	use of	f auto	mation	n and i	robots	in cons	struction	n manag	gement	-	
2	To un	dersta	nd the	funda	amenta	als of	senso	rs and	inspe	ction					
3	To in	vestiga	ate exi	sting	and p	rototyj	pe con	struct	ion eq	uipmen	t.				
4	Data 1	networ	king t	for pre	efabric	ation	eleme	nts wi	ll be i	nvestig	ated.				
5	Robot	ic tecl	nnolog	gies fo	r pref	abrica	tion e	lement	ts will	be inv	estigate	d.			
COURSE	OUTC	OME	S												
On the suc	cessful	compl	etion	of the	course	e, stuc	lents v	vill be	able t	.0					
CO1. Unde	rstand h	ow bui -site p	ilding i	manag	ement	systen	ns and	autom	ation c	an be us	sed in U	Understa	nd		
CO2. Robo	tics can	be use	d to so	lve co	nstruct	ion pr	oblem	s.				Apply			
CO3. The u	ise of co	mpute	rs in co	onstruc	ction T	he pro	cessin	g of da	ta			Apply			
CO4. Learn	the fun	damen	tals of	comm	unicat	ion an	d offic	e autoi	nation		l	Understa	nd		
CO5. To cl	early ex	plicate	the Ro	obotics	in the	Const	ructio	n Indu	stry		1	Apply			
MA	APPIN	G WI	TH P	ROG	RAM	ME O		OMES	S ANI	D PRO	GRAM	ME SP	ECIF	IC	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS	PS
CO1	L	L	L	М	L	S	S	L	L	М	М	М	L	L	L
CO2	М	М	Μ	L	М	S	S	-	L	S	L	S	S	М	М
CO3	М	L	М	L	М	М	-	М	М	-	S	L	М	S	S

CO4	М	М	М	L	М	S	L	М	М	L	S	L	М	L	L
CO5	L	L	L	Μ	L	Μ	S	М	М	М	М	М	S	М	М
S. Stunner M. Madhum, J. Law															

SYLLABUS

UNIT - I FUDAMENTAL OF BMS

Concept and application of Building Management System (BMS) and Automation, requirements and design considerations and its effect on functional efficiency of building automation system, architecture and components of BMS- Review and analysis of state- of –art in construction automation

UNIT-II OFF AND ON-SITE AUTOMATION IN CONSTRUCTION

Field sensors actuators- controllers- non-destructive evaluation- data acquisition- Off site automation in construction Information processing- Materials processing - Case study - Existing and prototype equipment for construction – case study

UNIT - III BUILDING AUTOMATION

Introduction to building automation systems – components– Heating, ventilation, and air Conditioning (HVAC)– Lighting – Electrical systems water supply and sanitary systems– Fire Safety – security -Communication and office automation system -Water pump monitoring & Control - Control of Computerized HVAC Systems

. UNIT - IV ROBOTICS IN CONSTRUCTION

Automation and robotic technologies for customized component, module and building Prefabrication- Elementary technologies and single – Task construction robots - Site automation robotic on site factories

UNIT - V DATA NETWORKING CONSTRUCTION AUTOMATION

Data networking– IBMS system and its components – Centralized control equipment's – substation and field controllers – Gamma building control – energy-efficient building and room automation.

BOOKS:

- 7. Javad Majrouhi Sardroud, (2011), "Automated Management of Construction Projects" LAP Lambert Academic Publishing.
- 8. Wang Shengwei, (2010), "Intelligent Buildings and Building Automation" Taylor & Francis Group.

- 5. Majrouhi Sardroud Javad, (2014), "Automation in Construction Management" Scholars' Press
- 6. HongleiXu and Xiangyu Wang, (2014), "Optimization and Control Methods in Industrial Engineering and Construction (Intelligent Systems, Control and Automation: Science and Engineering)" Springer.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Dr.D.S.Vijayan	Associate Professor - I	AVIT	vijayan@avit.ac.in			
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.i <u>n</u>			

			41	DVAN	ICFD	PRO	ІГСТ	I	Ca	tegory	L	Т	Р	C	redit
			MAN	AGE	MEN	Г СО	NCEI	PTS		CC	3	1	0		4
PREAMB	LE	1													
In this Adva include task	anced Pr analysi	oject N is, criti	Manage Ical pat	ement (h meth	Conce 10d, pl	pts, stu anning	idents g, proje	delve o ect tim	leeper elines,	into pro and ong	ject ma going n	nagemen 10nitoring	t conc g.	epts	
PREREQ	UISITE	C													
NIL															
COURSE	OBJE	CTIV	ES												
1	To study and understand the project life cycle and types of construction.														
2	To stu	dy the	role of	projec	et man	ageme	nt, ow	ners pe	erspect	ive.					
3	The st	udents	know	about	organi	zing fo	or proje	ect mai	nageme	ent.					
4	To exp	pose th	e stude	ents kn	owled	ge of la	abour 1	nateria	al and e	equipme	ent utili	zation.			
5	To Ac	quire t	he Kno	owledg	ge of C	ost Est	timatio	n							
COURSE	OUTC	OME	S												
On the suc	cessful	compl	etion	of the	course	e, stud	lents v	vill be	able t	0					
CO1. Reco	gnize an	d miti	gate th	e early	seeds	of fail	ure in	the pro	oject lif	fe cycle		Understar	nd and	App	y
CO2. Enga	ge and l	ead eff	ective	projec	t mana	igemer	nt team	is in yo	our			Apply			
CO3. Unde	rstand p	roject	manag	ement	design	, deve	lopme	nt, and	deplo	yment		Apply			
CO4. Use p	O4. Use project management tools, techniques, and skills Apply														
CO5. Unde	O5. Understand how to manage project cost, quality, and delivery							oly							
MAPPING	G WIT	H PRO	OGRA	MMI	E OU	ГСОМ	AES A	ND P	ROG	RAMN	IE SPI	ECIFIC			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PS	PS	PS
	101	102	105	101	100	100	107	100	107	1010	1011	1012	01	02	03
CO1	L	Μ	L	-	-	-	Μ	L	L	Μ	-	М	L	L	L
CO2	М	S	Μ	-	Μ	S	S	L	М	-	S	L	М	М	S
CO3	L	L	S	L	-	-	М	S	М	L	L	S	М	S	М
CO4	М	S	S	-	L	-	S	Μ	S	L	L	S	L	L	М
CO5	М	М	L	L	М	S	М	S	М	L	М	М	М	М	S

SYLLABUS

UNIT I THE OWNER'S PERSPECTIVE

Introduction - Project Life Cycle - Types of Construction - Selection of Professional Services - Construction Contractors - Financing of Constructed Facilities - Legal and Regulatory Requirements - Changing Environment of the Construction Industry - Role of Project Managers

UNIT II ORGANIZING FOR PROJECT MANAGEMENT

Project Management – modern trends - Strategic Planning - Effects of Project Risks on Organization - Organization of Project Participants -Traditional Designer-Constructor Sequence - Professional Construction Management - Owner-Builder Operation - Turnkey Operation - Leadership and Motivation for the Project Team

UNIT III DESIGN AND CONSTRUCTION PROCESS

Design and Construction as an Integrated System - Innovation and Technological Feasibility - Innovation and Economic Feasibility - Design Methodology - Functional Design - Construction Site Environment

UNIT – IV LABOUR, MATERIAL AND EQUIPMENT UTILIZATION

Historical Perspective - Labour Productivity - Factors Affecting Job-Site Productivity - Labour Relations in Construction - Problems in Collective Bargaining - Materials Management - Material Procurement and Delivery - Inventory Control - Tradeoffs of Costs in Materials Management. - Construction Equipment - Choiceof Equipment and Standard Production Rates - Construction Processes Queues and Resource Bottlenecks

UNIT V COST ESTIMATION

Costs Associated with Constructed Facilities - Approaches to Cost Estimation - Type of Construction Cost Estimates - Effects of Scale on Construction Cost - Unit Cost Method of Estimation - Methods for Allocation of Joint Costs - Historical Cost Data - Cost Indices - Applications of Cost Indices to Estimating - Estimate Based on Engineer's List of Quantities - Estimation of Operating Costs.

BOOKS:

1. Chris Hendrickson and Tung Au, Project Management for Construction – Fundamental Concepts for Owners, Engineers, Architects and Builders, Prentice Hall, Pittsburgh, 2000.

2. Chitkara, K.K. Construction Project Management: Planning, Scheduling and Control, Tata McGraw-Hill Publishing Company, New Delhi, 1998.

REFERENCES:

1. Frederick E. Gould, Construction Project Management, Wentworth Institute of Technology, Vary E. Joyce, Massachusetts Institute of Technology, 2000.

Choudhury, S, Project Management, Tata McGraw-Hill Publishing Company, New Delhi, 1988.
 George J.Ritz, Total Construction Project Management - McGraw-Hill Inc, 1994.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Ms.S.Ispara Xavier	Assistant Professor	AVIT	isparaxavier.civil@avit. ac.in			
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.ed			

			QUALITY AND SAF					N	Ca	tegory	L	Т	Р	C	redit
			C -	CON	STRUCTION					CC	3	0	0		3
PREAMBLE															
The student skilled to m	s will be anage b	e able t oth at	o gain work j	know place.	ledge a	ibout t	he imp	ortanc	e of qu	ıality an	d safet	y in const	ruction	n and [,]	will be
PREREQ	UISITE														
NIL															
COURSE	OBJE	CTIV	ES												
1	To understand the elements of quality planning and the implication.														
2	To bec	ome a	ware c	of objec	ctives a	and ad	vantag	e of qu	ality a	ssuranc	e and n	nanageme	ent.		
3	To stu	dy abo	ut safe	ety in c	onstru	ction.									
4	To stue	dy abo	ut vari	ous sa	fety op	eratio	ns in c	onstru	ction.						
5	To stu	dy ab	out ac	cident	s and	safety	meas	ures i	n cons	struction	n indus	stry.			
COURSE	OUTC	OME	S												
On the suc	cessful	compl	letion	of the	cours	e, stuc	lents v	will be	able	to					
CO1. Shoul	ld be exp	posed	to mea	ns of q	uality	in con	structi	on.				Understa	nd		
CO2. Shoul	ld be abl	e to le	arn ab	out qua	ality m	anage	ment.					Understa	nd		
CO3. Shoul	ld be abl	e to ta	ken sa	fety m	easure	s in co	nstruc	tion.				Understa	nd, Ap	ply	
CO4. The c	oncept o	of othe	r vario	ous ope	ration	s with	safety.					Understa	nd, Ap	ply	
CO5. Know	v about a	accider	nts & 1	neasur	es take	en in co	onstruc	ction.				Understa	nd , A	pply	
MAPPING	WITH	PRO	GRAN	IME (OUTC	OMES	S AND	PRO	GRAN	AME S	PECIF	IC OUT	COME	ËS	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PS	PS	PS
		T						~					01	O2	03
COI	L	L	L	-	L	L	-	8	L	-	м	M	IVI	L	L
CO2	L	L	М	-	М	L	-	S	L	-	М	L	Μ	М	М
CO3	М	М	Μ	L	М	L	Μ	Μ	Μ	-	L	М	М	S	S
CO4	S	М	S	М	М	Μ	М	Μ	М	М	L	S	S	М	S
CO5	S S M M M M M M S S M S														
S-Strong; N	/I-Medi	um; l	L-Lov	V								_1	L	ı I	

SYLLABUS

UNIT – I Construction Quality

Construction Quality, Inspection and Testing, Quality control, Quality Assurance, Quality Certification for companies and laboratories (ISO Certification, NABL certification)

UNIT – II Construction Quality Management

Total Quality Management, Critical factors of TQM, TQM in Projects, Benchmarking, concepts of quality policy, standards, manual - Needs Of QA/QC - Different Aspects of Quality-Appraisals, Factors Influencing Construction Quality-Critical, Standardization.

UNIT – III Construction Safety

Construction Safety-meaning and scope, Safety in construction- Roles of different groups in safety -Technological aspects, organizational aspects and behavioural aspects, Safety legislation and Standards, Contract conditions on safety in Civil Engineering projects.

UNIT – IV Safety in Various Construction Operations

Basic terminology in safety, safety pyramid- Safety in Construction: Causes, classification, cost and measurement of an accident, safety programme for construction, protective equipment, accident report, safety measure: (a)For storage and handling of building materials. (b) Construction of elements of a building (c) In demolition of buildings Safety lacuna in Indian scenario - National Building Code Provisions on construction safety, Construction safety manuals. Safety in Vehicles, Cranes, Tower Cranes, Wire Ropes, Pulley blocks, Mixers. SoPs (Safe Operating Procedures) – Construction equipment, materials handling-disposal & hand tools.

UNIT - V Accidents & Safety measures

Types of injuries, Factors affecting safety, Strategic Planning for safety provisions. Personal & Structural safety -Recording injuries and accident indices. Theories and principles of accident –frequency – rate – serviceability rate – incident rate – activity rate, first aid. Other hazards – fire, confined spaces, electrical safety. Method statement, SOPs, PPE, Inspections, Investigations. Site safety programmes - JSA, JHA, Root cause analysis, meetings, safety policy, manuals, training & orientation. Safety legislation regard to violation.

BOOKS:

1. John L. Ashford, The Management of Quality in Construction, E & F.N, Spon. New

York, 2009.

2. K.N.Vaid, Construction Safety Management, National Institute of Construction

Management and Research, 1988

3. J.B.Fullman, Construction Safety Security & Loss Prevention , John Wiley & Sons Inc

4. Linger.L, Modern Methods of Material Handling

5. Hinze, J.W. (1997) Construction Safety, Prentice Hall.

6.MacCollum, D.V. (1995) Construction Safety Planning, John Wiley & Sons 7.Bhattacharjee, S.K. (2011) Safety Management in Construction, Khanna Publishers **REFERENCES:**

1. David Gold Smith, "Safety Management in construction and Industry", Mc Graw Hill

2. K N Vaid, "Construction Safety Management", NICMAR, Bombay

3. D S Rajendra Prasad, "Quality Management System in Civil Engineering", Sapna Book

	House, Bangalore														
4.	4. "The Building and Other Construction Workers (Regulation of Employment and														
	Conditions of Service) Act, 1996, Universal Law Publishing Co. Pvt. Ltd.														
5.	5. James, J.O Brien, Construction Inspection Handbook - Quality Assurance and Quality														
	Control, Van Nostrand, New York, 1989. 11														
	-		1 -												
S.No	Name of the Faculty	Designation	Name of the	Mail ID											
			College												
1	VAIDEVI.C	Assistant	AVIT	Vaidevi.c@avit.ac.in											
		Professor – II													
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in											
		0	UANT	TITAT	IVE T	ECH	NIOU	ES IN	Ca	tegory	L	Т	Р	C	redit
-----------------------	-----------------------	---------------------	-----------------	----------------	-------------------	----------------	----------	----------	----------	-----------	--------	------------	---------	--------	----------
		č	ONST	RUCI	TION	MAN	AGEN	1ENT		CC	3	0	0		3
PREAMB	LE														
The student managemer	s will be it of ma	e able t terials	o gain and h	know uman r	ledge a esourc	about t es.	he imp	ortanc	ce of qu	lantitati	ve man	agement te	chniqu	es and	
PREREQ	UISITE	2													
NIL															
COURSE	OBJE	CTIV	ES												
1	To stu	udy ar	nd und	lerstar	nd the	opera	tion re	esearc	h, line	ar prog	gramm	ing.			
2	To stu	dy the	e role	of pro	ductio	on ma	nagen	nent.							
3	The st	tudent	s knov	w abo	ut fina	ncial	manag	gemer	nt and	capital	budge	eting.			
4	To ex	pose t	he stu	dents	know	ledge	of prie	cing t	echnic	ques.					
5	To ac	quire	the kr	nowled	lge of	mana	gerial	econo	omics.						
COURSE	OUTC	OME	S												
On the suc	cessful	compl	letion	of the	cours	e, stud	dents v	will be	e able	to					
CO1. Shoul	ld be exj	posed (to mea	ins of q	uantit	y comj	putatio	n in co	onstruc	ction.		Understa	nd		
CO2. Shoul	ld be abl	le to le	arn ab	out qua	antity 1	nanag	ement.					Understa	nd		
CO3. Shoul	ld be abl	le to ta	ken m	easure	s in co	nstruct	tion to	mana	ge reso	ources.		Understa	nd, Ap	ply	
CO4. The c	oncept	of othe	r vario	ous ope	ration	s with	constru	iction a	ctivitie	s and eve	ents.	Understa	nd, Ap	ply	
CO5. Know	about i	measu	res tak	en in q	uantity	accretio	on.					Understa	nd , Aj	pply	
MAPPING	WITH	PRO	GRAN	IME (OUTC	OMES	S AND	PRO	GRAN	AME S	PECIF	IC OUT	COME	ËS	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PS	PS	PS O2
CO1	L	L	L	-	L	L	-	S	L	-	М	М	M	L	L
CO2	L	L	М	-	М	L	-	S	L	-	М	L	М	М	М
CO3	М	М	М	L	М	L	М	М	М	-	L	М	М	S	S
CO4	S	М	S	М	М	М	М	М	М	М	L	S	S	M	S
CO5	S	S	S	М	S	М	М	М	М	М	S	S	S	M	S
S-Strong; N	/I-Medi	ium; l	L-Lov	v			<u> </u>		<u> </u>						

UNIT I OPERATIONS RESEARCH

Introduction to Operations Research - Linear Programming – Graphical and Simplex Methods, Duality and Post – Optimality Analysis – Transportation and Assignment Problems

UNIT II PRODUCTION MANAGEMENT

Inventory Control - EOQ - Quantity Discounts - Safety Stock – Replacement Theory – PERT and CPM – Simulation Models – Quality Control

UNIT III FINANCIAL MANAGEMENT

Working Capital Management – Compound Interest and Present Value methods – Discounted Cash Flow Techniques – Capital Budgeting

UNIT IV DECISION THEORY

Decision Theory – Decision Rules – Decision making under conditions of certainty, risk and uncertainty – Decision trees – Utility Theory

UNIT V MANAGERIAL ECONOMICS

Cost Concepts - Break-even analysis - Pricing Techniques - Game theory Applications.

BOOKS:

- 1. Vohra, N.D., Quantitative Techniques in Management, Tata McGraw-HillCompany Ltd, New Delhi, 1990.
- 2. Schroeder, R.G, Operations Management, McGraw Hill, USA, 1982.
- 3. Levin, R.I, Rubin, D.S., and Stinson J., Quantitative Approaches to Management, McGraw Hill Book Co., 1988.

- 1. Frank Harrison, E., The Managerial Decision Making Process, Houghton MifflinCo., Boston, 1975.
- 2. Hamdy A.Taha, Operations Research: An Introduction, Prentice Hall, 2002.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	VAIDEVI.C	Assistant Professor – II	AVIT	Vaidevi.c@avit.ac.in
2	Mr.M.Senthilkumar	Assistant Professor	Civil / VMKVEC	Senthilkumar@vmkvec.edu.in

					TV CO	NTD		ND	Ca	tegory	L		T	Р	Credit	
				QUALI A C	SSURA ONSTE	ANCE RUCT	IN ION			CC	3		0	0	3	
PREA	MBL	Æ													L	
To stu about	ıdy ab the qu	out qua ality im	lity man provem	nagemen nent tecl	nt, quali nniques	ity pla	nning	and it	s imp	roveme	nt te	chniqu	ies an	d to	study	
PREF	REQU	ISITE														
NIL																
COU	RSE ()BJEC	TIVES													
1		To stuc	ly and u	ındersta	nd the	quality	mana	ageme	nt, qua	ality pla	ın.					
2		To stuc	ly the ro	ole of q	uality sy	ystem	and p	reparii	ng qua	lity sys	tem	docun	nents.			
3		The stu	dents k	now ab	out qua	lity pla	anning	5								
4		To exp	ose the	student	s knowl	edge (of qua	lity as	suranc	e and c	contr	ol.				
5		To ac	quire th	e know	ledge of	f quali	ty im	proven	nent te	echniqu	es					
COU	RSE (OUTCO	OMES													
On the	e succe	essful co	ompleti	on of th	e course	e, stud	ents v	vill be	able t	0						
CO1.7 and be	Го Imp aware	lement of the d	quality s ifferent	ystems a aspects	nd stand	lards in of quali	n the pr ity.	reparat	ion of	docume	nts	τ	Jnders	tand a	and Apply	1
CO2. metho	To Ap ds in co	ply relevonstruction	vant cod ion indu	es and s stry to a	tandards ttain cus	s, code tomer	s of qu satisfa	ality, c ction i	luality n proje	policy, cts.		A	Apply			
CO3'	To und	lerstand	the elem	nents of	quality p	olannin	g and	the imp	olicatio	on		A	Apply			
CO4. '	To bec	ome aw	are of ot	ojectives	and adv	antage	e of qu	ality as	suranc	ce		A	Apply			
CO5. ⁷ on the	Fo clea way ai	arly Iden nd able t	tify and to take ea	solve pr arly dec	oblems isions to	relatin achiev	g to qu ve the u	ality ii ultimat	nprove e aim	ement of the		τ	Jnders	tand a	and Appl	у
organi	zation.	WITH	DDOC	'D A MIN		TCO	MES			DAM	ME (SDEC	IFIC		FCOME	C
	ring	WIII	rnue	TRAIVIN			VIES 1	AND .	rnue	JNAWI		SFEC	IFIC	00.		.
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P 0	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	L	S	L	L	М	L	L	L	L	М	M	М	L	L	L	L
CO2	L	L	S	М	L	S	S	L	М	L	S	S	S	S	S	S

CO3	L	S	L	L	L	М	Μ	М	Μ	L	S	S	М	S	М	L
CO4	L	S	L	S	L	L	S	М	L	L	S	S	L	S	М	М
CO5	L	L	Μ	М	М	S	S	L	М	Μ	М	Μ	М	S	S	L

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT - I QUALITY MANAGEMENT

Introduction – Definitions and objectives – Factor influencing construction quality -Responsibilities and authority - Quality plan - Quality Management Guidelines – Quality circles.

UNIT II QUALITY SYSTEMS

Introduction - Quality system standard – ISO 9000 family of standards – Requirements – Preparing Quality System Documents – Quality related training – Implementing a Quality system – Third party Certification.

UNIT III QUALITY PLANNING

Quality Policy, Objectives and methods in Construction industry - Consumers satisfaction, Ergonomics - Time of Completion - Statistical tolerance – Taguchi's conceptof quality – Codes and Standards – Documents – Contract and construction programming – Inspection procedures - Processes and products – Total QA / QC programme and cost implication.

UNIT IV QUALITY ASSURANCE AND CONTROL

Objectives - Regularity agent, owner, design, contract and construction oriented objectives, methods - Techniques and needs of QA/QC - Different aspects of quality - Appraisals, Factors influencing construction quality - Critical, major failure aspects and failure mode analysis, -Stability methods and tools, optimum design - Reliability testing, reliability coefficient and reliability prediction.

UNIT V QUALITY IMPROVEMENT TECHNIQUES

Selection of new materials - Influence of drawings, detailing, specification, standardization - Bid preparation - Construction activity, environmental safety, social and environmental factors - Natural causes and speed of construction - Life cycle costing -Value engineering and value analysis.

BOOKS:

- James, J.O' Brian, Construction Inspection Handbook Quality Assurance and Quality Control, Van Nostrand, New York, 1989. Clarkson H. Oglesby, Productivity Improvement in Construction, McGraw-Hill, 1989.
- 2. Kwaku, A., Tena, Jose, M. Guevara, Fundamentals of Construction Management and Organisation, Reston Publishing Co., Inc., Virginia, 1985.
- 3. Juran Frank, J.M. and Gryna, F.M. Quality Planning and Analysis, Tata McGraw Hill, 1993

- 1. Hutchins.G, ISO 9000, Viva Books, New Delhi, 2000
- 2. Clarkson H. Oglesby, Productivity Improvement in Construction, McGraw-Hill, 1989.

- 3. John L. Ashford, The Management of Quality in Construction, E & F.N.Spon, New York, 1989
- 4. Steven McCabe, Quality Improvement Techniques in Construction, AddisonWesley Longman Ltd, England. 1998

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs J.Srija	Assistant Professor - I	AVIT	srija.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

ELECTIVE COURSES

			CO	NTR	ОТ І	A WS)	Cat	tegory	L	Т	Р	Cr	edit
			CU.	REG	ULA'	ΓION	S	•	E	C-PS	3	0	0		3
PRE. To st	AMBL tudy con truction	E ntract contr	laws a acts is	and reg gaine	gulatio d	ns so	that a	dequat	te knov	wledge	on for	mulating	and n	nanag	çing
PRE	REQU	ISITE	1												
NIL															
COU	RSE C)BJE(CTIVE	ES											
1	To stu	dy the	e vario	ous typ	bes of	constr	uction	o conti	acts a	nd their	: legal	aspects a	and pr	ovisi	ons.
2	To sti	idy th	e tendo	ers its	form	ation	and la	hour r	eoulat	ions		*			
2	TOSE		1			1 1'	1	<u> </u>							
3	10 stu	idy the	e elem	ents o	or conc	ciuding	g, and	admi	nisterii	ng cont	racts.				
4	To ac	hieve	aware	ness o	n arbi	tratior	is and	legal	proced	lures.	_		_	_	_
5	To stu	ıdy lal	oour re	egulati	ions ar	nd the	ir imp	act on	mana	ging of	contra	acts.			
COU	RSE C	OUTC	OME	S											
On th	e succe	ssful o	comple	etion of	of the c	course	, stude	ents w	ill be	able to					
CO1.	To stu	dy and	l unde	rstand	the E	lemen	ts of C	Contra	cts.			Understa	nd		
CO2.	To stu	dy the	role o	of Con	tract F	Format	tion a	nd Inte	erpreta	tion.		Understa	nd		
CO3.	To lear	n abo	ut the	roles	of an a	arbitra	tor.					Apply			
CO4.	To inte	erpret	the stu	ıdent l	knowle	edge o	on Tax	Laws	5.			Apply			
CO5.	To acq	uire th	ne kno	wledg	e of L	abour	Regu	lation	s and			Understa	nd		
MAP	PING	WITI	n. H PR(OGRA	MMI	E OU'	ГСОМ	AES A	AND I	PROGI	RAMN	AE SPEC	CIFIC	1	
OUT		ES DOC	DO2		DOF	DOC	DO7	DOO	DOO		DOI		חם	DC	DC
COS	rUI	r02	rus	r04	ruj	rU0	rU/	rUð	r09	F010	rui	1 PO12	PS 01	P3 02	PS 03
CO1	М	-	L	-	L	L	-	-	М	S	М	L	-	М	М
CO2	М	L	L	-	L	L	-	-	М	S	М	L	-	М	М
CO3	М	М	-	-	М	-	-	М	L	М	М	L	L	L	L
CO4	L	М	М	-	S	S	L	М	-	L	М	М	М	L	М
CO5	L	М	М	-	S	S	L	S	-	L	М	М	М	L	М
S- Str	ong; M	-Med	ium;]	L-Lov	V										

UNIT – I CONSTRUCTION CONTRACTS

Definition of Contract - Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – Legal Issues in Contract – Standard Forms of Contracts- General and Special Conditions of Contracts - Project Management Consultants and the Contractor

UNIT – II TENDERS

Tendering Process - Tender Documents – Requirements for Tendering –Methods of Inviting Tenders-Evaluation of Tender from Technical, Financial Aspects– Contract Formation and Interpretation – Potential Contractual Problems – World Bank Procedures and Guidelines – Tamil Nadu Transparency in Tenders Act.

UNIT – III ARBITRATION

Earnest Money Deposit (EMD) – Security deposits - Arbitrator– Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence – Violations –

Certificates, Forms, Schedules

UNIT – IV LEGAL REQUIREMENTS

Insurance and Bonding – Types of Bonds – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Fine and Liquidated Damages – Insurance Income Tax – Sales Tax – VAT– Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval

UNIT - V LABOUR REGULATIONS

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations- Indian Contracts Act - Labour Laws - Minimum Wages Act – Child Labour Act- Industrial Dispute Act- Maternity Benefit Act – Workmen's Compensation Act – Indian Factory Act – Tamil Nadu Factory Act.

TEXT BOOKS:

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982.
- 2. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, McGraw Hill, 2000.
- 3. Sharma M.R., (2013), Fundamentals of Construction Planning & Management S.K. Kataria& Sons, New Delhi.

- 1. Kwaku, A., Tenah, P.E. Jose M.Guevara, P.E., Fundamentals of Construction Management and Organisation, Printice Hall, 1985.
- 2. Patil. B.S, Civil Engineering Contracts and Estimates, Universities Press (India) Private Limited, 2006.
- 3. Martin Brook (2016), Estimating and Tendering for Construction Work, 5th Edition, Routledge, Taylor & Francis.
- 4. Jimmie Hinze, (2013), Construction Contracts, 3rd Edition, McGraw Hill, New Delhi.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.R.Sanjay Kumar	Assistant Professor - I	AVIT	sanjay.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

SYSTEM INTEGRATION IN	Category	L	1	r	Credit
CONSTRUCTION	EC-PS	3	0	0	3

PREAMBLE

This course consolidates the fundamentals by taking a holistic approach to building technology in the design and construction of structures. The focus of the course is on understanding how systems interact with one another in the context of achieving high performance in various categories of major use. To illustrate the concept and practice, a case study approach will be used.

PREREQUISITE

NIL

COURSE OBJECTIVES															
1	To res mainte	search enance	the in e, and	tegrat safety	ion of syste	vario ms	us con	struct	ion sy	stems, e	enviroi	nmental f	factors	, serv	vices,
2	To co order	mpreh to ach	iend h	ow the high-	e vario	ous sy rmanc	stems e struc	that r	nake ı	ip a bui	lding	design a	re inte	rwov	en in
3	To co order	mpreh to ach	nend h nieve a	ow th high-	e vari perfoi	ous sy rmanc	ystems e struc	s that cture	make	up a bi	uilding	design	are int	egrat	ed in
4	Throu sustai	gh cas nable	se stud desigr	lies, ga 1	ain an	under	standi	ng of	buildi	ng syste	ems in	tegration	with a	a foc	us on
5	Throug sustain	h case able c	e studi onstru	es, ga ction	in an	unders	standi	ng of	buildiı	ng syste	ems int	egration	with a	a foc	us on
COL	DURSE OUTCOMES														
On th	n the successful completion of the course, students will be able to														
CO1)1. To understand various structural systems requirements in construction Understand														
after	complet	ting thi	s cour	se.											
CO2	To und	lerstan	d varic	us Env	vironm	iental f	factor	in con	struction	on after		Understa	nd		
comp	leting th	his cou	rse.	~							-				
comp	. To unc leting tl	lerstan his cou	d vari rse.	ous Se	rvice s	steps re	equirei	nents i	in cons	struction	after	Understa	nd		
CO4. after	. To unc complet	lerstan	d vari s cour	ous ma se.	aintena	ince st	eps rec	quirem	ents in	l constru	iction	Understa	nd		
CO5	. To uno	derstar	id vari	ous sa	fety st	eps ree	quirem	ents in	n const	truction		Understa	nd		
after	complet	ting thi	s cour	se.	~= .								~~~~		~
	MAPP	ING	WITH	I PRC	OGRA	MME		COM	IES A ES	ND PF	ROGR	AMME	SPEC	IFI(2
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PSO	PS	PS
													1	O2	03
CO1	CO1 L L M L S S L L M M L L L														
CO2	М	Μ	Μ	L	Μ	S	S	-	L	S	L	S	S	М	М
CO3	М	L	Μ	L	Μ	Μ	-	М	Μ	-	S	L	М	S	S

CO4	М	Μ	Μ	L	Μ	S	L	М	М	L	S	L	М	L	L
CO5	L	L	L	Μ	L	Μ	S	М	Μ	М	М	М	S	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT - I STRUCTURAL INTEGRATION

Structural System, Systems for enclosing Buildings, Functional aesthetic system, Materials, Selection and Specification.

UNIT-II ENVIRONMENTAL FACTORS

Qualities of enclosure necessary to maintain a specified level of interior environmental quality – weather resistance – Thermal infiltration – Acoustic Control – Transmission reduction – Air quality – illumination – Relevant systems integration with structural systems.

UNIT - III SERVICES

Plumbing – Electricity – Vertical circulation and their interaction – HVAC

UNIT - IV MAINTENANCE

Component longevity in terms of operation performance and resistance to deleterious forces - Planning systems for least maintenance materials and construction – access for maintenance – Feasibility for replacement of damaged components – equal life elemental design – maintenance free exposed and finished surfaces.

UNIT - V SAFETY

Ability of systems to protect fire – Preventive systems – fire escape system design – Planning for pollution free construction environmental – Hazard free Construction execution

BOOKS:

- 1. A.J.Elder and Martiz Vinden Barg, "Handbook of Building Enclosure",
 - McGraw-Hill Book Company, 1983.
- 2. David V.Chadderton, "Building Services Engineering", Taylar and Francis, 2007.

- 1. Jane Taylor and Gordin Cooke, "The Fire Precautions" Act in Practices, 1987.
- 2. Peter R. Smith and Warren G. Julian, "Building Services", Applied Science Publishers Ltd., London, 1993.
- 3. William T. Mayer, "Energy Economics and Building Design, McGraw-Hill Book Company, 1983.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.D.S.Vijayan	Associate Professor - I	AVIT	vijayan@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

								Ca	tegory	L	Т	P	•	Credit
	EN	ERGY	Y EFI	FICIE	NT B	UILD	INGS	EC	C-PS	3	0	0		3
PREAMBI	LE													
To study th space condi learn the us	e desig tioning e of ma	n of e and v terials	nergy ventila s with	efficion tion b low en	ent bu y prov mbodi	ildings viding ed ene	s whic a mix ergy.	h bala of pa	nces al ssive sc	l aspe blar de	cts of er esign stra	ergy, ategie	ligh s and	ting, 1 to
PREREQU	ISITE	1												
NIL														
COURSE	OBJE	CTIVI	ES											
1 To S	tudy ab	out th	e ener	gy rec	luirem	ent of	the bu	iilding	g constr	uction	l			
2 To S	udy ab	out th	e key	desigr	ı elem	ents fo	or ener	gy eff	ficient b	ouildin	igs			
3 To le	arn the	green	build	ings c	oncep	ts app	licable	to m	odern b	uilding	gs.			
4 Acqu create	aint stu e energ	udents y effic	with the second	he pri uildin	nciple gs.	theor	ies, m	aterial	s, and c	constru	uction te	chniq	ues a	and to
5 To le	arn ene	ergy ef	ficien	cy me	asures	on gr	ounds	of en	gineerir	ng and	econon	nic fe	asibi	lity.
COURSE	OUTC	OME	S											
On the succ	essful o	compl	etion of	of the	course	, stude	ents w	ill be	able to					
CO1. To uno	derstand	the co	oncept	effecti	ve util	izatior	n of ene	ergyin	buildin	g.	Unders	tand		
	rn abou	t energ	y effic	nency	throug	h land	scapin	3.			Unders	tand		
CO3. The le	arn the	metho	ds air i	egulat	10n 1n	buildin	igs				Unders	tand		
CO4. To lea	rn abou	it how	to deve	elop a l	heat tra	ansfer	mecha	nism ir	n buildir	ng	Apply			
CO5. To Introduce passive cool	tegrate f	the ren uilding	ewable	e energ	gy syst	ems in	the bu	ilding	s and		Apply			
MAPPING	WITI FS	H PRO	OGRA	MMI	E OU	ГСОМ	MES A	ND I	PROGI	RAMN	ME SPE	CIFI	C	
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	2 PS	PS	PS
C01 I	M	_	-	-	L	М	_	T.	_	I	<u> </u>	01 L	02	O3 -
	111				Ľ		Ţ							
CO2 M	M	L	-	L	-	Μ	L	М	L	L	L	-	L	-
CO3 L	L	Μ	-	Μ	Μ	S	-	-	L	L	S	М	L	L
CO4 S	-	М	М	S	М	S	-	М	М	М	S	М	М	М
CO5 S	-	М	М	М	М	S	-	М	-	М	S	M	М	М
S- Strong; N	I-Med	ium;]	L-Lov	V								_1	1	

UNIT I INTRODUCTION

Conventional versus Energy Efficient buildings – Historical perspective - Water – Energy – IAQ requirement analysis – Energy required for building construction - Heat Transfer Future building design aspects.

UNIT II LANDSCAPE AND BUILDING ENVELOPES

Energy efficient Landscape design - Micro-climates – various methods –Building materials, Envelope heat loss and heat gain and its evaluation, paints, Insulation, Design methods and tools - Air Filtration and odor removal –Heat Recovery in large buildings

UNIT III HEATING, VENTILATION AND AIR CONDITIONING

Natural Ventilation, Passive cooling and heating - Application of wind, water and earth for cooling, evaporative cooling, radiant cooling – Hybrid Methods – Energy Conservation measures, Thermal Storage integration in buildings.

UNIT IV HEAT TRANSMISSION IN BUILDINGS

Surface co-efficient: air cavity, internal and external surfaces, overall thermal transmittance, wall and windows; Heat transfer due to ventilation/infiltration, internal heat transfer; Sol-air temperature; Decrement factor; Phase lag. Design of day lighting; Computer packages for carrying out thermal design of buildings and predicting performance.

UNIT V PASSIVE COOLING & RENEWABLE ENERGY IN BUILDINGS

Passive cooling concepts: Evaporative cooling, radiative cooling; Application of wind, water and earth for cooling; Shading, paints and cavity walls for cooling; Roof radiation traps; Earth air tunnel. Introduction of renewable sources in buildings, solar water heating, small wind turbines, stand-alone PV systems, Hybrid system – Economics.

TEXT BOOKS:

- 1. Krieder J. and Rabi A., "Heating and Cooling of buildings : Design for Efficiency", Mc Graw Hill, 1994.
- 2. Ursala Eicker, "Solar Technologies for buildings", Wiley publications, 2003.
- 3. Moore, F., "Environmental Control System", McGraw Hill Inc. 2002

- 1. Brown, G.Z. and DeKay, M., "Sun, Wind and Light Architectural Design Strategies", John Wiley and Sons Inc, 2001.
- 2. Chilogioji, M.H., and Oura, E.N., "Energy Conservation in Commercial and Residential Buildings" Marcel Dekker Inc., New York and Basel, 2005.
- 3. Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com)
- 4. Energy Conservation Building Code, Bureau of Energy Efficiency", New Delhi, 2007.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	R,SANJAY KUMAR	ASSISTANT PROFESSOR - I	AVIT,VMRF	sanjay.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

CONSTRUCTION ECONOMICS Category L T P Credit													
AND FINANCE MANAGEMENT	_	EC-P	S	3	0	0		3					
PREAMBLE:													
For any construction project to be successful, it must be tech	hnical	lly sour	nd and t	he resi	ılting	bene	efits m	ust					
exceed the cost associated with the project. This course "Con	struct	tion Ec	onomic	s and F	inanc	e" ba	asicall	y aims					
at describing various aspects of engineering economics. The	field	of cons	truction	econo	mics	and f	finance	deals					
with the systematic evaluation of cost and benefit associated	with	differe	nt proje	cts. Th	e topi	cs in	this co	ourse					
cover principles of engineering economy followed by basic	meth	ods for	carryin	g out e	conor	mic s	studies						
considering the time value of money. The other topics includ	le the	demon	stration	of diff	erent	meth	nods na	mely					
present, future and annual worth method, rate of return, breal	k-eve	n comp	arison,	capital	ized-o	cost a	and co	st-					
benefit analysis for the comparison of alternatives													
PREREQUISITE: NIL													
COURSE OBJECTIVES:													
To study and understand the role of civil engineering industr	ial de	evelopn	nent										
To study the role of construction economics and transport en	nergy.												
The students know about financing instruments													
To Expose the students knowledge of Cash basis of a account	nting												
To acquire the knowledge of Loans to Contractors													
COURSE OUTCOMES:													
After successful completion of the course, students will be al	ble to												
CO1: Understand the concept of Economy related to Enginee	ering				U	Jnde	rstand						
CO2: Practice the Construction development in Housing, tran	nspor	t energ	y and ot	her	A	Apply	у						
Infrastructures	inanc	ing dec	ision		Δ	nals	veina						
CO4: Assess the Accounting for tax reporting purposes and f	financ	vial reno	orting n	urnose	Σ Δ	naly	rsing						
COT. Assess the Accounting for tax reporting purposes and f		nai repo	nting p	urpose	, <u>r</u>	Inde	rstand						
CO5: Understand the Interim construction financing						mac	istanu						
MAPPING WITH PROGRAMME OUTCOMES	AND	PROG	RAMN	AE SP	ECIF	IC (JUTC	OMES					
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 I	PO9	PO10	PO11	PO12	PS0	D1	PSO2	PSO3					
CO1 M M L L L	L	М	L	М	-		-	L					
CO2 M M L - L L - L	М	М	-	L	-		-	-					
CO3 L S L S S L	-	L	-	L	Μ	[М	-					
CO4 L M S L M - L -	L	М	L	Μ	-		М	-					
CO5 L L M - L M S S	М	L	L	М	L	,	-	М					
S- Strong; M-Medium; L-Low					•								

UNIT I ECONOMICS:

Role of Civil Engineering in Industrial Development – Advances in Civil Engineering - Engineering Economics – Support Matters of Economy related to Engineering – Market demand and supply – Choice of Technology – Quality Audit in economic law of returns governing production.

UNIT II CONSTRUCTION ECONOMICS -Construction development in Housing, transport energy and other infrastructures – Economics of ecology, environment, energy resources – Local material selection – Form and functional designs – Construction workers – Urban Problems – Poverty – Migration – Unemployment – Pollution.

UNIT III FINANCING The need for financial management - Types of financing – Financing instruments– short term borrowing – Long term borrowing – Leasing – Equity financing – Internal generation of funds – External commercial borrowings – Assistance from government budgeting support and international finance corporations – Analysis of financial statements – Balance Sheet - Profit and Loss account – Cash flow and Fund flow analysis – Ratio analysis – Investment and financing decision – Financial Control - centralized management

UNIT IV ACCOUNTING METHOD -General Overview – Cash basis of a accounting – Accrual basis of accounting – Percentage completion method – Completed contract method – Accounting for tax reporting purposes and financial reporting purposes – Accounting Standards.

UNIT V LENDING TO CONTRACTORS Loans to Contractors – Interim construction financing – Security and risk aspects.

TEXT BOOKS:

1. Prasanna Chandra, Project Selection, Planning, Analysis, Implementation and Review, Tata McGraw Hill Publishing Company, 1995.

2. Halpin, D.W., Financial and Cost Concepts for Construction Management, John Wiley & Sons, New York, 1985.

REFERENCES:

1. Warneer Z Hirsch, Urban Economics, Macmillan, New York, 1993.

2. Kwaku A, Tenah and Jose M.Guevara, Fundamental of Construction

3. Management and Organisation, Prentice - Hall of India, 1995.

4. Madura, J and Veit, E.T., Introduction to Financial Management, West Publishing Co., St. Paul, 1988.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.R.Abirami	Asst.Professor	AVIT/Civil	Abirami.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in
	·		•	·

									Cat	tegory	L	Т	Р	С	redit
CON	NSTRU	CTIO	N PEF	RSONI	NEL N	IANA	GEMI	ENT	EC	C-PS	3	0	0		3
PRE	AMBL	E										1 1			
To st	udy and	1 exec	ute th	e impo	ortance	e of ev	vents a	and ac	tivities	s manag	gemen	t in const	ructio	n	
proje	ets										-				
PRE	REQU			11:-		Canta	-1								
Const	ruction	Planni	ng, Sci		ng and	Contro	01								
COU	RSE C)BJE(CTIVI	ES											
1	To stud	y the	variou	s aspe	$\frac{\text{cts of}}{1}$	manpo	ower r	nanage	ement.						
2	To stud	y the	man p	ower]	olannii	ng mar	nageme	ent							
3	To stud	y the	variou	s aspe		organi	zation	manag	gement						
4	To stud	y the I	uman wolfor	e and o	levelor	magem	metho	de in a	onetru	ction					
COU	RSE (OME	C and C		Jincint	metho		,onsu u						
	KOL V			20											
On th	e succe	essful o	compl	etion of	of the	course	e, stud	ents w	ill be	able to					
CO1. k	now va	rious p	rocess	es in n	nanpov	verpla	nning					Understa	nd and	, App	oly
CO2. h	andle o	rganiz	ational	and v	velfare	meas	ures.					Apply			
CO3. t	ackle pr	oblem	s in ex	ecution	1.							Apply			
CO4. f	ind the	oute to	o comp	olete th	e targe	et whe	n diffio	culties	arise.			Apply			
CO5. t	o know	the val	lue of 1	manua	l powe	r						Understa	nd and	App	ly
MAP ES	PPING	WITH	PRO	GRAN	AME	DUTC	COME	SANI	OPRO	GRAM	IMES	PECIFIC	COUI	CO	M
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PS	PS	PS
													01	O2	03
CO1	L	М	L	-	S	S	S	L	L	М	М	М	L	L	L
CO2	L	L	S	-	S	S	S	L	М	М	S	L	М	М	S
CO3	М	L	S	L	L	-	М	М	М	L	L	S	М	S	М
CO4	Μ	L	S	L	L	-	S	М	S	L	L	S	L	L	Μ
CO5	М	М	М	М	М	S	М	М	М	L	М	М	М	М	S
S-Stro	ng;M-l	Mediu	ım;L-	Low											

UNIT I MANPOWER PLANNING

Manpower Planning process, Organising, Staffing, directing, and controlling – Estimation, manpower requirement – Factors influencing supply and demand of human resources – Role of HR manager – Personnel Principles.

UNIT II ORGANISATION

Requirement of Organisation – Organisation structure – Organisation Hierarchical charts – Staffing

Plan - Development and Operation of human resources - Managerial Staffing – Recruitment – Selection strategies – Placement and Training.

UNIT III HUMAN RELATIONS AND ORGANISATIONAL BEHAVIOUR

Basic individual psychology – Approaches to job design and job redesign – Self managing work teams – Intergroup – Conflict in organizations – Leadership-Engineer as Manager – al aspects of decision making – Significance of human relation and organizational – Individual in organization – Motivation – Personality and creativity – Group dynamics, Team working – Communication and negotiation skills.

UNIT IV WELFARE MEASURES

 $Compensation-Safety \ and \ health-GPF-EPF-Group \ Insurance-Housing \ - \ Pension-Laws \ related to \ welfare \ measures.$

UNIT V MANAGEMENT AND DEVELOPMENT METHODS

Wages and Salary, Employee benefits, Employee appraisal and assessment – Employee services-Safety and Health Management – Special Human resource problems – Productivity in human resources – Innovative approach to designing and managing organization – Managing New Technologies – Total Quality Management – Concept of quality of work life – Levels of change in the organizational Development – Requirements of organizational Development – System design and methods for automation and management of operations – Developing policies, practices and establishing process pattern – Competency upgradation and their assessment – New methods of training and development – Performance Management.

- Charles D Pringle, Justin Gooderi Longenecter, Management, CE Merril Publishing Co. 1981.
- 2. Dwivedi R.S, Human Relations and Organisational Behaviour, Macmillian India Ltd.,2005.
- 3. Josy.J. Familaro, Handbook of Human Resources Administration, McGraw-Hill International Edition, 1987.
- 4. Memoria, C.B., Personnel Management, Himalaya Publishing Co., 1997.
- 5. Carleton Counter II and Jill Justice Coutler, The Complete Standard Handbook of Construction Personnel Management, Prentice-Hall, Inc., 1989.

S.No	NameoftheFaculty	Designation	Name of the College	MailID
1	Mrs.P.Subathra	Assistant Professor - II	AVIT	subathra@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

			BI	ISINFS	S FCC	NOM	IICS		C	ategor V	L	T		Р	Credit	
			I	FINAN	CE MA	NAG	EME	NT	E	C-PS	3	0		0	3	
PREA	MBL	E													1	
To stu on the	ıdy ab ir cash	out the	constru	ction ec inting	conomic	es and	its rol	e and	to exp	oosure o	on fii	nancia	l instr	ume	ntation	
PREF	REQU	ISITE														
NIL																
COU	RSE ()BJEC	TIVES													
1		To stuc	ly and u	Indersta	nd the	role of	f civil	engin	eering	industr	ial d	evelop	oment	•		
2		To stuc	ly the ro	ole of co	onstruct	ion ec	onom	ics and	d trans	sport en	ergy					
3		The stu	idents k	now ab	out fina	ncing	instru	ments	•							
4		To Exp	ose the	student	s know	ledge	of Cas	sh bas	is of a	accoun	ting.					
5		To ac	quire th	e know	ledge of	f Loan	s to C	ontrac	ctors							
COU	RSE (OUTCO	OMES													
On the	e succe	essful c	ompleti	on of th	e course	e, stud	ents w	vill be	able t	0						
CO1.7	To Eva	luate th	e econor	nic theo	ries, cos	t conce	epts an	d prici	ng pol	icies		Un	derstar	nd an	d Apply	
CO2.	To stu	dy the e	lements	of const	ruction	econon	nics	6		• .1		Ap	ply			
CO3*	l'o stuc	ly the ne	ed for fi	nancial	manage	ment a	ind me	ans of	achiev	ing the s	same	· Ap	ply			
CO4.	To stuc	ly a few	account	ing met	hods							Ap	ply			
CO5.	To stuc	ly the el	ements	of lendir	ng to the	contra	ctors					Un	derstar	nd an	d Apply	
MAP	PING	WITH	PROG	GRAMN	ME OU	TCO	MES	AND	PROC	GRAM	ME	SPEC	IFIC	OU'	ГСОМЕ	S
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	Р	РО	PS	PS	PS	PS
											0 11	12	01	02	03	O4
CO1	L	S	L	L	L	L	L	L	L	М	L	М	М	L	S	L
CO2	S	М	М	S	L	L	S	S	М	М	S	S	М	S	S	L
CO3	L	L	L	L	-	М	S	S	S	L	S	S	М	S	S	М
CO4	L	S	S	М	L	М	М	М	L	L	S	S	L	S	S	М

	CO5	L	М	М	М	S	S	S	L	М	S	М	М	L	S	S	L
--	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I ECONOMICS

Role of Civil Engineering in Industrial Development – Advances in Civil Engineering - Engineering Economics – Support Matters of Economy related to Engineering – Market demand and supply – Choice of Technology – Quality Audit in economic law of returns governing production.

UNIT II CONSTRUCTION ECONOMICS

Construction development in Housing, transport energy and other infrastructures –Economics of ecology, environment, energy resources – Local material selection –Form and functional designs – Construction workers – Urban Problems – Poverty –Migration – Unemployment – Pollution.

UNIT III FINANCING

The need for financial management - Types of financing – Financing instruments–short term borrowing – Long term borrowing – Leasing – Equity financing – Internal generation of funds – External commercial borrowings – Assistance from government budgeting support and international financecorporations – Analysis of financial statements – Balance Sheet - Profit and Loss account – Cash flow and Fund flow analysis – Ratio analysis – Investment and financing decision – Financial Control - centralized management.

UNIT IV ACCOUNTING METHOD

General Overview – Cash basis of a accounting – Accrual basis of accounting –Percentage completion method – Completed contract method – Accounting for tax reporting purposes and financial reporting purposes – Accounting Standards

UNIT V LENDING TO CONTRACTORS

Loans to Contractors – Interim construction financing – Security and risk aspects.

BOOKS:

- 1. Prasanna Chandra, Project Selection, Planning, Analysis, Implementation and Review, Tata McGraw Hill Publishing Company, 1995.
- 2. Halpin, D.W., Financial and Cost Concepts for Construction Management, John Wiley & Sons, New York, 1985.

- 1. Warneer Z Hirsch, Urban Economics, Macmillan, New York, 1993.
- 2. Kwaku A, Tenah and Jose M.Guevara, Fundamental of Construction
- 3. Management and Organisation, Prentice Hall of India, 1995.
- 4. Madura, J and Veit, E.T., Introduction to Financial Management, West Publishing Co., St. Paul, 1988

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs J.Srija	Assistant Professor – I	AVIT	srija.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

		Category	L	Т	Р	Credit
RI	ESOURCE MANAGEMENT AND					
0	CONTROL IN CONSTRUCTION	EC-PS	3	0	0	3

PREAMBLE

To study about various aspects of Resource Management and Control in Construction and to aply the techniques of recourse allocation.

PREREQUISITE

NIL

COURSEOBJECTIVES	

1	To stuc	ly and	under	stand	the re	source	e plan	ning a	nd typ	bes of re	esource	s.			
2	To stuc	ly the	role o	f labo	ur ma	nagem	nent ar	nd labo	our sc	hedule.					
3	The stu	dents	know	about	mater	rials a	nd equ	lipme	nt.						
4	To exp	ose th	e stud	ents k	nowle	dge of	f time	mana	gemer	nt.					
5	To acq	uire th	e kno	wledg	e of re	esourc	e allo	cation	and le	eveling					
COU	IRSEO	UTCO	OMES	5											
On th	ne succe	essful	compl	etion	of the	cours	e, stuc	lents v	vill be	able to					
C01.	To be v	well ve	rsed in	resou	rce pla	nning	and m	anager	nent ir	n constru	iction	Understa	ndand	Appl	у
CO2. const	To clear ruction.	arly un	derstar	nd the l	labour	costs a	and scł	nedule	in			Apply			
CO3.	. To be v	well ve	ersed to	o mana	ge the	materi	ials at a	site				Apply			
CO4.	. To den	nonstra	ate the	time n	nanage	ment f	for all l	kind of	projec	ets.		Apply			
CO5. chang	. To inco ges in pr	orporat oject o	te the r bjectiv	ealitie ves and	s of co l to tra	nstruc ck reso	tion sit	e and i itilizat	respon ion.	d to		Understa	nd and	Арр	ly
MAI	PPING	WIT	H PR	OGRA	AMM	E OU	TCO	MES	AND	PROG	RAM	AE SPE	CIFI	2	
OUT	COMI	ES													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	PS	PS O2
CO1	м	М	т	м	S	S	G	м	т	м	м	м		- 02 L	03 L
COI	IVI	141	L	IVI	3	3	3	IVI	L	IVI	IVI	IVI	Ľ	Ľ	Ľ
CO2	М	L	S	М	S	М	М	L	М	М	S	L	М	М	S
CO3	М	М	S	L	L	М	М	М	М	L	L	S	М	S	М

CO4	L	L	S	L	L	-	S	М	Μ	L	L	М	L	L	М
CO5	М	М	М	М	М	S	М	М	Μ	L	М	М	М	М	S

S-Strong;M-Medium;L-Low

SYLLABUS

UNIT – I RESOURCE PLANNING

Resource Planning, Procurement, Identification, Personnel, Planning for material, Labour, time schedule and cost control, Types of resources, manpower, Equipment, Material, Money, Time.

UNIT – II LABOUR MANAGEMENT

Systems approach, Characteristics of resources, Utilization, measurement of actual resources required, Tools for measurement of resources, Labour, Classes of Labour, Cost of Labour, Labour schedule, optimum use Labour

UNIT – III MATERIALS AND EQUIPMENT

Material: Time of purchase, quantity of material, sources, Transportation, Delivery and Distribution, Planning and selecting by optimistic choice with respect to cost, Time, Source and handling

UNIT – IV TIME MANAGEMENT

Personnel time, Management and planning, managing time on the project, forecasting the future, Critical path measuring the changes and their effects - Cash flow and cost control

UNIT- V RESOURCE ALLOCATION AND LEVELLING

Time-cost trade off, Computer application - resource leveling, resource list, resource allocation, Resource loading, Cumulative cost - Value Management

BOOKS:

- 1 Andrew, D., Szilagg, Hand Book of Engineering Management, 1982.
- 2. James.A., Adrain, Quantitative Methods in Construction Management, American Elsevier Publishing Co., Inc., 1973.

- 1. Harvey, A., Levine, Project Management using Micro Computers, Obsorne
- 2. Glenn .A, Sea's and Reichard, Clough .H, "Construction Project Management", John Wiley and Sons, Inc, 2009.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.S.Monisha	Assistant Professor - I	AVIT	monisha.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

			1	PROT	FCT	SAFF	TV		Cat	tegory	L	T	P	Cr	edit
				MAN	NAGE	MEN	Т		E	C-PS	3	0	0	3	
PRE	AMBL	E													
PRE	REQUI	SITE	1												
NIL	NIL														
COURSEOBJECTIVES															
1 To study and understand the construction accidents and cost of construction															
2	injuries. 2 To study the role of safety programmes and elements of effective safety														
2	progra	mme.	1	- 1 4	Testere		-1 D		6	1					
3	I ne stu	dents	KNOW	about	Interi	nation	al Pra	ctice c	or appi	raisai					
4	To Exp	ose th	e stud	lents k	nowle	edge o	f desig	gn for	safety	·					
5	5 To acquire the knowledge of owners' and designers' outlook.														
COU	COURSEOUTCOMES														
On th	e succe	ssful o	compl	etion (of the	course	e, stud	ents w	ill be	able to					
CO1.	To unde	erstand	l the co	onstruc	tion ac	ccident	ts and]	Legal l	Implica	ations.		Understa	and and	d App	oly
CO2.	To clear	rly exp	olain th	ie Elen	nents o	of an E	ffectiv	e Safe	ty Prog	gramme		Apply			
CO3.	To elab	orate t	he con	cept of	n Safet	ty in C	onstru	ction C	Contrac	ets.		Apply			
CO4.	To clea	arly e	xplain	the O	wners	respo	nsibilit	ty and	safety	and ro	ole of	Apply			
CO5.	To unde	erstanc	lg sale	iy afety P	rocedu	ires an	d Wor	kers C	ompen	sation		Undonete	nd on	1 4 m	nlu
MAP	PING	WI	TH I	PROG	RAM	ME	OUT	COM	ES .	AND	PRO	GRAMN	IE S	а Ар БРЕ(CIFIC
OUT	COME	S	DOC	DO (DO T	DOC	DOF	DOO	DOC	DO10	DO 1		DC	D 2	DC
COs	POI	PO2	PO3	PO4	PO5	PO6	PO'/	PO8	PO9	PO10	POL	PO12	PS 01	PS 02	PS O3
CO1	М	М	L	М	S	S	S	L	L	М	М	М	L	L	М
CO2	М	L	S	-	S	S	S	L	М	М	S	L	М	М	S
CO3	М	S	S	L	L	L	М	М	М	М	L	М	М	s	М
CO4	М	L	S	М	L	-	S	М	S	L	L	S	L	L	М
CO5	М	М	М	М	М	S	S	М	М	L	М	М	Μ	М	S
S-Stro	S-Strong;M-Medium;L-Low														

UNIT – I CONSTRUCTION ACCIDENTS

Accidents and their causes – Human factors in construction safety – costs of construction injuriesoccupational and safety hazard assessment- legal implications

UNIT – II SAFETY PROGRAMMES

Problem areas in construction safety- Elements of an Effective Safety Programme-Job –Site safety assessment- Safety Meetings- Safety Incentives

UNIT - III CONTRACTUAL OBLIGATIONS

Safety in construction contracts- Substance Abuse- Safety record keeping

UNIT – IV DESIGNING FOR SAFETY

Forklifts Safety Culture – Safe Workers – Safety and First Line Supervisors – Safety and Middle Managers – Top Management Practices, Company Activities and Safety – Safety Personnel – Sub contractual Obligation – Project Coordination and Safety Procedures – Workers Compensation

UNIT- V OWNERS' AND DESIGNERS' OUTLOOK

Study of various case studies.

BOOKS:

 Jimmy W. Hinze, Construction Safety, Prentice Hall Inc., 1997.
Richard J. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and Health Management, Prentice Hall Inc., 2001.

REFERENCES:

1. Tamilnadu Factory Act, Department of Inspectorate of factories, Tamil nadu.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.S.Monisha	Assistant Professor - I	AVIT	monisha.civil@avit.ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

			N			NCE			Ca	tegory	L	Т	Р	С	redit
			RF	AIN I EHAB STI	ENA ILITA RUCT	NCE A ATIO TURES	and N OF S		E	C-PS	3	0	0		3
PRE	AMBL	E											1		
To st	udy the	dama	ages, I	repair	and re	ehabil	itation	of str	ucture	es					
PRE	PREREQUISITE														
NIL															
COU	COURSE OBJECTIVES														
1	1 To study and understand the maintenance repair and rehabilitation.														
2	To study the role of serviceability and durability of concrete														
3	The students know about materials and techniques for repair.														
4	To Expose the students knowledge of repair to structures.														
5	5 To acquire the knowledge of demolition of structures.														
COU	COURSE OUTCOMES														
On th	e succe	ssful	compl	etion of	of the	course	, stud	ents w	vill be	able to					
CO1.	Describ	be vari	ous ph	ases of	maint	enance	e and b	e able	to eva	luate	τ	Understa	nd		
CO2.	Analyz	e the in	nfluenc	e of di	fferen	t envir	onmen	ital ele	ments,	, fire and	ι τ	Indersta	nd and	apply	v
pollut CO3.	tion on b Identify	uildin y and d	gs. lescrib	e mate	rial us	ed in re	epair w	vork.						uppi.	,
CO4.	Descrit	be vari	ous pro	ocedur	es and	techni	ques in	streng	gthenir	ng measi	ures U	Understar Understar	nd and nd and	apply apply	y y
CO5.	Explair	n demo	lition t	echnic	jues fo	r exist	ing bui	ildings	;		τ	Indersta	nd and	app	lv
MAI	PING	WITI	H PR	OGRA	MM	E OU	TCON	MES	AND	PROG	RAMM	E SPE	CIFIC	• F F ·	5
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	PS	PS
CO1	М	M	L	-	S	L	S	L	М	-	М	М		02 L	<u>U3</u> L
CO2	L	L	-	М	-	-	М	L	М	-	S	L	М	L	S
CO3	M	L	-	L	-	-	-	-	М	-	L	S	L	S	М
CO4	S	L	S		м				S	L					M
COT	М	- E	M		141				N	т.				T	T
05	IVI	5	IVI	-	IVI	-	-	-	IVI	L	IVI	IVI	6	L	L

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance, repair and rehabilitation, Facets of Maintenance, importance of Maintenance various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration-

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

Quality assurance for concrete construction concrete properties- strength, permeability, thermal properties and cracking. - Effects due to climate, temperature, chemicals, corrosion - design and construction errors - Effects of cover thickness and cracking- Impact of Pollution on Buildings.

UNIT III MATERIALS AND TECHNIQUES FOR REPAIR

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement and polymers coating for rebars loadings from concrete, mortar and dry pack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels and cathodic protection.

UNIT IV REPAIRS TO STRUCTURES

Strengthening Measures - Repair of structures distressed due to earthquake – Strengthening using FRP Strengthening and stabilization techniques for repair.

UNIT V DEMOLITION OF STRUCTURES

Planning, Precautions and Protective Measures In Demolition Work-Sequence Of Operations Demolition Of Structural Elements. Engineered Demolition techniques for dilapidated structures - Case studies. **BOOKS:**

Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical UK, 1991.

Allen R.T and Edwards S.C, "Repair of Concrete Structures", Blakie and Sons, UK, 1987. **REFERENCES:**

M.S. Shetty, "Concrete Technology - Theory and Practice ", S. Chand and Company, New Delhi, 6th Edition, 2005.

N.Palaniappan, "Estate Management, Anna Institute of Management ", Chennai, 1992.

Lakshmipathy, Metal Lecture notes of Workshop on "Repairs and Rehabilitation of Structures", 29 - 30th October 1999.

Raikar, R.N., "Learning from failures - Deficiencies in Design, Construction and Service" - R&D Centre (SDCPL), Raikar Bhavan, Bombay, 1987.

Santhakumar A.R., "Concrete Technology" Oxford University Press, Printed in India by Radha Press, New Delhi, 2007.

Peter H.Emmons, "Concrete Repair and Maintenance Illustrated", Galgotia Publications pvt. Ltd., 2001.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.S.Ispara Xavier	Assistant Professor	AVIT	isparaxavier.civil@avit. ac.in
2	Mr.C.Kathirvel	Associate Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

OPEN ELECTIVES ON EMERGING AREAS

		M M	ETA ANU	L AD FAC'	DITI TURI	VE NG	(Catego	ory	L		Т		Р	Cr	edit
								OEl	EA	3		0		0		3
Prereq	uisite	:-Ni	il													
Course	Obje	ectiv	ve													
1	Un	der	stand	the ba	asic p	rincipl	es, m	ethod	s, are	eas of	usage	, poss	ibiliti	es and	1.	
	lım	itat	10NS 8	and th	e envi	ironme	ental	effect	s of t	he me	tal ad	ditive	manı	ifactu	rıng	
2	Sel sou	ect Ind	suital mech	ble ma anica	aterial l prop	s for d erties	level	opmer	nt of j	parts u	sing	additiv	ve ma	nufac	turing	; with
3	Sel	ect	suital	ble pr	ocesse	es fron	n vari	ious n	netal	additiv	ve ma	nufac	turing	g proc	esses	as
-	per	per the product requirement														
4	De ^r tec	Develop and select suitable parameter for manufacturing and post processing techniques for metal additive manufacturing parts														
5	De	Design the parts for metal additive manufacturing														
Course	Outo	com	es: O	n the	succ	essful	comj	pletio	n of t	the co	urse,	stude	nts w	vill be	able	to
	Unde	erst	and th	ne bas	ic pri	nciples	s, app	licatio	ons a	nd lim	itatio	ns me	tal	Ur	ndersta	and
CO1.	addit	ive	manı	ufactu	ring s	ystem	· 11									
	Unde	ersta	and h	ow to	select	suital	ole m	ateria	ls fro	m the	exist	ing or		Ur	nderst	and
CO2.	devel	lop	new	mater	ials fo	r addit	tive r	nanufa	actur	ing		0				
CO3.	Unde	erst	and the	ne wo	rking	princi	ple of	f vario	ous m	ethod	s in N	IAM a	and	Unc	dersta	nd
	their	app		1000000000000000000000000000000000000			1									
CO4.	Prod post	uce pro	a del cessii	fect fr	ee MA hniqu	AM pa es	rts w	ith su	itable	mate	rial se	electio	n and	Ap	oly	
CO5.	Unde	erst	and th	ne des	ign a	nd opt	imiza	ation t	echn	iques t	to de	sign a	nd	Aŗ	oply	
	deve	lop	parts	using	g MAI	M tech	nique	es								
Mappi	ng wi	th I	Progr	amm	e Out	comes	and	Prog	ramı	ne Sp	ecific	Outc	omes	5		
CO	PO	D 1	PO	PO	PO	PO	PO	PO	PO	PO	PO 1	PO 1	PO 1	PS O	PS O	PS O
CO1	М	[-	-	-	М	-	М	-	-	-	-	L	L	_	-
CO2	M	[-	-	-	М	-	М	-	-	-	-	L	L	-	-
CO3	М	[-	-	-	М	-	М	-	-	-	-	L	L	-	М
CO4	M	[-	-	-	М	-	М	-	-	-	-	L	L	-	М
CO5	Μ	[-	-	-	М	-	М	-	-	-	-	L	L	-	Μ
S-Stron	ıg;M-	Me	ediun	ı;L-L	ow											

Synabus											
Module	1 Introduction	9									
Introduct for addit STL form	ion to metal additive manufacturing – classification and challenges – applicative manufacturing – file formats, CAD CAM software, modelling and data p nat – slicing – design consideration- machine set up	tions- CAD rocessing –									
Module	2 Materials and properties of AM printed parts	9									
Manufact Equilibriu Phase dia Methods Energy D	Manufacturing of metallic materials - Conventional vs AM process - Solidification of Metals Equilibrium and Non-equilibrium phases for solidification for AM Phase diagrams - Iron-Carbon - Aluminum alloy - Titanium alloy - Nickel alloy Methods of Powder Particles Production and Powder Properties - Wire Properties for Direct Energy Deposition - Mechanical properties of AM printed parts										
Module	3 Basic processes in metal additive manufacturing	9									
Powder be sheet lami Laser theo Basics of Powder fo system W	ed fusion – direct energy deposition – binder jetting – metal extrusion – mater nation ory - Continuous vs pulsed laser - Laser types - Laser beam properties electron beam - Electron beam powder bed fusion and mechanism reders and their classification - Delivery Nozzles - Powder bed delivery and ire Fed Systems - Positioning Devices - Print-heads	rial jetting - 1 spreading									
Module	4 AM process parameters	9									
Beam Sca DED, and Support S Defects in Common economic	nning Strategies and Parameters for PBF and DED - Powder Properties for BJ - Ambient Parameters for PBF and DED - Geometry-Specific Parame tructures (PBF) A AM Printed Parts - Need of Post Processing - Need for Surface Finishing Post Processing for MAM - Potential Hazards of Additive Manufacturing - s of MAM	: PBF, eters, g									
Module	5 Design for Additive Manufacturing	9									
Fundamen selection methods Topology Key chara material u	ntals and principle -design techniques and steps - design optimization, ma and consideration in application field - Part decomposition and Decomposi- optimization techniques - Overhangs, and Bridging and cavities in design cteristics and considerations in topology optimization - Topology optimiz ncertainty and manufacturability - Industry 4.0 future with AM	terial sition ation under									
Text Bo	oks										
1 M	Iilewski, J.O., 2017. Additive manufacturing of metals. Cham: Springer In ublishing.	ternational									
2 E	alasubramanian, K.R. and Senthilkumar, V. eds., 2020. Additive Manufact pplications for Metals and Composites. IGI Global.	turing									
Referen	ce Books										
1 L	each, R. and Carmignato, S. eds., 2020. Precision Metal Additive Manufac RC Press.	eturing.									
2	ebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003										

3	Gibson, I., Rosen, D. Rapid Prototyping to	W. and Stucker, Direct Digital M	B., "Additive Mar Ianufacturing", Sp	nufacturing Methodologies: ringer, 2010								
4	Kamrani, A.K. and N	asr, E.A., "Rapi	d Prototyping: The	cory and practice", Springer,								
	2006.											
Course	rseDesigners											
S.No	FacultyName	DesignationDepartment/ CollegeEmailid										
1	Mr.A.Elanthirayan	Asst. Prof. G-	AVIT	aleanthirayan@avit.ac.in								

									Cate	gory	L	T	Р		Credit
				WAS	ТЕ ТО	ENER	RGY				-	0			
									OF	E-EA	3	0	0		3
PREAMBLE															
This co	ourse is	to pro-	vide ins	sights in	nto was	ste man	agemen	nt option	ns by r	educin	g the w	aste des	stined for	or disp	osal and
encoura	PREDECULISUTE NU														
rkekevuisiie – Nii															
COURSE OBJECTIVES															
1	1 To enable students to understand of the concept of Waste to Energy.														
2	To link legal, technical and management principles for production of energy form waste.														
3	To learn about the best available technologies for waste to energy.														
4	4 To analyze of case studies for understanding success and failures.														
COUR	COURSE OUTCOMES														
On the	success	ful com	pletion	of the o	course,	students	s will be	e able to)						
)1: Unde	erstand	the kno	wledge	about t	he oper	ations c	of Waste	e to Ene	rgy Pla	nts.				Unde	rstand
)2: Anal	yse the	various	aspects	s of Wa	ste to E	lnergy N	Manage	ment Sy	stems.					Analy	/ze
)3: Carr	y out Te	echno-e	conomi	c feasib	oility for	r Waste	to Ener	rgy Plar	nts					Apply	ý
)4: Eval	uate pla	nning a	ind oper	rations	of Wast	e to En	ergy pla	ants.						Evalu	ate
MAPP	ING W	ITH P	ROGR	AMME	E OUT(COME	S AND	PROG	RAMN	IE SP	ECIFIC	COUTC	OMES	1	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO1	PO1	PSO	PS	PSO3
	м			T						10	1	2	I	02	
CO1	M	-	-	L	-	-	-	-	-	-	-	-	L	-	-
CO2	M	M	L	L	-	M	-	-	-	-	-	-	L	-	-
CO3	S	M	S	M	-	L	-	M	-	-	-	-	M	L	-
CO4	S	М	S	-	L	-	-	-	-	-	-	-	Μ	L	-
CO5	L	L	-	L	-	-	-	-	-	-	-	-	L	-	-
S- Stro	S- Strong: M-Medium: L-Low														

INTRODUCTION

The Principles of Waste Management and Waste Utilization. Waste Management Hierarchy and 3R Principle of Reduce, Reuse and Recycle. Waste as a Resource and Alternate Energy source.

WASTE SOURCES & CHARACTERIZATION

Waste production in different sectors such as domestic, industrial, agriculture, postconsumer, waste etc. Classification of waste – agro based, forest residues, domestic waste, industrial waste (hazardous and non-hazardous). Characterization of waste for energy utilization. Waste Selection criteria.

TECHNOLOGIES FOR WASTE TO ENERGY

Biochemical Conversion – Energy production from organic waste through anaerobic digestion and fermentation. Thermo-chemical Conversion – Combustion, Incineration and heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and other newer technologies.

WASTE TO ENERGY OPTIONS

Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to

fuel resources for other useful energy applications Energy from Plastic Wastes – Non-recyclable plastic wastes for energy recovery. Energy Recovery from wastes and optimization of its use, benchmarking and standardization. Energy Analysis.

CASE STUDIES - WASTE TO ENERGY PLANTS

Success/failures of waste to energy Global Best Practices in Waste to energy production distribution and use. Indian Scenario on Waste to Energy production distribution and use in India. Success and Failures of Indian Waste to Energy plants. Role of the Government in promoting 'Waste to Energy'. Waste activities – collection, segregation, transportation and storage requirements. Location and Siting of 'Waste to Energy' plants. Industry Specific Applications – In-house use – sugar, distillery, pharmaceuticals, Pulp and paper, refinery and petrochemical industry and any other industry. Centralized and Decentralized Energy production, distribution and use. Comparison of Centralized and decentralized systems and its operations.

EFERENCES

- Lee, James M., "Biochemical Engineering." PHI, 1st Edition, 1992. Yeh W.K., Yang H.C., James R.M., "Enzyme Technologies: Metagenomics, Biocatalysis and Biosynsthesis", Wiley- Blackwell, 1st Edition, 2010. Blanch H.W., Clark D. S., "Biochemical Engineering", Marcel Dekker, Inc. 2nd Edition, 1997.
- 2. Palmer, Trevor. "Enzymes: Biochemistry, Biotechnology, Clinical Chemistry." 2nd Edition, East West Press, 2008.

Course Designers											
S.No	Name of the faculty	Designation	Department	Mail ID							
•											
1.	Dr.R. Kirubakaran	Assistant Professor	Department of	kirubakaran@vmkvec.edu.in							
			Biotechnology								
2	Dr.M.Sridevi	Professor	Biotechnology	hodbte@vmkvec.edu.in							

	BIOMEDICAL PRODUCT DESIGN AND									Categor	ry L	Т	Р	Credit
	DEV	ELOP	MENT							OE-EA	A 3	0	0	3
PREAMBLE The course aim have a basic ki	ns at pro nowledg	oviding ge in the	the bas e comm	sic conc on feat	epts of ures a p	produc product	t design has and	n, produ l how to	ct featur	es and its rate them	s architec suitably	ture so t in produ	hat stude ict.	ent can
PREREQUIS	ITE – 1	Nil												
COURSE OB	JECTI	VES												
1 To und	erstand	the glo	obal tre	ends an	d deve	lopmer	nt meth	odolog	gies of v	arious ty	pes of p	roducts	and ser	vices.
2 To cond the new and me	To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems.													
To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification.														
4 To und system	To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics.													
5 To deve to the E	elop do loL (Ei	ocumen nd of L	tation, ife) su	test spo port a	ecifica ctivitie	tions a s for e	nd coor	rdinate	with var stomer.	rious tea	ms to va	lidate a	nd susta	in up
COURSE OU	TCOM	IES		1			<u> </u>							
On the success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1. Define	formu	late an	d analy	yze a p	roblem	for the	e produ	ict desi	gn.				Apply	
CO2 Obtain t design of pro	he dor totype.	nain kr	owled	ge of p	roduct	develo	pment	and reg	gulatory	require	nents fo	r the	Apply	
CO3. Explait development.	n the	proces	ss of 1	manufa	cturing	g, test	ing an	d valio	dation f	for scala	ible pro	duct	Apply	
CO4 Gain k Context.	nowled	dge of	the Ir	nnovati	on &	Produ	et Dev	elopme	ent proc	ess in t	he Busi	ness	Apply	
CO5 Discuss	the ec	conomi	cs in p	roduct	develo	pment	and b	usiness	strategi	es for tu	irnover	from	Apply	
MAPPING W	TTH P	ROGR	AMMI	EOUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC C	OUTCON	AES		
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	S	М	L				М				М	S	L	М
CO2 S	S	М	L				М				М	S	L	М
CO3 S	S	М	L				М				М	S	L	М
CO4 S	S	S	L				М				М	S	L	М
CO5 S	S	S	L				М				М	S	L	М
S- Strong; M-N	Aedium	n; L-Lov	W											
SVITARIIS														

PRODUCT DESIGN

Definition, History and Modern Practice – Designs; Design and Product Life Cycle; Design Process; What is a medical device, Challenges in medical device, Understanding the innovation cycle, Good Design Practice.

Understanding, analyzing and validating user needs, Screening Needs, Technical Requirements, Concept Generation – Innovation Survey Questionnaire, Morphological Matrix, QFD, Concept Analysis and validation, Concept Modelling, Concept Screening & Validation.

PRODUCT DEVELOPMENT AND REGULATORY

Breakthrough Products, Platform Products, Front End of Innovations / Fuzzy Front End, Generic Product Development Process (Concept Development, System Design, Detailed Design, Test & Refinement, Production Ramp-up), Variants of Development Processes (Market Pull, Technology Push, Platform, Process-Intensive, Customized, High-Risk, Quick Build, Complex Systems), Good Documentation Practice, Prototyping Specifications, Prototyping, Medical Device standards, Quality management systems, Medical Device Classification, Design of Clinical Trials, Design Control & Regulatory Requirements, Documentation in Medical Devices, Regulatory pathways.

CALABLE PRODUCT DEVELOPMENT

Design for manufacturing, Design for assembly, Design for Serviceability, Design for usability, Medical Device Verification & Validation, Product Testing & Regulatory compliance, Clinical trial & validation, Device Certification.

MANUFACTURING AND BUSINESS STRATEGIES

Lean Manufacturing – Toyota Production System, Good Manufacturing Practices, Framework for Product Strategy – Core Strategic Vision (CSV), Characteristics of good CSV, Opportunity Identification Process & Generating Opportunities, Quality of Opportunities – Real-Win-Worth It (3M RWW), Product Planning Process, Technology S-Curve, Evaluating and Prioritizing Projects, Product-Process Change Matrix, Resource Planning, Total Available Market (Segmentation, Targeting & Positioning), Served Available Market, Product Platform Strategy, Market Platform Plan (Product Platform Management, Product Line Strategy).

PRODUCT ECONOMICS AND MARKET INFUSIONS

Economics/Finance in Product Development (Sales Forecasting – ATAR Model/ Bases Model, Pricing the product, Cash flow in Product Development, Categorizing the costs, Structuring Manufacturing Costs, Prototyping Costs, Development Costs, Cost Volume Profit Analysis, Breakeven Analysis, Common Return Metrics – Payback/ NPV/ IRR, Common Comparison Metrics – WACC/ RRR/ MARR). Business Model Canvas, Marketing Channels, Sales Models, Post Commercialization Surveillance, End of Life support.

REFERENCES:

- 1. Jones, J.C., Design Methods, John Wiley, 1981.
- 2. Cross, N., Engineering Design Methods, John Wiley, 1994.
- 3. Pahl, G., and Beitz, W., Engineering Design, Design Council, 1984.
- 4. Michael E. McGrath, Product Strategy for High-Technology Companies, 2nd Edition, McGraw Hill.
- 5. Ulrich, K.T., and Eppinger, S.D., Product Design and Development, Tata McGraw Hill, India.
- 6. Ehrelspiel. K, and Lindemann U Cost Efficient Design, Springer, 2007.
- 7. Paul H king, Richard C. Fries, Arthur T. Johnson, Design of Biomedical Devices and Systems. Third edition, ISBN 9781466569133.
- 8. Peter J. Ogrodnik, Medical Device Design: Innovation from Concept to Market, Academic Press Inc; Edition (2012), ISBN- 10:0123919428.
- 9. Stefanos Zenios, Josh Makower, Paul Yock, Todd J. Brinton, Uday N. Kumar, Lyn Denend, Thomas M. Krummel, Biodesign: the Process of Innovating Medical Technologies, Cambridbge University press; Edition (2009), ISBN- 10:0521517427.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
	•	0	-	

1	Dr.L.K.Hema	Professor & Head	BME & ECE	hodbme@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Dr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

OE-EA 3 0 0 3							
PREAMBLE							
To understand the need for Cyber Security in real time and to study techniques involved in it.							
PREREQUISITE : NIL							
COURSE OBJECTIVES							
1. To understand the basic terminologies related to cyber security and current cyber security threat landscape.							
2. To unserstand the cyberattacks that target computers, mobiles and persons							
3. To understand the legal framework that exist in India for cyber crimes and penalties and punishments for such crimes							
4. To study the data privacy and security issues related to Social media platforms.							
5. To understand the main components of cyber security plan							
COURSE OUTCOMES							
On the successful completion of the course, students will be able to							
CO1: able to understand the basic terminologies related to cyber security and current cybe Understand security threat landscape.							
CO2: Able to complete u n d e r s t a n d i n g of the cyberattacks that target computers, Mapply mobiles and persons							
CO3: able to understand the legal framework that exist in India for cyber crimes and penalties and punishments for such crimes, It will also expose students to limitations of existing IT Act,2000 legal framework that is followed in other countries and legal and ethical aspects related to new technologies							
CO4: Able to get insight into the Data Protection Bill,2019 and data privacy and security Apply issues related to Social media platforms.							
<i>CO5</i> :Able to understand the main components of cyber security plan.							
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES							
COsPOPOPOPOPOPOPOPO1PO1PO1PSPSOPSO							
1 2 3 4 5 6 7 8 9 0 1 2 01 2 3							
CO M M M M - - - - - - M							
CO M M M M - - - - - M M M M 2 M M M M - - - - - M M M							
CO M M S M M - - - - - - M M M M 3 M M S M M - - - - - M M M							
CO S M M - - - - - M M S 4 S M M M - - - - - M M S							
CO S M M S - - - - - M M S 5 S M M S - - - - - M M S							
S- Strong; M-Medium; L-Low							

Overview of Cyber security	9 hours			
Cyber security increasing threat landscape, Cyber security terminologies- Cyberspace, attack, attack vector,				
Protection of end user machine, Critical IT and National Critical Infrastructure, Cyberwarfare, Case Studies.				
Cyber crimes	9 hours			
Cyber crimes targeting Computer systems and Mobiles- data diddling attacks, spyware	, logic bombs, DoS,			
DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- ema	il scams, Phishing,			
Vishing, Smishing, Unline job fraud, Unline sextortion, Debit/ credit card fraud, Unline Cyberbullying, website defectment, Cybersquetting, Pharming, Cyber espionage, Crypt	e payment fraud,			
trades, drug trafficking, human trafficking, Social Media Scams & Frauds- impersonal	tion, identity theft, job			
scams, misinformation, fake newscyber crime against persons - cyber grooming, child	pornography, cyber			
stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure	, Case studies.			
Cyber Law 9	hours			
Cyber crime and legal landscape around the world, IT Act,2000 and its amendments. L	imitations of IT Act,			
2000. Cyber crime and punishments, Cyber Laws and Legal and ethical aspects related	to new technologies-			
Al/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Ca	ase Studies.			
Data Privacy and Data Security 9	nours			
Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and	sues and challenges. Data			
protection regulations of other countries- General Data Protection Regulations (GDPR)	.2016 Personal			
Information Protection and Electronic Documents Act (PIPEDA)., Social media- data	privacy and security			
issues.				
Cyber security M a n a g e m e n t , Compliance and Governance 9	hours			
Cyber security Plan- cyber security policy, cyber crises management plan., Business co	ontinuity, Risk assessment,			
Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy				
and strategy.				
1 Cuber Sequeity Understanding Cuber Crimes, Computer Ecropsies and Logal Dersna	atiwaa hy Symit Dalanyna			
and Nina Godbole, Wiley India Pvt. Ltd.				
2. Information Warfare and Security by Dorothy F. Denning, Addison Wesley.				
3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create				
4 Data Privacy Principles and Practice by Natrai Venkataramanan and Ashwin Shriram CRC Press				
5. Information Security Governance, Guidance for Information Security Managers by W KragBrothy 1st				
Edition, Wiley Publication.				
6. Auditing IT Infrastructures for Compliance By Martin Weiss, Michael G. Solomon, 2nd Edition, Jones				
Bartlett Learning.				

COURSE DESIGNERS					
S. No.	Name of the Faculty	Designation	Department	Mail ID	
1.	Dr.R.Jaichandran	Assistant professor G- II	CSE	rjaichandran@avit.ac.in	
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.i n	

BIO MEMS	Category	L	Т	Р	Credit
	OE-EA	3	0	0	3

PREAMBLE

The rapid development of the integrated circuit (IC) industry has led to the emergence of micro electronics process engineering as a new advanced discipline. The combination of MEMS and integrated intelligence has been put forward as a disruptive technology. Gives brief knowledge about applications of Bio-MEMS technology for therapeutics and diagnostics.

PREREQUISITE

Nil

COURSE OBJECTIVES

1	To train the students in the design aspects of Bio MEMS devices and Systems.														
2	To learn the basic principles of BioMEMS/Microfluidic device manufacturing.														
3	To make the students aware of applications in various medical specialists especially the Comparison of														
	conventions methods and Bio MEMS usage.														
4	To Classify the different mechanisms of micro sensors and actuators.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Understand the Micro fluidic Principles and study its applications. Understand															
CO2.	CO2. Explain the principles and applications of Micro Total Analysis. Understand														
CO3. Discuss and realize the MEMS applications in Bio Medical Engineering Understand															
CO4.	Classifying the principles of Micro Actuators and Drug Delivery system	Apply													
CO5.Utilizing the concept of MEMS with biological applications Analyze															
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
------	---	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	-	-	-	-	-	-	-	-	-	-
CO2	S	L	L	L	М	-	-	-	-	-	-	-	-	-	-
CO3	S	L	М	L	М	-	-	-	-	-	-	-	-	L	-
CO4	S	М	М	L	М	-	-	-	-	-	-	L	L	L	-
CO5	S	S	М	L	М	-	-	-	-	-	-	L	L	L	-

SYLLABUS

Unit I

Introduction-The driving force behind Biomedical Applications – Biocompatibility - Reliability Considerations-Regularity Considerations – Organizations - Education of Bio MEMS-Silicon Micro fabrication-Soft Fabrication techniques

Unit II

Micro fluidic Principles- Introduction-Transport Processes- Electro kinetic Phenomena-Micro valves –Micro mixers-Micro pumps.

Unit III

SENSOR PRINCIPLES and MICRO SENSORS: Introduction-Fabrication-Basic Sensors-Optical fibers-Piezo electricity and SAW devices-Electrochemical detection-Applications in Medicine

Unit IV

MICRO ACTUATORS and DRUG DELIVERY: Introduction-Activation Methods-Micro actuators for Micro fluidics-equivalent circuit representation-Drug Delivery

Unit V

MICRO TOTAL ANALYSIS: Lab on Chip-Capillary Electrophoresis Arrays-cell, molecule and Particle Handling-Surface Modification-Microsphere-Cell based Bioassay Systems Detection and Measurement Methods-Emerging Bio MEMS Technology-Packaging, Power, Data and RF Safety-Biocompatibility, Standards

Text Books/ References Books :

- 1. Steven S. Saliterman, Fundamentals of Bio MEMS and Medical Micro devices, Wiley Interscience, 2006.
- 2. Albert Folch, Introduction to Bio MEMS, CRC Press, 2012
- 3. Gerald A. Urban, Bio MEMS, Springer, 2006
- 4. Wanjun wang, steven A. Soper, Bio MEMS, 2006.
- 5. M. J. Madou, "Fundamentals of Micro fabrication",2002.
- 6. G.T. A. Kovacs, "Micro machined Transducers Sourcebook", 1998.

COURSE DESIGNERS									
S.No	Name of the Faculty	Designation	Department	Mail ID					
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in					
2	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in					

		SC	DLAR	AND]	ENERG	Y STO	ORAC	GE	Catego	ory	L	Т	Р	(С
				S	YSTEM	S			OE-EA	4	3	0	0		3
PREA This s	MBI subjec	LE t deals	with th	e gene	ral conce	ept of	Solar	and Ene	ergy Sto	orage	Systen	ns, and	improve	ement.	
PRER	PREREQUISITE: Nil														
COU	COURSE OBJECTIVE														
1.	נ	To explain basics of solar photovoltaic systems and energy storage system													
2.	ŋ	To understand the concepts and various components of stand-alone system													
3.	ŋ	To gain	the sou	ind kno	owledge	about	grid c	onnecte	d PV s	ystem					
4.	ŋ	To know	the de	esign o	f various	PV-ii	nterco	nnected	system	ns.					
5.	n	To provi	ide the	knowl	edge abo	out the	vario	us appli	cations	of so	lar sys	tem			
COUI	RSE (OUTCO	OMES												
On th	On the successful completion of the course, students will be able to Understand														
CO1: 1	Descr	ibe the	basics	of sola	r system									Unders	stand
CO2:F	Recog	nize the	conce	pts of :	standalo	ne PV	syster	n.						Anal	ysis
CO3: 1	Desig	n the gr	id coni	nected	system f	or var	ious a	pplicati	ons.					Anal	ysis
CO4: \$	Select	the sui	table st	orage	system f	or part	icular	applica	tions.					Anal	ysis
CO5: 1	Recog	gnize the	e vario	us app	lications	of sol	ar syst	tem.						Crea	ate
Mappi	ing wi	th prog	ramme	outco	mes and	progra	amme	specific	c outco	mes					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	М	S	S	М	-	-	L	-	М	-	М
CO2	S	S	-	-	М	S	S	М	-	-	L	-	L	-	L
CO3	S	S	L	_	S	S	S	М	-	_	М	-	М	L	L
CO4	S	М	L	М	S	S	М	М	-	_	М	-	М	_	-
CO5	S	М	L	М	S	S	М	L	L	_	М	-	М	-	М
S-STR	RONG	,M-MI	EDIUN	1,L-L(OW	<u> </u>				<u> </u>	1	1		1	1

Introduction

Characteristics of sunlight: the sun and its radiation, Solar radiation, Direct and diffusion radiation, greenhouse effect, solar isolation data and estimation-semiconductors and P-N junctions: semiconductors and types, absorption of light, recombination and PN junctions –behavior of solar cells – cell properties: efficiency and losses, Top contact design, Laser grooved, Buried contact solar cell – PV cell interconnection: Module and circuit design, Environmental and thermal protection.

Stand-alone PV System

Solar modules – storage systems: Types, applications, requirements, efficiency, Lead acid batteries – power conditioning and regulation: Diodes, Regulators, Inverters- Balance of system components - protection – standalone PV systems design – sizing: Reliability maps, sizing for high reliability, existing methods.

Grid Connected PV Systems

PV systems in buildings – Utility applications for photo voltaic – design issues for central power stations – safety– Economic aspect – Efficiency and performance - International PV programs – Integration of PV and Wind –Indian Specific Standard for Integration.

Energy Storage Systems

Impact of intermittent generation: Wind, gas and coal integration, impacts of cycling, PSCO case studies – Battery energy storage – solar thermal energy storage – pumped hydroelectric energy storage.

Applications

Water pumping - battery chargers - solar car - direct-drive applications -Space - Telecommunications.1

Total Hours = 45

Text book(s):

1. Solar Energy – S.P. Sukhatme, Tata McGraw Hill, 2017.

2. Stuart R. Wenham, Martin A. Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics", 2011.

Reference(s):

1. Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2017.

2. S. Sumathi, "Solar PV and Wind Energy Conversion Systems (Green Energy and Technology)", L.

Ashok Kumar, P. Surekha, 2015.

3 https://nptel.ac.in/courses/112/105/112105051/

4 https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf

COURSE DESIGNERS

COUN	DESIGNERS			
S.No	Name of the faculty	Designation	Department	Mail-id
1.	Mr.A.Balamurugan	AP	EEE	balamurugan@vmkvec.edu.in
2.	Mr.V.Rattan Kumar	AP(Gr-II)	EEE	rattankumar@avit.ac.in

Employability Enhancement Courses

TECHNICAL SEMINAR

Category	L	Τ	Р	Credit
EE-S	0	0	2	1

COURSE OBJECTIVES

• To work on a specific technical topic in advanced topics in Civil Engineering in order to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences.

COURSE OUTCOMES

On completion of the course, the student is expected to be able to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

S- Strong				M-Medium						L-Low					
CO1	S	-	М	М	-	S	S	-	-	М	-	М	S	-	S
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO

SYLLABUS

The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to advanced topics in Civil Engineering and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and report submitted.

TOTAL : 30 PERIODS

AUDIT COURSES

	ENGLISH FOR RESEARCH PAPER	Category	L	Т	Р	Credit					
	WRITING	AC	0	0	2	0					
PREAM	PREAMBLE										
This c	This course is designed to improve the writing skills, level of readability of the learner and skills for writing the title.										
PRERE	QUISITE										
Nil											
COURS	OURSE OBJECTIVES										
1 U	Understand that how to improve your writing skills and level of readability										
2 L	earn about what to write in each section										
3 U	nderstand the skills needed when writing a Title										
4 E	nsure the good quality of paper at very first-time submission	l									
COURS	E OUTCOMES										
On the s	accessful completion of the course, students will be able to										
CO1. U redundan	O1. Understand how to improve your writing skills with conciseness so as to and removing Understand										
CO2. Cl	CO2. Classify the sections involved in research paper writing Understand										
CO3. Int	CO3. Interpret the sequence of research findings with results Apply										
CO4. Us submissi	e various paraphrasing method to provide good quality pape on	er at very first-t	ime	Apply							

MAPPING WITH PROGRAMME	OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	-	-	-	-	-	-	М	-	-	М	-	-	S
CO2	L	М	-	-	М	-	-	-	М	-	-	Μ	-	-	S
CO3	L	М	-	-	М	-	-	-	М	-	-	Μ	-	-	S
CO4	L	М	-	-	М	-	-	-	М	-	-	М	-	-	S

SYLLABUS

Unit I

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit II

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit III

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check, key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

Unit IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

Unit V

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

Text Books/ References Books :

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

COURSE DESIGNERS

0001				
S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin
2.	Mr. Tyndale Cicil	Assistant Professor	AVIT	tyndale.english@avit.ac.in

	VALUE EDUCATION	Category	L	Т	Р	Credit				
		AC	0	0	2	0				
PREA	MBLE									
The	The course highlights the importance of values and ethics for human life and organization.									
PRER Nil	PREREQUISITE Nil									
COUI	COURSE OBJECTIVES									
1	1 To understand value of education and self- development									
2	To inculcate good values in students to make them patriotic with humanity									
3	To groom the personality with positive thinking with universal brotherhood and religious tolerance.									

4 To impart the value of true friendship and happiness

5 To enhance the character and competence for developing into self-control person

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Identify the value of education and self- development with work ethics	Remember
CO2. Interpret sense of duties with good values in students to make them patriotic with humanity	Understand
CO3. Explain the integration, scientific attitude, overall personality with labor dignity	Understand
CO4. Discuss the value of true friendship and happiness	Understand
CO5. Paraphrase the character and competence for developing into self-control person	Understand

MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	S	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	-	М	-	-	-	-	-	-	-
CO3	L	L	М	-	-	-	-	М	-	-	-	L	L	L	-
CO4	L	S	-	-	-	-	-	М	-	-	-	-	-	-	-
CO5	L	S	М	-	-	-	-	М	-	L	_	_	L	L	-

SYLLABUS

Unit I

Values and self-development –Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and non- moral valuation. Standards and principles, value judgements

Unit II

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration, Truthfulness, Cleanliness, Honesty, Humanity. Power of faith, National Unity, Patriotism, Love for nature, Discipline

Unit III

Personality and Behavior Development - Soul and Scientific attitude, Positive Thinking. Integrity and discipline., Punctuality, Love and Kindness, avoid fault Thinking, Free from anger, Dignity of labor, Universal brotherhood and religious tolerance

Unit IV

True friendship, Happiness Vs suffering, love for truth, Aware of self-destructive habits, Association and Cooperation, doing best for saving nature

Unit V

Character and Competence –Holy books vs Blind faith, Self-management and good health, Science of reincarnation, Equality, Nonviolence, Humility, Role of Women, all religions and same message, mind your Mind, Self-control, Honesty, Studying effectively

Text Books/ References Books :

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford UniversityPress, New Delhi

Course Code	Course Title	category	L	Т	Р	С
	CONSTITUTION OF INDIA	AC	0	0	2	0

Course Objectives:

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.

3 To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.

5 To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

Course Content

UNIT I

The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution-Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

UNIT II – Government of the Union

The Union Executive-Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III – Government of the States

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

UNIT IV – Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

UNIT V – Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

TEXTBOOKS AND REFERENCE BOOKS:

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008

2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested

Software/Learning Websites:

1. https://www.constitution.org/cons/india/const.html

2. http://www.legislative.gov.in/constitution-of-india

3. https://www.sci.gov.in/constitution

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-ofindia/

Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL	NPTEL Course Title	Course Instructor
	ID		
1	12910600	CONSTITUTION OF INDIA AND	PROF. M. K. RAMESH
		ENVIRONMENTAL GOVERNANCE:	NATIONAL LAW
		ADMINISTRATIVE AND	SCHOOL OF INDIA
		ADJUDICATORY PROCESS	UNIVERSITY

COURSE D	ESIGNER			
S.NO	NAME OF THE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail.com

	PEDAGOGY STUDIES		Category	L	Т	Р	Credit
			AC	0	0	2	0
PREAMB	LE						
The cou	rse is designed to provide pedagogical practices	towards	academic,	research	activities	and p	rofessional

developments.

PREF	REQUISITE
Nil	
COU	RSE OBJECTIVES
1	To provide theories and methodologies related to curriculum development and research framework
2	To familiarize with pedagogical practices in formaland informal classrooms in developing countries
3	To identify evidence on the effectiveness of the pedagogical practices for enhancing teaching and learning
	Methods
4	To understand the learning and resource barriers while handling large classes
5	To identify critical evidence gaps to guide the development
COU	RSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1.Identify theories and methodologies related to curriculum development and research	Remember
framework	
CO2.Interpret pedagogical practices in formaland informal classrooms in developing	Understand
countries	
CO3.Draw a chart on the effectiveness of the pedagogical practices for enhancing teaching	Apply
and learning methods	
CO4.Explore the learning and resource barriers while handling large classes	Analyze
CO5.Examine critical evidence gaps to guide the development	Analyze

MAPH	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-	-	L	-	-	-	-	-
CO2	L	L	-	-	-	-	I	-	-	-	-	-	-	-	-
CO3	L	L	Μ	-	-	-	I	-	-	-	-	L	L	L	-
CO4	L	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	L	S	М	-	-	-	-	-	-	L	-	-	L	L	-
a a.			-	-											

SYLLABUS

Unit I

Introduction and Methodology, Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and searching.

Unit II

Thematic overview: Pedagogical practices are being used by teachers in formaland informal classrooms in developing countries, Curriculum, Teacher education.

Unit III

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the schoolcurriculum and guidance materials best support effective pedagogy, Theory of change, Strength and nature of the body of evidence for effective pedagogicalpractices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.

Unit IV

Professional development: alignment with classroom practices and followupsupport, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Unit V

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Text Books/ References Books :

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher educationresearch project (MUSTER) country report 1. London: DFID.
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning ofbasicmaths and reading in Africa: Does teacher preparation count? International JournalEducational Development, 33 (3): 272– 282.

Course Code	Course Title	Category	L	Т	Р	C
	Personality Development Through Life Enlighten Skills	AC	0	0	2	0

Course Objectives:

- 1. To help the learner understand the basics of Personality and its correlation to society.
- 2. To understand the role of Attitude and motivation in the enhancement of personality.
- 3. To apply the concepts learnt in heightening the self esteem.
- 4. To analyse the most efficient method to develop the personality and prepare for employment.

UNIT I- Introduction to Personality Development

The concept of personality - Dimensions of personality – Theories of Freud & Erickson-Significance of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles -Factors responsible for success – What is failure - Causes of failure. SWOT analysis.

UNIT II Attitude & Motivation

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude – Advantages –Negative attitude- Disadvantages - Ways to develop positive attitude - Differences between personalities having positive and negative attitude. Concept of motivation - Significance – Internal and external motives - Importance of self- motivation-Factors leading to de-motivation

UNIT III Self-esteem

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive selfesteem – Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

UNIT IV Other Aspects of Personality Development

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader – Character building -Team-work – Time management - Work ethics –Good manners and etiquette.**UNIT V Employability Quotient**

Resume building- The art of participating in Group Discussion – Facing the Personal (HR & Technical) Interview - Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

Total: 45 Periods

Text Books: 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill. 2. Stephen P.Robbins and Timothy A. Judge(2014), Organizational Behavior 16th Edition: Prentice Hall.

COURSE DESIG	COURSE DESIGNERS					
COURSE	DESIGNATION	NAME OF	MAIL ID			
INSTRUCTOR		THE				
		INSTITUTION				

Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin
Joseph			
Mr. Tyndale Cicil	Assistant Professor	AVIT	tyndale.english@avit.ac.in