AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI &

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation, Deemed to be University, Salem, Tamil Nadu, India) (AICTE APPROVED AND NAAC ACCREDITED)

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE

Faculty of Engineering and Technology

REGULATIONS 2017

DEPARTMENT OF CIVIL ENGINEERING

Programme:

B.E / B.Tech. CIVIL ENGINEERING

Part Time Studies

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS)

CURRICULUM AND SYLLABUS

PROGRAM OUTCOMES (POs) OR GRADUATE ATTRIBUTES

On completion of program of engineering, graduates will be able to:

Sl. No.	Outcome	Level of Outcome	Description
PO 1	Engineering knowledge	Apply	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis	Apply	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions	Apply	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems	Apply	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage	Create	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society	Evaluate	Apply reasoning informed by the contextual knowledgeto assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability	Analyze	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics	Evaluate	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work	Analyze	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication	Evaluate	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance	Create	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one"s own work, as a member and leader in a team, to

			manage projects and in multidisciplinary environments.
PO 12	Life-long learning	Create	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

2. PROGRAM SPECIFIC OUTCOMES (PSOs)

On completion of B.E/B.Tech. Aeronautical Engineering program, graduates will be able

to:			
Sl.	Outcome	Level of	Description
No.		Outcome	
PSO 1	Multi-Dimensional Approach	Evaluate	Solve complex engineering problems in the field of aerospace engineering by using available resources and tools for an optimised and desired output.
PSO 2	Develop/Design/Modify/Involve	Create	Identify the thrust areas of major concern in aerospace engineering affecting man and material in broad aspects, design and modify the systems to create a comfortable zone for men and machinery.
PSO 3	Entrepreneurial Skills	Create	Design components or processes for meeting the demands of quality standards with environmental considerations.

CATEGORY	CONTENT	CREDITS TO BE OBTAINED	EARNED CREDIT
	FOUNDATION COURSES (FC)	54-63	62
Δ	(i). Humanities and Sciences (English, Management Subjects)	12-21	15
Α	(ii). Basic Sciences (Maths, Physics, Chemistry Subjects)	24-33	24
	(iii). Engineering Sciences (Basic Engineering Courses)	18-27	23
В	CORE COURSES (CC)	81	81
	ELECTIVE COURSES (EC)	18-27	21
С	(i). Programme Specific (Classroom or online)	12-15	15
	(ii). Open Electives (Classroom or online)	6-9	6
	PROJECT+INTERNSHIP+INDUSTRY ELECTIVES (PII)	18	18
D	(i). Project	9	9
	(ii). Internship / Mini project / Industry supported courses	9	9
E	EMPLOYABILITY ENHANCEMENT COURSES+ CO-CURRICULAR COURSES+ EXTRA CURRICULAR COURSES (EEC)**	9-18	

Credit Requirement for Course Categories

Minimum Credits to be Obtained	:	180
Total Earned Credit	:	182

**- Mandatory, credit would be mentioned in mark sheets but not included for CGPA calculations.

CURRICULUM B.E / B.TECH.-CIVIL ENGINEERING -SEMESTER I TO VIII

CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-63)

	B.E / B.TECH. –CIVIL ENGINEERING - SEMESTER I TO VIII												
	CATEGORY	A – FOUNDATION COU	RSES - HSS, BS A	AND ES COU	RSES	- CRE	DITS	(54-63	i)				
(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (12 - 21)													
SL. NO	CODECOURSEOFFERING DEPT.CATEGORYLTPCPREREQUISIT												
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL				
2.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HSS)	0	0	4	2	NIL				
3.	17YMHS82	YOGA AND MEDITATION	PHYSICAL EDUCATION	FC (HSS)	0	0	4	2	NIL				
4.	17EGHS82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT	ENGLISH	FC (HSS)	0	0	4	2	NIL				
5.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL				
6.	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL				
7.	17MBHS03	ENGINEERING MANAGEMENT AND ETHICS	MANAGEMENT	FC (HSS)	3	0	0	3	NIL				
8.	17MBHS07	PROFESSIONAL ETHICS AND HUMAN VALUES	MANAGEMENT	FC (HSS)	3	0	0	3	NIL				

CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-63)

	(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS) - CREDITS (24 - 33)												
1.	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL				
2.	17MABS08	MATHEMATICS FOR CIVIL ENGINEERS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS				
3.	17MABS13	PDE APPLICATION AND COMPLEX ANALYSIS	MATHEMATICS	FC (BS)	2	2	0	3	MATHEMATICS FOR CIVIL ENGINEERING				
4.	17MABS16	NUMERICAL METHODS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS				
5.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL				
6.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL				
7.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL				
8.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL				
9.	17CHBS06	GREEN BUILDING MATERIALS	CHEMISTRY	FC (BS)	3	0	0	3	NIL				
10.	17CHBS07	CHEMISTRY OF WATER	CHEMISTRY	FC (BS)	3	0	0	3	NIL				
11.	17CHBS08	SOIL CHEMICALS IN CIVIL ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL				
12.	17PHBS01	NON-DESTRUCTIVE TESTING OF MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL				
13.	17PHBS09	NANOSCIENCE & TECHONOLOGY	PHYSICS	FC (BS)	3	0	0	3	NIL				

CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-63)

	(iii) ENGINEERING SCIENCES (BASIC ENGINEERING COURSES) - CREDITS (18 - 27)											
1.	17CSES01	ESSENTIALS OF COMPUTING (THEORY + PRACTICE)	CSE	FC(ES)	2	0	2	3	NIL			
2.	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL			
3.	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL			
4.	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	4	0	0	4	NIL			
5.	17CMES81	ENGINEERING SKILLS PRACTICE LAB A. BASIC CIVIL ENGINEERING B. BASIC MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	0	0	4	2	NIL			
6.	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL			
7.	17MEES84	ENGINEERING GRAPHICS (THEORY + PRACTICE)	MECHANICAL	FC(ES)	1	0	4	3	NIL			
8.	17EEES82	ENGINEERING SKILL PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING B. BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2	NIL			

CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (81)

	B.E. / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII											
	CATEG	ORY B – CORE COURSES RE	LEVANT TO	THE PROG	RAN	1MI	E - (CREI	DITS (81)			
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1	17CVCC01	CONSTRUCTION MATERIALS	CIVIL	CC	3	0	0	3	NIL			
2	17CVCC02	MECHANICS OF SOLIDS -I	CIVIL	CC	2	1	0	3	NIL			
3	17CVCC03	MECHANICS OF FLUIDS	CIVIL	CC	2	1	0	3	NIL			
4	17CVCC04	SURVEYING I	CIVIL	CC	3	0	0	3	NIL			
5	17CVCC05	CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICES	CIVIL	CC	3	0	0	3	NIL			
6	17CVCC06	MECHANICS OF SOLIDS -II	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS- I			
7	17CVCC07	APPLIED HYDRAULIC ENGINEERING	CIVIL	CC	2	1	0	3	MECHANICS OF FLUIDS			
8	17CVCC08	SURVEYING -II	CIVIL	CC	3	0	0	3	SURVEYING -I			
9	17CVCC09	ENVIRONMENTAL ENGINEERING	CIVIL	CC	3	0	0	3	NIL			
10	17CVCC10	DESIGN OF REINFORCED CONCRETE ELEMENTS	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS -II			
11	17CVCC11	STRUCTURAL ANALYSIS	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS -II			
12	17CVCC12	MECHANICS OF SOILS	CIVIL	CC	2	1	0	3	NIL			
13	17CVCC13	DESIGN OF STEEL STRUCTURES	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS- II			
14	17CVCC14	HIGHWAY ENGINEERING	CIVIL	CC	3	0	0	3	NIL			
15	17CVCC15	RAILWAY , AIRPORT AND HARBOUR ENGINEERING	CIVIL	CC	3	0	0	3	HIGHWAY ENGINEERING			
16	17CVCC16	DESIGN OF REINFORCED CONCRETE STRUCTURES	CIVIL	CC	2	1	0	3	DESIGN OF REINFORCED CONCRETE ELEMENTS			
17	17CVCC17	MODERN METHODS OF STRUCTURAL ANALYSIS	CIVIL	CC	2	1	0	3	STRUCTURAL ANALYSIS			
18	17CVCC18	FOUNDATION ENGINEERING	CIVIL	CC	2	1	0	3	MECHANICS OF SOILS			
19	17CVCC19	ESTIMATION AND QUANTITY SURVEYING	CIVIL	CC	2	1	0	3	NIL			
20	17CVCC20	CONSTRUCTION PLANNING AND SCHEDULING	CIVIL	СС	3	0	0	3	NIL			
21	17CVCC81	COMPUTER AIDED BUILDING DRAWING LAB	CIVIL	CC	0	0	4	2	NIL			
22	17CVCC82	STRENGTH OF MATERIALS LAB	CIVIL	CC	0	0	4	2	NIL			
23	17CVCC83	SURVEY PRACTICAL -I LAB	CIVIL	CC	0	0	4	2	NIL			
24	17CVCC84	HYDRAULIC ENGINEERING LAB	CIVIL	CC	0	0	4	2	MECHANICS OF FLUIDS			
25	17CVCC85	SURVEY PRACTICAL -II LAB	CIVIL	CC	0	0	4	2	SURVEY PRACTICAL -I LAB			
26	17CVCC86	SOIL MECHANICS LAB	CIVIL	CC	0	0	4	2	NIL			
27	17CVCC87	ENVIRONMENTAL ENGINEERING LAB	CIVIL	CC	0	0	4	2	NIL			
28	17CVCC88	COMPUTER AIDED DESIGN AND DRAWING LAB	CIVIL	CC	0	0	4	2	DESIGN OF REINFORCED CONCRETE ELEMENTS			
29	17CVCC89	CONCRETE AND CONSTRUCTION TECHNOLOGY LAB	CIVIL	СС	0	0	4	2	CONSTRUCTION MATERIALS			
30	17CVCC90	SURVEY CAMP	CIVIL	СС	0	0	2	1	SURVEY PRACTICAL -II LAB			
31	17CVCC91	COMPREHENSION LAB	CIVIL	CC	1	1	0	2	NIL			

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

B.E / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)

	(1)	I KOGKAMINE SI ECIFIC (L) -	Cr	L'D	119	(12 - 13)
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	17CVEC01	ENGINEERING GEOLOGY	CIVIL	EC	3	0	0	3	NIL
2	17CVEC02	IRRIGATION ENGINEERING	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING
3	17CVEC03	GEOGRAPHICAL INFORMATION SYSTEM	CIVIL	EC	3	0	0	3	NIL
4	17CVEC04	REPAIR AND REHABILITATION OF STRUCTURES	CIVIL	EC	3	0	0	3	CONSTRUCTION TECHNIQUES, EQUIPMENTS AND PRACTICES
5	17CVEC05	TRAFFIC ENGINEERING AND MANAGEMENT	CIVIL	EC	3	0	0	3	HIGHWAY ENGINERING
6	17CVEC06	HYDROLOGY	CIVIL	EC	3	0	0	3	NIL
7	17CVEC07	DISASTER MITIGATION AND MANAGEMENT	CIVIL	EC	3	0	0	3	NIL
8	17CVEC08	REMOTE SENSING TECHNIQUES AND APPLICATIONS	CIVIL	EC	3	0	0	3	NIL
9	17CVEC09	HOUSING PLANNING AND MANAGEMENT	CIVIL	EC	3	0	0	3	NIL
10	17CVEC10	MANAGEMENT OF IRRIGATION SYSTEMS	CIVIL	EC	3	0	0	3	IRRIGATION ENGINEERING
11	17CVEC11	GROUND IMPROVEMENT TECHNIQUES	CIVIL	EC	3	0	0	3	MECHANICS OF SOILS
12	17CVEC12	INTRODUCTION TO SOIL DYNAMICS AND MACHINE FOUNDATIONS	CIVIL	EC	3	0	0	3	MECHANICS OF SOILS
13	17CVEC13	ELECTRONIC SURVEYING	CIVIL	EC	3	0	0	3	SURVEYING 1
14	17CVEC14	AIR POLLUTION MANAGEMENT	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING
15	17CVEC15	BRIDGE STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURES
16	17CVEC16	TALL BUILDINGS	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURES
17	17CVEC17	STRUCTURAL DYNAMICS	CIVIL	EC	3	0	0	3	STRUCTURAL ANALYSIS
18	17CVEC18	WIND ENGINEERING	CIVIL	EC	3	0	0	3	NIL
19	17CVEC19	COMPUTER AIDED DESIGN OF STRUCTURES	CIVIL	EC	2	0	1	3	DESIGN OF REINFORCED CONCRETE ELEMENTS
20	17CVEC20	INDUSTRIAL STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURE
21	17CVEC21	SMART STRUCTURES AND SMART MATERIALS	CIVIL	EC	3	0	0	3	SMART MATERIALS
22	17CVEC22	FINITE ELEMENT TECHNIQUES	CIVIL	EC	2	1	0	3	STRUCTURAL ANALYSIS
23	17CVEC23	DESIGN OF PLATE AND SHELL STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURES
24	17CVEC24	GROUND WATER ENGINEERING	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING
25	17CVEC25	PRINCIPLES OF STRUCTURAL DYNAMICS AND SEISMIC DESIGN	CIVIL	EC	3	0	0	3	FOUNDATION ENGINEERING
26	17CVEC26	CONTRACT LAWS AND REGULATIONS	CIVIL	EC	3	0	0	3	NIL
27	17CVEC27	TRANSPORT ECONOMICS	CIVIL	EC	3	0	0	3	HIGHWAY ENGINEERING
28	17CVEC28	MASS TRANSPORT MANAGEMENT	CIVIL	EC	3	0	0	3	HIGHWAY ENGINEERING
29	17CVEC29	WATER RESOURCES SYSTEMS ANALYSIS	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING
30	17CVEC30	ARCHITECTURE	CIVIL	EC	3	0	0	3	NIL
31	17CVEC31	PAVEMENT ENGINEERING	CIVIL	EC	3	0	0	3	HIGHWAY ENGINEERING
32	17CVEC32	STORAGE STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF REINFORCED

									CONCRETE ELEMENTS
33	17CVEC33	EXPERIMENTAL ANALYSIS OF STRESS	CIVIL	EC	2	1	0	3	STRUCTURAL ANALYSIS
34	17CVEC34	SHORING, SCAFFOLDING AND FORM WORK	CIVIL	EC	3	0	0	3	CONSTRUCTION MATERIALS
35	17CVEC35	MUNICIPAL SOLID AND WASTE MANAGEMENT	CIVIL	EC	3	0	0	3	NIL
36	17CVEC36	WASTE WATER ENGINEERING	CIVIL	EC	3	0	0	3	NIL

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

	(ii) OPEN ELECTIVES (CLASS ROOM OR ONLINE) - CREDITS (6 - 9)												
1.	17BTEC02	OCEAN SCIENCE	BTE	OE	3	0	0	3	NIL				
2.	17BTEC26	ECO-FRIENDLY MULTI-STOREY BUILDING	BTE	OE	3	0	0	3	NIL				
3.	17BTEC27	RENEWABLE ENERGY AND CONSTRUCTION METHODS	BTE	OE	3	0	0	3	NIL				
4.	17BTEC28	ENVIRONMENT FRIENDLY PRACTICES IN CIVIL ENGINEERING	BTE	OE	3	0	0	3	NIL				
5.	17BTEC25	BIOLOGY FOR NON BIOLOGISTS	BTE	OE	3	0	0	3	NIL				
6.	17CSEC06	CRYPTOGRAPHY AND NETWORK SECURITY	CSE	OE	3	0	0	3	NIL				
7.	17CSCC19	INTRERNET OF THINGS	CSE	OE	3	0	0	3	NIL				
8.	17CSCC17	CYBER SECURITY	CSE	OE	3	0	0	3	NIL				
9.	17CSEC11	GREEN COMPUTING	CSE	OE	3	0	0	3	NIL				
10.	17CSEC34	WEB DESIGN AND MANAGEMENT	CSE	OE	3	0	0	3	NIL				
11.	17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	BME	OE	3	0	0	3	NIL				
12.	17BMEC12	HOSPITAL MANAGEMENT	BME	OE	3	0	0	3	NIL				
13.	17BMEC20	HOSPITAL INFORMATION SYSTEM	BME	OE	3	0	0	3	NIL				
14.	17BMEC05	HOME MEDICARE TECHNOLOGY	BME	OE	3	0	0	3	NIL				
15.	17BMEC10	BODY AREA NETWORKS AND MOBILE HEALTHCARE	BME	OE	3	0	0	3	NIL				
16.	17ATEC04	SPECIAL TYPES OF VEHICLES	AUTOMOBILE	OE	3	0	0	3	NIL				
17.	17ATEC06	AUTOMOTIVE SAFETY	AUTOMOBILE	OE	3	0	0	3	NIL				
18.	17ATEC10	ALTERNATIVE ENERGY SOURCES FOR AUTOMOBILES	AUTOMOBILE	OE	3	0	0	3	NIL				
19.	17ATEC15	VEHICLE TRANSPORT MANAGEMENT	AUTOMOBILE	OE	3	0	0	3	NIL				
20.	17ATEC17	VEHICLE AIR-CONDITIONING	AUTOMOBILE	OE	3	0	0	3	NIL				
21.	17EEEC10	POWER QUALITY	EEE	OE	3	0	0	3	NIL				
22.	17EEEC11	POWER SYSTEM PLANNING AND RELIABILITY	EEE	OE	3	0	0	3	NIL				
23.	17EEEC16	ELECTRIC VEHICLES	EEE	OE	3	0	0	3	NIL				
24.	17EEEC18	RENEWABLE ENERGY TECHNOLOGY	EEE	OE	3	0	0	3	NIL				
25.	17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EEE	OE	3	0	0	3	NIL				
26.	17MESE12	PRODUCT LIFE CYCLE MANAGEMENT	MECH	OE	3	0	0	3	NIL				
27.	17MESE21	IRON AND STEEL MAKING	MECH	OE	3	0	0	3	NIL				
28.	17MESE25	COMPUTATIONAL FLUID DYNAMICS	MECH	OE	3	0	0	3	NIL				
29.	17MESE34	FAILURE ANALYSIS OF MATERIALS	MECH	OE	3	0	0	3	NIL				
30.	17MESE27	POWER PLANT ENGINEERING	MECH	OE	3	0	0	3	NIL				
31.	17ECEC04	DSP WITH FPGA	ECE	OE	3	0	0	3	NIL				
32.	17ECEC06	MEMS AND SENSORS	ECE	OE	3	0	0	3	NIL				
33.	17ECEC21	ADVANCED ROBOTICS	ECE	OE	3	0	0	3	NIL				

34.	17ECEC22	INNOVATIVE PROJECT	ECE	OE	3	0	0	3	NIL
35.	17ECEC23	INTRODUCTION TO MACHINE VISION	ECE	OE	3	0	0	3	NIL
36.	17MBHS06	LEAN START-UP MANAGEMENT	MBA	OE	3	0	0	3	NIL

<u>CATEGORY D</u> <u>PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)</u> <u>CREDITS (18)</u>

B.E. / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII												
C	ATEGORY D -	- PROJECT + INTERNSH	IIP + INDUSTRY	ELECTIVES	5 (P + I	+ I)-	CRED	ITS (18)			
		(i) PRO	DJECT - CREDIT	FS (9)								
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.	17CVPI01	PROJECT WORK AND VIVA VOCE	CIVIL	PI	0	0	18	9	NIL			
(ii) l	(ii) INTERNSHIP / MINI PROJECT / INDUSTRY SUPPORTED COURSES - CREDITS (9)											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.	17CVPI02	INTERNSHIP TRAINING	CIVIL	PI	0	0	6	3	NIL			
2.	17CVPI03	MINI PROJECT	CIVIL	PI	0	0	6	3	NIL			
3.	17CVPI04	UNIT OPERATIONS AND PROCESS IN WATER AND WASTE WATER	CIVIL	PI	3	0	0	3	NIL			
4.	17CVPI05	CONSTRUCTION PROJECT MANAGEMENT	CIVIL	Ы	3	0	0	3	NIL			
5.	17CVPI06	PREFABRICATED STRUCTURES	CIVIL	PI	3	0	0	3	NIL			
6.	17CVPI07	INDUSTRIAL WASTE MANAGEMENT	CIVIL	PI	3	0	0	3	NIL			

CATEGORY E

EMPLOYABILITY ENHANCEMENT COURSES. CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

B.E / B.TECH. - CIVIL ENGINEERING - SEMESTER I TO VIII

CATEGORY E – EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18)

(** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

S.NO.	CODE	COURSE TITLE	OFFERING DEPT	CATEGORY	GORY L T P			С	PRE - REOUIST
i		EMPLOYABILITY	ENHANCEMENT	COURSES (EE	C)				
1	17APEE01	PERSONALITY SKILLS DEVELOPMENT - I	MATHS	EE	2 W TR	/EEKS	S OF NG	1	NIL
2	17APEE02	PERSONALITY SKILLS DEVELOPMENT - II	ENGLISH & MANAGEMENT	EE	2 W TR	/EEKS	S OF NG	1	NIL
3	17CVEE01	ADVANCED BUILDING DRAWING	CIVIL	EE	0	0	4	2	NIL
4	17CVEE02	QUANTITY SURVEYING	CIVIL	EE	0	0	4	2	NIL
5	17CVEE03	MUNICIPALITY BUILDING DESIGN BY LAWS	CIVIL	EE	0	0 0 4			NIL
6	17CVEE04	STRUCTURAL DETAILING WITH THE USE OF SOFTWARES	CIVIL	EE	0	0	4	2	NIL
7	17CVEE05	QUALITY CONTROL IN CONSTRUCTION	CIVIL	EE	0	0	4	2	NIL
8	17CVEE06	ADVANCED LAND SURVEYING TECHNIQUES	CIVIL	EE	0	0	4	2	NIL
9	17CVEE07	ADVANCED BUILDING MATERIALS AND CONSTRUCTION CHEMICALS	CIVIL	EE	0	0	4	2	NIL
		CO - CURRI	CULAR COURSE	ES					
1	17APEE03	NCC	NCC CELL	EE	2 W TRA NCC	2 WEEKS OF TRAINING IN NCC CAMP		1	NIL
2	17APEE04	NSS	NSS CELL	EE	2 W SOC SER NSS	EEKS C CIAL VICE I CAMF	N N	1	NIL
3	17APEE05	SPORTS AND GAMES (INTER – UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE				1	NIL
4	17APEE06	SPORTS AND GAMES (INTRA- UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE				2	NIL
5	17APEE07	SPORTS AND GAMES (STATE AND NATIONAL LEVELS)	PHYSICAL EDUCATION	EE				2	NIL
		EXTRA CURI	RICULAR COURS	SES					
1	17CVEE08	EXTRA CURRICULAR COURSE - I	CIVIL	EE	15	HOU	RS	1	NIL
2	17CVEE09	EXTRA CURRICULAR COURSE - II	CIVIL	EE	15	HOU	RS	1	NIL
3	17CVEE10	EXTRA CURRICULAR COURSE - III	CIVIL	EE	15 HOURS		1	NIL	
4	17CVEE11	EXTRA CURRICULAR COURSE - IV	CIVIL	EE	15 HOURS		1	NIL	
5	17CVEE12	EXTRA CURRICULAR COURSE - V	CIVIL	EE	15 HOURS			1	NIL
6	17CVEE13	EXTRA CURRICULAR COURSE -VI	CIVIL	EE	15 HOURS			1	NIL

FOR DEGREE WITH SPECIALISATION CATEGORY C – PROGRAMME SPECIFIC ELECTIVE COURSES -CREDITS (12 - 15)

SPECIALISATION - ERP IN CONSTRUCTION

		SPECIALISATIO	N – ERP	IN CON	ST	'RU(CTIC	DN	
1.	17CVSE01	APPLICATION OF STATISTICAL METHODS IN CONSTRUCTION	MATHS	EC - PS	3	0	0	3	ENGINEERING MATHEMATICS
2.	17CVSE02	ENTERPRISE WIDE INFORMATION SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL
3.	17CVSE03	MANAGEMENT AND PROJECT PLANNING IN CONSTRUCTION	CIVIL	EC - PS	3	0	0	3	NIL
4.	17CVSE04	CONSTRUCTION CONTRACTS AND ADMINISTRATION	CIVIL	EC - PS	3	0	0	3	NIL
5.	17CVSE05	TQM IN CONSTRUCTION	CIVIL	EC - PS	3	0	0	3	TOTAL QUALITY MANAGEMENT
6.	17CVSE06	HUMAN RESOURCE MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL
7.	17CVSE07	ENTERPRISE RESOURCE PLANNING SYSTEM	CIVIL	EC - PS	3	0	0	3	NIL

SPECIALISATION - IRRIGATION ENGINEERING

		SPECIALISATION – IRR	IGATIO	ON ENGI	NEF	ERIN	IG		
1.	17CVSE08	SURFACE AND GROUND WATER HYDROLOGY	CIVIL	EC - PS	3	0	0	3	NIL
2.	17CVSE09	ENVIRONMENTAL IMPACT ASSESSMENT OF IRRIGATION PROJECTS	CIVIL	EC - PS	3	0	0	3	IRRIGATION ENGINEERING
3.	17CVSE10	WATERSHED CONSERVATION AND MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL
4.	17CVSE11	IRRIGATION SYSTEMS MANAGEMENT	CIVIL	EC - PS	3	0	0	3	IRRIGATION ENGINEERING
5.	17CVSE12	COMPUTATIONAL METHODS IN IRRIGATION MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL
6.	17CVSE13	AGRICULTURAL ECONOMICS	CIVIL	EC - PS	3	0	0	3	NIL
7.	17CVSE14	MODERNIZATION OF IRRIGATION SYSTEMS	CIVIL	EC - PS	3	0	0	3	IRRIGATION ENGINEERING

SPECIALISATION - DISASTER MITIGATION AND RECOVERY

	SPECIALISATION – DISASTER MITIGATION AND RECOVERY												
1.	17CVSE15	TYPOLOGY OF NATURAL AND MANMADE DISASTERS	CIVIL	EC - PS	3	0	0	3	NIL				
2.	17CVSE16	CRISIS COMMUNICATION & MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL				
3.	17CVSE17	DISASTER PREPAREDNESS AND DECISION MAKING	CIVIL	EC - PS	3	0	0	3	NIL				
4.	17CVSE18	VULNERABILITY MAPPING TECHNIQUES FOR DISASTERS	CIVIL	EC - PS	3	0	0	3	NIL				
5.	17CVSE19	INDUSTRIAL HAZARDS PREVENTIVE MANAGEMENT.	CIVIL	EC - PS	3	0	0	3	NIL				
6.	17CVSE20	APPLICATION OF GIS&RS IN DISASTER MANAGEMENT.	CIVIL	EC - PS	3	0	0	3	NIL				
7.	17CVSE21	FINANCE AND INSURANCE IN DISASTER MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL				

SPECIALISATION - MASS TRANSPORT SYSTEMS

	SPECIALISATION – MASS TRANSPORT SYSTEMS											
1.	17CVSE22	ADVANCED SYSTEM DYNAMICS MODELING IN TRANSPORTATION ENGINEERING	CIVIL	EC - PS	3	0	0	3	NIL			
2.	17CVSE23	ENVIRONMENTAL IMPACT ASSESSMENT OF TRANSPORTATION PROJECTS	CIVIL	EC - PS	3	0	0	3	NIL			
3.	17CVSE24	INTELLIGENT TRANSPORTATION SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL			
4.	17CVSE25	LOGISTICS IN TRANSPORTATION ENGINEERING	CIVIL	EC - PS	3	0	0	3	NIL			
5.	17CVSE26	PAVEMENT MANAGEMENT SYSTEM	CIVIL	EC - PS	3	0	0	3	NIL			
6.	17CVSE27	REMOTE SENSING AND GIS IN TRANSPORTATION DEVELOPMENT	CIVIL	EC - PS	3	0	0	3	NIL			
7.	17CVSE28	URBAN TRANSPORTATION INFRASTRUCTURE– PLANNING AND DESIGN	CIVIL	EC - PS	3	0	0	3	NIL			

SPECIALISATION - REAL ESTATE AND VALUATION

	SPECIALISATION – REAL ESTATE AND VALUATION												
1.	PRINCIPLES OF VALUATION	CIVIL	EC - PS	3	0	0	3	NIL					
2.	REAL ESTATE MANAGEMENT & ECONOMICS	CIVIL	EC - PS	3	0	0	3	NIL					
3.	REAL ESTATE HUMAN RESOURCE MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL					
4.	LAWS FOR ACQUISITION AND CONTRACT	CIVIL	EC - PS	3	0	0	3	NIL					
5.	REAL ESTATE FINANCE& MARKETING	CIVIL	EC - PS	3	0	0	3	NIL					
6.	VALUATION & DOCUMENTATION WRITING	CIVIL	EC - PS	3	0	0	3	NIL					
7.	QUALITY CONTROL AND ASSURANCE IN REAL ESTATE	CIVIL	EC - PS	3	0	0	3	NIL					

SPECIALISATION - SUSTAINABLE CONSTRUCTION TECHNOLOGY

	SPECIALISATION – SUSTAINABLE CONSTRUCTION TECHNOLOGY												
1.	17CVSE36	RENEWABLE ENERGY SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL				
2.	17CVSE37	THERMAL INSULATION INSTALLATION	CIVIL	EC - PS	3	0	0	3	NIL				
3.	17CVSE38	SUSTAINABLE URBAN SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL				
4.	17CVSE39	ENERGY AUDITING IN SPECIAL STRUCTURES	CIVIL	EC - PS	3	0	0	3	NIL				
5.	17CVSE40	LIFE CYCLE ASSESSMENT FOR COMPLEX SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL				
6.	17CVSE41	INFRASTRUCTURE PROJECT DEVELOPMENT	CIVIL	EC - PS	3	0	0	3	NIL				
7.	17CVSE42	GREEN AND ENERGY EFFICIENT BUILDING	CIVIL	EC - PS	3	0	0	3	NIL				

SPECIALISATION - URBAN INFRASTRUCTURE

	SPECIALISATION – URBAN INFRASTRUCTURE												
1.	17CVSE43	INFRASTRUCTURE PLANNING AND URBANIZATION PROCESS	CIVIL	EC - PS	3	0	0	3	NIL				
2.	17CVSE44	URBAN ENVIRONMENTAL MANAGEMENT AND LAW	CIVIL	EC - PS	3	0	0	3	NIL				
3.	17CVSE45	SUSTAINABILITY IN BUILT ENVIRONMENT	CIVIL	EC - PS	3	0	0	3	NIL				
4.	17CVSE46	CONSTRUCTION & CONTRACT SAFETY MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL				
5.	17CVSE47	ICT BASED CITY AND INFRASTRUCTURE PLANNING	CIVIL	EC - PS	3	0	0	3	NIL				
6.	17CVSE48	URBAN FINANCE	CIVIL	EC - PS	3	0	0	3	NIL				
7.	17CVSE49	URBAN DESIGN PROJECT	CIVIL	EC - PS	3	0	0	3	NIL				

SPECIALISATION - ENVIRONMENTAL ENGINEERING

	SPECIALISATION – ENVIRONMENTAL ENGINEERING												
1.	17CVSE50	ENVIRONMENTAL IMPACT ASSESSMENT	CIVIL	EC - PS	3	0	0	3	NIL				
2.	17CVSE51	INSTRUMENTAL MONITORING OF ENVIRONMENT	CIVIL	EC - PS	3	0	0	3	NIL				
3.	17CVSE52	INDOOR AIR QUALITY	CIVIL	EC - PS	3	0	0	3	NIL				
4.	17CVSE53	ENVIRONMENTAL POLICIES AND LEGISLATIONS	CIVIL	EC - PS	3	0	0	3	NIL				
5.	17CVSE54	SUSTAINABLE DEVELOPMENT AND ENVIRONMENT	CIVIL	EC - PS	3	0	0	3	NIL				
6.	17CVSE55	REMOTE SENSING AND GIS FOR ENVIRONMENTAL APPLICATION	CIVIL	EC - PS	3	0	0	3	NIL				
7.	17CVSE56	WASTE WATER MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL				

COURSES OFFERED TO OTHER DEPARTMENTS

B.E. / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII											
		COURSES OFFERED 1	O OTHER D	EPA	RT	ME	NTS				
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С	PRE- REQUISITE	OFFERED TO		
1	17CMES02	BASICS OF CIVIL ENGINEERING	ES	2	0	0	2	NIL	MECHANICAL, AUTOMOBILE, AERONAUTICAL, CIVIL, CSE, ECE, EEE, MECHATRONICS & SAE		
2	17CMES81	ENGINEERING SKILLS PRACTICE LAB B. BASIC CIVIL ENGINEERING	ES	0	0	2	1	NIL	MECHANICAL, AUTOMOBILE, AERONAUTICAL, CIVIL, CSE, ECE, EEE, MECHATRONICS & SAE		
3	17CVCC32	FLUID MECHANICS AND STRENGTH OF MATERIALS	CC	3	0	0	3	NIL	AUTOMOBILE & MECHATRONICS		
4	17CVCC33	STRENGTH OF MATERIALS	CC	3	0	0	3	NIL	MECHANICAL & AERONAUTICAL		
5	17CVCC34	FLUID MECHANICS AND MACHINERY	CC	3	0	0	3	NIL	MECHANICAL , AERONAUTICAL		
6	17CVCC92	FLUID MECHANICS AND STRENGTH OF MATERIALS LAB	CC	0	0	4	2	NIL	AUTOMOBILE, AERONAUTICAL & MECHATRONICS		
7	17CVCC93	HYDRAULICS AND STRENGTH OF MATERIALS LAB	CC	0	0	4	2	NIL	MECHANICAL		
8	17CVCC35	FLUID AND SOLID MECHANICS	CC	3	0	0	3	NIL	SAE		
9	17CVCC94	FLUID AND SOLID MECHANICS LAB	CC	0	0	4	2	NIL	SAE		
10	17CVEC07	DISASTER MITIGATION AND MANAGEMENT	EC	3	0	0	3	NIL	BME, EEE, CSE, CSE- CLOUD, IT & MECHANICAL		

SYLLABUS

SEMESTERS I TO VIII

(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS)

Sub	oject				Subjec	t Title				Cate	gory	L	Т	Р	C	redit
17EG	GHS01			TECH	INICA	L ENG	LISH			H	SS	3	0	0		3
PRE. Techr comm The o	AMBL nical En nunicatio utcome etency i	E glish is on skills of the c n Englis	a life sk in Eng ourse is sh langu	cill cour glish, es to help age an	rse nece sential the stude the the the stude t	essary f for und idents a ov maki	or all st erstand cquire	tudents ling and the lang student	of Eng l expres guage s s comp	ineering using the kills of l etent an	and Tec ideas of Listening d emplo	chnology f differen g, Speaki vable in t	. It aims a t profess ng, Read he global	at dev ional ing ar lised s	elopi conte nd W	ng ext. riting rio.
PRE Nil	REQU	ISITE		<u>8</u>		<u>, , , , , , , , , , , , , , , , , , , </u>			<u>s • • • • • • • • • • • • • • • • • • •</u>		<u> </u>	<u>, uc i c i i c</u>	<u></u> 8100m			
COU	IRSE C)BJEC	TIVES	5												
1	To enab	ole stude	ents to c	levelop	LSRW	′ skills i	n Engli	ish. (Li	stening	, Speaki	ng, Read	ling, Wri	ting.)			
2	To mak	te them t	o beco	me effe	ctive co	ommun	icators	in Engl	ish							
3	To ensu	ire that l	earners	use El	lectroni	c media	a mater	ials for	develo	ping lan	guage sk	tills				
4	To aid t	he stude	ents wit	h empl	oyabilit	y skills	•									
5	To mot	ivate stu	dents c	ontinuo	ously us	se Engli	sh lang	uage.								
COU	RSE C	OUTCO	DMES													
On	the suc	cessful	compl	letion of	of the c	ourse,	studen	ts will	be abl	e to						
CO1.	Listen,	underst	and and	l respor	nd to otl	hers in o	differer	nt situat	tions				Unders	tand a	and A	pply
CO2.	Speak f	fluently	and cor	rectly v	with cor	rect pro	onuncia	tion in	differe	nt situati	on		Apply			
CO3.	To mak	te the stu	idents o	experts	in prof	essiona	l writin	g					Apply			
CO4. techni	To mak ical and	te the stu scientif	idents i ic field	recogni	ze the r	ole of t	echnica	l writir	ng in the	eir caree	rs in bus	iness,	Apply			
CO5. strong	To mak g.	the stu	udents	good co	ommuni	icators	at the w	ork pla	ice and	to be the	eoretical	ly	Unders	tand a	and A	Apply
MAF	PPING	WITH	PRO	GRAM	IME (OUTC	OMES	S AND	PROG	GRAM	ME SP	ECIFIC	OUTC	OMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	S	-	-	-	М	М	М	L	S	S	S	М	-	-		-
CO2	S	-	L	М	S	S	М	L	М	S	М	S	-	-		-
CO3	L	L	-	L	S	М	-	L	М	S	-	L	-	-		-
CO4	L	М	-	-	М	М	S	М	М	М	S	S	-	-		-
CO5	S	М	L	-	L	-	S	М	S	S	L	М	-	-		-
S- St	rong; N	I-Mediu	ım; L-	Low												
SYL	LABUS	5														

UNIT – **I**:Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

UNIT – **II**:Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

UNIT – III Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

UNIT – **IV** Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

UNIT – V Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXTBOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.
- 4. 4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.Saradha	Associate Professor- Head - English	VMKVEC	saradha@vmkvec.edu.in

17	ECHO01		F				CEIA	D		Catego	ry	L	Т	Р	С	redit
1/	EGH501		E	NGLIS	OH LAI	NGUA	GE LA	D		HSS		0	0	4		2
PR Eng and	E AMBL lish Lang producing	E uage La g langua	boratory ge skills	/ provic s throug	les tech gh inter	nologic active l	cal supp essons	oort to s and cor	tudents	. It acts a cative mo	us a platf ode of te	form fo aching	or learnin	g, pra	cticii	ng
PR Nil	EREQU	ISITE														
CO	URSE C	BJEC	FIVES													
1	To unde	rstand c	ommun	ication	nuisano	ces in th	ne corpo	orate se	ctor.							
2	To unde	rstand tl	ne role o	of moth	er tong	ue in se	cond la	inguage	learnir	ng and to	avoid in	terfere	ence of n	other	tong	gue.
3	To com	nunicate	effectiv	vely thr	ough di	fferent	activiti	es								
4	To under	stand ar	nd apply	the tel	ephone	etiquet	te									
5	Case stu	dy to un	derstand	l the pr	actical	aspects	of com	munica	tion							
CO	URSE (UTCO	MES													
0	n the suc	cessful	comple	etion of	f the co	ourse, s	student	s will l	be able	e to						
CO	I.Better p	erforma	nce in C	broup D	iscussi	on and	Intervie	ew					Unders	stand a	and A	Apply
CO	2.Better p	erforma	nce in tl	ne art o	f conve	rsation	and dis	cussior	1.				Apply			
CO	3. Better jo	ob oppor	tunities	in corp	oorate c	ompani	es						Apply			
MA	PPING	WITH	PROG	GRAM	ME O	UTCO	OMES	AND	PROG	RAMM	IE SPE	CIFI	C OUT	COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSO	PS	SO2	PSO3
CO1	-	S	М	S	-	L	-	-	S	S	М	-	-		-	-
CO2	М	-	-	-	-	-	-	-	М	S	-	М	-		-	-
CO3	М	-	-	-	-	-	-	-	-	S	-	М	-		-	
S- S	- Strong; M-Medium; L-Low															
SYI UNI a so	LABUS T - I: Ice	Breake	r, Grouj ling- (fi	oing, Li ll in the	stening blanks	- (Hea) Teler	ring an	d listen	ing)- A ation	ctive Lis	tening-]	Passive	e Listenii	ng – L	isten	ing to

UNIT -II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

UNIT -III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual. **UNIT -IV:** Telephone Etiquette, Dining Etiquette, Meeting Etiquette. **UNIT -V:**Case study of Etiquette in different scenario.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.Saradha	Associate Professor-Head – English	VMKVEC	saradha@vmkvec.edu.in
2	Dr. Jennifer G Joseph	Associate Professor	AVIT	Jennifer@avit.ac.in

17EGHS82 PROFESSIONAL COMMUNICATION AND PERSONAL ITY DEVELOENT Category L T													Т	Ρ	Cred	it
	011001	-	ł	PERSC	DNAL	ITY D	EVEL	OEN'I			HS	0	0	2	:	1
To de enune writin	evelop ciate w ng tech	studen ords aı niques	ts with nd sent and st	good ences o yles ba	present clearly used on	tation a and ef	and wr fective ommun	iting sk ely. De nicatior	tills (Pr velop p being	ofessio roper li used.	nally &	technic skills. U	ally). Jnder	Art star	ticulate	and rent
PRE	REQU	ISITE	- NIL													
COU	RSE ()BJE(CTIVE	S												
1 7	To deve	elop co	mmun	ication	and pe	ersonal	lity ski	lls.								
2 T	lo impi	ove A	ptitude	skills,	train t	o impr	ove se	lf-learr	ning / re	esearch	ing abil	ities, pre	esenta	tior	، skills	&
t	echnica	al writi	ng.													
3 T	lo impi	ove st	udents	emplo	yabilit	y skills										
4 T	To deve	elop co	mmun	ication	and pr	oblem	solvin	ıg skill	s.							
5 T	To deve	elop pro	ofessio	nal wi	h idea	listic, j	practic	al and 1	moral v	values.						
6 T	lo prod	luce co	ver let	ters, re	sumes	and jo	b appli	ication	strateg	ies.						
COU	RSE (DUTC	OMES	5												
On th	ne succ	essful	comple	etion of	f the co	ourse, s	student	s will l	be able	to				-		
CO1.	Impro	ove con	nmuni	cation	and pe	rsonal	ity skil	ls.						A	Apply	
CO2.	Demo	nstrate	effect	ive use	e of tea	m wor	k skills	s to coi	nplete	given t	asks.			A	Apply	
CO3. stude	Speak	ing wi	th clari	ity and	confid	lence t	hereby	enhan	cing en	nployał	oility ski	ills of th	e	A	Apply	
CO4.	Train	the stu	dents i	n orga	nized a	and pro	fessio	nal wri	ting					A	Apply	
CO5.	Devel	op stud	lents re	eading	skills t	that co	uld be	adopte	d while	e readir	ig text			A	Apply	
CO6.	Impro	ve stu	dents tl	neir vo	cabula	ry and	use the	em in a	ppropr	iate situ	lation			U	Jndersta	und
MAF	PPING	WITH	H PRO	GRA	MME	OUT (COME	S ANI) PRO	GRAM	IME SF	PECIFI	COU	TC	OMES)
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	М	М	-	-	-	М	М	-	М	S	-	-				
CO2	М	-	-	-	-	-	-	-	S	Μ	-	-				
CO3	-	-	-	-	-	-	М	-	S	S	-	-				
CO4	S	-	-	-	-	-	-	-	-	-	-	Μ				
CO5	D5															
CO6	S	-	-	-	-	-	-	-	М	S	-	Μ				
S-St	rong; N	/I-Med	ium; L	-Low												

SYLLABUS

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication.

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV. **UNIT IV. SPEAKING SKILLS:** Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and RajendraK.Sharma, S. K Kataria& Sons, New Delhi, Rep^{***}nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, AshaKaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata McGraw – Hill.

Course Designers:

COURSE	DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1.	Dr. P.Saradha/Associate Professor – Head- English	saradha@vmkvec.edu.in

17F	EGHS()2		BUSI	NESS	ENG	LISH			Ca	itegory	L	Т	Р	Cre	edit
											HSS	3	0	0		3
Lang	uage is	s one o	of the n	nost va	lued p	ossessi	ions of	men. 1	It acts a	as a rep	ository	of wisd	om.	Am	ong all	other
langu	ages H	Englis	h, the	interna	tional	langua	age pla	ays a v	vital ro	le as a	propel	ler for	the	adv	anceme	nt of
know	ledge	in diff	erent fi	elds ar	nd as a	telesco	ope to	view th	ne drea	m of the	e future.	•				
PREF	REQU	ISITI	E- NIL													
COU	RSE (OBJE	CTIVE	S												
1	To in	npart a	and enh	ance co	orporat	e com	munica	ation.								
2	To en	nable l	earners	to dev	elop p	resenta	ation sk	cills								
3	To b	uild c	onfiden	ce in l	earners	to use	e Englis	sh in B	usiness	s contex	K					
4	To m	ake th	em exp	erts in	profes	sional	writing									
5	To as	sist st	udents	unders	tand th	e role	of thin	king in	all for	rms of c	ommun	ication				
6	To eq	uip st	udents	with e	nploya	bility	and joł	o searcl	hing sk	ills						
COU	RSE (OUTC	COMES	5												
On th	e succ	essful	comple	etion o	f the co	ourse, s	student	s will l	be able	to						
CO1.	Comn	nunica	ate with	a rang	e of fo	rmal a	nd info	ormal c	ontext					U	nderstar	nd
CO2	. Stude	ents w	ill unde	rgo in	activiti	ies, dei	monstr	ating ii	nteracti	ion skil	ls and co	onsider		A	pply	
how	own co	mmu	nication	ı is adj	usted i	n diffe	rent sc	enario								
CO3.	Streng	gtheni	ng of oi	al and	writte	n skills	in the	busine	ess con	text				A	pply	
CO4.	Create	e inter	est amo	ong the	studer	nts abo	ut a to	pic by e	explori	ng thou	ights and	d ideas		U	nderstar	nd
CO5.	Make	the st	udents	to start	with p	leasing	g note	and m	ake the	em to gi	ve diffe	rent ide	eas	A	pply	
CO6.	Make	them	in bette	er perfo	ormanc	e in th	e art of	comm	nunicat	ion				A	pply	
MAP	PING	WIT	H PRO	GRA	MME	OUTO	COME	S ANI) PRO	GRAM	IME SF	PECIFI	CO	UT	COME	S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3
CO1	-	-	М	-	-	L	-	-	М	S	-	-	-		-	-
CO2	-	-	-	-	-	-	-	-	-	S	М	-	-		-	-
CO3	-	-	М	-	-	-	-	-	М	S	-	-	-		-	-
CO4	М	М	-	-	L	S	-	М	S	S	-	L	-		-	-
CO5	М	-	-	-	-	М	-	М	М	S	-	-	-		-	-
CO6	S	Μ	Μ	-	-	S	М	-	-	S	-	-	-		-	-
S- Sti	rong; N	A-Med	lium; L	-Low	-				-							

SYLLABUS

UNIT – I: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

UNIT – II: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

UNIT – **III** Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs - E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

UNIT IV - Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences -Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

UNIT V - Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXTBOOK

1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English - Writing, Reading and Speaking - Pickett and Lester, Harper and Row

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1.	Dr. P.Saradha/Associate Professor – Head- English	saradha@vmkvec.edu.in

17MF	RHS04		ΤΟ	TAL Q	QUAL	TY M	ANAG	EME	NT		Categor	y L	, T	Р	C	redit
										_	HSS	3	0	0		3
Qualit	y mean	s Degr	ee of E	Excelle	nce a I	Product	or Ser	vice pi	ovides	. Quali	ty Mana	gemen	t refer t	hat th	ne	
standa	rds pro	vide gu	iidance	e and to	ools fo	r comp	anies a	nd org	anizati	ons wh	io want t	o ensu	e that	heir p	prod	ucts
and se	rvices o	consist	ently n	neet cu	stomer	"s requ	iiremei	nts, and	d that q	uality	is consis	tently i	mprov	ed. To	otal	
Quali	ty Man	ageme	ent (TO	QM) de	escribe	s a mai	nageme	ent app	roach	to long	-term su	iccess t	hrough	custo	omer	Ĺ
satisfa	ction a	nd, is a	n integ	grative	philos	ophy of	f mana	gemen	t for co	ontinuo	usly imp	proving	the qu	ality o	of	
produ	cts and	proces	ses. Its	functi	on incl	ludes th	nat qua	lity of	produc	ts and	processe	s is the	respon	nsibili	ity of	f
everyo	one who	o is inv	olved	with th	e creat	tion or	consun	nption	of the j	produc	ts or serv	vices of	ffered b	oy an		
organi	zation.	It beco	omes e	ssentia	l to su	rvive a	nd grov	v in glo	obal ma	arkets,	organiza	tions w	vill be 1	requir	ed to)
develo	op custo	omer fo	ocus an	d invo	lve em	ployees	s to coi	ntinual	ly impr	ove Qu	uality and	d keep	sustain	able g	grow	/th.
DDED	EALI															
PKER	EQUI	SIIE N	II.													
COU	RSE O	BJEC	LL FIVES													
1	To ur	ndersta	nd the	introdu	action a	about T	Total Q	uality	Manag	ement.						
2	To ur	ndersta	nd the	TQM 1	orincip	les.		•								
3	To ur	ndersta	nd the	statisti	cal pro	cess co	ontrol									
4	To in	npart th	ne vario	ous TQ	M too	ls										
5	To ur	dersta	nd the	quality	v syster	ns.										
6	To ur	ndersta	nd the	introdu	uction a	about T	otal Q	uality	Manag	ement.						
COU	RSE O	UTCO	MES					5	0							
On the	e succes	sful co	mpleti	ion of t	he cou	rse, stu	dents	will be	able to)						
CO1.	Unders	stand th	ne imp	ortance	e of qua	ality an	d TQM	I at ma	nageria	al level	•	Unde	erstand			
CO2.	Explain	n the re	equired	tools	to impl	ement	TQM.					Appl	У			
CO3.	Analys	e vario	ous TQ	M para	ameter	s with l	nelp of	statisti	ical too	ls.		Anal	ysing			
CO4.	Evalua	ting va	rious 7	ГОМ Т	Technic	jues						Evalı	iate			
CO5.	Propose	e the Q	uality	Manag	ement	System	ns in a	differe	nt			Creat	e			
	organiz	ation e	enviror	ment		2										
MAP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAMN	ME SPE	CIFIC	OUT	СОМ	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSC	02	PSO3
CO1.	М	L	L	L	L	L	L	L	L	M	L	L				
CO2.	S	S	М	L	М	L	L	М	М	L	L	L				
CO3.	S	S	S	М	S	М	L	М	М	L	L	М				
CO4.	М	S	S	L	М	L	L	М	М	L	L	М				
CO5.	S	S III	S	L	М	М	S	М	М	S	М	S				L
S- Stro	ong; M-	Mediu	m; L-I	LOW												
SYLL	ABUS										-					
	INTRODUCTION 9															
Qual	ity: Def	inition	- D1m	ension	s - Plai	nnıng-	costs –	Analy	sis Tec	nnique	es for Qu	ality Co	osts- B	asic c	once	epts of
Total	Quality	Manag	gemen	t- Histo	orical H	Review	- Princ	iples -	Leader	rship –	Concep	ts- Role	e of To	p Ma	nage	ment-

Council- Statements- Strategic Planning- Deming Philosophy- TQM Implementation - Barriers.

TQM PRINCIPLES

Customer satisfaction - Perception of Quality- Complaints- Service Quality- Customer Retention- Employee

9

Involvement - Motivation- Empowerment- Teams- Re	cognition and Reward- Performance Appraisal- Be	enefits-
Continuous Process Improvement - Juran Trilogy-	PDSA Cycle- 5S- Kaizen-Basic Concepts- St	trategy-
Performance Measure.		
STATISTICAL PROCESS CONTROL (SPC)	9	
The Computer is a formality of the formal providence of the	Manager of a sector 1 Tau day of Pierrowiczy Day	

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA.

QUALITY SYSTEMS

9

9

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989. Narayana V and Sreenivasan - N.S. Quality Management – Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS

S.No.	Name of the Faculty	Mail ID
1.	Dr.A.Mani	asmanimba@gmail.com

17M	BHS0	3		ENGI	NEER	ING M	[ANA	GEME	ENT AN	ND	Category	L	Т	Р	Cı	edit
]	ETHI	CS				HSS	3	0	0		3
"Eng	ineerir	ng is ar	n impoi	rtant ar	nd learr	ned pro	fessior	n. As m	embers	s of this	s professio	on, eng	gineer	s are	expec	ted to
exhib	it the	highest	t standa	ards of	honest	y and i	ntegrit	y. Eng	ineering	g has a	direct an	d vital	impa	ct on	the qu	ality
of life	e for a	ll peop	le. Acc	cording	ly, the	service	es prov	ided b	y engin	eers re	quire hon	esty, i	mpart	iality	y, fairn	ess,
and e	quity,	and m	ust be	dedicat	ed to t	he prot	ection	of the	public h	nealth,	safety, an	d welf	are. E	Ingin	neers m	ust
perform under a standard of professional behavior that requires adherence to the highest principles of ethical																
conduct.".																
PRE	REQU	JISITI	E - NI	L												
COU	RSE	OBJE	CTIVE	ES	1 6 1											
1	To und	lerstand	the Fun	damenta	uls of pla	nning.	<u> </u>									
2	To eva	luate the	e variou	s organi	sation ar	id staffir	ng functi	ions.								
3	To und	derstand	the mot	$\frac{1}{2}$	and cont	rolling n	netnods									
4	To im	port the	ne cou	thics fo	r ongino	ore										
					rengine	ci s.										
On th		essful	compl	5 etion o	f the co	urse s	tudente	s will b	e able t	0						
CO1	Unde	erstand	the im	nortan	$\frac{1}{ce}$ of n	nanagei	nent d	ecision	makin	g and r	lanning		Unde	rstar	nd	
CO^2	Eval	ating	the var		ognica:	tion an	d staffi	ng fun	ctions	5 und f	Juling		Annl	v	IG	
CO_2	Anal		rious th	10us of	Sumsu Na mo	tivotior	a starr	ontroll	ing mot	hode			Analy	y	x	
CO_{3}	Linda	yse val	the mark						ing met	nous.			Fuel	ysme	5	
CO4.	Unde	erstand	the mo	orale d									Eval	late		
CO5.	Evalu	lating t	he vari	ous eth	ncal co	onduct a	and pro	ofessio	nal resp	onsibi	lities		Creat	e		
MAP	PING	WIT	H PRC)GRA	MME	OUTC	OME	S AND	PROC	FRAM	ME SPE	CIFIC		rco	OMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO6.	L	S	L	L	L	М	L	L	L	L	L	L				
CO7.	S	S	M		M	L	L	M	M		L					
CO8.	S M	5	5	M	S M	M	L	M	M		L	M				
CO10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
CO10	S Nona N	S M Mad			IVI	IVI	د	11/1	11/1	11/1	171	3				
3- Sti	rong; I	vi-ivied	num; L	L-LOW												

SYLLABUS PLANNING

9

9

Management - Nature & Scope - Functions of Management - Levels of Management - Role of Managers -

Nature and purpose of planning - Planning process - Types of plans - Objectives Managing by objective (MBO)

- Decision Making - Types of decision - Decision Making Process - Decision Making under different conditions.

ORGANIZING & STAFFING

Nature and purpose of organizing - Organization structure - Formal and informal Organization - Line and Staff authority - Departmentation - Span of control - Centralization and Decentralization - Delegation of authority -Staffing - Selection and Recruitment - Orientation - Career Development - Career stages – Training Methods -Performance Appraisal.

]DIRECTING & CONTROLLING

Creativity and Innovation - Motivation and Satisfaction - Motivation Theories - Leadership Styles -Communication - Barriers to effective Communication – Controlling – Controlling Techniques - Organization

9
Culture - Elements and types of culture – Managing cultural diversity
INTRODUCTION TO ETHICS 9
Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer"s
Responsibility For Safety-Codes of Ethics-Challenger Case Study
ETHICS IN ENGINEERING 9
Employed Engineers Rights and Duties- Collective Bargaining-Occupational Crime- Global Issues-
Multinational Corporation- Technology transfer-Engineers as managers-Consulting Engineers-Expert Witness-
Moral Leadership
TEXT BOOKS
 Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.
3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005). REFERENCES
 Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999). Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007. Andrew J. Dubrin, 'Essentials of Management', Thomson Southwestern, 7th edition, 2007. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003). COURSE DESIGNERS

0001										
S.No.	Name of the Faculty	Mail ID								
1.	Dr.A.Mani	asmanimba@gmail.com								

17M	BHS0'	7 PF	ROFES	SSION	AL EI	THICS	& HU	MAN	VALUI	ES C	ategory	L	Т	Р	Credit
HSS 3								0	0 0 3						
Engineering is an important and learned profession. As members of this profession, engineers are expected to															
exhibit the highest standards of honesty and integrity. Engineering has a direct and vital impact on the quality															
of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness,															
and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must															
perform under a standard of professional behavior that requires adherence to the highest principles of ethical															
conduct															
PREREQUISITE															
NIL															
COU	RSE	OBJE	CTIVE	ES											
1	1 To help students distinguish between values and skills, and understand the need, basic guidelines,														
	content and process of value education.														
2	To help students initiate a process of dialog within themselves to know what they "really want to be" in														
	their life and profession.														
3	3 To help students understand the meaning of happiness and prosperity for a human being														
4	To fa	cilitate	the stu	idents	to unde	erstand	harmo	ny at a	ll the lev	vels of h	uman li	ving, an	d live	accord	ingly
5	To fa	cilitate	the stu	udents	in appl	ying th	e unde	rstandi	ng of ha	rmony	in existe	nce in th	neir pr	ofessio	n and
	lead a	n ethic	cal life												
COU	RSE	OUTC	OME	S											
On th	ne succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	be able to	0					
CO1.	Unde	erstand	the sig	gnificai	nce of v	value ir	nputs in	n a clas	ssroom a	and start	t applyin	g them		Analy	sing
in the	eir life	and pr	ofessio	n											
CO2.	Disti	nguish	betwe	en valu	les and	skills,	happin	less and	d accum	ulation	of physi	cal		Crea	ate
facili	ties, th	ne Self	and the	e Body	, Intent	tion and	d Com	petence	e of an i	ndividu	al, etc				
CO3.	Unde	erstand	the va	lue of l	narmon	ious re	lations	hip ba	sed on ti	rust and	respect	in their		Under	stand
life a	nd pro	fessior	1.												
CO4.	Unde	rstand	the rol	e of a h	uman	being i	n ensu	ring ha	rmony i	n societ	y and na	ture.		Evalı	iate
CO5.	Distir	nguish	betwee	en ethic	al and	unethi	cal pra	ctices.	and star	t workii	ng out th	e		Apr	ly
strate	gy to a	actualiz	ze a ha	rmonic	ous env	ironme	ent whe	erever t	they wor	rk.	0			11	5
MAF	<u>PPING</u>	WIT	H PRC	GRA	MME	OUTC	OMES	S AND	PROG	RAMN	AE SPE	CIFIC O	OUTO	COME	5
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
CO1.	L	M	L	L	L	M	L	L	L	M	L	L	L	M	L
CO2.	S	S	М	L	М	L	L	М	М	L	L	L	S	S	М
CO3.	S	S	S	М	S	М	S	М	М	L	L	М	S	S	S
CO4.	S	S	S	L	S	L	М	М	М	L	L	М	S	S	S
CO5.	S	S	S	L	М	М	S	М	М	S	М	S	S	S	S
S- St	rong; N	M-Med	lium; L	L-Low											

SYLLABUS HUMAN VALUES

Introduction to Human Values. Morals, Values and Ethics, Culture and importance for Professionals – Integrity

 $in \ workplace - Work \ Ethic - Honesty - Courage - Empathy - Self-Confidence - Discrimination-\ Character..$

ENGINEERING ETHICS

Moral Dilemmas- moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy Senses

9

9

of 'Engineering Ethics' - variety of moral issued - types of inquiry -- Models of Professional Roles - theories about right action - Self-interest -Professional Ideals and Virtues - Uses of ethical theories. Valuing Time -Co-operation – Commitment.

ENGINEERING AS SOCIALEXPERIMENTATION

Engineering as experimentation - engineers as responsible experimenters - codes of ethics -Importance of Industrial Standards - A balanced outlook on law – anticorruption- occupational crime -the challenger case study.

ENGINEER'S RIGHTS AND CONSCIENTIOUSNESS ON SAFET

Collegiality and Loyalty - Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest. Occupational Crime - Professional Rights - IPR- Safety and risk - Assessment of safety and risk risk benefit analysis and reducing risk - the Three Mile Island, Bhopal Gas plant and Chernobyl as case studies.

GLOBAL ISSUES

Transnational and MNC corporations - Environmental ethics - Computer ethics - Weapons development and Ethical stand for Engineers in creation - Engineers as managers-Consulting engineers-Engineers as expert witnesses and advisors Ethical Responsibilities of a Professional Engineer as an Expert Witness moral leadership- Sample code of conduct- Case studies.

TEXT BOOKS

1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York, 2005.

2. Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics –Concepts and Cases", W Thompson Leatning, United States, 2000

3. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, REFERENCES

1. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, New Jersey, 2004

2. Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics - Concepts and Cases", Wadsworth Thompson Leatning, United States, 2000

3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003. 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford Press, 2000

5. R.Subramanian, "Professional Ethics", Oxford University Press, Reprint, 2015.

COURSE DESIGNERS

S.No.	Name of the Faculty	Mail ID
1.	Dr.A.Mani	asmanimba@gmail.com

9

9

(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS)

Subject Code	Subject Title	Category	L	Т	Р	Credit
17MABS01	ENGINEERING MATHEMATICS	BS	2	2	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices have been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relations can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

Elementary Matrices, Differentiation, Integration and Elementary calculus

COURSE OBJECTIVES

1	To recall the advanced matrix knowledge to Engineering problems.

- 2 To equip themselves familiar with the functions of several variables.
- 3 To improve their ability in solving geometrical applications of differential calculus problems
- 4 To examine knowledge in multiple integrals.
- 5 To improve their ability in Vector calculus.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the concept of orthogonal reduction to diagonalise the given matrix						
CO2. Find the radius of curvature, circle of curvature and centre of curvature for a given curve.	Understand					
CO3. Classify the maxima and minima for a given function with several variables, through by finding stationary points	Analyse					
CO4. Find double integral over general areas and triple integral over general volumes	Understand					
CO5. Apply Gauss Divergence theorem for evaluating the surface integral.	Apply					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	М												
CO2	L	S	М												
CO3	L	S	М												
CO4	L	S	М												
CO5	L	S	М		-				-						

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS:Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green"s theorem, Gauss divergence theorem and Stoke"s theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE DESIGNERS Name of the College Name of the Faculty S.No Designation Mail ID Dr.G.Selvam Asso.Prof VMKVEC selvam@vmkvec.edu.in 1 2 Dr. M.Vijayarakavan Asso.Prof VMKVEC vijayarakavan@vmkvec.edu.in

Subject Code 17MABS08	Subject Title	Category	L	Т	Р	Credit			
	ENGINEERS	BS	2	2	0	3			
PREAMBLE									
An engineering stu	ident needs to have some basic mathematical tool	s and technic	ques to a	pply in di	verse app	olications in			

An engineering student needs to have some basic mathematical tools and techniques to apply in diverse applications in Engineering. This emphasizes the development of rigorous logical thinking and analytical skills of the student and appraises him the complete procedure for solving different kinds of problems that occur in engineering. Based on this, the course aims at giving adequate exposure in Ordinary differential equations, Laplace transforms, Applications of Laplace transforms, Fourier transforms and Z-transforms.

PREREQUISITE

Engineering Mathematics

COURSE OBJECTIVES											
1 To familiarize with the applications of differential equations.											
To equip themselves familiar with Laplace transform.											
To gain good knowledge in the application of Laplace transforms											
Fourier transforms has the wide application in the field of heat diffusion, wave propagation and in signal and systems analysis.											
To learn about Z- transforms and its applications.											
COURSE OUTCOMES											
On the successful completion of the course, students will be able to											
CO1.Predict the suitable method to solve second and higher orderdifferential equations Apply											
CO2. Apply Laplace transform technique to solve the given ordinary differential equation. Apply											
CO3. Apply Applications of Laplace transform technique to solve the given ordinary differential equation. Apply											
CO4. Apply Fourier transform technique to evaluate the given integral Apply											
CO5. Solve the given difference equations using Z-transform. Apply											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO PSO2 PSO3											
CO1 L S M											
CO2 L S M											
CO3 L S M											
CO4 L S M											
CO5 L S M											
S- Strong; M-Medium; L-Low											

SYLLABUS

ORDINARY DIFFERENTIAL EQUATIONS:Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS:Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems –Transform of periodic functions

INVERSE LAPLACE TRANSFORMS AND APPLICATIONS:Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms.

FOURIER TRANSFORMS: Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of

simple functions - Convolution theorem - Parseval's identity.

Z – **TRANSFORMS:**Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform. **TEXT BOOKS:**

- 1. "Engineering Mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 1. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi (2011).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012)
- 3. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 4. Kandasamy .P, Thilagavathy. K. and Gunavathy. K., "Engineering Mathematics", Volumes I & II (10th Edition), S. Chand & Co., New Delhi (2014).

S.No	Name of the Faculty	Designatio n	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Mrs.V.T.Lakshmi	Asso.Prof	VMKVEC	<u>lakshmi@vmkvec.edu.in</u>

17MABS13	DDE ADDI ICATIONS AND COMDIES	Category	L	Т	Р	Credit
	PDE APPLICATIONS AND COMPLEX ANALYSIS	BS	2	2	0	3

PREAMBLE

Partial differential equation is a differential equation that contains unknown multivariable functions and their partial derivatives. Its generally arise from the mathematical formulation of physical problems. Subject to certain given conditions, called boundary conditions, solving such equation is known as a boundary value problem. It is applied in the field of Hydraulics, conservation of mass equations(example waste water and water treatment), air, pollution models, design of reactor vessels, predicting quantities of materials necessary for construction, design of foundation(soil consolidation), computational solid.

Complex analysis is one of the classical branches in mathematics. Complex analysis traditionally known as the theory of functions of complex variable is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in the branches of hydrodynamics, thermodynamics and particularly quantum mechanics. The concept of complex geometry and Argand plane is very useful in constructing buildings. This concept is used in 2-D designing of buildings. It is also very useful in cutting of tools. Another possibility to use complex numbers in simple mechanics might be to use them to represent equations. Purely analytical methods where mathematical functions are chosen to produce the sort of shapes that are desired.

PREREQUISITE

Engineering Mathematics

1 To formulate and solve partial differential equation. 2 To have thorough knowledge in Fourier Series 3 To be familiar with this applications of partial differential equations. 4 To expose the concept of Analytical function. 5 To familiarize with Complex Integration. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more. CO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines. CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series. CO4. Predict an analytic function, when its real or imaginary part is known Apply CO5. Find the singularities and its corresponding residues for the given function.											
2 To have thorough knowledge in Fourier Series 3 To be familiar with this applications of partial differential equations. 4 To expose the concept of Analytical function. 5 To familiarize with Complex Integration. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more. CO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series. CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series. CO4. Predict an analytic function, when its real or imaginary part is known Apply CO4. Find the singularities and its corresponding residues for the given function.											
3 To be familiar with this applications of partial differential equations. 4 To expose the concept of Analytical function. 5 To familiarize with Complex Integration. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more. CO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines. CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series. CO4. Predict an analytic function, when its real or imaginary part is known Apply CO5. Find the singularities and its corresponding residues for the given function.											
4 To expose the concept of Analytical function. 5 To familiarize with Complex Integration. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more. CO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines. CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series. CO4. Predict an analytic function, when its real or imaginary part is known Apply CO5. Find the singularities and its corresponding residues for the given function.											
5 To familiarize with Complex Integration. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more. Understand CO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines. Apply CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series. CO4. Predict an analytic function, when its real or imaginary part is known Apply CO5. Find the singularities and its corresponding residues for the given function.											
COURSE OUTCOMESOn the successful completion of the course, students will be able toCO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more.UnderstandCO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines.ApplyCO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
On the successful completion of the course, students will be able toCO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more.UnderstandCO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines.ApplyCO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
CO1.Understand the PDE concept in most of the engineering discipline when the number of independent variable in the given problem under discussion is two or more.UnderstandCO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines.ApplyCO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
CO2. Demonstrate periodic functions arising in the study of engineering Problems as Fourier series of sine and cosines.ApplyCO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
series of sine and cosines.Image: CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
CO3. Solve PDE arising in engineering problems like wave equations Heat flow equation by Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
Fourier series.ApplyCO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
CO4. Predict an analytic function, when its real or imaginary part is knownApplyCO5. Find the singularities and its corresponding residues for the given function.Understand											
CO5. Find the singularities and its corresponding residues for the given function.Understand											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03											
CO1 L S M											
CO2 L S M											
CO3 L S M											
CO4 L S M											
CO5 L S M											
S- Strong; M-Medium; L-Low											

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0, f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES: Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series -Parseval's identity - Harmonic Analysis.

BOUNDARY VALUE PROBLEMS: Classification of second order linear partial differential equations -Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of twodimensional heat equation - Fourier series solutions in Cartesian coordinates.

ANALYTIC FUNCTIONS: Function of a complex variable – Analytic function – Necessary conditions -Cauchy Riemann equations - Sufficient conditions (excluding proof) - Harmonic conjugate-Constructions of $(w=z+c, w=z^2, w=1)$ bilinear transformations. analytic functions-conformal mapping

COMPLEX ANALYSIS: Statement and applications of Cauchy's integral theorem and integral formula -Taylor"s and Laurent"s expansions -Residues - Cauchy"s residue theorem-contour integration over unit circle.

TEXT BOOKS:

1. Kreyszig, E., "Advanced Engineering Mathematics" (8th Edition), John Wiley and Sons, (Asia) Pte Ltd., Singapore, 2000.

Ζ.

2. Kandasamy .P., Thilagavathy. K., and Gunavathy. K., "Engineering Mathematics", Volumes I & II (4th edition), S.Chand& Co., New Delhi.

3. Grewal, B.S., "Higher Engineering Mathematics" (35th Edition), Khanna Publishers, Delhi 2000.

REFERENCES:

T. Veerarajan, "Engineering Mathematics" (for semester III), Third Edition Tata McGraw-Hill 1. Publishing Company limited, 2006.

2.A.Singaravelu,"Transforms and Partial Differential Equations", MeenakshiAgencies, Chennai

S.No	Name of the Faculty	Designatio n	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Dr. M.Vijayarakavan	Asso.Prof	VMKVEC	vijayarakavan@vmkvec.edu.in

Subi	ect Co	de			Subje	ct Title	e			Category	L	Т	,	Р	Credit
300j	PCBS0	2	РАБ	РНУ 1 - Л Т 9	(SICA)	L SCII	ENCES	5 VSICS							
1/1		-	IAN	(Con	mon to	All Br	anches	s)		BS	2	0		0	2
PRE	AMBI	LE													
Engir	neering	g Physi	cs give	s an ou	tlook a	lbout v	arious	Import	ant Te	chnologi	cal App	lication	s of Ph	ysical (Concepts.
In pa	rticula pictur	r, Stud	lents le	arn abo	out the	conce	pts of 1	laser, ty	ypes of	f lasers a	and their	ir applic	ations.	They a	also get a
In add	ditions	. Stude	ents get	an exp	onorn	about c	lifferer	nt types	of No	n-Destru	ictive T	echniqu	es.	John	inication.
PRE	REOL	ISITE		1				51				1			
NIL	мвүс		_												
COU	RSE (OBJE	CTIVE	S											
1	To in	npart th	ne basic	c conce	pts of l	Physics	s and th	neir app	olicatio	ons in tec	hnolog	у.			
2	To ur	ndersta	nd the	signific	cance o	f laser	and its	applic	ations	in techno	ology				
3	To ur	ndersta	nd the	basic p	rincipl	es of fi	bre opt	tics and	l applie	cations					
4	To ur	ndersta	nd vari	ous tec	hnique	s used	in Nor	n-destru	uctive	testing					
COU	RSE (OUTC	OMES	5											
On th	e succ	essful	comple	etion of	the co	urse, si	tudents	will be	e able	to					
CO1.	.Stude	nts wil	lunder	stand tl	ne basi	c conce	epts in	Engine	ering	Physics				Und	erstand
CO2.	.Stude	nts wil	l gain t	he basi	c know	ledge	of laser	r and it	s appli	cations				App	ly
co3.	Stude:	nts will S	lunder	stand tl	ne prin	ciples of	of light	propag	gation	in optica	l fibers	and the	ir	App	ly
CO4.	.Studer	nts wil	l get an	expos	ure abo	ut diff	erent ty	ypes of	Non-I	Destructi	ve Tech	niques		App	ly
MAP	PPING	WIT	H PRO	GRAN	ИМЕ (DUTC	OMES	S AND	PRO	GRAMN	1E SPE	CIFIC	OUTC	OMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1	S	-	-	-	-	-	-	-							
CO2	S	S	S	L	-	-	-	-							
CO3	S	S	S	L	-	-	-	-							
CO4	S	S	S	L	-	-	-	-							
005	S	-	-		-	-	-	-							
S-St	rong;]	M-Me	dium;	L-Low	7										

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

FIBRE OPTICS: Principle and propagation of light in optical fibres – numerical aperture and acceptance angle – types of optical fibres (material, refractive index, mode) – Applications: Fibre optic communication system – fibre optic displacement sensor and pressure sensor.

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOKS:

1. Engineering Physics, compiled by Department of Physics, Vinayaka Missions University, Salem.

REFERENCES:

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

- 2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.
- 3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.
- 4. Avanadhanulu.M.N., ArunMurthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.

	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
	1	Dr. C. Senthil Kumar	Asso.Prof	VMKVEC	senthilbdu@gmail.com
Ī	2	Dr. R. Sethupathi	Asso.Prof	VMKVEC	sethupathivmkv@gmail.com

Subjec	Subject Code Subject Title Category L T P Credit															
17PC	CBS02	C	PART	PHY B - EN (Com	SICA GINE mon to	L SCIE ERIN() All Bi	ENCES G CHEI anches	5 MISTR 5)	Y	BS		2	0	0		2
PREA	MBL	E									·					
Engine	ering	Chemi	stry ex	plains	the fun	damer	tals of	Engine	ering (Chemist	ry and h	nelps ti	he learne	ers to	under	rstand
the app	plication	ons of	Engin	eering	Chem	istry. 7	The ele	ectrodes	s, Cell	and bat	teries s	study	gives a	clear	idea	about
electro	chemi	stry. V	Water	techno	logy s	tudy g	gives t	he initi	ative	about s	oftenin	g of	water, c	lesali	natio	n and
corrosi	ion. Co ering 1	nvent	ional ai als are	na Non needec	l-conve l for oi	entiona ir fast	u energ	gy field i og life st	1s esse tvle	ntial for	the cur	rent so	cenario a	nd th	e adv	anced
				necuce		ii iast	giowin	ig nie st	tyle.							
PRER Nil	EQUI	SITE														
COUR	RSE O	BJEC	TIVE	5												
1	To in	npart f	fundam	ental l	cnowle	dge in	Chem	nistry so	o that	the stuc	lent wi	ll und	erstand	the e	ngine	ering
I	conce	pt and	l can fa	ice the	forthco	oming	years a	as well a	as the i	industry	effecti	vely.			U	U
2	To ha	ve a c	lear kn	owledg	ge of el	ectroc	hemist	ry, cells	s and e	lectrode	s.					
3	To fa	miliari	izes the	e type o	of batte	eries an	d fuel	cell.								
4 To lay foundation for practical applications of water softening and desalination in engineering aspects.																
5	5 To inculcate the knowledge of fuel, this is essential for current scenario.															
COUR	RSE O	UTCO	OMES													
On th	ne succ	cessful	compl	letion of	of the c	ourse,	studen	nts will b	be able	e to						
CO1. studies	Under	stand (the vita	ıl knov	vledge	in Eng	gineeri	ng Chei	mistry	helps th	ne learr	ners in	future	Une	dersta	ind
CO2. 1	Emplo	y the b	oasic ki	nowled	ge of c	ells ar	d elect	trodes						Ap	ply	
CO3]	Demor	nstrate	the app	plicatio	ons of v	water s	oftenir	ng						Ap	ply	
CO4	Apply	desaliı	nation	process	s with o	engine	ering a	spects						Ap	ply	
CO5.]	Discus	s abou	t conv	entiona	l and r	non-co	nventio	onal fue	l for th	ne currei	nt scena	rio.		Un	dersta	ind
CO6 (Genera	lize po	lymers	and si	nart m	aterial	s							Ap	ply	
MAPF	PING	WITH	I PRO	GRAM	IME (DUTC	OMES	S AND I	PROG	RAMN	1E SPF	ECIFI	C OUT	CON	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO	1 P.	SO2	PSO3
CO1	М	М	М	-	-	М	М	-	-	-	-	М				
CO2	М	М	М	-	_	М	М	-	-	-	-	S				
CO3	М	S	М	-	-	S	М	-	-	-	-	S				
CO4	М	M	M	-	-	M	M	-	-	-	-	S				
CO5	M	M 		-	-	M	S M	-	-	-	-	S				
CU0 C Ctro	CO6 M M M M M S															
2- 200	mg, M	-wieul	uIII, L-	LUW												

SYLLABUS

ELECTROCHEMISTRY, BATTERIES AND FUEL CELLS:

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H2-O2 fuel cell)

WATER TECHNOLOGY AND CORROSION :

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite &Demineralisation) – Domestic water treatment – Desalination (Electrodialysis&ReverseOsmosis).

FUELS AND CHEMISTRY OF ADVANCED MATERIALS:

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite).

TEXT BOOKS:

Engineering Chemistry piled by Department of Chemistry, Vinayaka Missions University, Salem.

REFERENCES:

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand& company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by ShashiChawla, Edition 2012 Dhanpatrai& Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Shanthi	Professor and Head	VMKVEC	Shantht@vmkvec.edu.in

		I] PART /	PHYSI A – RE	CAL S	SCIEN(ND VIR'	CES LA TUAL	AB LAB II	N	Catego	ory	L	Т	Р	C	redit
17PC	CBS81			(Comr	PHY non to	All Br	anches	5)		BS		0	0	2		1
PRE	AMB	LE										I				
Real a calcul labora	and Vir ation c atory.	tual Lal of physic	b in Phy cal para	vsics tra meters	ains the . In add	students	s to take e studei	e readin nts have	gs with the ex	h precisio posure of	n. The e doing e	xperim xperim	ents invo ents thro	olve th ugh v	ne virtual	I
PRE	REQU	JISITE	2 - Nil													
COU	RSE	OBJE	CTIVE	S												
1 7	Го ітр	oart bas	ic skill	s in tal	king re	ading w	vith pre	ecision	of phy	vsics exp	eriment	S				
2 7	To inc	ulcate t	he kno	wledge	e of ha	ndling e	equipm	ents ap	propri	iately						
3]	Fo gai	n know	ledge o	of prac	ticing	experim	ents th	rough	virtual	l laborato	ory.					
COU	COURSE OUTCOMES															
On	On the successful completion of the course, students will be able to															
CO1.	1. Students will understand to take readings with accuracy & precision Apply															
CO2.	O2 .Students will learn to perform experiments through virtual laboratory Apply															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	502	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	М	-		-	-
CO2	S	S	-	-	-	-	-	-	-	-	-	М	-		-	-
S- Sti	rong; l	M-Med	ium; L	-Low												
SYLI 1. Yo 2. Rig 3. Vis 4. Ve 5. Par 6. Wa 7. Th 8. Th 9. Ba 10. S TEX Real	 SYLLABUS 1. Young's modulus of a bar - Non-uniform bending 2. Rigidity modulus of a wire - Torsional Pendulum 3. Viscosity of a liquid - Poiseuille's method 4. Velocity of ultrasonic waves in liquids - Ultrasonic Interferometer 5. Particle size determination using Laser 6. Wavelength of spectral lines – grating - Spectrometer 7. Thickness of a wire - Air wedge Method 8. Thermal conductivity of a bad conductor - Lee's disc 9. Band gap determination of a thermistor - Post Office Box 10. Specific resistance of a wire – Potentiometer TEXT BOOK Real and Virtual Lab in Physics Manual prepared by VMRF. 															
COU	RSE	DESIG	NERS		I			I				T				
S. I	No	Name	e of the	e Facu	lty	Desig	gnation	n ľ	Name	of the Co	ollege	ge Mail ID				
		Dr. C. S	Senthil	Kumar	·	Ass	o.Prof		V	MKVEC	· · · · · · · · · · · · · · · · · · ·	se	nthilbdu	@gma	a11.co	m
4	2	Dr. R. Sethupathi Asso.Prof VMKVEC sethupathivmkv@gmail.com														

17PCB	3 S81	P	ART B	PHYS - ENG (Com	ICAL S INEEF mon t	SCIEN RING C o All B	CES LA CHEMIS ranche	AB STRY es)	LAB	Cat	egory BS	L 0	Т 0	P 2	Cred it 1
PREAM Engineeri students t basic app its disadv PRERE	IBLE ing Ch to unde olication vantage QUIS	emistry erstand n orient s Nov ITE	/ Lab ex the app ted kno v-a-day	xperime lication wledge is the pr	nts exp s of En about e actical	lains th gineerin lectrocl and han	e basics ng Chen hemistry dling of	and es nistry. y. Wate f equip	The electric technologies and the second sec	of Eng ctrodes, ology st re neede	ineering Cell and udy give ed for ou	Chemis d batterio s the ide r fast gro	try. It al es study a about owing li	so helps gives cl hardnes fe style.	the ear s and
COURS	E OB	JECT	IVES												
1	To im	oart bas	sic skill	s in Ch	emistry	so that	the stud	lent wi	ll under	stand th	e engine	ering co	ncept.		
2	To inc	ulcate t	the know	wledge	of wate	er and el	lectroch	emistr	у.			_	_		
3	To lay	founda	ation fo	r practio	cal appl	ications	s of chei	mistry	in engin	eering a	aspects.				
COURS	SE OU	TCO	MES												
On the	he successful completion of the course, students will be able to														
CO1.Un	Understand the basic skills for his/her future studies. Apply														
CO2.An	D2. Analyze the water comprehensively. Apply														
СОЗ. Ар	3. Apply the practical knowledge in engineering aspects Apply														
MAPPI	NG W	ITH I	PROG	RAMN	AE OU	JTCO	MES A	ND P	ROGR	AMM	E SPE(CIFIC (OUTCO	OMES	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	S	М	М	-	L	М	М	S	-	-	-	М	-	-	-
CO2	S	M	M	-	L	M	M	L	-	-	-	M	-	-	-
CO3	S	S	M	-	L	М	М	М	-	-	-	М			
SYLLAH 1. Determ 2. Estima 3. Acid B 4. Estima 5. Determ 6. Estima 7. Estima 8. Estima TEXT B 1. E COURS	Structure Structure SYLLABUS 1. Determination of Hardness by EDTA method 2. Estimation of Hydrochloric acid by conductometric method 3. Acid Base titration by pH method 4. Estimation of Ferrous ion by Potentiometric method 5. Determination of Dissolved oxygen by Winkler"s method 5. Determination of Dissolved oxygen by Winkler"s method 6. Estimation of Sodium by Flame photometer 7. Estimation of Copper from Copper Ore Solution 8. Estimation of Iron by Spectrophotometer TEXT BOOK 1. Engineering Chemistry Lab Manual by VMU. COURSE DESIGNERS Statuse														
S.No	N	ame o	f the F	aculty		Desig	nation		Na	me of t College	he		Mai	l ID	

Shantht@vmkvec.edu.in

VMKVEC

Professor and Head

Dr.T.Shanthi

1

17PHBS	SMART MATERIALS	Category	L	Т	Р	Credit
05		Basic Sciences	3	0	0	3

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PRERQUISITE

NIL

COU	RSE	OBJ	ECTI	VES
	-			

-					
1	To explain	the properties	s of smart	materials	

To demonstrate the structure of crystalline materials 2 3

To examine the synthesis of Nano materials

4 To explain the properties and classification of magnetic materials

5 To outline the concept of superconducting materials and their properties

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Utilize the smart materials for designing equipments CO2. Interpret the structure of crystalline materials

CO3. Develop equipments using nanomaterials Analyze CO4. Use the properties of magnetic materials in designing equipments Apply CO5. Develop the efficiency of superconducting materials Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

			_	-			-		_	-		_			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				М			М			
CO2	S	М	S	М	S				М			М			
CO3	S	S	S	S	S				S			М			
CO4	S	М	S	М	S				М			М			
CO5	S	S	S	S	S				S			М			

Apply

Apply

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) - Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials - Top-down approach - Mechanical Grinding - Lithography -Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts - Classification of magnetic materials - Domain theory -Hysteresis - Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect - isotope effect - Type I and Type II superconductors - High Tc Superconductors -

Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2011.

REFERENCES:

1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2009.

2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

S.No.	Name of the Faculty	Mail ID
1	Dr. C. Senthil Kumar	senthilbdu@gmail.com
2	Dr. R. Sethupathi	sethupathivmkv@gmail.com

17CH	IBS01		EN	VIROI F	NMEN ENGIN	TAL S	SCIEN NG	ICE &		Cate	gory	L	Т	Р	Credi t
			(CO	MMO	N TO	ALL I	BRAN	CHES)	B	S	3	0	0	3
Envir atmos relatio on sus	onmen spheric onships stainab	tal sciences and a le deve	ence is ces. En solutio elopme	an intervironm on to the ont for i	rdiscip ental s e envir improv	linary tudies conmen ring en	field th also ind tal and vironm	nat inte corpora l social nental c	grates p ate the s related quality i	ohysical social so l proble in every	, chemi ciences ms En aspect	cal, bio for und vironme	logical, erstand ental er	, informa ing hum ngineerir	ation an an ng focu
PRER	EQUIS	SITE													
		NIL													
COUR	RSE OI	BJEC	FIVES												
1	To cr	eate th	e awar	eness o	f envir	onmen	t studi	es and	its scop	be					
2	To in	culcate	e the kr	lowledg	ge of si	gnifica	ance ar	nd cons	erving	the natu	ural reso	ources.			
3	To he	lps the	e learne	ers to k	now the	e value	e of eco	osysten	n and fo	ood cha	in and t	0			
_	assess	s the in	nporta	$\frac{1}{1}$	biodive	rsity						1		1	
4	To fai	miliari icate fl	zes the	differe	ent poll	ution s o mana	ources	s, conse ural ca	equence lamitie	es and it	s contro	ol measu	ires and	1	
5	To he	1000000000000000000000000000000000000	learner	$\frac{1}{s \text{ to } kn}$	ow the	urban	energy	v relate	d probl	ems and	1 social	issues.			
	To impart the fundamental knowledge on human welfare measures this includes child														
6	welfa	re and	wome	n educa	ation.	υ									
COUR	RSE OU	UTCO	MES												
On th	ne succ	essful	comple	etion of	the co	ourse, s	tudents	s will b	e able	to					
CO1.D	oiscuss	and a	pprecia	te the	unity o	of life	in all	its for	ms, the	implic	ations of	of life	Under	rstand	
style of	n the ei	1VIron	ment.	1		.1	• 1		1 .1.	•		1			
CO2.Ir	nitiate t	ne awa	areness	and re	cogniz	e the s	ocial re	esponsi	bility i	n enviro	onmenta	al	Apply	7	
CO3III	ustrate	the im	nortan	ce of e	cosvste	em and	biodix	versitv					Apply	7	
CO4. I	nterpre	t the s	ociety (on the y	various	polluti	ions an	d their	impact	t.disaste	er mana	gement	Apply	7	
CO5 F	Recogn	ize the	issues	ofenv	ironme	nt and	sustai	nable d	evelop	ment		8	Under	rstand	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND I	PROGI	RAMM	E SPE	CIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	S	S	S	-	-	-	S			
CO2	S	М	М	-	-	S	S	S	-	-	-	S			
CO3	S	L	М	-	-	S	S	S	-	-	-	S			
CO4	S	S	S	L	-	S	S	S	-	-	-	S			
CO5	S	S	S	М	-	S	S	S	-	-	-	S			
S- Stro	ong; M-	Mediu	ım; L-I	LOW											

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES :Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over - exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development

ECOSYSTEMS AND BIO – DIVERSITY: Ecosystem - Definition, structure and function - Energy flow - Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION: Pollution - Definition, manmade impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of

pollution and role of individual – Disasters management : Floods, earthquake, cyclone and landslides - Clean technology options

SOCIAL ISSUES AND ENVIRONMENT: Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board

HUMAN POPULATION AND ENVIRONMENT:Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

TEXT BOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2.BharuchaErach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviro media.

4. Environmental Science and Engineering by Dr. J. Meenambal ,MJP Publication , Chennai Gilbert M. Masters : Introduction to Environmental Engineering and Science , Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5.Miller T.G. Jr Environmental Science Wadsworth Publishing Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

S.No.	Name of the Faculty	Mail ID
1.	Dr.T.Shanthi	Shanthi.thiruvengadam130@gmail.com

-																
Sub	ject Co	ode			Subj	ect Titl	e		C	ategory	L	Т		Р	(Credit
170	CHBS	06	GRI	EEN B	UILD	ING M	IATE	RIALS	5	BS	3	0)	0		3
PRE	AMBL	Æ							I							
This c	ourse is	s desig	ned to e	enlighte	n stude	ents to t	he curre	ent gree	enbuildi	ng trend,	and to h	elp them	ı reali	ize the	impac	t and
applic	ations	of gree	n mater	ials as a	a pract	ice.										
PRE	REQU	ISITE	2 - Nil													
COU	RSE ()BJE(CTIVE	S												
1	To und	erstand	the co	ncept o	f greer	ı buildi	ng and i	its chara	acteristi	CS						
2	To und	erstand	the des	sign of g	green b	ouilding	S									
3	To emphasize the role of green materials in civil engineering															
COU	COURSE OUTCOMES															
On th	e succ	essful	comple	etion of	f the co	ourse,	student	s will	be able	to						
CO1-	Gain k	nowled	ge in gi	een bui	ildings										Und	erstand
CO2-	Investi	gate the	e rating	system	of gre	en builo	lings a	nd life o	cycle of	sustaina	ble build	ings.			An	alyse
CO3-	Unders	standing	g of gro	een buil	ding d	esign									Und	erstand
CO4-	Knowl	edge ab	out gre	en mat	erials										Und	erstand
CO5-	Learn t	he vari	ous typ	es of gr	een bu	ilding 1	naterial	s and it	s engin	eering ap	plication	l			Und	erstand
MAP	PING	WITI	H PRO	GRA	MME	OUT	COME	S ANI) PRO	GRAM	ME SP	ECIFIC	C OU	TCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSG	01	PSO2	PSO3
CO1	S	-	-	-	-	М	-	М	-	-	-	-	-		-	-
CO2	L	-	-	-	-	-	-	-	-	-	-	-	-		М	-
CO3	-	М	-	-	М	L	-	-	-	-	-	-	-		М	-
CO4	-	-	-	-	-	-	S	-	-	-	-	-	-		-	-
CO5	S	-	М	-	-	М	-	-	-	-	-	-	-		М	-
S- St	rong; l	M-Me	dium;	L-Lov	V											

SYLLABUS

CONCEPT OF GREEN BUILDINGS :Green building initiatives, characteristics of a green building, certification of green buildings rating systems (BREEAM,USGBC,LEED,IGBC) criteria for rating, sustainability.

DESIGN OF GREEN BUILDINGS : Sustainable sites, life cycle assessment. considerations of energy consumption, water use, and system reliability, indoor air quality, noise level, comfort, cost efficiency in building design.

GREEN BUILDING MATERIALS : Green materials - introduction, Depleting natural resources of building materials, renewable and recyclable resources, energy efficient materials - green cement, biomaterials, biopolymers, bioplastics, smart materials and composites

GREEN MATERIALS FOR INTERIOR Natural clay plaster, Natural fiber flooring, Low/no-VOC (volatile organic compound) paints, stains, and coatings, Paperless drywall-Heating and Air Conditioning, Solar hot water, Focus on high efficiency and proper sizing.

NANOMATERIALS FOR GREEN SYSTEMS :Windows, Skylights, and Lighting - Paints, Roofs, Walls, and Cooling - Multifunctional Gas Sensors, Biomimetic Sensors, Optical Interference Sensors

TEXT BOOKS:

1. Green building materials by Ross Spiegel and Dru Meadows

REFERENCES:

1. 1. Understanding Green building materials by <u>Traci Rose Rider</u>, <u>Stacy Glass</u> and <u>Jessica McNaughton</u>.

Green building materials, Energy & Civil Engineering by Jimmy C.M. Kao, Wen-Pei Sung, Ran Chen COURSE DESIGNERS

S.No	Name of the Faculty	Designatio n	Name of the College	Mail ID
1	S.WKrishnaraj	AsstProf	VMKVEC	Srajkrishna85@gmail.com

(iii) ENGINEERING SCIENCES (BASIC ENGINEERING COURSES)

Subje	ect Co	de		S	ubject	Title			Ca	ategory	Ι	, ,	Г Р	Cı	redit
17C	SES0	1	ESS	ENTIA	LS OF	COMP	UTIN	Ĵ		ES	2	2	0 2		3
PREA This c and en real w PRE	AMBI course a nphasi orld ap RQUI	LE aims to zing pr pplicatio SITE	provide inciples on.	e the fui s applic	ndamen ation pa	tal conc ackages.	epts of Study	Compu ing the	ter ope fundam	rations 1 nentals c	ike hard	ware a of Alg	nd softwa orithms, †	re install o resolve	ation, the
INIL															
COU	RSE (OBJE	CTIVE	S											
1	То	provide	e basic l	knowle	dge of l	nardwar	e and so	oftware	compo	nents of	compute	ers.			
2	То	introdu	ce and	demons	strate va	arious sc	oftware	applica	tion pa	ckages.					
3	То	study F	roblem	solvin	g Techr	niques an	nd prog	ram dev	velopm	ent cycle	e.				
4	То	learn a	bout va	rious al	gorithn	n and ide	entifying	g the al	gorithn	n efficier	ncy.				
5	То	learn di	ifferent	algori	thm for	various	applica	tion							
	RSE (DUTC	<u>OMES</u>	<u>.</u>											
On th	e succ	essful	comple	etion of	f the co	ourse, st	udents	will b	e able t	to		-	. 1	1 * *	1 . 1
COL	Basic	knowle	dge on	hardwa	ire and	software	e termin	ologies	•			k	Remember	and Uno	derstand
CO2.	CO2. Demonstration about various Application Packages like MS-word, MS- Excel etc. Apply														
CO3.	CO3. Understand Program Devolvement Cycle and apply various Problem Solving Understand, Apply.														
CO4	Identi	fying aı	nd analy	yzing th	e effici	ency of	Algorit	hms.				τ	Jnderstan	d.	
CO5	Imple	mentati	on of A	lgorith	ms for	various	concept	s.				U	Jnderstan	d and Ap	ply
MAP	PING	WITH	H PRO	GRA	MME	OUTC	OMES	AND	PROG	GRAM	ME SPI	ECIF	IC OUT	COME	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	S	М	
CO2	S	М	-	-	-	-	-	-	-	-	-	-	S	М	L
CO3	S	S	S	-	М	-	-	-	-	-	-	-	S	L	
CO4	S	S	S	-	S		-	-	-	-	-	-	S	М	
CO5	S	М	М	-	М	-	-	-	-	-	-	-	S	М	
S- Sti	ong; N	A-Med	ium; L	-Low											
SYLI BASI Comp Categ Appli	LABU CS OF outers, 1 ories of cations	S F COM Block d f softwa of Con	PUTEI iagram are – Bo nputer -	R AND of a co ooting - - Role o	INFO mputer - Install of Infor	RMATI – Comp ing and mation	ON TE ponents Uninsta Fechnol	CCHNC of a co alling a logy – I	DLOGY mputer Softwa History	<i>t</i> : Comp system re –Soft of Intern	uter – G –Hardwa ware pir net – Into	lenerat are and acy – ernet S	ions, Typ I software Software ervices.	es of definition terminol	ons – ogies –
SOFT	'WAR	E APP	LICAT	IONS:	Office	Automa	ation: A	.pplicat	ion Pac	kages –	Word pi	ocessi	ng (MS V	Vord) – S	Spread

sheet (MS Excel) - Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.

2. Knuth,D.E., "The Art of computer programming Vol 1:Fundamental Algorithms", 3rd Edition, Addison Wesley,1997.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.V.Amirthalingam	Associate Professor	Computer science and engineering	amirthalingam@vmkvec.edu.in
2	Mrs.T.Geetha	Assistant Professor	Computer science and engineering	geetha@vmkvec.edu.in

17CS	SES05		PROG	RAMN	IING I	N PYT	HON	(CATE	GORY	L	Т	Р		CREDI	T
									FC(ES)	3	0	0		3	
PREA	MBLE															
The pu	irpose of	this co	urse is t	o introc	luce Py	thon, a	remarka	ably po	werful o	dynamic	progran	nming l	anguag	ge to	write co	de
for dif	ferent op	erating	system	s along	with ap	plicatio	on doma	in. Pyt	hon has	s evolved	on mor	e popul	ar and	pow	erful ope	en
source	program	ming to	loc													
PREF	RQUISI	ТЕ														
NIL																
COU	RSE OE	BJECT	IVES													
1	To prov	vide bas	ic knov	vledge (on Pyth	on prog	rammir	ig conc	epts.							
2	To intro	duce d	ifferent	method	ls in list	t, string	, tuple,	diction	ary and	sets.						
3	To com	pute di	fferent	progran	ns using	g pythor	n contro	l staten	nents.							
4	To learn	1 about	differe	nt funct	ions in	python.										
5	To com	pute the	e excep	tion hai	ndling f	unction	s, file c	oncepts	and CS	SV and JS	SON.					
COU	RSE OU	JTCO	MES													
On the	e succes	sful co	mpleti	on of th	ne cour	se, stu	dents w	ill be a	able to							
CO1.	Learn py	thon sta	atement	s, com	nents a	nd inder	ntation,	tokens,	, input a	and outpu	t	Remen	ber an	ıd		
metho	ds using	various	examp	le prog	rams.							Unders	tand			
CO2.	Learn the	e differe	ent met	hods in	volved i	n List,	String, '	Tuples	and Dic	ctionary.		Apply				
CO3.	Design so	olution	s for co	mplex p	orogran	ns using	decisio	on maki	ng and	looping		Unders	tand ai	nd A	pply.	
statem	ents.															
CO4.	Develop	the fun	ction p	rograms	with a	ll the co	oncepts	like lan	nbda, de	ecorators	and	Unders	tand, A	Apply	y and	
genera	tors.											analyze				
CO5.	Compute	e the exe	ception	handlir	ig progr	ams, fi	le conce	ept prog	grams a	nd		Apply				
unders	tand the	concep	ts of CS	SV and	JSON.				DOGT				0.117	~~-		
MAP	PING V	VITH .	PROG	RAM	ME OU	JTCO.	MES A	AND P	ROGI	KAMMI	E SPEC		OUTO	CON	AES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PS	01	PSO2	PS
																03
CO1	S	М	L	-	Μ	L	-	-	L	М	Μ	S		S	L	
CO2	S	Μ	L	-	-	L	-	-	L	М	Μ	S		S	Μ	L
CO3	S	S	S	S	М	L	-	-	L	М	Μ	S		S	L	
CO4	S	S	S	S	-	L	-	-	S	М	Μ	S		S	Μ	
CO5	S	М	М	-	-	L	-	-	S	М	М	S		S	М	
S- Str	ong; M-I	Mediu	m; L-L	ow												

SYLLABUS

INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionary operations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book "Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

S.N	Name of the Faculty	Designation	Department	Mail ID
0.				
1	Mrs.T.Geetha	Assistant Professor	Computer science and engineering	geetha@vmkvec.edu.in
2	Mrs. T .Narmadha	Assistant Professor	Computer science and engineering	narmadha@vmkvec.edu.in

1= 0								-	Ca	tegory	L	. Τ	Р	Cre	edit
17C	SES83	P	ROGR	AMMI	ING IN	PYTH	ION LA	AB	F	C(ES)	0	0	4	2	2
PREA	AMBL	E											•		
This la	aborator	y enabl	les the s	tudents	clearly	unders	stand the	e basic	concep	ts of pyt	hon, cor	ntrol stat	ements a	nd file	
comm	ands in	python	•												
PREF	RQUIS	ITE -	NIL												
COU	RSE O	UTCO	OMES												
On the	e succe	ssful c	omplet	tion of	the co	urse, st	udents	will b	e able	to					
CO1.1	Learn py	ython st	tatemen	its, com	ments	and ind	entation	, toker	ns, inpu	t and out	put	Reme	mber an	d Underst	and
metho	ds using	g variou	is exam	ple pro	grams.										
CO2.	Learn th	ne diffe	rent me	ethods i	nvolve	d in Lis	t, String	, Tuple	es and I	Dictionar	y.	Reme	mber an	d Underst	and
CO3.	Design	solutio	ns for c	omplex	progra	ims usi	ng decisi	ion ma	iking ar	nd loopin	g	Under	rstand, A	pply, ana	lyze
statem	ents.											and e	valuate		
CO4.	Develo	p the fu	inction	progran	ns with	all the	concept	s like l	ambda,	decorate	ors and	Under	rstand, A	pply, ana	lyze
genera	tors.	(. (1			•		<u>C'1</u>	4		1		and e	valuate		
UU5.	Computer the	te the e	xceptio	n nandi	ing pro	grams,	file cond	cept pr	ograms	and		Apply	4		
MAP	PING	WITH	PRO	GRAN))UTC	OMES	AND	PRO	RAM	ME SPI	ECIFIC		OMES	
COS															DCO
COS	POI	PO2	P05	P04	POS	PU0	PO/	PU8	PO9	P010	POIT	POIZ	P501	PS02	3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S	L	L
CO2	S	М	L	-	-	-	-	-	-	-	-	-	S	М	
CO3	S	М	М	-	-	-	-	-	-	-	-	-	S	L	L
CO4	S	Μ	М	-	-	-	-	-	-	-	-	-	S	М	
CO5	S	Μ	М	-	-	-	-	-	-		-	-	S	М	
S-Str	ong; M	-Medi	um <u>; L</u> -	Low											
LIST	OFFY	PFR	MEN	TS											

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

COU	RSE DESIGNERS			
S.N	Name of the Faculty	Designation	Department	Mail ID
0.				
1	Mrs.T.Geetha	Assistant Professor	Computer science and Engineering	geetha@vmkvec.edu.in
2	Mrs. T .Narmadha	Assistant Professor	Computer science and Engineering	narmadha@vmkvec.edu.in

		BAS	SICS O	F CIV	IL AN	D MEC BINC	CHAN	ICAL	C	ategory	L	Т	Р	Credit
17CM	1ES02	DADT	- A R A S		ланы Эр си	NING /II FN	CINE	FDIN	2					
		IANI	-A DAC						J	ES	2	0	0	2
			(00)	mmon	i to All	Dranc	nes)							
PREAN	MBLE													
	The aim	of the su	bject is	to pro	vide a f	fundame	ental k	cnowled	lge of l	basic Civ	il Engin	eering		
PRERE	EQUISIT	E- NIL												
COUR	SE OBJI	CTIVES	5											
1	To under	stand the	basic c	oncept	s of su	veying	and co	onstruc	tion ma	terials.				
2	To impar	t basic kı	nowledg	e abou	ıt build	ing con	npone	nts.						
COUR	SE OUT	COMES												
On the	e success	ùl compl	letion of	the co	ourse, s	tudents	will b	e able t	0					
CO1. A	An ability	to apply l	knowled	lge of	mather	natics, s	scienc	e, and e	enginee	ring.			Apply	
CO2. A data .	n ability	o design	and cor	iduct e	experim	ients, as	well	as to an	alyze a	nd interp	oret		Apply	
MAPPI	ING WI	H PRO	GRAM	ME O	UTCO	MES A	ND F	ROGE	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1 PC	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S N	I L	-	М	S	-	-	-	-	-	-	М	-	-
CO2	S N	I L	S	М	S	-	-	М	-	-	-	-	S	-
S- Strong; M-Medium; L-Low														
SYLLA	BUS													
SURVE SURVE	EYING A	ND CIV Objects –	IL EN(- types -	G INE - class	E RING	MAT	E RIA nciple	LS s – me:	asurem	ents of d	istances	– angl	es – leve	lling _
determi	nation of	areas – il	llustrativ	ve exa	mples.	n pri	nonpro	5 11100				ungi		
CIVIL	ENGINI	ERING	MATE	RIAL	S: Bric	cks – sto	ones –	sand –	cemen	t – concr	ete – ste	el section	ons.	
	INC CO	MDONE	'ЛТС А	ND ST	FDIIC	FUDES								
FOUNI	DATION	$\mathbf{S} \cdot \mathbf{T} \mathbf{v} \mathbf{n} \mathbf{e} \mathbf{s}$	Rearin	o cana	ritv = 1	Require	ment i	ofgood	found	ations				
SUPER	STRUC	ГURE: Е	Brick ma	asonrv	- stone	e masor	nrv – t	beams –	- colum	ns – linte	els – roo	fing – f	looring –	_
plasteri	ng – Mec	hanics –	Internal	and ex	ternal	forces -	- stres	s – strai	in – ela	sticity –	Types o	f Bridge	es and Da	ams –
Basics of	of Interior	• Design a	and Lan	dscapi	ing.					,		U		
TEXT 1	BOOKS	_		_	-									
1. "Basi	ic Civil a	nd Mecha	inical Ei	nginee	ring", V	VMU, (2017)	. Comp	any Lto	l., New I	Delhi,20	09		
REFER														
1. Rama	mrutham	S., "Basi		Engine	ering"	, Dhanj	patrai	Publish	ing Co	. (P) Ltd	., 2009.			
Z. Seet	SE DESI	GNERS		ingine	ering,	Anura	una Ag	gencies	•					
S. No.	Name	of the Fa	culty	D	esigna	tion		Depa	rtment	;		Mai	l ID	
1	S. Supri	ya	v	Assis	st. Prof	essor	CIV	'IL		i	ansupriv	yanair@	gmail.co	m
2	C. Kath	irvel		Assis	st. Prof	essor	CIV	ΊL			geologyl	kathir@	 gmail.co	m

	BASICS OF CIVIL AND MECHANICAL ENGINEERING	Category	L	Т	Р	Credit
17CMES02	PART - B BASICS OF MECHANICAL ENGINEERING (Common to All Branches)	ES	2	0	0	2

PREAMBLE

Basic Mechanical Engineering gives the fundamental ideas in the areas of engineering design, manufacturing and Automobile engineering. An engineer needs to understand, the basic manufacturing techniques and working principle of an Automobile Engineering Components.

PREREQUISITE

NIL

COURSE OBJECTIVE

1	To demonstrate the	principles of	f casting and	metal joining pro	ocesses in manufacturing.
		1 1	0	J U I	U

2 To describe and to apply the in depth knowledge in automotive engines and important components. COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO1.	Illustrate	the	applicatio	n of	casting	and	metal	joining	proce	sses	in n	nanufacturing	
	2			•	0				•				

CO2.Demonstrate the operation of automotive engines and important components

Apply Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	L	М	-	-	-	-	-	М	L	-	-
CO2	S	М	L	L	L	М	-	-	-	-	-	М	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

FOUNDRY AND WELDING

Foundry: Introduction to Casting - Types, Pattern- Definition, Function. Foundry tools. Green Sand Moulding application.

Welding: Introduction to welding, Classification – Gas welding, Arc Welding, TIG, MIG, Plasma – Definitions. Arc Welding - Methods and Mechanisms – Applications.

AUTOMOTIVE ENGINES AND COMPONENTS

Introduction, Two stroke and four stroke cycle – Petrol and Diesel Engines - Construction and working, Fundamentals of automotive components - Brakes, Clutches, Governor, Flywheel, Axles, Drives etc., Fuel supply systems, Exhaust emission and control.

TEXT BOOKS

REFERENCE BOOKS1K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai2NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida3TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, ChennaiCOURSE DESIGNERS									
REFERENCE BOOKS1K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai2NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida3TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai	kse designers								
REFERENCE BOOKS1K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai2NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida									
REFERENCE BOOKS 1 K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai	NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida								
REFERENCE BOOKS	K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai								
1 Basic Civil and Mechanical Engineering, School of Mechanical Engineering Sciences, V	Basic Civil and Mechanical Engineering, School of Mechanical Engineering Sciences, VMU, Salem								

1	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.in
2	T.Raja	Assistant Professor	Mech / VMKVEC	rajat@vmkvec.edu.in

17CN	IES81	1	ENGIN PART	NEERI CA-BA	NG SK ASIC C	ILLS CIVIL H	PRACT ENGIN	FICE L EERIN	AB IG	Cate	gory	L	Т	Р	Credit
17010				(Com	mon t	o All B	ranch	es)		E	S	0	0	2	2
PREA Engineed deals w	MBL ering s ith fit and it	E Skills Pra ting, carj s executi	actice is pentry, s	a hand sheet m	s-on tra etal and	ining p l related	ractice 1 exerci	to Mech ses. Als	anical, so, it wi	Civil and ll induce	l Mecha the habi	tronics E it of selec	ngineerin ting righ	ng stud it tools	lents. It s, planning
PRER	EQU	ISITE													
Nil	Nil COURSE OBJECTIVES														
COUR	COURSE OBJECTIVES														
1		indersta	nd the	basic c	oncept	s of sui	ing cou	g and co	onstruc	tion ma	terials.				
	101 SF (Owledg	ge abot			npone	115.						
On th		cessful	comple	etion of	f the co	ourse s	tudents	will h	e able t	0					
CO1. P	On the successful completion of the course, students will be able to CO1.Prepare the different types of fitting. Apply														
CO2 .P	O2.Prepare the different types of joints using wooden material Apply														
MAPP	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	02 PSO3
CO1	S	L	L	L	L	L	L	L	L	L	L	L		-	-
CO2	2 S S S L L L L L L L L L -									-					
S- Stro	ng; N	I-Mediu	im; L-I	LOW								•			
 SYLLABUS Buildings: Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects. Plumbing Works: Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings. Study of pipe connections requirements for pumps and turbines. Preparation of plumbing line sketches for water supply and sewage works. Hands-on-exercise: Mixed pipe material connection – Pipe connections with different joining components. Demonstration of plumbing requirements of high-rise buildings. Carpentry using Power Tools only: Study of the joints in roofs, doors, windows and furniture. Hands-on-exercise: Wood work, joints by sawing, planning and cutting. TEXT BOOK Basic civil engineering Lab Manual by Department of Civil Engineering, VMRF. 															
	SE I	DESIGN		Facult		Deri	motio		Ioma	fthe C	llogo		N/	ID]
D. IN	U	M Sonti	oi the	r acult	ı y	Desig	gnation				mege	conthill	wiai		ec edu in
		wi.Senti	IIIKUIN	ai		Asst.P	rofesso	or	VN	AKVEC		senunnk	umar @`	VIIIKV	ec.edu.m
<u> </u>															

1701	AFS 81	I	ENGINE PAR	ERIN(T- B B	G SKIL ASIC N	LS PR ⁄IECH	ACTI ANIC	CE LA AL	B	Catego	ry L	Т]	Р	Cred it
1701			(EN Comm	NGINE on to A	ERINO Il Brar	3 nches)			ES	0	0		2	1
PREA Works foundr its exe	MBLE hop is a y and w cution.	a han veldin	ds-on tra g related	ining p exercis	bractice ses. Also	to Mea o, it wi	chanica 11 indu	al Engi ce the l	neerin nabit c	g stude of select	nts. It o ing righ	deals w nt tools,	ith fitti plannir	ng, carring the jo	bentry, b and
	DSE OB		TIVE												
		JEC	To perfor	rm the	practice	in diff	erent ty	vpes of	fitting	proces	ses.				
	2		To execu	tive jo	ints usin	g wood	den ma	terials.							
	2 10 check (c joints using wooden indectidity) 3 To apply in depth knowledge in metal joining processes.														
	4		To demo	nstrate	the patt	ern usi	ng fou	ndry pr	ocesse	s					
COUF	RSE OU	TCC	MES:												
On the $CO1$	success	sful co	ompletior	t types	course,	studen	ts will	be able	e to				Apply	7	
CO^2	Practi	$\frac{111}{ce}$ the	e differen	t types	of joint	g using	woode	n mate	rial				Apply	7	
CO3.	Practice the different types of joints using wooden material Apply Demonstrate the different types of joints in metal by Arc Welding Apply														
CO4.	Utiliz	e the	different	types c	of green	, sand m	ould	5		0			Apply	7	
MAPI	PING W	/ITH	PROGR	AMM	E OUT	COMI	ES AN	D PRC	GRA	MME S	SPECII	FIC OU	TCON	IES	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	L	-	-	-	-	-	М	-	-	-	L	-	-
CO2	S	-	L	-	-	-	-	-	М	-	-	-	L	-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	-	L	-	-	-	-	-	М	-	-	-	L	-	-
S- Stro	ong; M-	Med	ium; L-I	JOW											
SYLL	ABUS														
LIST	OF EXI	PERI	MENTS												
Tee – J	Fitting Fitting														
Prepar	ation of	a mo	uld for a	single _I	piece pa	ttern									
Prepar	ation of	a mo	uld for a	split pi	ece patt	ern									
Half- I	Lap Join Tail Iair	it in C	Carpentry												
Lap Jo	int – W	elding	parpentry												
Butt Jo	pint – W	eldin	g												
Text B	Books														
1. Basi	ic mecha	anical	lengineer	ing, la	b manua	.1									
				<u> </u>											

Reference Books

- 1. K. Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai
- 2. NR. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida

Course Designers										
S.No	Faculty Name	Designation	Dept / College	Email id						
1	V K Krishnan	Associate Professor	Mech / VMKVEC	vkkrishnan@vmkvec.edu.in						
2	S. Duraithilagar	Associate Professor	Mech / VMKVEC	sduraithilagar@vmkvec.edu.in						

17EE	ES03		BASI	CS OF I	ELECT EN IC ELE	RICAL GINEE CTRIC	AND E RING AL EN	LECTE	RONICS	5	Catego	ory L	T	P	C	redit
	MDT	ר ה				cinc					ĽS	2	0	0		2
It is a n	relimina		se which	h hiahlia	the the	basic co	ncents s	nd outli	ne of Fl	ectrical e	ngineerin	g The	concents	discu	issed	herein
are proi	ected to	deliver	evolana	n inginig ation on	basic el	ectrical e	ncepts a	ing for l	ne or Er	s of all er	ngineerin	ig. The s	tes	uiset	15500	nereni
			explaine		busic en		Ingineer	ing ior i	Jegniner	s of all ci	ignicering	5 grada	ites.			
PRER	EQUI	SITE														
N1l																
COU	RSE O	BJEC	TIVES	5												
1	Toun	derstand	the ele	ctrical ir	vention	s, basic	concept	s of AC	and dc c	ircuit and	l basic lav	vs of ele	ctrical e	ngine	ering.	
2	To gai	n know	ledge at	bout the	working	princip	le, const	ruction,	applicat	tion of DO	C and AC	machin	es and n	neasur	ing	
	instruments.															
3	To une	derstand	l the fun	damenta	uls of saf	ety proc	edures,	Earthing	g and Po	wer syste	m.					
COUH	RSE O	UTCO	DMES													
On the	succes	ssful c	omplet	ion of	the cou	irse, sti	udents	will be	able to	0						
CO 1: E	CO 1: Explain the evolution of electricity, name the inventors, electrical quantities and basic															
laws of electrical engineering.																
CO 2: D	CO 2: Demonstrate Ohm''s and Faraday''s Law. Apply															
CO 3: U applicat	Jndersta ions.	nd the l	pasic con	ncepts o	f measu	ring inst	ruments	, electri	cal mach	nineries a	nd its		Und	erstan	d	
CO 4: A energy e	Analyze efficient	the vari equipn	ous type nent.	es of elec	ctrical lo	ads, pov	ver ratin	g of elec	etrical m	achinerie	s and		An	alyze		
CO 5: E	Explain t	he elect	rical saf	ety and j	protectiv	ve device	es.						Und	erstan	d	
CO 6: convent	Compar ional an	e the v d non-c	arious to	types el onal sou	ectrical rces.	power g	generatio	on syste	ms by a	applicatio	n of		An	alyze		
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P	502	PSO3
$\frac{COJ}{CO1}$	S I OI	102 M	105 I	-	105 S	100	-	-	-	-	-	I 012	150	1 1.	-	1505
$\frac{cor}{cor}$	5	M	S	8	5				м			M		-		
$\frac{CO2}{CO2}$	J I	NI C	J J	6	-	-	-		IVI	T	-	IVI	-	_	-	-
$\frac{003}{004}$	L C	ы м	с Г	- T	ь т	- C	- C	-	-	L C	-	L T	+ -	+	-	-
<u>CO4</u>	ь Т		s c		L	5 5	3 	- M	-	<u> </u>	-	L	-	_	-	-
005	L	M	S	M	-	S	M	M	-	S	-	L	-		-	-
CO6)6 S L S L M S S M - L															
S-Stro	S- Strong: M-Medium: L-Low															

SYLLABUS

HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current– DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor& vector diagram. Electric Circuits - Passive components (RLC), Ohm"s law, KCL, KVL, Faraday"s law, Lenz"s law. Electrical materials – Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment-Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domesticloads. Energy Efficient equipments – star ratings.

ELECTRICALSAFETY AND INTRODUCTIONTOPOWERSYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)-Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K,RohitMetha,"BasicElectricalEngineering",Fifthedition,Chand.S&Co,2012
- 2. Kothari.D.PandNagrath.I.J, "BasicElectricalEngineering", Secondedition, TataMcGraw-Hill, 2009
- 3. R.K.Rajput, "Basic Electrical and Electronics engineering", Second Edition, Laxmi Publication, 2012

REFERENCE BOOKS:

1.SmarajtGhosh,"*FundamentalsofElectrical&ElectronicsEngineering*",Secondedition,PHILearning,2007

COUR	SE DESIGNERS															
S.No	Name of the Faculty	Designation	Departme	Mail ID												
			nt													
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in												
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in												
1 7 FF	'FS03	BASI	CS OF	ELECI FN	RICAL	L AND I BING	ELECTI	RONIC	S C	ategory	L	Т	Р		Cred	it
--	--	---------------------	-------------	-------------	------------	-----------------	------------	--------------------	------------	--------------	-------------	------------	---------	----------	-------------	-----------
17121	12005	B.	BASIC	ELEC	TRONI	CS EN(GINEER	RING		ES	2	0	0		2	
PREA	AMBL	E											-			
The co	urse aim	s to imp	art fund	lamental	knowle	dge on o	electroni	cs comp	onents,	digital lo	gics and o	commu	nicati	on eng	ineering c	concepts.
The co	urse beg	ins with	classifi	cation o	of variou	s active	and pass	sive con	nponent	s, diodes a	and transi	istors. 1	t enab	oles the	e student t	o design
commu	inication	svstem	s.	lexer, de	munupi	exer, end	coder, de	coder ci	ircuits, e	etc. It crai	ts the stud	Jents to) get e	xperus		
PREI	ROUIS	ITE	-	NIL												
COU	RSE O	BJEC	TIVE	S												
1	1 To learn and identify various active and passive components and their working principles.															
2	2 To understand the number conversion systems.															
3	To lear	n the di	gital log	ic princi	iples and	ł realize	adders, 1	multiple	exer, etc	.,						
4	To und	erstand	the appl	ication of	oriented	concept	s in the c	commun	ication	systems.						
COU	RSE O	UTCO	DMES													
On the	e succe	ssful c	omple	tion of	the cou	urse, st	udents	will be	e able t	0						
CO1.	Classify	the elec	tronic c	ompone	nts and	make ou	t the wor	rking pr	inciple	of diodes a	and	Unders	tand			
transist	tors															
<u>CO2.</u>	Explore	the wor	king pri	nciple of	f rectifie	rs, regul	ators and	d transis	stors.			Analyz	e			
<u>CO3.</u>	Execute	number	system	convers	ions and	l digital	logic ope	erations	•			Apply				
<u>CO4.</u>	CO4. Realize the design of adders, Multiplexer, De-Multiplexer, Encoder, Decoder circuits. Analyze															
<u>CO5.</u>	Familiar	ize with	applica	tion orie	ented co	ncepts ir	the com	nmunica	tion sys	stems.		Unders	tand			
MAP	PING	WITH	PRO	GRAN	IME (DUTCO	JMES	AND	PROC	FRAMN	IE SPE	CIFI		JTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 P	SO1	PSO2	PSO3
CO1	М	М	-	-	-	-	-	-	-	-	-	-		М	-	-
CO2	S	М	М	L	-	-	-	-	-	-	-	-		S	L	-
CO3	S	М	L	-	-	-	-	-	-	-	-	-		S	-	-
CO4	S	М	М	L	-	-	-	-	-	-	-	-		S	L	-
CO5	М	L	-	-	-	-	-	-	-	-	-	L		М	-	-
S- Str	ong; M	-Medi	um; L-	Low												
SYLI) CTOD	DEVIC	TC												
Passive	e and A	ctive Co	ompone	nts - Re	esistors.	Inducto	ors. Capa	acitors.	Charac	teristics o	f PN Jur	nction	Diode	- Zei	ner Diode	and its
Charac	teristics	- Half w	vave and	l Full wa	ave Rect	ifiers -	Voltage I	Regulati	ion. Bip	olar Junct	ion Trans	sistor, J	FET, I	MOSF	ET & UJ	Г.
DIGIT	AL FUI	NDAM	ENTAL	S.				a				. .	a			
Numbe	er Systen	18 – B1n 1 Gates	ary, Oci	tal, Deci	mal and	Hexa-L	becimal -	– Conve Encoder	rsion fr	om one to	another -	– Logic	Gates	s - AN	ID, OR, N	ЮГ,
COM	MUNIC	ATION	AND A	DVAN	CED GA	ADGET	'S	Liteouei	, Deco		101103					
Modula	ation and	d Demo	dulation	1 – AM,	FM, Pl	M - RA	DAR –	Satellite	e Comn	nunication	- Mobil	e Com	munic	ation,	LED, HD	, UHD,
OLED,	, HDR &	: Beyon	d, Smar	t Phones	s – Blocl	k diagra	ms Only.	•								
1 EA 1	R.K.F	5: Raiput. "	Basic E	lectrical	and Ele	ctronics	Enginee	ring". I	axmi Pı	ublication	s. Second	Editio	n. 201	2.		
2.	"Basic	Electri	cal and	Electror	nics Eng	ineering	,", Depar	rtment o	of EEE	& ECE, F	aculty of	Engine	ering	& Tec	chnology,	
	VMRI	FDU, A	nuradha	Agenci	es, 2017	'. 								• • • •		
3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.																
DEFEDENCES.																
1. John G.Proakis and Dimitris G.Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Prentice-Hall																
	of Indi	ia, Fourt	h Editio	on, 2006		, Di	0 0.6				,	un				
2.	Vinay	K.Ingle	and Joh	n G.Proa	akis, "D	igital Si	gnal Proc	cessing	using M	ATLAB"	CL Engi	neering	, Thire	d Editi	on, 2011	
3. 1	Sopho John C	cles J.O	rtanidis	Introd	uction to	Signal	Processin	ng", Pre	entice Ha	all, 1996.	ntica Uall	Secon	d Edi	tion ?	002	
4.	JOHIL	5.1 IUANI	5 and 10	asouusi	aciii, C	ommun	ication S	y 3101113	Lignet	ang rie	inter Hall	, 500	ia Eul	uon, 2	002.	

COU	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in									
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in									

17MEE884	ENGINEERING GRAPHICS	Category	L	Т	Р	Credit
1/1/12E504	(Theory + Practice)	FC(ES)	1	0	4	3

Preamble

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Prerequ NIL	isite														
Course	Objecti	ve													
1	To im	plemer	nt the c	orthogra	phic p	rojecti	ons of p	points,	straig	ht lines, p	lane sur	faces and	solids		
2	Тосо	nstruct	the or	thograp	hic pro	ojectio	ns of se	ctione	d solid	s and tru	e shape o	of the sec	ions.		
3	To de	velop l	ateral	surface	s of the	euncut	and cu	t solid	s.						
4	To dr	aw the	pictori	al proje	ctions	(isom	etric and	d persp	pective) of simp	le solids				
5	To sk	etch by	free h	and the	orthog	graphic	e views	from t	he giv	en pictori	al view.				
Course	Outcon	nes: Or	n the s	uccessf	ul com	pletio	n of the	e cour	se, stu	dents wi	ll be abl	e to			
CO1.	Exect lines,	ite in t plane s	he for surface	m of d es and s	rawing olids.	g of th	e ortho	graphi	ic proj	ections of	of points	, straight	Ap	ply	
CO2.	Demo solids	onstrate and tru	in th ue shap	e form pe of th	of dra e sectio	awing ons.	of the	orthog	graphic	e projecti	ions of	sectioned	Ap	ply	
CO3.	Devel	lop late	ral sur	faces of	f the sc	olid sec	ction an	d cut s	ection	of solids	•		Ap	ply	
CO4.	Draw	the pic	torial j	projecti	ons (is	ometri	c and p	erspec	tive) o	f simple s	solids.		Ap	ply	
CO5.	Imple view.	ement t	he free	e hand	sketch	of the	e orthog	graphi	c view	s from th	ne given	pictorial	Ap	ply	
Mappin	g with]	Progra	mme (Outcon	nes an	d Prog	gramme	e Spec	ific O	utcomes					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	S	L								L		
CO2	S	S	L	S	L								L		
CO3	S	S	L	S	L								L		
CO4	S	М	L	S	S								L		
CO5	S	S	L	S	L								L		

S- Strong; M-Medium; L-Low

Syllabus

PLANE CURVES AND FREE HAND SKETCHING

Conics – Construction of ellipse– First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

PROJECTION OF POINTS, LINES

Projection of points, Projection of straight lines located in the first quadrant: inclined to both planes – Determination of true lengths and true inclinations – rotating line method only.

PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section. Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ISOMETRIC VIEW AND PERSPECTIVE PROJECTION

Principles of isometric View – isometric scale – isometric view of simple solids- Introduction to Perspective projection

Text Books

1	Natarajan K V, "Engineering Graphics", Tata McGraw-Hill Publishing Company Ltd. New Delhi.										
2	K.Venugopal and V.Prabh	u Raja, "Engineering	g Graphics", New Age	International Private Limited.							
3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.										
Reference	ice Books										
1	N.D. Bhat and V.M. Panch	nal, Engineering Gra	phics, Charotar Publis	hers 2013							
2	E. Finkelstein, "AutoCAI	0 2007 Bible", Wiley	Publishing Inc., 2007	1							
3	R.K. Dhawan, "A text boo	k of Engineering Dra	wing", S. Chand Publ	lishers, Delhi,2010.							
4	DhananjayA.Jolhe, "Engi Publishing Company Limi	neering Drawing wated, 2008.	ith an Introduction to	o AutoCAD", Tata McGraw Hill							
5	G.S. Phull and H.S.Sandhu	ı, "Engineering Grap	hics", Wiley Publicati	ions, 2014.							
Course I	Designers										
S.No	Faculty Name Designation Dept / College Email id										
1	Dr. S.VENKATESAN Professor Mech / VMKVEC venkatesan@vmkvec.edu.in										
2	Prof. N.Rajan Associate Professor Mech / VMKVEC rajan@vmkvec.edu.in										

17EEE	S81	81 ENGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING LAB										ory	L	Т	Р	Credit
											ES	(0	0	2	2
PREAN It is a lab earthing r	MBLI porator method	E y course ls.	e which	familia	rizes the	e basic e	lectrical	wiring,	measur	ement of	electrical	l quan	titie	s and v	various	s types of
PRERI	EOUI	SITE														
Nil	- L															
COUR	SE O	BJEC	TIVE	S												
1	To learn the residential wiring and various types of electrical wiring.															
2	To measure the various electrical quantities.															
3	To know the necessity and types of earthing and measurement of earth resistance.															
COUR	SE O	EOUTCOMES														
On the		ccessful completion of the course, students will be able to														
CO 1: Im	pleme	lement various types of electrical wiring.														
CO 2: Me	Measure fundamental parameters of AC circuits.															
CO 3: Measure the earth resistance of various electrical machineries Apply																
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSC	D2 PSO3
CO1	S	М	L	-	S	-	-	-	-	-	-	L		-	-	-
CO2	S	М	S	S	-	-	-	-	М	-	-	М		-	-	-
CO3	L	S	L	-	S	-	-	-	-	L	-	L		-	-	-
S- Stror	ng; M	-Medi	um; L-	Low		1				1						I
List of E	xperin	nents														
1.	Reside	ntial ho	ouse wiri	ing using	g switch	es, fuse,	indicate	or, lamp	and ene	rgy meter						
2.	Fluore	scent la	mp wiri	ng.												
3.	Stair c	ase wiri	ing.													
4.	Measu	rement	of electi	rical qua	ntities -	- voltage	, current	t, power	& powe	er factor i	n RLC ci	rcuit.				
). 6	Measu	rement	or energ	gy using	single p	nase en	ergy met	er.								
0. REFERI	0. Measurement of resistance to earth of an electrical equipment.															
1. L	aborat	orv Refe	erence N	Manual												
COUR	SE D	ESIG	NERS													
S.No.	Nar	ne of t	he Fac	ulty		Desi	pnatior	1	Der	artment	Mail	ID				
1	Dr	R. De	varaia	1		Pro	fessor		1.1	EEE	devara	ajan@	vm	kvec.ed	lu.in	
2	Mr.	R. Sat	hish		A	ssistan	t Profe	ssor	1	EEE	sathis	h@vn	ıkv	ec.edu.i	<u></u>	

17EE	EES82 ENGINEERING SKILLS PRACTICES LA										Cate	ego	L	Т	Р	Cred	it
		PA	КГВ-	BASI	C ELI			S			$\frac{ry}{\Gamma}$	/	0	0		_	1
DDE				ENGI	NEER	ING L	AB				E	5	0	0	2		1
PKE/	AMBL	JE is to re	ماريحي			1 l	~~ :	DasiaI	71	nias E			.~ I			_	
1 nis (course	is to p	rovide	a praci	lical Ki	10Wled	ge in	Basic I		nics E	ngin	blog	1g. 11 tha c	tud	rts with	l constru	at
and to	al Izal	nla ala	otronic		nponei	its and	electi		quipine	ents. It	ena	idles	the s	iuue		constru	Cl
		PIC CIC		, projec	.18.												
COU	RSE ()B.IE(S													
1	Tofa	miliar	ize the	electro	onic co	mnone	ents h	asic el	ectroni	c equi	ome	ents a	nd se	olde	ring tea	chnique	-S.
2	To st	udv th	e chara	cterist	ics of]	Diodes	BIT	and FI	ET.	e equi		<u> </u>		5140	ing to	ennque	
3	Tou	ndersta	and the	princi	ples of	vario	, <u>Du r</u> 18 digi	ital log	ic gate	S.							
4	Tou	ndersta	and the	conce	pt of b	asic m	odulat	tion tec	hnique	es.							
COU	OURSE OUTCOMES																
On th	the successful completion of the course, students will be able to																
CO1.	Under	stand	the bas	ics of v	various	s electr	onic c	compor	nents a	nd equ	ipm	ents			Unde	erstand	
and the	neir wo	orking	princip	oles.													
CO2.	Under	stand	the fun	damen	tals of	solder	ing te	chniqu	es for a	active	and				Unde	erstand	
passiv	ve com	ponen	ts														
CO3.	CO3. Know the characteristics of Diodes, BJT and FET. Understand																
CO4. Verify the truth tables of logic gates (AND, OR, NOT, NAND, NOR, Understand																	
XOR).																	
CO5.	CO5. Distinguish between amplitude and frequency modulation techniques. Understand																
MAP	PPING	WITI	H PRO	GRA	MME	OUTC	COM	ES AN	D PR(JGRA	MN	AE S	PEC	IFI	C OU'.	гсом	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	P	011	PO	12	PSO1	PSO2	PSO3
CO1	М	L	-	-	-	-	М	-	L	-		М	-		М	-	-
CO2	М	L	-	-	-	-	М	-	L	-		М	-		М	-	-
CO3	М	L	-	-	-	-	М	-	М	-		М	-		М	-	-
CO4	M	L	-	-	-	-	M	-	M	-		M	-		M	-	-
CO5	M		- · •	- T	-	-	М	-	М	-		Μ	-		М	-	-
5- Sti	ong; N	I-Med	ium; L	-LOW													
	OF E	APEK a Elect		(15 Comp	ononto												
1.10e	otioina	g Eleci	Idoring	Comp and F	onents Desold	ring											
2. Fla	oroctor	istics	of DN 3	y allu L	n Diad	anng.											
3. Ch	aracter	istics (of Zene	unction r diad		e.											
4. Characteristics of Zener diode.																	
6 Transfer characteristics of IFET																	
7. Verification of Logic Gates.																	
8 Stu	Incut	Amplit	ude M	odulati	ion.												
9. Stu	idy of l	Freque	ncv M	odulati	on.												
COU	RSE I	DESIG	NERS		-												
S.No		Name	of the F	aculty		De	signat	ion	Dep	artmen	t				Mail II)	
1	Dr.T.	Sheela				Associa	te Prof	essor	-	ECE		sheela	a@vn	nkved	c.edu.in		
2	Ms.A.Malarvizhi Assistant Professor ECE											malarvizhi@vmkvec.edu.in					

CATEGORY B - CORE COURSES RELEVANT TO THE PROGRAMME

17CVCC01 CONSTRUCTION MATERIALS Category L T P Cr											
CC 3 0	0	3									
PREAMBLE											
The aim of the course is to know about the various materials, both conventional and modern, that are comm	nonly u	sed in									
civil engineering construction.											
PREREQUISITE - NIL											
COURSE OBJECTIVES											
1 He should be able to appreciate the criteria for choice of the appropriate material and the various tests for quality control.											
2 The student will learn the use of the materials											
3 The student will learn in detail the manufacturing process of all the materials											
4 Special Materials used for architectural purposes also will be taught in detail											
5 Glass and Composite materials used for architectural purposes also will be taught in detail.											
COURSE OUTCOMES											
On the successful completion of the course, students will be able to											
CO1. Know about Bricks, Classification and Manufacturing of clay bricks, Tests on bricks.	Unde	erstand									
Co2. Know about Lime and Preparation of lime mortar ,Cement, Manufacturing process of cement ,Types and Grades of cement	Unde	erstand									
Co3. Know about Concrete and its Manufacture process, Compressive, Tensile and shear strength of	Unde	erstand									
concrete, Mix specification and Mix proportioning.	Und	ratand									
CO5 Know about Glass Ceramics Clay products Composite materials and its Types Geo membranes	Unde	erstand									
and Geo textiles for earth reinforcement	enac	listund									
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01	PSO2	PSO3									
CO1 M M L L L											
CO2 S S M M M L L											
CO3 L L L L L											
CO4 S M M L L L L											
CO3 5 5 5 M M M M L											

SYLLABUS

STONES – BRICKS – CONCRETE BLOCKS: Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS: Stone as building material – Criteria for selection – Tests on stones – Deterioration and Preservation of stone work – Bricks – Classification – Manufacturing of clay bricks – Tests on bricks – Compressive Strength – Water Absorption – Efflorescence – Bricks for special use – Refractory bricks – Cement, Concrete blocks – Light weight concrete blocks

LIME – CEMENT – AGGREGATES – MORTAR: Lime – Preparation of lime mortar – Cement, Ingredients – Manufacturing process – Types and Grades – Properties of cement and Cement mortar – Hydration – Compressive strength – Tensile strength – Soundness and consistency – Setting time – Aggregates – Natural stone aggregates – Industrial by products – Crushing strength – Impact strength – Flakiness – Abrasion Resistance – Grading – Sand Bulking CONCRETE: Concrete – Ingredients – Manufacture – Batching plants – Ready Mix Concrete – Properties of fresh concrete – Slump – Flow and compaction – Principles of hardened concrete – Compressive, Tensile and shear strength – Modulus of rupture – Tests – Mix specification – Mix proport ioning – IS method – High Strength Concrete and High Performance Concrete – Other types of Concrete.

TIMBER AND OTHER MATERIALS : Timber - Industrial timber – Plywood – Veneer – Thermocole –Bitumen – Market forms Panels of laminates – Steel – Aluminium and Other Metallic Materials – Composition – Uses – Market forms – Mechanical treatment – Paints – Varnishes – Distempers.

MODERN MATERIALS : Glass – Ceramics – Sealants for joints – Fibre glass reinforced plastic – Clay products – Refractories – Composite materials – Types – Applications of laminar composites – Fibre textiles – Geo membranes and Geotextiles for earth reinforcement.

TEXT BOOKS:

- 1. Rangwala, S.C., "Engineering Materials ", Charotar Publishing House, Anand, 2008
- 2. R.K.Rajput, "Engineering Matererials, S.Chand Publications, 2008
- 3. Shetty.M.S., "Concrete Technology (Theory and Practice)", S. Chand and Company Ltd., 2008 2008

REFERENCES:

- 1 Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.
- 2 Gambhir.M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 3 Duggal.S.K. "Building Materials", 4th Edition, New Age International, 2008.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	A.Fizoor Rahman	Asso.Prof	VMKVEC	fizoorr@gmail.com
2	M.Senthilkumar	Asso.Prof	VMKVEC	Senthilkumar@vmkvec.edu.in

17CVCC02	MECHANICS OF SOLIDS I	Category	L	Т	Р	Credit
1, 0, 0, 0, 0, 0, 0		CC	3	0	0	3

PREAMBLE

The mechanics of deformable solids is more concerned with the internal forces and associated changes in the geometry of the components involved. Of particular importance are the properties of the materials used, the strength of which will determine whether the components fail by breaking in service, andthe stiffness of which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by loads. Theoretical analyses and experimental results have equal roles in this field.

PREREQUISITE - NIL

COURSE OBJECTIVES															
1	The s of thi	ubject s cours	of Mec se, the s	hanics student	of Soli will ha	ids cut ave kno	s broad owledg	lly acro e abou	oss all b t behav	oranches vior of n	of enginembers	neering subject	profession ed to van	on. At th rious typ	ne end es of
2	Torces	S.	1	- f		-4		1							
2	2 10 study the basics of stress and strain in two dimension 2 Analysis of trusces using various methods														
3	3 Analysis of trusses using various methods														
4	4 To acquire knowledge about types of beam, loading conditions														
) COUT	The s	ubject	can be	master	red best	t by so.	lving n	umero	us prot	olems					
COUR	SE O		MES		N . 1				1.1						
On th	ne succ	essful	comple	etion of	the co	urse, s	tudents	s will b	e able	to					
CO1.	Struct	ural me	embers	subjec	ted to	tension	, comp	pression	n, torsi	on		1	Analyse		
CO2. Structural bending and combined stresses using the fundamental concept Analyze of stress , strain and elastic behavior of materials															
CO3.	CO3. Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight.														
CO4.	Calcul memb	late the ers, an	e stress d mem	ses and	l strain ibject t	is in ax o flexu	xially-l Iral loa	loaded dings	memb	ers, circ	cular tor	sion	Apply		
CO5.	Calcul cylind	late the	e stress ressure	ses and vessel	strains s.	s assoc	ciated v	with th	in-wal	l spheric	cal and	1	Analyze		
MAPF	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND P	ROG	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	М	L	S	-	-	-	-	-	-	-	-	L	-	-
CO3	S	М	М	S	-	-	-	-	-	-	-	-	-	М	-
CO4	S M M M														
CO5 S M M L M															
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

STRESS, STRAIN AND DEFORMATION OF SOLIDS: Rigid bodies and deformable solids - Stability, strength and stiffness - tension, compression and shear stresses - Deformation of simple and compound bars - Thermal Stresses - Elastic Constants.

ANALYSIS OF PLANE TRUSSES : Stability and equilibrium of plane frames - perfect frames - types of trusses - analysis of forces in truss members - Method of joints - Method of tension coefficients - Method of sections.

TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAMS: Beams - Types and transverse loading on beams - Shear force and bending moment in beams - Cantilevers - Simply supported beams and over- hanging beams. Theory of simple bending - analysis of stresses - Load carrying capacity - Proportioning sections - Leaf springs - Flitched beams - Shear stress distribution - shear flow

TORSION: Stresses and deformation in circular and hollow shafts - Stepped shafts - shafts fixed at the both ends - Stresses in helical springs - Deflection of springs.

ANALYSIS OF STATES OF STRESS (TWO DIMENSIONAL) AND DEFLECTION OF BEAMS: Biaxial state of stress - Thin cylinders and shells - Deformation of thin Cylinders and shells - Stresses at a point -Stress as tensor - Stresses on inclined planes - Principal stresses and principal planes - Mohr's circle of stress.Double integration method - Macaulay's method - Area moment theorems for computation of slopes and deflections in beams - Conjugate beam method.

TEXT BOOKS:

- 1. Er.R.K.Rajput,"Strength of Materials"S.Chand Publications, New Delhi, 2006
- 2. Dr.R.K.Bansal,"A Textbook of Strength of Materials"Laxmi Publications, 2010
- 3. Srinath L.N., " Advanced Mechanics of Solids ", Tata McGraw Hill Publishing Company Ltd., New Delhi,2009

REFERENCES:

- 1. Junarkar S.B., "Mechanics of Structures ", Vol. 1, 21st Edition, Charotar Publishing House, Anand, India, 2007
- 2. Kazimi S.M.A., "Solid Mechanics ", Tata McGrawHill Publishing Company, New Delhi, 1991
- 3. Raghunath H. M., "Strength of materials", New Age International (P) Limitted Publishers.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	S.Supriya	Asst. Professor	CIVIL	jansupriyanair@gmail.com
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CVCC03 MECHANICS OF FLUIDS Category L T P		Credit													
17CV	CC03			MECI	HANI	CS OF	FLUI	DS				3	0	0	3
		_								u	-	U	Ũ	0	
PREA	MBL	C													
	Fluic	l Mech	nanics i	s a sub	ject of	engine	eering s	science	deals	with the	e behavi	our of	fluids at	rest as w	ell
as in	motion	. It is a	an imp	ortant	subject	with u	nlimite	ed prac	tical ap	plicatio	ons rang	ing fro	om biolog	cical system	em
syster	ns to	autom	obiles,	airpla	nes ar	id spa	cecraft	propu	lsion.	Thus the second	his subj	ect is	given c	onsidera	ble
impoi	tance	in Civi	I, Mec	nanical	and C	hemica	l Engii	neering	at core	e as wel	I as at p	rofessi	onal leve	els.	
PRER	EQUI	SITE -	· NIL												
COUR	SE O	BJEC	FIVES												
1 The student is introduced to the definition and properties of fluid.															
2	 Principles of fluid statics, kinematics and dynamics are dealt with subsequently. 														
3	3 The application of similitude and model study is covered subsequently.														
4	4 After undergoing this course, the student would have learnt fluid properties														
5	Application to real situations of fluid flow will be learned														
COUR	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1.	Expla	in the	basic p	roperti	es of f	luids a	nd thei	ir appli	cation	in real	world		Underst	and	
	proble	ems.	-	-									Underst	and	
CO2.	Distin	guish	betwee	n vario	ous typ	es of f	lows a	nd deri	ive the	continu	ity equa	ation	A		
	for co	mpress	ible an	d inco	mpress	ible flo	W				5 1		Apply		
CO3.	Under	stand 1	the use	and li	mitatio	ons of t	he Bei	moulli	's equa	tion and	d apply	it to	A 1		
	solve	a varie	ty of fl	uid flo	w prob	lems.			1				Apply		
CO4.	Deteri	nine th	e bour	dary la	ver thi	ckness	and ot	her bou	undary	layer pr	operties	5	Apply		
CO5	Estim	ate the	Scale	effect	and div	storted	model	s Unde	erstand	the use	and us	e the	11 2		
005.	Dime	nsional	analys	sis and	Ravlei	gh's an	d apply	v it to s	olve a	variety	of fluid	flow	Apply		
	proble	ems.				8	• • • PP	, 10 00 0							
МАРР	ING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGE	RAMM	E SPEC	TFIC	ουτοο	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	<u>105</u> М	IUT	105 M	I	-	-	I	-	М	1012	-	1502	-
CO2	S	M	M	L	L	L	-		-		-	-		-	_
CO3	S	S	S	M	L	L	_	L	_	_	_	-	М	-	_
CO4	S	S	S	M	M	-	-	-	-	-	S	-	-	_	-
CO5	S	S	S	М	L	L	-	-	М	-	-	-	-	-	-
S- Stro	COS S S M L L - M -														

SYLLABUS

FLUID PROPERTIES AND STATISTICS: Definitions - Fluid and Fluid Mechanics - Dimensions and units - Fluid properties - Continuum - Concept of system and control volume - Pascal's law and Hydrostatic equation - Forces on plane and curved surfaces - Buoyancy - Pressure measurement.

FLUID KINEMATICS : Classification of flows -stream, streak and path lines - Continuity equation - Stream and potential functions - Flow nets - Velocity measurement

FLUID DYNAMICS : Euler and Bernoulli's equations - Application of Bernoulli's equation - Discharge measurement- Momentum Principle - Laminar flows through pipes and between plates - Hagen Poiseuille equation - Darcy Weisbach formula - Moody diagram - Turbulent flow

BOUNDARY LAYER AND FLOW THROUGH PIPES: Definition of boundary layer - Thickness and classification - Displacement and momentum thick nesses - Development of Laminar and Turbulent flows in circular pipes - - Major and minor losses of flow in pipes - Pipes in series and in parallel - Pipe network

DIMENSIONAL ANALYSIS AND MODEL STUDIES: Dimensional analysis - Rayleigh's method -

Buckingham P - Theorem - similitude and models - Scale effect and distorted models.

TEXT BOOKS:

- 1. Kumar K.L., "Engineering Fluid Mechanics ", Eurasia Publishing House (P) Ltd., New Delhi, 2008
- 2. Dr.R.K.Bansal, "FluidMechanics", LakshmiPublications, 2008

REFERENCES:

- 1. Streeter, Victor L. and Wylie, Benjamin E., "Fluid Mechanics ", McGraw-Hill Ltd., 1998.
- 2. Natarajan M.K., "Principles of Fluids Mechanics ", Anuradha Agencies, Vidayal Karuppur, Kumbakonam, 1995.
- 3. Jain A. K. "Fluid Mechanics", Khanna Publishers, 2010 4. Roberson J.A and Crowe C.T., "Engineering Fluid Mechanics", Jaico Books Mumbai, 2000.

S.No.	Name of the Faculty	Designation	Department	Mail ID	
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in	
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com	

170	VCC04	1			SURV	EVIN	GI			Categ	ory	L	Т	Р	Credit
170					JURV					CC		3	0	0	3
PRE	AMBI	LE								1					
the and area PRE	the earth surface. The data collected from a survey is used in the preparation of plans, maps, profiles, charts and diagrams. In addition survey may be used for the delineation of property boundaries, computation of areas and volumes also to set out the proposed work on the ground. PREREQUISITE - NIL														
COU	COURSE OBJECTIVES														
1	1 At the end of the course the student will posses knowledge about Chain surveying														
2	Students get knowledge about Compass surveying,														
3	Principles of Plane table surveying, Levelling,														
4	Basic knowledge about Theodolite surveying														
5 The Students learn about Engineering surveys.															
COU	IRSE (OUTC	OMES	5											
On	the suc	ccessfu	ıl comp	oletion	of the o	course,	studer	nts will	be able	e to					
CO	1. Stud	ly the l	inear a	nd ang	ular me	easuren	nent us	sing ch	ain and	Compa	ss.		Underst	and	
CO	2. Stud	ly the in	mporta	nce of	plane t	able su	rveyin	g in pro	eparatio	on of pla	ins		Apply		
CO	3. Kno	w to fi	x the re	elative	positio	n of po	ints on	the gr	ound us	sing Lev	vels.		Apply		
CO	4. Und tach	erstand ometrie	l the m c princ	easure iple	ment of	f distar	ice and	l height	ts of ol	ojects us	ing		Apply		
CO	CO5. Understand the importance of advanced techniques involved in surveying such as Total station and GPS Apply														
MAI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	М	S	М	М	S	S	S	-	-	-	-	-
CO2	S	М	L	-	-	-	-	S	S	S	-	-	-	L	-
CO3	S	М	М	-	-	-	-	S	S	S	-	-	L	-	-
CO4	S	М	М	-	-	-	-	S	S	S	-	-	-	S	-
CO5	S	М	М	-	-	-	-	L	-	-	-	L	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION AND CHAIN SURVEYING : Definition - Principles - Classification - Fields and office work - Scales - Conventional signs- Survey instruments, their care and adjustment - Ranging and chaining - Reciprocal ranging - Setting perpendiculars - well-conditioned triangles - Traversing - Plotting - Enlarging and Reducing figures.

COMPASS SURVEYING AND PLANE TABLE SURVEYING: Prismatic compass - Surveyor's compass - Bearing - Systems and conversions - Local attraction – Magnetic declination - Dip - Traversing - Plotting - adjustment of error - Plane table instruments and accessories - Merits and demerits - Methods - Radiation - Intersection - Resection - Traversing.

LEVELLING AND APPLICATIONS : Level line - Horizontal line - Levels and Staves - Sprit level -Sensitiveness - Bench marks - Temporary and permanent adjustments - Fly and Check leveling - Booking reduction - Curvature and Refraction - reciprocal levelling - Longitudinal and cross sections - Plotting -Calculation of areas and volumes - Contouring - Methods -Characteristics and uses of contours - Plotting - Earth work volume - Capacity of reservoirs

THEODOLITE SURVEYING : Theodolite - Vernier and micro optic - Description and uses - temporary and permanent adjustments of vernier transit - Horizontal angles - Vertical angles - Heights and Distances -

Traversing - Closing error and distribution - Gales's tables - Omitted measurements

ENGINEERING SURVEYS : Reconnaissance, Preliminary and location surveys for engineering projects - Layout - Setting out works – Route Surveys for highways, railways and waterways - Mine Surveying - Instruments - Tunnels - Correlation of underground and surface surveys - Shafts - Audits

TEXT BOOKS:

- 1. Kanetkar T.P., "Surveying and Levelling ", Vols. I and II, United Book Corporation, Pune, 2006
- 2. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, 2005.

REFERENCES:

- 1. Clark D., "Plane and Geodetic Surveying ", Vols. I and II, C.B.S. Publishers and Distributors, New Delhi, Sixth Edition, 1991.
- 2. James M. Anderson and Edward M. Mikhail, " Introduction to Surveying ", McGraw Hill Book Company, 1995.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CVCC05	CONSTRUCTION TECHNIQUES,	Category	L	Т	Р	Credit
2.0.000	EQUIPMENT AND PRACTICES	CC	3	0	0	3

PREAMBLE

A construction technique focuses more on detailed understanding of concrete making materials and production process. Recent developments in concrete materials are also given adequate consideration. Going through the course. Student would develop adequate understanding on concrete production process and properties and use of concrete as a modern material of construction.

PREREQUISITE- NIL

COURSE OBJECTIVES

COUR															
1	The b	asics o	of vario	us con	structio	on tech	niques,	practi	ces						
2	The e	quipme	ent nee	ded for	r differ	ent typ	es of c	onstruc	ction ac	ctivities					
3	The struct	tudent ure	shall h	ave a r	easona	ble kno	owledg	e abou	t the va	arious co	onstructi	on proc	edures fo	or sub to	super
4	The e	quipme	ent nee	ded fo	r const	ruction	ofvar	ious ty	pes of	structure	es from t	foundati	on to su	per struc	ture.
5	5 The students should know the Building services in a building.														
COUR	OURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1.	CO1. Explain the properties and tests of various constituents present in Concrete Understand														
CO2. Explain the Construction Practices such as masonry – stone masonry – Bond in Apply															
CO3.	Unde	rstand	various	s sub st	ructure	e consti	ruction	and T	unnelir	ng techni	iques	τ	Jndersta	nd	
CO4.	Explai	in the d	letailed	l about	Super	structu	re Con	struction	on			I	Apply		
CO5.	Explai	in the v	various	constr	uction	Equipr	nents a	nd Ear	th mov	ving oper	ration	A	Apply		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	S	L	-	М	L	L	-	-	-
CO2	S	Μ	L	S	-	-	S	S	-	М	L	L	-	-	-
CO3	S	М	М	S	-	-	S	-	-	-	L	М	-	L	-
CO4	S	М	М	М	-	-	S	-	-	-	S	Μ	S	-	-
CO5	S	Μ	Μ	-	-	-	-	-	-	S	-	L	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

CONCRETE TECHNOLOGY Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete.

CONSTRUCTION PRACTICES: Specifications, details and sequence of activities and construction coordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms

- scaffoldings - de-shuttering forms - Fabrication and erection of steel trusses - frames - braced domes - laying brick — weather and water proof - roof finishes - acoustic and fire protection.

SUB STRUCTURE CONSTRUCTION: Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points - Dewatering and stand by Plant equipment for underground open excavation

SUPER STRUCTURE CONSTRUCTION: Launching girders, bridge decks, off shore platforms - special

forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks

CONSTRUCTION EQUIPMENT: Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for dredging, trenching, tunneling,

TEXT BOOKS:

- 1. Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997.
- 2. Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.
- 3. Shetty, M.S, "Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.

REFERENCES:

- 1. Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
- 2. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com

Subject Code	Subject Title	Category	L	Т	Р	Credit
17CVCC06	MECHANICS OF SOLIDS -II	CC	2	1	0	3

PREAMBLE

The mechanics of deformable solids is more concerned with the internal forces and associated changes in the geometry of the components involved. Of particular importance are the properties of the materials used, the strength of which will determine whether the components fail by breaking in service, and the stiffness of which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by loads. Theoretical analyses and experimental results have an equal role in this field.

PREREQUISITE

Mechanics of Solids – I

COURSE OBJECTIVES

1	This subject is useful for a detailed study of forces and their effects along with some suitable protective measures for the safe working condition
2	This knowledge is very essential for an Engineer to enable him in designing all types of structures and machines
3	The student will study the causes of failure by various failure theories
4	The student will learn the state of stress in three dimensions with respect to various theories
5	To impart the knowledge of Unsymmetrical bending in beams

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Structural members subjected to tension, compression, torsion	Analyse					
Co2. Structural bending and combined stresses using the fundamental concept of stress, strain and elastic behavior of materials	Analyze					
Co3. Utilize appropriate materials in design considering engineering	Apply					
properties, sustainability, cost and weight.						
Co4. Calculate the stresses and strains in axially-loaded members, circular torsion members, and members	Apply					
subject to flexural loadings	rippiy					
CO5. Calculate the stresses and strains associated with thin-wall spherical and cylindrical pressure vessels.	Apply					
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES						
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 1	PSO2 PSO3					

COD	101	102	105	104	105	100	107	100	107	1010	1011	1012	1001	1002	1005	
CO1	S	М	L	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	S	М	L	S	-	-	-	-	-	-	-	-	-	-	-	
CO3	S	М	М	S	-	-	-	-	-	-	-	-	-	-	-	
CO4	S	М	М	М	-	-	-	-	-	-	-	-	-	-	-	
CO5	S	М	М	-	-	-	-	-	-	-	-	L	-	-	-	
			_	_												

S- Strong; M-Medium; L-Low

SYLLABUS

ENERGY PRINCIPLES : Strain energy and strain energy density - Strain energy in traction, shear, flexure and torsion - Castigliano's and Engessor's energy theorems - Principle of virtual work - application of energy theorems for computing deflections in beams and trusses - Maxwell's reciprocal theorem.

INDETERMINATE BEAMS: Propped Cantilever and Fixed Beams - Fixed end moments and Reactions for standard cases ofloading - slopes and deflections in fixed beams - Continuous beams - Theorem of three moments - Analysis of continuous beams - S.F. and B.M. diagrams for continuous beams.

COLUMNS : Eccentrically loaded short columns middle third rule - core of section - Columns of unsymmetrical sections - Euler's theory of long columns - Critical loads for prismatic columns with different end conditions Rankine - Gordon Formula eccentrically loaded long columns.

STATE OF STRESS IN THREE DIMENSIONS : Determination of principal stresses and principal planes – Volumetric strain – Theories of failure – Principal stress - Principal strain – shear stress – Strain energy and distortion energy theories – application in analysis of stress, load carrying capacity

ADVANCED TOPICS IN BENDING OF BEAMS : Unsymmetrical bending of beams of symmetrical and unsymmetrical sections - curved beams - Winkler Bach Formula – Thick Cylinders - Compound Cylinders **TEXT BOOKS:**

1. Rajput, "Strength Of Materials", Chand Publications, NewDelhi, 2011

2. Dr.R.K.Bansal,"A Textbook of Strength of Materials", Laxmi ublications, NewDelhi, 2010

3.Srinath N., "Advanced Mechanics of Solid ", Tata McGraw Hill Publishing Company, New Delhi, 2009

REFERENCES:

1. Junarkar S.B., "Mechanics of Structures ", Vol.1, 21st Edition, Charotar Publishing House, Anand, India, 1995.

2. Kazimi S.M.A. "Solid Mechanics ", Tata McGraw Hill Publishing Company, New Delhi, 1991.

3. Ghosh D, Dutta A. K. "A Textbook of Strength of Materials", New Age International (P) Limited Publishers.

4. Swaroop, Adarsh "Mechanics of Materials", New Age International (P) Limitted Publishers.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com

Subje	ct Cod	le			Sub	ject Ti	tle			Categ	ory	L	Т	Р	Credit
17C	VCC0'	7	APPL	IED H	YDRA	ULIC	ENG	INEER	RING	CC	2	2	1	0	3
PREA	MBLE	E									ľ				
	This co	ourse a	ims at a	n exper	imental	l way o	f studyi	ing the	fluid flo	w, whic	h deals v	with mea	suremen	t, design a	and
behavi	or of fl	ow in o	open cha	nnels.	Further,	it also	involve	s Dime	nsional	analysis,	model t	esting ar	nd desigr	of hydra	ılic
machi	nes at a	ın optir	num cos	st.											
PRER	PREREQUISITE														
	Mecha	nics O	f Fluids												
COUR	SE OI	BJEC'	TIVES												
1	Studen	t is intr	oduced t	o open c	hannel f	low cha	racterist	ics inclu	ding hyd	lraulic jur	np and su	irges.			
2	Hydra taught	ulic mae	chines vi	z flow tł	nrough tu	urbines a	and pum	ps inclu	ding thei	r perform	ance cha	racteristic	es and des	ign aspects	are
3	Studen	it, at the	end of the	he seme	ster will	have the	e abilitie	s to anal	yse flow	character	ristics in	open cha	nnel		
4	Desig	n hydra	ulic mac	hines											
5	All typ	es of pu	umps, the	eir work	ing princ	ciple wil	l be taug	ght							
COUR	SE O	UTCC	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
Co1. Ex	plain th	ne vario	ous type	s of ope	en chani	nels and	l their f	lows.						Und	erstand
Co2. De	sign th	e vario	us types	of mos	t efficie	ent char	nnel sec	tions.						A	pply
Co3. De	scribe	the Din	nension	al Analy	ysis and	l Model	Analys	sis in hy	draulic	engineer	ring prob	olems.		A	pply
Co4. De	sign an	d study	y the per	torman	$\frac{ce \text{ of } va}{c}$	arious ty	ypes hy	draulic	turbines	S.				A	.pply
Co5. De	sign an	a stuay	y the per	Torman	ce of va	trious ty	ypes pu	mps.	DOGT						рргу
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGE		E SPEC	CIFIC (MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	3	IVI	IVI	-	-	-	-	-	-	-	-	М	-	-	-
CO2	S	S	S	М	М	М	М	-	-	L	-	M	-	-	-
CO3	S	S	S	M	M	-	L	-	-	-	-	L	-	-	-
CO4	S	S	S	M	M	L	L	-	-	-	-	L	-	-	-
005	CO5 S S S M M L L L														
5- Stro	ng; M	-Wed	ium; L	-LOW											

SYLLABUS

OPEN CHANNEL FLOW : Open channel flow - types and regime of flow - Velocity distribution in open channel - wide open channel - specific energy - critical flow and its computation

UNIFORM FLOW : Uniform flow - Velocity measurement - Manning's and Chezy's formula - determination of roughness coefficients - determination of normal depth and velocity - most economical sections - minimum permissible velocity determination - non-erodible channels.

VARIED FLOW : Dynamic equation of gradually varied flow - assumptions - characteristics of flow profiles - drawdown and backwater curves - profile determination - graphical integration, direct step, standard step method-hydraulic jump - types - energy dissipation - surges - surge through channel transitions

TURBINESImpact of jets on plane and curved plates - turbines - classification - radial flow turbines - draft tube - axial flow turbines - performance of turbines - similarity laws - centrifugal pump - minimum speed to start the pump - multistage pumps - cavitations

PUMPS: Positive displacement pumps - reciprocating pump - negative slip - flow separation conditions - air vessels - indicator diagram and its variation - savings in work done - rotary pumps.

TEXT BOOKS:

1. Jain A.K., "Fluid Mechanics (including Hydraulic Machines) ", Khanna Publishers, 8th edition, 1995.

- 2. R.K.Bansal,"Fluid Mechanics and Hydraulic Machines", Laxmi Publications, 2005
- 3. Applied Hydraulic Engineering by Dr.G.K.vijayaraghavan, N.aravind , AR Publishers

REFERENCES:

- Subramanya K., "Flow in Open channels ", Tata McGraw Hill Publishing Company, 2001.
 Ramamirtham S., "Fluid Mechanics, Hydraulics and Fluid Mechines ", Dhanpat Rai & Sons, Delhi, 1998.
 John A. Roberson, "Hydraulic Engineering ", Jaico Publishing House, 1998.
- 4. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2002

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com

Subj	ect Co	de			Sub	ject Ti	tle			Categ	gory	L	Т	Р	Credit
170	CVCC0	8			SURV	VEYIN	GΠ			CC	2	3	0	0	3
PRE	AMBI	LE													
	Thi	s c	course	the	studer	nt w	ill p	ossess	knov	vledge	abo	ut Tach	ometric	survey	ing,
Con	trol sur	veying	g, Survey	/ adjusti	ments, A	Astrono	mical s	urveyin	g and P	hotogran	nmetry	<i>.</i>			
PRE	REQU	ISIT	E - SUF	VEYIN	IG -I										
COU	RSE (OBJE	CTIVE	ËS											
1	To ge	t the b	asics kn	owledge	e about '	Tachon	netric sy	ystems							
2	The ba	asic co	oncepts i	n contro	ol surve	ying									
3	To ca	lculate	and adj	ust the e	errors in	triangu	lation								
4	The co	oncept	s of Ele	ctro-opt	ical and	Micro	wave sy	vstem.							
5	The co	oncept	s in Rou	te Surv	eying										
COU	RSE (OUT	COME	5											
On th	ne succ	essfu	comple	etion of	the co	urse, st	tudents	s will b	e able t	0					
CO1.	To car	ry out	Tachom	etric sui	veying									Und	erstand
CO2.	To und	lerstan	d the ba	sic conc	ept in c	ontrol s	surveyir	ıg						Und	erstand
Co3. '	To adju	st the	errors in	triangu	lation									Ar	alyze
Co4. '	Tounde	rstand	l the con	cepts of	Electro	o-optica	l and M	licrowa	ve syste	m.				Und	erstand
CO5.	To carr	y out	Route S	urveying	b									Ar	alyze
MAP	PING	WIT	'H PRC	GRAN	MME	OUTC	OMES	5 AND	PROG	RAMN	AE SI	PECIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PSO1	PSO2	PSO3
CO1	S	-	М	L	-	-	-	-	-	-	-	-	-	-	-
CO2	S	М	М	L	-	-	-	-	L	-	L	-	-	-	-
CO3	S	S	М	М	М	-	-	-	-	-	-	-	-	-	-
CO4	S	-	М	S	L	-	-	-	-	-	L	L	-	-	-
CO5	O5 S - M S L M M														
S-St	rong;	M-M	edium;	L-Low	V				I						

SYLLABUS

TACHEOMETRIC SURVEYING: Tachometric systems - Tangential, Stadia and sub tense methods - Stadia systems - Horizontal and inclined sights - Vertical and normal staffing - Fixed and movable hairs - Stadia constants - Analectic lens - Subtense bar

CONTROL SURVEYING : Working from whole to part - Horizontal and vertical control methods - Triangulation - Signals - Base line - Instruments and accessories - Corrections - Satellite station - Reduction to centre - Trigonometric leveling – Single and reciprocal observations - Modern trends.

SURVEY ADJUSTMENTS : Errors - Sources, precautions and corrections - Classification of errors - True and most probable values - weighted observations - Method of Equal shifts - Principle of least squares - Normal equation - Correlates - Level nets - Adjustment of simple triangulation networks.

TOTAL STATION SURVEYING: Basic Principle – Classifications -Electro-optical system: Measuring principle, Working principle, Sources of Error, Infrared and Laser Total Station instruments. Microwave system, measuring principle, working principle, Sources of Error, Microwave Total Station instruments. Comparison between Electro-optical and Microwave system. Care and maintenance of Total Station instruments. Modern positioning systems – Traversing and Trilateration.

ADVANCED TOPICS IN SURVEYING: Route Surveying - Reconnaissance - Route surveys for highways, railways and waterways - hydrographic surveying - Tides - MSL - Sounding methods - Strength of fix - Sextants and station pointer-

Astronomical Surveying - field observations and determination of Azimuth by altitude and hour angle methods fundamentals of Photogrammetry and Remote Sensing basic concepts of GPS.

TEXT BOOKS:

1. Kanetkar T.P., "Surveying and Levelling ", Vols. I and II, United Book

Corporation, Pune, 2006

2. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, 1999.

REFERENCES:

. 1. Alfred Leick, "GPS satellite surveying", John Wiley & Sons Inc., 3 rd Edition, 2004.

2. Guocheng Xu, "GPS Theory, Algorithms and Applications", Springer - Berlin, 2003.

3. SatheeshGopi, rasathishkumar, N. madhu, "Advanced Surveying, Total Station GPS and Remote Sensing" Pearson education, 2007

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com

Subject Code	Subject Title	Category	L	Т	Р	Cred it
17CVCC09	ENVIKONMENTAL ENGINEERING	CC	3	0	0	3

PREAMBLE

This course work aims at imparting the knowledge on various stages of works involved in planning, designing and execution of protected water supply system to a town / city. Starting from demand estimation, identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatment method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed.

PREREQUISITE - NIL

COU	RSE O	BJEC	TIVES	5											
1	The st	udent is	s expec	ted to k	now abo	out the	design	principl	es invo	lved in tr	eatment	of munic	cipal wat	er,	
2	The st	udent i	s expec	ted to k	now lay	ving of j	joints a	nd testi	ng of pi	pes.					
3	The st metho	udent v d	vill stud	ly about	the De	sign pr	rinciple	s of wa	ter treat	ment and	l teach ru	ıral abou	t basic w	ater treat	ment
4	The st	udent v	vill lear	rn abou	t the ana	alysis o	f water	distrib	ution						
5	The st	udent v	vill hav	e a knov	wledge	about h	low to s	upply v	vater to	a buildii	ng				
COUI	RSE O	UTCC	DMES												
On the	e succe	ssful c	omplet	ion of t	he cou	rse, stu	udents	will be	able to)					
CO1- I	Estimate	e the to	tal wate	r dema	nd for a	town/c	ity							Unde	rstand
CO2- I	dentify	suitabl	e source	es of wa	ter to n	neet the	e demar	nd						Appl	у
CO3- I treatme	Design t ent plan	the conduction the co	duits fo the cit	r transp y	ortation	n of wat	er from	the sou	irce to					Unde	rstand
CO4- I	Fix the j	ohysica	l, Chen	nical and	d biolog	gical ch	aracteri	stics di	fferent	source of	fwater			Unde Apply	rstand/ y
CO5- I	Design	an appr	opriate	treatme	nt syste	em for t	he wate	er availa	ble at t	he source	e			Unde	rstand
MAP	PING	WITH	PRO	GRAM	ME O	UTCO	OMES	AND	PROG	RAMM	IE SPE	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	S	S	-	-	М	-	S	S	S	S

001	5	5	5	5	5	5	5			171		D	5	5	5
CO2	М	М	S	S	М	S	S	-	-	S	-	S	М	М	S
CO3	S	S	S	S	S	М	М	-	М	-	-	-	S	S	S
CO4	М	S	М	М	М	S	S	L	-	-	-	-	М	S	М
CO5	S	S	S	S	S	S	S	-	-	-	М	S	S	S	S
0 04		T N T . 1	• • • •	т											

S- Strong; M-Medium; L-Low

SYLLABUS

PLANNING FOR WATER SUPPLY: Objectives of Public Water Supply – Design Period – Population Forecasting – Water Demand – Sources of Water – Source Selection – Water Quality – Characterisation – Water Quality Standards.

CONVEYANCE SYSTEM: Water Supply – Intake Structures – Pipe Materials – Hydraulics of Flow in Pipes – Transmission Main Design – Laying, Jointing & Testing of Pipes – Appurtenances – Pumps – Design of

pumping mains.

DESIGN PRINCIPLES OF WATER TREATMENT: Objectives – Selection of unit operations and processes – Principles of coagulation and flocculation, sedimentation, filtration, disinfection – Design principles of flash mixer, flocculator, clarifiers, filters – Disinfection devices – Softening – Demineralisation – Aeration – Iron removal – Defluoridation – Operation and Maintenance aspects - Residue Management

WATER DISTRIBUTION: Requirements of Water Distribution – Components – Service Reservoirs – Network Design – Economics – Computer Applications – Analysis of Distribution Networks – Appurtenances – Operations and Maintenance – Leak Detection.

WATER SUPPLY IN BUILDINGS: Principles of Design of Water Supply in Buildings – House Service Connection – Design of water distribution pipes in buildings - applications

TEXT BOOKS:

1.Garg, S.K., "Environmental Engineering I", Khanna Publishers, New Delhi, 2005

2.Modi, P.N., "Environmental Engineering I", Standard Book House, Delhi - 6, 2006

REFERENCES:

1. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999

2. Hand book on Water Supply and Drainage, SP35, B.I.S., New Delhi, 1987

3. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005 COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com

Subject Code 17CVCC10

PREAMBLE

The primary concern of an engineer is design. Structural design consists conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure.

Idealization involves reducing the conceived structure into primary elements. By analysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear.

PREREOUISITE

Nil

COURSE OBJECTIVES

All the methods of design of Reinforced concrete structures will be studied 1

This course covers the different types of philosophies related to Design of Reinforced Concrete Structures with 2 emphasis on Limit State Method.

The design of Basic elements such as slab, beam, column and footing which form part of any structural system with 3 reference to Indian standard code of practice for Reinforced Concrete Structures and Design Aids are included.

At the end of course the student shall be in a position to design the basic elements of reinforced concrete structures.

Understand

Analyze

Understand

Apply

Apply

Design of masonry wall will be taught 5

COURSE OUTCOMES

4

On the successful completion of the course, students will be able to

CO1- Concept of elastic method ultimate load method and limit state method

CO2- Analysis and design of one way and two way slabs

CO3- Understand the behaviour of RC beams in shear and torsion-shear and torsion reinforcement-limit state.

CO4- Design of columns

CO5 -Design and detail of wall footing

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	М	-	L	М	-	S	М	L	-	-	-	-	-
CO2	S	-	М	-	L	М	-	S	М	L	I	-	-	-	-
CO3	М	-	М	-	L	М	-	S	М	L	L	-	-	-	-
CO4	М	-	М	-	L	М	-	S	М	L	М	-	-	-	-
CO5	М	-	М	-	L	М	-	S	М	L	L	-	-	-	_
a a.		F 11	T T												

S- Strong; M-Medium; L-Low

SYLLABUS

METHODS OF DESIGN OF CONCRETE STRUCTURES: Concept of elastic method ultimate load method and limit state method- advantages of limit state method over other methods-design codes and specification -Introduction to IS 456 -limit state philosophy as detailed in current IS code.

LIMIT STATE DESIGN FOR FLEXURE: Analysis and design of one way and two way slabs – rectangular slab subjected to uniformly distributed and concentrated loads – boundary conditions and corner effects – singly and doubly reinforced rectangular and flanged beams - design aids for flexure-deflection.

LIMIT STATE DESIGN FOR SHEAR TORSION BOND AND ANCHORAGE : Behaviour of RC beams in shear and torsionshear and torsion reinforcement-limit state design of RC members for combined bending shear and torsion- use of design aids

LIMIT STATE DESIGN OF COLUMNS : Types of columns-analysis and design of short columns for axial, uniaxial and bi axial bending-design of long columns- use of design aids

LIMIT STATE DESIGN OF FOOTING : Design of wall footing – Design of axially and eccentrically loaded rectangular pad and sloped footings – Design of combined rectangular footing for two columns only

TEXT BOOKS:

1. Vargheese P C," Limit State Design of Reinforced Concrete", Prentice Hall of India, Private, Limited New Delhi, 2004

2. Unnikrishna Menon and Pillai, "Reinforced concrete Design", Tata Mc Graw hill, 2007

3. Dayaratnam P," Brick and Reinforced Brick Structures", Oxford & IBH Publishing Company Private Limited 2008

REFERENCES:

. S. Ramamrutham, R. Narayan," Design of Reinforced Concrete Structures (conforming to IS 456) Dhanpat Rai, 1993

- 2. Krishna, Raju N. Pranesh, R.N. Reinforced Concrete Design: IS: 456-2000 Principles and Practice" new age publications, 2003
- 3. Bhavikatti, S S, "Design of R.C.C. Structural Elements Vol. I new age Publications, 2005
- 4. I S456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000 7.

5. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, COURSE DESIGNERS

S.No	Nam	e of the Faculty	Designation	Name of the Colleg	ge		Mail I	D	
1	C.Kathi	rvel	Asso.Prof	VMKVEC		geologyl	kathir@	gmail.co	om
2									
Subjec	t Code		Subject Tit	ile	Category	L	Т	Р	Credit
17CV	CC11	SI	TRUCTURAL A	NALYSIS	CC	2	1	0	3

PREAMBLE

This course offers the various methods of analysis for indeterminate beams and portal frames. It aims at determination of end moments and constructing shear force and bending moment diagrams for the beams and frames. Also, ILD for indeterminate beams will be dealt with.

PREREQUISITE

Mechanics of Solids -II

COURS	SE OBJECTIVES
1	The basics of a structure subjected to internal forces like axial forces, shearing forces, bending and torsional moments while transferring the loads acting on it will be taught
2	Analyzing the internal forces in the members of the structures.
3	To calculate deflection using slope deflection and moment distribution method
4	To analysis different types of arches
5	At the end of this course students will be conversant with classical method of analysis
COURS	SE OUTCOMES
On the	successful completion of the course, students will be able to

CO1. Calculate the Deflection of Determinate Structures														Apply	
CO2.	Analys	se beam	s by Slo	ope Def	lection	Metho	b							1	Analyze
CO3.	Analys	se beam	s by Mo	oment I	Distribu	tion Me	ethod							1	Analyze
C04. D	04. Draw influence line for Moving Loads and Influence Lines (Determinate & Indeterminate Structures)														Apply
CO5. Analyse three hinged, two hinged and fixed arches													1	Analyze	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	1	-	-	-	-	-	-	-	I	-	-	-
CO2	S	Μ	L	S	-	-	-	-	-	-	-	-	-	-	-
CO3	S	М	М	S	-	-	-	-	-	-	-	-	-	-	-
CO4	S	М	М	М	-	-	-	-	-	-	-	-	-	-	-
CO5	CO4 S M M F													-	

S- Strong; M-Medium; L-Low

SYLLABUS

DEFLECTION OF DETERMINATE STRUCTURES : Principles of virtual work for deflections – Deflections of pin-jointed plane frames and rigid plane frames – Willot diagram - Mohr"s correction

SLOPE DEFLECTION METHOD: Continuous beams and rigid frames (with and without sway) – Simplification for hinged end – Support displacements.

MOMENT DISTRIBUTION METHOD: Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway.

MOVING LOADS AND INFLUENCE LINES (DETERMINATE & INDETERMINATE STRUCTURES): Influence lines for reactions in statically determinate structures – influence lines for members forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections.Muller Breslau"s principle – Influence lines for continuous beams and single storey rigid frames

ARCHES: Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

TEXT BOOKS:

1 Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis – Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.

2 Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004

3 Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.

4 BhavaiKatti, S.S, "Structural Analysis - Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008

REFERENCES:

1 Devadas Menon, "Structural Analysis", Narosa Publishing House, 2008

2 Ghali.A., Nebille and Brown. T.G., "Structural Analysis - A unified classical and matrix approach" Sixth Edition, SPON press, New York, 2013.

3 Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.

4 L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 6th Edition, 2003.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C.Kathirvel	Asso.Prof	VMKVEC	geologykathir@gmail.com
2	S. Sekar	Asso.Prof	VMKVEC	Sekar.gis@gmail.com

Subje	ect Cod	e			Sut	ject Tit	le			Categ	ory	L	Т	Р	Credit
17C	VCC12	2		M	ECHAN	VICS O	FSOIL	S		CC	C	2	1	0	3
PREAN	IBLE	•								•	•				
	This course is a branch of Civil Engineering which deals with the application of law of Mechanics and Hydraulics														
to Eng	to Engineering problems related with soils like Permeability, stresses within soils, Shear strength and compressibility of														
soils. '	These f	orm the	e basis f	or the c	omputa	tion of	dischar	ge throu	igh eart	hen dam	s, shear	strength	paramete	rs require	d
for de	termini	ng the b	bearing	capacity	y of soil	s and c	alculati	ng settl	ement c	f structu	res.				
PRERE	QUISI Nil	TE													
COURS	COURSE OBJECTIVES														
1	1 Understand the principle of effective stress, and then calculate stresses that influence soil behaviour.														
2	Calculate water flow through ground, and understand the effects of seepage on the stability of structures														
3	Determine soil deformation parameters, and calculate settlement magnitude and rate of settlement.														
	Appreciate the difference between total and effective stress approaches in soil strength determination, and														
4	discriminate between drained and undrained conditions.														
5	5 Give an Engineering classification of a given soil.														
COURS	SE OU	ГСОМ	ES												
On the	success	ful con	npletion	of the	course,	student	s will b	e able t	0						
CO1 -E	xplain	the basi	ic prope	rties of	soils a	nd class	ify the	Soil acc	cording	to				Und	lerstand
AASH CO2-Γ	l O, US)etermi	CS and	IS S011 Permeah	classifi	Cohesi	system. ve and (Cohesio	onless s	oils					A	Apply
CO3- C	alculat	e Effect	tive stre	ss with	in soils	and stre	ess due	to exter	nal load	ls				A	Apply
CO4-C	ompute	the Sh	ear Stre	ngth of	soils ba	used on	the par	ameters	obtaine	ed				A	Apply
from sh	ear test	S		·	1		1.4	1						_	1
Signific	compute cance of	f soil co	ompacti	on and	slope st	ability a	analysis	s and ex	piain th	e				F	хрргу
MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	L	-	-	-	-	-	М	-	-	-	-
CO2	М	М	М	М	L	-	-	-	-	-	М	-	-	-	-
CO3	<u>3 S S M M L M</u>														
CO4	M M M M L M														
CO5	5 M M M M L M														
S-Strop	1g; M-ľ	viedium	1; L-L0	N											

SYLLABUS

INTRODUCTION: Nature of soil - Soil description and classification for engineering purposes - IS Classification system - Phase relationships - Soil compaction - Theory, comparison of laboratory and field compaction methods - Ground improvement by compaction

SOIL WATER AND WATER FLOW :Soil water - static pressure in water - Permeability measurement in the laboratory and field - Seepage - Introduction to flow nets - Simple problems.

STRESS DISTRIBUTION AND SETTLEMENT: Effective stress concepts in solids - Stress distribution in soil media - Use of influence charts - Components of settlement - Immediate and consolidation settlement - Terzaghi's one dimensional consolidation theory

SHEAR STRENGTH: Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass - Measurement of shear strength, direct shear - Triaxial compression, UCC and Vane shear tests - Pore pressure parameters

SLOPE STABILITY: Slope failure mechanisms - Types - Infinite slopes - Finite slopes - Total stress analysis for saturated clay - Method of slicese - friction circle method - Use of stability number - Slope protection measures. TEXT BOOKS:

- 1. Punmia P.C., Ashok Kumar Jain, Arun Kumar Jain, "Soil Mechanics and Foundations ", Laximi Publications Pvt.Ltd,New Delhi,2005
- 2. Arora K.R., "Soil Mechanics and Foundation Engineering ", Standard Publishers and Distributors, New Delhi, 1997.

REFERENCES:

1. Holtz R.D. and Kovacs W.D., "Introduction to Geotechnical Engineering ", Prentice-Hall, 2010

2. McCarthy D.F., "Essentials of Soil Mechanics and Foundations ", Prentice-Hall, 1997.

3. Sutten B.H.C., "Solving Problems in Soil Mechanics", Longman Group Scientific and Technical, U.K. England, 1994. COURSE DESIGNERS

1 C.Kathirvel Asso.Prof VMKVEC geologykathir@gmail.com 2 Asso.Prof VMKVEC	S.N	Io Name of the Faculty	Designation	Name of the College	Mail ID
2 Asso.Prof VMKVEC	1	C.Kathirvel	Asso.Prof	VMKVEC	geologykathir@gmail.com
	2		Asso.Prof	VMKVEC	

17CLCC13	DESIGN OF STEEL STRUCTURES	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

The primary concern of an engineer is design. Structural design consist conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure. Idealization involves reducing the conceived structure into primary elements. By analysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear....

PREREQUISITE - NIL

COUR	RSE O	BJEC	TIVES												
1	To in tensil	o introduce the students to limit state design of structural steel members subjected to compressive, insile and bending loads, including connections.													
2	Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 - 2007) of practice.														
3	3 To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections.														
COUR	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO6.	CO6. Infer concepts of basic Design Understand														
CO7.	CO7. Design and detail of steel tension members Apply														
CO8. Design and detail of compression members and flexure members. Apply															
CO9. Design of laterally supported and unsupported beams Apply															
CO1().	Desig	gn and	detail t	he Roo	of Trus	ses and	l Indus	trial St	ructures		I	Apply		
MAPP	PING V	WITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	М	-	L	М	-	S	М	L	-	-	-	L	-
CO2	S	-	М	-	L	М	-	S	М	L	-	-	-	-	-
CO3	М	-	М	-	L	М	-	S	М	L	L	-	М	-	-
CO4	CO4 M - L M - S M L M - <														
CO5	CO5 M - M - L M - S M L L														
S- Stro	ng: M	Mediu	m: L-I	JOW			-								-

SYLLABUS

INTRODUCTION: Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints

TENSION MEMBERS: Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

COMPRESSION MEMBERS: Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

BEAMS: Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices

ROOF TRUSSES AND INDUSTRIAL STRUCTURES: Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TEXT BOOKS:

1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013

2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013.

3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002.

2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005

3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International

Publishing House Pvt. Ltd., 2009

4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.

5. IS800 :2007, General Construction In Steel - Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

								NG		Categ	ory	L	Т	Р	Credit
17CV	CC14		ł	HIGH	NAYI	ENGIN	EERI	NG		CC	2	3	0	0	3
PREA	MBLI	C													
The co	urse ai	ms to 1	nake tł	ne stude	ents lea	rn the	princip	oles of l	highwa	ys, their	compo	nents a	nd design	n of flexi	ble
and rig	id pav	ements	. Furth	er, stuc	lents w	vill get	acquai	nted w	ith trea	tment fo	or Failur	es and	remedial	measure	es
during	mainte	enance	of pav	ements	•••										
PRER	EQUI	SITE-	NIL												
COUR	SE O	BJECT	TIVES												
1	The c	bjectiv	e of th	e cours	e is to	educat	e the st	tudents	on the	various	compo	nents of	f Highwa	y Engine	eering.
2	It ex	poses t	he stud	lents to	highw	ay plar	nning, e	enginee	ering su	rveys fo	or highw	ay alig	nment		
2	Desi	on of C	leomet	ric Elei	ments	of High	ways a	and Url	ban roa	ds. Rigi	d and F	lexible	navemer	ts desig	1
3	The	<u></u>	for the	. 1	41				1 1						- 1 f
4	4 The students further learn the desirable properties of highway materials and various practices adopted for construction														
5	5 This course enables the students to develop skill on evaluation of the pavements and to decide appropriate types of maintenance.														
COUR	SE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	the co	urse, s	tudents	s will b	e able t	0					
CO6.	Infer v	various	compo	onents	of Hig	nway E	inginee	ering.					Apply		
$\frac{CO7}{CO2}$	Infer o	concept	ts of hi	ghway	planni	ng and	cross s	section	al elem	ents of	pavemei	nt	Understa	ind	
design	of geo	metric	elemen	nts, hor	rizonta	l profil	e and v	vertical	profile	quirem	ents and	L	Apply		
CO4.N	lake us	e of th	e conce	epts for	design	n of fle	xible p	aveme	nt and	rigid pa	vement				
structu	re												Understa	ind	
CO5. I approp	nfer m riate n	aterial nainten	proper ance fo	ties and or the d	d proce	dure fo	or cons	truction	n of hig	ghways a	and expl	ain	Apply		
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGE	RAMM	E SPEC	CIFIC (DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			L	-	L	-	-	-	-	-	-	-	-	-
CO2	S	М	М	L	-	-	-	-	-	М	-	-	-	L	-
CO3	S	L	S	L	-	L	М	-	-	М	-	-	L	-	-
CO4	М	L		L	-	L	-	-	-	-	М	-	-	S	-
CO5	S	Н	L	L	-	L	-	L	L	-	L	L	-	-	-
S- Stro	ng; M-	Mediu	m; L-I	LOW										I	
SYLL	ABUS														

HIGHWAY PLANNING AND ALIGNMENT: Highway Development in India, Macadam"s Method of Road Construction, Jayakar Committee Recommendations and Realisations, Twenty-year Road Development Plans, Concepts of On-going Highway Development Programmes at National Level, Institutions for Highway Development at National level - Indian Roads Congress, National Highway Authority of India, Ministry of Road Transport and Highways (MORTH) and Central Road Research Institute. Requirements of Ideal Alignment, Factors Controlling Highway Alignment Engineering Surveys for Alignment - Conventional Methods and Modern Methods (Remote Sensing, GIS and GPS techniques)Classification and Cross Section of Urban and RuralRoads (IRC), Highway Cross Sectional Elements – Right of Way, Carriage Way, Camber, Kerbs, Shoulders and Footpaths [IRC Standards]

GEOMETRIC DESIGN OF HIGHWAYS: Design of Horizontal Alignments – Superelevation, Widening of Pavements on Horizontal Curves and Transition Curves [Derivation of Formulae and Problems] Design of Vertical Alignments – Rolling, Limiting, Exceptional and Minimum Gradients, Summit and Valley Curves Sight Distances - Factors Affecting Sight Distances, PIEV Theory, Stopping Sight Distance (SSD), Overtaking Sight Distance (OSD), Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sight Distance [Derivations and Problems in SSD and OSD] Geometric Design of Hill Roads [IRC Standards Only].

DESIGN OF RIGID AND FLEXIBLE PAVEMENTS: Rigid and Flexible Pavements- Components and their Functions Design Principles of Flexible and Rigid Pavements, Factors Affecting the Design of Pavements - ESWL, Climate, Sub-grade Soil and Traffic Design Practice for Flexible Pavements [CBR method, IRC

Recommendations- Problems] Design Practice for Rigid Pavements – [IRC Recommendations-Problems] HIGHWAY MATERIALS AND CONSTRUCTION PRACTICE: Desirable Properties and Testing of

Highway Materials: - (Tests have to be demonstrated in Highway Engineering Laboratory) Soil – California Bearing Ratio Test, Field Density Test Aggregate - Crushing, Abrasion and Impact Tests- Bitumen - Penetration, Ductility, Viscosity, Binder Content and Softening Point Tests. Construction Practice - Water Bound Macadam Road, Bituminous Road and Cement Concrete Road [as per IRC and MORTH specifications] Highway Drainage [IRC Recommendations]

HIGHWAY MAINTENANCE: Types of Defects in Flexible Pavements – Surface Defects, Cracks, Deformation, Disintegration – Symptoms, Causes and Treatments. Types of Pavement Failures in Rigid Pavements – Scaling, Shrinkage, Warping, Structural Cracks, Spalling of Joints and Mud Pumping – and Special Repairs Pavement Evaluation – Pavement Surface Conditions and Structural Evaluation Overlay Design by Benkleman Beam Method [Procedure only]

TEXT BOOKS:

1. Khanna K and Justo C E G, "Highway Engineering", Khanna Publishers, Roorkee, 2001.

2. Kadiyali L R," Principles and Practice of Highway Engineering", Khanna Technical Publications, Delhi, 2000

REFERENCES:

1. IRC Standards (IRC 37 - 2001 & IRC 58 -1998)

2. Bureau of Indian Standards (BIS) Publications on Highway Materials

3. MORTH Guidelines for Highway Engineering

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com
2	S.Sekar	Asst. Professor	CIVIL	Sekar.gis@gmail.com

17CV	CC15	I	RAILV	VAY,	AIRPO	ORT A	ND H	ARBO	UR	Categ	gory	L	Т	Р	Credit
1/07	CCIS]	ENGIN	IEERI	NG			CO	2	3	0	0	3
PREA	MBLE	E													
The co	urse ai	ms to 1	nake tł	ne stud	ents lea	arn the	princip	oles of	railway	, airpor	t and ha	rbour e	engineeri	ng, their	
compo	nents a	and des	ign												
PRER	EQUI	SITE -	HIGH	[WAY]	ENGIN	IEERII	NG								
COUR	RSE O	BJEC	ΓIVES												
1	This railwa	course ay trac	impar ks	ts to t	he stud	dents k	cnowle	dge of	planni	ng, des	ign, co	nstruct	ion and	maintena	nce of
2	The students acquire proficiency in the application of modern techniques such as GIS, GPS and remote sensing in Railway Engineering														
3	The s geom	The student develops skills on airport planning and design with the prime focus on runway and taxiway geometrics													
4	Stude as pie	Students become conversant with the definition, purpose, location and materials of coastal structures such as piers, breakwaters, wharves, jetties, quays and spring fenders.													
5	The s	tudents	s acqui	re knov	wledge	on site	e invest	igatior	n for loc	cation a	nd planr	ning of	harbours	•	
COUR	RSE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able t	0		T			
CO6.	Under	stand t	the Rai	lway P	lanning	g and E	Design						Underst	and	
CO7.	Infer o	concep	ts of ra	ilway t	rack co	onstruc	tion, m	ainten	ance an	d Opera	ation		Apply		
CO8.	Make	use of	the co	ncepts	for Ai	port P	lanning	g And I	Design				Apply		
CO9.	Make	use of	the con	ncepts	for har	bour er	ngineer	ring &	other m	odes of	transpo	ort	Underst	and	
CO1().	Evalı	uation	of Higl	nway a	nd Rail	way Pi	rojects					Apply		
MAPF	PING V	VITH	PROG	GRAM	ME O	UTCO	MES A	AND F	PROGR	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	M			L	-	L	-	-	-	-	-	-	-	-	-
CO2	S	М	М	L	-	-	-	-	-	М	-	-	-	-	-
CO3	S	L	S	L	-	L	М	-	-	М	-	-	-	L	-
CO4	M L L - L M - S														
CO5	S H L L - L L - L L -														
S- Stro	ng; M-	Mediu	m; L-I	Low											

SYLLABUS

RAILWAY PLANNING AND DESIGN: Role of Indian Railways in National Development. Engineering Survey for Track Alignment. Permanent Way, its Components and Functions of Each Component, Gauges in Railway Tracks. Coning of Wheels. Geometric Design of Railway Tracks – Gradient, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Vertical Curves and Grade Compensation (Derivations of formulae and Problems)

RAILWAY TRACK CONSTRUCTION, MAINTENANCE AND OPERATION : Points and Crossings, Signaling, Interlocking and Track Circuiting, Construction and Maintenance – Conventional and Modern methods (Remote Sensing, GIS & GPS) for Railway Alignment, Track Construction, Maintenance and Materials - Track Drainage. Lay outs of Railway Stations and Yards

AIRPORT PLANNING AND DESIGN: Airport Planning, Components of Airports, Airport Site Selection

Runway Design- Orientation, Geometric Design and Correction for Gradients Terminal area, Airport Layout, Airport Buildings, Passenger Facilities, Parking Area and Airport Zoning.

HARBOUR ENGINEERING & OTHER MODES OF TRANSPORT : Definition of Terms - Harbours, Ports, Docks, Tides and Waves. Harbours – Requirements, Classification – Site Investigation for Locations, Planning and Layouts Concept of Satellite Ports. Terminal Facilities – Port Buildings, Warehouse, Transit Sheds, Inter- modal Transfer Facilities, Mooring Accessories, Navigational Aids Coastal Structures- Piers, Breakwaters, Wharves, Jetties, Quays, Spring Fenders Coastal Shipping, Inland Water Transport and Container Transportation. Pipe Ways, Rope Ways

ECONOMIC EVALUATION OF TRANSPORT PROJECTS: Evaluation of Highway and Railway Projects-Cost Benefit Analysis (Benefit Cost Ratio, Net Present Value, International Rate of Returns (Problems) Environmental Impact Assessment, Financial Appraisal Build, Operate and Transfer for Highway and Railway Projects (Basic Concepts only)

TEXT BOOKS:

- 1. 1S. P. Bindra," A Course in Docks and Harbour Engineering", Dhanput Rai, 1992
- 2. Khanna S K, Arora M G and Jain S S, Airport Planning and Design, Nemchand and Brothers, Roorkee, 1994.
- 3. S.P. Arora, S.C. Saxena," A Textbook of Railway Engineering" Dhanpat Rai Publications, 2001

REFERENCES:

- 1. Rangwala, Railway Engineering, Charotar Publishing House, 1995.
- 2. Rangwala, Airport Engineering, Charotar Publishing House, 1996.
- 3. Kadiyali L R, Principles and Practice of Highway Engineering, Khanna Technical Publication, Delhi, 1992

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com
2	S.Sekar	Asst. Professor	CIVIL	Sekar.gis@gmail.com

17CVCC16

_	Т	Р	Credit
2	1	0	3

PREAMBLE

The primary concern of an engineer is design. Structural design consist conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure. Idealization involves reducing the conceived structure into primary elements. By analysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear.

PREREQUISITE - DESIGN OF REINFORCED CONCRETE ELEMENTS

1 This course covers the design of reinforced concrete structures such as retaining wall, 2 Student has a comprehensive design knowledge related to structures, systems that are likely to be												
2 Student has a comprehensive design knowledge related to structures, systems that are likely to be												
necuntered in professional practice												
encountered in professional practice.												
To develop the knowledge about Principles of Prestressing will be studied												
4 Application of virtual work theory for design of slabs	4 Application of virtual work theory for design of slabs											
5 The design of reinforced concrete structures water tanks, staircases, flat slabs and bridges.												
COURSE OUTCOMES												
On the successful completion of the course, students will be able to												
CO1. Classify the types & behaviour, arriving the dimensions and detailing of brick												
ry wall & Understand												
olumn and also its foundation												
Design and detail the timber joists and columns. Apply												
CO3. Summarize the codal provisions in IS800:2007 for tension members,												
compression members and connections. Analyze	ompression members and connections.											
CO4. Explain the force transferring mechanism, design and detail the connections as												
bolted and welded connections. Analyze												
CO5. Design and detail of steel tension members, compression members and flexure												
members. Analyze												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PS	'SO3											
CO1 S M L L L	-											
CO2 S M L L M L L L												
CO3 S M L L M L L L	-											

CO4	S	Μ	Μ		L			L	 L		L	S	-	-
CO5	S	Μ	Μ					Μ	 Μ	L		-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

RETAINING WALLS: Design of cantilever and counter fort retaining walls

WATER TANK : Underground rectangular tanks – Overhead circular and rectangular tanks – Design of staging and foundations.

PRINCIPLES OF PRESTRESSING : Materials for pre stressed concrete – Different methods and systems – introduction to pre stressing and post tensioning- Uniform and non uniform pre stressing – Losses in pre stress – Analysis of simply supported beams with straight and parabolic tendons.

YIELD LINE THEORY: Application of virtual work method to Square, Rectangular and Triangular slabs. **ADVANCED TOPICS:** Design of staircases (ordinary and doglegged) – Design of deep beams -flat slabs –

Design of Reinforced concrete walls - Principles of design of road bridges for IRC loading

TEXT BOOKS:

1. P.C. Varghese,"Advanced Reinforced Concrete structures", PHI Learning Pvt. Ltd., 09-Jan-2009

2. N.Krishna Raju, "Design of Reinforced Concrete Structures (IS:456-2000) - Tata McGraw-Hill Education

3. Prestressed concrete BY N Krishna Raju - Tata McGraw-Hill Education

REFERENCES:

Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
 Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997

3.Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.

NOTE:IS 456:2000,SP 16,IS:1343, IRC Bridge codes, BIS 3370, ISI 343 are permitted in the Examinations. **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com		
2	M.Senthilkumar	Asst. Professor	CIVIL	Senthilkumar@vmkvec.edu.in		
17CVCC17	MODERN METHODS OF STRUCTURAL	Category	L	Т	Р	Credit
----------	------------------------------	----------	---	---	---	--------
1,0,001	ANALYSIS	CC	3	0	0	3

This course offers the various methods of analysis for indeterminate beams and portal frames. It aims to learn advanced methods like matrix methods of structural analysis of structures, plastic theory, analysis of special structures like arches and suspension cables and influence line for indeterminate structures.

PRER	EOUI	SITE													
I ILI	Struct	ural A	nalysis												
COUI	DEE OI														
COUR		DJEU	· ·			6.04	. 1.	<u> </u>	T TT	· 1	1	(1 1	<u> </u>	• 1•1	
1	I his metho	course	e 18-111 C Plastic	ontinu Analy	ation c	of Struc	tural A	Analysi	s I. He	ere in ad	vanced	method	of analy	'sis like	Matrix
2	Adva	anced t	opics s	uch as	FE me	thod a	nd Spa	ce Stru	ctures	are cove	ered				
2	Adava		-	of onel		en finit	-			· ···:11 h a	towalt				
3	Adva	псеа п	letnod	of anal	ysis 11k	le finite	elem	ent and	matrix	k will be	taugnt				
4	After	comp	letion of	of the c	ourse	the stu	dent w	ill be a	ble to 1	Differen	tiate bet	ween va	rious sti	ructural	forms
4	⁴ such as beams, plane truss, space truss, plane frame, space frame, arches, cables, plates and shells														
The student studies to calculate the degree of static and kinematic indeterminacy of a given structure such															
5 as beams, truss and frames															
COUR	RSE O	UTCO	MES												
On t	he succ	essful	comple	etion of	f the co	urse, s	tudent	s will b	e able	to					
CO1 /	Analyse	e beam	s and f	rames	by mor	nent di	stribut	ion me	thod				I	Analyze	
CO2	Analyse	e beam	s by m	atrix st	iffness	and fle	exibilit	y meth	ods				I	Analyze	
CO3	Analyse	e conti	nuous l	beams	using t	heoren	n of thr	ee mor	nents				I	Analyze	
CO4 P	lastic a	nalysis	s of ind	etermi	nate be	ams ar	nd fran	nes					I	Analyze	
CO5 A	nalysis	s of Sp	ace tru	sses us	ing me	thod of	f tensic	on coef	ficients	3			I	Analyze	
MAPI	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	-	L	-	-	-	М	-	S	L	-	-
CO2	М	М	-	-	-	-	-	-	-	-	L	S	L	-	-
CO3	S	S	-	-	-	М	-	-	-	-	-	S	М	L	-
CO4	S	S	-	М	М	L	М	-	-	-	-	S	М	L	-
CO5	S	S	М	-	М	L	М	-	М	S	-	S	L	-	-
S- Stro	ong; M-	Mediu	m; L-I	LOW				1	l	1		1		I	

SYLLABUS

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES: Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

MATRIX STIFFNESS METHOD: Element and global stiffness matrices – Analysis of continuous beams – Coordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames **FINITE ELEMENT METHOD:** Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element.

PLASTIC ANALYSIS OF STRUCTURES: Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems

SPACE AND CABLE STRUCTURES: Analysis of Space trusses using method of tension coefficients – Suspension bridges- cables with two and three hinged stiffening girders

TEXT BOOKS:

1. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis – Vol. I & II", Laxmi Publications, New Delhi, 2003

2. Manicka Selvam V.K., Elementary Matrix Analysis of Structures, Khanna Publishers, Delhi, 1994

REFERENCES:

1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" –5th edition. Spon Press,

London and New York, 2003.

2. Vazirani V.N, & Ratwani, M.M, "Analysis of Structures", Khanna Publishers, Delhi

3. Structural Analysis – A Matrix Approach – G.S. Pandit & S.P. Gupta, Tata McGraw Hill

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CV	CC18		FO			IENC	INIFEI	DINC		Categ	gory	L	Т	Р	Credit
1/0			гU	UNDE		LING	INCE	MING		CC	2	3	0	0	3
PREA	MBLE	C													
This co	ourse o	ffers th	ne vario	ous met	hods o	f analy	sis for	indete	rminate	beams	and por	tal frar	nes. It ai	ms to lea	rn
advanc	ed met	hods l	ike mat	trix me	thods of the second	of struc	tural a	nalysis	of stru	ctures, j	plastic tl	neory, a	analysis	of specia	1
structu	res like	e arche	s and s	uspens	ion cat	oles and	d influe	ence III	ne for 1	ndeterm	inate st	ructure	2 S .		
PRER	EQUI	SITE -	MECI	HANIC	S OF:	SOILS									
COUR	RSE OI	BJEC	FIVES												
1	The c	apacity	y to inv	estigat	e the s	oil con	dition								
2	2 To design suitable foundation														
3 The methods of minimizing settlement															
4	4 Design aspects of combined and mat foundation														
5	5 The knowledge about pressure distribution on retaining walls														
COUR	RSE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	the co	urse, s	tudents	s will b	e able t	0					
CO1 A	Analyse	e site c	onditio	ns and	applyi	ng sam	pling t	echniq	ues					Apply	
CO2 U	Inderst	and the	e impor	tance of	of adva	nced te	echniqu	ies invo	olved					Apply	
in snai	10W 10		on	<u> </u>				1.0	•				T	Indorston	d
CO3 S	tudy th	e impo	ortance	of stru	ctural o	lesign	of spre	ad foot	ting					nuerstan	u
CO4 K	now to	o fix th	e relati	ve posi	tion of	points	on the	groun	d using					Apply	
CO5C	unuario	ni a tha c	oncolid	ations	ottlom	ant of f	oundat	ions ar	nd avnl	oin the S	Signific	nco		Apply	
of soil	compa	ction a	nd slop	be stabi	lity an	alysis	oundat	.10115 a1	iu expi		Jigiiiica	lice		Арргу	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGE	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	L	L	-	-	-	М	-	-	-	-	-
CO2	М	М	-	-	L	-	-	-	-	-	L	-	-	-	-
CO3	CO3 S S L M														
CO4	S	М	-	М	L	L	М	-	-	-	-	-	М	-	-
CO5	O5 S M M - L L M - M S M - M														
S- Stro	ng; M-	Mediu	m; L-L	LOW											

SYLLABUS

SITE INVESTIGATION AND SELECTION OF FOUNDATION: Introduction – Scope and objectives – Method of exploration boring – Sampling – disturbed and undisturbed sampling – sampling techniques – Bore log and report – Penetration tests (SPT and SCPT) – Data interpretation – Selection of foundation based on soil condition

SHALLOW FOUNDATION: Introduction – Location and depth of foundation – codal provisions – bearing capacity of shallow foundation on homogeneous deposits – bearing capacity from insitu tests – Factors influencing bearing capacity – codal provisions – Settlement – Components of settlement – Settlement of foundations on granular and clay deposits – Allowable and maximum differential settlements of buildings – Codal provision – Methods of minimizing settlement

FOOTINGS AND RAFTS: Types of foundation – structural design of spread footing – Design aspects of combined and mat foundation – Codal provisions

PILES: Types of piles – Factors influencing the selection of pile – Carrying capacity in granular and cohesive soils – Static and dynamic formulae – Capacity from insitu tests (SPT and SCPT) – Piles subjected to uplift – Negative skin friction – Group capacity – Settlement of pile groups – Interpretation of pile load test – Pile caps – Codal provisions

RETAINING WALLS: Earth pressure theory – Plastic equilibrium in soils – active and passive states –Rankine''s theory – Coloumb''s wedge theory – Classical and limit equilibrium solution – Earth pressure on retaining walls of simple configurations – pressure on the wall due to single line load alone – Graphical method (Culmann''s method alone) – Stability of retaining wall

TEXT BOOK:

- 1. Punmia, B.C., Soil mechanics and foundations, Laxmi publications pvt. Ltd., New Delhi, 2005
- 2. Arora, K.R. Soil mechanics and foundation engineering, standard publishers and distributors, New Delhi, 1997.

REFERENCES:

- 1. Khan, I.H., A text book of Geotechnical Engineering, Prentice Hall of India, New Delhi, 1999.
- 2. Gopal Ranjan and Rao, A.S.R. Basic and applied soil mechanics, Wiley Eastern Ltd., New, Delhi (India), 1997.

S. No.	Name of the Faculty	Mail ID
1.	S.Sekar	Sekar.gis@gmail.com
2.	A.Fizoor Rahman	fizoorr@gmail.com

17CV			ES	ТІМА	TION	AND (QUAN	TITY		Categ	jory	L	Т	Р	Credit
1/0 0	CCI				SURV	/EYIN	G			CC	2	3	0	0	3
PREA	MBLE	5								•			•		
This co sanitar	ourse h y work	elps to s, road	unders works	and er	stimati rigatio	ng of q n work	uantitie s	es of it	ems of	works ii	nvolved	in build	lings, wa	ater supp	oly and
PRER	EQUI	SITE	- 1	NIL											
COUR	RSE O	BJECT	FIVES												
1	This covers the rate analysis, valuation of properties and preparation of reports for estimation of various items.														
2	2 The end of this course the student shall be able to estimate the material quantities, prepare a bill of quantities, make specifications and prepare tender documents.														
3	Stude	nt shou	uld also	be ab	le to pr	repare	value e	stimate	es.						
4	Stude	nt will	also be	e able t	o Exer	cise on	cash f	low in	Civil e	ngineeri	ng proje	ects			
COUR	RSE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able t	t0					
CO1. S	Study tl	ne estir	nation	of quai	ntities f	for buil	dings							Apply	
CO2. S	Study tl	ne impo	ortance	e of Spe	ecificat	ions A	nd Ten	ders					Uı	nderstan	d
CO3.	Know	to cor	ntract c	onditic	ons and	l contra	act pro	blems						Apply	
CO4.	Unde	rstand	the prin	nciples	of valı	lation a	and Va	alue an	d cost					Apply	
CO5.	Unders	tand th	ne Prino	ciples f	for repo	ort prep	paration	1						Apply	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGE	RAMMI	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	М	S	М	М	S	S	S	-	-	S	-	-
CO2	S	М	L	-	-	-	-	S	S	S	-	-	-	-	-
CO3	S	М	М	-	-	-	-	S	S	S	-	-	-	L	-
CO4	S	М	М	-	-	-	-	S	S	S	-	-	-	-	-
CO5	S	М	М	-	-	-	-	L	-	-	-	L	-	М	-

S- Strong; M-Medium; L-Low

SYLLABUS

ESTIMATION: Philosophy – purpose - Methods of estimation – advantages – types of estimates – approximate estimates – definite estimate – estimation of quantities for buildings, roads, canals and hydraulic structures – Sluices – Head and wing wall type

SPECIFICATIONS AND TENDERS : Specifications-Detailed and general specifications-construction specifications – sources –types of specifications – Tender notices – types – corrigendum notice – tender procedures – Drafting model tenders

CONTRACTS: Contract – types of contracts – formation of contract - contract conditions - contract problemscontract for labour, material, design and construction – drafting of contract documents – construction contracts – arbitration and legal requirements.

VALUE ENGINEERING: Basics - principles of valuation – Value and cost –value engineering – value analysis – phases in value engineering – information – function – Escalation – evaluation - recommendation implementation – Audit-Depreciation-rent fixation.

REPORT PREPARATION: Principles for report preparation – report on estimate of residential building – Culvert – Roads – Water supply and sanitary installations – cost control in construction projects – Exercise on cash flow in Civil Engineering projects

TEXT BOOKS:

- 1. Estimating and costing in civil Engineering B.N.Dutta, S.Dutta & Company, Lucknow, 2005
- 2. Rangwala, "Estimating Costing and Valuation," Charotar Publishing House ,2011.

REFERENCES:

A text book on Estimating and costing – G.S.Birdie – Dhanpat Rai and Sons, New Delhi.1982
 Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S. Chand & Company Ltd., 2004

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	S.Sekar	Asst. Professor	CIVIL	Sekar.gis@gmail.com
2.	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in

1703			CON	STRU	CTIO	N PLA	NNIN	G AN	D	Categ	gory	L	Т	Р	Credit
1/0	CC20				SCHE	DULI	NG			CC	2	3	0	0	3
PREA	MBLE	C													
The pu	ırpose	of this	s cours	e is to	learn	about	the Co	onstruc	tion pla	an and	constru	ction n	nethod.	To devel	op the
knowle	edge at	out Qi	uality c	ontrol	and saf	ety du	ing co	nstruct	ion						
	0		5			5	0								
PRER	EQUI	SITE-	NIL												
COUR	RSE O	BJECT	FIVES												
1	Plan o	constru	iction p	rojects											
2	Scheo	lule the	e activi	ties usi	ng net	work d	iagram	IS							
3	Contr	ol the	cost of	the pro	ject by	/ creati	ng casl	h flows	5						
4	Budg	eting a	nd how	to use	the pr	oject ir	nforma	tion as	an info	rmatior	and de	cision n	naking t	ool.	
COUR	RSE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	urse, s	tudents	s will b	e able t	0					
CO1.	Study	the Ba	sic con	cepts i	n the d	evelop	ment o	f const	ruction	plans			Apply		
CO2.	Study	the Scl	hedulin	g Proc	edures	And T	echniq	ues					Underst	and	
CO3.	Know	v to Co	st Con	trol Mc	onitorin	g And	Accou	inting					Apply		
CO4.	Unde	rstand	the Qu	ality C	ontrol	And Sa	fety D	uring (Construe	ction			Apply		
CO5.	Under	stand t	he Org	anizati	on And	l Use C)f Proje	ect Info	ormatio	n			Apply		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND F	ROGR	RAMM	E SPEC	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	М	S	М	М	S	S	S	-	-			-
CO2	S	М	L	-	-	-	-	S	S	S	-	-			-
CO3	S	М	М	-	-	-	-	S	-	S	-	-			-
CO4	S	М	М	-	-	-	-	S	S	S	-	-			-
CO5	S	М	М	-	-	-	-	L	-	L	-	L			-
S- Stro	ng; M-	Mediu	m; L-I	LOW											

SYLLABUS

CONSTRUCTION PLANNING: Basic concepts in the development of construction plans-choice of Technology and Construction method-Defining Work Tasks- Definition- Precedence relationships among activities-Estimating Activity Durations-Estimating Resource Requirements for work activities-coding systems.

SCHEDULING PROCEDURES AND TECHNIQUES: Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process –Introduction to application software.

COST CONTROL MONITORING AND ACCOUNTING:The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

QUALITY CONTROL AND SAFETY DURING CONSTRUCTION: Quality and safety Concerns in Construction-Organizing for Quality and Safety-Work and Material Specifications-Total Quality control-Quality control by statistical methods -Statistical Quality control with Sampling by Attributes-Statistical Quality control by Sampling and Variables-Safety.

ORGANIZATION AND USE OF PROJECT INFORMATION: Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow

TEXT BOOKS:

- Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw-Hill Publishing Co., New Delhi, 1998.
- 2. Srinath,L.S., "Pert and CPM Priniples and Applications ", Affiliated East West Press, 2001

REFERENCES:

1. Chris Hendrickson and Tung Au, "Project Management for Construction – Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.

2. Moder.J., C.Phillips and Davis, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., Third Edition, 1983.

3. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons 1986.

4. Halpin,D.W., "Financial and cost concepts for construction Management", John Wiley and Sons, New York, 1985.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

17000001	COMPUTER AIDED BUILDING	Catagory	T	т	D	Cradit
1/0/0001	DRAWING LAB	Category	L	1	T	Cituit

										CC		0	0	4	2	2
Prea buil	mble The dings u	e aim Ising a	of this ny desi	cours gn sof	e is to tware	o prep	are the	e plan,	eleva	tion a	nd sec	ctions	of va	rious	types of	of
Prere	quisite	- NIL														
Cours	se Obje	ective														
1	At th and se requir	e end o ectional ements	f this co views)	ourse th	e stude ordance	ent shou with d	ld be a evelopi	ble to d nent an	raft on o d contr	comput ol rules	er buil satisf	ding d ying or	rawing	gs (Platon and	n, elevati	ion nal
2	The stand fr	tudents amed b	will be uilding	able to s using	draft the compu	he plan, iter soft	elevati ware.	ion and	section	nal view	's of th	e build	lings, i	industr	ial struct	tures,
Cours	se Outo	comes:	On the	succes	sful co	mpletio	on of th	e cour	se, stud	lents w	ill be a	able to				
CO1	To kn	low abo	ut load	bearing	g wall c	concept									Apply	
CO2	To kn	o know RCC framed structure concept Apply														
CO3	To ga	a gain the knowledge about Office building drawings. Apply														
CO4	To dr	To draw the industrial drawings as per industrial standard Apply														
CO5	To kn	know about the orientation of the building construction Apply														
Mapp	oing wi	th Prog	gramm	e Outco	omes a	nd Pro	gramm	e Spec	ific Ou	tcomes						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POI	1 PC	D12	PSO1	PSO2	PSO3
CO1	S	M	S	-	-	-	-	-	-	-	-		-	-	-	-
CO2	S	M	M	-	-	-	-	-	-	-	-		-	-	-	-
CO3	S	M	M	-	-	-	-	-	-	-	-		-	-	-	-
S- Str	ong: M	I-Medi	um; L-	Low												
Syllal	ous		,													
LIST	OF EX	KPERI	MENT	S												
. Build Incluce 2. RC 3. Off 4. Ind 5. Per	ildings with load bearing walls (Flat and pitched roof) – iding details of doors and windows CC framed structures ffice Buildings dustrial buildings – North light roof structures – Trusses															
Text	Books				-)		~									
1	cad r	nanual	– Depar	rtment	of Civil	l engine	ering									
Cours	se Desi	e Designers														
S.N 0	Facu	Faculty Name Designation Dept / College Email id														
1	A.Fiz	oor Ral	nman			Asso.	Prof	VI	MKVE	С	fizoori	@gma	il.com	1		
2	M.Se	nthilku	mar			Asso.	Prof	VI	MKVE	С	Senthi	lkumaı	@vm	kvec.e	du.in	

17CV	CC82		стр	FNCT	ч об	маті	TDIAI	STAI	D	Categ	gory	L	Т	Р	Credit
1/0	CC02		511	LINGI	II OF		LNIAL		D	CO	C	0	0	4	2
PREAD and to variou labora wood, these PRER	MBLE This la devel is force atory w , alumi materi EQUIS	aborate op ski es and vill mal nium, als for SITE-	ory cou lls in to determ ke the cement constru- NIL	irse wo esting nining student t, fine uction.	ork is it different their cl to det and cos	ntendeo nt mate naracte ermine arse ag	d to pr erials u ristics the m gregate	ovide s used fo experin echanic e, etc. 7	students r the co mentall cal and The stud	s with construct y. The construct physica dents w	opportun ion of b experime al proper ill be ab	ities to uilding ental w rties of le to in:	acquire under th ork invo material fer the su	knowlec he action lved in t s like ste hitability	lge of his cel, of
	The E	Experin	nental	work in	nvolved	l in this	s labor	atory s	hould n	nake the	e studen	t unders	stand the	fundam	ental
1	mode	s of loa	ading o	of the st	ructure	es and a	also ma	ake me	asurem	ents of	loads, d	isplacer	nents an	d strains	
2	Relat:	ing the rties of	se quai f struct	ntities, ural ele	the stu ements	dent sl	nould b	e able	to obta	in the st	rength o	of the m	aterial ar	nd stiffne	ess
COUR	SE O	UTCO	MES												
On th	e succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able t	to					
CO1.	Deterr subjec experi	nine th ted to ments	e beha tensic	vior o on, cor	f struct npressi	ural el on, sh	ements ear, be	s, such ending,	as bars and to	s, beams orsion	s and spi by mean	rings ns of	Apply		
CO2.	Deteri	nine th	e phys	ical pro	opertie	s of co	nstitue	nt mate	erials.				Apply		
CO3.	Deteri durabi	nine tl lity.	he proj	perties	of ma	terials	and h	ardene	ed inc	luding	strength	and	Apply		
CO4.	Deteri	nine th	e Defl	ection	strengt	h of the	e mater	ials.					Apply		
MAPP	ING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROGE	RAMM	E SPEC	CIFIC (DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	L	-	L	-	М	L	М	М	L	-	-	-
CO2	М	М	М	L	-	L	-	М	L	М	М	L	-	М	-
CO3	М	Μ	М	L	-	L	-	М	L	М	М	L	-	L	-
CO4	М	M	М	L	-	L	-	М	L	М	М	L	-	-	-
S- Stro	ng; M-	Mediu	m; L-I	LOW											
LIST (OF EX	PERI	MENT	S											
1.	Tensio	on test	on mil	d steel	and to	r steel 1	ods								
2	Comp	raccior	tost o		lan ana	aiman									

- 2. Compression test on wooden specimen
- 3. Double shear test on mild steel and Aluminium rods
- 4. Torsion test on mild steel rods
- 5. Impact test on metal specimen
- 6. Hardness test on metals
- 7. Deflection test on metal beam
- 8. Compression test on Helical spring
- 9. Tension test on Helical spring
- 10. Y deflection test on carriage spring.

TEXT BOOKS:

1. Strength of Materials Lab Manual by VMKV Engineering College.

REFERENCES:

1. Bansal, R.K., "A Text Book of Strength of Materials", Laxmi Publications (P) Ltd. New Delhi 2010

- 2. James M. Gere and Stephen P. Timoshenko, "Mechanics of Materials" (3rd edition), McGraw Hill Book Company, Singapore, 2002.
- 3. IS 1608 : 1995 Mechanical testing of metals Tensile Testing.

COUR	SE DESIGNERS						
S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Sathiyaraj R	AsstProf	VMKVEC	sathiyaraj@vmkvec.edu.in			
2	C.Kathirvel	Asst. Professor	VMKVEC	geologykathir@gmail.com			

17CVCC83	SURVEY PRACTICAL -I LAB	Category	L	Т	Р	Credit
1/0/0005	Server informe i End	CC	0	0	4	2

The theory part of Surveying can be experimented in Survey lab I. This includes the experiments on chains, compass, plane table and levels.

PREREQUISITE- NIL

COURSE OBJECTIVES

1 Apply the basic principles of engineering surveying and measurements

2 Follow effectively field procedures required for a professional surveyor

3 Use techniques, skills and conventional surveying instruments necessary for engineering practice.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Use the surveying tools like chain, tape, compass, plane table and levels in the field and take accurate measurements, booking and plotting	Apply
CO2. Adjust or compensate the errors in the field measurements	Apply
CO3. Locate the field position on the plan or vice versa	Apply
CO4. Locate the elevation of given points with respect to a given datum	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	L	L	-	-	L	-	L	L	-
CO2	S	L	-	L	L	-	-	-	-	-	-	L	-	L	-
CO3	S	S	S	-	-	-	-	-	L	L	L	-	L	-	-
CO4	S	L	S	L	-	L	-	L	-	L	-	L	-	L	-
C Stro	ng M	Madin	m I I	OW											

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1. CHAIN SURVEYING

- Ranging changing and traverse.
- 2. COMPASS SURVEYING
 - Traverse.

3. PLANE TABLE SURVEYING.

• Triangulation to find the distance between inaccessible points with and without known scale. – Three-point problem, two point problem.

4. LEVELLING

• Study of levels and leveling staff – Fly leveling using dumpy level. – fly leveling using tilting level. – Check leveling.

5. THEODOLITE SURVEYING

• Study of theodolite measurement of angles by reiteration and repetition - measurement of vertical angles.

REFERENCES:

- 1. SURVEY PRACTICAL -I LAB MANUAL by VMKV Engineeing College
- 2. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 3. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.
- 4. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.

,	S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
	1	Sathiyaraj R	AsstProf	VMKVEC	sathiyaraj@vmkvec.edu.in			
	2	C.Kathirvel	Asst. Professor	VMKVEC	geologykathir@gmail.com			

17CVCC84	HYDRAULIC ENGINEERING LAB	Category	L	Т	Р	Credit
		CC	0	0	4	2

The purpose of this course is to get exposure about the function of various hydraulic equipment.

PREREQUISITE

Mechanics of Fluids

COURSE OBJECTIVES

1	Student should be able to verify the principles studied in theory by conducting the experiments
2	The students will be able to measure flow in pipes and determine frictional losses.
3	The students will be able to develop characteristics of pumps and turbines
COUR	RSE OUTCOMES
On th	he successful completion of the course, students will be able to

CO1. Conducting experiments by using the principles studied in theory	Apply
CO2. Calculate flow in pipes and Frictional losses	Analyze
CO3. Developing characteristic curves of pumps and turbines	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	S	-	-	-	-	М	L	-	-			
CO2	S	L	М	М	-	-	-	-	L	L	-	L			
CO3	S	М	М	S	-	-	-	-	М	М	L	-			

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

CYCLE -I

- 1. Determination of co-efficient of discharge for orifice
- 2. Determination of co-efficient of discharge for notches
- 3. Determination of co-efficient of discharge for venturimeter
- 4. Determination of co-efficient of discharge for orifice meter
- 5. Study of impact of jet on flat plate (normal / inclined)
- 6. Study of friction losses in pipes

CYCLE –II

- 1. Study of minor losses in pipes
- 2. Study on performance characteristics of Pelton turbine
- 3. Study on performance characteristics of Francis turbine
- 4. Study on performance characteristics of Kaplan turbine
- 5. Study on performance characteristics of Centrifugal pumps (Constant speed / variable speed)
- 6. Study on performance characteristics of reciprocating pump.

REFERENCES:

HYDRAULIC ENGINEERING LAB MANUAL by VMKV Engineering College

S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Sathiyaraj R	AsstProf	VMKVEC	sathiyaraj@vmkvec.edu.in			
2	C.Kathirvel	Asst. Professor	VMKVEC	geologykathir@gmail.com			

17CVCC85	SURVEY PRACTICAL -II LAB	Category	L	Т	Р	Credit
----------	--------------------------	----------	---	---	---	--------

										CO	C	0	0	4	2
PREA	MBL	Ē													
Know	Knowledge on basic survey methods (Survey Lab I) is essential in order to determine the distance and heights of														
the objects using stadia, tangential as well as trignometrical principle.															
PREREQUISITE															
Fundamentals of surveying and Survey Lab I															
COUF	COURSE OBJECTIVES														
1	1 At the end of the course the student will posses knowledge about Survey field techniques.														
2	2 The basic concepts in control surveying														
3	3 The concepts in Route Surveying														
COU	RSE O	UTCO	MES												
On t	ne succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able	to					
CO1 -	Use the	surve	ying to	ols like	e Theod	dolite a	nd Tot	al Stati	ion in t	he field				Apply	
CO2 -'	Fake li	near an	ıd angu	lar me	asurem	ents, b	ooking	g and p	lotting	accurate	ely.			Apply	
CO3 -]	Locate	the pos	sition o	of the o	bject a	fter fin	ding th	e dista	nce					Apply	
and he	ights u	sing st	adia, ta	ngentia	al and t	rignon	netrical	princi	ple					Аррту	
CO4 -	Set out	a simp	ole circu	ular cu	rve in t	he field	d							Apply	
MAPI	PING	VITH	PROG	RAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	L	L	L	S	L	L	S	L	L
CO2	S	L	L	L	L	L	L	L	L	S	L	L	S	L	L
CO3	S	S	S	L	S	L	L	М	L	S	L	L	S	S	S
CO4	S	S	S	S	S	S	М	М	L	S	L	L	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

CYCLE -I

- 1. Study of theodolite and measurement of horizontal angle by repetition method.
- 2. Measurement of horizontal angle by reiteration method.
- 3. Determine the distance and heights of the objects using Stadia tacheometric method.
- 4. Determine the distance and heights of the objects using tangential tacheometric method.
- 5. Find the gradient between two points using stadia and tangential tacheometric principle.

CYCLE –II

- 6. Find the distance and elevation of the inaccessible (single) object by single plane method.
- 7. Find the distance and elevation of the inaccessible (single) object by double plane method.
- 8. Find the elevation of the inaccessible (double) object by double plane method.
- 9. Determine the elevation of the given point using subtense bar.
- 10. Measurement of horizontal, sloping and vertical distances of the object using Total station.

11. Setting out a circular curve using Total Station.

12. Using profile leveling, plot the longitudinal section and cross section of road

REFERENCES:

Surveying II Lab Manual by VMKV Engineering College

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C.Kathirvel	AssoProf	VMKVEC	geologykathir@gmail.com
2	Sathiyaraj R	AsstProf	VMKVEC	sathiyaraj@vmkvec.edu.in

170	17CVCC86 Category L T P Credit												Credit		
1/0				SUIL		ΠΑΝΙ	CS LA	D		CO	C	0	0	4	2
PREA applie	PREAMBLE To provide the hands on training in determination of Engineering and index properties of soils, applied in field problems.														
PRER	EQUIS	ITE-	Nil												
COUR	RSE OB	JECI	rives												
1	1 At the end of this course, the student acquires the capacity to test the soil to assess its Engineering and Index properties 2 Stadarts becaute the technique to determine in degree of the technique to determine to determine the technique to determine the technique to determine to determine the technique to determine to de														
2 Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.															
COURSE OUTCOMES															
On th	On the successful completion of the course, students will be able to														
CO1.	D1. Grain size distribution - Hydrometer analysis Apply														
CO2.	D2. Relative density of sands Apply														
CO3.	D3. One dimensional consolidation test (Determination of co-efficient of Apply														
consoli	nsolidation only)														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	M	L	L	L	L	L	-	-	-
CO2	S	L	S	L	L	L	L	L	L	L	S	L	-	M	-
CO3	S	5	5	L	L	L	S	L	L	L	L	L	-	L	-
5- SII0	ong; M-N		.m; L-1												
LIST (1. 2. 3. 4. 5. 6. 7. 8.	 LIST OF EXPERIMENTS Grain size distribution - Sieve analysis Grain size distribution - Hydrometer analysis Atterberg limits test Determination of moisture - Density relationship using standard proctor. Permeability determination (constant head and falling head methods) Specific gravity of soil grains Relative density of sands Determination of shear strength parameters 														
9.	One d in	nensi	onal co	onsolid	ation to	est (De	termin	ation o	f co-eff	icient o	f conse	olidatio	n only)		
REFERENCES:															
1. SOIL MECHANICS LAB MANUAL by VMKV Engineeing College															
2. "Soil Engineering Laboratory Instruction Manual ", Published by the Engineering College Co operative Society, Chennai, 1996.															
COUR	RSE DE	SIGN	ERS												

-	-	-		
S.No.	Name of the Faculty	Designation	Department	Mail ID

1	S.Sekar	Asst. Professor	CIVIL	Sekar.gis@gmail.com
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CVCC87	ENVIRONMENTAL ENGINEERING LAB	Category	L	Т	Р	Credit
21010000		CC	0	0	4	2

This subject includes the list of experiments to be conducted for characterization of water and municipal sewage. At the end of the course, the student is expected to be aware of the procedure for quantifying quality parameters for water and sewage.

PREREQUISITE- Nil

COURSE OBJECTIVES

1	The s	tudents	s comp	leting t	he cou	rse wil	l be ab	le to ch	naracte	rize was	tewater	and co	nduct trea	atability	
1	studie	es.													
2	To ex	spected	to be a	aware o	of the p	rocedu	re for	quantif	ying q	uality pa	rameter	s for wa	ater and s	sewage.	
3	To be	e condu	icted fo	or chara	acteriza	ation of	fwater	and m	unicipa	al sewag	e.				
COUR	OURSE OUTCOMES														
On th	ne succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able	to					
CO1.	Samp	ling an	d prese	ervatio	n meth	ods and	d signit	ficance	of cha	racteriz	ation of		Apply		
water a	and Wastewater.														
CO2.	Determination of iron & fluoride Apply														
CO3.	Deter	minatio	on of d	issolve	d oxyg	en							Apply		
MAPP	PING V	WITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROG	RAMM	E SPEC	CIFIC O	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	М	L	L	L	L	L	L	L	-
CO2	S	L	S	L	L	L	L	L	L	L	L	L	-	L	-
CO3	S	S	S	L	L	L	L	L	S	L	L	М	L	-	-
~ ~															

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS :

1. Sampling and preservation methods and significance of characterization of water and

- 2. Wastewater.
- 3. Determination of PH and turbidity Hardness
- 4.Determination of iron & fluoride
- 5.Determination of residual chlorine
- 6.Determination of Chlorides
- 7. Determination of Ammonia Nitrogen
- 8.Determination of Sulphate
- 9. Determination of Optimum Coagulant Dosage
- 10.Determination of available Chlorine in Bleaching powder
- 11. Determination of dissolved oxygen
- 12. Determination of suspended, volatile and fixed solids
- 13.B.O.D. test

14.C.O.D. test

15.Introduction to Bacteriological Analysis (Demonstration only)	To provide adequat	e knowledge and
--	--------------------	-----------------

assess the quality of water like hardness, pH, etc., for rural people

to

REFERENCES:

1. ENVIRONMENTAL ENGINEERING LAB MANUAL by VMKV Engineeing College

2. Standard methods for the examination of water and wastewater, APHA, 20th Edition, Washington, 1998

3. Garg, S.K., "Environmental Engineering Vol. I & II", Khanna Publishers, New Delhi, 199

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com

1700			CON	APUT	ER AI	DED D	DESIG	N ANI	D	Categ	ory	L	Т	Р	Credit
1/0	CC00			Ι	DRAW	ING L	AB			CC	2	0	0	4	2
PREA	MBL	E									I				
This c slab, I	course Design	helps of var	to kno ious ty	w the open of	design steel s	of R.C	C can es	tilever	and co	ounterfor	rt retain	ning wa	lls, Desig	gn of so	lid
PREF	REQU	ISITE	- Desi	gn Of i	Reinfo	rced C	oncre	te Eler	nents						
COU	RSE O	BIE	TIVE	<u>'S</u>											
	The s	studen	t acqui	res har	nds on a	experie	nce in	design	and pr	eparatio	n of str	uctural	drawings	for con	crete
1	struct	tures n	ormal	ly enco	untere	d in Ci	vil Eng	gineerii	ng pract	tice.		aotarar	ara († 1115)	101 001	
2 The student acquires hands on experience in design and preparation of structural drawings for steel structures normally encountered in Civil Engineering practice.															
COU	RSE O	OUTC	OMES	5				-							
On t	he suc	cessfu	l comp	oletion	of the	course,	studer	nts will	be able	e to					
CO1. retaini	CO1. Develop drafting skills in drawing R.C.C. cantilever and counter fort type Apply retaining walls with reinforcement details.														
CO2.	O2. Develop drafting skills in Design of solid slab and R.C. Tee beam bridges Apply														
CO3.	CO3. Design of rectangular, pressed and hemispherical bottomed steel tank –staging Apply														
-rivetedjoints detailed drawing															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	М	L	L	L	L	L	L	L	-	-	-
CO2	S	L	S	L	L	L	L	L	L	L	L	L	-	-	-
CO3	S	S	S	L	L	L	L	S	L	L	L	L	-	-	-
S-Str	ong; M	I-Med	ium; L	-Low	•									•	-
LIST	OF EX	XPER	IMEN	TS:											
1.	D	Design	and d	rawing	of R.O	C.C. ca	ntileve	er and	counte	r fort ty	pe reta	ining w	alls with	reinfor	cement
2	d F	etails	of coli	dalah	and D	С Таа	haami	midaa	for ID	Claadin	and	ainform	amont dat	-all	
2.	L T	Design	of reci	u siau tangula	and K.	c. Tee	l hemi	snherid	al bott	omed st	ig and i sel tanl	ennorco z _stagij	ng _rivet	all ad ioint	c
5.	d	etailed	draw	ing	u, pres	scu an		spiterik		onicu st		-stagn		Ju joint	3
4.	Ľ	Design	of circ	ular, re	ectangu	ılar and	l intze	type w	ater tan	k reinfo	rcemer	nt details	S		
5.	Ľ	Design	of pla	te girde	er – tw	in gird	er decl	k type :	railway	bridge	– throu	gh type	and deck	k type h	ighway
bridges – Truss girder bridges – detailed drawing – riveted connection															
REFE	ERENO	CES:													
1.Computer Aided Design And Drawing Lab Manual by VMKV Engineeing College															
2.Structural design & drawing (concrete & steel) – Krishnaraju, CBS Publishers.2005															
3. Kris	shnara	ju,N. '	'Struct	ural De	esign &	z Draw	ing, Ui	niversit	ties Pre	ss, 2009					

Mail ID S.No. Name of the Faculty Designation Department CIVIL senthilkumar@vmkvec.edu.in M.Senthilkumar Asst. Professor 1 S.Prakash CIVIL 2 tsprakashcivil@gmail.com Asst. Professor

17CV	CC89		CON	CRET	E ANI	D CON		CTIO	N	Categ	gory	L	Т	Р	Credit	
				TE	CHNO	LOGY	I LAB			EC	2	0	0	4	2	
PREA	MBLE	2									•				•	
Т	his cou	irse he	lps to l	know tl	ne To u	inderst	and and	d perfo	rm vari	ous test	s on ce	ment, ag	gregate	s and cor	ncrete.	
PRER	EQUIS	SITE														
		Cons	tructio	n Mate	rials											
COUR	RSE OI	BJEC	ΓIVES													
1	Stude	nt kno	ws the	technic	ques to	charac	terize	various	pavem	ent mat	erials t	hrough				
I	releva	nt test	s.													
2	To un	dersta	nd and	perfor	m vario	ous test	ts on ce	ment,	aggrega	ates and	concre	ete.				
COUR	RSE OU	UTCO	MES													
On th	ne succ	essful	comple	etion of	the co	ourse, s	tudents	will b	e able t	0						
CO1.	Devel	op the	skills	in com	pressiv	e stren	gth test	t on bri	cks					Apply		
CO2.	Devel	op the	op the skills in Setting Time Test on Cement											Apply		
CO3.	Test o	on Impact Resistance Test on Aggregates Apply														
MAPP	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2	PSO3			
CO1	S	L	L	L	-	L	S	L	L	L	L	L	L	L	L	
CO2	S	L	-	L	М	L	-	L	-	-	L	-	L	L	L	
CO3	S	S	S	-	L	-	L	-	L	L	-	L	L	М	L	
S- Stro	ng; M-	Mediu	m; L-I	Low												
SYLL	ABUS															
LIST (OF EX	PERI	MENT	S:												
1.	Comp	ressive	e Stren	gth Tes	t on B	ricks										
2.	Water	Abson	ption]	Fest on	Bricks	5										
3. 4	Specif	ic grav	vity Tea	st on C	ement											
4. 5.	Consis	stency	and Se	etting T	u 'ime Te	est on	Cemen	t								
6.	Comp	action	Factor	test on	Conci	rete	comon	•								
7.	Crush	ing Str	ength '	Test on	Aggre	gates										
8.	Impac	t Resis	stance '	Test on	Aggre	gates										
9. 10	Slump	o cone	on cor vlinder	icrete	th on a	oncret	e The s	tudent	will he	ave to tr	ainrura	l neonle	to chec	k the au	ality of	
10.	10. Cube and Cylinder strength on concrete The student will have to trainrural people to check the quality of building materials in the lab by the students through the knowledge acquired in this lab															
TEVT	DOOI	Z C .														
1ЕЛІ 1.	Concr	x5: ete An	d Cons	structio	n Tech	nology	/ Lab N	Ianual	by VM	KV En	gineeri	ng Colle	ge			
2.	M.S. 5	Shetty,	Concr	ete Tec	hnolog	gy (The	eory and	d Pract	ice), S.	Chand	& Con	npany Lt	d., 2003	3		
COURSE DESIGNERS																
S.No.	Nar	ne of t	he Fac	ulty	D	esigna	tion		Depa	rtment			Ma	il ID		
1	R. Sat	thiyara	ıj		Asst.	Profes	sor		CI	VIL		sathiyar	thiyaraj@vmkvec.edu.in			
2	1R. SatniyarajAsst. ProfessorCIVIL2A.Fizoor RahmanAsst. ProfessorCIVIL									fizoorr@gmail.com						

17CV	CC90			S	URVI	EY CA	MP			Categ	gory	L	Т	Р	Credit
										CC	2	0	0	2	1
PREA	MBL	Ŧ													
This co	ourse h	elps to	know	the elev	vation	of poin	ts by a	dvance	d meth	ods and	instrun	nents.			
PRER	EQUI	SITE													
Survey Practical -II Lab															
COURSE OBJECTIVES															
1	Students completing this course would have acquired practical knowledge on handling														
1	surve	y instru	uments												
2	Stude	ents kno	owledg	e to ca	rryout	Triang	ulation	and A	stronor	nical su	rveying	includi	ng gener	al field	
marking for various engineering projects and curves setting.															
COURSE OUTCOMES															
On th	ne succ	essful	comple	etion of	the co	ourse, s	tudents	s will b	e able t	to					
CO1.	Deve	lop the	skills i	in field	knowl	edge o	f surve	ying in	Triang	gulation	,			Annly	
	Trilate	eration	metho	ds										1 pp1j	
CO2.	Deve	lop the	skills i	in Leve	lling a	nd calc	ulation	n of are	a					Apply	
CO3.	Mapp	oing of	contou	red are	a									Apply	
MAPP	PING V	WITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGE	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	М	L	L	L	L	L	-	-	-
CO2	S	L	S	L	L	L	L	L	L	L	М	L	-	-	-
CO3	CO3 S S S L L M L L L L M														
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

Ten days survey camp using Theodolite, cross staff, levelling staff, tapes, plane .The camp must involve work on a large area of not less than 400 hectares. at the end of the camp, each student shall have mapped and contoured the area. the camp record shall include all original field observations, calculations and plots

LIST OF EXPERIMENTS:

- 1. Triangulation
- 2. Trilateration
- 3. Road Profile leveling
- 4. Calculation of area using Offset Method
- 5. Height of a building

TEXT BOOKS:

1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.

- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.
- 3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	R. Sathiyaraj	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CV	CC01			COM	DDFH	FNSI		R		Categ	gory	L	Т	Р	Credit
1/0 0	CC91			COM	I KLII			D		CC	2	1	1	0	2
PREA	MBLE										I				
This co	ourse he	lps to	know	the at t	he end	of the	course	the stu	dents a	ble to a	ttend in	nterview	s and co	mpetitive	e
exams															
PRER	EQUIS	ITE	- NII	-											
COUR	SE OB	JECI	FIVES												
1	The ob acquire engine	ojectiv ed dur ær.	e of "C ring the	Compre e earlier	hensio seme	n" is to sters to	o provi o real-li	de oppo fe prob	ortunity dems w	y for the hich he	studer /she m	nt to app ay have	ly the kn to face i	owledge n future a	as an
2	At the	end o	f the co	ourse th	ne stud	ents ab	le to at	tend in	terview	vs and c	ompeti	itive exa	ns		
COUR	SE OU	TCO	MES												
On th	ne succe	essful	comple	etion of	the co	urse, s	tudents	s will b	e able t	0					
CO1.	Develo	op the	skills (of stude	ents in	intervi	ew poi	nt of vi	ew					Apply	
CO2.	Develo	op the	skills i	n objec	ctive ty	pe of c	questio	n for co	ompetit	ive Exa	minati	on		Apply	
MAPP	'ING W	/ITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGE	RAMM	E SPE	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	М	L	L	L	L	L	S	L	-	-
CO2	S	L	S	L	L	L	L	L	L	L	L	L	-	-	-
S- Stro	ng; M-N	Mediu	m; L-I	LOW											
SYLL The co Course TEXT	S- Strong; M-Medium; L-Low SYLLABUS The comprehension assessment will consist of 3 tests covering all the subject of study in Civil Engineering Course. TEXT BOOKS: 1. Text book of R S Agarwall														
COUR	SE DE	SIGN	ERS												
S.No.	S.No. Name of the Faculty Designation Department Mail ID														
1	R. Sat	hiyara	j		Asst.	Profes	sor		CI	VIL		sathiyar	aj@vmk	vec.edu.	in
2	A.Fizo	or Ra	hman		Asst.	Profes	sor		CI	VIL		fizoorr@	gmail.	com	

CATEGORY C – ELECTIVE COURSES (i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE)

17CVFC01	01 ENGINEERING GEOLOGY											Т	Р	Credit
		L	10111		9 GEC		1		EC		3	0	0	3
PREAMBL	E													I
purpose of a provided for should be ab of engineerir	En ssuring Engin le to un g work	ngineer that t eering nderstat	ing Ge he geo geolog nd an e	ology is ologic fa gic studi engineer	s the ap actors ies may ring ge	oplicat affecti y be po ologic	ion of t ng the erforme report,	he geo engin ed dur and in	ologic sc eering w ing the p ncorpora	iences vorks a plannin ite ade	to en are re g and quate	gineering cognized l design. measure	g practice l and ade A civil e s into the	for the quately ngineer design
PREREQUI	SITE													
_	NIL													
COURSE O	BJEC	FIVES)											
1 At the	end of	this co	urse th	e studer	nt shall	be ab	le to un	dersta	nd about	t Geolo	ogical	formatio	ons	
2 Classi	fication	ofroc	ks.											
3 Morph	ology	of rock		1	<u> </u>		•		1	<u> </u>				
4 bridge	s, build	ings, e	tc	geology	/ Ior ci	vii eng	ineers	with re	egard to	Iounai	ng str	uctures I	ike dams,	
5 The st and lat	udent sl ndslides	hall als s and li	o be al	ole to ap the rura	precia l peopl	te the i e.	importa	ance of	f geologi	cal for	matio	on in caus	sing earth	quakes
COURSE O	UTCO	MES			1 1									
On the suc	cessful	comple	etion of	f the co	urse, st	udents	s will be	e able	to					
CO1. Acq grada whicl area.	uire th tional a n answe	e kno activiti ers the	wledge es and reasor	e of th weath for th	e top ering a e occu	ograph ind als rrence	nical fo so the of ear	ormati theory thquak	on, inte of plat ce, lands	rior e e tecto lides i	arth, onics n an	Unders	tand	
CO2. Interp engin	oret min eering	nerals proper	and ro ties	ocks an	d asse	ss its	physica	al, me	chanical	and		Apply		
CO3. Dete	rmine g	geologi	cal stru	ictures a	and its	releva	nce on	civil p	rojects.			Analyz	e	
CO4. Analy weath aspec	ze the nered th ts with	surface iicknes releva	e and su s thround the start st start start star	ubsurfao gh geor civil en	ce geol physica gineeri	ogical 1 explo ng pro	structu oration jects	res of and re	the crust port wri	t, soil a ting	und	Analyz	e	
CO5. Asses desig	s the go n of civ	eologic il struc	al aspe tures a	ects of the of the other of the other of the other of the other ot	he site -versa	suitab	ility wit	th rele	vance to	the		Analyz	e	
MAPPING	WITH	PROG	GRAM	ME OU	U TCO	MES A	AND P	ROG	RAMM	E SPE	CIFI	C OUTO	COMES	
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSO	1 PSO2	PSO3
CO1 S	М	L	S	S	М	S	М	М	S	S	S	-	-	-
CO2 S	CO2 S M M L L L L L L M -													
CO3 S	S	S	S	L	L	М	L	L	L	L	L	-	L	-
CO4 S	S	S	M	M	S	S	L	L	L	M	M	S	-	-
	S Mall		S	8	S	S	S	8	S	8	S	-	-	-
SYLLABUS	-wiediu	un; L-I	LOW											

GENERAL GEOLOGY: Geology in Civil Engineering - Branches of geology - Earth Structure and composition - Elementary knowledge on continental drift and plate tectonics. Earth processes - Weathering - Work of rivers, wind and sea and their engineering importance - Earthquake belts in India. Groundwater - Mode

of occurrence - prospecting - importance in civil engineering

MINERALOGY: Elementary knowledge on symmetry elements of important crystallographic systems - physical properties of minerals - study of the following rock forming minerals - Quartz family. Feldpar family, Augite, Hornblende, Biotite, Muscovite, Calcite, Garnet - properties, behavior and engineering significance of clay minerals - Fundamentals of process of formation of ore minerals - Coal and Petroleum - Their origin and occurence in India.

PETROLOGY: Classification of rocks - Distinction between Igneous, Sedimentatary and Metamorphic rocks. Decription occurence, engineering properties and distribution of following rocks. Igneous rocks - Granite, Syenite, Diorite, Gabbro, Pegmatite, Dolerite and Basalt Sedimentary rocks sandstone, Limestone, Shale, Conglomerate and breccia. Metamorphic rocks, Quartzite, Marble, Slate, Thyllite, Gniess and Schist.

STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD: Attitude of beds - Outcrops - Geological maps - study of structures - Folds, Faults and joints - Their bearing on engineering Construction. Seismic and Electrical methods for Civil Engineering investigations. Remote sensing techniques - study of air photos and satellite images - Interpretation for Civil Engineering

GEOLOGY FOR ENGINEERING PROJECTS: Geological Investigations - Geophysical Investigations -Remote Sensing-Techniques - Geological Considerations for Dam Reservoirs, Tunnels and Road-Cuts - Practice in Geology - Demonstration for Clinometer, Electrical Resistivity Meter, Geological Maps - Identification of Crystals, Minerals and Rocks

TEXT BOOKS:

- 1. Parbin Singh, "Engineering and General Geology", Katson Publication House, 2009
- 2. P.C. Rao & D.B. Rao," A Text Book Of Geology", Discovery Publishing House, 2010

REFERENCES:

- 1. Legeet, "Geology and Engineering ", McGraw Hill Book Company, 1998.
- 2. Blyth, "Geology for Engineers ", ELBS, 1995.

COUR				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	S.Sekar	Asst. Professor	CIVIL	sekar.gis@gmail.com
2	S.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com
L	S.Katilii vei	Asst. FIOIEssoi	CIVIL	geologykatili @gillall.c

1705	ECOS		1	DDIC	ΤΙΟΝ	ENCI	NEEDI	NC	Categ	gory	L	Т	Р	Cr	edit
1/0	EC02		ļ	IKKIGP	ATION .	ENGI	NEEKI	NG	EC	2	3	0	0		3
PREA	MBL	E								•					
	This s	subject	deals	with st	udy of	irrigati	ions pr	actices and me	ethods a	dopted	in our	country.	Also to	know th	e
irriga	irrigation water requirement in order to design the structures like dams, weirs and canals.														
PRER	PREREQUISITE														
	Environmental engineering														
COUI	JRSE OBJECTIVES														
1	To understand the need and mode of irrigation.														
2	To kn	low the	irrigati	ion mai	nageme	ent prac	ctices o	f the past, pres	ent and	future.					
3	To understand about the Water distribution efficiency and optimization techniques														
COUI	RSE O	UTC	OMES	5											
On the s	successi	ful com	pletion	of the co	ourse, st	udents	will be a	able to							
Co1. D	escribe	e the im	portan	ce of N	ational	Water	Policy					Unders	stand		
Co2. D	etermi	ne the s	torage	capacit	y of re	servoir	for a g	given demand.				Unders	stand		
Co3. E	xplain	the diff	erent t	ypes an	d meth	ods of	irrigati	on practices				Apply			
Co4. C	omput	e the de	esign pa	aramete	ers of c	anal						Apply			
Co5. D	oiscuss	the var	ious co	ncepts	of irrig	ation w	vater m	anagement and	l softwa	res		Unders	stand		
MAP	PING	WITH	I PRO	GRA	MME	OUT	COME	ES AND PRO	GRAN	AME S	SPECI	FIC OU	TCOM	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO11.	L	-	-	L	-	L	-	L	-	L	-	-	L	L	-
CO12.	S	М	S	L	-	-	-	-	-	-	-	М	L	-	-
CO13.	S	S	S	L	-	-	Μ	-	-	S	-	-	-	-	М
CO14.	S	S	S	L	-	-	-	-	-	-	-	-	Μ	-	-
CO15.	. L L S - M - L														
S-Stro	$\frac{15.}{\text{Strong: M-Medium: L-Low}}$														

SYLLABUS

SOIL – PLANT WATER RELATIONSHIP : Definition – Need – Benefits- developments – Historical - Scope in the country and state. Soil – Water relationship - Wilting point – Soil fertility- Principal crops – Crop rotation – Crops and cropping season.

CROP WATER REQUIREMENTS: Duty and Delta – Definitions – Factors affecting Duty – Methods of Improving Duty, Consumptive use of water (Evapo – Transpiration) – Estimation of Evapo – Transpiration – Blaney and Criddle Method – Penman Methods – Lysimeter.

SOURCES, CONVEYANCE AND DISTRIBUTION OF WATER : Sources of Water – Rivers – Streams – Reservoirs and Tanks. Lift irrigation – Devices and equipment for Lift irrigation. Components of irrigation networks – Main and Branch canal – Distributors – Minors – Water courses and field chak. Water application methods – Surface irrigation – Border – Check and Furrow – Subsurface irrigation – Sprinkler and Drip irrigation.

CONTROL AND REGULAR WORKS: Canal regulation works – Necessity and location of falls – Head and cross

regulator – Canal escapes. Cross drainage works – Types of cross drainage work. River training works – Classification of River training works – Groynes or Spurs – Bank protection.

IRRIGATION WATER MANAGEMENT: Irrigation Efficiencies – Water conveyance efficiency – Water application

efficiency – Water storage efficiency – Water distribution efficiency. Need for optimization – Need for interdisciplinary and participation approach. Roles and responsibilities of farmer"s and government agencies in Turn Over.

TEXT BOOKS:

- 1. Garg, S.K., "Irrigation Engineering and Hydraulic Structures", Khanna Publishers, 2009.
- 2. Sharma R.K., Irrigation Engineering and Hydraulic Structures, Oxford and IBH Publishing Company, New Delhi, 1994.

REFERENCES:

 Dilip Kumar Majumdar, "Irrigation Water Management (Principles & Practices)", Prentice Hall of India (P), Ltd.
 Sathyanarayana Murthy, Irrigation Design and Drawing, Published by Mrs.L.Banumathi, Tuni, East Godavari District, A.P. 1998.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	R.SATHIYARAJ	Asst. Professor	CIVIL	sathiyaraj.r.25@gmail.com
2.	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

17CVEC03	GEOGRAPHICAL INFORMATION SYSTEM	Category	L	Т	Р	Credit
1.0,2000		EC	3	0	0	3

Geographical Information System is the application of the geologic sciences to engineering practice for the purpose of assuring that the geologic factors affecting the engineering works are recognized and adequately provided for. Engineering geologic studies may be performed during the planning and design. A civil engineer should be able to understand an engineering geologic report, and incorporate adequate measures into the design of engineering works.

PREREQUISITE

NIL

COU	RSE O	BJEC	TIVE	S											
1	To pr	ovide e	xposur	e to ap	plicatio	ons of C	BIS in v	arious applic	ation do	mains th	rough ca	ase studi	les		
2	Stude	nts wil	l learn	about t	he use	of zon	e mapp	ing for water	bodies .						
3	Stude	nts wil	l learn	about t	he use	of map	ping te	chniques for	Agricult	ure and	Earth sc	iences			
4	Stude	nts wil	l also le	earn ab	out the	recent	technic	ues used for	GPS sys	tem					
5	The stands	tudent s lides an	shall al Id litera	so be a ate the r	ble to a rural pe	apprecia eople	ate the i	importance o	f geologi	ical forn	nation in	causing	g earthqu	akes and	1
COUI	RSE O	UTC	OMES	5											
On the	succes	sful co	mpletio	on of th	e cours	se, stud	ents wi	ll be able to							
(CO1)	Acquir	e the k	nowled	lge of t	he topo	ographi	cal forr	nation, interi	or earth,	gradatio	onal	Unders	stand		
activiti	es and	GIS Te	chniqu	ie and c	lata IN	PUT									
(CO2)) Unde	erstand	the im	portanc	ce of ad	lvanced	l techni	ques involve	d			Unders	stand		
1n data	Analys	sis and	model	lıng											
(CO3)	Study t	the imp	ortance	e of Da	ta Outp	out And	l Error	Analysis.				Analys	se		
(CO4) using C	Unders HS	stand th	e impo	ortance	of Natı	iral Re	sources	And Wastel	and Man	agement		Unders	stand		
(CO5)	Analy	sis of R	S and	GIS da	ta and	interpre	eting the	e data for mo	deling ap	oplicatio	ns	Analys	se		
MAP	PING	WITH	I PRO	GRA	MME	OUT	COME	ES AND PR	OGRA	MME S	SPECI	FIC OU	JTCOM	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	S	S	М	S	М	М	S	S	S	L	L	-
CO2.	S	Μ	Μ	L	L	Μ	М	L	L	L	L	М	L	S	-
CO3.	S	S	S	S	L	L	Μ	L	L	L	L	L	-	-	М
CO4.	S	S	S	Μ	М	S	S	L	L	L	Μ	Μ	М	М	-
CO5.	S	S	S	S	S	S	S	S	S	S	S	S	L	-	-
S- Stro	ong; M	-Medi	um; L	-Low											
SYLL	ABUS														

GIS TECHNIQUE AND DATA INPUT: MAP – Types of Maps – Development of GIS – Components of GIS – Hardware, software, organisation – Types of data – Spatial and non-spatial data – Print, Line and Polygon – Vector and Raster data – Database structures – Files – Vector and Raster data structures.

DATA ANALYSIS AND MODELLING: Data Retrieval – Query – Simple Analysis – Spatial Analysis – Overlay – Vector Data Analysis – Raster Data Analysis – Modelling using GIS – Digital Elevation Model – Cost and path analysis – Expert Systems – Artificial Intelligence – Integration with GIS.

DATA OUTPUT AND ERROR ANALYSIS: Data Output – Types – Devices used – Raster and Vector Display Devices – Printers – Plotters – Photo write Devices – Sources of Errors – Types of Errors – Elimination – Accuracies.

GIS APPLICATIONS IN RESOURCE MANAGEMENT: Fields of Applications – Natural Resources – Agriculture – Soil – Water Resources – Wasteland Management - Social Resources - Cadastral Records – LIS

ADVANCED GIS APPLICATION: AM/FM – Utility Network Management – Integration with Remote Sensing – Knowledge based techniques – Multicriteria Techniques – Introduction to Object Oriented Data base Model.

TEXT BOOKS:

- 1. Burrough P A, Principles of GIS for Land Resources Assessment, Oxford Publication, 2000
- 2. Michael N Demers, Fundamentals of Geographical Information Systems, Second Edition, John Wiley Publications, 2002

REFERENCES:

COUDGE DEGLOVEDO

1. Paul A Longley, Michael F Goodchild etal, Geographical Information Systems Volume I and II, Second Edition, John Wiley Publications, 1999

COURS	JURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1.	R.SATHIYARAJ	Asst. Professor	CIVIL	sathiyaraj.r.25@gmail.com										
2.	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com										

17CVFC04		REPA	AIR AI	ND RE	HABL	ITAT	ION OF	Cate	gory	L	Т	Р	Cr	redit
17CVEC04				STRU	CTUR	ES		E	C	3	0	0		3
PREAMBLE To im repair and re	part kr habilita	nowled ate it	ge on u	Indersta	anding	the pro	perties of conc	crete, ca	auses of	its failu	re, effec	ts and m	easures	to
PREREQUIS Cons	SITE tructio	n techn	iques e	quipm	ents an	d pract	ices							
COURSE OF	BJECT	IVES												
1 To kn	ow abo	out the	variou	s const	ruction	techni	ques, practices							
2 To ki	now ab	out the	equipr	nent ne	eded fo	or diffe	rent types of c	onstruc	tion acti	vities.				
3 To un	derstar	nd abou	it the v	arious (constru	ction p	rocedures for s	sub to s	uper str	ucture				
4 To kn	ow abo	out the	various	s types	of strue	ctures f	rom foundation	n to sup	er struc	ture.				
COURSE OU	JTCO	MES												
On the succes	sful co	mpletio	on of th	e cours	se, stud	ents wi	ill be able to							
Co1. Explain	the fact	tors aff	ecting	the dur	ability	of conc	crete structures					Unde	rstand	
Co2. Identify	the cau	ises and	d effect	s of dis	stress in	n concr	ete structures					Unde	rstand	
Co3Diagnose	distres	s in co	ncrete s	structur	es and	sugges	t suitable main	tenance	e and re	pair		Ar	ply	
strategies												Ĩ		
Co4. Enumera	ate the o	concep	t of qua	ality as eloped	surance	e in stru erated y	ictures, basic n	nechani	sms by	which		Ap	ply	
Co5 Suggest	suitabl	e mater	rials of	renair	related	$\frac{1}{10}$ the	distress with ca	ise stud	ies			Δr	nlv	
										SDECI				
MAPPING COs PO1		PO3					25 AND PRU PO8	PO9	PO10	PO11	PO12	PSO1	IES PSO2	PSO3
CO1	102 L	-	L	-	-	-	-	L	-	M	-	-	1502 L	-
CO2. M	M	L	M	-	L	М	S	-	-	M	-	-	M	S
CO3. S	S	S	Μ	М	-	L	-	М	-	S	S	М	L	-
CO4. L	М	М	M	-	L	L	-	-	-	S	-	-	L	М
CO5. L	Μ	М	М	-	S	Μ	L	М	М	М	-	L	М	-
S- Strong; M	-Medi	um; L	-Low							I				

SYLLABUS

CONCRETE TECHNOLOGY: Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete.

CONSTRUCTION PRACTICES: Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick — weather and water proof – roof finishes – acoustic and fire protection. **SUB STRUCTURE CONSTRUCTION :** Techniques of Box jacking – Pipe Jacking - under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

SUPER STRUCTURE CONSTRUCTION: Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors -Erection of articulated structures, braced domes and space decks.

CONSTRUCTION EQUIPMENT: Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for dredging, trenching, tunneling

TEXT BOOKS:

1) Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997.

2) Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.

3) Shetty, M.S, "Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.

REFERENCES:

1) Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.

2)Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	R.SATHIYARAJ	Asst. Professor	CIVIL	sathiyaraj.r.25@gmail.com
2.	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

17CV	EC05	TI	RAFFI	L 3	T 0	P	Cı	redit							
	MDIT	-								i C	5	0	0		5
PKEA	Stude	ents wil	1 acqui	re com	prehen	sive kn	owledg	e of traffic sur	vevs a	nd studie	es such	as volum	ne count	Speed a	nd
delav	origin	n and d	estinati	on Pa	rking 1	pedestr	ian and	accident surve	evs Th	ev will a	achieve	knowled	lge on de	esign of	at-
orade	, ongn	ade sei	arated	interse	ections	Stude	nte will	become famil	iar with	h variou	s traffic	control	and traff	ic	ai
mono		t moog	uros	mense	xtions.	Stude	ins will				s traffic	control			
mana	EDEALISITE														
PRER	Relivery airort and harbour engineering														
Kailway, airort and harbour engineering															
COUR	RSE OI	BJECT	IVES												
	Toac	hieve k	nowled	loe on a	lesion	of ato	rade" a	nd orade sena	rated" i	intersect	ions				
I	To achieve knowledge on design of ,, at grade and ,, grade separated intersections.														
2	To become familiar with various traffic control and traffic management measures														
3	To gi	ve an o	verviev	v of Tr	affic er	ngineer	ing								
4	To kr	now abo	out the	Variou	s surve	sys to b	e condu	icted, traffic re	gulatio	n, mana	gement	and traff	ïc safety		
COUR	RSE OI	UTCO	MES												
On the	succes	sful co	mpletio	on of th	e cours	se, stud	ents wi	ill be able to							
			•									1			
Co1. E	Explain	road us	ser and	vehicu	lar cha	racteris	tics						Unde	erstand	
Co2. B	Bring ou	it speed	d and v	olume	studies	and the	eir relat	tionships					Unde	erstand	
Co3.E	numera	te the v	various	road sa	afety re	quirem	ents						Unde	erstand	
Co4. E	Design g	geomet	rics of	interse	ctions								Ap	ply	
Co5. E	Design (the sigr	hal phas	sing an	d desig	n a rota	ary						Ap	ply	
MAP	PING	WITH	I PRO	GRA	MME	OUT	COMI	ES AND PRO	GRA	MME S	SPECI	FIC OU	TCOM	IES	
	1	1	1	1	1	1	r	1	1	1		1	1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	L	S	М	S	Μ	М	S	S	S	L	L	-
CO2.	S	L	-	-	L	М	М	L	М	L	М	М	М	L	М
CO3.	S	S	S	S	L	L	S	L	L	М	L	L	-	-	М

CO4.	L	L	L	L	М	L	S	L	М	L	М	М	М	М	L
CO5.	S	S	М	-	S	S	L	S	S	S	S	S	L	-	-
a a			· ·	-											

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION : Significance and scope, Characteristics of Vehicles and Road Users, Skid Resistance and Braking Efficiency (Problems), Components of Traffic Engineering- Road, Traffic and Land Use Characteristics.

TRAFFIC SURVEYS AND ANALYSIS : Surveys and Analysis - Volume, Capacity, Speed and Delays, Origin and Destination, Parking, Pedestrian Studies, Accident Studies and Safety Level of Services- Problems.

TRAFFIC CONTROL : Traffic signs, Road markings, Design of Traffic signals and Signal co-ordination (Problems), Traffic control aids and Street furniture, Street Lighting, Computer applications in Signal design.

GEOMETRIC DESIGN OF INTERSECTIONS: Conflicts at Intersections, Classification of Intersections at Grade, -Chanallised and Unchanallised Intersection - Grade Separators (Concepts only), Principles of Intersection Design, Elements of Intersection Design, Chanallisation and Rotary design (Problems), Grade Separators

TRAFFIC MANAGEMENT: Traffic Management- Traffic System Management (TSM) and Travel Demand Management (TDM), Traffic Forecasting techniques, Restrictions on turning movements, One-way Streets, Traffic Segregation, Traffic Calming, Tidal flow operations, Exclusive Bus Lanes - Introduction to Intelligence Transport System (ITS)

TEXT BOOKS:

1. Kadiyali L R, Traffic Engineering and Transport Planning, Khanna Technical Publications, Delhi, 2000.

2.Khanna Kand Justo CEG, Highway Engineering, Khanna Publishers, Roorkee, 2001.

REFERENCES:

1.Indian Roads Congress (IRC) specifications: Guidelines and special publications on Traffic Planning and Management 2.Guidelines of Ministry of Road Transport and Highways, Government of India.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1.	R.Sathiyaraj	Asst. Professor	CIVIL	sathiyaraj.r.25@gmail.com							
2.	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com							
				•							

17CVEC06	HYDROLOGY	Category	L	Т	Р	Credit
1.0.12000		EC	3	0	0	3

It is the science that deals with the waters of the earth, their occurrence, circulation, distribution and their reaction with environment including their relation to living things.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	The mechanics of rainfall, its spatial and temporal measurement and their applications will be understood.									
2	The mechanics of rainfall, its distribution and measurement of rainfall using Hydrograph.									
3	Analysis of Simple statistical and application of probability									
4	Student will also learn simple methods of flood routing and ground water hydrology.									
5	Distribution of rainfall and run off shall also be understood.									
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
CO1. Explain the importance of Hydrological cycle and the measurement and analysis										
of rain	of rainfall data									
CO2. 0	CO2. Compute the quantity of runoff generated from a catchment Apply									
CO3.D	CO3.Develop hydrographs to measure the stream flow Apply									
CO4. I	CO4. Estimate floods and propose suitable control measures Apply									
CO5. S	buggest methods of conserving surface and groundwater storage	Apply								

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	-	-	-	L	S	L	-	-	-	М	L	L	-
CO2	S	М	L	L	-	-	S	-	-	-	-	М	L	L	-
CO3	S	М	L	L	-	-	М	-	-	-	-	L	L	L	-
CO4	S	М	-	L	-	-	S	-	-	-	-	L	L	L	-
CO5	L	-	L	-	-	L	М	L	L	L	-	L	L	L	-
S- Stro	S. Strong: M. Medium: L. Low														

SYLLABUS

PRECIPITATION: Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfall – Spatial measurement methods – Temporal measurement methods – Frequency analysis of point rainfall – Intensity, duration, frequency relationship – Probable maximum precipitation.

ABSTRACTION FROM PRECIPITATION: Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration process – Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.

HYDROGRAPHS: Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

FLOODS AND FLOOD ROUTING: Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

GROUND WATER HYDROLOGY: Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady
flow analysis only.

TEXT BOOKS:

- 4. Subramanya, K., "Engineering Hydrology", Tata McGraw-Hill Publishing Co., Ltd., 2000
- 5. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000

REFERENCES:

- 4. Chow, V.T. and Maidment, "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 5. Singh, V.P., "Hydrology", McGraw-Hill Inc., Ltd.,
- 6. Raghunath, H.M, Ground Water, New Age International (P) Limited, Publishers.
- 7. Raghunath,H.M, Hydrology:Principles, Analysis & Design, New Age International(P) Limited, Publishers.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

17CVFC07		DI	SAST	ER MI	TIGA	TION	AND		Catego	ory	L	Т	Р	Credit		
I/CVECU/			Ν	IANA	GEMI	ENT			EC		3	0	0	3		
PREAMBLE																
This co	urse d	eals wi	ith the	variou	s disast	ers and	l to exp	pose the	e students	s about	the m	easures,	its effect	against		
built structure	s, and	Hazaro	d Asse	ssment	procee	lure in	India.	This co	ourse also	deals v	with t	he metho	ds of mit	igating		
				ipact of		lunnie	s is lec	luceu.								
NIL																
COURSE OBJECTIVES																
1 To Understand basic concepts in Disaster Management																
2 To Ur	2 To Understand Definitions and Terminologies used in Disaster Management															
3 To Ur	3 To Understand the Challenges posed by Disasters															
4 To understand Impacts of Disasters																
COURSE OUTCOMES																
On the succe	essful o	comple	etion of	f the co	ourse, s	tudents	s will b	e able t	0							
CO1. Underst	and the	e vario	us type	es of di	saster v	viz Hyc	irologi	cal, Coa	astal and	Marine	•					
Disasters, Atn	nosphe	eric Dis	sasters,	Geolo	gical, I	Mass N	lovem	ent and	Land Dis	sasters,		U	Inderstand	1		
Wind and Wa	ter Dri	ven Di	sasters													
CO2. Identify	the po	tential	deficie	encies	ofexist	ing bui	ildings	for Ear	thquake	disaster	r	T	Indoration	1		
and suggest su	itable	remed	ial mea	asures.								U	nuel stan	1		
CO3.Derive th	ne guid	le lines	s for th	e preca	utiona	ry meas	sures a	nd reha	bilitation	measu	res		A 1			
for Earthquak	e disas	ter.											Apply			
CO4. Derive t	he pro	tection	measu	ires aga	ainst fl	oods, c	yclone	, land s	lides				Apply			
CO5. Underst	and the	e effec	ts of di	sasters	on bui	lt struc	tures i	n India				U	Inderstand	1		
MAPPING V	ITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGR	RAMME	SPEC	IFIC	OUTCO	MES			
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10 I	PO11	PO12	PSO1	PSO2	PSO3		
CO1 M	-	-	L	-	-	-	-	-	-	-	-	L	-	-		
CO2 M	М	L	L	-	М	-	-	-	-	-	-	L				
CO3 S	М	S	М	-	L	-	М	-	-	-	-	- M L -				
CO4 S	М	S	-	L	-	-	-	-	-	-	-	· M L -				
CO5 L	L	-	L	-	-	-	-	-	-	-	-	L	-	-		

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards

RISK ASSESSMENT AND VULNERABILITY ANALYSIS: Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

DISASTER MANAGEMENT MECHANISM: Concepts of risk management and crisis management ; Disaster

management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief

DISASTER RESPONSE: Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

DISASTER MANAGEMENT IN INDIA: Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

TEXT BOOKS:

- 1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- 2. Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.
- 3. Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

REFERENCES:

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

17CVEC08	REMOTE SENSING TECHNIQUES AND	Category	L	Т	Р	Credit
11012000	APPLICATIONS	EC	3	0	0	3

PREAMBLE

Remote sensing is the science and art of obtaining information about an object, area or phenomenon, by the use of either recording or real time sensing devices that are not in physical contact with the object. The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. These GPS satellites circle the earth twice a day in a very precise orbit and transmit signal information to earth. Remote sensing and GPS data are further used in numerous applications, including GIS data collection, surveying, and mapping.

PREREQUISITE

NIL

COUR	RSE OI	BJECT	rives												
1	Stude	nts wil	ll learn	about	the lan	d use n	nappin	g techr	iques,	site suita	ability te	chnique	es		
2	Stude	nts wil	ll learn	about	the use	of zoi	ne map	ping fo	or wate	r bodies	5				
3	Stude	nts wil	ll learn	about	the use	of ma	pping	technic	ques fo	r Agricu	ilture an	d Earth	sciences		
4 Students will also learn about the recent techniques used for GPS system															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Recollect the fundamentals of physics of Remote sensing and concepts. Remember															
CO2. Outline the various data acquisition systems and collection methods for remote Understand															
sensing	g data i	nforma	ation ai	nd stor	age										
CO3.A	pply k	nowled	lge of s	satellite	es on va	arious	Civil E	nginee	ring ap	plicatio	ns.			Apply	
CO4. U	Utilize	the var	ious da	ata inpu	it meth	ods for	r mapp	ing						Apply	
CO5. 0	Creation	n of da	ta mod	els usi	ng rem	ote sen	sing te	chniqu	les and	GPS				Apply	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND F	ROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	L	-	-	L	-	-	-	L	L	L	-	L	L	-

S- Strong; M-Medium; L-Low

L

L

SYLLABUS

S

CO5

INTRODUCTION: Definition – Physics of remote sensing – electromagnetic radiation (EMR) – remote sensing windows – interaction of EMR with atmosphere, earth surface, soils, water and vegetation – platform and sensors – image interpretations.

T

L

L

L

L

LAND USE STUDIES: Definition of land use - land use / land cover classification - schemes and levels of classification systems with RS data - land use mapping - change detection - urban land use planning, site suitability analysis, transportation planning.

WATER RESOURCES: Areal assessment of surface water bodies – Capacity survey of water bodies – mapping of snow-covered areas – flood risk zone mapping – identification of groundwater potential zones, recharge areas – droughts, definition, drought assessment and management.

AGRICULTURE, SOIL AND FORESTRY: Crop inventory mapping – production estimation – command area monitoring – soil mapping – crop stress detection - estimation of soil erosion – forest types and density mapping – forest fire risk zone mapping.

EARTH SCIENCE: Lithology – lithological mapping – structural mapping – Geomorphology – nature and type of landforms – identification – use of remote sensing data for landslides – targeting mineral resources – Engineering geology and Environmental geology.

TEXT BOOKS:

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman., Remote Sensing and Image Interpretation. V Edn. John Willey and Sons (Asia) Pvt. Ltd., New Delhi, 2004
- 2. Lo. C.P.and A.K.W.Yeung, Concepts and Techniques of Geographic Information Systems. Prentice-Hall of India Pvt. Ltd., New Delhi, 2002

REFERENCES:

- 1. Chandra, A.M, Geo Informatics, New Age International (P) Limited, Publishers.
- 2. Fazal, Shahab, GIS Basics, New Age International (P) Limited, Publishers.
- 3. Space Applications Centre. Manual for Forest mapping and Damage detection using satellite data, Report No.IRS-UP/SAC/FMDD/TN/16/90,1990, pp-253.
- 4. Sabins, F.F.Jr. Remote sensing principles and interpretation, W.H.Freeman & Co., 1978.
- 5. Manual of Remote Sensing Vol. II. American Society of Photogrammetry

S.N	No.	Name of the Faculty	Designation	Department	Mail ID
1	1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

MANAGEMENT EC 3 0 0 3 PREAMBLE This course work imparts knowledge required for understanding the general principles of building planning												
PREAMBLE This course work imparts knowledge required for understanding the general principles of building planning												
This course work imparts knowledge required for understanding the general principles of building planning												
and services with the help of relevant codes, manuals and guidelines.												
PREREQUISITE												
NIL												
COURSE OBJECTIVES												
1 An introduction to housing planning												
2 Construction and financing of housing projects.												
3 The course focuses on cost effective construction materials and methods.												
Emphasis has also been given on the principles of sustainable housing policies and programmes.												
COURSE OUTCOMES												
On the successful completion of the course, students will be able to												
CO1. Apply the general planning considerations and development control rules for Apply												
different types of buildings.												
CO2. Apply the principles of electrical and lighting services for different uses in Apply												
buildings												
CO3. Understand and apply the principles of plumbing services for domestic and Understand												
industrial needs												
CO4. Plan and design the requirements for HVAC systems, fire fighting and other												
necessary services for a various types buildings												
CO5. Incorporate the integrated planning and designing of necessary building services												
for better usage of buildings												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES												
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3												
CO1 S M M M												
CO2 S S M M M - - L - M -												
CO3 S S M M - L - - L -												
CO4 S S M M L L - - L -												

SYLLABUS

INTRODUCTION TO HOUSING: Definition of Basic Terms – House, Home, Household, Apartments, Multi storeyed Buildings, Special Buildings, Objectives and Strategies of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Bye-laws at Urban and Rural Local Bodies – levels - Development Control Regulations, Institutions for Housing at National, State and Local levels.

HOUSING PROGRAMMES: Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighbourhoods, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programmes, Role of Public, Private and Non-Government Organisations.

PLANNING AND DESIGN OF HOUSING PROJECTS: Formulation of Housing Projects – Site Analysis, Layout Design, Design of Housing Units (Design Problems)

CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS:

New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept, Functions and Performance Evaluation

HOUSING FINANCE AND PROJECT APPRAISAL: Appraisal of Housing Projects – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing o f Housing Units, Rents, Recovery Pattern (Problems)

TEXT BOOKS:

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

REFERENCES:

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2002.
- 2. Dhir, B.M, Construction Planning And Management, New Age International(P)Limited, Publishers.
- 3. Lal, A.K, Hand Book Of Low Cost Housing, New Age International(P)Limited, Publishers.
- 4. Panchdhari, A.C, Water Supply & Sanitary Installations, New Age International (P)Limited, Publishers.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com			
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com			

17CV	Έ Γ 10		MA	NAGE	MENI	ſ OF I	RRIGA	ATION	J	Categ	gory	L	Т	Р	Credit
1/0	LCIU				SYS	TEMS	5			EC	2	3	0	0	3
PREA	MBL	Ē								•	•				
	This su	ubject o	deals w	ith stu	dy of ir	rigatio	ns prac	ctices a	nd met	hods ad	opted in	our cou	untry. A	lso to kn	ow the
irrigati	on wat	er requ	iremen	nt in or	der to o	design	the stru	uctures	like da	ims, wei	irs and c	canals.			
PRER	EQUI	SITE													
		NIL													
COUR	COURSE OBJECTIVES														
1	1 He/she shall also be able to appreciate the importance due and duly given to stake holders.														
2	2 The structural and non structural activities for the management of water resources														
3	The management plans involved in scheduling														
4	4 Case studies on use of ground water will be taught														
COUR	RSE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able t	0					
CO1. I	Describ	e the in	mporta	nce of	Nation	al Wat	er Poli	cy.				1	Understa	and	
CO2. I	Determ	ine the	storag	e capa	city of 1	reservo	oir for a	a given	deman	d.		1	Understa	and	
CO3. I	Explain	the dif	fferent	types a	and me	thods of	of irriga	ation p	ractices	5		1	Apply		
CO4. 0	Compu	te the c	lesign	parame	eters of	canal						1	Apply		
CO5. I	Discuss	the va	rious c	oncept	s of irr	igation	water	manag	ement	and soft	wares	1	Understa	and	
MAPF	PING V	VITH	PROG	GRAM	ME O	UTCO	MES A	AND P	ROGE	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	L	-	L	-	L	-	-	-	-	L	L	-
CO2	S	М	S	L	-	-	-	-	-	-	-	-	L	-	-
CO3	S	S	S	L	-	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	L	-	-	-	-	-	-	-	-	M	-	-
CO5	L	-	-	-	L	-	-	-	-	-	-	-	L	-	-
S- Stro	ong; M-	Mediu	m; L-I	LOW						1		-	•		

SYLLABUS

IRRIGATION SYSTEM REQUIREMENTS: Irrigation systems – Supply and demand of water – Cropping pattern – Crop rotation – Crop diversification – Estimation of total and peak crop water requirements – Effective and dependable rainfall – Irrigation efficiencies.

IRRIGATION SCHEDULING: Time of irrigation – Critical stages of water need of crops – Criteria for scheduling irrigation – Frequency and interval of irrigation

MANAGEMENT: Structural and non-structural strategies in water use and management – Conjunctive use of surface and ground waters – Quality of irrigation water.

OPERATION: Operational plans – Main canals, laterals and field channels – Water control and regulating structures – Performance indicators – Case study

INVOLVEMENT OF STAKE HOLDERS: Farmer's participation in System operation – Water user's associations – Farmer councils – Changing paradigms on irrigation management – Participatory irrigation management

TEXT BOOKS:

- 1. Dilip Kumar Majumdar, "Irrigation Water Management Principles and Practice", Prentice Hall of India Pvt. Ltd., New Delhi, 2000
- 2. Hand book on Irrigation Water Requirement, R.T. Gandhi, et. al., Water Management Division, Department of Agriculture, Ministry of Agriculture, New Delhi

REFERENCES:

- 1. Hand Book on Irrigation System Operation Practices, Water Resources Management and Training Project, Technical report No. 33, CWC, New Delhi, 1990
- 2. Maloney, C. and Raju, K.V., "Managing Irrigation Together", Practice and Policy in India, Stage Publication, New Delhi, India, 1994

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com									
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com									

17CVEC11	GROUND IMPROVEMENT TECHNIOUES	Category	L	Т	Р	Credit
1.0,2011		EC	3	0	0	3

PREAMBLE

This course deals with the different ground improvement methods adopted for improving the properties of remolded and in-situ soils by adopting different techniques such as in- situ densification, consolidation and dewatering methods. This course enables the students to understand how reinforced earth walls can obviate the problems associated with conventional retaining walls. Also the students would be exposed to the concepts of grouting, soil stabilization and the use of geo textiles to improve the engineering performance of soils.

PREREQUISITE

Mechanics of soils

COUR	COURSE OBJECTIVES														
1	Furth techn	er he/sl iques o	he is in of impro	a posi oveme	tion to nt.	decide	variou	is ways	s and n	neans of	improvi	ng the s	oil and i	mpleme	nting
2	Abou	t the di	rainage	and de	ewateri	ng tech	nniques	s availa	ıble						
3	Abou	t the va	arious t	reatme	nts ava	ailable	for soil	1							
4	Abou	t the re	inforce	ement a	and gro	out tech	niques								
5	Furth	er he/sl	he is in	a posi	tion to	decide	variou	is ways	s of gro	ound imp	proveme	nts.			
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Enumerate the role of ground improvement and select appropriate ground															
improv	improvement technique for the given subsoil condition. Apply														
CO2. Suggest appropriate dewatering technique for lowering the ground water table Apply															
CO3. 2	CO3. Recommend suitable techniques for densifyingcohesionless soil deposit Apply														
CO4.	Sugges	st appro	opriate	technic	ques fo	r conso	olidatin	ig cohe	sive de	eposits				Apply	
CO5.	Perfo	rm sim	ple de	sign of	reinfo	rced ea	arth wa	alls and	d illust	rate the	role of	geo-		Apply	
textile	in grou	ind imp	provem	nent											
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L			L		L					S	М	L
CO2	S	М	L		L	М		L		L	L		S	М	L
CO3	S	М	L		L	М		L		L			S	М	L
CO4	S	М	М		L			L		L		L	S	М	М
CO5	S	М	М					М		М	L		S	М	М
S- Stro	ng; M-	Mediu	m; L-L	LOW					-						

SYLLABUS

INTRODUCTION: Role of ground improvement in foundation engineering - methods of ground improvement – Geotechnical problems in alluvial, laterite and black cotton soils -Selection of suitable ground improvement techniques based on soil condition.

DRAINAGE AND DEWATERING: Drainage techniques - Well points - Vaccum and electroosmotic methods - Seepage analysis for two dimensional flow-fully and partially penetrating slots in homogenous deposits (Simple cases only).

INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS: Insitu densification of cohesionless

and consolidation of cohesive soils -Dynamic compaction and consolidation - Vibrofloation - Sand pile compaction - Preloading with sand drains and fabric drains – Stone columns – Lime piles - Installation techniquesonly - relative merits of various methods and their limitations.

EARTH REINFORCEMENT: Concept of reinforcement - Types of reinforcement material - Applications of reinforced earth – use of Geotextiles for filtration, drainage and separation in road and other works.

GROUT TECHNIQUES: Types of grouts - Grouting equipment and machinery - Injection methods - Grout monitoring – Stabilisation with cement, lime and chemicals - Stabilisation of expansive soils.

TEXT BOOKS:

- 1. Koerner R.M., "Construction and Geotechnical Methods in Foundation Engineering", McGrawHill, 1994.
- 2. Purushothama Raj, P. "Ground Improvement Techniques", Laxmi Publications, New Delhi, 2005

REFERENCES:

- 1. Moseley M.P., Ground Improvement Blockie Academic and Professional, Chapman and Hall, Glassgow, 1993.
- 2. Jones J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1995.
- 3. Koerner, R.M., "Design with Geosynthetics", (3rd Edition) Prentice Hall, New Jersey, 2002.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

17CVEC12	INTRODUCTION TO SOIL DYNAMICS	Category	L	Т	Р	Credit
	AND MACHINE FOUNDATIONS	EC	3	0	0	3

PREAMBLE

The aim of the course is to assess the dynamic properties of soil. To decide various ways and means of improving the soil and implementing techniques of improvement. The drainage and dewatering techniques available in field.

PREREQUISITE

Mechanics of soils

COURSE OBJECTIVES Also about the various design parameters required for the design of machine foundation 1 2 About the different vibratory systems available for designing About the dynamic properties of soil 3 About the various isolation techniques available 4 Design of foundation for various reciprocating machines 5 **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1. Determine the Permeability of Cohesive and Cohesion less soils Apply CO2. Estimate consolidation parameters and compute consolidation Apply CO3. Perform simple design of reinforced earth walls and illustrate the role of geo-Apply

textile in ground improvement

CO4. Calculate the lateral earth pressure also check the stability of retaining walls.

CO5. Perform simple design of reinforced earth walls and illustrate the role of geo- Apply

Apply

textile in ground improvement

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L			L		L					S	М	L
CO2	S	М	L		L	М		L		L	L		S	М	L
CO3	S	М	L		L	М		L		L			S	М	L
CO4	S	М	М		L			L		L		L	S	М	М
CO5	S	M	М					М		М	L		S	М	М
~ ~		3 6 11													

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Vibration of elementary systems-vibratory motion-single degree freedom system-free and forced vibration with and without damping

WAVES AND WAVE PROPAGATION: Wave propagation in an elastic homogeneous isotropic medium-Raleigh, shear and compression waves-waves in elastic half space

DYNAMIC PROPERTIES OF SOILS: Elastic properties of soils-coefficient of elastic, uniform and non- uniform compression - shear-effect of vibration dissipative properties of soils-determination of dynamic properties of soil-codal provisions

DESIGN PROCEDURES: Design criteria -dynamic loads - simple design procedures for foundations under reciprocating machines - machines producing impact loads - rotary type machines

VIBRATION ISOLATION: Vibration isolation technique-mechanical isolation-foundation isolation-isolation

by location-isolation by barriers- active passive isolation tests.

TEXT BOOKS:

- 1. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998
- 2. IS code of Practice for Design and Construction of Machine Foundations, McGraw-Hill, 1996.

REFERENCES:

- 1. Kameswara Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003
- 2. Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd., 1999

COURS	COUKSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com										
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com										

1701	тс12		ELECTRONIC SU					INC		Categ	ory	L	Т	Р	Credit
1/0	ECIS		E	LEUI	NUNI	C SUI		ING		EC	2	3	0	0	3
PREA The ain EDM e	MBLE n of the equipm	E e cours ent	se is to	unders	tand th	e work	ting of	EDM e	equipm	ent and	solve th	ne surve	ying pro	blems w	ith
PRER	EQUI	SITE													
	Surveying I														
COURSE OBJECTIVES															
1	1 The student will posses knowledge about Electronic surveying														
2	About the propagation of electromagnetic waves and its main principles														
3	Various implementations of surveying														
4	The student will Study about different EDM instruments and Total Station.														
5	5 Methods of measuring distance, historical development														
COURSE OUTCOMES															
On th	ne succ	essful	comple	etion of	the co	urse, s	tudents	s will be	e able t	0					
CO6.	Comp in con	ute the	linear urveyii	measu 1g.	rement	in cha	in surv	veying a	and ang	gular me	asurem	ents	Apply		
CO7.	Demo	nstrate	the sig	nificar	ice of p	olane ta	able sur	rveying	in pre	paration	of plan	IS 1	Understa	und	
CO8.	Find the	he rela	tive po	sition o	of point	s on th	e grou	nd usin	g level	ling prin	nciples	1	Apply		
CO9.	Find the	he dista	ance ar	nd heig	hts of c	bjects	using t	tacheon	netric p	principle	•	1	Apply		
CO1().	Expla	ain the	import	ance of	f advar	nced tee	chnique	es invo	lved in s	surveyir	ng.	Apply		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGF	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L			L		L					-	-	-
CO2	S	Μ	L		L	Μ		L		L	L		-	-	-
CO3	S	Μ	L		L	Μ		L		L			-	-	-
CO4	S	Μ	Μ		L			L		L		L	-	-	-
CO5	S	Μ	Μ					Μ		М	L		-	-	-
S- Stro	ng; M-	Mediu	m; <u>L-I</u>	LOW											

SYLLABUS

FUNDAMENTALS : Methods of measuring distance, historical development, basic principles of EDM, classifications, applications and comparison with conventional surveying

BASIC ELETRONICS : Fundamentals of electronics, resonant circuits, semiconductors, Lasers, Cathode ray tube, photo multiplier tube, transducers, oscillators, frequency mixing, modulation and demodulation, Kerrcell modulator, measurement of phase difference, reflectors and power sources.

PROPAGATION OF ELECTROMAGNETIC WAVES : Definition, classification, applications, propagation properties, wave propagation at lower and higher frequencies. Refractive index, factors affecting, computation of group refractive index for light and near infrared waves at standard conditions and ambient conditions, reference refractive index, first velocity correction, computation of refractive index for microwaves. measurement of atmospheric parameters, mean refractive index, real time application of first

velocity correct	ion second y	elocity co	prrection and	total atmos	nheric cor	rection
velocity contect	ion, second v		incention and	total atmos	phene con	cetion

ELECTROMAGNETIC DISTANCE MEASURING SYSTEM principle, working principle, sources of error, infrared EDM instruments, Laser EDM instruments and total station. Microwave system, measuring principle, working principle, sources of error, microwave EDM instruments, comparison with Electrooptical system, care and maintenance of EDM instruments, Modern Positioning Systems. EDM traversing, trilateration and base line measurement using EDM.

FIELD STUDIES : Study of different EDM instruments and Total Station. EDM traversing, trilateration and base line measurement using EDM.

TEXT BOOKS:

1. Satheesh Gopi, K. Sathikumar, "Advanced Surveying" Dorling Publication, 2008

2. Rueger, J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 1990.

REFERENCE BOOKS:

1. Laurila, S.H. Electronic Surveying in Practice, John Wiley and Sons Inc, 1983.. Soastamoinen, J.J.

2.Surveyor"s	guide	to	electro-magnetic	Distance	Measurement, Adam
	8	•••		2 10 000100	

Hilger Ltd., 1967.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com

17CV	17CVEC14 AIR POLLUTION MANAGEMENT Category L T P Credit												Credit		
1/01	LCI4		АК	TOLL			NAGE		•	EC	2	3	0	0	3
PREA	MBLE	2										I			
The local, r Also, it to fulfi	The course work offers the basic knowledge on various sources of air pollutants and their possible effects on local, regional and global environment. It provides various techniques for sampling and analyzing he pollutants. Also, it deals with the principles and design of control of particulate/gaseous air pollutants and its emerging trends to fulfil the legal aspects of air pollution to have a sustainable environment for future generation. In addition.														
PRER	PREREQUISITE														
	Environmental engineering														
COUR	COURSE OBJECTIVES														
1	1About noise pollution and the methods of controlling the same.														
2	2 The student is expected to know about source inventory and control mechanism.														
3	To in	part k	nowled	lge on t	he sou	rces, et	ffects								
4	The c	ontrol	technic	ques of	air pol	lutants	and no	oise po	llution						
5	5 The sources, characteristics and effects of air														
COUR	COURSE OUTCOMES														
On th	e succe	essful o	comple	etion of	the co	urse, st	udents	will b	e able t	0					
CO1. I	dentify	the so	urces o	of air po	ollution	n, impa	cts of a	air poll	utants a	and their	ſ		Apply		
measur	ements	5											rppiy		
Co2.	identif	y the s	ignifica	ance of	meteo	rologic	cal fact	ors in p	pollutar	ts dispe	ersion an	id to	Understa	nd	
predict	the po	llutant	concer	ntration	l								Underste	ina	
Co3. S	uggest	preven	ntive a	nd cont	rol me	asures	for air	polluti	on.				Apply		
Co4. S	uggest	location	ons for	indust	ries an	d appro	opriate	city pla	anning	tips for	the		A		
effectiv	ve air p	ollutio	n mana	agemer	nt of a o	city							Арріу		
CO5. 7	The cou	urse wo	ork off	ers the	basic k	nowle	dge on	variou	s sourc	es of air	polluta	nts	. 1		
and the	ir poss	ible ef	fects of	n local,	regior	nal and	global	enviro	nment.				Apply		
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGR	AMMI	E SPEC	IFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	L		L		L					-	-	-
CO2	S	Μ	L	L	L	Μ		L		L	L		-	-	-
CO3	S	Μ	L	L	L	Μ		L		L			-	-	-
CO4	S	Μ	М	S	L			L		L		L	-	-	-
CO5	S	Μ	Μ	S				Μ		Μ	L		-	-	-
S- Stro	ng; M-	Mediu	m; L-L	ωw					·					·	
SYLLA	ABUS														

SOURCES AND EFFECTS OF AIR POLLUTANTS : Classification of air pollutants – Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

DISPERSION OF POLLUTANTS : Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

AIR POLLUTION CONTROL : Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

AIR QUALITY MANAGEMENT : Air quality standards – Air quality monitoring – Preventive measures -Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

TEXT BOOKS:

1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.

2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996

REFERENCE BOOKS:

- 1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997
- 2. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing
- Company, New Delhi, 1991.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	M.Senthilkumar	Senthilkumar Asst. Professor		senthilkumar@vmkvec.edu.in				
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com				

17CVEC15	BRIDGE STRUCTURES	Category	L	Т	Р	Credit
1,0,1000		EC	3	0	0	3

PREAMBLE

Bridge is a structure built to span physical obstacles without closing the way underneath such as a body of water, valley, or road, for the purpose of providing passage over the obstacle. There are many different designs that each serve a particular purpose and apply to different situations. Designs of bridges vary depending on the function of the bridge, the nature of the terrain where the bridge is constructed and anchored, the material used to make it, and the funds available to build it. This course offers the design of bridges such as RCC bridges, design principles of steel and prestressed concrete bridges, design principles of substructure and design of different types of bearings as per IRC loadings standards, Indian Railway standards bridge rules and MOST codes. It aims at determination of safe as well as economical section using different kinds of material used in construction and maintenance

PREREQUISITE

Design of steel structures

COUR	SE OI	BJECT	TIVES												
1	To in	npart e	xposur	e on va	rious a	spects	of stru	ctural c	lesign						
2	Comp	pare the	e behav	vior of	bridge	structu	ires wit	th that o	of the r	normal r	einforce	d concr	ete struc	tures.	
3	Understand the performance of composite members.														
4	Finally to learn the design of bridge structures.														
5	Common types of steel and concrete bridges														
COUR	OURSE OUTCOMES														
On th	e succ	essful o	comple	tion of	the co	urse, st	tudents	s will be	e able t	0					
CO1. 1	Identify	y the ty	pe of b	oridge a	and its	basic r	equirer	nents f	or part	icular lo	cation	١	Understa	ind	
Co2.	Design the culverts and deck slab bridges Create														
Co3. I	Design	the lon	ig span	bridge	S							:	apply		
Co4. I	Demons	strate t	he desi	gn prin	ciples	of stee	l bridg	es				1	apply		
CO5. 1	Design	the bri	idge be	arings	and pie	ers						(Create		
MAPP	'ING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	IFIC O	UTCON	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	S	S		L	S	L					-	-	-
CO2	S	S	S	S	L	Μ	S	L		L	L		-	-	-
CO3	S	S	S	S	L	Μ	S	L		L			-	-	-
CO4	S	S	S	S	L		S	L		L		L	-	-	-
CO5	S	S S S S M M L													
S-Stro	ng· M-	Medin	m: L-I	ow		•	•								

SYLLABUS

INTRODUCTION : Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders - Design of deck type steel highway bridges for IRC loading - Design of main girders

STEEL BRIDGES : Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

REINFORCED CONCRETE SLAB BRIDGES : Design of solid slab bridges for IRC loading - Design of kerb

- Design of tee beam bridges - Design of panel and cantilever for IRC loading

REINFORCED CONCRETE GIRDERS BRIDGES : Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab - Main girder - Design of cantilever - Design of articulation.

PRESTRESSED CONCRETE BRIDGES : Design of prestressed concrete bridges - Preliminary dimensions -Flexural and torsional parameters - Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder –Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block -Short term and long term deflections.

TEXT BOOKS:

1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. New Delhi, 2007 2. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 2008

REFERENCE BOOKS:

1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com

17CV	FC16			т		пп п	NCS			Categ	ory	L	Т	Р	Credit
1/0	ECIO			I <i>P</i>	ALL D	UILDI	1163			EC	2	3	0	0	3
PREA	MBLE														
The air loads (n of the wind a	e cours nd eart	e is to hquake	unders e and d	tand th eflection	e probl ons of t	ems as he stru	ssociate (cture).	ed with	large he	eights of	f structı	ires with	respect	to
PRER	EQUIS	SITE													
	Design of Steel structures														
COUR	COURSE OBJECTIVES														
1	1 He should know the rudimentary principles of designing tall buildings as per the existing course.														
2	2 To provide an insight to the design of tall buildings.														
3	2 1 3 To enlighten the students on modern techniques available for the analysis of tall buildings														
COUR	COURSE OUTCOMES														
On th	e succe	essful o	comple	tion of	the co	urse, st	udents	will b	e able t	0					
Co1.	Unders	standin	ng on th	ne beha	viour o	of tall b	uilding	gs subj	ected to	o lateral	building	g.	Understa	and	
Co2.	The stu	idents	should	have k	nowle	dge ab	out the	design	ing tall	buildin	gs		apply		
Co3. F	Rudime	ntary p	orincipl	les of d	esignir	ng tall b	ouildin	gs as p	er the e	existing	codes.		apply		
Co4. A	Analysi	s of Be	earing V	Wall B	uilding	s,The	Cross	Wall S	tructure	e			apply		
CO5. 1	Explain	the in	nportar	nce of H	ligh-R	ise Sus	pensio	n Syste	ems ,Pn	eumatic	High -		onnly		
Rise B	uilding	S											аррту		
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGR	RAMMI	E SPEC	IFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	Μ		L	Μ	L	S				-	-	-
CO2	S	Μ	L	Μ	L	Μ	Μ	L	S	L	L		-	-	-
CO3	S	Μ	L	S	L	Μ	Μ	L		L			-	-	-
CO4	S	Μ	Μ	S	L		Μ	L	S	Μ		L	-	-	-
CO5	S	Μ	Μ	Μ			Μ	Μ		Μ	L		-	-	-
S- Stro	ng; M-	Mediu	m; L-L	ωw				I					1	1	L

SYLLABUS

INTRODUCTION: The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development of High Rise Building Structures - General Planning Considerations. Dead Loads - Live Loads-Construction Loads -Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading –Waterand Earth Pressure Loads - Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads -Combination of Loads.

THE VERTICAL STRUCTURE PLANE: Dispersion of Vertical Forces- Dispersion of Lateral Forces -Optimum Ground Level Space - Shear Wall Arrangement - Behaviour of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel – Frame Systems - Multistory Box Systems.

COMMON HIGH-RISE BUILDING STRUCTURES AND THEIR BEHAVIOUR UNDER LOAD : The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures -

Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings - Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response.

APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDINGS : Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading - Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame - Shear Wall Structure -The Vierendeel Structure - The Hollow Tube Structure.

OTHER HIGH-RISE BUILDING STRUCTURE: Deep - Beam Systems -High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture.

TEXT BOOKS:

- 1. WOLFGANG SCHUELLER "High rise building Structures", John Wiley and Sons.
- 2. Bryan Stafford Smith and Alex Coull, "Tall Building Structures ", Analysis and Design, John Wiley and Sons, Inc., 1991

REFERENCE BOOKS:

- 1. Coull, A. and Smith, Stafford, B. " Tall Buildings ", Pergamon Press, London, 1997.
- 2. LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers", John Wiley, 1994.
- 3. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 4. Taranath.B.S., Structural Analysis and Design of Tall Buildings, Mc Graw Hill 1998.

-	S.No.	Name of the Faculty	Designation	Department	Mail ID			
	1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in			
	2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com			

17CVEC17	7CVEC17 STRUCTURAL DYNAMICS Category L T P Credit													
		c			AL DI				EC	2	3	0	0	3
PREAMBLE														
The purpose o	f the c	ourse i	s to un	derstar	nd how	to arriv	ve the d	ynami	c forces	s and str	uctures			
PREREQUIS	SITE													
-		St	ructura	ıl analy	sis									
COURSE OF	JECI	TIVES												
1 To learn how to idealise the structure into systems of reduced number of degrees of freedom														
2 To learn about the discritization of various structures														
3 To un	dersta	nd abo	ut the s	eismic	design	of var	ious stru	ucture	s					
4 They	also be	e able t	o interj	pret the	e result	s.								
5 To learn how to idealise analyse these systems for the forces.														
COURSE OU	JTCO	MES												
On the succe	essful o	comple	tion of	the co	urse, st	udents	will be	able to	0					
CO1. general	theory	y of vib	ration	and sol	ve pro	blems	of single	e degre	ee of fre	edom		Inderst	and	
(SDOF) system	ms											enderst		
Co2. solve d	lynami	ic prob	lems in	ı multi-	degree	of free	edom (M	/IDOF) systen	ns	i	apply		
Co3. To intro	duce d	lynami	c analy	sis of c	continu	ous sys	stems				i	apply		
Co4. To apply	y struc	tural dy	ynamic	princi	ples to	the and	alysis of	fstruct	tures for	r seismi	c .	annly		
and wind load	ing											ippiy		
CO5. To intro	duce	blast lo	ading								i	apply		
MAPPING W	ITH	PROG	RAM	ME O	UTCO	MES A	AND PF	ROGR	AMM	E SPEC	CIFIC O	UTCO	MES	
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	L			L		L					-	-	-
CO2 S	М	L		L	М		L		L	L		-	-	-
CO3 S	М	L		L	М		L		L			-	-	-
CO4 S	М	М		L			L		L		L	-	-	-
CO5 S	М	М					М		М	L		-	-	-
S- Strong; M-	Mediu	m; L-L	.OW											

SYLLABUS

PRINCIPLES OF DYNAMICS : Difference between static loading and dynamic loading – Nature of dynamic loads – Wind, Earthquake and Impact Loads – Damping – Viscous and structural damping – single degree of freedom (SDOF) Systems – Formulation of equation of motion – Newton''s Law and D''Alembert''sprinciples – Examples of SDOF modeling.

SINGLE DEGREE FREEDOM SYSTEMS : Free vibration response of SDOF system – Response of undamped and damped SDOF system to harmonic excitation – characteristic of resonance – Response to impulse and an arbitrary forcing function – Duhamel Integral formulation.

MULTIDEGREE OF FREEDOM SYSTEMS : MDOF systems – examples – Lumped parameter model – Formulation of equation of motion – Free vibration of MDOF systems as Eigen value problem – concept of mode shapes and natural frequencies – 2 DOF example – orthogonal properties of normal modes. **SUPERPOSITION PRINCIPLES:** Harmonic excitation of 2 DOF system – Principle of mode superposition (principle only) for dynamic analysis – vibration isolation – vibration measuring instruments.

DESIGN FOR WIND AND EARTHQUAKE: Effect of wind and earthquake on structures – Principles of aseismic design – Methods of Vibration control – codal provisions for design for wind and earthquake (explanation of Provisions only – no design)

Provisions only – no design

TEXT BOOKS:

 Mario Paz," Structural Dynamics Theory and Computation", Van Nostrand Reinhold, 2004
 Anil K.Chopra, "Dynamics of Structures Theory and Applications to Earthquake Engineering" Pearson Education., 2003.

REFERENCE BOOKS:

 Clough R.W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1990
 Craig R.R. Jr., Structural Dynamics – An Introduction to Computer Methods, John Wiley and Sons, 1981

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com

17CVEC18	WIND ENGINEERING	Category	L	Т	Р	Credit
		EC	3	0	0	3

PREAMBLE

The course includes studies of sustainable development and energy sources. Basic mathematical and physical concepts will be covered. An introduction to prerequisites for wind power development including how a wind turbine works, planning for wind energy, environmental impact, location and economic aspects will be given. The phases of wind power projects is studied. Oral and written presentations in a scientific context will be discussed and practiced in the course. A site study visit to an operating wind farm is included.

PREREQUISITE

Nil

COUR	COURSE OBJECTIVES										
1	To learn about the forces generated on structures due to normal wind as well as g	justs.									
2	To analyses the dynamic effects produced due to chimney, tower and silos										
3	To understand about the seismic design of various structures										
4	To analyses the application in design and its implementations										
5	5 To learn about the forces generated on structures due to normal wind as well as gusts.										
COUR	SE OUTCOMES										
On th	e successful completion of the course, students will be able to										
CO1.	give an account of and analyse energy sources and their sustainability	Understand									
Co2.	identify and explain a wind power project's phases	apply									
Co3. i	dentify and evaluate factors affecting wind energy development	apply									
Co4. a	nalyse the siting conditions for wind power development	apply									
CO5. clearly present an individual or group assignment within wind power in oral or											
written	written form										
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	L	S	S	S		L	S	L			L		-	-	-	
CO2	L	S	S	S	L	Μ	S	L		L	L		-	-	-	
CO3	S	S	S	S	L	Μ	L	L		L			-	-	-	
CO4	L	S	L	S	L		S	L		L		L	-	-	-	
CO5	S	S	S	S			S	Μ		L	L		-	-	-	
a a.	3.6	3 6 1'	тт													Î

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION : Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift.

EFFECT OF WIND ON STRUCTURES : Static effect – Dynamic effect – Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only)..

EFFECT ON TYPICAL STRUCTURES : Tail buildings – Low rise buildings – Roof and cladding – Chimneys, towers and bridges

APPLICATION TO DESIGN : Design forces on multistorey building, towers and roof trusses.

INTRODUCTION TO WIND TUNNEL: Types of models (Principles only) – Basic considerations – Examples of tests and their use.

TEXT BOOKS:

- 1. Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

REFERENCE BOOKS:

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990.
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com

17CVEC19 COMPUTER AIDED DESIGN STRUCTURES							GN OF	ı	Categ	gory	L	Т	Р	Credit	
1/0	ECI9				STRU	CTUR	RES			E	C	3	0	0	3
PREA	MBLE	C													<u>I</u>
The pu	irpose o	of the c	ourse	is to tra	in the	studen	tS to de	esign a	nd anal	ysis a st	ructure	by usin	g compu	ters.	
PRER	EQUI	SITE Desig	gn of re	einforce	ed con	crete									
COUR	RSE OI	BJEC	FIVES												
1	To c	reating	a com	puter c	ode as	well a	s using	comm	ercially	y					
2	To kr	now ab	out the	availa	ble sof	tware	for the	design	of Civi	il Engin	eering s	tructure	ès.		
3	To ur	ndersta	nd abo	ut the s	structu	ral anal	lysis in	volved	with th	ne help o	of finite	elemen	ıt techniq	lues	
4	To design and optimization involved in steel and RCC structures														
COUF	COURSE OUTCOMES														
On the CO1 I	he succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able t	to			1		
	D1. Learn the design optimization of structures apply D2. Adopt these methods in the field Analyze														
Co2. 1	2. Adopt these methods in the field Analyze 3. Develop drafting skills in drawing plan, spatian and elevation of residential Analyze														
Co3. E	Co3. Develop drafting skills in drawing plan, section and elevation of residential Analyze														
buildir	buildings using AutoCAD														
Co4.D	Co4.Develop drafting skills in drawing plan, section and elevation of public buildings Analyze														
using A	AutoCA	AD sof	tware										-		
MAPE	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO2	S	S		L	S	M		M	M	M			-	-	-
CO3	S	S		L	S S	M		M	M	M					-
CO4	S	S		L	S	М		М	М	М			-	-	-
CO5	S	S		L	S	М		М	М	М			-	-	-
S- Stro	ong; M-	Mediu	m; L-I	LOW											L
SYLL	ABUS														
INTR	ODUC	TION	: Fund	lament	als of (CAD -	Hardw	are and	l softwa	are requ	irement	s -Desi	gn proce	ss -	
Applic	ations a	and be	nefits.												
COM	PUTEI	R GRA	PHIC	S: Gra	aphic p	rimitiv	ves - Tr	ansfor	mations	s -Wire	frame n	nodeling	g and sol	id model	ling -
Graphi	ic stand	lards –	Draftir	ng pack	ages										
STRU	STRUCTURAL ANALYSIS : Fundamentals of finite element analysis - Principles of structural analysis -														
Analys	sis pack	tages a	ind app	licatio	ns.										
DESIG	GN AN	D OP	TIMIS	ATIO	N: Prin	nciples	of desi	ign of s	teel an	d RC St	ructures	-Appli	cations t	o simple	design
proble	ms – O	ptimis	ation te	echniqu	les - A	lgorith	ms - Li	inear P	rogram	ming –	Simple	x metho	od	I	U
EXPE	RT SY	STEN	1S : Int	troduct	ion to a	artificia	al intell	ligence	- Knov	wledge	based e	xpert sv	stems -R	ules and	
decisio	on table	s –Infe	erence	mecha	nisms -	Simpl	le appli	ications	S			1			

TEXT BOOKS:

1. Groover M.P. and Zimmers E.W. Jr., "CAD/CAM, Computer Aided Design and Manufacturing", Prentice

Hall of India Ltd, New Delhi, 2000

2. Krishnamoorthy C.S.Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 2006 **REFERENCE BOOKS:**

1. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford, 1990.

2. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com

17CV	т с эл		T	NDUS	ГДТАТ	STDI		DES		Categ	gory	L	Т	Р	Credit
1/0	EC20		11		INIAL	2 5 I K		NL5		EC	2	3	0	0	3
PREA	MBL	E													
The pu industr	rpose o ies.	of the c	ourse i	is to kn	ow abo	out the	special	l aspec	ts with	respect	to Civil	Engin	eering sti	ructures i	n
PRER	PREREQUISITE														
	Design of steel structures														
COUR	COURSE OBJECTIVES														
1	To know about the functional requirements involved in the design														
2	To k	now at	out the	e desig	n of RC	CC stru	ctures.								
3	To u	ndersta	and abc	out the	design	of Stee	el struc	ctures.							
4	To d	esign a	nd opti	imizati	on invo	olved in	n prefa	bricate	d struc	tures.					
COUR	SE O	UTCO	MES												
On th	ne succ	essful	comple	etion of	f the co	urse, s	tudents	s will b	e able t	0					
CO 1. 1	Data re	equired	to des	ign ind	ustrial	structu	ires						Understa	and	
CO 2.	Data r	equired	to de	sign R(CC stru	cture							Understa	and	
CO 3.	Design	ing in	dustria	l struct	ures								Apply		
CO 4.	Design	ing R	CC stru	ucture									Apply		
CO 5. 1	Princip	oles of	prefabr	ication	l								Analyze		
MAPPI	NG WIT	TH PRO	GRAM	ME OUT	COME	S AND	PROGR	AMME	SPECIF	IC OUTC	COMES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	М		М	М	М					
CO2	S	S		L	S	М		М	М	М					
CO3	S	S		L	S	М		М	М	М					
CO4	S	S		L	S	М		М	М	М					
CO5	S	S		L	S	М		М	М	М					
S-Stro	ng. M	Medin	m: L-I	OW											

SYLLABUS

PLANNING: Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

FUNCTIONAL REQUIREMENTS: Lighting – Ventilation – Accounts – Fire safety – Guidelines from factories act

DESIGN OF STEEL STRUCTURES: Industrial roofs – Crane girders – Mill buildings – Design of Bunkers and Silos.

DESIGN OF R.C. STRUCTURES: Silos and bunkers – Chimneys – Principles of folded plates and shell roofs.

PREFABRICATION: Principles of prefabrication – Prestressed precast roof trusses- Functional requirements for Precast concrete units

TEXT BOOKS:

1.N. Subramanian, "Design of Steel Structures: Theory and Practice, Oxford University Press, Incorporated, Mar-2011 2.P.C.Varghese,"Advanced Reinforced Concrete structures", PHI Learning Pvt. Ltd., 09-Jan-2009

REFERENCES:

1. Henn W. Buildings for Industry, vols.I and II, London Hill Books, 1995

2.Handbook on Functional Requirements of Industrial buildings, SP32 – 1986, Bureau of IndianStandards, New Delhi 1990

	S.No.	Name of the Faculty	Designation	Department	Mail ID				
	1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com				
2		Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in				

1703/1		SM	ART S	STRU	CTUR	ES AN	D SM	ART		Catego	ory L	,	Т	Р	Credit
1/01		MA	TERI	ALS						EC	3		0	0	3
PREA	MBLE	2													<u> </u>
The pu	rpose o	of the c	ourse i	s desig	gned to	give a	n insigl	nt into	the late	st devel	opment	s rega	ding sma	rt mater	ials
and the	and their use in structures														
PREREQUISITE															
Smart materials.															
COURSE OBJECTIVES															
1	To know about the measuring techniques for various materials														
2	To know about the concepts of sensors for various materials														
3	To u	o understand about the concepts of signal processing and control systems for various materials													
4	To deals with structures which can self adjust their stiffness with load.														
COURSE OUTCOMES															
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO 1 Measuring techniques for various materials Understand															
CO 2 0	Concep	ts of se	ensors f	for var	ious m	aterials	5						Underst	and	
CO 3 7	The con	cepts	of signa	al proc	essing	and co	ntrol sy	stems	for vari	ious mat	erials		Analyze	•	
CO 4 U	Jsing s	tructur	es whi	ch can	self ad	just the	eir stiff	ness w	ith load	l			Analyze	;	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND F	PROGR	RAMMI	E SPEC	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	М		М	М	М					
CO2	S	S		L	S	M		М	М	М					
CO3	S	S		L	S	M		M	M	M					
CO4	S	5		L	S	М		М	М	М					
S- Stro	ng; M-	Mediu	m; L-I	LOW											
SYLL	ABUS														
INTR	ODUC	TION	: Intro	duction	to Sm	art Ma	terials	and St	ructures	s – Instru	umente	d struc	tures fun	ctions an	d
respon	se – Se	nsing s	system	s – Sel	f diagn	osis –	Signal	proces	sing co	nsiderat	ion – A	ctuatio	on system	is and eff	fectors
MEAS	SURIN	G TEO	CHNI	QUES:	Strain	Measu	ıring T	echniq	ues usir	ng Electi	rical str	ain gau	iges, Typ	es – Res	istance
– Capa	citance	e – Ind	uctance	e – Wh	eatstoi	ne brid	ges – P	ressure	e transd	ucers –]	Load co	ells – T	Cemperat	ure	

 $Compensation-Strain \ Rosettes.$

SENSORS : Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques.Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement

 $\textbf{ACTUATORS:} \ \text{Actuator Techniques} - \text{Actuator and actuator materials} - \text{Piezoelectric and Electrostrictive}$

Material – Magnetostructure Material – Shape Memory Alloys – Electro orheological Fluids– Electromagnetic actuation – Role of actuators and Actuator Materials..

SIGNAL PROCESSING AND CONTROL SYSTEMS: Data Acquisition and Processing – Signal Processing and Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.

TEXT BOOKS:

Brain Culshaw – Smart Structure and Materials Artech House – Borton. London-1996.

REFERENCES:

1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998.

2. J. W. Dally & W. F. Riley - Experimental Stress Analysis - Tata McGraw-Hill, 1998.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com				
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in				

17CVI	EC22	FIN	JITE F	LEM	ENT T	ECHN	NOUF	S		Categ	gory	L	Т	Р	Credit
1/0/1						Lem	iiQUL			E	C	2	1	0	3
PREA	MBLE	C									I	I			I
The pu	rpose o	of the c	course	is to ur	ndersta	nd &ar	nalyses	linear	elastic	structur	es, that	has been	n studiec	l about in	n core
course	s, using	g finite	eleme	nt met	hod.										
PRER	EQUI	SITE													
Structu	ıral ana	lysis													
COURSE OBJECTIVES															
1	To analyze linear elastic structures that he has studied about in core courses using finite element method. To know about the concepts of finite element analysis of one dimensional problems														
2	To know about the concepts of finite element analysis of one dimensional problems														
3	To know about the concepts of finite element analysis of one dimensional problems To understand about the concepts of finite element analysis of two dimensional problems To deals with finite element analysis of isoparametric problems and its applications with software packages														
4	To deals with finite element analysis of isoparametric problems and its applications with software														
+	packa	iges													
COUR	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	idents v	will be	able to						
On the successful completion of the course, students will be able toCO 1. Analyzing with the use of FE MethodAnalyze															
CO 2.	Analy	sis of c	one din	nensior	nal prol	olems v	with th	e use o	f FE M	ethod				Analyze	
CO 3.	Analys	is of tw	vo dim	ension	al prob	olems v	vith the	e use of	f FE Me	ethod				Analyze	
CO 4.	Analyz	ing str	ructure	with th	ne use o	of softv	ware							Analyze	
MAPF	PING V	VITH	PROC	GRAM	ME O	UTCO	OMES	AND I	PROGE	RAMM	E SPE	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	М		М	-	М		М			
CO2	S	S		L	S	М		-	М	М					
CO3	S	S		L	S	M		M		M					
CO4	S	S		L	S	М		М	-	М					
S- Stro	ong; M-	Mediu	ım; L-I	LOW											
SYLL	ABUS														

INTRODUCTION – VARIATIONAL FORMULATION: General field problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS : One dimensional second order equations – discretisation of domain into elements – Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics **FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS :** Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices – boundary conditions – solution techniques.

ISOPARAMETRIC ELEMENTS AND FORMULATION: Natural coordinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional – Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration

APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS : Equations of elasticity – plane elasticity problems – axisymmetric problems in elasticity – Bending of elastic plates – Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow

TEXT BOOKS:

- Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003
- 2. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.

REFERENCES:

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e,

McGraw-Hill, Book Co.

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com				
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in				

17CV	17CVEC23 DESIGN OF PLATE AND SHELL				4		Categ	gory I	<u>ـ</u>	Т	Р	Credit			
1/0	EC25	STI	RUCT	URES						EC	3	;	0	0	3
PREA	MBLI	£													
The p	urpose	of the	course	is to u	ndersta	nd the	rudime	entary	princip	les invo	lved in	the ana	lysis.		
PREF	REQUI	SITE													
Desig	n of ste	el stru	ctures												
COU	COURSE OBJECTIVES														
1	To design of rectangular plates.														
2	To know about the design of thin shells														
3	To analysis of shells														
4	To deals with the design of folded plates														
COU	RSE O	UTCC	OMES												
On the	e succes	ssful c	omplet	ion of	the cou	irse, sti	udents	will be	able to)					
CO1.	Designi	ing of	rectang	gular p	lates								Analyze	e	
CO2.	CO2. Designing of thin shells Analyze														
CO3.	CO3. Analysis of shells Analyze														
CO4.	Designi	ing of	folded	plates									Analyze	e	
MAP	PING V	WITH	PRO	GRAM	IME C	OUTCO	OMES	AND	PROG	RAMM	IE SPE	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		М	- M	M		М			
CO2	s S	5 S		L	s S	M		- M		M					
CO4	S	S		L	S	M		M	-	M					
S- Stro	ong; M-	-Mediu	um; L-	Low					<u> </u>						
SYLL	ABUS														
THIN	PLAT	'ES W	TTH S	SMAL	L DEF	LECT	ION:	Lateral	ly load	ed thin	plates –	govern	ing diffe	rential	
equati	ons – S	imply	suppor	rted an	d fixed	bound	lary co	ndition	IS						
RECT	rangu	JLAR	PLAT	TES: S	imply s	upport	ed rect	angula	r plates	– Navi	er"s sol	ution ai	nd Levy"	s method	1.
THIN	SHEL	LS : (Classif	ication	of she	lls-stru	ctural a	actions	– men	ibrane t	heory.				
ANAI	LYSIS	OF SI	HELLS	S: Ana	lysis of	fspheri	cal do	$me - c_1$	ylindric	al shell	s – fold	ed plate	es		
DESI	GN OF	SHE	LLS :	Desigr	n of spł	nerical	dome -	– cylin	drical s	hells – t	folded p	olates			
TEXT	BOO	KS:													
1. G.S	. Rama	swam	y, Desi	ign and	Const	ruction	of She	ell Stru	ctures,	CBS Pı	ıblisher	s, New	Delhi, 1	996	
2. S. T	Timoshe	enko 8	2 S. W	oinows	ky – K	rieger,	"Theo	ry of P	lates ar	nd Shell	s", McC	Graw H	ill Book	Compan	y,2010
REFF	RENC	CES:													
Theor	y and a	nalysis	s of pla	ites, Ri	ıdolph	szilard	, Prent	tice Ha	ll Inc,	1995					
COU	RSE DI	ESIG	NERS												
I															

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com			
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in			

17CV	EC24	GR	OUNI) WAT	ER E	NGINI	EERIN	IG		Catego	ory L	,	Т	Р	Credit
1/0/1									EC	3		0	0	3	
PREA	MBL	E													
The purpose of the course is to understand the ground improvement techniques and quality of ground water.															
PREREQUISITE															
Environmental engineering															
COUR	COURSE OBJECTIVES														
1	1 To know the types of aquifers														
2	To understand the surface and subsurface investigation in detail														
3	To integrate the fundamental and basic knowledge of ground water movement														
4	To ir	troduc	the d	ifferen	t mode	el studio	es.								
COUR	RSE O	UTCO	MES												
On the	succes	sful co	ompleti	ion of t	he cou	rse, stu	dents v	will be	able to						
CO1. A	Analyz	ing the	types	of aqui	fers								Analyze	2	
CO2. <i>A</i>	Analysi	is of th	e surfa	ce and	subsur	face in	vestiga	tion in	detail				Analyze	e	
CO3.	Analys	is of g	round	water n	novem	ent							Analyze	<u>.</u>	
CO4. <i>A</i>	Analyz	ing dif	ferent	model	studies								Analyze	2	
MAPH	PING V	VITH	PROC	GRAM	ME O	UTCO	MES .	AND H	PROGI	RAMME	SPEC	CIFIC (MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	М		М		М		М			
CO2	S	S		L	S	М		-		М					
CO3	S	S		L	S	М		М		М					
CO4	S	S		L	S	М		М		М					

S- Strong; M-Medium; L-Low

SYLLABUS

HYDROGEOLOGICAL PARAMETERS: Introduction - Water bearing Properties of Rock - Properties of aquifer - Transmissivity and storage coefficient - Problems in Specific yield - specific capacity -Darcy's law and permeability - Methods of Estimation - Ground water table fluctuation and its interpretations - Type of aquifers - Groundwater development and Potential in India - groundwater legislation, GEC norms.

EVALUATION OF AQUIFER PROPERTIES: Darcy^{**}s equation - governing equation of ground water flow - steady and unsteady flow equations for confined and unconfined aquifer - water table aquifer - Dupit Forchheimer assumption - one dimensional flow - well hydraulics - hydro geological boundaries - concept of image - image well - well theory - interference of wells - partial penetration of well

GROUNDWATER HYDRAULICS AND EXPLORATION: Geological methods - Geophysical - electrical resistivity - seismic refraction - water wells classification - drilling of deep wells - well design, construction and maintenance - well development. Pumping test analysis - well characteristics - draw down test - Tracer tests.

GROUNDWATER QUALITY AND MOVEMENT: Ground water chemistry - Origin, movement and quality -
Water quality standards - Remediation of saline intrusion - Remediation schemes - Artificial recharge techniques - Ground water Pollution and legislation

GROUNDWATER MANAGEMENT: Need for management model - database for groundwater management - protection zone delineation groundwater balance. Introduction to groundwater model - Types, model formulation, and boundary conditions - case study.

TEXT BOOKS:

1. Todd D. K.," Ground water hydrology", John Wiley & Sons, 3rd Edition , 2005

2. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi, 2010. 3.

Bouwer H., "Groundwater Hydrology", Tata Mc Graw Hill, Company Ltd, Indian Edition 1978

REFERENCES:

1. Health R. C. and Trainer F.W., "Introduction of Ground water Hydrology", John Wiley and sons, 1985

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in

17CV	EC25	PR	INCIP	LES C)F STI	RUCTU	URAL			Catego	ory L	,	Т	Р	Credit
1/0/1		DY	NAMI	CS AN	ND SE	ISMIC	DESI	GN		EC	3		0	0	3
PREA	MBLE	C													
	The purpose of the course is to impart the knowledge about the fundamentals definitions of earthquake,														
their responses to earthquake, and their application to the design of earthquake resistant structures.															
PRER	PREREQUISITE														
For	Foundation engineering														
COUF	COURSE OBJECTIVES														
1	To introduce dynamic loading and the dynamic performance of the structures to the students														
1	To introduce dynamic loading and the dynamic performance of the structures to the students														
2	To understand the different types of dynamic loading.														
3	3 To know the performance of structures under earthquake loading.														
COU	RSE O	UTCO	MES												
On the	succes	sful co	ompleti	ion of t	he cou	rse, stu	dents v	will be	able to						
CO1. /	Analyzi	ing dyı	namic l	loading	and th	ne dyna	mic pe	erforma	nce of	the struct	tures to	the	A 1		
studen	ts												Analyze	9	
CO2. /	Analysi	s diffe	rent ty	pes of a	dynami	ic loadi	ing						Analyze	e	
CO3. 4	Analysi	s of th	e perfo	rmance	e of str	uctures	under	earthq	uake lo	ading			Analyze	9	
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES A	AND F	PROGE	RAMME	SPEC	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	М		М		М		М			
CO2	S	S		L	S	М			М	М					
CO3	S	S		L	S	М		М		М		М			

S- Strong; M-Medium; L-Low

SYLLABUS

ELEMENTS OF SEISMOLOGY: Elements of Engineering Seismology - Causes of Earthquake – Plate Tectonic theory – Elastic rebound Theory – Characteristic of earthquake – Estimation of earthquake parameters -Magnitude and intensity of earthquakes – Spectral Acceleration

RESPONSE OF STRUCTURES TO EARTHQUAKE: Effect of earthquake on different type of structures – Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading – Evaluation of earthquake forces as per IS:1893 – 2002 - Response Spectra – Lessons learnt from past earthquakes **DESIGN METHODOLOGY :** Causes of damage – Planning considerations / Architectural concepts – Guidelines for Earthquake resistant design – Earthquake resistant design for masonry and Reinforced Cement Concrete buildings – Design and detailing as per IS: 13920 – 1993..

SEISMIC HAZARD ANALYSIS: Identification and Evaluation of Earthquake Sources – Geologic Evidence – Tectonic Evidence – Historical Seismicity – Instrumental Seismicity – Deterministic Seismic Hazard Analysis –

Probabilistic Seismic Hazard Analysis

SPECIAL PROBLEMS AND CASE STUDIES: Structural Configuration - Seismic performance - Irregular

Buildings - Soil performance, Modern Concepts - Base Isolation - Adoptive system - Case studies

TEXT BOOKS:

1. Chopra, A.K., "Dynamics of Structures – Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.

2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2007

REFERENCES:

1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw Hill Book Co., New York, 1964

2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 2009

3. Paz, M. and Leigh.W. "Structural Dynamics - Theory & Computation", 4th Edition, CBS Publishers &

Distributors, Shahdara, Delhi, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in

17CV	EC26	CO	CONTRACT LAWS AND REGULATIO							Categ	ory I	_	Т	Р	Credit
1,0,1							LUUI			EC	3	3	0	0	3
PREA	MBLE														
To stu	To study the various types of construction contracts and their legal aspects and provisions. To study the of														
tender	s, arbitr	ation,	legal r	equire	nent, a	nd lab	our reg	gulations	5.						
PRER	EQUIS	SITE													
Nil															
COU	RSE OF	BJEC	ΓIVES												
1	To st	udy th	e vario	us type	es of co	onstruc	tion co	ntracts a	and the	ir legal	aspects	s and p	rovisions	.Policy	
2 To study the of tenders, arbitration, legal requirement, and labour regulations.															
COU	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. To know about the construction contracts Apply															
CO2 .	CO2. To Study about the tender documents. Apply														
CO3.	CO3. To Know about the rules of evidence of contract.ApplyApply														
CO4. 7	CO4. To Study the planning about legeal requirements. Apply														
CO5. To Understand about the labour requirementsApply															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			
CO3	S	M	M	S	-	-	-	-	-	-	-	-			
CO4	S	M	M	М	-	-	-	-	-	-	-	- T			
S- Stro	ng: M-	Mediu	m: L-I	- .0W	-	-	-	-	-	-	-	L			
SVLL			, ב ו	20 11											
CONS	TRUC	TION	CON	TRAC	TS: In	dian C	ontrac	ts Act –	Eleme	ents of C	Contrac	ts – Tv	pes of Co	ontracts –	
Featur	es – Sui	itabilit	y –Des	sign of	Contra	act Doc	ument	s – Inter	rnation	al Cont	ract Do	cumen	t – Stand	ard Contr	ract
Docun	nent – L	.aw of	Torts.	C											
TEND	ERS: I	Prequa	lificati	on – B	idding	– Acce	epting -	– Evalua	ation o	f Tende	r from	Techni	cal, Cont	ractual ar	nd
Comm	ercial P	oints	of Viev	v – Co	ntract	Format	tion and	d Interp	retatio	n – Pote	ential C	ontract	ual		
Proble	ms – W	orld E	Bank Pi	rocedu	res and	Guide	lines –	- Tamiln	adu Tı	ranspare	ency in	Tender	rs Act.		
ARBI	ARBITRATION : Comparison of Actions and Laws – Agreements – Subject Matter – Violations –														
Appoi	Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence –														
Enforc	ement o	of Aw	ard – C	Costs											
LEGA	L REQ	UIRI	EMEN	TS: In	suranc	e and I	Bondin	g – Law	s Gove	erning S	ale, Pu	irchase	and Use	of Urban	and

Rural Land –Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law– Local Government Laws for Approval – Statutory Regulations

LABOUR REGULATION: Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes,Labour Administration – Insurance and Safety Regulations – Workmen"s Compensation Act – Indian Factory Act – Tamilnadu Factory Act – Child Labour Act - Other Labour Laws.

TEXT BOOKS:

1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India,

2. Jimmie Hinze, Construction Contracts, McGraw Hill, 2001.

3. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, McGraw Hill, 2000.

REFERENCES:

1. Kwaku, A., Tenah, P.E. Jose M.Guevara, P.E., Fundamentals of Construction Management and Organisation, Printice Hall, 1985.M.M.Tripathi Private Ltd., Bombay,1982.

2. Patil. B.S, Civil Engineering Contracts and Estimates, Universities Press (India) Private Limited, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in

17CVI	EC27	TR	ANSP	ORT E	CON	OMIC	S			Categ	ory I	_	Т	Р	Credit
										EC	3	;	0	0	3
PREA	MBL	C													
The pu	irpose o	of the c	course	is to cre	eates av	warene	ss amo	ong the	engine	ering stu	idents a	about tr	ansport	economic	s.
PREREQUISITE															
Highway engineering															
COURSE OBJECTIVES															
1 To know the effects of human activities & modern technology on transport															
2	To ur	Idersta	nd the	pricing	oftrar	nsport s	service	S							
3	To kr	now the	e perfo	rmance	oftra	nsport	financi	ng.							
COUF	RSE O	UTCO	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1. A	Analyz	ing the	effect	s of hui	nan ac	tivities	&moc	lern teo	chnolog	gy on trai	nsport		Analyze	e	
CO2.	Analys	is of th	ne prici	ng of t	ranspo	rt servi	ces						Analyze	e	
CO3. A	Analysi	s of th	e perfo	rmance	e of tra	nsport	financi	ing					Analyze	e	
MAPF	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROGE	RAMMI	E SPE	CIFIC	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	М		М		М		М			
CO2	S	S		L	S	М			М	М					
CO3	CO3 S S L S M M M														
S- Stro	ong; M-	Mediu	m; L-I	LOW	-				· ·	•		•			

INTRODUCTION: Introduction to Transportation Economics - Purpose and major considerations in Transport economics Transportation Demand and Supply - Transport Costing: Types of cost and their behavior: direct and indirect; fixed and variable, Treatment of assets and capital depreciation - infrastructure, vehicle/carrying unit and others, Transport costs: Internal and External

PRICING OF TRANSPORT SERVICES: Vehicle operations cost - running cost - pollution cost - value of travel time - road damage cost - congestion cost - accident cost.

ECONOMIC EVALUATION : Economic Evaluation of Highway schemes - Need and Methods of Economic Evaluation - Economic Analysis economic evaluation, economic studies - Transportation plans - Benefit cost method, Net present value method, and internal rate of return method and comparison of various methods.

TRANSPORT FINANCING: Revenue Sources, Expenditure Sources, Traditional Project Delivery Methods, Innovative Financing, Credit financing, Private financing, BOT, BOOT, dedicated road funds, road pricing, tolls, Private provisions, advantages & limitations - Methods for raising funds for maintenance, improvement and expansion of transportation networks: Taxation and user fee, Financing through loans, bonds, PPPs and concessions.

TRANSPORT ECONOMICS: Transport Coordination policies - Objectives and method to achieve coordination

among different modes and between private and public undertakings - Case Studies

TEXT BOOKS:

1. Kadiyali L.R, "Traffic Engineering and Transport Planning", 6th Edition, Khanna Technical Publications, 2005.

2. Patrick Mccarthy, Transportation Economics, Blackwell Publishing, 2000.

REFERENCES:

1. Wohl and Martin, "Traffic System Analysis for Engineering and Planners", Tata McGraw Hill, 1983.

2. Emile Quinet and Roger Vickerman, Principles of Transportation Economics, Edward Elgar Publishing, 2004

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	P.Sankar	Asst. Professor	CIVIL	sankarp35vidhu@gmail.com
2	Sathiyaraj R	Asst. Professor	CIVIL	sathiyaraj@vmkvec.edu.in

	Catego	ory	L	Т	Р	Cr	edit							
1/CVEC28 MASS I KANSPORT MANAGEMENT	EC		3	0	0		3							
PREAMBLE														
The purpose of the course is to develop and systematize the basic conce	epts and	techni	cal aspe	ects of m	ass trans	port								
management.														
PREREQUISITE														
Highway Engineering														
COURSE OBJECTIVES														
1 To know the different Mass Transportation Systems 2 To understand the Provisions of Transport Facilities														
To understand the Provisions of Transport Facilities To know the Evaluation of Mass transport system														
3 To know the Evaluation of Mass transport system.														
COURSE OUTCOMES														
On the successful completion of the course, students will be able to														
CO1. This course will have an indepth knowledge in Traffic Engineering, Transport														
Planning Apply														
Co2. Transport Planning, Highway Design and Construction,					Ap	ply								
Co3. Sustainable Urban and Transport Development and will be effic	cient enc	ough to	o take		Δn	nlv								
up projects in the field.					лр	pry								
Co4. Calculate the stresses and strains in axially-loaded members, cir	rcular to	rsion			۸n	nly								
members, and members subject to flexural loadings					Ар	pry								
CO5. Calculate the stresses and strains associated with thin-wall spheri	rical and	cylind	rical		4 = 0	1								
pressure vessels.					Alla	iyze								
MAPPING WITH PROGRAMME OUTCOMES AND PRO	GRAM	IME S	SPECI	FIC OU	TCOM	IES								
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8	PO9 I	PO10	PO11	PO12	PSO1	PSO2	PSO3							
CO1. S M L	М	-	-	-	-	М	-							
CO2. S M L S S - M -	-	-	-	L	-	-	-							
CO3. S M M S - - M	-	-	-	-	L	М	-							
CO4. S M M M M -	-	М	-	-	-	-	-							
CO5. S M M M	205. S M M M L - S - L													
S- Strong; M-Medium; L-Low														

INTRODUCTION: History and Role of Transit - Recent Trends in Mass Transportation Characteristics - Different Mass Transportation Systems - Demand Characteristics - Spatial, Temporal and Behavioral Characteristics of Transportation Demand - Structures of Urban Areas - Provisions of Transport Facilities - Basic Management Issues Ridership prediction and routing.

FARE STRUCTURE: Methods of Financing - Budgeting and Recounting - Fare Structures - Replacement Programs - Fare Collected System – Incentives.

SCHEDULING: Preparation of Schedules and Duty Roasters - Earning of Occupancy - Cost of operation - Capital Cost Accident cost.

TERMINAL: Utility Designs - Fleet Location and Maintenance - Depot Localities - Bus Terminals - Case studies

EVALUATION: Evaluation of Mass transport system - BRTS, MRTS, LRTS, Metro rail and Mono rail.

TEXT BOOKS:

- 1. Hutchinson, Urban Transport Planning, John Wiley, 2006
- 2. Hay, W.W., An Introduction to Transportation Engineering, 2nd Ed., John Wiley & Sons, 2001

REFERENCES:

1. Agarwal M.K., "Urban Transportation in India", INAE, Allied Publishers Ltd., 1996.

2. Vuchic V.R., "Urban Public Transportation System and Technology", Prentice Hall, Inc. Englewood Cliffs, 1991.

3. Stubbs P.C et al, "Transport Economics", George Allen and Ubwin, Boston, 1984. 6. Stephen Gelaster, "Fundmental of Transport Economics", Basil Black Well, Oxford, 1981

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2.	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

17CVEC29 WATER RESOURCES SYSTEMS ANALYSIS Category											L	Т	Р	Credit	
2.01					01102	00101				EC		3	0	0	3
PREAM	MBLE														1
Focusin	ng on co	nflict r	esolutio	on, Wate	er Reso	urces S	ystems	Analysi	s discus	sses syste	matic a	pproac	hes to the	mathemat	ical
modelin	ng of va	rious w	vater res	sources	issues,	which ł	nelps de	cision-r	nakers a	allocate w	vater eff	fectivel	y and effi	ciently. R	eaders
will gai	n an unc	lerstan	ding of	simulat	tion, op	timizati	on, mu	lti-criter	rion-dec	ision-ma	king, as	s well a	s engineer	ring econo	omics.
PRERI	EQUISI	TE													
	Environmental Engineering														
COUR	COURSE OBJECTIVES														
1	1 The student is exposed to different phases in Water Resources Management and National Water Policy 2 To Learn about Impulades on Reservoir planning														
2 To Learn about knowledge on Reservoir planning															
3 To learn about management and economic analysis including Irrigation .															
4 To Learn about Irrigation management practices.															
4 To Learn about Inigation management practices. 5 To understand the concepts of radioisotope and nuclear imaging.															
COUR	5 1 o understand the concepts of radioisotope and nuclear imaging. COURSE OUTCOMES														
On th	COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. As a bilitate employee and a set of method.														
CO1. A	CO1. An ability to apply knowledge of mathematics, science, and engineering to solve real Analyse														
world p	world problems.														
Co2. An ability to design and conduct experiments, as well as to analyze, interprets and Analyze															
vanuale			•												
Co3. A	n ability	to des	sign a s	ystem,	compor	nent, or	proces	s to mee	et desire	ed needs	within			. 1	
realistic	constration constration	unts su ainabil	ich as eo itv.	conomi	c, envir	onment	al, soci	al, polit	ical, eth	iical, heal	th and			Apply	
Co4 A	n ability	v to fur	nction o	n multi-	-discipl	inary te	ams							Apply	
	n ability		the ter	hnique	e ekille	and m	odern e	ngineer	ing tool	s to real	enginee	ring			
problen	ne	y to use		linique	5, 581115	, and m		Ingineer	ing tool	15 10 1001	enginee	anng		Apply	
						umaa			Dogr				outroo		
	ING V			PO4	ME O		MES A							DMES	DSO2
COI	S POI	M	I POS	P04	P05	POo	P07	P08	P09	POIO	POIT	POIZ	2 PSUI	P302	P305
CO2.	S	M	L	S	S	М	_	-	-	-	-	_	М	_	-
CO3.	S	М	М	S	-	-	L	М	М	-	-	-	-	L	L
CO4.	S	М	М	М	-	-	-	-	-	L	М	-	-	-	-
CO5.	S	М	М	-	-	-	-	-	-	-	-	L	-	-	-
S- Stro	ng; M-	Mediu	m; L-I	LOW				<u> </u>		I		<u> </u>			<u> </u>
SYLLA	ABUS														
WATE	R RES	OURC	ES: W	ater res	ources s	survey -	- Water	resourc	es of In	idia and T	Familna	du – D	escription	of water	
resourc	es plann	ing – I	Estimat	ion of w	vater ree	quireme	ents for	irrigatio	on and d	lrinking-	Single	and mu	ltipurpose	e reservoir	· —
Multi o	bjective	– Fixa	tion of	Storage	e capaci	ty -Stra	tegies f	or reserv	voir ope	eration – 1	Design	flood-l	evees and	flood wal	ls.

WATER RESOURCE MANAGEMENT: Economics of water resources planning – National Water Policy –

Consumptive and non consumptive water use – Water quality – Scope and aims of master plan – Concept of basin as a unit for development – Water budget - Conjunctive use of surface and ground water.

IRRIGATION ENGINEERING: Need – Merits and Demerits – Duty, Delta and Base period – Irrigation efficiencies – Crops and Seasons – Crop water Requirement – Estimation of Consumptive use of water.

CANAL IRRIGATION: Types of Impounding structures: Gravity dam – Diversion Head works – Canal drop – Cross drainage works – Canal regulations – Canal outlets – Canal lining – Kennady"s and Lacey"s Regime theory.

IRRIGATION METHODS AND MANAGEMENT: Lift irrigation – Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub-Surface and Micro Irrigation – Merits and demerits – Irrigation scheduling – Water distribution – Participatory irrigation management with a case study.

TEXT BOOKS:

1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.

2. Punmia B.C., et. al; Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009

3. Garg S. K., "Irrigation Engineering and Hydraulic structures", Khanna Publishers, 23rd Revised Edition, New Delhi, 2009

REFERENCES:

1. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New AgeInternational Publishers, 2005

2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 1997

	S.No.	Name of the Faculty	Designation	Department	Mail ID
	1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
ſ	2	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

17CVEC30 ARCHITECTURE Category L												L	Т	Р	Credit
1/0	EC30			А	KCIII	ILCI				EC	2	3	0	0	3
PREA	MBLE														
	The I	Bachelo	or of A	rchitect	ure deg	ree pro	gramm	ne prepa	res stud	lents for	profess	ional pr	actice in	the field	of
Archi	tecture.	Being	an und	ergradu	ate prog	gramme	e, it has	bright	scope, p	providing	g exposu	ire to a v	variety of	interests	in
this fi	eld and	assistin	ıg stude	ents to d	iscover	their o	wn dire	ections f	for futur	e develo	pment.				
PRER	EQUIS	ITE													
NIL															
COURSE OBJECTIVES															
1 To Learn about architectural design															
1 10 Learn about architectural design 2 To know about survey															
3	2 To know about survey 3 To Learn about basic Design & Principle														
4	To kno	ow abo	ut Buile	ding Ru	les										
5	4 To know about Building Rules 5 To learn about Landscape concept.														
COUR	5 To learn about Landscape concept. COURSE OUTCOMES														
On th	ne succe	ssful co	ompleti	on of th	e cours	e, stude	nts will	l be able	e to						
Col. A	Ability to	o gain k	nowled	lge of H	lumanit	ies, Sci	ences a	and Arcl	nitecture					Apply	
Co2 . A Design	Ability to	o under	stand el	lements	of Arc	hitectur	e and a	pply ba	sic princ	iples in	Architec	ctural		Apply	
Co3. A	bility to	identif	y socia	l, econo	mical a	nd cult	ural issu	ues in A	rchitectu	ural Des	ign.			Apply	
Co4. A	Ability to	analyz	ze and a	apply th	eoretica	al know	ledge to	o achiev	ve Archit	tectural	Design			A 1	
solution	ns.													Арріу	
CO5. 4	Ability t	o under	stand e	thical a	nd prof	essiona	l respoi	nsibiliti	es.					Apply	
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND F	ROGR	RAMM	E SPEC	CIFIC (OUTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	-	-	-	-	М	-	-	-	-	L	-	-
CO2.	S	М	L	S	-	М	-	-	-	-	М	-	-	-	-
CO3.	S	М	М	S	-	-	М	-	-	-	-	-	-	М	-
CO4.	S	М	М	М	-	-	-	-	S	-	-	-	-	-	S
CO5.	S	М	М	-	М	-	-	-	-	L	-	L	-	-	-
S- Stro	ong; M-	Mediu	m; L-I	LOW											
SYLL	ABUS														

ARCHITECTURAL DESIGN: Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

SITE PLANNING: Surveys – Site analysis – Development Control – Layout regulations- Layout design concepts.

BUILDING TYPES: Residential, institutional, commercial and Industrial – Application of anthropometry and space

 $standards-Inter\ relationships\ of\ functions-Safety\ standards-Building\ rules\ and\ regulations$

CLIMATE AND ENVIRONMENTAL RESPONSIVE DESIGN: Man and environment interaction- Factors that

determine climate - Characteristics of climate types - Design for various climate types - Passive and active energy controls

- Green building concept.

IRRIGATION METHODS AND MANAGEMENT: Planning – Definition, concepts and processes- Urban planning standards and zoning regulations - Urban renewal – Conservation – Principles of Landscape design.

TEXT BOOKS:

- 1. Pramar. V.S. "Design fundamental in Architecture", Somaiya Publications Pvt. Ltd., New Delhi, 1997.
- 2. Muthu Shoba Mohan.G.,"Principles of Architecture"., Oxford University Press., New Delhi, 2006.

REFERENCES:

1. Rangwala. S.C. "Town Planning" Charotar Publishing House., Anand, 2005.

2. De Chiara.J., Michael. J. Crosbie.,"Time Saver Standards for Building Types", McGraw Hill

	S.No.	Name of the Faculty	Designation	Department	Mail ID
ĺ	1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
	2	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

17CV	FC31			DAVE	MENT	ENCI	NFFDI	NC		Categ	ory	L	Т	Р	Credit
1/0 1	ECJI			IAVE	VILLINI	LINGI	NEENI	NG		EC	2	3	0	0	3
PREAN	ABLE														
	Tran	sportati	ion is no	ecessar	y for a	nation"	s grow	th and o	levelop	ment. In	fact, it l	nas cons	umed a c	considerat	ble
portion	n of hu	man ra	ce"s tin	ne and r	esource	es for a	s long a	is it has	existed	l. Several	factors	should l	be taken i	nto accou	unt
in a pa	vemen	t desig	n, for ex	kample	the traf	fic flow	, the as	phalt m	ixtures	materials	and als	o the env	vironmen	tal factor.	
PRERE	EOUIS	ITE													
	Highw	vay Eng	ineerin	g											
COURS	SE OB	IFCTI	VFS												
1	To kn	ow abo	ut Pave	ment de	esign.										
2	To de	velop s	kills in	conduc	ting ana	alysis of	fpaven	nents by	calcula	ting the r	esponse	due to v	ehicular	loading	
2	To pe	rform d	lesign o	f rigid a	ind flex	ible pay	/ements	s based	on traff	ic and en	vironme	ental fact	ors		
5	Tode	velon s	kills in	enginee	ringec	onomic	s (esne	rially li	fe-cvcle	cost calc	ulations	for			
4	altern	ative de	eigne)	enginee	ing w	ononne	s (esper	cially II.	ic-cycic		ulations	, 101			
~	To de	velon h	asic un	derstan	lingof	the prin	ciples (of naver	nent m	nagemer	t				
							cipies (
On the	e succe	essful co	ompleti	on of th	e cours	e. stude	nts wil	l be able	e to						
Co1. T	he stud	ents wi	ll have	the opp	ortunity	y to dev	elop se	veral de	signs o	f paveme	nt struct	ures		Anolyco	
through	out the	semes	ter.											Analyse	
Co2.St	tudents	will ar	nalyze ti	affic ar	nd geote	echnical	data fr	om real	-life pro	ojects and	l theoret	ical			
example	es													Apply	
Co3. Th	ne stud	ents wil	ll also g	ain exp	erience	in calc	ulating	paveme	ent resp	onse usin	g state-o	of-			
the-art r	nechar	istic so	oftware.	Studer	nts will	also use	e techno	- ology to	present	t their ser	nester d	esign		Apply	
projects								01	1			C			
$\frac{1}{Co4}$. T	he stud	ents ar	e reauir	ed to co	mplete	a seme	ster des	ign pro	blem ar	d present	their				
findings	to the	instruc	tor and	other s	tudents			-8 P- 0	010111 W	a present				Apply	
$\frac{1}{CO5}$ T	The stur	lents ar	e tasker	1 with d	eveloni	ing nave	ement d	lecione	and the	n selectin	a the				
ontimur	ne stu	in based	d on sev	a with u	evelop	eludina		cle cost	and the		g the			Apply	
							, me-ey				_ ~				
MAPP	ING V	WITH	PROC	GRAM	ME O		DOZ		POG		E SPEC			MES	
CO1	P01	PO2 M	PO5	P04	POS	POo	PO/	PO8	P09	P010	POIT	POIZ	PS01 M	PS02	PS03
$\frac{CO1}{CO2}$	د ۲	M		-	-	- M	-	IVI	-	-	- M	-	IVI	-	-
CO2.	2	M	M	5	-	IVI	M	-		-	IVI	-	- M	-	-
CO4	<u>S</u>	M	M	M	_	_	-	_	S	_		_	-	-	I.
CO4.	<u> </u>	M	M	-	М	-	-	_	-	М	_	L		L	-
S- Stro	no· M.	Medir	 ım∙ I _I	0W	.,.					171					
SVIT A	BIIC	mul	•111, L/ ⁻ L	20 11											
SILLA TVDF	ADUS	4 1 7E'N #	гліт А		FDFCC	DICT	ייוזסוס			VEDED	CVCTT	7M. T.+	oduction	Dovra	nont co
	or M				i nE33					I L'KED	91911 9194-1-	otiona i		nto under	uciit as
layered	structu	ire – Pa	ivement	types r	igid and	u Hexib	ie. Kesi	ment m	odulus	- Stress a	na defle	ctions 11	i paveme	nts under	
repeated	1 Ioadi	ng.													

DESIGN OF FLEXIBLE PAVEMENTS: Flexible pavement design factors influencing design of flexible pavement, Empirical – Semi empirical and theoretical methods – Design procedure as per IRC guidelines – Design and specification of rural roads.

DESIGN OF RIGID PAVEMENT: Cement concrete pavements factors influencing CC pavements – Modified Westergaard approach – Design procedure as per IRC guidelines – Concrete roads and their scope in India.

PERFORMANCE EVALUATION AND MAINTENANCE: Pavement Evaluation - causes of distress in rigid and flexible pavements – Evaluation based on Surface Appearance, Cracks, Patches and Pot Holes, Undulations, Raveling, Roughness, Skid Resistance. Structural Evaluation by Deflection Measurements - Pavement Serviceability index. - Pavement maintenance (IRC Recommendations only).

STABILIZATION OF PAVEMENTS: Stabilisation with special reference book to highway pavements – Choice of stabilizers –Testing and field control Stabilisation for rural roads in India – use of Geo synthetics in roads.

TEXT BOOKS:

1. Wright P.H. "Highway Engineers", John Wiley and Sons, Inc., New York, 1996.

2. Khanna, S.K., Justo C.E.G. and Veeraragavan. A., "Highway Engineering", Nem Chand and Brothers, 10th Edition, Roorkee, 2014.

REFERENCES:

1. Wright P.H. "Highway Engineers", John Wiley and Sons, Inc., New York, 1996.

2. Khanna, S.K., Justo C.E.G. and Veeraragavan. A., "Highway Engineering", Nem Chand and Brothers, 10th Edition, Roorkee, 2014.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	S.Prakash	Asst. Professor	CIVIL	tsprakashcivil@gmail.com

1700	TC22			STOI		STDUC	TIDE	NC .		Categ	ory	L	Т	Р	Credit
1/0	EC32			5101	AGE	SIKU	, I UKE	72		EC	2	3	0	0	3
PREAM	MBLE														
	To in	troduce	e the stu	ident to	basic	theory a	and con	cepts o	f design	n of stora	age strue	ctures li	ke steel a	and concre	ete
tanks,	bunker	s and si	ilos.												
PRERI	PREREQUISITE														
	Design of Reinforced Concrete elements														
COUR	COURSE OBJECTIVES														
1	To int	roduce	the stuc	lent to b	basic the	eory and	d conce	pts of c	lesign of	f storage	structur	es.			
2	To kn	ow abo	ut Desi	gn Con	cepts of	Steel a	nd cond	crete tar	ıks.						
3	To Kn	ow abc	out Desi	gn Con	cepts of	f Bunke	er and S	ilos							
COUR	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
Col. A	t the en	d of the	e course	the stu	dent sha	all be al	ole to de	esign co	oncrete a	and steel	material			Analyse	
storage	structu	res.												7 maryse	
Co2 . T	'o Know	v about	Design	n Procee	dure as	per IRC	C guide	lines						Apply	
Co3. To	o know	about s	scope of	concre	te road	constru	ction in	n india.						Apply	
Co4. T	'o Study	about	Paveme	ent Mai	ntenanc	e								Apply	
СО5. Т	To get th	ne knov	vledge a	about th	e Geo s	yntheti	cs in ro	ads						Apply	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGR	RAMMI	E SPEC		OUTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	-	-	-	-	М	-	-	-	-	М	-	-
CO2.	S	М	L	S	-	М	-	-	-	-	М	-	-	-	-
CO3.	S	М	М	S	-	-	S	-	-	-	-	-	М	L	-
CO4.	S	М	М	М	-	-	-	-	S	-	-	-	-	-	L
CO5.	S	М	М	-	М	-	-	-	-	L	-	L	-	L	-
S- Stro	ng; M-	Mediu	m; L-I	LOW											
GVLL	DIIG														

STEEL WATER TANKS: Design of rectangular riveted steel water tank – Tee covers – Plates – Stays – Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

CONCRETE WATER TANKS: Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome –Staging – Bracings – Raft foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

STEEL BUNKERS AND SILOS: Design of square bunker – Jansen"s and Airy"s theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder –

stiffeners.

CONCRETE BUNKERS AND SILOS: Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

PRESTRESSED CONCRETE WATER TANKS: Principles of circular prestressing – Design of prestressed concrete circular water tanks

TEXT BOOKS:

1. Rajagopalan K., "Storage Structures", Tata McGraw Hill, New Delhi, 1998.

2. Krishna Raju N., "Advanced Reinforced Concrete Design", CBS Publishers and Distributors, New Delhi, 1998.

REFERENCES:

1. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.

2. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

1700	TC22		EVDEI	DIMEN	TAT A	NIAT V		e stide		Categ	ory	L	Т	Р	Credit
1/0	EC33		СЛГСІ		IALA		515 01		200	EC	2	2	1	0	3
PREA	MBLE To m	ake stu	dents a	ware of	various	s measu	rement	technic	jues and	experim	nental pla	anning a	and proce	edures	
adopte	ed in lat	porator	у												
PRERI	EQUIS Structu	ITE ıral An	alysis												
COUR	COURSE OBJECTIVES														
1	To kn	ow abo	ut Strai	n gauge	s. Elect	rical St	rain gau	uges.							
2	To kn	ow abo	ut Desi	gn Cono	cepts of	Photo	Elasitic	city, Mo	odel Ana	lysis					
3	To Kr	low abo	out Britt	le Coat	ings										
COUR	SE OU	TCOM	IES												
On th	e succe	ssful co	ompleti	on of th	e cours	e, stude	nts will	be able	e to						
Co1. S	tudents ve suffi	will be cient ki	e able to nowledg	select t ge in mo	he appr odel ana	opriate alysis a	strain g nd pred	gauges f ict the b	for strair behaviou	n measur ir of prot	ements a otypes.	und		Analyse	
Co2.S	tudents	get kno	owledge	e about	the pho	to elasi	ticity.							Apply	
Co3. A	bility to	o know	about t	he mod	el analy	vsia								Apply	
Co4. T	'o take t	he prop	er mea	sureme	nts in st	ain gau	ge .							Apply	
CO5. 7	Го know	v the de	tails ab	out the	coating	to prot	ect from	n brittle	•					Apply	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGR	RAMM	E SPEC	CIFIC (OUTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	-	-	-	-	М	-	-	-	-	М	-	-
CO2.	S	М	L	S	-	М	-	-	-	-	М	-	-	-	-
CO3.	S	М	М	S	-	-	L	-	-	-	-	-	М	-	-
CO4.	S	М	М	М	-	-	-	-	S	-	-	-	-	-	М
CO5.	S	М	М	-	М	-	-	-	-	L	-	S	-	S	-
S- Stro	ng: M-	Mediu	m: L-I	JOW											

STRAIN GAUGES: Definition of Gauge length, sensitivity and range – Characteristics of an ideal strain gauge –Different types of mechanical strain gauges for use in metal and concrete specimens – Optical strain gauge – Acoustic strain gauge – Pneumatic strain gauge – Merits and demerits.

ELECTRICAL STRAIN GAUGES: Inductance, capacitance and piezo-electric gauges – Bonded and unbounded resistance gauges and their application in stress analysis – Fixing technique and measurement of strains Rosettes– Determination of principal strains using rosettes – Use of Murphy''s construction for drawing circle of strains – Mohr''s stress circle – Analytical solution.

PHOTO ELASTICITY: Principles – Maxwell''s stress optic law – Plane and circularly polarised light and their use in photo elasticity – Polariscopes – Diffusion type, lense type and reflection type polariscopes –Isochromatics and Isoclinics – Model materials – Calibration methods for finding material fringevalue – Model fringe value – Examples of beam flexure and diametrically loaded circular plates.

MODEL ANALYSIS: Direct and indirect models - Laws of structural similitude - Choice of scales - Limitation of model

studies - Buckingham piktheorem - Dimensional analysis - Model materials - Begg"s deformeter and its use in model

analysis – Simple design of models for direct and indirect model analysis.

BRITTLE COATINGS: Historical review – Stress Coat – Ceramic coatings – Application – Moire fringe method of stress analysis.

TEXT BOOKS:

1. T.K.Roy, "Experimental Analysis of Stress and Strains", S.Chand and Company Ltd., New Delhi, 2000

2. Hetenyi. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons Inc., New York, 1966

REFERENCES:

1. J.W.Dally and W.F.Riley, "Experimental Stress Analysis", McGraw Hill Book, New York, 1990.

2. L.S. Srinath, "Experimental Stress Analysis", Tata-McGraw Hill Book Company, New Delhi, 2001.

3. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2004.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CVEC34 SHORING, SCAFFOLDING AND FORM WORK Category									ory	L	Т	Р	Credit		
1/0	EC34	51	UKIIN	J, SCA	FFULI	JING A			UKK	EC		3	0	0	3
PREA	MBLE									1					
	Form	work f	unction	Suppor	ting St	ructure,	Scaffo	olding fur	nction f	for worki	ng plate	e forms	arrangen	nent,Shori	ng
functi	on for s	upporti	ng metl	nod for	unsafe	structur	e.								
PRER	EQUIS	ITE													
	Constr	uction	materia	ls											
COUR	SE OB.	JECTI	VES												
1	To stu	dy and	underst	and the	overal	l and de	tailed p	olanning	of forn	work, pla	ant and	site			
	To une	derstan	d the D	esign ar	nd erect	ion of f	orms fo	or various	s eleme	ents such a	as slabs	, beams	, column	s, walls, s	hells
2	and tu	nnels													
3	To kno	ow the	latest n	nethods	of form	n constr	uction.								
COUR	SE OU	TCOM	IES												
On the successful completion of the course, students will be able to															
Col. T	Co1. To Study the materials associated with formwork Apply														
Co2 . 7	Fo Study	y the de	esign as	pects of	formw	ork und	ler vari	ious requi	iremen	ts.				Apply	
Со3. Т	o Knov	w the d	esign of	forms	and sho	ores								Apply	
Со4. Т	o Study	the pla	anning a	and erec	ction as	pects of	form v	work for t	buildin	gs				Apply	
CO5. 7	Го Unde	erstand	few oth	er spec	ial type	s of for	ms.							Apply	
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND PH	ROGR	RAMME	SPEC	CIFIC	OUTCO	OMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2.	S	М	L	S	S	М	-	-	-	-	-	-	М	-	-
CO3.	S	М	М	S	-	-	L	М	М	-	-	-	-	L	L
CO4.	S	М	М	М	-	-	-	-	-	L	М	-	-	-	-
CO5.	S	М	М	-	-	-	-	-	-	-	-	L	-	-	-
S- Stro	ong; M-	Mediu	ım; L-I	LOW											
SYLL	ABUS														
PLAN	NING, S	SITE F	EQUIP	MENT	& PLA	NT FO	R FOF	RM WOI	RK: In	troductior	n - Forn	ns for fo	oundation	s, column	s, beams
walls e	te Gen	eral ob	iectives	s of for	mwork	buildin	g - Pla	nning for	· safety	- Develo	pment	of a Ba	sic Syste	em - Kev	Areas of

walls etc., General objectives of formwork building - Planning for safety - Development of a Basic System - Key Areas of cost reduction - Planning examples. Overall Planning - Detailed planning - Standard units - Corner units - Pass units -Calculation of labour constants - Formwork hours - Labour Requirement - Overall programme - Detailed programme

- Costing - Planning crane arrangements - Site layout plan.

MATERIALS ACCESSORIES PROPRIETARY PRODUCTS & PRESSURES: Lumber - Types - Finish - Sheathing boards working stresses - Repetitive member stress - Plywood - Types and grades - Jointing Boarding - Textured surfaces and strength - Reconstituted wood - Steel - Aluminum - Hardware and fasteners - Nails in Plywood - Allowable withdrawal load and lateral load. Pressures on formwork - Examples - Vertical loads for design of slab forms - Uplift on shores - Laterals loads on slabs and walls.

DESIGN OF FORMS AND SHORES: Basic simplification - Beam formulae - Allowable stresses - Deflection, Bending - Lateral stability - Shear, Bearing - Design of Wall forms - Slab forms - Beam forms - Column forms - Examples in each.

Simple wood stresses - Slenderness ratio - Allowable load vs length behaviour of wood shores - Form lining Design Tables for Wall formwork - Slab Formwork - Column Formwork - Slab props - Stacking Towers - Free standing and restrained -Rosett Shoring - Shoring Tower - Heavy Duty props.

BUILDING AND ERECTING THE FORM WORK: Carpentry Shop and job mill - Forms for Footings - Wall footings - Column footings - Sloped footing forms - Strap footing - Stepped footing - Slab form systems - Sky deck and Multiflex - Customized slab table - Standard Table module forms - Swivel head and uniportal head - Assembly sequence - Cycling with lifting fork - Moving with table trolley and table prop. Various causes of failures - ACI - Design deficiencies - Permitted and gradual irregularities.

FORMS FOR DOMES AND TUNNELS, SLIP FORMS AND SCAFFOLDS: Hemispherical, Parabolic, Translational shells - Typical barrel vaults Folded plate roof details - Forms for Thin Shell roof slabs design considerations - Building the forms - Placing concrete - Form removed -Strength requirements -Tunnel forming components - Curb forms invert forms - Arch forms - Concrete placement methods - Cut and cover construction - Bulk head method - Pressures on tunnels - Continuous Advancing Slope method - Form construction - Shafts. Slip Forms.

TEXT BOOKS:

1. Austin, C.K., Formwork for Concrete, Cleaver -Hume Press Ltd., London, 1996.

2. Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996

REFERENCES:

1. Austin, C.K., Formwork for Concrete, Cleaver -Hume Press Ltd., London, 1996.

2. Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996

3. Michael P. Hurst, Construction Press, London and New York, 2003. 4. Robert L. Peurifoy and Garold D. Oberlender,

Formwork For Concrete Structures, McGraw

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CV	EC35		Μ	UNICI	PAL SC	OLID A	ND W	ASTE		Categ	gory	L	Т	Р	Cred it
				ſ	MANA	GEME	NT			EC	C	3	0	0	3
PREAM	MBLE														
	Struc	ture is	an arrai	ngemen	t and or	rganizat	tion of	interrel	ated ele	ments in	a mater	ial objec	et or syst	em, or th	e
object	or sys	tem so	organiz	ed. Ma	terial s	tructure	s inclu	de man	-made of	objects s	uch as b	ouildings	and mad	chines an	d
natura	l object	s such	as biolo	gical or	ganism	s, mine	rals and	1 chemi	cals.						
PRERI	PREREQUISITE														
	NIL														
COUR	SE OB	JECTI	VES												
1	The or	n-site/o	ff-site p	orocessi	ng of th	ie same	and the	e dispos	al meth	ods.					
2	The st	udent is	s expec	ted to k	now ab	out the	various	effects	and dis	posal op	tions for	the mun	icipal so	lid waste.	
3	The co	ollectio	n and su	upply of	water										
4	4 The offsite processing involved in site														
COUR	SE OU	TCOM	IES												
On th	e succe	ssful co	ompleti	on of th	e course	e, stude	nts will	be able	e to						
Col. T	'o know	about	the type	es of wa	ste & S	Sources							1	Analyse	
Co2.7	Fo Stud	y the or	n site St	orage &	2 Proces	ssing								Apply	
Co3. To	o study	about	the colle	ection a	& transi	fer the	waste							Apply	
Co4. T	'o Study	the pro	ocess of	f off site	e proces	sing								Apply	
CO5. 7	Γo knov	v about	the soli	d waste	dispos	al								Apply	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND P	ROGE	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	-	-	-	-	-	-	L	-	-	-	-	М
CO2.	S	М	L	S	S	S	-	-	-	-	-	-	L	-	-
CO3.	S	М	М	S	-	-	L	М	М	-	-	-	-	S	М
CO4.	S	М	М	М	-	-	-	-	-	L	М	-	-	-	-
CO5.	S	М	М	-	-	-	-	-	-	-	-	L	S	-	-
S- Stro	ng; M-	Mediu	m; L-I	LOW											

SOURCES AND TYPES OF MUNICIPAL SOLID WASTES: Sources and types of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization; Effects of improper disposal of solid wastes – public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITE STORAGE & PROCESSING: On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options. **COLLECTION AND TRANSFER:** Methods of Collection – types of vehicles – Manpower requirement – collection

routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

OFF-SITE PROCESSING: Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions.

DISPOSAL: Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

TEXT BOOKS:

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

REFERENCES:

- 1. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997.
- 2. Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17CVEC36	WASTE WATER ENGINEERING	Category	L	Т	Р	Credit
1.0,2000		EC	3	0	0	3

PREAMBLE

The objectives of this course is to help students develop the ability to apply basic understanding of physical, chemical, and biological phenomena for successful design, operation and maintenance of sewage treatment plants.

PRER	PREREQUISITE														
		Envi	ronme	ntal E	nginee	ring									
COUR	COURSE OBJECTIVES														
1	To U	ndersta	and bas	ic conc	epts in	Trans	missio	n of wa	ater sys	tem					
2	To Understand the process and Treatment of waste water.														
3	To Understand the methods of Sewage Disposal														
4	To understand the advances in sewage treatment														
COUR	URSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1. A	1. An ability to estimate sewage generation and design sewer system including														
sewage	wage pumping stations														
CO2. T	2. The required understanding on the characteristics and composition of sewage, Understand														
CO3	n ahil	$\frac{101013}{10101}$	erform	hasic	design	of the	unit or	eration	ns and i	nnocesse	s that at	۰e		A	
used in	i sewag	ge treat	ment	lousie	uesign	or the	unit op	oración		0000330	5 that a	C		Apply	
CO4. U	Jndersta	ind the st	tandard	method	s for dis	posal of	sewage.							Apply	
CO5. C	Gain kr	nowled	ge on s	ludge	reatme	ent and	dispos	sal.					Uı	nderstan	d
MAPP	ING V	WITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC (DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	S	S	-	-	М	-	S	S	S	S
CO2	М	М	S	S	М	S	S	-	-	S	-	S	М	М	S
CO3	S S S S M M - M - S														
CO4	М	S	М	М	М	S	S	L	-	-	-	-	М	S	М
CO5	S	S	S	S	S	S	S	-	-	-	М	S	S	S	S
S- Stro	- Strong; M-Medium; L-Low														

SYLLABUS SEWERAGE SYSTEM: COLLECTION & TRANSMISSION

Sources of wastewater – Quantity of sanitary sewage – Estimation of storm runoff – Wastewater characteristics and significance – Effluent disposal standards – Design of sewers – Computer applications – Laying, jointing and testing of sewers – Sewer appurtenances – Pump selection – Drainage in buildings – Sanitary fixture and fittings –Systems of Sanitary plumbing – House Drainage – House Sewer connection.

SEWAGE TREATMENT - PRIMARY TREATMENT

Objectives – Unit Operations & Processes - Materials for sewers – Layout of wastewater Treatment Plant - Characteristics and composition of sewage – Principles, functions and design of screen, grit chambers and

primary sedimentation tanks.

SEWAGE TREATMENT – SECONDARY TREATMENT

Secondary Treatment – Activated Sludge Process and Trickling filter – Stabilisation Ponds and Septic tanks – Advances in Sewage Treatment

SEWAGE DISPOSAL

Methods – Dilution – Self purification of surface water bodies – Oxygen sag curve – Land disposal – Sewage farming – Deep well injection – Soil dispersion system – Wastewater reclamation techniques.

SLUDGE TREATMENT AND DISPOSAL

Thickening – Sludge digestion – Biogas recovery – Design of Drying beds – Conditioning and Dewatering – Sludge disposal.

TEXT BOOKS:

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

REFERENCES:

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering–Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2010.
- 3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C., 2010
- 4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	C.Kathirvel	Asst. Professor	CIVIL	geologykathir@gmail.com
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17071			00	EAN	SCIE	NCE	C	Category	/	L	Г		Р	Cred	lit
1/616	LC02						I	EC - PS		3	0)	0	3	
PREAM Ocean s of the b organismi importa	ABLE cience io reso ms in nce of	explai urces a the la marine	ns abo and its borato e deriv	but the s application ory convert wed pr	e vario ication ondition oduct	ous aspects of 1 ns. It also deal ons. This stuc s.	marine of s with of ly furth	ecosysto explora ner faci	em. It g tion of litates	ives the various the stu	basic l culturi dent to	knowle ing tec o unde	edge a hniqu erstanc	bout avai es offew d the eco	lability marine onomic
	EQUIS	ITE -	NIL WES	1											
		JEC I	art of	mari	ne ec	system and th	eir pro	nortios							
2	2 To describe the about biodiversity in marine environment and their resources														
3	3 To perform various culture techniques of marine organisms														
4	To develop drug from marine compounds and their economic Values														
5	5 To assess the human impact on marine environment														
COUR	COURSE OUTCOMES														
On the s	In the successful completion of the course, students will be able to														
CO1. R	ecall th	e Mar	ine ec	osyste	em sou	urces and their	r proper	ties]	Remembe	er
CO2. D	escribe	the bi	odive	rsity i	n mar	ine environme	ent						۱	Understar	nd
CO3. D	emonst	trate th	e diff	erent	cultur	e techniques o	of marin	e organ	isms					Analyse	
CO4. A	ssess th	ne deve	elopeo	l drug										Analyse	
CO5. C	riticize	the hu	ıman i	impac	t on n	narine environ	ment						1	Apply	
MAPPI	ING W	ITH I	PROC	GRAN	IME	OUTCOMES	S AND	PROG	RAMN	IE SPE	CIFIC	COUT	COM	IES	
COS	РО	PO	PO	PO	PO	PO06	PO0	PO0	PO0	PO1	PO1	PO	PSO	PSO	PSO
	1 2 3 4 5 7 8 9 0 1 12 1 2 3														
CO1	<u>S</u> L M L														
CO2	<u>M L - M S L</u>														
CO3	S	-	L	Μ	L	-	М	-	-	-	-	М	-	-	-
CO4	S	М	Μ	L	L	-	L	-	-	-	L	L	-	-	-
CO5	S	S	S	M	L	L	S	-	-	-	-	S	-	-	-
S- Stron	$\frac{\text{ng}; \text{M-N}}{\text{D}}$	Aediur	n; L-I	LOW											
SYLLA	BUS														

Introduction to Marine Environment

Stratification of coastal environment- Bathymetric map, Thermocline; components of marine ecosystem; Biotic and Abiotic and their interrelationships-Role in food chain, food web ;Trophic systems; Taxonomy of marine flora and fauna; Physico chemical properties of marine water

Biodiversity and Bioresources

Biodiversity of marine ecosystem – Phytoplankton; Algal bloom; Indicator organisms. Bio-geocycles; Bioresources and their economic importance; Adaptations of flora and fauna in marine & estuarine environment.

Culture Techniques

Culture Techniques of microalgae; seaweeds; tiger shrimp; lobsters; Common marine pathogens and symptoms; Transgenesis and cryopreservation

Economic Value

Economic importance of marine products; Economic value - corals, sponges, pearls, oysters, molluscs; Drug development from natural marine derived compounds

Impacts on Marine Environment

Human Impact on Marine Environment – Oil spill, Nuclear reactors, Thermal impact, Bio fouling; Heavy metal pollution.

REFERENCE BOOKS

- 1. 1. Milton Fingerman and RachakondaNagabhushanam, Recent Advances in Marine Biotechnology (Series) Biomaterials and Bioprocessing, Science Publishers 2009.
- 2. Proksch and Werner E.G.Muller, Frontiers in Marine Biotechnology. Horizon Bioscience, 2006

COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. G. Karthiga Devi	Assistant	Biotechnology	devigk19@gmail.com								
		Professor										
2	Dr.S.Vinoth	Assistant	Biotechnology	vinogenes@gmail.com								
		Professor										

1 7 D7	EC26]	ECO	FRIE	NDLY	Y MULTI	(Categor	у	L	Г	' F	>	Credi	t
1/01	LC20		SIC	JKEY	S BUI	LDING		EC-PS	5	3	C) ()	3	
PREA The bi solutio use, c enviro	The built environment is a major source of society's environmental impact, and is a major opportunity to find solutions. Recent attention to –green construction emerges in many domains including energy systems, water use, construction processes, architectural design, site planning and brownfield development, At present, environmental issues can be considered in seemingly unlimited areas of the design and construction process.														
PRER	REQUIS	ITE -													
1	To state live in.	e about	t the in	nfrast	ructur	e providing clea	n c	lrinking	g water,	clean a	ir to bre	ath and	safe b	uilding t	0
2	To exp	lain the	e stude	ents a	bout t	he threats due to	o po	ollution	leading	to sust	ainable	infrastı	ructure		
3	To dem	onstra	te the	impa	ct and	aspects of green	n b	uilding	and Arc	chitectu	re				
COUI	RSE OU	TCON	AES												
On the	On the successful completion of the course, students will be able to														
CO1.	Underlin	e the c	oncep	ts rela	ated to	o pollution probl	len	n during	g constru	uction.			Re	emember	r
CO2.	Classify	the des	sign o	fsyste	em for	comfortable liv	ving	g	1	•		1	U	nderstan	d
kinetic	Employ a control	geoche	mical	trans	port n	nodel to maintain	n ti	he therr	nodynai	mics eq	uilibriu	m and	A	pply	
CO4.	Appraise	the Co	onstru	ction	of bui	ldings for econo	om	ically, e	environi	nentall	y and sc	cially	A	nalyse	
sustan	$\frac{1}{2}$	the real	0.000	a and	aucto	inchility of conc	++++	ation	nd graat	huildi	n		E	valuata	
	PING W		ROG			DOICOMES A								ES DSO	DSO
COS	POI	2	3	4	FU 5	P000	r C	8	9	0	1	2	1	2	3
							0 7		-						
CO1	CO1 S M L L S M S - L L M M L														
CO2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
CO3	S	M	M	M	-	-	-	-		L	L	M	M	- M	- M
C04 C05	s S	M	IVI L	IVI L	-	-	-	-			-		S M	IVI -	IVI -
S- Stro	ong; M-N	/Jediun	n; L-L	LOW			1					5			<u> </u>
SYLL	ABUS		•												

Concepts of Constructing Multi Storey Building Study of water, soil, air and their related pollution problems in construction. Identification and development of

technical solution to solve / control problems- legislative, economic and social concern.

Concept of Human Habitat

Design of systems – Living area, ventilation, electrical circuits (less consumption) technologies and structures to suit the growing population for comfortable living.

Geochemical Aspects of Green Building

Geochemical transport model maintaining thermodynamics equilibrium and kinetic control-Hydrology transfer resources and impact of bioremediation, treatment plant design, problem solving techniques, civil and environmental application of engineering science and creative problems solving methods

Engineering Architecture

Impact of architecture, engineering and construction on individuals, communities and nation. Construction of buildings which are economically, environmentally and socially sustainable to future - knowledge, tools and materials that enhance the safety and cost effective

Resources and Sustainability

Environmental chemistry, advanced air and water treatment technologies durability of construction, green building (sustainable buildings). Resource efficient building from planning to design, construction, maintenance, renovation and demolition.

REFERENCE BOOKS

1. Adaptation and mitigation of climate change - Scientific Technical Analysis. Cambridge University Press, Cambridge, 2006

2. Arvind Krishnan et al. – Climate Responsive Architecture, Tata Mcgraw –Hill New Delhi 2001.

3. Sandra Mendler, William Odell, The Guide Book Of Sustainable Design, John Wiley & Sons, 2000.

4. Lawson.B , Bulding Materials, Energy And The Environment; Towards Ecologically Sustainable Development Raia, Act, 1996

COUI	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com									
2	Dr. S. Chozhavendhan	Associate Professor	Biotechnology	scvibt@gmail.com									

170/00/		RENEWABLE ENERGY AND	Category	L	Т	Р	Credit					
I/BIEO	21	CONSTRUCTION METHODS	EC-PS	3	0	0	3					
PREAM	BLE						1					
Course proof the energy	rovide ergy fie	s an introduction to energy systems and eld and an emphasis on alternate energy	d renewable en sources and th	hergy resour heir technolo	ces, with	a scienti oplication	fic examination					
PRERE(QUISI	TE - NIL										
COURSI	E OBJECTIVES											
1	To list out the explore society's present needs and future energy demands.											
2	To explain conventional energy sources and systems, including fossil fuels and nuclear energy.											
3	To per geothe	form on alternate, renewable energy source rmal, and hydro.	urces such as s	olar, biomas	ss (conver	sions), w	vind power,					
4	To out	line the energy conservation methods w	vill be emphasi	ized.								
COURSI	E OUI	rcomes										
On the su	ccessf	ul completion of the course, students wi	ill be able to									
CO1. To including	state fossil	the challenges and problems associate fuels, with regard to future supply and	d with the use the environme	e of various ent.	energy s	ources,	Remember					
CO2. Dis fossil fue	cuss re ls and	emedies/potential solutions to the supply other energy resources.	y and environ	nental issue	s associate	ed with	Understand					
CO3. Illu	strate	and describe the primary renewable ene	rgy resources	and technolo	ogies.		Apply					
CO4 111-	Ulustrate the basic electrical concerts and system components.											

CO4. Illustrate the basic electrical concepts and system components.ApplyCO5. Estimate the quantify energy demands and make comparisons among energy uses,
resources, and technologies.Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO	PO	PO	PO06	P	PO0	PO0	PO1	PO1	PO1	PSO	PSO2	PSO
			3	4	5		C	8	9	0	1	2	1		3
							0								
							7								
CO1	S	М	L	L	S	М	S	-	-	-	-	-	-	-	-
CO2	S	М	L	М	-	L	S	-	L	-	-	S	М	-	-
CO3	S	М	М	М	-	L	S	-	-	-	-	М	М	-	-
CO4	S	М	М	М	-	М	S	-	-	-	-	L	S	-	-
CO5	S	М	L	L	-	М	S	-	-	-	-	S	М	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

Principles of Solar Radiation

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

Solar Energy Collection Storage and Applications

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors. Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications-solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

Wind Energy

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria

Bio-mass

Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation and economic aspects.

Ocean Energy and Direct Energy Conversion

OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. Need for DEC, Carnot cycle, limitations, principles of DEC.

TEXT BOOKS

1. GD Rai- Non-Conventional Energy Sources, Khanna Publishers, 2004

- 2. Twidell&Wier Renewable Energy Resources 3rd Edition –, CRC Pres, Taylor & Francis, 2015
- 3. D.O.hall and R.P. Overeed Biomass Renegerable Energy John Wiley and Sons, New york, 1987.

COURS	COURSE DESIGNERS												
S.No	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com									
2	Dr. G. Karthiga	Assistant Professor	Biotechnology	devigk19@gmail.com									
	Devi												

17BTEC28

ENVIRONMENTAL FRIENDLY PRACTICES IN CIVIL ENGINEERING

PREAMBLE

This course will make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

PREREQUISITE - NIL

COURSE OBJECTIVES

1	To list out the students, who can work in a multi-disciplinary environment to anticipate and address evolving challenges of the 21st century.														
2	To sum	mari	ze the	synthe	size da	ta with	sound e	engineer	ing principles,	me	thodologie	es, and	the late	st	
	technol	ogy : ering	nto cro proble	eative,	sustair	hable, sa	ate and	econom	ical engineering	g so	olutions to	enviro	onmenta	l	
3	To clas	sify t	the Cha	aracter	ize and	l mitiga	te natur	al and n	nan-made hazar	ds					
4	To outl	ine t	he func	lament	al kno	wledge	of the in	nter-rela	tionships betwe	een	the built e	environ	ment a	nd natu	ıral
5	To design the technological innovations needed to safeguard, improve, and economize infrastructure and														
5	society														
6	To generate and apply high performance eco-friendly structural materials and systems.														
COU	RSE OU	SE OUTCOMES													
On th	e successful completion of the course, students will be able to														
CO1	Recall the function on multidisciplinary teams														
	1. Recall the function on multidisciplinary teams. er														
CO2.	2. Exemplify to identify, formulate, and solve engineering problems.														
CO3	Illustrat	o tho	profes	sional	and at	nical ras	nonsihi	lity An	-	<u></u>	vicate effe	otivolu		Apply	7
C03	Categor	$\frac{1}{1}$	he bros	ad educ	and cu	necessar	v to un	derstand	the impact of	enc	ineering s		1s in a	Analy	/ /Se
globa	l, econor	mic,	enviro	nmenta	al, and	societal	l contex	t.	a the impact of	Ulle	, meening s	oracior	lo III u	7 mary	50
CO5.	Measur	e the	e conv	ert un	its of	energy-	—to qu	antify e	nergy demands	s a	nd make o	compai	risons	Evalu	ate
amon	g energy	v uses	s, resou	arces, a	ind tec	hnologi	es.							r .	
MAP	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	P O	PO3	PO4	PO5	PO06	PO07	PO08	PO09	P C	PO11	PO1 2	PSO1	PS O	PSO3
001			T	T	q		q			0					
CO1	S	M M	L	L M	S	M	S	-	M		-	- S	-	-	-
CO2	S	M	M	M	-	M	S	S	-	-	-	M	M	-	-
CO4	S	М	М	М	-	-	S	-	-	Ι	-	L	S	-	-

CO5	S	М	L	L	-	-	S	-	-	-	-	S	М	-	-
S- Str	ong: M-	Medi	ium; L	-Low											

Civil Engineering in Twenty First Century

Esstential skills and strategies- critical thinking, finance and economics, design skill, communication, law and ethics, heritage and future.

Environmental Impact Design (EID)

Definition, scope and strategies of EID, categorical types- Direct, indirect and cumulative and its impact. Focus on construction process, materialization and building efficiencies and its life cycle.

Geochemical Aspects of green building

Geochemical transport model maintaining thermodynamics equilibrium and kinetic control-Hydrology transfer resources and impact of bioremediation, treatment plant design, problem solving techniques, civil and environmental application of engineering science and creative problems solving methods

Environmental Geology

Introduction, definition, scope, geological factors- location, design, construction, operation and maintenance (residential, commercial and industrial development) stormwater drainage system, sewage treatment plant, geohazards.

Environmental Public Health Protection

Definition, discipline - epidemiology, toxicology, exposure science, environmental engineering, law. Environmental health profession.

TEXT BOOKS

1. Prof. D. Venkat Reddy, NIT-Karnataka, Engineering Geology, Vikas Publishers, 2010 ISBN 978-81259-19032

2. Novice, Robert (editor) (1999-03-29). "Overview of the environment and health in Europe in the 1990s" (PDF). World Health Organization.

3. Neil S. Grigg, P.E.D.WRE, Marvin E. Crisus, P.E.Darrell, G. Fontune, J.Siller. 2001. Civil Engineering practice in twenty first century. ASCE Press.

REFERENCE BOOK

 Legget, Robert F., and Karrow, Paul F., 1983, Handbook of geology in civil engineering: McGraw-Hill Book Company, 1,340 pages, 50 chapters, five appendices, 771 illustrations. ISBN 0-07-037061-3
 Price, David George, Engineering Geology: Principles and Practice, Springer, 2008 ISBN 3-540-29249-7

COU	COURSE DESIGNERS												
S.N	Name of the Faculty	Designation	Department	Mail ID									
0													
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com									
2	Dr. G. Karthiga Devi	Assistant Professor	Biotechnology	devigk19@gmail.com									

17BTEC25									C	Category	L	,	Г	Р	C	redit
			BIOLOGY FOR NON BIOLOGISTS EC-PS 3 0									0	0 3		3	
PREAMBLE																
The purpose of this course is to provide a basic understanding of biological mechanisms of living organisms from																
the perspective of engineers. In addition, the course is expected to encourage engineering students to think about																
solving biological problems with engineering tools.																
PREREQUISITE																
NIL																
COURSE OBJECTIVES																
1	1 To list out the students with the basic organization of organisms and subsequent building to a living being															
2																
2	activities															
3 To implement the knowledge about biological problems that requires engineering expertise to solve them.																
COURSE OUTCOMES																
After the successful completion of the course, learner will be able to																
CO1: Recall the structure and cell theory of living organism. Remember										r						
CO2: I	CO2: Discuss about the biological diversity of life. Understand											d				
CO3: C	CO3: Classify the application of enzymes in industrial level. Apply															
CO4: I	CO4: Detect the uses of Bioremediation and Biosensors using molecular machines. Analyse															
005 4																
System																
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS CO1	POI S	- 102	PO3	- 104	PO M	PO -	PO/	P08 -	- 109	-	-	1012 L	M PSC	л Р. М	502	-
CO2	S	М	М	М	S	L	L	-	L	L	-	L	S	S		-
CO3	-	М	М	М	L	М	L	-	L	S	L	S	L	М		L
CO4	S	S	S	М	М	S	S	L	S	М	-	S	S	S		L
CO5	S	М	М	М	-	-	-	-	-	L	L	L	М	М	-	S
S- Stro	ong; M-l	Mediur	n; L-Lov	N												

INTRODUCTION TO BIOLOGY – CELL AND CELL STRUCTURE AND FUNCTION:

Introduction, Scope, Disciplines of biology-An over View of plants, animal, Microorganism.

INTRODUTION TO BIOLOGY – BIO CHEMISTRY, ENZYME, INDUSTRIAL USE:

Prokaryotes – Eukaryotes, Cell, Cell structure, Organelles and their functions, Yeast, Bacteria – Friends and Foe.

FOOD DIET NUTRITION:

Major constituents of food – carbohydrate, protein, lipids, vitamins and minerals. Balanced diet-BI-Junk food, Fermented food, nutritional values.

ENVIRONMENT:

Clean environment-Reduce, Recycle and Reuse-Renewable energy-Waste management –water-waste water management – personal hygiene, Global Climatic Changes -Tsunami, global warming, storms, vardha,Okhi. Recycled products -Paper, No to plastic, go green.

HEALTH, IMMUNE SYSTEM AND MEDICINE:

Immunology- Blood Grouping – Antigen- Antibody. Antibiotics, Vaccines their significance. Diagnosis – Parameters in Urine and Blood. Instruments – ECG, ECHO, MRI, X-ray. Prophylaxis, Chemotherapy and Allergy.

TEXT BOOKS:

- 1. J.M.Berg, J.L.Tymosczko and L.Sryer. Biochemistry, W.H Freeman publication.
- 2. STUDENT COMPANION to accompany Biochemistry, Fifth Edition-Richard I. Gum port.
- 3. Frank H.Deis, Nancy Count Gerber, Roger E.Koeppe, 2 Molecular motors

REFERENCE BOOKS:

- 1. Albert's, 2003, Molecular Biology of the cell
- 2. Lodish, 2004, Molecular cell Biology

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Deepapriya	Assistant Professor	Biotechnology	deepapriya21@gmail.com
2	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com

17CSEC06		CRYPTOGRAPHY AND					C	ategory		L	L T P			Credit			
			NET	WORI	K SEC	URITY	7]	EC-PS	3		0	0		3		
PREAMBLE																	
To understand the concepts in cryptography and network security and their applications in real time.																	
PRERI	EQUIS	SITE -	NIL														
COUR	SE OB	BJECT	TIVES														
1	1 To understand the basic concepts in understanding cryptography and network security												ity				
2	To study various algorithms used in cryptography																
3	To understand key exchange methods used																
4	To study the applications of cryptography in authentication																
5	To understand various security threats																
6	6 To understand the basic concepts in understanding cryptography and network security																
COURSE OUTCOMES																	
On the	success	sful co	mpleti	on of t	he cou	rse, stud	dents w	ill be ab	ole to								
CO1: Able to understand basic concepts in cryptography and network security												Understand					
CO2:	Able to	o under	rstand	and ap	ply cry	ptograp	hy met	hods						Apply			
CO3: A	Able to	apply	techni	ques ir	inform	nation s	security							Apply			
CO4 : A	Able to	under	stand a	nd apr	olv auth	enticati	ion con	cepts						Understand			
													and Apply				
CO5: Able to apply security and firewall concepts Apply																	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																	
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	M	M									L	L					
CO2	M	M		L								L					
03	М	IVI	L	L		М											
CO4	М	S	L			L				L		М					
CO5	М	L				М					М	L					
S- Strong; M-Medium; L-Low																	
SYLLA	ABUS																
INTRO	DUC	ΓΙΟΝ					INTRODUCTION										

Security trends – Attacks and services – Classical crypto systems – Different types of ciphers – LFSR sequences – Basic Number theory – Congruences – Chinese Remainder theorem – Modular exponentiation – Fermat and Euler's theorem – Legendre and Jacobi symbols – Finite fields – continued fractions
METHODS

Simple DES – Differential cryptanalysis – DES – Modes of operation – Triple DES – AES – RC4 – RSA – Attacks – Primality test – factoring

TECHNIQUES

Discrete Logarithms – Computing discrete logs – Diffie-Hellman key exchange –ElGamal Public key cryptosystems – Hash functions – Secure Hash – Birthday attacks -MD5 – Digital signatures – RSA – ElGamal – DSA.

AUTHENTICATION

Authentication applications – Kerberos, X.509, PKI – Electronic Mail security – PGP,S/MIME – IP security – Web Security – SSL, TLS, SET.

SECURITY AND FIREWALLS

System security – Intruders – Malicious software – viruses – Firewalls – Security Standards.

TEXT BOOKS

1. Dr. S. Bose and Dr.P. Vijayakumar, -Cryptography and Network Securityll, First Edition, Pearson Education, 2016.

2. Wade Trappe, Lawrence C Washington, -Introduction to Cryptography with coding theory 1, 2nd ed, Pearson, 2007.

3. William Stallings, —Cryptography and Network Security Principles and Practices^I, Pearson/PHI, 6th edition, 2013.

REFERENCE BOOK

1. W. Mao, -Modern Cryptography – Theory and Practice^{II}, Pearson Education, Second Edition, 2007. 2. Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing Third Edition –Prentice Hall of India, 2006.

COUR	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in								

17CSCC19 INTRERNET OF THINGS Category									L	T F	C	redit			
1/0	been				i della						EC	3	0 0)	3
PRE	AMBLE	2													
To st	udy and	unders	tand the	e techn	ologie	s invol	lved in	Internet	of Thin	gs (IoT) and ap	ply the	m pract	ically	
PRE	REQUIS	SITE:	Nil												
COU	URSE OI	BJECT	TIVES												
1	To unde	rstand	the bas	ic con	cepts o	f IOT									
2	To study	y the m	nethodo	logy of	f IOT										
3	To Deve	elop IC)T appli	ication	s using	g Raspl	berry P	I							
4	To Deve	elop IC)T appli	cation	s using	g Ardu	ino anc	l Intel Ea	lison						
5	5 To apply cloud concepts in IOT														
COU	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1: Able to understand basics in IOT Understand															
CO2	CO2: Able to understand Methodology in IOT Understand														
CO3	: Able to	desig	n IOT a	applica	tions u	ising R	aspber	ry					Desig	gn	
CO4	: Able to	desigr	n IOT aj	pplicat	ions us	sing A	urdino	and Inte	l Edisor	ı			Desig	gn	
CO5	: Able to	o apply	Cloud	compu	iting ir	n IOT							Appl	у	
C01	: Able to	under	stand ba	asics ir	n IOT								Unde	rstand	
MAI	PPING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND PR	ROGRA	MME	SPECIE	TC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М									L	L	-	-	-
CO2	М	М		L								L	-	-	-
CO3	М	М	L	L		М							-	-	-
CO4	М	S	L			L				L		М	-	-	-
CO5	М	L				М					М	L	-	-	-
CO6	CO6 M M I I L L -														
S- Strong; M-Medium; L-Low															
SYL	LABUS														
INTI	RODUC'	TION													

Introduction-Characteristics-Physical design - Protocols – Logical design – Enabling technologies – IoT Levels – Domain Specific IoTs – IoT vs M2M.

IOT METHODOLOGY

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development

IOT WITH RASPBERRY

Basics of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

APPLICATIONS

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT.

TEXT BOOKS:

1. Arshdeep Bahga, Vijay Madisetti, -Internet of Things – A hands-on approachl, Universities Press, 2015.

2. Manoel Carlos Ramon, -Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers^{II}, Apress, 2014.

REFERENCE BOOKS:

1. Marco Schwartz, -Internet of Things with the Arduino Yunl, Packt Publishing, 2014

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in

17C	7CSCC17 CYBER SECURITY								(Category	L	Т	Р	Cr	edit	
_											EC	3	0	0		3
PRE	AMBLE	C														
To u	nderstan	d the n	eed for	Cyber	Securi	ty in re	eal time	e and to	study te	chnique	es involv	ed in i	t			
PRE	REQUI	SITE:	Nil													
COU	JRSE OI	BJECT	TIVES													
1	To unde	erstand	the fun	damen	tals of	Cyber	Secur	ity								
2	To stud	y vario	us attac	king to	echniqu	les										
3	To appl	y explo	oitation	in cyb	er spac	e										
4	To stud	y abou	t Malici	ous co	des											
5	Defendi	ng aga	inst cył	ber atta	icks											
COU	COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to															
CO1	CO1: Able to Understand basics in cyber security Understand															
CO2	CO2: Able to apply attackers techniques in real time Apply															
CO3	Able to	apply	exploit	ation i	n web	applica	ations						App	oly		
CO4	: Able to	under	stand ar	nd app	ly mali	cious	in netw	vorks.					Uno App	lers oly	tand a	nd
CO5	Able to	o apply	v defens	e and a	analysi	s tech	niques	in real ti	me				App	oly		
CO1	: Able to	Unde	rstand b	asics i	n cybe	r secu	rity						Uno	lers	tand	
MA	PPING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND PF	ROGRA	MME	SPECIE	FIC O	UTCO)M	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	М	М									L	L				
CO2	М	М		L								L				
CO3	М	М	I.	L		М										
CO4	М	S	L			L				L		М				
CO5	М	L				М					М	L				
S-St	S- Strong; M-Medium; L-Low															
SYL	SYLLABUS															
	- ~															
INT	RODUC	TION						a			D 11		_			10

Network and security concepts – basic cryptography – Symmetric encryption – Public key Encryption – DNS – Firewalls – Virtualization – Radio Frequency Identification – Microsoft Windows security Principles

ATTACKER TECHNIQUES

Antiforensics - Tunneling techniques - Fraud Techniques - Threat Infrastructure

EXPLOITATION

Techniques to gain a foot hold – Misdirection, Reconnaissance, and disruption methods.

MALICIOUS CODE

Self Replication Malicious code – Evading Detection and Elevating privileges – Stealing Information and Exploitation

DEFENSE AND ANALYSIS TECHNIQUES

Memory Forensics – Honeypots – Malicious code naming – Automated malicious code analysis systems – Intrusion detection systems – Defense special file investigation tools **TEXT BOOKS:**

1. James Graham, Richard Howard and Ryan Olson, -Cyber Security Essentials^{II}, CRC Press, Taylor & Francis Group, 2011.

2. By Dan Shoemaker, Ph.D., William Arthur Conklin, Wm Arthur Conklin, -Cyber security: The Essential Body of Knowledgel, Cengage Learning, 2012.

REFERENCE BOOKS:

1. Ali Jahangiri, -Live Hacking: The Ultimate Guide to hacking Techniques & Counter measures for Ethical Hackers & IT Security Experts^{II}, 2009.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in

17CSEC11 GREEN COMPUTING Category										L	Т	Р	Cr	redit		
											EC	3	0	0		3
PRE To a	AMBLE cquire kn	2 owledg	ge to ad	lopt gr	een coi	mputin	g prac	tices and	d To lea	rn about	energy	saving	practi	ices	5.	
PRE	REQUIS	SITE:	Nil													
COU	JRSE OI	BJECT	TIVES													
1	To acqu	ire kno	owledge	e to ado	opt gre	en con	nputing	g practic	es							
2	2 To minimize negative impacts on the environment.															
3	To learn	about	energy	saving	g pract	ices an	d To u	ndersta	nd the in	npact of	e-waste	and c	arbon	wa	ste.	
4	4 To learn about green compliance. And implementation using IT.															
COU	COURSE OUTCOMES															
On t	On the successful completion of the course, students will be able to															
CO1	CO1: To acquire knowledge to adopt green computing practices Understand															
CO2: To minimize negative impacts on the environment. Apply																
CO3 carbo	To lear To waste	n abou	t energ	y savin	g pract	tices a	nd To i	understa	and the i	mpact o	f e-waste	e and	Und	lers	tand	
CO4	: To lear	n abou	t green	compli	iance.	And in	npleme	entation	using I7	Γ.			Und	lers	tand A	pply
CO5	: Able to	o apply	defens	e and a	analysi	s tech	niques	in real t	ime				App	oly		
MA	PPING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND PI	ROGRA	MME	SPECIF	FIC O	UTCC)M	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	l	PSO2	PSO3
CO1	М		S			М			S		L	L				
CO2	М	S	М		S					L		L				
CO3	М	М		М			М		L							
CO4	М	S						L		М		М				
CO5	М	L				М					М	L				
S-St	S- Strong; M-Medium; L-Low															
SYL FUN	SYLLABUS FUNDAMENTALS															

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing: CarbonFoot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Seamless Sharing Across Systems. Collaborating and Cloud Computing, Virtual Presence.

GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector

TEXT BOOKS:

- 1. Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligencell, CRC Press, June 2011
- 2. Carl Speshocky, —Empowering Green Initiatives with ITI, John Wiley and Sons, 2010.

REFERENCE BOOKS:

1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journey^{II}, Shoff/IBM rebook, 2011.

2. John Lamb, —The Greening of ITI, Pearson Education, 2009.

3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industryl, Lulu.com, 2008.

COURS	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in									

17CSEC34 WEB DESIGN AND MANAGEMENT Category												L	Т	Р	Cr	edit
1700											EC	3	0	0		3
PREA To un of we	MBLE derstand b design	l and le manaş	earn the gement	script	ing lan	guages	s with	design o	f web app	plicatio	ons. and	mainte	enance	e and	d evalı	lation
PREI	PREREQUISITE: Web Technology															
COURSE OBJECTIVES																
1	To learn	the co	oncepts	of Wel	o desig	n patte	erns an	d page d	esign.							
2	2 To understand and learn the scripting languages with design of web applications.															
3	3 To learn the maintenance and evaluation of web design management															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1:	To fam:	iliarize	decisio	on supp	oort sys	stems a	and the	eir charad	eteristics				Unc	lerst	tand	
CO2:	To stud	y abou	t Intelli	gent D	SS and	d appli	cation	s of DSS	•				Арр	oly		
CO3:	To learn	n the te	echnolo	gies re	lated to	o decis	ion suj	pport sys	stems				Unc	lerst	tand	
MAP	PING V	VITH	PROG	RAM	ME OU	UTCO	MES	AND PR	OGRA	MME	SPECIF	FIC O	UTCO)Ml	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	I	PSO2	PSO3
CO1	S		S		М				L		L					
CO2		М		М				S								
CO3	S		М			L	М				L					
CO4																
CO5																
S- Str	ong; M-	Mediu	m; L-Lo	w									·	•		

SYLLABUS

SITE ORGANIZATION AND NAVIGATION

User Centered Design–Web Medium–Web Design Process–Basics of Web Design –Introduction to Software used for Web Design – ADOBE IMAGE READY, DREAM WEAVER, FLASH – Evaluating Process – Site Types and Architectures – Navigation Theory – Basic Navigation Practices – Search – Sitemaps

ELEMENTS OF PAGEDESIGN

Browser Compatible Design Issues-Pages and Layout – Templates – Text – Color – Images – Graphics and Multimedia – GUI Widgets and Forms – Web Design Patterns – STATIC pages: Slice– URL in ADOBE IMAGE READY. Creation and Editing of site map – Layer, Tables, Frame set, - CSS style – Forms –Tools like Insert, Rollover etc., in DREAM WEAVER.

SCRIPTING LANGUAGES AND ANIMATION USING FLASH

Client side scripting :XHTML – DHTML – JavaScript – XML Server Side Scripting: Perl–PHP– ASP/JSP Designing a Simple Web Application - Introduction to MACROMEDIA FLASH, Importing Other File Formats to Flash – Saving and Exporting Flash Files, Frame by Frame Animation–Motion Tweening – Shape Tweening..

PRE-PRODUCTION MANAGEMENT

Principles of Project Management – Web Project Method – Project Road Map – Project Clarification – Solution Definition – Project Specification – Content – Writing and Managing Content.

PRODUCTION, MAINTENANCE AND EVALUATION

Design and Construction – Testing, Launch and Handover – Maintenance – Review and Evaluation – **Case Study:** Using the Skills and Concepts Learn with the ADOBE IMAGE READY, DREAM WEAVER, FLASH, and Scripts, Develop Portfolios in the Form of Web Pages which have to be uploaded in Free Public Domain

TEXT BOOKS:

1. Themas A. Powell, —The Complete Reference–Web Design^{II}, Tata McGraw Hill, Third Edition, 2003.

2. Ashley Friedlein, —Web Project Managementl, Morgan Kaufmann Publishers, 2001.

3.H.M. Deitel, P.J. Deitel, A.B. Goldberg, —Internet and World Wide Web – How to Program^I, Third Edition, Pearson Education, 2004

REFERENCE BOOKS:

1. Joel Sklar, —Principles of Web Designl, Thomson Learning, 2001.

2. Van Duyne, Landay and Hong, —The Design of Sites: Patterns for Creating Winning Websites^{II}, Second Edition, Prentice Hall, 2006.

3. Lynch, Horton and Rosenfeld, —Web Style Guide: Basic Design Principles for Creating Websites^{II}, Second Edition, Yale University Press, 2002.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	Category	L	Т	Р	Credit
1700112004		EC-PS	3	0	0	3

PREAMBLE

To enable the students to acquire knowledge about the principles and applications of MEMS & Nanotechnology in Biomedical Industry.

PREREQUISITE – NIL

COURSE	E OBJECTIVES														
1	To un	derstan	d the wo	orking p	orincipl	e of ME	EMS &	Micros	ystems.						
2	To un	derstan	d the wo	orking o	of MOE	MS Te	chnolog	gy.							
3	To giv	ve an in	sight to	the mic	rofluid	ic syste	ms.								
4	To giv	ve an in	sight to	the Bio	-MEM	S & its	applica	tion in l	nealthca	are.					
5	To stu	idy abo	ut the bi	omedic	al Nano	otechno	logy &	its app	lication	in resear	ch doma	in.			
COURSI	E OUT	COME	S												
On the su	ccessfu	cessful completion of the course, students will be able to													
CO1. In	troduces the concepts of microfluidic systems. Understand														
CO2. In	troduce about the Basics of working of MOEMS Technology Understand														
CO3. Ex	xplain tl	he wo	rking p	rinciple	e of Ml	EMS &	. Micro	osysten	ns				τ	Jnderstar	ıd
CO4. At	nalyze	the nan	omateri	al in va	rious bi	iomedic	al appl	ication					ŀ	Analyze	
CO5. E ⁴	valuate	about	the bio	medica	al Nano	otechno	ology &	z its ap	plication	on in res	earch do	omain	I	Evaluate	
MAPPIN	G WII	TH PRO	OGRAI	MME (OUTCO	DMES A	AND P	ROGR	AMMF	E SPECI	FIC OU	TCOMI	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М		S	М	М					М			
CO2	S	S M L S M M S													
CO3	S		М		М	S	S	М				М		L	
CO4	М		М	L	L	S	S	S				М	L		L
CO5	S	S M M S S S M M L													

S- Strong; M-Medium; L-Low

SYLLABUS

MEMS & MICROSYSTEM

MEMS and Microsystems-Introduction-Typical MEMS and Microsystem Products-Application of Micro- system in Healthcare Industry - Working Principles of Microsystems Micro-sensors - Micro-actuation - MEMS with Microactuation – Micro-accelerators.

MICRO-OPTO ELECTROMECHANICAL SYSTEMS (MOEMS)

Fundamental principle of MOEMS Technology, Advantages - Light Modulators, Beam splitter – Micro-lens, Micro-mirrors - Digital Micro-mirror Device, Grating Light Valve, Optical Switch, Waveguide and Tuning

MICROFLUIDIC SYSTEMS

Microfluidics - Introduction and Fluid Properties, Applications of MFS-Fluid Actuation Methods - Electrophoresis, Dielectrophoresis, Electrowetting, Optoelectrowetting, Electro osmosis Flow, Electrothermal Flow, Thermocapillary Effect - Microfluidic Channel - Microfluidic Phicrofluidic Channel - Microfluidic - Microfluidic Phicrofluidic Phicrof

BIOMEMS

Introduction to BioMEMS, BioMEMS for Clinical Monitoring, Lab on a chip, DNA Sensors, E-Nose, E-Tongue, Microsystem approaches to PCR, MEMS based Implantable Drug Delivery System, Emerging, BioMEMS Technology.

BIOMEDICAL NANOTECHNOLOGY

Introduction to nanoscale phenomena, Nanoparticles - Nanomaterial characterization – XRD,SAXS,TEM,SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MRImaging, Nano-devices in biomedical applications.

TEXT BOOKS:

- 1. Tai-Ran Hsu, "MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley & Sons, 2nd Edition2008.
- 2. Nitaigour Premch and Mahalik, "MEMS", Tata McGraw Hill, 2nd Reprint 2008.
- 3. Wanjun Wang & Steven A. Soper, "BioMEMS Technologies and applications", CRC Press, First Edition 2007.

REFERENCES:

- 1. Steven S. Saliterman, **"Fundamentals of BioMEMS & Medical Microdevices"**, International Society for Optical Engineering, 1st Edition 2006.
- 2. Gerald A Urban, **"BioMEMS"**, Springer, 1st Edition 2006.
- 3. Abraham P. Lee and James L. Lee, **"BioMEMS and Biomedical Nanotechnology"**, Volume-I, Springer, 1st Edition, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Mr.R.Pathamuth	Assistant Professor (Gr-II)	BME	pathamuthu@avit.ac.in
3	Mr.S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

17BMEC12				но	сыта	I MAN	JACEN	AFNT			Category	/ L	Т	P C	Credit
17 DIVI				no	5111A		AGEN				EC-PS	3	0	0	3
PREAM To provid	BLE le the kr	nowledg	ge of pla	anning,	designi	ing and	safety	manage	ment in	n hospital	services.		<u> </u>		
PREREC	QUISIT	E – NI	L												
COURSI	E OBJE	CTIV	ES												
1	1 To obtain the knowledge about the basic planning and organization of hospitals.														
2	To stud	ly about	t the cli	nical an	d admi	nistrativ	ve servi	ces.							
3	To imp	art kno	wledge	on desi	gning o	f hospi	tal servi	ices.							
4	To stud	ly and a	nalyze	the safe	ty mana	agemen	t in hos	pitals.							
5	To study and analyze the infection control in hospitals.														
COURSI	RSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. Summarize the importance of hospital in healthcare and planning of hospital design Understand															
CO2. Identify various clinical services needed in the hospital Apply															
CO3. Build the idea about the hospital services design Create															
CO4. Exa	amine th	ne supp	orting s	ervices	needed	to buil	d the ho	ospital a	nd safe	ty guidel	ines	E	valuate		
CO5. Pla	n the in	npleme	ntation	of vario	ous infe	ction co	ontrol te	chniqu	es			A	pply		
MAPPIN	G WIT	TH PRO	OGRAI	MME (OUTCO	OMES .	AND P	ROGR	AMMI	E SPECI	FIC OUI	ГСОМІ	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L				S					М			
CO2	S	S	М	S					М						
CO3	S L S L M M M M														
CO4	S	М	М			М	М	М	Μ						
CO5	S	М	М	L		М			М			М			
S-Strong	; M-Me	dium; I	L-Low	I			I	I			I		1		
CVI I AD	UC														

SYLLABUS

PLANNING AND ORGANIZATION OF THE HOSPITALS

Roles of hospital in healthcare – hospital planning and design-outpatient services the nursing unit – intensive care Unit – nursing services – effective hospital management – directing and leading – controlling – financial management.

CLINICAL AND ADMINISTRATIVE SERVICES

Radiology and imaging services – laboratory services – operation theatre suite pharmacy – central sterile supply

department - hospital infection - materials management - evaluation of hospital services.

DESIGNING OF HOSPITAL SERVICES

Engineering department – maintenance management – clinical engineering electrical system – air conditioning system – water supply and sanitary system centralized medical gas system – communication system – solid waste management and transportation.

DESIGNING SUPPORT SERVICES AND SAFETY MANAGEMENT

Admitting department – medical records department – food service department laundry and linen service housekeeping – Volunteer department – safety in hospital fire safety – Alarm system – disaster management.

HOSPITAL INFECTION CONTROL

Importance of infection control – hand hygiene – aseptic techniques – isolation precautions – disinfection and Sterilization – clinical laboratory standards to infection control – health care workers safety.

TEXT BOOKS:

- 1. Kunders G D, —Biomechanics: Hospitals, facilities planning and management^{||}, Tata Mcgraw Hill, 2008.
- 2. Sakharkar B M, —Principles of hospital administration and planning, Jaypee Brothers Medical Publishers Pvt. Limited, 2nd Edition, 2009.

REFERENCE:

COURSE DESIGNERS

1. Sanjiv Singh, Sakthikumar Gupta, Sunil Kant, —Hospital infection control guidelines, principles and practicel, Jaypee Brothers Medical Publishers Pvt Limited, 1st Edition, 2012.

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in									
2	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in									

17BMEC20	HOSPITAL INFORMATION SYSTEM	Category	L	Т	Р	Credit
		EC-PS	3	0	0	3

PREAMBLE

With an objective of imbibing a professional approach amongst students towards hospital management. The subject encompasses management principles, staffing and marketing processes, discussing their significance and role in effective and efficient management of health care organizations.

PREREQUISITE:NIL

COURSE OBJECTIVES

1	To understand the hospital information system and supporting service								
2	To study the hospital management information systems.								
3	To know about the concepts of staffing process.								
4	To study the concept of marketing and management.								
5	5 To plan the maintenance of records in the other supportive departments of hospital.								
COURSE OUTCOMES									
On the successful completion of the course, students will be able to									
CO1. Exp	lain the various information system of Hospital & Supporting service	Understand							
CO2. Ana	lyze the Principle of Hospital Management	Analyze							
CO3. Exp	lain the various concept of Staffing process	Understand							
CO4. Explain the various concept of Marketing And Management Understand									
CO5. Design and develop the computer used to maintenance of records in the other supportive departments of hospital Apply									
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES									

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L		L	М						М			
CO2	S	L			L	L						М	L		
CO3	S	L			L	L						М	М		
CO4	S	М			L	М						М	S	L	
CO5	S	L			L	L						М	S	М	

S-Strong; M-Medium; L-Low

SYLLABUS

HOSPITAL INFORMATION SYSTEMS & SUPPORTIVE SERVICES

Management Decisions and Related Information Requirement - Clinical Information Systems - Administrative Information

Systems - Support Service Technical Information Systems – Medical Transcription, Medical Records Department – Central Sterilization and Supply Department – Pharmacy – Food Services - Laundry Services.

PRINCIPLE OF HOSPITAL MANAGEMENT

Importance of management and Hospital, Management control systems. Forecasting techniques decision - making process.

STAFFING

Staffing pattern in hospitals, Selection, Recruiting process, Training of staff, Organizational structures, Career development

MARKETING AND MANAGEMENT

Basic concepts marketing, Principles of social marketing, Social marketing in health sector, Consumer behavior and research health, Advertising in Health Sector, Relevance of e-marketing of Health care services

COMPUTER IN HOSPITAL

System Development life cycle, Reasons to use computers in hospital, main categories of information systems in hospitals

TEXT BOOKS:

1.Goyal R.C., —Human Resource Management in Hospitall, Prentice Hall of India Pvt. Ltd., New Delhi, 2000. 2.G.D.Kunders, —Hospitals – Facilities Planning and Managementl – TMH, New Delhi – Fifth Reprint 2007.

REFERENCES:

1. Nauhria R.N. and Rajnish Prakash, -Management & systems^{II}, New Delhi Wheeler publishing, 1995. 2. Koontz, —Essentials of Management^{II}, McGraw Hill, 1995.

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mr. R.Pathamuthu	Assistant Professor (Gr-II)	BME	pathamuthu@avit.ac.in								
2	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in								

17RMF	C05		F	IOME	MFDI	~ADF	тесн		CV		Categor	y L	Т	P C	Credit
I / DIVIL			1	IONIE		CARE	ILUII	NOLO	91		EC-PS	3	0	0	3
PREAMBI The purpose can be made	PREAMBLE The purpose of the course on home medicare technology for biomedical engineering students is to outline the health care that can be made available at home along with recent digital and tele-health technologies. PREDECUNCIPE														
PREREQU	ISITE	– Nil													
COURSE (OBJEC	TIVES	5												
1	To int	roduce	the bio	medical	instrun	nents th	at can	be used	at home	e.					
2	To understand the skills required for home medicare for the elderly and the children.														
3	To emphasize the need for home medicare system														
4	To learn the advances in healthcare technologies and wireless technology related to healthcare system														
5	To provide the advance medical technology in home medicare.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Review the biomedical instruments that can be used at home Understand															
CO2. Comprehend the advances in healthcare technologies and wireless technology related to healthcare system Understand															
CO3. Iden	tify the	skills r	equired	for ho	ne med	icare fo	or the el	derly ar	nd the c	hildren			Anal	yze	
CO4. Sum	marize	the org	anizatio	on and t	he need	for ho	me med	licare sy	ystem				Eval	uate	
CO5. Asso	ociate d	igital te	chnical	advanc	ements	with h	ome me	edicare					Crea	te	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S M M M M												L		
CO2	S M M M M S M											М	L		
CO3	S	М	М	М	М			S				М	М	L	L
CO4	S	М	М	М	М			S				М	М	L	L
CO5	S	М	М	М	М			S				М	S	М	М
S- Strong; N	A-Medi	um; L-l	Low	I	L		I	1	L	I	<u> </u>		1	I	

SYLLABUS

INTRODUCTION TO HOME MEDICARE

Home health care, purpose, legal and ethical aspects, Organization of homecare system, Historical development of home care, Environmental influences on home care, Home care organization, Home care nursing practice, Role of home care nurse and orientation strategies, Infection control in home, Patient education in home.

WORKING WITH USERS

Basic human needs, communication and interpersonal skills, Caregiver observation, recording and reporting, confidentiality, Working with elderly, aged, Working with children, need for home care, Mobility transfers and ambulation, range of motion exercises. Skin care and comfort.

MEDICAL INSTRUMENTS AND DEVICES AT HOME

Medical devices at home and its implementation, Scope of market for home medical devices, Unique challenges to the design & implementation of hightech home care devices, Infant monitors, Medical alert services, Activity monitors.

DIGITAL HOME CARE

Video communication to support care delivery to independently living seniors, Establishing an infrastructure for telecare, Implementation of mobile computing in home care programs, Home medicare management by videophone, Continuous home care through wireless bio-signal monitoring system.

ADVANCES IN MEDICAL TECHNOLOGIES

Dynamic configuration of home services, Personalized ambient monitoring, Support for mental health at home, Multi model interaction and technologies for care at home. User centered design of technologies to support care at home.

TEXT BOOKS:

1. Robyn Rice, "Home care nursing practice: Concepts and Application", Elsevier, 4th Edition, 2006.

2. Lodewijk Bos, "Handbook of Digital Homecare: Successes and Failures", Vol.3, Springer, 2011.

REFERENCES:

1. Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D, Bronzino, "Clinical Engineering", CRC Press, 1st Edition, 2010.

2. KenethJ. Tumer, "Advances in home care technologies", AT research series, Vol 31, 1st Edition, IOS press, 2012.

CUUKSE DESIGNEKS													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in									
2	Mr. A.Subbiah	Assistant Professor (Gr-II)	BME	subbiah@avit.ac.in									

COUDER DEGLENERS

17DM	EC10	BC	BODY AREA NETWORKS AND MOBILE							Ca	tegory	L	Т	Р	Credit
1/BM	ECIU			H	IEALT	THCA	RE			Е	C-PS	3	0	0	3
PREAD To ena apply t	PREAMBLE To enable the students to gain knowledge in various aspects of BAN related to health and the techniques to apply these in proper health care delivery.														
PRER	QUISIT	TE – NI	ſL					_				_			
COUR	SE OB.	JECTI	VES												
1	1 To Learn about body area network														
2	To stu	idy the	differe	ent BA	N hard	ware re	elated	to it							
3	To Provide knowledge in the applications of Body Area Networks														
4	To study the concept of telemedicine														
5	To Provide knowledge in the applications of Telemedicine														
COUR	URSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	CO1. Explain about working of Body Area Network Understand														
CO2. <i>A</i>	CO2. Analyze the Hardware for BAN Analyze														
CO3. I	Design	and de	velop t	he app	lication	ns of B	AN						Apply	7	
CO4. I	Explain	the fu	ndame	ntal co	ncept o	of telen	nedicir	ne					Unde	rstand	
CO5. I	Design	and de	velop t	he app:	lication	ns of te	lemed	icine					Apply	ý	
-	MAPPI	NG W	ITH PI	ROGR	AMME	E OUT	COME	S ANI	D PRO	GRAM	IME SI	PECIF	IC OUT	COME	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L			L							М	М		
CO2	2 S L L L											М	М	М	
CO3	3 S M L L M M M											М	М		L
CO4	S	М	L	L	М	М						М	S	L	
CO5	S	М	L	L	М	М						М	М		
S- Stro	ng; M-N	/ledium	ı; L-Lov	W				•							
SYLLA	SYLLABUS														

INTRODUCTION

Definition, BAN and Healthcare, Technical Challenges- Sensor design, biocompatibility, Energy Supply, optimal node placement, number of nodes, System security and reliability, BSN Architecture – Introduction.

HARDWARE FOR BAN

Processor – Low Power MCUs, Mobile Computing MCUs, Integrated processor with radio transceiver, Memory, Antenna – PCB antenna, Wire antenna, Ceramic antenna, External antenna, Sensor Interface, Power sources –

Batteries and fuel cells for sensor nodes.

APPLICATIONS OF BAN

Monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymias monitoring, Multi patient monitoring systems, Multichannel Neural recording, Gait analysis, Sports Medicine, Electronic pill.

FUNDAMENTALS OF TELEMEDICINE

History of telemedicine, definition of telemedicine, tele-health, tele-care, scope, Telemedicine Systems, benefits & limitations of telemedicine.

APPLICATIONS OF TELEMEDICINE

Teleradiology, telepathology, telecardiology, teleoncology, teledermatology, telesurgery, e Health and Cyber Medicine.

TEXT BOOK:

- 1. Annalisa Bonfiglio, Danilo De Rossi, "Wearable Monitoring Systems", Springer, 2011.
- 2. Norris A C, —Essentials of Telemedicine and Telecarel, John Wiley, New York, 2002.

REFERENCES:

- 1. Zhang, Yuan-Ting, —Wearable Medical Sensors and Systems^I, Springer, 2013.
- 2. H K Huang, —PACS and Imaging Informatics: Basic Principles and Applications, Wiley, New Jersey, 2010.
- 3. Guang-Zhong Yang (Ed.), —Body Sensor Networksl, Springer, 2006.
- 4. Mehmet R. Yuce, Jamil Y.Khan, —Wireless Body Area Networks Technology, Implementation, and applications, Pan Stanford Publishing Pte.Ltd, Singapore, 2012.
- 5. Khandpur R S, —Handbook of Biomedical Instrumentation^{II}, Tata McGraw Hill, New Delhi, 2003

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.R.Pathamuthu	Assistant Professor (Gr-II)	BME	pathamuthu@avit.ac.in
2	Mr.S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

17A	TEC04	SPECIAL TYPES OF VEHICLES Category L										L	Т	Р	Cr	edit
											EC	3	0	0		3
PRE This speci indus	AMBLE course re al types strial app	2 eviews of vehi lication	the fun icles, fa ns.	damen .rm equ	tal con ipmen	t, milit	of earth ary an	n moving d comba	g equipm t vehicle	ents, p s and s	ower tra	in con urpose	cepts, e vehic	sub les t	syster for	ns of
PRE	REQUI	SITE:	Web T	echnol	ogy											
COL	IRSE OI	BJECT	FIVES													
1	To learn	the de	etailed s	study o	f earth	movin	ig and	construc	tional eq	uipme	nts					
2	 2 To learn the detailed study of power train concepts 3 To learn the detailed study of sub-systems of special types of yebicles 															
3	To learn	the de	etailed s	study o	f sub s	system	s of sp	ecial typ	es of veh	nicles						
4	To learn the detailed study of farm equipments, military and combat vehicles															
5	5 To learn of detailed study of special purpose vehicles for industrial applications															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1: Understand earth moving and constructional equipments Understand																
CO2: Know the power train concepts Understand																
CO3	Know t	he sub	system	s of spo	ecial ty	pes of	vehicl	es						Uno	dersta	nd
CO4	: Use far	m equi	pments	, milita	ry and	comba	at vehi	cles						ŀ	Apply	
CO5	: Use spe	cial pu	irpose v	vehicles	s for in	dustria	ıl appli	cations						ŀ	Apply	
MAI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	PSO2	PSO3
CO1	S	М	М	L		L	L					L				
CO2 S M M M M L L L												L				
CO3 S S S S M M L																
CO4	CO4 S S S S M M L															
CO5	CO5 S S S S S S S															
S- St	S- Strong; M-Medium; L-Low															
SYL	LABUS															

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Construction layout, capacity and applications. Power Plants, Chassis and Transmission, Multivalve vehicles.

EARTH MOVING MACHINES

Earthmovers like dumpers, loaders - single bucket, Multi bucket and rotary types- bulldozers, excavators, backhoe loaders, scrappers, drag and self powered types, Bush cutters, stumpers, tree dozer, rippers etc. – Power and capacity of earthmoving machines.

SCRAPPERS, GRADERS, SHOVELS AND DITCHERS

Scrappers, elevating graders, motor graders, self powered scrappers and graders, Power shovel, revolving and stripper shovels – drag lines – ditchers – capacity of shovels.

FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES

Power take off, special implements. Special features and constructional details of tankers, gun carriers and transport vehicles.

VEHICLE SYSTEMS, FEATURES

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro-pneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Design aspects on dumper body, loader bucket and water tank of sprinkler.

TEXT BOOKS:

- 1. Off the road wheeled and combined traction devices Ash gate Publishing Co.Ltd. 1988
- 2. Satyanarayana. B., Construction planning and equipment, standard publishers and distributors, New Delhi.

REFERENCE BOOKS:

- 1. Abrosimov.K. Branberg.A and Katayer.K, Road making machinery, MIR Publishers, Moscow, 1971.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Ltd., London.
- 3. Nakra C.P., -Farm machines and equipments Dhanparai Publishing company Pvt. Ltd.

Robert L Peurifoy, -Construction, planning, equipment and methods Tata McGraw Hill Publishing company Ltd.

COURS	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in										
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in										
3	N. Shivakumar	Asst. Prof II	Mechanical, AVIT	shivakumar@avit.ac.in										

17A'	ATEC06 AUTOMOTIVE SAFETY							(Category	L	T	P C	redit		
											EC	3	0	0	3
PRE. To st	AMBLE udy and p	z purpos	e is to ı	underst	and Au	utomot	ive Sa	fety.							
PRE	PREREQUISITE: NIL														
COU	RSE OF	BJECT	TIVES												
1	To unde	rstand	the Saf	fety Sys	stems										
2	To understand the Safety Concepts.														
3	To unde	rstand	the Sat	fety Eq	uipmei	nts									
4	To unde	rstand	the Co	llision	Warnii	ng and	Avoid	ance							
5	To unde	rstand	the Co	mfort a	und Co	nvenie	nce Sy	stem Sta	indards						
cou	RSE OU	JTCO	MES												
On th	e succes	sful co	mpletio	on of th	e cour	se, stu	dents v	vill be al	ble to						
CO1:	To unde	erstand	about	vehicle	safety	while	runnin	ıg						Underst	and
CO2:	To unde	erstand	about	the veh	icle op	perating	g syste	m						Underst	and
CO3:	To learr	n about	t how to) handl	e the s	afety e	quipm	ent's in v	vehicle					Underst	and
CO4:	How to	drive t	he vehi	icle in s	safety	metho	d and a	void the	accider	nts				Apply	1
CO5:	To learn	n about	t how to	o use th	e mod	ern tec	hnolog	gy in veh	icle					Apply	1
MAF	PPING V	VITH	PROG	RAM	ME OU	UTCO	MES A	AND PR	OGRA	MME	SPECIE	FIC OI	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L				L				М	L		
CO2	S	М	М	L				М				М	L		
CO3	D3 S M M L L M											М	L		
CO4	S	S	S	М	L			М				М	L		
CO5	S	S	S	М	М			М				М	L		
S- St	rong; M-	Mediu	m; L-L	ow											
SYL INTI	YLLABUS NTRODUCTION														
Desig	gn of the	body	for sa	fety, e	nergy	equati	on, er	ngine lo	cation,	deceler	ation of	vehic	le ins	ide pass	enger

compartment, deceleration on impact with stationary and movable obstacle, concept of crumble zone

SAFETY CONCEPTS

Active safety: driving safety, conditional safety, perceptibility safety, operating safety, passive safety: exterior safety, interior safety, deformation behavior of vehicle body, speed and acceleration characteristics of passenger compartment on impact

SAFETY EQUIPMENTS

Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions

COMFORT AND CONVENIENCE SYSTEM

Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system

TEXT BOOKS:

- 1. Bosch, -Automotive Handbook^{||}, 8th Edition, SAE publication, 2011.
- 2. Powloski. J., -Vehicle Body Engineering ||, Business books limited, London, 1969.

REFERENCE BOOKS:

Ronald.K.Jurgen, -Automotive Electronics Handbookl, Second Edition, McGraw-Hill Inc.,

COURS	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	B. Samuvel Michael	Asso. Prof. Gr - II	Mechanical, AVIT	samuvelmichael@avit.ac.in

17A]	ALTERNATIVE ENERGY SOURCES FOR Categor AUTOMOBILES Excess											L	Т	Р	С
					AUIC	DMOE	SILES			I	EC(PS)	3	0	0	3
PRE A To stu	AMBLE ady and	2 unders	tand the	e subst	itute fo	or conv	ention	al autom	obile fu	els and	energy	source			
PREI	REQUIS	SITE:	NIL												
COU	RSE OI	BJECT	TIVES												
1	To impart the knowledge of various alternate fuels in vehicles.														
2	To unde	erstand	the ent	ire pro	perties	ofalc	ohols.								
3	To unde	erstand	the var	ious fu	els lik	e natui	al gas,	LPG, h	ydrogen	and bio	ogas				
4	To impa	rt the	knowle	dge of	vegeta	ble oil	s								
5	To impa	art the	knowle	dge of	electri	c and s	solar ve	ehicles							
COU	RSE OI	UTCO	MES												
On th	On the successful completion of the course, students will be able to														
CO1:	CO1: To learn the detailed study of alternate fuel Understand														
CO2:	To lear	n the d	letailed	study	of alter	nate fi	uel's pi	roperties						Understa	ind
CO3:	To learn	n the de	etailed	study L	.PG an	d Hyd	rogen	fuels						Understa	ind
CO4:	To learn	n about	t how to	o use th	e bio f	fuel in	IC eng	ine						Apply	
CO5:	To learn	n how t	to desig	gn the	electric	c drive	vehicl	e						Apply	
MAP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND PF	ROGRA	MME	SPECII	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L				L				М	L		
CO2	S	М	М	L				М				М	L		
CO3	S	М	М	L				L				М	L		
CO4	S	S	S	М	L			М				М	L		
CO5	S	S	S	М	М			М				М	L		
S- Str	ong; M-	Mediu	m; L-L	ow											
SYLI INTR	LABUS RODUC	TION													

Estimation of petroleum reserve - Need for alternate fuel - Availability and properties of alternate fuels– general use of alcohols - LPG - Hydrogen - Ammonia, CNG, and LNG - Vegetable oils and Biogas - Merits and demerits of various alternate fuels.

ALCOHOLS

Properties as engine fuel, alcohols and gasoline blends, performance in SI engine. Methanol and gasoline blends Combustion characteristics in engines - emission characteristics.

CNG, LPG, HYDROGEN AND BIOGAS

Availability of CNG, properties, modification required to use in engines - performance and emission characteristics of CNG using LPG in SI & CI engines. Performance and emission for LPG - Hydrogen – Storage and handling, performance and safety aspects.

VEGETABLE OILS

Various vegetable oils for engines - Esterification - Performance in engines - Performance and emission Characteristics

ELECTRIC AND SOLAR POWERED VEHICLES

Layout of an electric vehicle - Advantage and limitations - Specifications - System component. Electronic control system - High energy and power density batteries - Hybrid vehicle - Solar

TEXT BOOKS:

1. K. K. Ramalingm, internal Combustion Engines, Scitech publications, Chennai, 2003. MaheswarDayal, "Energy today & tomorrow ", I & B Horishr India, 1982 **REFERENCE BOOKS:**

- 1. "Alcohols and motor fuels progess in technology", Series No.19, SAE Publication USA 1980.
- 2. SAE Paper Nos. 840367, 841156, 841333, 841334.

3. "The properties and performance of modern alternate fuels " - SAE Paper No.841210.

COURSE	DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	B. Samuvel Michael	Asso. Prof. Gr - II	Mechanical, AVIT	samuvelmichael@avit.ac.in

17A'	VATEC15 VEHICLE TRANSPORT MANAGEMENT Categor													Р		С
1/11]	EC(PS)	3	0	0		3
PREA This of fare s vehic	AMBLE course re tructure le act	zviews of vari	the me ious pul	thods o blic and	of train d priva	ing and te and	d traini state g	ing proce governm	edure in ent unde	the trar ertaking	nsport m vehicle	anagen s , mai	nent, s	scheo nce a	duling Ind m	g and otor
PRE	REQUIS	SITE:	NIL													
COU	RSE OI	BJEC	FIVES													
1	To stuc	ly the	various	test of	selecti	on pro	cesses	and per	sonal ma	anagem	ent					
2	To lear	n the v	various	transpo	ort syst	em										
3	To lear	n the v	various	fare co	ollectin	ig met	hods a	nd probl	ems on s	schedul	ing					
4	To stuc	ly the I	Motor v	vehicle	Act of	India										
5	To study the maintenance of transport industry and design of Bus depot layout															
COU	COURSE OUTCOMES															
On th	e succes	sful co	ompletio	on of th	ne cour	se, stu	dents y	will be a	ble to				-			
CO1:	Apply t	he per	sonal n	nanage	ment a	nd trai	ining fo	or select	ion proc	esses				Unc	lersta	nd
CO2;	Underst	and th	e variou	us divis	sion of	transp	ort ma	nageme	nt					A	Apply	
CO3:	Constru	ct tab	le for v	arious	fare co	llectin	g meth	nods and	apply it					Α	Apply	
CO4:	Know t	he mo	tor vehi	icle Ac	t of In	dia								A	Apply	
CO5:	Apply t	he mai	ntenand	ce syste	em of t	ranspo	ort							A	Apply	
МАР	PING V	VITH	PROG	RAM	ME OI	UTCO	MES	AND PI	ROGRA	MME	SPECI	FIC O	UTCO)MF	CS	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P	SO2	PSO3
CO1	S					L							L			
CO2	S												L			
CO3	S	L	М	М	М			L	L				L			
CO4	S					М	L		L	L			L			
CO5	S	М	М	М	М			М	L	М	М	М	L			
S- Str	- Strong; M-Medium; L-Low															

SYLLABUS INTRODUCTION

Personnel management; objectives and functions of personnel management, psychology, sociology and their relevance to organization, personality problems. Selection process: job description, employment tests, interviewing, introduction to training objectives, advantages, methods of training, training procedure, psychological tests.

TRANSPORT SYSTEMS

Introduction to various transport systems. Advantages of motor transport. Principal function of administrative, traffic, secretarial and engineering divisions. Chain of responsibility forms of ownership by state, municipality, public body and private undertakings

SCHEDULING AND FARE STRUCTURE

Principal features of operating costs for transport vehicles with examples of estimating the costs. Fare structure and method of drawing up of a fare table. Various types of fare collecting methods. Basic factors of bus scheduling. Problems on bus scheduling

MOTOR VEHICLE ACT

Traffic signs, fitness certificate, registration requirements, permit insurance, constructional regulations, description of vehicle-tankers, tippers, delivery vans, recovery vans, Power wagons and fire fighting vehicles. Spread over, running time, test for competence to drive.

MAINTENANCE

Preventive maintenance system in transport industry, tyre maintenance procedures. Causes for uneven tyre wear; remedies, maintenance procedure for better fuel economy, Design of bus depot layout.

TEXT BOOKS:

1. John Duke, "Fleet Management", McGraw-Hill Co, USA, 1984.

REFERENCE BOOKS:

1. Government Motor Vehicle Act, Publication on latest act to be used as on date.

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	A.Imithyas	Asst. Prof. Gr - I	Mechanical, AVIT	imthicyr @avit.ac.in

17A7	TEC17		VEHICLE AIR-CONDITIONING							C	ategory	L	Т	Р	С
	-			-						I	EC(PS)	3	0	0	3
PRE A To tea	MBLE ich the s	2 tudent	s about	the vel	hicle a	ir-conc	litionir	ıg							
PREF	PREREQUISITE: NIL														
COU	RSE OF	BJECT	TIVES												
1	Unders	tand th	ne princ	iples a	nd app	licatio	ns of A	ir condi	tioning	systems					
2	To und	erstand	d the ai	r condi	tioner	– heati	ng sys	tem.							
3	To und	erstand	ds the p	roperti	es of a	ir conc	litionir	ng coolai	nt.						
4	To stuc	ly abou	ıt air ro	outing a	nd ten	nperatu	ire con	trol							
5	To stuc	ly heat	er- air c	conditio	oner tr	ouble s	shootin	g &serv	ice						
COU	RSE OU	UTCO	MES												
On the	the successful completion of the course, students will be able to														
COI:	Gain kn	owled	ge abou	it vario	us air (conditi	oning	systems					l	Jndersta	na
CO2:	Gain the	e know	ledge	of cool	ing an	d heati	ng loa	ds in an a	air-cond	litioning	g system	1	τ	Jndersta	nd
CO3:	Evaluat	e the d	iagnost	ic char	acteris	tics of	Refrig	eration s	system					Apply	
CO4:	Evaluat	e the v	arious t	testing	of air c	control	and ha	andling s	systems.	•				Apply	
CO5:	Learn th	ne vari	ous met	thods o	f Trou	ble sho	ooting	in air co	nditioni	ng syste	ems.		τ	Jndersta	nd
MAP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND PF	ROGRA	MME	SPECII	FIC OU	JTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	S	L	L		L	S	S	S	M	S	L	S			
CO2	S	М	L	L	L	М	М	М	М	М	L	М	L		
CO3	S	М	М	М	L	S	S	S	М	S	L	S	L		
CO4	S	М	М	М	L	М	М	М	М	М	L	М	L		
CO5	S	М	L	L	L	М	М	M	М	М	L	М	L		
S- Str	ong; M-	Mediu	m; L-L	ow											
SYLL AUTO	YLLABUS UTOMOTIVE AIR-CONDITIONING FUNDAMENTALS														

Basic Air conditioning system- Location of Air conditioning components in a car – schematic layout of a Refrigeration system. Compressor components- condenser and high-pressure service ports. Thermostatic expansion valve and Orifice tube – expansion valve calibration – evaporator temperature controls for air conditioning systems

AIRCONDITIONER – HEATING SYSTEM

Manually controlled air conditioner- Heater system- ford automatically controlled air conditioner- Heater systems- Chrysler automatically controlled air conditioner- heater system, general motors automatically controlled Air conditioner- heater system- Flushing and evacuating

REFRIGERANT

Containers- handling refrigerant – discharging, charging and leak detection – refrigeration system Diagnosis – Diagnostic procedure – Ambient conditions affecting system pressures

AIR ROUTING AND TEMPERATURE CONTROL

Objectives – Evaporators case air flow through the Dash recalculating unit – Automatic Temperature control – Duct system- Controlling flow – vacuum reserve – testing the air control and handling systems.

HEATER- AIR CONDITIONER TROUBLE SHOOTING

Air conditioner maintenance and service- servicing heater system. Removing and replacing components.

trouble shooting of air conditioner- heating system- compressor service

TEXT BOOKS:

1. William H Crouse and Donald L Anglin, Automotive Air Conditioning McGraw Hill inc; 1990. **REFERENCE BOOKS:**

- 1. Mitchell information services, Inc., Mitchell Automotive Heating and Air conditioning systems, prentice Hall Inc, 1989.
- 2. McDonald K.L., Automotive Air conditioning., Theodore Audel series., 1978
- 3. Goings.L.F., Automotive Air conditioning., American Technical services, 1974
- 4. Paul Weisler, Paul Weisler, Automotive Air conditioning, Restone Publishing Co. Inc., 1990.

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	C.Thiagarajan	Asst. Prof. Gr -II	Mechanical, AVIT	cthiagarajan @avit.ac.in

17EEEC10	EEC10 POWER QUALITY Category L T P Credit												
								EC-PS	3	0	0	3	
PREAMBLE					1.							1 11 .1	
This course in	nparts kn	owledge	e about	various	electric	al power	r qu	ality issu	les and	their of	rıgın	and address the	
effects of pow	er qualit	y proble	ems on	electrica	l power	r system	. It	also emj	phasis	need for	r PÇ) monitoring and	
measurement.													
PREREQUIS	ITE : Ni	l											
COURSE OB	JECTIV	ES											
1 Desc	Describe various power quality problems.												
2 Ident	Identify the root cause of power quality problems.												
3 Expla	Explain the impact of PQ issues on various electrical components.												
4 Interg	Interpret the need for PQ monitoring and measurement.												
5 Illust	Illustrate the harmonics distortion in the given electical drive.												
6 Deter facili	Determine various power quality issues and their solutions in residential / commercial / industrial facilities.												
COURSE OU	TCOME	ES											
On the success	ful comp	letion of	f the cou	rse, stuc	lents wi	ll be able	e to						
CO1: Explain	various p	ower qu	ality pro	blems.						Under	stan	d	
CO2: Discuss	the root c	ause of	power q	uality pr	oblems.					Under	stan	d	
CO3: Explain	the impac	ct of PQ	issues o	n variou	is electri	ical com	pone	nts.		Under	stan	d	
CO4: Discuss	the need	for PQ r	nonitorii	ng and n	neasurer	ment.				Under	stan	d	
CO5: Compute	e the harn	nonics d	istortion	in the g	given ele	ectical dr	ive.			Apply	7		
CO6: Analyze	various	power	quality	issues a	and thei	r solutio	ons i	n reside	ntial /	A 1			
commercial / i	ndustrial	facilities	S.							Analy	ze		
MAPPING W	TTH PR	OGRAI	MME O	UTCO	MES								
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	B PO9	PO10	PO11	PO	012	
CO1 M	L												
CO2 M	L												
CO3 M	L												

CO4	М	L										
CO5	S	М	L	L								
CO6	S	S	М	М								
S- Stror	ng; M-M	edium;	L-Low									
SYLLA	BUS											
Introduce Power of Voltage measure Transie and cau Voltage Symme Harmor Definiti harmon mitigati	Introduction Power quality - Impact of PQ on end users, Need for PQ monitoring, Various PQ Problems Voltage disturbances Voltage dips, over voltages, short supply interruptions, voltage fluctuations and flicker - sources, effects, measurement and mitigation Transients Transient system model, examples of transient models and their response, power system transient model, types and causes of transients, lightning, other switching transients. Voltage and Current Unbalance Symmetrical components of currents and voltages, sources, effects, measurements and mitigation Harmonics Definition, odd and even harmonics, harmonic phase sequence, voltage and current harmonics, individual and total harmonic distortion, harmonic standards, sources, effects on various electrical components, measurements and mitigation, passive and active filters (Case Studies)											
Active a power f	and react factor in factor co	tive pow nproven ntroller	er flow y nent, apj (Case St	with non plication tudies)	linear lo s of syı	ad, disp nchrono	lacemer us conc	nt and d lensers	istorti and s	on powe static V	r factor AR con	, power factor penalty, npensators, automatic
Shock a	and fire h	nazards, mality p	essentia roblems	l of a gro	ounded s	system,	earth re	sistance	e tests,	method	s of gro	ounding.
Power c – STAT	quality n COM, I	neasuring DVR, U	g equipr PQC.	nent-Sm	art powe	er qualit	y analy:	zers, In	troduc	ction to a	custom]	power devices (CPD)
Text Bo 1. Sank Referen	ook aran C,II ice Book	Power Q	Quality ,	CRC Pr	ess spec	ial India	n editic	on 2009).			
1. Ange 2. Roge Newyon	lo Bagg er .C. Du rk Secon	ini, –Hai igan, M id editio	ndbook (ark F.M n 2003.	of Power Cgranag	r Quality han & F	∥ John` I.Wayne	Wiley & e Beaty	≿ Sons ,∥ Elect	Ltd, 20 crical p	008. bower sy	/stem Q	uality McGraw-Hill
3. Barry 4. Math	y W.Ken 1 H.J.Bo 200	nedy, -F llen, « U D	Power Q Jndersta	uality Pr inding P	imer∥, N ower Qu	IcGraw ality Pr	-Hill, N roblems	ew Yor : Volt	k, 200 age Sa	00. ags and	Interrup	otions », IEEE Press,
5. Arril England	llaga.J, 1, 2000	Watson.	N.R and	d Chen.	S, « Pov	wer Sys	tem Qu	ality A	Assess	ment »,	John V	Viley & Sons Ltd.,
6. Bhin Wiley P	n Singh, Publicatio	Ambris ons, 201	h Chanc 5	dra and	Kamal A	Al-Hadd	ad: Pov	ver Qu	ality:]	Problem	s and M	Iitigation Technique,

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE	sankarganesh@vmkvec.edu.in
2	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in

17EI	EEC11	POV	POWER SYSTEM PLANNING AND RELIABILITY						Catego	ory		Т	Р	Credit		
									EC-P	S í	3	0	0	3		
PREAMBLE																
To make students become familiar with power system operation and the various control actions to																
be implemented on the power system for reliability																
PREF	REQUIS	ITE : 1	NIL	1	•			•								
COU	RSE OB	JECT	IVES													
1	To introduce the students learn the objectives of power system															
2	To make the students learn the reliability stability analysis of generation in power system															
3	To make the students learn the reliability stability analysis of transmission in power system															
4	To fam	liarize	the stu	udents	with th	e planı	ning of	expans	sion of	power s	ystem					
5	To intro	duce t	he stuc	lents w	ith the	overvi	ew of	plannin	g of di	stributio	on system	m				
COU	RSE OU	TCON	AES													
On the successful completion of the course, students will be able to																
CO1: Explain the load forecasting, Load growth patterns and their importance in planning Understand												tand				
CO2: Determine the reliability of iso and interconnected generation systems, reliability Understand indices like LOLP and expected value of demand not served.																
CO3: Determine the reliability indices like LOLP and expected value of demand not Understand Served in transmission system																
CO4:	CO4: Solve the Capacitor placer problem in transmission system and radial distributions Apply system.												ly			
CO5:	Design t	he prin	nary ar	nd seco	ndary	distrib	ution s	ystems							Crea	te
CO6:	Describe	the pla	anning	ofexp	ansion	ofpov	ver sys	tem and	d distri	bution s	ystem				Unders	tand
MAP	PING W	ITH P	ROG	RAMN	AE OU	TCON	MES A	ND PI	ROGR	AMME	SPEC	IFIC	OI	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2	PSO3
CO1	S	S	S							М						
CO2		S					М									
CO3		S					М									
CO4							М		S	S						
CO5			М				S			S						
CO6	CO6 S S M S I															
S- Strong; M-Medium; L-Low												-				
SYLLABUS																

LOAD FORECASTING

Objectives of forecasting - Load growth patterns and their importance in planning - Load forecasting Based on discounted multiple regression technique-Weather sensitive load forecasting-Determination of annual forecasting-Use of AI in load forecasting.

GENERATION SYSTEM RELIABILITY ANALYSIS

Probabilistic generation and load models- Determination of LOLP and expected value of demand not served – Determination of reliability of iso and interconnected generation systems.

TRANSMISSION SYSTEM RELIABILITY ANALYSIS

Deterministic contingency analysis-probabilistic load flow-Fuzzy load flow probabilistic transmission system reliability analysis-Determination of reliability indices like LOLP and expected value of demand not served.

EXPANSION PLANNING

Basic concepts on expansion planning-procedure followed for integrate transmission system planning, current practice in India-Capacitor placer problem in transmission system and radial distributions system.

DISTRIBUTION SYSTEM PLANNING OVERVIEW

Introduction, sub transmission lines and distribution substations-Design primary and secondary systemsdistribution system protection and coordination of protective devices.

TEXT BOOKS

1. Roy Billinton and Allan Ronald, -Power System Reliability.

2.J.Endreny, Reliability modeling in electric power systems John Wiley & sons

REFERENCES

- 1. Proceeding of work shop on energy systems planning & manufacturing CI.
- 2. R.L .Sullivan, Power System Planning ...

3. Turan Gonen, Electric power distribution system Engineering McGraw Hill, 1986

S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	V.MANJULA	Assistant Professor	Electrical and Electronics Engineering	manjbees@gmail.com							

17EEEC16		ELECTRIC VEHICLES						C	Category	L	ΤH	Cr	edit		
								EC	3	0 ()	3			
PREAMBLE This course introduces the fundamental concepts, principles, analysis and design of hybrid, electric vehicles.															
PREI	REQUIS	SITE:	Basic I	Electric	al & E	lectroi	nics Er	ngineerin	ıg.						
COU	RSE OF	BJECT	IVES												
1	To understand the basic concepts and dynamics of electric vehicles.														
2	To familiarize and design of battery backup.														
3	To analyze the characteristics of different types of DC & AC Motors.														
4	To understand different types of power transmission configuration, clutch and braking.														
5	To study about hybrid electric vehicles.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1: Describe the basic concepts of electric vehicles. Understand															
CO2: Design the propulsion system for electric vehicles. Evaluate															
CO3: Explain the construction, characteristics and application of batteries. Analyze															
CO4: Elucidate performance characteristics of DC&AC electrical machines. Analyze															
CO5:	CO5: Design the drive train model for electric vehicles.Evaluate											e			
CO6:	CO6: Describe about the various types and configuration of hybrid electric vehicle. Apply														
MAP	PING V	VITH	PROG	RAMN	AE OU	UTCO	MES A	AND PR	ROGRA	MME	SPECIE	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	-	-	-
CO2	S	М	S	L	М	-	L	М	-	-	-	-	-	-	-
CO3	S	-	-	-	М	-	-	-	-	-	-	-	-	-	-
CO4	S	-	-	-	М	-	-	-	-	-	-	-	-	-	-
CO5	S	М	S	L	М	-	L	М	-	М	М	-	-	-	-
CO6	S	-	-	-	М	-	L	L	-	-	-	-	-	-	-
S- Str	S- Strong; M-Medium; L-Low														
SYLI	SYLLABUS														

ELECTRIC VEHICLES Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design.

BATTERY

Basics – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines.

ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing.

HYBRID ELECTRIC VEHICLES

Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, -*Electric Vehicle Technology Explained* ||, John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "*Electric Vehicle Battery Systems*", Newnes, 2000 .http://nptel.ac.in/courses/108103009

S. No.	Name of the Faculty	Designation	Department	Mail ID											
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in											
2	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in											
17EI	EEC18		RENE	WAB	LE EN	ERG	Y TEC	CHNOL	OGY	С	ategory	L	Т	Р	С
-------------------------	--	---------	----------	----------	---------	---------	----------	------------	-----------	----------	----------	---------	--------	----------	------
											CC	3	0	0	3
PREA To in techno	AMBLE troduce ologies	the fu	ndamer	ntals of	FPV &	t WIN	D tech	nologies	s and Co	onverte	rs used	in rene	ewable	energy	
PREI	REQUI	SITE:	Non C	onvent	ional E	Energy	Source	es and its	s applica	tions					
COU	RSE OI	BJECT	TIVES												
1	To learn	about	PV tec	hnolog	y princ	ciples.									
2	To learn	econo	mical a	nd env	ironm	ental n	nerits o	of solar e	nergy for	r variet	y applic	ations.			
3	To learn	mode	rn wind	turbin	e cont	rol & r	nonito	ring.							
4	To learn various power converters in the field of renewable energy technologies.														
COU	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1:	CO1: Understand the PV technologies Understand														
CO2:	Applica	tions o	of PV te	chnolo	gy.									Apply	7
CO3:	Design	the sol	ar powe	er plan	t.									Apply	7
CO4:	Underst	and m	odern w	vind tu	rbines	and its	contro	ol.						Understa	und
CO5:	Analyze	e vario	us powe	er conv	reters	to sele	ct for p	particular	r applica	tion.				Analyz	e
MAP	PING V	VITH	PROG	RAM	ME OU	UTCO	MES A	AND PR	OGRA	MME	SPECII	FIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	М	М	S				М			L		М		-	-
CO2	М	L	L				М			М		М		-	-
CO3	S	S	S	S	М				L					-	-
CO4	L	L	L		S		М		L					-	-
CO5	S	S	S	М	М									-	-
CO6	М	М	S				М			L		М		-	-
S- Str	ong; M-	Mediu	m; L-L	ow		-	-							·	

SOLAR THERMAL TECHNOLOGIES

Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying.Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying **SPV SYSTEM DESIGN AND APPLICATIONS**

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cellarray design concepts - PV system design - design process and optimization - detailed array design - storage autonomy - voltage regulation - maximum tracking - centralized and decentralized SPVsystems - stand alone - hybrid and grid

connected system - System installation - operation andmaintenances - field experience - PV market analysis and economics of SPV systems.

DIRECT ROTOR COUPLED GENERATOR (MULTIPOLE) [VARIABLE SPEED VARIABLE FREQ.]

Excited Rotor Synch. Generator / PMG Generator, Control Rectifier, Capacitor Banks, Step Up / BoostConverter (DC-DC Step Up), Grid Tied Inverter, Power Management, Grid Monitoring Unit (Voltageand Current), Transformer, Safety Chain Circuits.

MODERN WIND TURBINE CONTROL & MONITORING SYSTEM

Details of Pitch System & Control Algorithms, Protections used & Safety Consideration in Wind turbines, Wind Turbine Monitoring with Error codes, SCADA & Databases: Remote Monitoring andGeneration Reports, Operation & Maintenance for Product Life Cycle, Balancing technique (Rotor &Blade), FACTS control & LVRT & New trends for new Grid Codes.

POWER CONVERTERS

Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing.

Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM

Inverters, Grid Interactive Inverters-matrix converters.

TEXT BOOKS:

1.Goswami, D.Y., Kreider, J. F. and & Francis., Principles of Solar Engineering, Taylor and Francis, 2000 2.Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, 1996

REFERENCE BOOKS:

1. Sukhatme S P, J K Nayak, Solar Energy – Principle of Thermal Storage and collection, Tata McGraw Hill, 2008.

2. Solar Energy International, Photovoltaic – Design and Installation Manual – New Society Publishers, 2006

3. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1983

4. John D Sorensen and Jens N Sorensen, Wind Energy Systems, Woodhead Publishing Ltd, 2011

5. Rashid .M. H -power electronics Hand book, Academic press, 2001.

COURS	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. V.Rattankumar	Assistant	EEE	rattankumar@avit.ac.in
		Professor		

17666021		Category	L	Т	Р	Credit
17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EC-PS	3	0	0	3

PREAMBLE

Non Conventional resources include solar energy, wind, falling water, the heat of the earth (geothermal), plant materials (biomass), waves, ocean currents, temperature differences in the oceans and the energy of the tides. Non Conventional energy technologies produce power, heat or mechanical energy by converting those resources either to electricity or to motive power. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on grid applications. Such commercial technologies include hydroelectric power, solar energy, fuels derived from biomass, wind energy and geothermal energy. Wave, ocean current, ocean thermal and other technologies that are in the research or early commercial stage, as well as non-electric Non Conventional energy technologies, such as solar water heaters and geothermal heat pumps, are also based on Non Conventional resources, but outside the scope of this Manual.

PREREQUISITE-NIL

COURSE OBJECTIVES

1	To learn about PV technology principles.									
2	To learn economical and environmental merits of solar energy for variet	y applications.								
3	To learn modern wind turbine control & monitoring.									
4	To learn various power converters in the field of renewable energy technologies.									
5	To study and analyse different types of Power converters for Renewable energy conversion									
COURS	E OUTCOMES									
On the su	accessful completion of the course, students will be able to									
CO1	Understand to Renewable Energy Sources, Principles of Solar Radiation, Different Methods of Solar Energy Storage and its Applications, Concepts of Solar Ponds, Solar Distillation and Photo Voltaic Energy Conversion	Understand and Analyse								
CO2	Learn the Flat Plate and Concentrating Collectors, Classification of Concentrating Collectors Analyse									

CO3	Learn the Wind Energy, Horizontal and Vertical Access Wind Mills, Bio Conversion	Analyse
CO4	Types of Bio-Gas Digesters and Utilization for Cooking Geothermal Energy Resources	Understand and Apply

CO5	Types of Wells and Methods of Harnessing the Energy, Ocean Energy and Setting of OTEC Plants	Understand
	Tidal and Wave Energy and Mini Hydel Power Plant, Need and	
CO6	Principles of Direct Energy Conversion, Concepts of Thermo-Electric	Analyse
(Generators and MHD Generators	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S				М			L		М	S	М	S
CO2	М	L	L				М			М			S	L	М
CO3	S	М	S	S	М									М	S
CO4	L	L	L		S		М						L	L	S
CO5	S	S	S	М	М									М	
CO6												М	S	М	
~ ~															

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Solar Energy-Energy available form Sun, Solar radiation data, Solar energy conversion into heat, Flat plate and Concentrating collectors, Mathematical analysis of Flat plate collectors and collector efficiency, Principle of Natural and Forced convection, Solar engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite.

WIND ENERGY CONCEPT

Wind energy conversion, General formula -Lift and Drag- Basis of wind energy conversion – Effect of density, frequency variances, angle of attack, and wind speed. Windmill rotors Horizontal axis and vertical axis rotors. Determination of torque coefficient, Induction type generators- working principle.

GEOTHERMAL AND BIOMASS ENERGY

Nature of Geothermal sources, Definition and classification of resources, Utilization for electric generation and direct heating, Well Head power generating units, Basic features Atmospheric exhaust and condensing, exhaust types of conventional steam turbines. Pyrolysis of Biomass to produce solid, liquid and gaseous fuels, Biomass

gasification, Constructional details of gasifier, usage of biogas for chulhas, various types of chulhas for rural energy needs.

TODAL AND WAVE ENERGY

Wave, Tidal and OTEC energy- Difference between tidal and wave power generation, Principles of tidal and wave power generation, OTEC power plants, Operational of small cycle experimental facility, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC. Status of multiple product OTEC systems.

TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE	loganathan@vmkvec.edu.in
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in

17	MESE	12	P	RODU	CT LIF	TE CYC	CLE		Cate	egory	L	Т	Р	Cı	Credit					
				MA	NAGE	MENT			EC	(SE)	3	0	0		3					
Pream	nble	I																		
To ena	able th	e studen	ts to und	derstand	l the var	rious pr	oduct li	fe ma	nageme	ent tools	s & PLN	A concept	S							
Prere	quisit	e NIL																		
Cours	se Obj	ective																		
1	r	Го under	stand th	e produ	ct life c	ycle ma	inageme	ent of	a produ	uct										
2	r	Γo under	stand th	e proce	ss flow,	work f	low, & j	produ	ct data	manage	ement									
3	r	Fo Under	rstand th	ne conce	epts of r	new pro	duct de	velop	ment											
4	r.	Fo Under	rstand th	ne conce	epts of r	new pro	duct de	velop	ment											
5]	Product 1	ife cycle	e manag	gement	strategy	and PL	M ass	sessme	nt.										
Cours	se Out	comes:	On the	success	ful com	pletion	of the	cours	e, stud	ents wi	ll be ab	le to								
CO1.	Un	derstand	produc	t data, i	nforma	tion, str	uctures	and P	LM co	ncepts.			Unc	lerstand						
CO2.	Me pro	easure be	enefits o y of labo	f PLM i or and q	impleme uality c	entation osts.	in dail	y oper	ations,	materia	l costs,		Unc	lerstand						
CO3.	Ар	ply PLM	l concep	ots for s	ervice i	ndustry	and E-l	Busine	ess.				App	oly						
CO4.	Re	cognize	tools an	d standa	ards in I	PLM.							Unc	lerstand						
CO5.	Ap and	ply PLM 1 market	I system ing, and	ns in org l subcor	ganization tracting	on vertio	cals inc	luding	g produ	ction, at	fter sale	s, sales	App	oly						
Марр	oing w	ith Prog	ramme	Outco	mes and	l Progr	amme	Speci	fic Out	comes										
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	S												L							
CO2	S	S	S	S						S			L							
CO3	S	М	L																	
CO4	S	М	L																	
CO5	S	S	М	L								L	L							

SYLLABUS

INTRODUCTION TO PRODUCT LIFE CYCLE MANAGEMENT

Definition - PLM Lifecycle model - Threads of PLM - Need for PLM - Opportunities and benefits of PLM - Views - Components and Phases of PLM - PLM feasibility study - PLM visioning - Characteristics of PLM - Environment driving PLM - PLM Elements - Drivers of PLM - Conceptualization - Design - Development - Validation - Production - Support of PLM

PRODUCT DATA MANAGEMENT (PDM) PROCESS AND WORKFLOW

Engineering vaulting - product reuse - smart parts - engineering change management - Bill of materials and process consistency - Digital mock-up and prototype development - design for environment - virtual testing and validation - marketing collateral.

COLLABORATIVE PRODUCT DEVELOPMENT

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

DIGITAL MANUFACTURING – PLM

Digital manufacturing - benefits manufacturing - Manufacturing the first-one - Ramp up - virtual learning curve - manufacturing the rest - production planning.

DEVELOPING A PLM STRATEGY AND CONDUCTING A PLM ASSESSMENT

Strategy - Impact of strategy - implementing a PLM strategy - PLM initiatives to support corporate objectives - Infrastructure assessment - assessment of current systems and applications.

Text Books 1 Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004. 2 Product Lifecycle Management, Michael Grieves, Tata McGraw Hill 2012 Reference Books 1 Fabio Giudice, Guido La Rosa, Product Design for the environment-A life cycle approach, Taylor & Francis 2006

Course	e Designers			
S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.SARAVANA KUMAR	Asst. Prof grII	MECH./ AVIT	saravanakumar@avit.ac.in

17MES	E21		IR(ON AI	ND ST	EEL N	MAKI	NG		Categ	ory	L	Т	Р	Credit
			III	91,11				110		EC(S	E)	3	0	0	3
PREAMBL	E														
This course	aims to	under	stand t	he pro	ocess (of prod	luction	n of ire	on an	d steel i	from ra	w mat	erial, pri	mary pr iron and	ocessing to
student also	gains kn	owled	dge on	the ref	ineme	nt of st	eels to	o obtair	n a qu	ality pro	duct.	produ			i steel. The
PREREQU	ISITE-	NIL													
COURSE O	BJECT	IVES	5												
1	Acqu	ire the	e know	ledge	of raw	mater	ials an	d burd	en pre	eparation	1				
2	Unde	rstand	l the pri	inciple	es and	process	ses of i	iron ma	aking						
3	Unde	rstand	l the pri	inciple	es and	process	ses of s	steel m	aking	5					
4	Acqu	ire kn	owledg	ge on v	various	s steel r	naking	g proce	sses						
5	Unde	rstand	l and ga	ain kno	owledg	ge on p	roduct	ion pra	ctice	followe	d and re	ecent de	evelopme	nt	
COURSE O	UTCO	MES													
On the succe	ssful co	mplet	ion of t	he cou	irse, st	tudents	will b	e able t	to						
CO1.Unders	tand the	probl	lems as	sociat	ed wit	h India	n raw	materia	als an	d burder	n prepar	ation.		Uno	lerstand
CO2. Under furnace from	stand ar	nd app es.	ply the	extrac	ction t	echniqu	ues of	pig iro	on by	reduction	on and	smeltii	ng in blas	st	Apply
CO3. Under	stand the	e prino	ciples a	nd nee	ed for	develop	oment	of stee	l mak	ing proc	cesses			U	nderstand
CO4.Acquir	e knowl	edge o	on vario	ous fui	maces	for stee	el man	ufactu	ring a	nd selec	t suitab	le furn	aces.		Apply
CO5. Apply	the mod	lern d	evelop	ment i	n the s	teel and	d cast	iron m	aking	product	ion pra	ctice			Apply
MAPPING	WITH	PROG	GRAM	ME C	OUTC	OMES	AND	PROC	GRAN	MME S	PECIF	IC OU	TCOME	S	
COS	PO1	PO 2	PO3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO11	PO12	2 PSO1	PSO	2 PSO3
CO1	М	S	-	-	М	L	М						L		
CO2	S	S	L	-	М	-	М						L		
CO3	L	М	М	-	-	М	S						L		
CO4	S	L	-	-	М	-	М						L		

	CO5	S	Μ	М	-	-	-	М						L		
--	-----	---	---	---	---	---	---	---	--	--	--	--	--	---	--	--

SYLLABUS

RAW MATERIALS AND BURDEN PREPARATION

Iron ore classification, Indian iron ores, limestone and coking coal deposits, problems associated with Indian raw materials, Iron ore beneficiation and agglomeration, Briquetting, sintering, Nodulising and pelletizing, testing of burden materials, burden distribution on blast furnace performance.

PRINCIPLES AND PROCESSES OF IRON MAKING

Blast furnace parts, construction and design aspects, ancillary equipment for charging, preheating the blast, hot blast stoves, gas cleaning, Blast furnace operation, irregularities and remedies, Blast furnace instrumentation and control of furnace Compositional control of metal and slag in blast furnace, modern trends in blast furnace practice. Reduction of iron ores and oxides of iron by solid and gaseous reductions-thermodynamics and kinetics studyof direct and indirect reduction, Gruner's theorem, blast furnace reactions. C-O and Fe-C-O equilibria, Rist diagrams, Ellingham diagram, material and heat balance- Sponge Iron making.

PRINCIPLES OF STEEL MAKING

Development of steel making processes, physico-chemical principles and kinetic aspects of

steel making, carbon boil, oxygen transport mechanism, desulphurisation, dephosphorisation, Slag Theories, slagfunctions, composition, properties and theories, raw materials for steel making and plant layout

STEEL MAKING PROCESSES

Open Hearth process- constructional features, process types, operation, modified processes,

Duplexing, pre-treatment of hot metal. Bessemer processes, Side Blown Converter, Top Blown

processes-L.D, L.D.A.C., Bottom blown processes, combined blown processes, Rotating

oxygen processes-Kaldo and Rotor, Modern trends in oxygen steel making processes-Electric

Arc and Induction furnace-constructional features. Steel Classifications and Standards-National and International.- Alloy Designation.

STEELS AND CAST IRON LADLE METALLURGY

Production practice for plain carbon steels, low alloy – Cast irons and ductile iron, stainless, tool and special steels, modern developments. Secondary steel making processes, continuous steel casting process – Deoxidation and teeming practice. Principle, methods and their comparison, Killed, Rimmed and Capped steels, Degassing practices, ingotproduction, ingot defects and remedies. Recent trends in steel making technology.

Text Books:

- 1. Tupkary, R. H., --Modern Iron Making, 4th edition, Khanna Publishers, New Delhi.
- 2. Tupkary, R. H., --Modern Steel Makingl, 4th Edition, Khanna Publications, New Delhi.

Reference:

1. Biswas, A. K., —Principles of blast furnace iron making: theory and practicel, SBA Publications, Kolkata.

- 2. Bashforth, G. R., —Manufacture of Iron and Steell, Vol. I, Chapman and Hall London.
- 3. Bashforth, G. R., —Manufacture of Iron and Steell, Vol.2, 3rd Edition, Chapman & Hall, London.
- 4. —Making, Shaping and Treating of Steell, US Steel Corporation, 11th edition.
- 5. AhindraGhosh and Amitchatterjee, -Iron Making and Steel Making Theory and

Practicel, Prentice Hall of India Private Ltd., New Delhi.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	S.Arunkumar	Assistant Professor	Mech/VMKVEC	

17MES	E25	COMPUTATIONAL FLUID	Category	L	Т	Р	Credit								
		DYNAMICS	EC(SE)	3	0	0	3								
Preamble			I												
This cours arise in flu equations discussed	e introduc uid dynam related to and demor	tes the finite difference methods as a main of numerical analysis. Fundamentals of numerical analysis fluid mechanics and heat transfer will instrated.	neans of solv ysis, ordinary l be reviewed	ing differen differentia . Error con	nt type of all equat trol and	of different: ions and pa stability co	al equationsthat artial differential onsiderations are								
Prerequisite	•	Encircouing Thomas dynamics													
1	1. Enginee 2. Fluid M	Engineering Thermodynamics Fluid Mechanics And Machinery													
Course Obje	ective	ctive													
1	To understand basic properties of computational methods														
2	To introd	uce Governing Equations of viscous fl	luid flows												
3	To learn c	computational solution techniques for	time integrat	ion of ordir	nary dif	ferential									
4	To introd	uce numerical modeling and its role ir	n the field of f	fluid flow a	nd heat	transfer									
5	To enable turbulenc	e the students to understand the various e modeling.	s discretizatio	on methods	, solutio	on procedur	es and								
Course Outo	comes: O	n the successful completion of the co	ourse, studen	ts will be a	ble to										
CO1.	Discus	s the basic properties of computationa	l methods			Understa	nd								
CO2.	Discus	s the Governing Equations of viscous	fluid flows			Understa	nd								
CO3.	Solve p of ordi	problems in computational solution tec nary differential equations	chniques for t	time integra	ation	Analyze									
CO4.	Solve problems in numerical modeling and its role in the field of fluid flow Analyze and heat transfer Image: Comparison of the field of fluid flow														
CO5.	Determ turbule	nine the various discretization methods ence modeling.	s, solution pr	ocedures a	nd	Apply									

Mapping with Programme Outcomes and Programme Specific Outcomes															
CO	PO1	РО	PO	PO	PO	PO		PO	РО	PO1	PO1	PO1	PSO	PSO	PSO3
co	101	2	3	4	5	6	107	8	9	0	1	2	1	2	1505
CO1	S	М	М	L	М	L	-	-	-	-	-	L	L	-	-
G 0 0	a			Ŧ	Ŧ	Ŧ									.
CO2	S	М	М	L	L	L	-	-	-	-	-	-	L	-	L
CO3	S	М	М	L	L	L	-	-	-	-	-	L	L	-	L
CO4	c	c	c	М	т	T							T		T
04	3	3	3	IVI	L	L	-	-	-	-	-	-	L	-	L
CO5	М	М	М	L	L	М	-	-	-	-	-	-	L	-	L

SYLLABUS

INTRODUCTION

Computational Fluid Dynamics, Advantages, Applications, Future of CFD. Problem set up-pre-process, Numerical solution – CFD solver

GOVERNING EQUATIONS FOR CFD

Introduction, the continuity equation, the momentum equation, the energy equation, the additional equations for turbulent flows, generic form of the governing equations for CFD, boundary conditions.

CFD TECHNIQUES

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy-Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems

FLOW FIELD ANALYSIS

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation $(k-\varepsilon)$ models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

Text Books

1	Versteeg, H.K., and Malalase Method, Pearson Education L	kera, W., An Introdu .td. Third Edition – 2	ection to Computationa 014.	l Fluid DynamicsI: The finite volume								
2	Ghoshdastidar, P.S., —Comp Ltd.,	uter Simulation of flo	w and heat transfer∥, T	ata McGraw Hill Publishing Company								
Refe	lerence Books											
1	John D. Anderson —Computational Fluid Dynamics - The basics with Applications ^{II} , McGrawHill International Editions.											
2	Anil W. Date, -Introduction to	o Computational Flui	d Dynamics ^{II} , Cambrid	ge University Press, Reprinted 2010.								
3	Yogesh Jaluria & Kenneth E.	Torrance, —Comput	ational Heat Transfer ^{II} ,	CRC press, 2nd Edition.								
4	John. F. Wendt, —Computation	onal Fluid Dynamics	- An Introduction ^{II} , Sp	ringer, Third Edition, 2013.								
Cour	rse Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in								

17MF	ESE34		FAILU	URE A	NALY	SIS (OF	Cat	egory	L	1	Т	Р	Cr	edit
				MATE	CRIAI	LS		EC	C(SE)	3	,	0	0		3
Preamble	•													I	
This cours equipmen	se cove ts for fa	rs failu ailure a	res of m nalysis.	naterials	s and c	causes	of fail	ure, to	pics ir	nclude t	ypes of	failure in	n compo	nents ar	nd
Prerequis	site														
NIL															
Course O	bjectiv	jective													
1 7	o study the fundamentals of failure analysis														
2 7	Fo stud	y introd	luction	to failu	re anal	ysis									
3 7	Fo stud	y the ca	uses of	failure	in cor	npone	nts								
4 7	Fo stud	y the ty	pes of	failure	in con	poner	nts								
5 7	Fo stud	y the m	ethods a	and equ	ipmer	nts for	failure	e analy	vsis						
Course O	utcom	es: On	the suc	cessful	comp	letion	of the	e cour	se, stu	dents v	vill be a	ble to			
CO1.	Apply	the im	portanc	e of fai	lure ai	nalysis	s for au	itomot	tive co	mponer	nts and			Apply	
	Deter	minatio	on of fai	lure mo	ode.										
CO2.	Identi	fy the f	ailure n	node id	entific	ation 1	methoo	ds and	Corros	sion fail	ures.		τ	Jndersta	ind
CO3.	Descr	ibe theo	causes o	of failu	re in co	ompon	ents.						τ	Jndersta	ind
CO4.	Discu	ss the t	ypes of	failure	s in co	mpone	ents.						τ	Jndersta	ind
CO5.	Inden	tify the	method	ls and e	quipm	nents f	or fail	ure an	alysis.					Analyz	e
					· · ·	<u> </u>		G						2	
Mapping	with P	rogran	nme Oi	itcome	s and	Progr	amme	Spec	ific O	utcome	S				
СО	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3
CO1	S	M	M	-	_	М	-	-	_	-	-	-	L	-	-
CO2	S	М	М	_		T	_				_		I	_	
		141	TAT	-	_	Ľ	_	-	-	-	_	_		-	-

CO3	S	М	М	-	-	М	-	-	-	-	-	-	L	-	-
CO4	S	L	L	-	-	L	-	-	-	-	-	-	L	-	-
CO5	S	М	М	-	-	L	-	-	-	-	-	-	L	-	-

SYLLABUS

FUNDAMENTALS OF FAILURE ANALYSIS

Importance of failure analysis for automotive components, Steps in typical failure analysis: Collection of background data (review documentation and speak with appropriate individuals), Selection of failed andunfailed samples for examination, Preliminary examination of the failed part, Non-destructive evaluation, Mechanical testing, Macroscopic examination and analysis, Microscopic examination and analysis, Determination of failure mode, Chemical analysis, Fracture mechanics considerations, Full scale testing under service conditions, Analysisof the evidence, Formulation of conclusions, Recommendations toprevent reoccurrence, Sample preparation methods for failure analysis, Selection of locations/samples forfailure analysis.

INTRODUCTION TO FAILURE ANALYSIS

Failure mode identification methods, Failure mechanisms: Fatigue failures, fractography, effect of variables: part shape, type of loading, stress concentration, metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear. Corrosion failures, types of corrosion: uniform, pitting, selective leaching, intergranular, crevice, etc. Elevated temperature failures, creep, thermal fatigue, micro structural instability, and oxidation.

CAUSES OF FAILURE IN COMPONENTS

Misuse or Abuse, Assembly errors, Manufacturing defects, Improper maintenance, Fastener failure, Design errors, Improper material, Improper heat treatments, Unforeseen operating conditions, Inadequate quality assurance, Inadequate environmental protection/control, Casting discontinuities. Data compilation and identification of root cause.

TYPES OF FAILURES IN COMPONENTS

Fatigue failures, Corrosion failures, Stress corrosion cracking, Ductile and brittle fractures, Hydrogen

embrittlement, Liquid metal embrittlement, Creep and stress rupture.

METHODS AND EQUIPMENTS FOR FAILURE A NALYSIS

Selection of suitable testing methods for failure analysis, Selection of metallurgical equipments for failureAnalysis, SEM-EDAX.

Text Books

1

—Understanding How Components Faill by Donald J. Wulpi; ASM International Publication.

2	—Analysis of Metallur	gical Failures: by Vito	J. Colangelo; Francis A	A. Heiser Wiley Publication									
3	ASM Handbook Vol.1	l - Failure Analysis an	d Prevention, ASM Int	ternational Publication, 1995.									
Reference	e Books												
1	—Metallurgy of Failure Analysis by A K. Das; by McGraw-Hill Professional Publication.												
2	Metallurgical Failure Analysis by Charlie R. Brooks; Ashok Choudury; McGraw-Hill Publication.												
3	raphy Principles and Practice by Voort, George F. Vander; ASM International Publication												
Course D	esigners												
			Department/										
S.No	Faculty Name	Designation	Name of the	Email id									
			College										
1	C.THIAGARAJAN	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	cthiagarajan@avit.acc.in									

17M	ESE27	, P	OWER	PLAN	NT EN	GINEI	ERING	÷	Categ	ory	L	Т	Р	Cro	edit	
									EC(S	E)	3	0	0	Ĩ	3	
Pream Power the pre	nble Plant	Enginee f power	ering is t generat	he subj ion. Po	ect invo wer Pla	olving s ints are	study of the bac	f applyi kbone	ng the t of a cou	thermal intry inv	engineer olving in	ing conc n the gen	cepts and heration o	machiner f electric	ies in power.	
Prere	quisite	- Ther	mal Eng	gineeri	ng											
Cours	se Obje	ective														
1		Tound	lerstand	the obj	ectives	of pow	er plant	ts in a c	ountry'	s electri	cal powe	er require	ement.			
2		To und	To understand the operational methods of power generation using different energy sources.													
3		To provide the knowledge of instrumentation involved in the operation and control of power plants														
4		To esti	To estimate the cost and economics of power generation in different types of power plants.													
5		To incu	To inculcate the knowledge of environmental impact of power plants on the society.													
Cours	se Outo	comes:	nes: On the successful completion of the course, students will be able to													
CO1.		Unders	Understand the methods of power generation using different energy sources Understand													
CO2.		To sta	te the in	strumer	ntation a	and con	trol sys	stems fo	or a pov	ver plant	t			Understar	nd	
CO3.		To cale	culate th	e cost o	of power	r genera	ation fo	or a typi	cal pov	ver plant				Apply		
CO4.		To info	er the er	nvironn	nental i	mpacts	of pov	ver plai	nts on t	he socie	ety			Apply		
CO5.		Prepar	e a layoı	ıt for di	fferent	power	plants							Apply		
Марр	oing wi	th Prog	ramme	Outco	mes an	d Prog	ramme	Specif	ic Out	comes						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	М	S	-	-	-	-						М	М	М	
CO2	S	М	М	М	М	-	-						М	S	М	
CO3	М	S	S	S	-	-	-						М	М	S	
CO4	М	S	S	S	М	М	S						М	М	S	
CO5	S	S	S	S	S	S	-						М	S	S	

SYLLABUS

INTRODUCTION

Power Generation: Global Scenario, Present status of power generation in India, Role of private and governmental organizations, Load shedding, Carbon credits, Power reforms, concept of cascade efficiency.

General layout of modern power plant with different circuits, working of thermal power plant, coal classification, coal,ash and dust handling, selection of coal for Thermal Power Plant, FBC boilers, high pressure boiler, cogeneration power plant (with numerical)

Steam Condenser: Necessity of steam condenser, Classification, Cooling water requirements, Condenser efficiency, Vacuum efficiency, Cooling towers, air Leakage, Effects of Air Leakage on condenser performance, (Numerical Treatment)

HYDROELECTRIC AND NUCLEAR POWER PLANTS

HEPP : Introduction, Plant Layout, Site Selection, Advantages and Disadvantages of HEPP, Hydrograph, Flow duration curve, Mass Curve, Classification of HEPP with layout.

NPP : Elements of NPP, Nuclear reactor & its types, fuels moderators, coolants, control rod, classification of NPP, N-waste disposal

DIESEL & GAS TURBINE POWER PLANT

DEPP : Plant Layout, Diesel Engine Power Plant Performance Analysis, application, selection of engine size, advantages & disadvantages of diesel power plant.

GTPP : Introduction, fuels, materials selection for GTPP, Brayton Cycle analysis, Thermal Efficiency, Work ratio, maximum & optimum pressure ratio, Actual cycle effect of operating variables on thermal efficiency, inter-cooling reheating, & regeneration cycle, Open, Closed & Semi Closed cycles Gas Turbine Plant, combined cycle plant (Numerical Treatment).

NON-CONVENTIONAL POWER PLANTS

Wind Power plant : Introduction, wind availability measurement, types of wind machines, site selection, and wind power generation.

Solar Power Plant : Introduction, components ,Types of Collectors & Solar Ponds, Low & High Temperature Solar Power Plant. Photovoltaic Power System, Heliostat

Tidal, OTEC, geothermal, magneto hydrodynamics, fuel cell, hybrid power plants, Challenges in commercialization of Non-Conventional Power Plants.

INSTRUMENTATION, ECONOMICS AND ENVIRONMENTAL IMPACT

Power Plant Instrumentation Layout of electrical equipment, generator, exciter, short circuits & limiting methods, switch gear, circuit breaker, power transformers, methods of earthing, protective devices & Control system used in power plants, Control Room.

Economics of Power Generation: Introduction, Cost of electric energy, Fixed and operating cost, (with numerical treatment), Selection and Type of generation, Selection of generation equipment, Performance and operation characteristics of power plants and Tariff methods.

Environmental impact due to power plants. Environmental aspects, introduction, constituents of atmosphere, different pollutants due to thermal power plants and their effects of human health, Environmental control of different pollutant such as particulate matter, Oxides of sulphur, nitrogen, global warming & green house effect, thermal pollution of water & its control. Noise pollution by power plants.

I ext D	JOKS											
1	E.I.Wakil, —Power Plant	t Engineering∥, McGraw	Hill Publications New Delhi									
2	P.K.Nag, —Power Plant	Engineering∥, McGraw I	Hill Publications New Delhi									
3	K K Ramalingam, Powe	r Plant Engineering, SC	ITECH Publications Pvt Ltd.									
4	Domkundwar & Arora, —Power Plant Engineering, Dhanpat Rai & Sons, New Delhi											
Refere	erence Books											
1	R.K.Rajput, —Power P	Plant Engineering , Lax	xmi Publications New Delh	ii								
2	R.Yadav, —Steam and C	Gas Turbines∥,Central Pu	ıblishing House, Allahabad									
3	G.D.Rai, — Non-Conven	tional Energy Sources I	Khanna Publishers,Delhi									
4	S.P.Sukhatme, —Solar E	nergy∥ Tata McGraw-Hi	ll Publications, New Delhi									
Course	Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	N.Lakshminarayanan	Associate Professor	MECH / AVIT	nlakshminarayanan@avit.ac.in								
2	K.Surendar Babu	Associate Professor	MECH / AVIT	surendrababu@avit.ac.in								

17FC	FC04		I)SP wi	ith FP(24		Cate	gory	Ι		Т	Р	Cre	edit
T/LC.	LC04		1	JSI WI		JA		С	С	3	3	0	0	3	;
PREA provide technic	MBLI es both ques for	E This the fix the opt	course ted point timal wa	provident and 1 ay of in	es the st floating plemer	tudents, th point rep nting the c	ne know presenta ommun	ledge ab tion of c ication s	out impl lata usec ystem blo	ementation for impocks efficient	on of Co plementa ciently of	mmunica tion. It c n FPGA.	ation bloc considers	cks on Fl algorith	PGA. It ms and
PRER	REQUI	SITE	– Signa	als and	l Syste	ms									
COU	RSE O	BJEC	TIVES												
1	To pro	ogram	FPGA	device	•										
2 To discriminate floating point arithmetic for other arithmetic logic. 3 To implement FIR and IIR filters using pipelining and parallel processing															
 3 To implement FIR and IIR filters using pipelining and parallel processing 4 To design communication blocks using different types of FFT algorithms 															
4 To design communication blocks using different types of FFT algorithms															
COU	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.	Explore	e the d	esign fl	low of	FPGA	and prog	rammir	ng langu	age.					Analyz	e
CO2.	Compu	te simj	ple FPO	GA log	ic usin	g floating	g point a	arithmet	ic, MA	C and SC	OP units			Apply	
CO3.	Impler	nent F	IR and	IIR Fil	ters us	ing distril	buted a	rithmeti	c, pipeli	ning and	l/or para	allel		Apply	
proces	ssing														
CO4.	Examir	ne the c	lifferer	nt types	s of FF	T algorith	nms inc	luding (Cooley-	Tukey, V	Winogra	d and G	ood-	Analyze	e
Thom	as.														
CO5.	Design	comm	unicati	on blo	cks for	modulati	ion, der	modulati	ion, con	volution	codes			Analyze	e
MAP	PING	WITH	PROC	GRAM	ME O	UTCOM	IES AN	ND PRC	OGRAM	IME SP	ECIFIC	C OUT	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	L	-	-	-	-	М	-	М	М	L	L
CO2	S	S	L	М	М	-	-	-	-	М	-	М	М	L	-
CO3	S	S	М	М	L	-	-	-	-	L	-	М	L	L	L
CO4 S M M - - L - L - M M L													L	-	
CO5	CO5 S M M M L - L - M L -													-	
S- Stro	ong; M	-Mediu	ım; L-l	LOW											

FPGA Technology

Introduction to FPGA, FPGA Design flow, Programming languages, programming technology

Basic Building Blocks

Number Representation, Binary adders, Binary dividers, Floating point arithmetic, MAC & SOP unit

Digital filter implementation

FIR filter - Theory and structure, Filter Design, Constant coefficient, FIR Design, IIR filter - IIR theory, Coefficient computation, Implementation detail, Fast IIR filter

Fourier Transform

DFT algorithms, Goertzel algorithm, Hartley transform, Winograd DFT, Blustein chirp-z transform, Rader algorithm, FFT algorithms, Cooley-tukey, Good thomas, Winograd FFT

Communication blocks

Error control codes, Linear block code, Convolution codes, Modulation and Demodulation, Adaptive filters, LMS, RLS, Decimator and Interpolator, High Decimation Rate filters.

Text Books

- Uwe.Meyer-Baese, —Digital Signal Processing with Field Programmable Gate Arraysl, Springer, Third edition, May 2007.
- Keshab K. Parhi, —VLSI Digital Signal Processing systems, Design and implementation , Wiley, Inter Science, 1999.

Reference Books

- 1. John G. Proakis, —Digital Communications, Fourth Ed. McGraw Hill International Edition, 2000.
- 2. Michael John Sebastian Smith, Applications Specific Integrated Circuits^{II}, Pearson Education, Ninth Indian reprint, 13th edition, 2004.
- 3. Sophocles J. Orfanidis, —Introduction to Signal Processing, Prentice Hall, 1996

COU	RSE DESIGNERS	
1	Dr.T.SHEELA	sheela@vmkvec.edu.in
2		
3		

17FC	FC06		м	TMS &	SEN	SOBS		Cate	egory]	Ĺ	Т	Р	Cr	edit
T/EC.	LCOU		1411			50105		Ε	C		3	0	0	,	3
PREA In rec sector partici intellig it is us	recent years, MEMS have revolutionized the semiconductor industry, with sensors being a particularly buoyant ctor. Smart MEMS and Sensor Systems presents readers with the means to understand, evaluate, appreciate and rticipate in the development of the field, from a unique systems perspective. The combination of MEMS and integrated elligence has been put forward as a disruptive technology. The full potential of this technology is only evident when is used to construct very large pervasive sensing systems. REREQUISITE - NIL														
PRER	EREQUISITE - NIL														
COU	OURSE OBJECTIVES														
1	Under	rstand	the fun	damen	tal con	cept of N	MEMS a	and their	relevan	ice to cu	rrent ind	dustry/so	cientific	needs	
2	Gain	the phy	/sical k	nowled	lge un	derlying	the ope	ration p	rinciples	and des	sign of r	nicrosys	tems;		
3	Build	an unc	lerstan	ding of	micro	scale phy	ysics for	r use in o	designin	g MEM	S applic	ations			
4	Understand the basic principles of MEMS sensors and actuators (mechanical, electrical, piezoresistive, piezoelectric, thermal, microfluidic)														
5	Desig proce	n the p ss desc	process	flow o ı.	f a bas	ic MEM	S device	e, such a	as an ine	rtia sens	or (acce	eleromet	er), give	en a fabri	cation
COUI	RSE O	UTCO	MES												
On the	e succe	ssful co	omplet	ion of t	he cou	rse, stud	ents wi	ll be able	e to						
CO1.	Knowl	edge o	n the ba	asics of	f MEM	S and m	echanic	s for M	EMS De	esign				Unders	stand
CO2.	Ability	to app	ly the ł	oasic k	nowled	lge of M	EMS in	differer	nt fields					Apply	
CO3.	Apply t	he ME	MS fo	r differ	ent app	plication	s.							Apply	
CO4.	Use co	ncepts	in com	mon n	nethods	s for con	verting	a physic	al paran	neter int	o an ele	ctrical q	uantity	Apply	
CO5. 1	Locate	differe	ent type	e of sen	isors us	sed in rea	al life ar	plicatio	ons and p	oaraphra	se their	importa	nce	Create	
MAP	PING V	WITH	PROG	GRAM	ME O	UTCON	MES AI	ND PR(OGRAN	IME SF	PECIFI	C OUT	COMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L		-	-	-	-	-	М	L	-	-
CO2	S	S	М	М	М	-	-	-	-	-	-	М	М	-	-
CO3	S	S	М	М	L	М	-	-	-	-	-	М	М	-	-
CO4	S	S	S	-	L	S	-	-	-	-	-	M	L	М	-
CO5	S M S S S S M - - - M M M -														
S- Stro	ong; M	-Mediu	ım; L-l	Low											

OVERVIEW AND INTRODUCTION Introduction to Design of MEMS, Overview of Micro electromechanical Systems, Materials for MEMS: Silicon, silicon compounds, polymers, metals ,Micro fabrication, Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

MECHANICS FOR MEMS DESIGN Elasticity, Stress, strain and material properties, Bending of thin plates, Spring configurations, torsional deflection, Mechanical vibration, Resonance, Thermo mechanics – actuators, force and response time, Fracture and thin film mechanics.

MEMS APPLICATION Case studies – Capacitive accelerometer, Peizo electric pressure sensor, Microfluidics application, Modeling of MEMS systems, CAD for MEMS.

INTRODUCTION AND DISPLACEMENT MEASUREMENT Sensors - Basic requirements of a sensors-Classification of sensors- Static and Dynamic characteristics of sensors- Displacement Sensors- Linear and Rotary displacement sensors-Potentiometer, Capacitive and Inductive type displacement sensor- position sensors- Optical encoder, Photoelectric sensor, Hall Effect Sensor.

MICRO SENSORS AND ACTUATORS Micro Sensors: Principles and examples, Force and pressure micro sensors, position and speed micro sensors, acceleration micro sensors, chemical sensors, biosensors, temperature micro sensors and flow micro sensors. Micro Actuators: Actuation principle, shape memory effects-one way, two way and pseudo elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles.

Text Books

1.N. P. Mahalik, -MEMSI, Tata McGraw hill, Sixth reprint, 2012.2.Stephen Santeria, Microsystems Designi, Kluwer publishers, 2000.

3. Sensor & transducers, D.Patranabis, 2nd edition, PHI

Reference Books

- 1. 1 Nadim Maluf, An introduction to Micro electro mechanical system design, ArtechHouse, 2000.
- 2. Mohamed Gad-el-Hak, editor, The MEMS Handbook, CRC press Baco Raton, 2000.
- 3.. Tai Ran Hsu, MEMS & Micro systems Design and Manufacture Tata McGraw Hill, New Delhi, 2002.

Liu, MEMSI, Pearson education, 2007..

4. Instrument transducers, H.K.P. Neubert, Oxford University press.

17EC	EC21		ADV	ANCE	D ROF	BOTICS		Cate	gory	Ι		Т	Р	Cre	edit
1120						101105		С	C	3	3	0	0	3	5
PREA	MBL	E Adva	nced F	Robotic	s will	explore ir	n great	depth a	reas rele	evant to	not only	[,] industr	ial robot	tics but s	service
robots	(i.e. ro	obots o	utside	a facto	ry env	ironment	particu	ularly m	obile ro	bots) an	d the ap	plicatio	n of this	technol	ogy to
real w	orld en	vironn	nents e	.g. driv	verless	vehicles,	unmai	nned aer	ial vehi	cles and	tele-rol	oots. Stu	idents w	ill also i	master
robot	kinema	tics and	d dyna	mics.											
PRER	REQUI	SITE -	_												
COU	RSE O	BJEC	ΓIVES												
1	To ga	in knov	wledge	in rob	otic ele	ments									
2	To exp	plore th	he kine	matics	of seri	al and par	rallel ro	obotics							
3	3 To know the motion of robot in various coordinates and surfaces														
COU	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.	Discrin	ninate	various	roboti	c elem	ents like s	sensors	s and act	uators					Analyz	e
CO2.	Analyz	e the k	inemat	ics of s	erial ro	bot such	as the	direct ar	nd invers	se kinen	natic pro	blems		Apply	
CO3.	Analyz	the k	kinema	tics of	paralle	l robotics								Apply	
CO4.	Investi	gate the	e motio	on of ro	bot in	various co	oordina	ates						Analyze	e
CO5.	Explore	e the m	otion c	of robot	in sev	eral surfa	ices like	e flat su	rface, ur	neven te	rrain			Analyze	;
MAP	PING V	WITH	PROC	GRAM	ME O	UTCOM	IES AN	ND PRC	OGRAM	IME SP	ECIFIC	C OUTO	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	L	-	-	-	-	М	-	М	М	L	L
CO2	S	L	L	М	М	-	-	-	-	М	-	М	М	L	-
CO3	М	М	М	М	L	-	-	-	-	L	-	М	L	L	L
CO4	S	S	М	М	-	-	-	L	-	L	-	М	М	L	-
CO5	S	М	М	М	-	-	-	L	-	L	-	М	L	L	-
S- Stro	ong; M	-Mediu	ım; L-I	LOW											

Elements of robots -- joints, links, actuators, and sensors

Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and

external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.

Kinematics of serial robots

Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.

Kinematics of parallel robots

Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.

Motion planning and control

Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.

Modeling and analysis of wheeled mobile robots

Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three-wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.

Reference Books

1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford UniversityPress, 2nd reprint, 2008.

2. Fu, K., Gonzalez, R. and Lee, C.S. G., Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987

COU	COURSE DESIGNERS										
1	N.MANIKANDA DEVARAJAN	manikandadevarajan@vmkvec.edu.in									
2											
3											

17ECI	EC22	1	'NNO'	VATI	VE PI	ROIECT	I	Cate	gory	I	_	Т	Р	Cre	dit
17LCI				• 2311	, 17 1 1	COLCI		C	С	3	3	0	0	3	
PREA	MBLE	E This	course	is an	introd	uctory co	ourse o	on Innov	vative P	roject.	It focus	es on pr	oviding	you wi	th the
knowle	edge ai	nd fun	damen	tal ur	dersta	nding of	Creat	ivity, I	nnovatio	on, and	some	contemp	oorary a	pproach	nes to
innova	tion in	cluding	g desig	gn thi	nking.	The cour	rse wi	ll cover	semina	al mode	els, key	principl	es and	method	s and
technic	ques in	innova	tion a	nd des	ign thi	nking, ind	cludin	g their a	applicat	ions.					
PRER	EQUI	SITE -	- Nil												
COUR	RSE OI	BJECT	TIVES	5											
1	To De	evelop	Creati	vity a	nd Inno	ovation									
2	2 To Recognize the significance of innovation														
3	3 To Examine the approaches of innovation practiced by various organizations														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. I	Discuss	both i	ndivid	ual an	d cont	extual fac	ctors th	nat are l	inked to	creativ	vity			Analyz	ze
CO2. I	Discuss	key co	oncept	s and j	princip	les that g	guide in	nnovati	ve pract	ices				Analyz	ze
CO3. 1	Discus	s the ne	eed for	r and s	ignific	ance of a	doptin	ig a des	ign thin	king mi	ndset			Analyz	ze
CO4. I	Explain	desigr	n think	ing pr	actices	and their	r appli	cations						Apply	
CO5. A	Apply t	he desi	gn thi	nking	princip	oles and p	process	8						Apply	
MAPP	PING V	VITH	PROC	GRAN	IME (DUTCON	MES A	AND PI	ROGRA	AMME	SPECI	FIC OU	JTCON	1ES	
COS	PO1	PO2	PO3	PO4	PO5	PO06 I	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	L	-	-	-	-	М	-	М	М	L	L
CO2	S	L	L	М	М	-	-	-	-	М	-	М	М	L	-
CO3	М	М	М	М	L	-	-	-	-	L	-	М	L	L	L
CO4	4 S S M M L - L - M M L -														
CO5	S N M M	M	M	М	-	-	-	L	-	L	-	М	L	L	-
S- Stron	g; M-M	eaium; I	Low												

- 1. Group Case Studies/Assignments
 - a. Overall understanding of the case/assignment
 - b. Highlighting innovations and various approaches adopted
 - c. Clarity and coherence of presentation

2. Group Project

- a. Overall, application of Innovation and Design thinking process
- b. Originality of ideas from the modernization
- c. Quality and relevance of final prototype
- d. Preparation of Project Report
- e. Preparation and Submission of Projects to funding agencies

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in

17FC	'FC'23	INT	rod	UCT	ION T	O MA	CHINE	Category	I		Т	Р		Credit	ł
1/EC	EC23			V	ISIO	N		EC	3	3	0	0		3	
PRE	AMBL	E To	introdu	uce the	e stude	ents the	concepts b	behind machin	e visio	n and o	bject re	cogniti	on tech	niques	
PRE	REQU	ISITE	2 – NI	L											
COU	RSE C)BJE(CTIVI	ES											
1	To un	dersta	nd the	funda	menta	l of digi	tal image	processing							
2	To un	dersta	nd the	conce	pts of	edge de	tection, se	gmentation a	nd textu	ire anal	ysis				
3	To un	dersta	nd the	conce	pts of	image a	inalysis								
4	To un	dersta	nd the	conce	epts of	3D visi	on and mo	otion							
5	5 To get introduced to the concepts behind pattern recognition schemes														
COU	OURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1:	CO1: Understand the basic operation of imaging techniques in the computers Remember and Understand														
CO2:	Analy	ze the	basic j	proces	ssing to	echniqu	es of imag	e processing					Ana	lyze	
CO3:	Study	and ar	nalyze	the pa	attern o	of comp	uter under	standings of s	tructure	es.			Eval	uate	
CO4:	Under	stand a	and stu	ıdy th	e 3D c	reate ne	w standar	ds for securing	g the da	ıta			Cre	ate	
CO5:	Evalua	ate the	vario	us real	time of	compute	er vision s	ystems.					Eval	uate	
MAF	PING	WITH	H PRO)GRA	MMI	E OUT(COMES A	ND PROGR	AMM	E SPEC	CIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	L	S	-	-	-	-	-	-	-	-	L	-	-	-
CO3	S	S	М	-	L	-	-	-	-	-	-	L	-	-	-
CO4	S	М	М	-	S	-	-	-	-	-	-	S	-	-	-
CO5	S	M	L	-	М	-	-	-	-	-	-	S	-	-	-
S- Sti	- Strong; M-Medium; L-Low														
SYL	LABUS	5													

LEVEL VISION - INTRODUCTION TO IMAGE PROCESSING

Fundamental steps in digital image processing – Components of an image processing system –Image sampling and quantization – Basic relationships between pixels – Basic intensity transformation functions – Fundamentals of spatial filtering – Basics of filtering in frequency domain – Filtering in spatial and freuency domains.

LOW LEVEL VISION - EDGE DETECTION, SEGMENTATION & TEXTURE

Thresholding Techniques, Edge Detection, Corner and Interest Point Detection, Mathematical Morphology, Texture.

INTERMEDIATE LEVEL VISION

Binary Shape Analysis, Boundary Pattern Analysis, Line Detection, Circle and Ellipse Detection, the Hough Transform and Its

9

9

Nature,	Pattern Matching Techniques	

3D VISION AND MOTION

The Three-Dimensional World, Tackling the Perspective n-point Problem, Invariants and Perspective, Image Transformations and Camera Calibration, Motion.

REAL TIME PATTERN RECOGNITION SYSTEMS

Automated Visual Inspection, Inspection of Cereal Grains, Surveillance, In-Vehicle Vision Systems, Statistical Pattern Recognition.Image Acquisition, Real-Time Hardware and Systems Design Considerations. **Text Books**

- 1. Digital Image Processing^I, Rafael C Gonzalez & Richard E Woods, Pearson Education International, Third Edition, 2008, ISBN 013 168728-x, 978-0-13-168728-8.
- 2. —Computer and Machine Vision: Theory, Algorithms, Practicalitiesl, E R Davies, Fourth Edition, 2012, Academic Press, Elsevier.

Reference Books

- 1. Digital Image Processing, Bernd Jahne, Springer Verlag, Fifth Edition, 2002, ISBN 3-540 67754 2.
- 2. The Essential Guide to Image Processing", Al Bowik, 2009, Elsevier Inc, ISBN 978-0-12-374457-9.
- 3. Machine Vision Algorithms and Applications, C Steger, M Ulrich, & C Wiedemann, First Edition, Wiley VCH, 2006, ISBN 3527407340.

COURSE DESIGNERS

1 P. Subramanian

subramanian@avit.ac.in

9

9

17MBHS10	LEAN START-UPS MANAGEMENT	Category	L	Т	Р	Credit
		HSS	3	0	0	3

PREAMBLE:

Lean start-ups Management is an approach to building new businesses based on the belief that entrepreneurs must investigate experiment, test and iterate as they develop products. It is a methodology for developing businesses and products, which aims to shorten product development cycles and rapidly discover if a proposed business model is viable; this is achieved by adopting a combination of business-hypothesis- driven experimentation, iterative product releases, and validated learning.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Lean Startups Management basics.
- 2. To understand the different managerial activities/stages involved in lean startups of Management
- 3. To understand the lean startups approaches and problem solving in startups.
- 4. To impart the lean six sigma concepts and its application in startups management.
- 5. To impart the various issues, and entrepreneurial traits.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Explain the concept of lean startups, objectives and functions of lean starts-ups Understand management.

CO2: Analyze startups management stages/process and its execution in business. Apply

CO3: Analyze the lean startups approaches and its application to reduce the problems Apply in lean startups business.

CO4: Reduce project completion cycle times and results by using lean six sixma Apply methodologies and tools.

CO5: Assess the entrepreneurial problems and its traits.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	М	-	-	-	-	М	S	S	-	М	-	-			
cor	1,1						5	5		1/1					
CO2	S	S	S	М	М	М	-	-	-	-	-	-			
CO3	c	c	c	м	м	м									
005	3	3	3	IVI	IVI	IVI	-	-	-	-	-	-			
CO4	S	S	S	М	М	М	-	-	-	-	-	-			
CO5	S	S	S	М	М	М	-	-	-	-	-	-			
															1

SYLLABUS:

Introduction: Startup – Entrepreneur – Self Assessment – Setting Lean Startup Methods and Non-tech small business- Picking the Right type of lean startup.

Starting and Growing a business: Identification of Innovation – Idea Formation – Brain storming – Risk Assessment – Value and Growth - Startup company operations management – The build - Measure, Lean Loop.

Lean Approach and Problems Solving: Solving Business Challenges with a Lean Approach: Identify the problem - Identify the root causes - Brainstorm the solutions - Select the appropriate solution - Implement and check the impact of the solution - The Frugal Entrepreneur – Saving Money and Pay off Later Approach – Bootstrap Business.

Lean Startups and Lean Six Sigma: Lean Startup a stepping stone: vision and concept - Maximize the probability- Protect against making obvious mistakes - Attract co-creators - Attract finance - Attract Joint Ventures – Project track - Lean Six Sigma reduce costs for Startup Businesses.

Startup Issues: Niche Marketing: Meaning, Benefits – Strategy for Niche Approach – Business Startup: Difference between small business and startup – Startup Problems - Becoming an entrepreneur: Entrepreneurial Traits

Text Book:

1. Harry Altman (2017), Lean Startup: Essential Guide to Build Your Lean Startup and How to Start Stepby-step, Create Space Independent Publishing Platform.

Reference Books:

COURSE DESIGNERS:

- 1. Osterwalder, A & Pigneur, Y. (2010) Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Hoboken, NJ: John Wiley & Sons.
- 2. Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Random House Digital, Inc.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Palaniappan	Asso. Professor	Management Studies	Palani.sunn@gmail.com
2	Dr. G. Murugesan	Professor	Management Studies	selvasahana.m@gmail.com

17CVSE01	APPLICATION OF STATISTICAL	Category	L	Т	Р	Credit
	METHODS IN CONSTRUCTION	EC	3	0	0	3

PREAMBLE

This course is designed to provide the solid foundation on topics in various statistical methods which form the basis for many other areas in the mathematical sciences including statistics, modern optimization methods and risk modeling.

PREREQUISITE

Engineering Mathematics.

COUR	SE O	BJECT	TIVES												
1	To ga	in the	knowle	dge of	Analy	ze the o	one din	nensio	nal rano	lom var	iable and	d their p	oroperties	s and fur	nctions.
2	To fo	cused of	on Ana	lyze ar	d stud	y about	t the es	timatic	on theor	ry using	various	method	ls.		
3	To st	udy abo	out Ana	alyze a	nd test	the hyp	pothese	es base	d on di	fferent c	listribut	ions and	lattribut	es	
4	To ga	in the l	knowle	dge Ai	nalyze	the var	iance a	ind per	form ra	andomiz	ed block	k and La	atin squa	re desig	n.
5	To ca	lculate	the Ar	alyze a	and wo	rk on d	lifferen	it queu	ing mo	dels.					
COUR	OURSE OUTCOMES														
On the	In the successful completion of the course, students will be able to														
CO1 .A	nalyze	e the or	e dime	ensiona	l rando	om vari	able ar	nd their	r prope	rties and	functio	ns.		Anal	yze
CO2. <i>A</i>	Analyz	e and s	tudy ał	oout the	e estim	ation tl	heory u	ising v	arious	methods				Anal	yze
CO3. A	nalyze	e and te	est the h	nypothe	eses ba	sed on	differe	ent dist	ributio	ns and a	ttributes			Anal	yze
CO4. A	nalyze	e the va	riance	and pe	rform 1	andom	nized b	lock ar	nd Lati	n square	design.			Anal	yze
CO5. A	nalyze	e and w	ork on	differe	ent que	uing m	odels.							Anal	yze
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	IFIC O	UTCON	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

CO1	М	 	S	 	 	 	 	 	
CO2	М	 	S	 	 	 	 	 	
CO3	М	 	S	 	 	 	 	 	
CO4	М	 	S	 	 	 	 	 	
CO5	М	 	S	 	 	 	 	 	

SYLLABUS

PROBABILITY AND DISTRIBUTIONS: Probability theory and its importance: Definition of probability, Rules of Probability, The Baye's theorem. Random variable. Probability distribution. Mean or Expectation of Random variable. Properties of Mean of Expectation. Theoretical probability Distributions: Binomial Distribution, Poisson distribution. Normal Distribution, Exponential Distribution, Beta, Gamma.

TESTING OF HYPOTHESIS: Sampling distributions - Small and large samples -Tests based on Normal, t, Chi square, and F distributions for testing of means, variance and proportions – Analysis of r x c tables – Goodness of fit.

CORRELATION ANALYSIS: Correlation types, co-efficient. Bi-variate Frequency Distribution, Scatter Diagram, Correlation Analysis.

REGRESSION ANALYSIS: Regression and Multivariate Analysis, Multiple Regression Analysis on linear Regression. Use of regression analysis in resources management.

APPLICATIONS: Use of mathematical models based on probabilistic and statistical methods, simulation in risk identification, analysis and mitigation of project risks. EOQ in civil engineering, Sensitivity analysis, ABC analysis.

TEXT BOOKS:

- 1. John E Freund's Mathematical Statistics: (7th Ed.), Miller & Miller, Prentice-Hall
- 2. Probability and Statistics for Engineers –Miller, Freund-Hall, Prentice India Ltd. 2009

REFERENCES:

- 1. Applied Statistics and Probability for Engineers---Montgomery and Runger—Wiley, India.
- 2. Applied Mathematics for Engineers and Physiscists-pipes and Harvill. McGraw Hill International Edition, 1970.
- 3. Sampling techniques-Cochran, Wiley Series, 2008.

Mr. Sudip Das Asst. Prof AVIT <u>sudipdas@avit.ac.i</u>
17CVS

PREA
This co
Resour
System
PRER
Nil
COUR
1
2
3
4
5
COUR
On the
CO1. T
CO2.D
СО3.Т
CO4 .A
Accour
CO5. <i>A</i>
centers
MAPP
COS
CO1

CO2	М	М	L	L	 М	L	 М	 	 	
CO3	М	М	М		 М	L	 М	 М	 	
CO4	М	М	М	М	 М	М	 М	 	 	
CO5	L		М	L	 		 	 	 	

SYLLABUS

INTRODUCTION: Overview - database applications -Business function vs business process-Introduction to Enterprise Resource Planning (ERP)

FINANCIAL ACCOUNTING: Financial Accounting basics – Balance sheet, Profit and Loss Statement- General Ledger, Chart of Accounts –Posting financial transaction-Controlling – Cost centers and cost elements-Allocating Costs – Assessments and distributions.

BUSINESS PROCESSES: Sales and fulfillment cycle -Master Data and its role in ERP systems -Creating customer master data, material master data and pricing conditions -Implementing a Sales Cycle

PROCUREMENT PROCESSES: Forecasting raw material requirements using sales information, production requirements, sales forecast-Raw Material procurement-Vendors and pricing conditions-Payment.

PLANNING AND CONTROL: MRP – Materials requirement planning-Independent and dependent materials requirements-Creating Production orders and schedules-Bill of Materials-Executing a Production process-Inventory and Goods movement-Routing and work centers.

TEXT BOOKS:

- 1. Enterprise Resource Planning, 3rd Edition, by Bret Wagner and Ellen Monk, ISBN: 9781423901792,2009
- SAP R/3, Business Blueprint, 2nd Edition, by *Thomas A. Curran & Andrew Ladd*, Prentice Hall PTR, 2000, ISBN: 0-13-085340-2

- 1. Essentials of Business Processes and Information Systems, by Simha R. Magal and Jeffrey Word , ©2010, ISBN: 978-0-470-23059-6
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by Simha R. Magal and Jeffrey Word, ISBN: 978-0-470-88424-9

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

17CVSE03	MANAGEMENT AND PROJECT	Category	L	Т	Р	Credit
	PLANNING IN CONSTRUCTION	EC	3	0	0	3

PREAMBLE

To study the elements of construction project management; consisting of owners' perspective, organization, design and construction procedures, resource utilization and cost estimation.

PRER	EQUI	SITE													
Nil															
COUR	RSE O	BJECT	FIVES												
1	Knov	the ty	pes and	d finan	cing of	constr	uction	and ch	anging	enviror	ment of	the ind	ustry.		
2	2 Understand the organization of project management. Understand the organization of project management.														
3	Know the design and construction process as an integrated system. Know the labour material and equipment utilization														
4	Know the labour, material and equipment utilization														
5	5 Understand Cost Estimates and the Costs Associated with Construction Facilities.														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. T	CO1. The types and financing of construction and changing environment of the industry. Apply														
СО2.Т	he org	anizati	on of p	roject 1	nanage	ement.								Unde	rstand
CO3.	The de	sign an	d const	truction	n proce	ss as a	n integ	rated s	ystem.					Appl	У
CO4. T	The lab	our, ma	aterial a	and equ	iipmen	t utiliz	ation							Unde	rstand
CO5. (Cost Es	stimate	s and t	he Cos	ts Asso	ciated	with C	onstru	ction F	acilities.				Appl	У
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L						-						
CO2	М	М	L	L					М						

CO3	М	М	М	L	 	L		М	 М		 	
CO4	S	М	М	М	 	L	L	М	 		 	
CO5	S	М	М		 				 	L	 	

SYLLABUS

Basics of Management: Modern scientific management, Management Functions, Management Styles

Project Management: Basic forms of organization with emphasis on Project and matrix structures; project life cycle, planning for achieving time, cost, quality, project feasibility reports based on socio-techno-economic-environmental impact analysis, project clearance procedures and necessary documentation for major works like dams, multistoried structures, ports, tunnels, Qualities, role and responsibilities of project Manager, Role of Project Management Consultants, Web based project management.

Project Scheduling and Project Controlling: Construction Scheduling, Work break down structure, activity cost and time estimation in CPM, PERT, RPM (Repetitive Project Modeling) techniques. LOB technique, Mass haul diagrams. Precedence Network Analysis, software in Construction scheduling (MSP, primavera, Construction manager). Monitoring and Control, Crashing, Resource Leveling, Updating.

Construction Management and Work Study: Site mobilization – demobilization aspects, various Resources management based on funds availability. Co-coordinating, communicating & reporting techniques. Application of MIS to construction. Training of Construction Managers. Definition, Objectives, basic procedure, method study and work measurement, work study applications in Civil Engineering. Method study – Definition, Objective, Procedure for selecting the work, recording facts, symbols, flow process charts, multiple activity charts, string diagrams. Work measurement – Time and motion studies, Concept of standard time and various allowances, time study, equipment performance rating. Activity sampling, time-lapse photography technique, Analytical production studies.

Safety Engineering and Administration of Incentive Schemes: Causes of Accidents on various sites, safety measures and safety policies to be adopted, determination of safety parameters, personal protective equipments. Workmen Compensation Act. Necessity, Merit rating, job evaluation, installation, modification and maintaining of incentive schemes based on implementation experience.

TEXT BOOKS:

- 1. Construction Planning & management By P S Gahlot & B M Dhir , New Age International Limited Publishers
- 2. Construction Project planning & Scheduling By Charles Patrick, Pearson, 2012
- 3. Construction Project Management Theory & practice --- Kumar Neeraj Jha, Pearson, 2012

4. Construction management Fundamentals by Knutson, Schexnayder, Fiori, Mayo, Tata McGraw Hill, 2nd Edition, 2011

REFERENCES:

- 1. Construction Project Management Planning, Scheduling and Controlling-Chitakara Tata McGraw Hill, New Delhi
- 2. Construction Management Roy, Pilcher
- 3. Construction Management O'Brien.
- 4. Project Management-Planning and Control---Rory Burkey 4th ed.—Wiley, India.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in
	1	1		l

17CV8	CONSTRUCTION CONTRACTS AND ADMINISTRATION CategoryLTPCreditEC3003														
		A	ADMIN	NISTR	ATIO	N				EC		3	0	0	3
PREA	MBLE	2											1	I	
This co	ourse w	ill cre	ate awa	areness	on cor	tracts	for con	structio	on indu	stry; imj	part k	nowledge	on tend	er prepa	ration,
tenderi	ing proo	cess, la	aws on	arbitra	tion, a	rbitratio	on proc	cedure	and lav	vs on dis	spute	resolution	in India	•	
PRER	EQUIS	SITE													
Nil															
COUR	RSE OI	BJEC	TIVES												
1	То со	nstruc	et contra	acts											
2	To stu	udy the	e proce	dures c	of contr	acts									
3	To understand resolution methods Conditions of contracts														
4	4 Conditions of contracts 5 To study in detail about orbitration														
5	5 To study in detail about arbitration														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. U	Jnderst	and th	e laws o	on con	tracts f	or cons	structio	n indu	stry in I	India				Unde	erstand
CO2.A	Apply k	nowle	dge of o	contrac	ts in p	reparat	ion of o	contrac	t docu	ment and	d tend	ering proc	cess	App	y
CO3. A	Apply a es betw	pprop een th	oriate m e partie	ethods s	to asse	ess the	critical	factor	s in coi	ntracts le	ading	to arbitra	tion and	App	У
CO4.A dispute	Apply ap es betw	ppropi een th	riate me e partie	ethods es	to asse	ss the c	critical	factors	in con	tracts lea	ading	to arbitra	tion and	App	У
CO5. U 1996	Jnderst	and th	e Objec	ctives,	genera	l provis	sions o	f Indiaı	n Arbit	ration A	nd Co	nciliation	Act	Unde	erstand
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGI	RAMMI	E SPE	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PSO1	PSO2	PSO3
CO1	S								М		S				

CO2	S	L		 	М	S	 S	 S	М	 	
CO3	S	S	М	 	М		 S	 S	М	 	
CO4	S	М	М	 	М		 S	 S		 	
CO5	S	L		 			 М	 		 	

SYLLABUS

CONSTRUCTION CONTRACTS: Standard forms of contracts, methods of inviting tenders, pre-bid meetings, pre-qualification system, scrutiny of tenders and comparative statement-Contract formation, conditions of contracts, contracts with various stakeholders on a major construction projects, contract pricing by the client, project management consultants and the contractor, contract performance, contract correspondence and contract closure

CONSTRUCTION CLAIMS: Extra items and causes of claims. Types of construction claims, documentation. Settlement of claims, extension of time.

DISPUTE RESOLUTION: Causes of disputes and importance of role of various stakeholders in prevention of disputes, Alternate Dispute Resolution methods- mediation, conciliation, arbitration and Dispute Resolution Boards.

CONTRACT CONDITIONS: a) General condition and Particular conditions, conditions of Ministry of Statistics and Program Implementation- Government Of India. Model forms of contract. Role of Planning Commission.

b) ICE conditions-Introduction, FIDIC conditions- evolution of FIDIC document, types based on whether design is of employer or contractor, Design & Build contract, EPC contract, short forms of contract- Colour Code.

ARBITRATION: Indian Arbitration And Conciliation Act 1996 Difference between 1940 Act and 1996 Act. Extent of application of 1996 Act. Objectives, general provisions. Composition of the arbitral tribunal, jurisdiction of arbitral tribunal, duties, power of arbitrators

TEXT BOOKS:

- 1. Civil Engineering Contracts and Estimates B. S. Patil Universities Press- 2006 Edition reprinted, in 2009.
- 2. The Indian Contract Act (9 of 1872), 1872- Bare Act- 2006 edition, Professional Book Publishers.
- 3. The Arbitration and Conciliation Act,(1996), 1996 (26 of 1996)- 2006 Edition, Professional Book Publisher.

- 1. Arbitration, Conciliation and Alternative Dispute Resolution Systems- Dr. S.R. Myneni- 2004 Edition,
- 2. Standard General Conditions for Domestic Contracts- 2001 Edition- Published by Ministry Of Statistics and

Program Implementation, Government of India.

S.No Name of the Facult	ty Designation	Name of the College	Mail ID
1 Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

170.09	TQM IN CONSTRUCTIONCategoryLTEC30														Credit
170.04	51105	1			SIN					EC	3		0	0	3
PREA	MBLE	E													
The pu	rpose o	of this	course	to prov	vide the	know	ledge o	of quali	ty in a	particula	ar syste	m.			
PRER	EQUI	SITE													
Tota	l qualit	y Man	agemer	ıt											
COUR	RSE O	BJEC	FIVES												
1	Unde	rstand	quality	conce	pts and	philos	ophies	of TQ	М						
2	To gain knowledge about the Apply TQM principles and concepts of continuous improvement														
3	To study the analyze of the quality tools, management tools and statistical fundamentals to improve quality														
4	4 Understand the TQM tools as a means to improve quality														
5	5 Remember and understand the quality systems and procedures adopted														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.(CO1.Quality concepts and philosophies of TQM Understand														
CO2.A	Apply T	CQM p	rinciple	es and c	concep	ts of co	ontinuo	us imp	rovem	ent				Appl	у
CO3.A improv	Apply a ve qual	nd ana ity	lyze the	e qualit	ty tools	s, mana	igemen	t tools	and sta	ntistical	fundam	entals to)	Anal	yze
CO4. 7	The TQ	M tool	s as a r	neans t	o impr	ove qu	ality							Appl	У
CO5.1	The qua	lity sys	stems a	ind pro	cedure	s adopt	ted							Appl	У
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMMI	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L							L					
CO2	S	М	L	S						L	S				

CO3	S	М	М	S	 	 М	М	 		 	
CO4	S	М	М	М	 	 М	М	 		 	
CO5	S	Μ	М		 	 		 	L	 	

SYLLABUS

CONCEPTS OF QUALITY: Definition of quality as given by Deming, Juran, Crosby, difference between Quality control, Quality Assurance (QA/QC). Total quality control (TQC) and Total Quality Management (TQM), Need for TQM in construction industry. Organization necessary for implementation of quality- Quality aspects in every phase in the life cycle of Construction project.

QUALITY CONTROL TOOLS AND STATISTICAL QUALITY CONTROL: Histogram, Pareto diagram, Fishbone diagram, Quality control chart-Testing required for quality control of construction material used in RCC Work- destructive and Non destructive Test (NDT) - Statistical Quality Control- Necessity, Benchmarking, Application of dispersion methods in quality control of construction activity

DEVELOPMENT OF HUMAN RESOURCES: Training needs assessment, technical and managerial competencies necessary for achieving quality, preparation for training. Training on Project Rework Reduction Tool (PRRT) software- training for preparation of checklist necessary for RCC work, for commonly used formats

QUALITY CIRCLE: Development of quality circles, quality inspection team, inspection reports, monitoring and control, 360_ feedback for quality.

TQM ON CONSTRUCTION PROJECTS: Advantages, barriers, principles, steps in implementation, seven types of construction defects. Determining cost of poor quality including hidden cost. Quality functions deployment (QFD). Importance of third party quality audits.

TEXT BOOKS:

- 1. Mantri Handbook A to Z of Construction Mantri Publications ,2001
- 2. Juran_s Quality Handbook Joseph M. Juran, A. Blanton. Godfrey Mcgraw Hill International Edition (2004)

- 1. Chitkara. K.K. -Construction Project Management: Planning Scheduling and Control^{II}, Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 2. Calin M. Popescu, Chotchal Charoenngam, -Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications^{||}, Wiley, New York, 2005.

COURS	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

17CV5	SE06	F	HIMA	NRES	OUR		NAG	EMEN	IT	Categ	ory I		Т	Р	Credit
					oen					EC	3	5	0	0	3
PREA	MBL	с 1	Γo Und	erstand	the m	ost the	oretical	l mode	ls and l	key conc	cepts in	Human	Resourc	es Mana	gement
within	in orga	anizatio	ons.							-	-				-
PRER	EQUI	SITE													
Nil															
COUR	RSE O	BJECT	FIVES												
1	Unde	rstand	HRD p	aramet	ers										
2	2 Understand the principle techniques concerning people management within organizations 3 To understand HPD policies														
3	3 To understand HRD policies														
4	4 To calculate manpower														
5	To pl	an for	career a	and dev	elopm	ent									
COUR	SE O	UTCO	MES												
On the	succes	sful co	ompleti	on of tl	ne cour	rse, stu	dents v	vill be	able to						
CO1.	Discuss	how to	o strate	gically	plan fo	or the h	umanı	resourc	es need	ded to m	neet org	anizatio	nal	Apply	V
goals a	nd obj	ectives	5											· · · PP·	<i>,</i>
CO2.E	Define t	he pro	cess of	job ana	alysis a	und dise	cuss its	impor	tance a	s a foun	dation	for huma	an	Unde	rstand
icsour		ageme	in prac	ucc											
CO3. (Compre	ehend	the hun	nan res	ource	nanage	ement a	and eva	luative	practice	es			Appl	У
CO4.]	Remen	ber an	d unde	rstand	the Teo	chnique	es of m	anpow	er plan	ning, Es	stimatic	on of mar	npower	Unde	rstand
for con	npany	project													
CO5. 1	Unders	tand th	e Caree	er & De	evelop	ment P	lanning	g and n	narket	surveyin	g.			Unde	rstand
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEO	CIFIC O	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L							L					
CO2	S	М	L	S			М			L	S				

CO3	S	М	М	S	 	М	 	 		 	
CO4	М	L			 		 	 М		 	
CO5	М	L	S		 М		 	 М	L	 	

SYLLABUS

INTRODUCTION: Need of HRD in the context of globalization, various HRD parameters viz. performance appraisal, potential appraisal, training rewards and recognition etc. Elements of the ICDP i.e. integrated construction development paradigm, key elements of HRD such as basic literacy, functional skills, supervisory skills, entrepreneurship skills. Personal Management – Concept of Personal Management, Role and Function of Personal Manager, Necessity of Personal Management.

TRAINING: Training of multi-skilled workforce, quality, productivity and employee relations in construction, training of engineers related to issues such as management capabilities, formation 26 of joint ventures, privatization and BOT type of systems

HRD DEPARTMENT AND HRM: Structure of department, personal office at head office and project site, personal selection, placement, training, transfer, promotion, retirement, health, welfare, working conditions, relation with other departments, workers participation in management, distinct processes associated with human resource management viz. sourcing, outsourcing, de-centering, flexi working, multi-skilling issues related with subcontracting.

MANPOWER CALCULATIONS: Techniques of manpower planning, Estimation of manpower for company project, Manpower estimation at various stages, considering Risk due to Lead – time. Remuneration – Remuneration of personal, Job evaluation, performance appraisal, merit – rating, various methods of deciding the Remuneration.

EMPLOYEE DEVELOPMENT AN RETENTION: Career & Development Planning- Approaches to Employee Career Development- Mentoring, Coaching and Succession Planning- Managing Turnover- Measuring & Monitoring Job Satisfaction- External Equity & Market Surveys

TEXT BOOKS:

- 1. Human Resource Management by Biswajeet Pattanayak, 2005
- 2. Personnel Management by Monappa A. Tata McGraw Hill, New Delhi1997
- 3. Nair M. R. R, -Excellence through Human Resource Development|, Tata McGraw Hill., 2006

REFERENCES:

1. Rao T, -HRD in the New Economic Environment I, Tata McGraw Hill, 1994.

2.	Pareck,	-HRD	in the	New	Millenium∥,	Tata	McGraw	Hill,1999
----	---------	------	--------	-----	-------------	------	--------	-----------

	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

17CVS	SE07	ENTERPRISE RESOURCE PLANNING	Category	L	Т	Р	Credit
1/0/0		SYSTEM	EC	3	0	0	3
PREAD	MBLE						
To und	erstand the	e key technical terminologies in enterprise informa	ation systems				
PRER	EQUISIT	E					
Nil							
COUR	SE OBJE	CTIVES					
1	To teach l	basics of ERP					
2	To develo	p life cycle concepts					
3	To unders both as-is	stand and gain insight into process views of organ and to-be models.	izations and t	tools and	techniqu	es used to	model
4	To Know different	and be able to apply key technical terminology in ERP products and development methods	enterprise in	iformatio	n system	s as they a	pply in
5	Key differ configura	rences between the major ERP applications and is tion and management	sues specific	to these a	applicatio	ons their	
COUR	SE OUTC	COMES					
On the	successful	completion of the course, students will be able to					
CO1. U used to	Inderstand model bot	and gain insight into process views of organization has-is and to-be models.	ons and tools	and techn	iques	Appl	y
CO2.K they ap	fnow and b ply in diffe	e able to apply key technical terminology in enter erent ERP products and development methods	prise informa	ation syste	ems as	Appl	У
CO3. A implem	Analyze a c nentation	current architecture and perform an effective gap a	analysis befor	e an ERF)	Analy	/ze
CO4.E informa post-im	ffectively of ation and unplementat	describe problems typical of ERP implementation se this information to anticipate and articulate the ion management of ERP systems.	projects and challenges a	translate ssociated	this with	Unde	rstand
CO5. S	Synthesize	prior theoretical and experiential knowledge in IT	developmen	t and pro	ject	Appl	у

manag	ement	with th	e curre	ent liter	ature o	n Ente	rprise S	System	develo	opment.					
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOM														
COS	COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 F														PSO3
CO1	S	М	L												
CO2	S	М	L	S		S	М	-	L	S		L			
CO3	S	М	М	S		S		М	М	S					
CO4 S M M M L															
CO5	S	М	М						L			L			

SYLLABUS

INTRODUCTION AND OVERVIEW: Enterprise Level and ERP Concepts - Business and IT Integration Trends Case-Review of Project Planning & Management concepts Case on ERP Project Planning-Big Bang - Adopting SAP

LIFE CYCLE CONCEPTS: Development life cycle rationale- traditional ERP life cycles - accelerated ERP life cycles - Enterprise process modeling concepts. Enterprise process modeling tools and techniques ERP Implementation Challenges and Success Factors - Business Process Reengineering (BPR and ERP) ERP Fits and Misfits Analysis

ERP REQUIREMENTS MANAGEMENT: ERP Project Team Selection, Development and Project Communications -Change Management & Control ERP Configuration and Control - Data migration and Data Cleansing -Quality Assurance - ERP Risk Management

CODING TECHNIQUES: Control -Testing Security- Coding Techniques- Defection of Error –Validating -Cost Benefit Analysis -Assessing the value and risk of Information System

INTEGRATED CONSTRUCTION MANAGEMENT: Integrated Construction Management- Information System- Project Management Information System- Functional Areas finance, Marketing Production, Personnel – levels, DSS, EIS, ES- Comparison Concepts and Knowledge representation – Managing Inter- national Information System

TEXT BOOKS:

1. Manufacturing Resource Planning (MRP II) with Introduction to ERP; SCM; an CRM by Khalid Sheikh, Publisher: McGraw-Hill,2011.

 ERP and Supply Chain Management by Christian N. Madu, Publisher: CHI 4. Implementing SAP ERP Sales & Distribution by Glynn C. Williams, Publisher McGraw-Hill,2013

REFERENCES:

1. Gordon B. Davis, —Management Information System: Conceptual Foundations Structure and Development^{II}, McGraw Hill 2004

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

170	VSEA	2	SU	RFAC	E AND	GRO	UND	WATE	R	Categ	gory	L	Т	Р	Credit
170	VSLUC)			HYD	ROLO	GY			EC	2	3	0	0	3
PREA	MBLE	C													
	This	course	e is to i	ntrodu	ce the s	student	s abou	t the su	irface a	and grou	Indwate	r hydrol	ogy and	enabling	g the
stude	nts to v	vork p	rofessio	onally i	n the e	nviron	mental	engine	eering s	sector ar	nd other	related	industry		
PRER	EQUI	SITE													
Nil															
COUF	RSE OI	BJEC'	TIVES												
1	To un	Idersta	nd the	influen	ce of n	neteoro	logy ir	n hydro	ology						
2	To un	dersta	nd the	hydrolo	ogical p	process	es in s	urface	and gro	oundwat	er hydro	ology			
3	To de	termir	e vario	us con	ponen	ts of aq	uifer c	haracte	eristics						
4	To de	termir	ie vario	us rese	rvoir c	haracte	eristics								
5	To determine various reservoir characteristics At the end of this course students will be aware of hydrological cycle and its processes.														
COUR	SE OI	UTCO	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	vill be	able to						
CO1. 7	The stu	dents	know t	he vari	ious m	ethods	of rair	water	and ru	noff har	vesting.	Then a	pply the	Appl	v
knowle	edge of	soil e	rosion a	and sed	imenta	tion to	estima	ate the	life of	the resea	voir			PP -	,
CO2.	Stude	nts a	re able	e to	unders	tand a	aquifer	prop	erties	and it	s dyna	mics a	fter the	e	
comple	etion o	f the	course.	It's ir	nparts	exposi	ire tov	vards v	well de	sign an	d practi	cal prob	olems of	Appl	У
ground	water	aquife	ers.												
CO3. <i>A</i>	Analyze	e the in	nfluenc	e of me	eteorol	ogy in I	hydrol	ogy						Anal	yze
CO4. (Calcula	te the	compo	nents o	f aquife	er chara	acterist	tics						Appl	у
CO5. <i>I</i>	Analyze	e the re	eservoi	r capac	ity									Anal	yze
MAPH	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L												
CO2	М	М	L												
CO3	S	-	М												
CO4	S	-	М												

	CO5	S	М	М													
--	-----	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--

SYLLABUS

HYDROLOGY AND ITS IMPORTANCE : Definition - Branches of hydrology - Role in water resources -

Meteorological and Geological parameters influencing hydrology - National Water Policy

SURFACE HYDROLOGY: Hydrology cycle - Precipitation and its abstractions - Processes, measurements and analysis of precipitation, infiltration, evaporation and evapotranspiration

RUNOFF: Process - Components - Measurement of flow - Hydrograph - Unit hydrograph - Simple models for run off estimation - Stream gauging

GROUND WATER: Aquifers - Geological formations influencing ground water - Darcy's law - Permeability

Conductivity - Transmissivity - Well hydraulics - Pump tests

RESERVOIRS: Types - Storage capacity and yield estimation - Rule curve of operation - Design flood and PMF **TEXT BOOKS:**

1. Garg S.K. Hydrology and Water Resources Engineering, 9th Edition, Khanna Publications, 1996.

2. Linsley R.K. and Franzini J.B., Water Resources Engineering, McGraw Hill Book Co., Inc., New York, 1990.

3. Raghunath H.M., Hydrology, Wiley Eastern Limited, New Delhi, 1985.

REFERENCE BOOKS

1. Todd, D.K., Ground Water Hydrology 2nd Edition, Wiley Eastern Limited, 1985.

2. Ven Te Chow, Hand book of Applied Hydrology, McGraw Hill Book Co., Inc., New York 1964

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

		EN	VIRON	NMEN	TAL I	MPAC	CT AS	SESSN	IENT	Categ	gory	L	Т	Р	Credit
17CV	SE09		0	FIRR	IGATI	ION P	ROJE	CTS		EC	7	3	0	0	3
PREA	MBLE	C C											•	•	
	To i	ntrodu	ce the	studen	ts to ei	nvironi	nental	impac	t assess	sment a	nd enat	oling the	e student	s to con	duct
and in	nplem	ent EIA	A studie	es in th	e agric	ultural	sector	and ot	her rela	nted indu	ustry for	the bet	terment	of societ	у
PRER	EQUI	SITE													
	Irrig	ation I	Engine	ering											
COUR	RSE OI	BJECT	FIVEG	S											
1	Unde	rstand	the EIA	A studi	es and	help in	carryi	ng out	the EIA	A studies	s at vari	ous hyd	ro and ir	rigation	projects
2	Obtain essential skills to understand, critically read and evaluate, review and begin to conduct impact assessments and to balance and integrate environmental social and economic needs														
2	assessments and to balance and integrate environmental, social and economic needs														
	Apply Knowledge and skills in relation to the framework and procedures of environmental impact														
3	3 Apply Knowledge and skills in relation to the framework and procedures of environmental impact assessment														
	assessment Use basic knowledge and skills to practice a number of selected methods used in Environmental impact														
4	25665	mente	io wied	ge und		o prae		iumoor	01 5010	erea me	unous u				puer
			.1 1	• •,•	1. 0			• 1 1	· ·	1 /	1 .1	1	1 1	• •	
5	Unde	rstand	the bas	sic criti		ormatio	on to gi	uide de	cisions	about v	vhether	some hy	dro and	irrigatio	n
	projec	cts and	policie	es shou	ld be r	ejected									
COUF	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1.	To exp	ose the	e stude	nts to t	he need	l, meth	odolog	gy, doc	umenta	tion and	luseful	ness of		Appl	V
enviro	nmenta	l impa	ct asses	ssment	in wat	er reso	urces c	levelop	ment						
CO2.	The stu derstar	ident w	/ill app	reciate	the im	portan	ce of e tal ass	nvironi	ment in	water r	esource	s develo	pment	Appl	у
Co3. S	Student	s will l	pecome	e aware	$\frac{1}{2}$ of fut	ure cha	llenge	s facing	g water	resourc	es mana	agement		Analy	vze
Co4. (Calcula	te the	compo	nents o	fenvir	onmen	tal imp	acts	5	1000010	•••		, 	Appl	V
Co5. A	nalyze	the en	vironn	nental i	ssues		1							Anal	yze
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND F	PROGI	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L	-	М	М	-	М	-	-	-	-			
CO2	М	М	L		-	-	S	S	-	-	-	-			
963	~		-					_							
CO3	S	L			Μ	Μ	-	-	-	-	-	-			

CO4	S	М	М		-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	_	-		

SYLLABUS

ENVIRONMENTAL ISSUES: Water resources development and environmental issues – Environmental regulations and requirements - The EIA (Environmental Impact Assessment) notification

EIA FUNDAMENTALS: Environmental Impact Assessment (EIA) – EIA in Project Cycle – Legal and Regulatory aspects in India according to Ministry of Environment and Forests – Types and limitations of EIA – Participation of Public and Non-Governmental Organizations in environmental decision making

ENVIRONMENTAL IMPACTS: Hydrological and water quality impacts – Ecological and biological impacts – Social and cultural

impacts - Soil and landscape changes - Agro economic issues - Human health impacts - Ecosystem changes.

METHODS OF EIA : EIA team formation– Development of scope, mandate and study design – Base line survey – Check

lists – Ad hoc procedures – Network and matrix methods – Semi-quantitative methods – ICID checklist – Economic approaches – Environmental Impact Statement (EIS) preparation.

ENVIRONMENTAL MANAGEMENT PLAN: In-stream ecological waterrequirements - Public participation inenvironmental decision making – Sustainable water resources development – Ecorestoration – Hydrology and global climate change – Human ecology – Ecosystem services – Environmental monitoring programs.

TEXT BOOKS:

- 1. L.W. Canter, -Environmental Impact Assessment^{||}, McGraw-Hill Book Company, 1995
- 2. Liu and Liptak, -Environmental Engineer's Handbook||, CRCnet Base, 2008
- 3. Anjaneyulu and Valli Manickam, —Environmental Impact Assessment Methodologiesl, BS Publications, 1998.

- 1. Barthwal, R.R., Environmental Impact Assessment. New Age International Publishers, New Delhi. 2002.
- 2. .Petts, J., Handbook of Environmental Impact Assessment, Vol., I and II, Blackwell Science London. 1999.
- Lawrence, D.P., Environmental Impact Assessment– Practical solutions to recurrent problems, Wiley- Inter Science, New Jersey. 2003.
- 4. Arnel, N., Hydrology and global environmental change. Prentice Hall, Harlow. 2002.
- Chari. B., Richa Sharma and S.A. Abbasi, Comprehensive Environmental Impact Assessment of Water Resources Projects : With Special Reference to Sathanur Reservoir Project (Tamil Nadu)/K. Discovery Pub., New Delhi, 2005.

$\frac{\text{OURS}}{\text{S No}}$	E DESIGNERS	Designation	Nama of the College	Mail ID
9.140	rame of the faculty	Designation	Name of the Conege	
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	VSE1()	WAT	TERSH	IED CO	ONSE	RVAT	TION A	ND	Categ	jory	L	Т	Р	Credit
					IVIAINA	AGENI				EC	2	3	0	0	3
PREA	MBLF	C													1
To intr	oduce	the stu	dents to	o surfa	ce and	ground	lwater	hydrol	ogy and	d enabli	ng the st	udents t	o work j	professio	nally in
the env	vironm	ental e	ngineei	ring sec	ctor an	d other	related	d indus	stry.						
PRFR	FOLIO	SITE													
INEN	Nil	51112													
COUR	RSE OI	BJECT	FIVES												
1	To un	dersta	nd con	cept of	need f	or Wat	er cons	servatio	on.						
2	To an	alyze o	legrada	ation of	f soil ai	nd wate	er reso	urces							
3	To pe	rform	of the 1	neasur	es for s	soil and	water	conser	rvation	•					
4	To pr	ovide a	a comp	rehensi	ive trea	tise on	the en	gineer	ing pra	ctices fo	r waters	shed ma	nagemer	nt.	
5	To ac	quire k	nowle	dge on	nation	al prog	rams o	n wate	rshed c	conserva	tion and	l soil deg	gradation	1	
COUR	RSE O	UTCO	MES												
On the	On the successful completion of the course, students will be able to														
CO1.	CO1. Students are able to develop and apply numerical model for various application along with better understanding aquifer characteristics. Apply														
CO2.	Studen	ts are a	ble to	underst	tand aq	uifer p	roperti	ies and	its dyr	namics a	fter the	complet	ion of		
the cou	ırse. It	's impa	rts exp	osure t	toward	s well c	lesign	and pra	actical	problem	s of gro	und wat	er	A	pply
aquifer	s.														
Co3. A	nalyze	the wa	atershe	d mana	agemen	ıt								Aı	nalyze
Co4. C	lalculat	e the c	ompon	ents of	aquife	r chara	cterist	ics						A	pply
Co5. A	nalyze	the wa	astelan	d devel	lopmen	ıt								Aı	nalyze
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	Μ	L	-	-	-	-	-	-	-	-	-			
CO2	М	М	L		-	-	-	-	-	-	-	-			
CO3	S	М	М		-	-	-	-	-	-	-	-			
CO4	S	М	М		-	_	-	-	-	_	_	-			
COT	5	141	101												
CO5	S	М	М	-	-	-	-	-	-	-	-	L			
S- Stro	ong; M	-Medi	um; L	-Low				1							
SYLL	ABUS														
INTR	ODUC	TION	: Wate	rshed c	oncept	- Clas	sificati	on - Cl	haracte	ristics –	Land us	se classi	fications	•	

SOIL CONSERVATION: Water eristic - Types of erosion - Estimation of soil loss - Conservation measures - Agricultural land, wastelands, gulley - Mechanical and agronomical options - Design details - Wind erosion and its effects - Estimation of soil loss - Prevention measures Silting of reservoirs - Catchment treatment.

WATERSHED MANAGEMENT: Basics of remote sensing technique - Data collection - Preparation of overlays use of GIS for data processing - Drought prone area program - Integrated watershed management

WATER CONSERVATION : Need for water conservation - Augmentation - Water harvesting in agricultural land and Urban lands - Traditional and new concepts

WASTELAND DEVELOPMENT : Degradation of land - Role of human and cattle - Waste land development program in India - Role of NGO - Participatory approach - Case studies

TEXT BOOKS:

- 1. Datta S.K., Soil Conservation and Land Management, International Book distribution, Dehra Dun, India, 1986.
- 2. Glenn O.Schwab et al., Soil and Water Conservation Engineering, John Wiley and Sons, New York, 1981 **REFERENCES:**
 - 1. Garde R.J., Reservoir Sedimentation, INCOH Secretariat, National Institute of Hydrology, Roorkee, 1995.
 - 2. Murthy JVS., Watershed Management in India, Wiley Eastern Limited, 1995.
 - 3. Report of the High Level Committee on Waste Land, Development Department of Waste Land development, Ministry of Rural Areas and Employment, GOI, New Delhi, 1995

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

170	VSE11	Ι	RRIG	ATIO	N SYS	TEM	S MAN	NAGE	MENT	Categor	ry	L	Т	Р	Credit
1/0										EC		3	0	0	3
PREA	MBLE	I											11		1
To inti	oduce th	ne stu	dents to	o surfa	ce and	grour	ndwater	hydro	logy and	l enabling	g the	students	to work p	rofessio	onally in
the env	vironmer	ntal ei	ngineer	ring se	ctor an	d othe	er relate	ed indu	stry.						
PRER	EQUIS	ITE													
	Irriga	ation	Engine	ering											
COU	RSE OB.	JECT	TIVES												
	To incu	ılcate	the di	fferent	types of	of irrig	gation s	ystems	s and the	eir perform	nanc	e based	on service	oriente	d
1	approa	ch													
2	To acq	uire k	nowle	dge on	advan	cemer	nts in iri	rigatio	n system	18					
3	To ana	lyze v	various	irrigat	tion sys	stem p	oractices	S							
4	To perf	form	rrigati	on sch	eduling	3									
5	To dev	elop	particip	patory	irrigati	on sys	stem								
COU	RSE OU	TCO	MES												
On the	success	ful co	mpleti	on of t	he cou	rse, st	udents	will be	able to						
CO1 \$	Students	will	unders	stand t	the cor	ncept	of soil-	-water	-plant re	elationship	p an	d can a	pply it to		
schedu	ıle irriga	tion.	Studer	nts can	design	n surfa	ace, dri	p and	sprinkle	er irrigatio	on sy	stems fo	or various	Appl	y
crops															
CO2	Student	s can	design	surfac	e, drip	and s	prinkle	r irriga	tion sys	tems for v	vario	us crops		Appl	y
Co3. 7	Го under	stand	the cli	imate c	hange	pheno	menon	and it	s related	issues on	n wat	er, irriga	tion and		
its soc	ial impli	catior	ıs.		0	1						, 0		Analy	/ze
Со4. Т	o orient	towa	rds the	global	climat	te cha	nge and	l its im	pact on	water reso	ource	es.		Appl	y
Co5. A	Analyse t	he wa	stelan	d deve	lopmer	nt								Analy	/ze
MAPI	PING W	ITH	PROG	GRAM	ME O	UTC	OMES	AND	PROGE	RAMME	SPE	CIFIC	OUTCON	1ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10 F	PO11	PO12	PSO1	PSO ₂	PSO3

CO1	М	М	L	S	S	-	-	-	-	-	-	-		
CO2	М	М	L		-	-	-	-	-	-	-	-		
CO3	S	М	М	S	S	-	-	-	-	-	-	-		
CO4	S	М	М		-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		

SYLLABUS

IRRIGATION DEVELOPMENT IN INDIA : Importance of Irrigation in Agriculture - Historical evolution of irrigation in India – Irrigation development during pre-colonisation – Colonisation and post-colonization – Different types of Irrigation prevalent in India: Warabandi, Shejpali and South Indian systems - Focus of Irrigation in India – Command area development approach and farmers participation.

IRRIGATION SYSTEMS AND PERFORMANCE INDICATORS : Systems classification - Institutions for irrigation management–Diagnostic Analysis of Irrigation Systems -Rehabilitation and modernization – Performance indicators – Improving system performance – Conjunctive management – constraints faced.

MAIN SYSTEM MANAGEMENT : Main system components – Reservoir allocation rule, Operating rule and optimization methods to improve main system performance - irrigation scheduling – Constraints

COMMAND AREA DEVELOPMENT AND PARTICIPATORY IRRIGATION MANAGEMENT: Command area development principles – Participatory Irrigation Management and Irrigation management transfer – Constraints – Case studies

IRRIGATION POLICY AND INSTITUTIONS:Present status of irrigation policy and institutions – Irrigation related conflicts – Institutional transformation needed – Constraints in effecting institutional transformation – Irrigation financing – Water pricing – Water market – Policy changes.

TEXT BOOKS:

- 5. Rakesh Hooja, Management of Water for Agriculture: Irrigation, Water sheds and Drainage Rawat Publications, New Delhi, 2006.
- 6. Kijne, J.W., Barker, R and Molden, D, Water Productivity in Agriculture; Limits and Opportunities for improved, CABI Publishing, Walling ford, U.K, 2003.

REFERENCES:

1. Giodano. M and Villbolth K.G, The Agricultural Ground Water Revolution -Opportunities and threats to development, CABI Publishing, Walling ford, U.K, 2007

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	VSE12	2	CO	MPU		NAL I	METH	IODS]	IN	Categ	gory	L	Т	Р	Credit
			l	RRIG	ATION		AGE	MENI		EC	2	3	0	0	3
PREA	MBLE	E													
	Τoι	inders	tand th	e knov	vledge	of nec	essary	inforr	nation	about t	he loca	tion of 1	records,	media u	pon
which	n record	ds are	stored,	metho	ds of p	rotectio	on, and	the va	lue of i	ndividu	al recor	ds.			
PRER	EQUI	SITE													
	Nil														
COUF	RSE OI	BJEC	TIVES												
1	To ac	quire	basic ki	nowled	ge on v	various	comp	utation	al meth	lods					
2	To ex	ecute	various	model	s used	for irri	gation	engine	ering						
3	To si	mulate	e irrigat	ion pra	ctices ı	using c	ompute	ed base	ed softv	vare					
4	Appli	cation	ofadv	anced s	simulat	ion tec	hnique	s for ir	rigatio	n practic	ces				
5	To acquire basic knowledge about estimating water quality using current methods														
COUF	OURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1 S special	Student ists in	s wou irrigat	ld have	knowl ter mar	edge o lageme	f soils : nt.	and cro	ops, wł	nich the	y can be	eneficia	lly use a	S	A	pply
CO2 S	tudents	s could	l relate	water of	quality	and its	depen	dence	on sour	ces of w	ater po	llution.		A	pply
Co3. S	tudents	s woul	d under	stand a	and inte	erpret v	vater q	uality	lata foi	· benefic	ial uses	and in	water	Δ.	aluzo
quality	model	ls.													lalyze
Co4. C of engi	n com	pletion g emp	n of this loying	course probab	e the st ility an	udents d statis	will be tical m	e able t nethods	o solve 5.	various	problei	ns in the	e field	A	pply
Co5. 5	Student	s will	able to	estima	te wate	er quali	ty usin	g curre	ent metl	hods and	l make	evaluati	on of it	Ar	alyze
for ber	eficial	uses.													-
MAPF	PING V	NITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROGI	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	Μ	L	S	S	L	-	-	-	-	-	-			
CO2	М	M	L		-	-	L	L	-	-	-	-			
CO3	S	М	L	S	М	-	-	-	-	-	-	-			
CO4	М	М	L		-	-	-	-	-	-	-	-			
CO5	S	М	М	-	-	-	-	-	-	-	-	L			
S- Stro	ong; M	-Med	ium; L	-Low									1	·	

SYLLABUS

ADVANCED COMPUTING TECHNIQUES: Computing methods in water resources -Computing techniques -Solution to ordinary and partial

differential equation using Finite difference and Method of Characteristics- Numerical integration and differentiation Design of digital models - Visual programming

ARTIFICIAL INTELLIGENCE: Principle of Artificial Neural Network (ANN), Fuzzy Logic concepts and Applications –Genetic Algorithms-Heuristic Optimization techniques -Application of Artificial Intelligence to Hydrology and Crop Water Requirement model.

DIGITAL DATA MANAGEMENT: Data base structure -Data acquisition -Data warehouse -Data retrieval-Data format Attribute -RDBMS -Data analysis -Network data sharing -Statistical Analysis (SYSTAT) -Regression -factor analysis -

histogram -scatter diagram -Goodness of fit

SIMULATION SOFTWARE IN WATER RESOURCES: Surface water models (HMS) -Storm Water Management Models (SWMM) – culvert hydraulic design(HY) – River Analysis system models (HEC-RAS)-Ground Water Flow models

SIMULATION MODELS IN IRRIGATION WATER MANAGEMENT : Soil water assessment simulation models (SWAT) -Basin simulationmodels (MITSIM, VASIM) Real time operation models -Water Resources Information System, Management Information System. Decision support system for Irrigation management.

TEXT BOOKS:

- 1. Aliev R. A, and Aliev Rashad "Soft Computing and its Applications"World Scientific Publications Co. Pvt. Ltd. Singapore, 2001.
- 2. Janusz Kacprzyk Applied Decision with Soft Computing Springer, 2003
- 3. Carlos A. Coello, David A Van Veldhuizen, Gary B Lamont, "Evolutionary Algorithms for Solving Multi-objective problems", Springer, 2002.
- 4. Tayfur Gökmen "Soft computing in water resources engineering", WIT Press, Great Britain, UK, 2012.

REFERENCES:

- 1. Remson I, Hornberger G.M. and Moiz F.J., "Numerical methods in Sub-Surface Hydrology". Wiley Inter Science, 1985
- **2.** Kazda, I., "Finite element Techniques in ground water flow studies (with Applications in Hydraulic and Geotechnical Engineering)", Else vier, 1990.
- 3. Abbott M.B, and Minns A.W. "Computational hydraulics" Ashgate, London, UK, 2007.
- **4.** Loucks Daniel P., Jery R Stedinger and Douglas, A. Haith, Water Resources systems Planning and Analysis. Prentice Hall Inc., Englewood Clifts, New Jersey, 1981

	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
Ī	1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
	2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	VSE13	3	A	GRIC	U LTU	RAL E	CON	OMIC	S	Categ	jory	L	Т	Р	Credit
										EC		3	0	0	3
PREA	MBLE	C													
To intr	oduce	the stu	dents to	o comp	outation	hal met	hods ir	ı irriga	tion ma	inageme	ent and e	enabling	the stud	ents to v	vork
profess	sionally	in the	e agricu	iltural s	sector a	and oth	er rela	ted ind	ustry.						
PRER	EQUI	SITE													
	NII														
	RSE OI	BJEC	<u>FIVES</u>		1	<u> </u>	• 1.	1	•						
1	Tou	inderst	and na	ture an	d scop	e of agi	ricultur	ral econ	nomics	,• •,					
2		nter M	lonetar	y polic	$\frac{y, Mo}{1}$	$\frac{1}{1}$	$\frac{1}{1}$	d econ	$\frac{\text{omic a}}{\cdot}$		1 7	1	1 4	<u>c 1</u>	··
3		ieterm	ine den	nand ai	na supp	$\frac{1}{1}$		ations t	o agric	ultural g	$\frac{1}{1}$	heory a	nd cost o	1 produc	tion
4		icquire	know	ledge o	$\frac{n \text{ cons}}{(1 - 1)^2}$	ent of f	arm m ·	anagen	nent an	d whole	tarm p	anning.		1, 1	
5	To t ecor	inderst nomics	and the	e Role	of welf	are eco	onomic	s, welf	are eco	nomics	in comp	arison v	with agri	cultural	
COUR	SE O	UTCO	MES												
On the	On the successful completion of the course, students will be able to														
CO1 To provide an overall exposure on the use of economic concepts in irrigation development. Apply															
CO2 7 the irri	Fo impa gation	art kno sector.	wledge	e on ec	onomic	e plann	ing so	as to er	nable v	iable all	ocation	of resou	irces in	A	pply
Co3. 7	The stu	dents v	vill und	lerstan	d the e	conomi	ic conc	epts us	seful fo	r overal	l irrigati	on deve	lopment		
based of	on the o	current	trends	of pro	ductio	n, cons	umptio	on and :	farm ec	onomic	S.			Analy	/ze
Co4 Tl	ne stud	ents w	ill acqu	aint th	emselv	es in th	ne allo	cation of	of resou	irces and	d financ	ial analy	ysis in		nalv
the irri	gation	sector.												P	рргу
Co5. 7	Го enat	ole the	studen	ts to ur	ndersta	nd app	licatior	n of the	latest	informa	tion tech	nnology	to water	Δ.	nalvze
resourc	ces eng	ineerir	ng												lalyze
MAPF	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROGI	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	L	S	S	-	S	S	-	-	-	-			
CO2	М	L	L		-	-	S	-	-	-	-	-			
CO3	S	М	L	S	М	S	-	-	-	-	-	-			
CO4	S	L	L		-	-	-	-	-	-	-	-			
CO5	S	М	М	-	-	-	-	-	-	-	-	L			

SYLLABUS

INTRODUCTION : Definition – Nature and scope of agricultural economics – Basic skills of Agricultural economist

MACRO – ECONOMICS: Monetary policy – Money supply and economic activity – Inflation and deflation – Fiscal policy – Agricultural policy – Discounting techniques

MICRO – ECONOMICS: Demand and supply; its applications to agricultural goods – Concept of elasticity – Money and financial market – Market supply function – Price determination – Theory and cost of production – Production function – Production management – Conditions of competition.

WELFARE ECONOMICS: Role of welfare economics – Welfare economics in comparison with agricultural economics – Social welfare function – Economy stabilization – Income redistribution – regional development.

FARM ECONOMICS: Concept of farm management – Whole farm planning – Farm records and budgeting – Uncertainty in farming – Farm business analysis

TEXT BOOKS:

- 3. Allan C.Deserpa., Micro economic theory Issues and applications Allyn and Bacon, Inc. Massachusetts, 1985.
- 4. Mithani D.M., Macro-economics-Analysis and Policy Oxford and IBH Publishing Co., New Delhi, 1981

- 1. Douglas James L and Robert R.Lee., Economics of Water Resources Planning McGraw Hill Co., New Delhi, 1994.
- 2. John W.Goodwin and Evan Drummond H., Agricultural Economics Reston Publishing Co., Virginia, 1982.
- 3. Ronald D.Kay., Farm Management, Planning, control and Implementation-McGraw Hill Co., 1981. COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	VSE14	1	MOI	DERN	ZATI	ON OI	FIRRI	IGATI	ON	Categ	jory	L	Т	Р	Credit
					SY	STEM	IS			EC	2	3	0	0	3
	PRE	AMB	LE												
			_	_		_									
	To i	ntrodu	ce the	studen	ts to r	nodern	irriga	tion m	ethods	and en	abling t	he stud	ents to	work	
profe	ssional	ly in th	ne irriga	ation te	chnolo	gy and	agricu	ultural	sector a	and othe	r related	l industr	y.		
		~~~~													
PRER	EQUI	SITE													
COUT	Irrigat	Tion En	gineeri	ng											
COUR			IIVES	noturo	ofariat		domia	ation a	nd nobe	hilitatio	12				
1	10 \$0	udy abo	out the	nature	of syst	em mo	dermz	ation a	na rena	iomatio	n				
2	To kr	iow ab	out the	essent	ial of s	ystem 1	mainte	nance.							
3 To study about the history of inflow, Operational constraints, Management constraints, Resource constraints															
4 To know about deferred maintenance-causes-criteria used for taking rehabilitation.															
5 To study about the case study of rehabilitation and modernization of old projects															
COUR	RSE O	UTCO	MES												
On the	succes	sful co	mpleti	on of t	he cou	se, stu	dents v	will be	able to						
CO1: U	Unders	tand va	rious i	rrigatio	on meth	nods an	d tech	niques						Unde	rstand
CO2: A	Apply r	nodern	techni	que in	irrigati	ion mai	nagem	ent						Appl	y
CO3: 0	Constru	ict and	mainta	ain vari	ous wa	ter boo	lies for	r irrigat	tion pu	rposes				Appl	y
CO4: I	Posses	knowle	edge or	the va	rious s	cenario	o for w	ater m	anagen	ent for	irrigatio	on purpo	se	Unde	rstand
CO5 :	Unders	stand c	ase stu	dy of re	ehabilit	ation a	nd mo	derniza	ation of	old pro	jects			Unde	rstand
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND F	PROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	S	L	-
CO2	S	М	-	-	М	-	-	-	-	-	-	-	S	М	-
CO3	S	-	S	М	-	-	-	-	-	-	-	-	S	-	S
CO4	S	-	-	М	-	-	-	-	-	-	-	-	S	-	-
CO5	S	-	-	М	-	-	-	-	-	-	-	-	S	-	-
S- Stro	ong; M	-Medi	um; L	-Low											

## SYLLABUS

INTRODUCTION: Irrigation system-Classification-Nature of system modernization and rehabilitation

**SYSTEM MAINTENANCE:** Maintenance - Essential, Catch up, Preventive and normal- Diagnostic analysis of flow, seepage, participatory rural appraisal- Rapid rural appraisal- Walk through survey- Development of maintenance program- Kudimaramath- Turnover to WUA

**PROBLEM IDENTIFICATION:** System Performance- History of inflow, cropping pattern, system alterations, distribution performance-Operational constraints –Management constraints-Resource constraints

**REHABILITATION:** Base line survey-Deferred maintenance-Causes-Criteria used for taking rehabilitation programs-software and hardware improvements-prioritization-Role of WUA-Monitoring and evaluation

**CASE STUDIES:** Rehabilitation and modernization programs- Periyar Vaigai Project- Walawe Project-Tank modernization project-Water resources consolidation project.

### **TEXT BOOKS:**

- Base Line Survey of Irrigation Command, Centre for Water Resources, Anna University, Chennai-25, 2000. Diagnostic analysis of Irrigation Systems, Volume2, Evaluation Techniques, Water Management Synthesis Project, Colorado State University, 1984.
- 2. Improving Irrigation (performance through the use of MIS). The case of Mahi Kadana Gujarat, India.
- 3. International Irrigation Management Institute and WALMI, Gujarat, 1994.

### **REFERENCES:**

- 1. Lecture Notes Sixth Training of Trainers Course, volume 2 Centre for water Resources, Anna University, Chennai-25, 1997.
- Phase II Extension Tank Modernization Project with EEC Assistance, Monitoring and Evaluation Final Report, Centre for Water resources, Anna University, Chennai, November 2000.
- Planning and Mobilization of Farmers Organization and Turnover- Tamil Nadu Water Resources Consolidation Project –Centre for Water Resources and Ocean Management, Anna University, Chennai-25, 1997.
- 4. Tank Modernization Project with EEC assistance Monitoring and Evaluation: Final Reports-Centre for Water Resources, Anna University, Chennai, November, 2000.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

	ΤΥΡΟΙ ΟΩΎ ΟΕ ΝΑΤΗΡΑΙ ΑΝΌ	Category	L	Т	Р	Credit
17CVSE15	MANMADE DISASTERS	EC	3	0	0	3

### PREAMBLE

To introduce the students to agricultural economics and enabling the students to manage information throughout the total life cycle, from creation or inception, through its use, storage, retrieval, to its final disposition, are more likely to properly place disaster planning in their total management program.

# PREREQUISITE

Nil	C														
COURSE OBJECTIVES															
1	To Understand basic concepts of disaster														
2	To understand causes and factors controlling natural and technological disasters.														
3	To distinguish between processes controlling various disasters.														
4	To participate in various disaster mitigation program														
5	To participate in various disaster management program														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
<b>CO1:</b> U	CO1:Understand various factors causing disaster Understand											and			
CO2:Understand various types of disaster and their causes Understand											and				
CO3: Apply various criteria in understanding the effect of disaster Apply															
CO4:Posses knowledge on various management measures during a disaster Apply															
<b>CO5</b> :P	articipa	ate in d	lisaste	r mana	ngemer	nt activ	ities d	uring a	disast	er				Apply	
MAPP	ING V	VITH I	PRO	GRAM	IME C	UTC	OMES	AND	PROC	GRAM	ME SPI	ECIFIC	COUT(	COMES	
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2	1		
CO1	S	М	-	-	-	-	S	-	-	-	-	-	S	М	-
CO2	S	-	-	-	-	-	S	-	-	-	-	-	S	-	-
CO3	S	М	-	-	-	М	-	-	-	-	М	-	S	М	-
CO4	S	-	-	-	-	-	-	-	-	-	М	-	S	-	-
CO5	S	-	-	-	-	-	М	L	-	-	М		S	-	-
S- Strong; M-Medium; L-Low															

# SYLLABUS

**INTRODUCTION:** Introduction - Hazard, Risk, Vulnerability, Disaster - Meaning, Nature, Importance, Dimensions & Scope of Disaster Management - Disaster Management Cycle

**NATURAL DISASTERS - GEOLOGICAL:**NaturalDisasters- Meaning and nature of natural disasters, their types and effects - Hydrological Disasters - Flood, Flash flood, Drought, cloud burst - Geological Disasters-Earthquakes, Tsunamis, Landslides, Avalanches, Volcanic eruptions, Mudflow.

**NATURAL DISASTERS - HYDROLOGICAL & METEOROLOGICAL**Types of Natural Disasters Wind related- Cyclone, Storm, Storm surge, Tidal waves, Heat and cold Waves - Climatic Change - Global warming - Sea Level rise -Ozone Depletion.

**TECHNOLOGICAL DISASTERS:** Man – made Disasters Chemical disasters, biological disasters, radiological disasters, nuclear disasters - Fire – building fire, coal fire, forest fire, Oil fire-Types of Man – made Disasters - Accidents- road accidents, rail accidents, air accidents, sea accidents - Pollution - air pollution, water pollution - Deforestation, Industrial waste.

**FACTORS AFFECTING DISASTER MANAGEMENT:**Disaster Determinants-Factors affecting damage – types, social status, habitation pattern, physiology and climate - Factors affecting mitigation measures, prediction, preparation, communication, area and accessibility, population, physiology and climate. **TEXT BOOKS:** 

- 1. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.
- 2. Carter, W. Nick, 1991: Disaster Management, Asian Development Bank, Manila.

## **REFERENCES:**

- 1. Central Water Commission, 1987, Flood Atlas of India, CWC, New Delhi.
- 2. Central Water Commission, 1989, Manual of Flood Forecasting, New Delhi.
- 3. Government of India, 1997, Vulnerability Atlas of India, New Delhi.
- 4. Sahni, Pardeep et.al. (eds.) 2002, Disaster Mitigation Experiences and Reflections, Prentice Hall of India, New Delhi.

S.No	Name of the Faculty	Designatio n	Name of the College	Mail ID											
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>											
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in											
17CVSE16CRISIS COMMUNICATION & MANAGEMENTCategory									ory	L	Т	Р	Credit		
---------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------	---------	------------	-----------	----------	---------	----------	----------	----------	---------	----------	----------------	-------------	------
						10Em				EC		3	0	0	3
PRE	AMBL	Æ													
	То	intro	oduce	the stu	udents	to agri	cultur	al ecor	nomics	s and e	enablin	g the	students	to mana	age
info	rmatio	n thro	oughou	it the to	otal life	e cycle,	from c	creation	n or ine	ception,	throug	gh its u	ise, storag	ge, retriev	val,
to it	s final	l disp	ositio	n, are	more	likely t	o prop	perly p	lace d	isaster	planni	ng in	their tota	al	
man	ageme	nt pro	ogram.												
PRE	REQU	ISIT	'E												
	-	N	IL												
COU	RSE (	)BJF	ECTIV	<b>'ES</b>											
1       To posses knowledge on Foundational principles and theory of crisis communication         2       To understand various phases of a crisis management															
2	<ul> <li>2 To understand various phases of a crisis management</li> <li>3 To understand various types theoretical fundamentals in crisis management</li> </ul>														
3	3 To understand various types theoretical fundamentals in crisis management 4 To acquire knowledge on the role of culture and organizational context in crisis communication														
4	4 To acquire knowledge on the role of culture and organizational context in crisis communication 5 To understand various crisis communication theory, crisis management approaches														
5	5 To understand various crisis communication theory, crisis management approaches														
COU	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
<b>CO1</b> :	<b>CO1</b> : Understand foundational principles and theory of crisis communication Understand														
CO2: Analyze various factors involving fundamental management during crisis Analyze and recovery activities															
CO3:	CO3:Evaluate various crisis phases     Evaluate														
CO4	Und	ersta	nd ro	ole of	cultu	ire and	l org	anizati	onal	context	in	crisis	<b>T</b> T 1 4	1	
comn	nunicat	ion					U						Underst	and	
CO5:	Ana	lyze	vario	us cr	isis c	ommun	icatior	n theo	ry, c	risis n	nanage	ment	A		
appro	aches												Anaryze	•	
MAP	PING	WII	TH PR	OGRA	AMMI	E OUTO	COMI	ES AN	D PRO	OGRAN	MME	SPEC	IFIC OU	TCOMI	ES
CO S	PO 1	PO 2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO 10	PO11	PO12	2 PSO1	PSO2	PSO3
- CO	S	-	-	I.	-	-	L	L	-	-	L	_	S	-	_
1	~										-		~		
$\begin{array}{c} \text{CO} \\ 2 \end{array}$	S	S	-	-	-	-	-	-	-	-	S	-	S	S	-
CO 3	S	-	-	S	-	-	L	-	-	-	-	-	S	-	-
CO 4	S	-	-	-	-	-	М	М	-	-	-	-	S	-	-
CO	4     -     -     -     -     -     -     -       CO     S     S     -     -     -     -     -     S     -														
5	5 Strong: M Medium: L Low														
5- Sti	ong; N	i-ivie	aium;	L-LOW	V										
SYL	LABU	S													

**INTRODUCTION:**Introduction- Before, During, and after crisis - How to Handle - Preparing for a Crisis - Implementing a Crisis Audit-Creating, Simulating, revising a Crisis Plan-Technology Attacks

TERM RELATED TO CRISIS: Types of Crises- Natural, Man-made, Combination - Technologies

ACTIONS TO BE TAKEN BEFORE CRISIS:Long-range preparation- reputation management - issues identification- crisis audit

**ACTIONS TO BE TAKEN DURING THE CRISIS:**Implementing the plan-conduct situation - prioritize actions- dos and don'ts in dealing with media-human issues in crisis situations

ACTIONS TO BE TAKEN AFTER THE CRISIS AND RECOVERY: Short-term and long-term - immediate organizational resumption - long-term recovery -updating the plan – lessons learned **TEXT BOOKS:** 

- 1. Fearn-Banks, Kathleen Crisis Communications, A Casebook Approach, 3rd Ed. (2007) Pub: Erlbaum. -Textbook Cases.
- 2. Rumors and Cybercrises. Natural Disasters. Cultures: Foreign and Domestic. Death and Injury.Consumer-Caused Crises. The Crisis Communications Plan. Appendices **REFERENCES:**
- 1. Central Water Commission, 1987, Flood Atlas of India, CWC, New Delhi. Central Water

Commission, 1989, Manual of Flood Forecasting, New Delhi. Government of India, 1997,

Vulnerability Atlas of India, New Delhi.

2. Sahni, Pardeep et.al. (eds.) 2002, Disaster Mitigation Experiences and Reflections

COUI	COURSE DESIGNERS														
S.No	Name of the Faculty	Designation	Department	Mail ID											
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>											
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in											

17	CVSE	17	DISASTER PREPAREDNESS AND Categor L T										Р	Cre dit
				DECI	1510N	MAKI	ING		CC	3	3	0	0	3
PREA	MBLE	C												
	To ir	ntroduc	e the st	udents to	o agric	ultural	econom	nics an	d enabl	ling the	stude	nts to u	nderstan	d
the p	lan and	l to ide	entify s	pecific r	isks su	ich as	building	g and	equipm	ent haz	zards t	hat can	result i	in
flood	ing to	records	s storag	e areas,	dange	rous st	orage p	ractic	es that	increas	e the	risk of	fire nea	ar
irrepl	laceable	e resear	ch and	develop	ment r	ecords,	and per	riodic	electric	storms	or tor	nados ti	hat	
endar	nger ele	ectronic	ally gei	nerated v	vital rec	cords	1							
PBEB	FOII	SITE	50											
I NEN	NIL													
COURSE OBJECTIVES														
1	1 To create appropriate planning, preparation and response for emergency treatment in disaster situation													
2	disaster situation.       2     To understand the role of various institution in disaster management													
2		$\frac{10 \text{ und}}{\text{To imp}}$	lerstand	disaster	of var	lous ins	vide on	In dis	aster m	anagem portioir	ent oto in	disastro	un aitua	tion
3 	<ul> <li>To implement disaster drills and provide opportunities to participate in disastrous situation.</li> <li>To learn efficient emergency skills for providing support to disaster survivors</li> </ul>													
5 To coordinate disaster management activity														
COURSE OUTCOMES														
On the successful completion of the course, students will be able to														
<b>CO1</b> :	Unders	tand the	e impor	tance of	prepar	edness	in disas	ter ma	nageme	ent			Unders	tand
<b>CO2</b> :	Perforn	n variou	is prepa	aredness	related	l activit	ies duri	ng dis	aster m	anagem	ent		Apply	
CO3:U	Underst	and the	role of	various	institu	tions in	disaste	r mana	agemen	t and re	sponse	<b>)</b>		
activiti	ies												Unders	tand
<b>CO4</b> :	Prepare	respon	se plan	for disa	ster ma	nagem	ent						Apply	
COS	Dortioin	I Noto and	I Lacardi	noto dia	octor m	<u></u>	ant oat							
005.	Farticip			nate uisa		anagen	lent act	lvity					Apply	
MAPI	PING V	VITH I	PROG	RAMMI	E OUI	COMI	ES ANI	) PR(	)GRAN	AME S	PECI	FIC OU	JTCOM	IES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S		-	М	-	-	-	-	-	-	-	-	-
CO3	S	-	-	-	L	-	-	-	-	-	М	-	-	-
CO4	S	-	S	-	L	М	-	-	-	-	М	-	-	-
CO5	CO5 S - S - L M													
S- Strong; M-Medium; L-Low														
SYLL	ABUS													

**DISASTER PREPAREDNESS:**Disaster Preparedness- concept and significance - Disaster Preparedness Measures - Institutional Mechanism for Disaster Preparedness - Disaster preparedness with special needs/ vulnerable groups - Disaster Preparedness: Policy and Programs **DISASTER PREPAREDNESS PLAN:**Concept and Significance of Disaster Preparedness Plan - Disaster Preparedness Plan essentials - Community Based Disaster Preparedness plan - Prediction, Early Warnings and Safety Measures of Disaster

**ROLE OF DIFFERENT ORGANIZATIONS/INSTITUTIONS:**Role of Information, Education, Communication, and Training - Role of Government, International and NGO Bodies - Role of Information Technology (IT) in Disaster Preparedness - Role of Geographers on Disaster Management

**DISASTER RESPONSE**:Essential Components of Disaster Response, Disaster Response Plan, Resource Management- Financial, Medical, equipment, communication, Human, transportation, Food and essential commodity (Identification, Procuring, Propositioning and deployment), Directing and controlling functions - Communication, Participation & activation of Emergency Preparedness Plan, Logistics Management, Emergency support functions, Need and damage assessment

**COORDINATION IN DISASTER RESPONSE**: Disaster Response Plan - Communication, Participation, and Activation of Emergency Preparedness Plan - Search, Rescue, Evacuation and Logistic Management - Psychological Response and Management - Psychological Response and Management (Trauma, Stress, Rumor and Panic) - Relief and Recovery - Medical Health Response to Different Disasters

# **TEXT BOOKS:**

- 1. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.
- 2. Roy, P.S. (2000): Space Technology for Disaster management: A Remote Sensing & GIS Perspective, Indian Institute of Remote Sensing (NRSA) Dehradun

# **REFERENCES:**

1. M Sharma, R.K. & Sharma, G. (2005) (edition) Natural Disaster, APH Publishing Corporation,

New Delhi.

- 2. www.gis.development.net
- 3. www.iirs.nrsa.org
- 4. http://quake.usgs.gov.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in

17CV	SE18		VULNERABILITY MAPPING TECHNIOUES FOR DISASTERSCategoryLTPCredit												
DDEA					-						-	3	0	0	3
PREA	MBLE To ir	roduc	e the st	udents	to agri	cultura	lecon	omics	nd enal	oling the	e studen	ts to kı	now Risk	assessme	ent
is a n	nanage	ment t	ool for	· deteri	nining	the lik	celihoo	od of a	disaste	r and it	s financ	cial im	pact on 1	he area.	A
specif	fic amo	ount is	placed	on eac	h poter	ntial dis	saster l	by calci	ulating	an Ann	ual Loss	Expe	ctancy (A	.L.E.)	
1		-	L		1			5	U			I	•	,	
PREREQUISITE															
NIL															
COURSE OBJECTIVES															
1         Discuss the foundational principles and theory of vulnerability mapping techniques for disasters															
2 Describe the phases of a hazard and theoretical foundations of vulnerability mapping techniques for disasters															
3	3 Understand the importance of in vulnerability mapping in cultural context														
4	4 Understand the role of various organizations in vulnerability mapping														
5	5 To acquire knowledge of remote sensing and GIS for risk assessment														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1: 0	Unders	tand th	e impo	rtance	of risk	and vu	Inerab	oility in	disaster	r manag	gement		Rememb	er	
CO2: /	Analyz	e vario	us risk	techni	ques								Analyze		
in vuln	erabili	and vu	lnerabi ysis	lity pa	ramete	rs and	import	ance of	torgani	zationa	l structu	re	Apply		
<b>CO4</b> : <i>A</i>	Applyı	emote	sensin	g and C	GIS for	Risk a	ssessn	nent					Apply		
CO5: 1	Possess	know	ledge o	on India	n Scer	nario in	Risk 1	nanage	ement				Analyze		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGR	AMM	E SPEC			MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	L	-	М	М	-	М	-	-	-	S	-	-
CO2	S	S	М	-	-	-	-	-	-	-	-	-	S	S	М
CO3	S	М	-	-	-	М	М	-	-	-	-	-	S	М	-
CO4	CO4 S S - L M S S -														
CO5	CO5 S S														
S- Stro	S- Strong; M-Medium; L-Low														

# SYLLABUS

**HAZARD, RISK AND VULNERABILITY**: Hazard, Risk and Vulnerability: Concept and Relationship-Understanding Risk: Concepts and Elements - Disaster Risk Reduction- Risk Analysis Techniques- People Participation in Risk Assessment **VULNERABILITY CONCEPT AND PARAMETERS**: Vulnerability: Concept and Parameters- Vulnerability Analysis- Observation and Perception of Vulnerability - Vulnerability Identification

**SURVIVAL**: Socio-Economic Factors of Vulnerability-Vulnerability of Shanty Town- Experience of Vulnerability in India- Strategies for Survival

**TECHNIQUES OF RISK AND VULNERABILITY ANALYSIS**: Risk Assessments and Vulnerability Analysis Techniques, Remote Sensing and GIS Basic

**CASE STUDIES**: Regional planning in India - Regional planning-National & International case studies **TEXT BOOKS**:

1. White, Gilbert F. and J. Eugene Hass, 1975, Assessment of Research on Natural Hazards, Cambridge, the

MIT Press, MA.NOAA Coastal Services Center, -Linking People Information and Technology,:

2. -Risk and Vulnerability Assessment Tooll.

### **REFERENCES:**

- 1. http://www.csc.noaa.gov/rvat/criticaledd.html
- 2. www.nidmindia.nic.in

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in

	-														
17CV	SE19	Ι	NDUS'	TRIAI	HAZ	ARDS	PREV	VENTI	VE	Categ	ory	L	Т	Р	Credit
				IV	IANA	GEMI	LINI			CC		3	0	0	3
PREA	MBLE	E													
	To ii	ntrodu	ce stud	ents to	indust	rial ha	zard a	nd enat	oling th	em in a	ssessing	variou	s indust	rial haza	rd
and n	lan far	aafa d	ion o col	for the	hattar	monto	fralat	ad indu	atur an	dagaiat		, ,			
and p	ian ior	sale u	isposai	for the	e better	ment o	or relate	ea mau	stry and		у.				
PRER	EQUI	SITE													
	NIL														
COUR	COURSE OBJECTIVES														
1	1     To understand various industrial hazards and their effects.       2     To understand burged enclosing of the bactering.														
2	2 To assess risk and hazard analysis of Industries.														
3	3 To prepare offsite and onsite plans.														
4	4 To understand the importance operating procedures in disaster management														
5	5 To understand the importance of training and mock drills in disaster management														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1: 1	Unders	tand fa	ictors a	ffecting	g vario	us tech	nologi	ical disa	aster			ι	Jndersta	ind	
CO2: 0	Catego	rize va	rious ii	ndustri	al disas	sters ba	sed on	their o	ccurrer	nce		ι	Jndersta	ind	
<b>CO3</b> :A	Analyze	e vario	us facto	ors affe	cting F	Risk						A	Analyze		
CO4: 1	Prepare	e onsite	e and of	fsite p	lans for	r disast	er mar	nageme	nt			A	Apply		
CO5: 7	Го part	icipate	in trai	ning an	d moc	k drills	in disa	aster m	anagem	nent acti	vities	A	Apply		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND P	ROGR	RAMM	E SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	L	-	-	-	-	-	S	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	S	-	-
CO3	S	S	-	М	-	-	-	-	-	-	-	-	S	S	-
CO4	CO4 S M S S M S														
CO5	CO5         S         M         -         -         -         L         S         -         S         M         -														
S- Stro	ng; M-	Mediu	$m; L-\overline{L}$	LOW											

# SYLLABUS

**INTRODUCTION** : Concept, Need and Importance of Industrial Disaster Management

**INDUSTRIAL HAZARDS**: Chemical hazards, Biological hazards, Radiological hazards, nuclear hazards, Physical hazards, Electrical hazards, Fire hazard, Gas hazards etc..

**RISK ASSESSMENT & HAZARD IDENTIFICATION**: Checklist procedure, Preliminary hazard analysis, What if analysis, Failure mode effect analysis, Hazard and operability (HAZOP) studies, Hazard analysis techniques: Fault tree analysis, Event tree analysis, General outline of DOW index, Risk estimation and

management, Major hazard control. Identification of hazard, Categorization methods for elimination of hazard, Mechanical hazards.

**DISASTER MANAGEMENT ONSITE PLANS**: Standard operating procedures, control room, safety officer, and Different committees for Disaster management, rescue team, training, exercises and mock drills.

**DISASTER MANAGEMENT OFFSITE PLANS**: Dissemination of information, identification of vulnerable locations, need and damage assessment, rescue and relief plans, compensation.

### **TEXT BOOKS:**

- 1. Disaster Administration and Management, Text & Case studies- SL Goel-Deep and Deep Publications.
- 2. Hazardous Materials Disaster Management-Arun kumar Talwar, Commonwealth Publisher.

### **REFERENCES:**

- 1. Heinrich H.W. -Industrial Accident Prevention McGraw-Hill Company, New York,
- 2. -Safety in Industry N.V. Krishnan Jaico Publisher House, 1996

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in

17CVSE20 APPLICATI	7CVSE20 APPLICATION OF GIS & RS IN DISASTER Category L T P Credit MANAGEMENT EC 2 0 0 2												
	MANA	GEME	LNI			EC	1	3	0	0	3		
PREAMBLE													
To understand the knowledge	of necessa	ry info	rmatio	n about	the loo	cation of	f record	s, media	a upon v	which rec	ords		
are stored methods of protection	n, and the	value	of indi	ividual 1	records	5.			-				
-													
PREREOUISITE													
NIL													
COURSE OBJECTIVES													
1 To understand the basic concepts of remote sensing and GIS													
2     To understand the importance of file management													
3     To acquire basic concept of image processing in disaster management studies													
4 To participate in various disaster management activates													
5 To understand use of remote sensing and GIS in solving problems in water resources through case studies.													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to													
<b>CO1.</b> Introduce the technolog	and prine	ciples c	of Satel	lite Ima	iging			1	Apply				
CO2. Develop the simulation	models ar	nd use t	he late	st intell	igent t	echnolo	gy and		Apply				
algorithms in disaster manage	nent.							1	тррту				
<b>CO3</b> . Apply theoretical expla	nations on	Image	proces	ssing an	d extra	action of	f data fr	om	Analyze				
Satellite imageries	CIC1.4	· 1	• • • • •	c.	11.4 .	Data			5				
Products the for Decision mak	ing	orm by	megr	ating Sa	atenne	Data w	un GIS	1	Apply				
CO5. Apply remote sensing a	nd GIS in	solving	g probl	ems in v	water 1	resource	S	1	Analyze				
MAPPING WITH PROGRA	MME O	UTCO	MES A	AND PI	ROGR	RAMMI	E SPEC	IFIC C	DUTCO	MES			
COS PO1 PO2 PO3 PO	04 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1 S M L S	S	L	-	-	-	-	-	-	S	Μ	L		
CO2 S M L	-	-	L	L	-	-	-	-	S	М	L		
CO3 S M L S	М	-	-	-	-	-	-	-	S	М	L		
CO4 S S M - S L S S M													
CO5 S M M L S M M													
S- Strong; M-Medium; L-Low	•			· ·				•		•			

# SYLLABUS

**GEOGRAPHICAL INFORMATION SYSTEM** (GIS): Definition of GIS, Concept of Space and Time, Spatial data - Map Projection and Datum - Domains of Spatial information system, Components of GIS (/Hardware, Software, Data, People and Process) - GIS Functionalities for end user / system (Data Acquisition, Data Input, Data Management, Data Analysis, Data Modeling and Data Output) - Web based GIS Technology

**FILE MANAGEMENT**: File management, data base management systems in GIS- data base, query, SQL statement - data manipulations and product generation, Environmental GIS, Data acquisition system using GPS, component of GPS, DGPS, Kinematic GPS, factors that affect GPS, GPS application

DIGITAL IMAGE PROCESSING: Digital image processing - image rectification and restoration, image

enhancement, contrast manipulation, multi image manipulation, image classification- supervised and unsupervised classification, data merging, Hyper spectral image analysis, introduction to image processing software.

Spatial data- field, object, computer representation of geographic information, raster representation, vector representation, point, line and polygon representation, topology, scale and resolution, sources of error and data quality, database design, convention, mapping concepts and coordinate systems- types of projection, geographic and planar, projection.

**AERIAL PHOTOGRAPHY**: Aerial photography, advantages, limitations, geometric characters – film, spectral sensitivity of Black and White films, color film, color infra red film - filter – Aerial film cameras, single lens frame camera, panoramic cameras, film resolution, electronic imaging, aerial videography, multi band imaging,. Elements of aerial photo interpretation, Preparation of photogeological map

**REMOTE SENSING**: Aerial photography, advantages, limitations, geometric characters – film, spectral sensitivity of Black and White films, color film, color infra red film - filter – Aerial film cameras, single lens frame camera, panoramic cameras, film resolution, electronic imaging, aerial videography, multi band imaging,. Elements of aerial photo interpretation, Preparation of photogeological map

# **TEXT BOOKS:**

- 1. P.A. Burrough, 2007, Principles of Geographical Information System for Land Resource Assessment, Oxford University Press, p.345.
- 2. Tor Bernhardsen, 2009, Geographic information system an introduction, 3rd edition, Wiley student edition, p.428
- 3. P.A. Longley, M.F. Goodchild, D.J. Manguire, D.W. Rhino, Geographical Information System, Volume I: Principal and Technical Issues, Volume II: Management Issues and Applications, John Wiley & Sons, p432.
- 4. Thomas M. Lillesand, Ralph W. Kiefer, Jonathan W. Chipman, 2007, Remote sensing and image interpretation, Fifth edition, Wiley student edition.
- 5. Agarwal, C.S. and Garg, P.K. 2000, Textbook on remote sensing in natural resources monitoring and management, Wheeler Publishing, A division of A.H.Wheeler & Co. Ltd., New Delhi

### **REFERENCES:**

- 1. Seelye Martin, 2004, An introduction to Ocean Remote sensing, Cambridge
- 2. Lee-Lueng Fu Anny Cazenave, 2010, Satellite altimetry and earth sciences, Academic press, International geophysics series, p.432.
- 3. John. R. Schott, 2007, Remote sensing the image chain approach, Oxford university press, p.394.
- 4. Ian Heywood, 2006, An introduction to GIS, Prentice Hall, 464p.
- 5. Paul A. Longley, 2010, Geographic Information Systems and Sciences, John Wiley and Sons Ltd, 536p.
- 6. Michael f. Goodchild, 2005, Geographical Information System

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in

17CVSE21         FINANCE AND INSURANCE IN DISASTED MANACEMENT         Category         L									L	Т	Р	Credit			
1.0.12			DI	SAST	ER M.	ANA(	<b>JEME</b>	<b>NT</b>		EC		3	0	0	3
,	To inti	oduce	the st	udents	to une	derstar	nd the	financ	e and	insuranc	e relat	ed reco	ords that	at are nor	mally
used and	d filed	as a u	nit tha	t can b	e eval	uated.									
PRERE	OUISI	ТЕ													
	]	NIL													
COURS	E OBJ	ECTI	VES												
1	To in	troduc	ce to v	arious	bankir	ng pra	ctices								
2	To acquire knowledge on various rules and regulation of RBI & LIC														
3	To acquire knowledge on various rules and regulation in insurance practices														
4	To expertise in disaster related insurance policies														
5	To participate in disaster management activities														
6	5 To introduce to various banking practices														
COURS	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
<b>CO1</b> : Un	CO1: Understand importance of banking in disaster management Understand														
<b>CO2</b> : Ur	CO2: Understand importance of RBI & LIC in Indian Scenario     Understand														
<b>CO3</b> : Ca	rryout	variou	ıs banl	king pr	actices	s durir	ng eme	rgency	and c	risis situ	ation	A	Apply		
CO4: Pe	rform	various	s disas	ter rela	ated ba	inking	practi	ces inc	luding	; insurar	nce	P	Apply		
<b>CO5</b> : Ad	lvocate	e vario	us inst	irance	policie	es in d	isaster	mana	gemen	t activiti	ies	A	Apply		
MAPPIN	NG W	TH P	ROG	RAMN	ME O	UTCO	MES	AND	PROC	GRAMN	AE SP	ECIFI	C OUI	COME	5
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	S	-	L	-	М	-	-	-	-	-	-	L	-	М
CO4	14 S S M M M														
CO5	D5 S S -s L - M S - L - M														
S- Strong	g; M-N	ledium	n; L-Lo	OW											

# SYLLABUS

**INTRODUCTION TO BANKING & FINANCE**: Concept of Banking, Types of banks, Functions of banks; Tax administration; Public budgeting and finance systems; State and local finances

**CENTRAL BANK / RESERVE BANK :** Role and function of central bank, RBI and Monetary Policy

INTRODUCTION TO INSURANCE: Evolution and Features of Insurance, Classification of Insurance,

Conditions relating to risk, selection or Risk

**LIFE INSURANCE & GENERAL INSURANCE**: Principles of LIC, Privatization of Life Insurance Business, Role and performance of LIC, Non-life insurance – Fire, Automobile, Marine, Health, Rural, Social and miscellaneous insurances.

**INSURANCE POLICIES FOR DISASTER MANAGEMENT**: Evaluation of risk funding and risk transfer policies; Catastrophe insurance pool; Reserve funds and contingent credit policies; Role of Government and market participants; Insurance policy design; Fiscal cost of relief and reconstruction; Grants and low interest loan for reconstruction

### **TEXT BOOK**

- 1. Money, Banking & Public Finance T.N.Hajela- Ane Books Pvt. ltd-8th Edition.
- 2. Banking and Financial Markets in India BhasinNiti-New Century Publications-1947 to 2007.
- 3. Banks & Institutional Management- Vasant Desai-Himalaya PublishingHouse-1st Edition.
- 4. Banking theory and practices K.C.Shekhar, LekshmyShekhar Vikas Publishing House-19th Edition.

### **REFERENCES:**

- 5. Insurance principles & practice –M.N.Mishra, S.B.Mishra -S.Chand Publication- 17th Edition
- 6. Life Insurance in India- H. Sadhak (Response Books) 1stEdition
- 7. Insurance in India- P.S.Palande, R.S.Shah, M.L.Lunawat (Response Books) 6th Edition
- 8. National Disaster Response Plan, NCDM, New Delhi, 2001.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in

		A	DVA	NCED	SYST	EM D	YNAM	IICS		Categ	ory L		Т	Р	Credit
17CVS	SE22	N	AODE Incin	LING	IN TR NG	ANSP	ORTA	TION		EC	3		0	0	3
		L		LLNI	NG					20	5		0	>	5
PREA	MBLE	C													
To pro	vide ac	lvance	d level	of kno	wledge	e in Sys	stem D	ynamic	s Mod	eling in	Transpo	ortation	Enginee	ring	
PRER	EQUI	SITE													
NIL															
COUR	RSE OI	BJECI	<b>FIVES</b>												
1	To ga	in kno	wledge	the sin	nulatio	on tech	niques	in Syst	em Dy	namics	Modelii	ng in Tra	ansporta	tion Eng	ineering
2	To lea	arn sub	system	ns mode	elling										
3	To learn system dynamic modelling														
4	Learn alternative view of dynamic modelling														
5	To an	alyze o	case stu	idies of	n dynai	mic mo	odeling	of tran	sport s	ystems.					
COUR	RSE O	UTCO	MES												
On the	succes	sful co	ompleti	on of t	he cour	rse, stu	dents v	vill be	able to						
<b>CO1</b> . 5	Student	ts woul	ld have	unders	stood tl	he simu	ulation	technic	ques us	ed in Tr	ansport	ation		Unde	rstand
Engine	ering														
Co2. S	Student	s woul	ld have	unders	stood s	ubsyste	ems mo	odelling	5					Appl	У
<b>Co3.</b> S	tudent	s would	d have	unders	tood sy	/stem d	lynami	c mode	elling					Appl	у
Co4. 5	Student	s woul	ld have	unders	stood a	lternati	ive viev	w of dy	namic	modelli	ng			Appl	у
CO5. 5	<b>O5.</b> Students would have analyses case studies on dynamic modeling of transport systems       Analyze														
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	ROGI	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	-											
CO2	S	М	L	S											

CO3	S	М	S	S	 	 	 	 	 	
CO4	S	S	М	М	 	 	 	 	 	
CO5	S	М	S	-	 	 	 	 	 	

### SYLLABUS

**COMPLEXITY AND SYSTEMS THINKING:** Change – Complexity and Interdependency – Systems thinking – Floundering – Level of abstractions - Tools and Transitions in Systems Thinking – Synthesis and Organizational Learning

**ADVANCED MODELING EFFORTS:** Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity – Harmonic Analysis.Steady State Modeling – Discrete vs. Continuous – Generic infrastructures –Subsystems – Sensitivity parametering - Case Studies

**ADVANCED SIMULATING TECHNIQUES:** Graphical Bulletin function – Conveyor flows – Converter – Flow substitutes – Connector – Normalizing Inputs – Generic flow activities – Case Studies

**MODELING PROCESS:** System Dynamics Modeling challenges – Steps in Modeling Process – Guidelines – Model Boundary– Modeling soft variables – Quantification vs. Measurement

**SOPHISTICATED DYNAMICS MODELING:**Need – Isolation Process – Demand Expansions – Cycle functions – Sensitivity Analysis – Alternative view of Dynamic Modeling

# **TEXT BOOKS:**

- 1. Pratab Mohapatra K.J. et al., "Introduction to System Dynamics Modeling", University Press, Hyderabad, 1994
- 2. Thirumurthy A.M., Environmental Facilities and Urban Development in India A System Dynamics Model for Developing Countries, Academic Foundations, India, 1992

### **REFERENCES:**

- 3. Technical Manual on An Introduction to Systems Thinking STELLA Research Software, High Performance Systems Inc., Hannover, 1996
- 4. Advanced Manual on An Introduction to Systems Thinking STELLAII Research Software, High Performance Systems Inc., Hannover, 2002

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. ARVINDAN	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. VIJAYAN	Asso.Prof	AVIT	vijayan@avit.ac.in

17CV5	SE23	ENVIRONMENTAL IMPACT ASSESSMENT	Category	L	Т	Р	Credit					
1/0/0	)[[25	OF TRANSPORTATION PROJECTS I	EC	3	0	0	3					
PREA	MBLE		1									
To exp impact	ose the s assessm	students to the need, methodology, documentation and nent of Transportation Projects	d requireme	nts of en	vironme	ntal and s	ocial					
PRER	EQUIS	ITE										
NIL												
COUR	RSE OB.	JECTIVES										
1	Provide with rea	es an exposure to various Environmental Laws and im spect to noise, air pollution, visual intrusion etc	portance of	EIA on	Transpo	rtation Pro	ojects					
2	Students would have understood the impact of Transportation projects on the environment and are able to develop and implement mitigation measures.											
3	They w	ill also know about the legal requirements of Environ	mental Ass	essment	for proje	ects						
4	Studen	ts would have understood Impact of Traffic on Enviro	onment and	Energy I	Efficienc	y strategie	es					
5	Studen	ts would have understood Measures for Air and Noise	e Pollution I	Policies								
COUR	RSE OU'	TCOMES										
On the	successi	ful completion of the course, students will be able to										
CO	01. EIA on intrusio	Provides an exposure to various Environmental Laws Transportation Projects with respect to noise, air poll n etc.,	s and import lution, visua	ance of	Analy	ze						
CO	CO2. Students would have understood the impact of Transportation projects on the environment and are able to develop and implement mitigation measures Analyze											
CO	03. Assessr	They will also know about the legal requirements of E nent for projects	Environmen	tal	Apply							
CO	04. Energy	Students would have understood Impact of Traffic on Efficiency strategies	Environme	nt and	Apply							
CO5. 5	Students	would have understood Measures for Air and Noise	Pollution Po	olicies	Under	stand						

MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	-	М	L	S	-	-	-	-	-	-	-	-			
CO3	-	М	М	S	-	-	-	-	-	-	-	-			
CO4	S	М	М	М	-	-	-	-	-	-	-	-			
CO5	S	М	Μ	-	-	-	-	-	-	-	-	L			

# SYLLABUS

**ENVIRONMENTAL STANDARDS IN URBAN AREAS AND EIA**Laws concerned with protection of the environment such as Environmental Protection Act, Air and Noise Pollution Act, Motor Vehicle Act, Town and Country Planning Act, Development Control Regulation, Coastal Regulation Zone

**MEASUREMENT AND POLLUTION PREDICTION:** Stability and equilibrium of plane frames - perfect frames - types of trusses - analysis of forces in truss members - Method of joints - Method of tension coefficients - Method of section Measurement of Air and Noise Pollution, Land Acquisition, Rehabilitation, Collection, Compilation and Presentation of Pollution and Impact Data, Measuring Impact before construction, at the time of construction and after construction, Prediction, Modeling and Validations.

**ENVIRONMENTAL QUALITY AND MANAGEMENT** Importance of EIA, Environmental Appraisal, EIA Statement, Vehicle and Traffic Noise, Ambient Noise Level, Heath Effects, Vibration – Damage to building, Exhaust Emission – Pollutant, Health effects, Air Pollution, Urban Ambient Air Quality Standards, Effects on Human being

**ENVIRONMENTAL MAINTENANCE AND LEGAL SYSTEMS:** Impact of Traffic on Environment – Network Pattern, Urban Growth Indicators of Environmental Quality, Energy use, Fuel Economy in Transportation, Energy Efficiency strategies

**MITIGATIVE MEASURES AND POLICIES** Mitigate Measures for Air and Noise Pollution Policies and Strategies, Involvement of Stakeholders, Public Participation, And Institutional Arrangements.

# **TEXT BOOKS:**

1. Larry W Canter, "Environmental Impact Assessment", McGraw Hill Publishers, 1996.

- 2. RaoV.Kolluru; "Environmental Strategies Handbook", McGraw Hill Publishers, 1994.
- 3. David Banister; "Transport Policy and Environment" E&FN Spain, 1999

### **REFERENCES:**

- 3. World Bank; "the Impact of Environmental Assessment A Review of World Bank Experience, Washington, 1997.
- 4. World Bank; Road and the Environment, Washington, 1997.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

17CVS	E24	INTELLIGENT TRANSPORTATION	Category	L	Т	Р	Credit			
1/0/0		SYSTEMS	CC	3	0	0	3			
PREAM	MBLE						I			
•	To learr	the fundamentals of ITS.								
•	To stud	y the ITS functional areas								
•	To have	e an overview of ITS implementation in developing co	ountries							
PRERI	PREREQUISITE									
NIL										
COUR	SE OBJ	IECTIVES								
1	The Stu	idents should be able to Understand the sensor and co	ommunicatio	on techno	ologies.					
2	The Stu	idents should be able to Apply the various ITS metho	dologies							
3	The Stu	idents should be able to Define the significance of IT	S under Indi	an cond	itions					
4	The Stu	idents should be able to understand Dynamic Traffic	Assignmen	t						
5	5 The Students should be able to understand advanced traveler and information system									
COUR	SE OU	ΓCOMES								
On the	successf	ful completion of the course, students will be able to								
CO1. T	The Stud	ents should be able to Understand the sensor and com	nmunication		Under	stand				
			1 .							
CO2. 1	he Stud	ients should be able to Apply the various ITS method	ologies		Apply	, 				
CO3. The Students should be able to Define the significance of ITS under Indian Understand conditions										
CO4. The Students should be able to Understand the Dynamic Traffic Assignment Understand										
CO5. The Students should be able to Understand the advanced traveler and information system Apply										
MAPP	ING W	ITH PROGRAMME OUTCOMES AND PROGR	AMME SP	ECIFIC	OUTC	OMES				

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO2	Co1	S	М	L	-	-	-	-	-	-	-	-	-		
CO3	CO 2	S	-	L	S	-	-	-	-	-	-	-	-		
CO4	CO 3	S	-	М	S	-	-	-	-	-	-	-	-		
CO5	CO 4	S	М	М	М	-	-	-	-	-	-	-	-		

# SYLLABUS

**INTRODUCTION TO INTELLIGENT TRANSPORT SYSTEM**Definition – Role and Responsibilities – Advanced Traveler Information System – Fleet Oriented ITS Services – Electronic Toll Collection – Critical issues – Security – Safety

**ITS ARCHITECTURE AND HARDWARE**ITS Architecture Framework – Hardware Sensors – Vehicle Detection – Techniques –Dynamic Message Sign – GPRS – GPS – Toll Collection.

**INTERSECTION MANAGEMENT:** Video Detection – Virtual Loop - Cameras - ANPR – IR Lighting – Integrated Traffic Management –Control Centre – Junction Management Strategies

**ADVANCED TRANSPORT MANAGEMENT SYSTEM:** ATMS – Route Guidance – Issues - Travel Information – Pre Trip and Enroute Methods – Historical –Current – Predictive Guidance – Data Collection – Analysis – Dynamic Traffic Assignment (DTA) –Components – Algorithm

**ADVANCED TRAVELLER AND INFORMATION SYSTEM:** ATIS Concepts – Smart Route System – Data Collection – Process – Dissemination to Travelers – Evaluation of Information – Value of Information – Business Opportunities

# **TEXT BOOKS:**

- 1. Intelligent Transport Systems, Intelligent Transportation Primer, Washington, US, 2001
- 2. Henry F.Korth, and Abraham Silberschatz, Data Base System Concepts, McGraw Hill, 1992
- E.Turban, IDecision Support and Export Systems Management Support Systems", Maxwell Macmillan, 1998

# **REFERENCES:**

- 3. Sitausu S.Mittra, "Decision Support Systems Tools and Techniques", John Wiley, New York, 1986
- Cycle W.Halsapple and Andrew B.Winston, "Decision Support Systems Theory and Application", Springer Verlog, New York, 1987

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>

17CV	SE25		LOG	ISTIC	S IN T	RANS	PORT	<b>TATIO</b>	N	Categ	ory L	,	Г	Р	Credit
1.0.1	, <b>, , , , , , , , , , , , , , , , , , </b>			I	ENGIN	IEERI	NG			CC	3	(	C	0	3
PREA	MBLE											I			I
To Pro	ovide an	under	rstandi	ng on F	Freight	Transp	oort, M	odeling	g, Loca	tion of t	he Facil	ity and	its Mana	gement	
PRER	EQUIS	SITE													
NIL															
COUR	RSE OI	BJEC	<b>FIVES</b>												
1	Provid	les an	unders	tanding	g on Fr	eight 7	Transpo	ort, Mo	deling,	Locatio	n of the	Facility	and its	Manage	ment
2	Stude	nts wi	ll have	a knov	vledge	on the	princip	oles and	l practi	ce of Fre	eight Tr	ansport	Modelin	ng and	
	provis	sion of			1 1		<u> </u>		9	<b>T</b> 7 1 • 1			~ 1 1 1		
3	Students will have a knowledge on the Intermedal Transportation														
4	Students will have a knowledge on the Intermodal Transportation														
5	Students will have a knowledge on the Toll Plaza Analysis														
COUF	RSE OU	JTCO	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1.	Provide	es an u	Indersta	anding	on Fre	ight Tr	anspor	t, Mod	eling, I	Location	of the	1	Understa	and	
Facility	y and it	s Man	ageme	nt											
CO2. Transt	Student ort Mo	ts will deling	have a a	knowl ovisio	edge o n of the	n the p e Facili	rinciple ties	es and	practic	e of Frei	ght		Apply		
CO3 9	Student	s will	have a	knowle	edge or	the D	istribut	ion Sv	stem V	/ehicle I	Routing	and			
Schedu	uling	5 <b>W</b> III .	inu vo u				15111041	.1011 0 51	sterri, v		touting	und	Understa	and	
CO4. \$	204. Students will have a knowledge on the Intermodal Transportation       Understand														
CO5. 5	Student	s will	have a	knowle	edge or	the To	oll Plaz	za Anal	ysis			1	Understa	and	
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES .	AND P	ROGI	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			

CO2	S	М	L	S	-	-	-	-	-	-	-	-		
CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	M	M	-	-	-	-	-	-	-	-	L		

### SYLLABUS

LOGISTICS: Introduction – Trade Logistics Service, Freight Costs – Freight Demand Models

**FREIGHT TRANSPORT:** Econometric Models for Freight Forecasting – Input Output Models – Regional Network Systems – Graph Theory Application in Network Planning

**DISTRIBUTION MANAGEMENT:** Supply Chain – Warehousing – Facility Location, Inventory – Mode Choice – Distribution System, Vehicle Routing and Scheduling

**LOGISTICS MANAGEMENT:** Logistics out sourcing – IT Application in Freight Logistics – Technology in Logistics Management – Intermodal Transportation

APPLICATION IN FREIGHT TRANSPORT: Commercial Fleet Management, Toll Plaza Analysis

### **TEXT BOOKS:**

- 1. Blanchard ST.Benjamen, "Logistics Engineering and Management", Prentice Hall, Inc, Eaglewood Cliffs, New Jersey 07632, 1986
- Coyle J.J.Bardi JE, "The Management of Business Logistics", West Publishing Company, New York, 1984
- 3. Daganzo F.C and Newell FG, Vol.19B, No.5, pp.397-407, Physical Distribution from a Warehouse; Vehicle Coverage and Inventory Levels, Transportation Research, 1985
- 4. Edwin Bacht J.A., "Geography of Transportation and Business Logistics", Wm C Brown Company Publishers, Dubuque, IOWA, 1970
- 5. Herron P.David, "Managing Physical Distribution for Profit", Harvard Business Review, 1979

### **REFERENCES:**

 Khanna K.K., "Physical Distribution Management", Logistical Approach, Himalaya Publishing House, Bombay, 1985

- 2. Planning Commission, Government of India, Total Transport System Study Report on Commodity Flows, Railways, Highways and Coastal Shipping, (Interim) by RITES, New Delhi, 1987
- 3. Shapiro D. Roy and Heskett L.James, "Logistics Strategy-Cases and Concepts", Wesg Publishing Company, New York, 1985

e.	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
]	1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

17CV8	SE26	1	PAVE	MENT	MAN	AGEN	<b>IENT</b>	SYSTE	EM	Categ	ory I		Т	Р	Credit
1.0.1										CC	3	;	0	0	3
PREA	MBLE	2													
To intr with du	roduce t ue emp	the con hasis c	ncepts o n syste	of desig ems app	gn, eva proach	luation and pe	and performa	erforma ince pre	nce of diction	existing n model	g and no s.	ew flexi	ble and	rigid pav	ements
PRER	EQUIS	SITE													
NIL															
COUF	COURSE OBJECTIVES														
1	To introduce the concepts of design, evaluation and performance of existing and new flexible and rigid pavements with due emphasis on systems approach and performance prediction models.														
2	Students will have a knowledge on the evaluation of pavement performance														
3	Students will have a knowledge on the design objectives and constraints														
4	Students will have a knowledge on the Techniques for developing prediction models														
5	5 Students will have a knowledge on the Repair of pavement defects														
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. S perform approa	Student mance of the and	s will b of exis perfor	have a ting and mance	knowle d new f predic	edge or flexible tion mo	the co paver odels.	oncepts nents v	of desi with due	ign, ev e emph	aluation asis on s	and system	5	Underst	and	
CO2. S	Student	s will	have a	knowle	dge or	the ev	valuatio	on of pa	avemen	nt perfor	mance		Apply		
CO3.	Studen	ts will	have a	knowl	edge o	n the d	esign o	bjectiv	es and	constrai	ints		Underst	and	
CO4. Students will have a knowledge on the Techniques for developing prediction Mapply															
CO5.	Studen	ts will	have a	knowl	edge o	n the R	epair c	of paver	nent d	efects			Apply		
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPE	CIFIC (	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

CO1	S	М	L	-	-	-	-	-	-	-	-	-		
CO2	S	М	L	S	-	-	-	-	-	-	-	-		
CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	M	M	M	-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		

### SYLLABUS

**PAVEMENT MANAGEMENT PROCESS** Historical background – general nature and applicability of systems methodology – basic components of Pavement Management System –Network and Project level of PMS - PMS functions- planning pavement investments

**EVALUATION AND PERFORMANCE:** General concepts – economic and functional evaluation – evaluation of pavement performance – evaluation of structural capacity – pavement distresses – condition surveys – safety evaluation

**DESIGN STRATEGIES:** Framework for pavement design – design objectives and constraints – basic structural response models – characterization of physical design inputs – generating alternative pavement design – economic evaluation of alternative design – analysis of alternative design strategies – selection of optimal design strategy.

**PERFORMANCE PREDICTION MODELS:** Techniques for developing prediction models – AASHO, CRRI and HDM models – computer applications – Identification of alternatives –deterioration modeling- priority programming Methods

**REHABILITATION:** Repair of pavement defects – maintenance of flexible and rigid pavements – bituminous and cement concrete overlays – system analysis,

# **TEXT BOOKS:**

- 3. Ralph Haas, W.Ronald Hudson and John Zaniewski, Modern Pavement Management, Kreigar Publishing Company, New York, 1994
- 4. M.Y.Stalin, Chapman and Hall Pavement Management for Airports, Roads and Parking Lots, New York, 1992

### **REFERENCES:**

5. Michael Sargious, Pavements and Surfacing for Highways and Airports, AppliedScience Publishers

Limited, London, 1975

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>

17CVS	2507	RE	мотн	E SENS	SING A	AND G	GIS IN			Categ	gory L		Г	Р	Credit
	5127	TR.	ANSP	ORTA	TION	DEVE	LOPN	1ENT		EC	3	(	)	0	3
PREA	MBLE	C													
Introdu Transp	uce the ortation	studer n Engi	nts, the neering	recent	technic	lues of	Remo	te Sens	ing and	d GIS ar	nd I Its a	applicati	on in Tr	affic and	l
PRER	EQUIS	SITE													
NIL															
COUR	COURSE OBJECTIVES														
1	The S	Studen	ts wou	ld have	e know	ledge o	on the b	basics c	of remo	te sensir	ng				
2	The S sector	tudent s	s woul	d have	knowle	edge o	n the ba	asics of	f gis teo	chniques	s and the	eir appli	cation ir	the trar	isport
3	The Students would have knowledge on the data structures and analysis														
4	The Students would have knowledge on the basic applications in transportation														
5	The S	Studen	ts wou	ld have	know	ledge o	on the A	Advanc	ed Tra	veler Inf	formatic	on Syste	m		
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1. 7	The Stu	dents	would	have k	nowled	ge on t	the bas	ics of r	emote	sensing		1	Apply		
CO2. 7 applica	The Stu ation in	dents the tra	would 1 ansport	have ki sector	nowled 's	ge on t	he basi	ics of g	is tech	niques a	nd their		Apply		
CO3. 7	The Stu	dents	would	have k	nowled	ge on t	the data	a struct	ures ar	nd analys	sis	1	Analyze		
CO4. 7	The Stu	dents	would	have ki	nowled	ge on t	the basi	ic appl	ication	s in tran	sportatio	on 4	Apply		
CO5. 7 System	Гhe Stu 1	dents	would	have ki	nowled	ge on t	he Adv	vanced	Travel	ler Infor	mation	1	Analyze		
MAPP	PING V	VITH	PROG	GRAM	ME O	UTCO	MES A	AND F	ROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			

CO2	S	М	-	-	-	-	-	-	-	-	-	-		
CO3	S	М	-	-	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		

# SYLLABUS

**INTRODUCTION TO REMOTE SENSING:**Definition – Components of Remote Sensing – Energy, Sensor, Interacting Body – Active and Passive Remote Sensing – Platforms – Aerial and Space Platforms – Balloons, Helicopters, Aircraft and Satellites – Electromagnetic Radiation – EMR Spectrum

**INTRODUCTION TO GIS:** Basic Concept and Components – Hardware, Software – Data Spatial and nonspatial – Geo-referencing – Map Projection – Types of Projection – Simple Analysis – Data retrieval and querying **DATA STRUCTURES AND ANALYSIS:** Database – Raster and Vector data structures – Data storage – Run length, Chain and Block coding – Vector data storage – Topology – GIS Modelling - Raster and Vector data analysis – Buffering and overlaying techniques – Network Analysis – Spatial Analysis

**BASIC APPLICATIONS IN TRANSPORTATION:** Highway and Railway Alignment, location of transport terminals and roadside facilities, bus stops – Route optimization – Bus route rationalization – Accident analysis – Applications of Aerial Photography and Satellite Imageries

ADVANCED APPLICATIONS: GIS as an integration technology – Integration of GIS,GPS and Remote Sensing Techniques – Advanced Traveler Information System (ATIS) – Automatic Vehicle Location System (AVLS)

# **TEXT BOOKS:**

- 1. Anji Reddy, "Remote Sensing and Image Interpretation", John Wiley and Sons Inc. New York, 1987.
- 2. M.G.Srinivas, "Remote Sensing Applications", Narosa Publishing House, 2001.
- 3. Burrough P.A, "Principles of GIS for Land Resources Assessment", Oxford Publication, 1994.

### **REFERENCES:**

- 6. Jeffrey Star and John Ester, Geographical Information System An Introduction, Prentice Hall Inc., Englewood Cliffe, 1990.
- 7. Marble, D.F, Calkins, H.W and Penquest, Basic Readings in GIS, Speed System Ltd., New York, 1984.

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	<u>vijayan@avit.ac.in</u>

			U	RBAN	TRA	NSPO	RTAT	ION		Categ	ory I		Т	Р	Credit
17CVS	SE28	]	INFRA	STRU	UCTUE	RE– PI	LANN	ING A	ND						
					DE	SIGN				EC	3		0	0	3
DDEA	MDIL														
FKLA	WIDLE														
Helps	n Desi	gn of I	ntersec	tions, I	Interch	anges,	Parkin	g and T	Fermina	al Facil	ities to	be prov	rided ina	n urban a	area
PRER	EQUI	SITE													
NIL															
COUR	COURSE OBJECTIVES														
	Help	s in De	esign of	f Inters	ections	s. Inter	change	s. Park	ing and	l Termir	nal Fac	ilities to	be provi	ded inar	1
1	urban	area				.,	8-	~,					<b>F</b>		
2	The s	student	s woul	d have	gained	l know	ledge o	n Rail	Infrasti	ructure I	Manage	ement			
3	The s	student	s woul	d have	gained	l know	ledge o	on Desi	gn of G	rade Se	parator	s and int	tersection	ns	
4	The s	tudents	s would	l have	gained	knowl	edge o	n Desig	gn of M	ulti-Sto	rey and	l Surface	e Parking	facility	
5	The s	tudents	s would	l have	gained	knowl	edge o	n Desig	gn and (	Case Stu	udies of	f Inter M	lodal Tra	insfer Fa	cilities
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. 7	The stu	dents v	vould h	nave ga	ined k	nowled	lge on l	Rail In	frastruc	ture Pla	nning,		A 1		
Operat	ion and	l Mana	igemen	ıt.			-				-		Арріу		
CO2. 7	The stu	dents v	vould h	nave ga	ined k	nowled	lge on I	Rail In	frastruc	ture Ma	nagem	ent.	Understa	ind	
CO3. 7	The stu	dents v	vould h	nave ga	ined k	nowled	lge on ]	Design	of Gra	de Sepa	rators a	ind	Apply		
interse	ctions														
CO4. 7	The stu	dents v	vould h	nave ga	ined k	nowled	lge on I	Design	of Mul	ti Storie	ed and		Apply		
Surface	e Parki	ng fac	ility												
CO5. 7	The stu	dents v	vould h	nave ga	ined k	nowled	lge on I	Design	and Ca	ise Stud	ies of I	nter	Apply		
Modal	Transf	er Fac	ilities										"PP1"		
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGR	RAMM	E SPE	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

CO1	S	М	L	-	-	-	-	-	-	-	-	-		
CO2	S	-	L	S	-	-	-	-	-	-	-	-		
CO3	S	-	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	-	-	-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		

# SYLLABUS

**PRINCIPLES OF INTERSECTION DESIGN:** Basic considerations – simplicity – uniformity – Manoeuvre Elements – Separation of conflict points – Design Elements – Design Speed – Intersection Curves – Super elevation for curves at Intersection – Intersection Sight Distance

**DESIGN OF AT-GRADE INTERSECTIONS:** Capacity and LOS, Design of Rotary and Signalised Intersections, Vehicle Actuated Signals, Signal Co-ordination, Area Traffic Control System (ATCS), Pedestrian Planning at Grade Intersections

**DESIGN OF GRADE SEPARATED INTERSECTIONS:** Design of Grade Separators – Principles, Design Criteria – Layout Design, GAD Preparation – Pedestrian Foot Over-bridge and Subway Design – Pedestrian Planning for Grade Separated Intersections

**PARKING FACILITIES :** Parking – Demand – Characteristics – Space Inventory – Accumulation – Duration – Turn over – Index – Design of Multi Storey and Surface Parking facility

**DESIGN OF TERMINAL FACILITIES**: Bus Terminus – Design Principles – Design Elements – Design and Case Studies of Inter Modal Transfer Facilities – Design – Case Studies of Bus and Rail Terminals.

# **TEXT BOOKS:**

- 1. Robert F Baker, (Edition) "Hand Book of Highway Engineering, Van Nostrand Reinhold Company, New York, 1975
- 2. Kanna, S.K. and Justo, C.E.G. "Highway Engineering, Nemchand.

### **REFERENCES:**

1 .New Jersy, "Transportation and Traffic Engineering Hand Book, Institute of Transportation Engineers, Prentice Hall, INC, 1982

COURSI	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

									C	ategory	L	Т		P C	Credit
17CV	/SE29	PR	INCIP	PLES (	<b>)F VA</b>	LUAT	ION		Е	С	3	0		0 3	3
PRE	AMBL	Æ													
To in	troduc	e the st	udents	to und	erstand	l about	the im	portan	ce and	need of	valuatio	n, conc	epts of v	aluers a	nd
appra	isers, t	o knov	v about	t the de	preciat	tion, th	e mark	et valu	e and o	deprecia	ted repla	acement	cost		
PRE	REQU	ISITE	:				Nil								
COU	RSE (	)BJE(	CTIVE	S											
1	Tole	arn abc	ut the	import	ance n	eed an	d adva	ntages	of valu	ation					
1															
2	To de	velop	the kno	wledge	e regar	ding co	oncept	of land	and pi	coperty.					
3	To ur	dersta	nd abo	ut the c	lifferen	t types	ofass	ets and	prope	rties.					
4	To kr	iow ab	out the	price,	cost, m	arket a	and val	ue.							
5	5 To study about the Depreciated Replacement Cost (DRC)														
COU	COURSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
C01	Remen	nber th	e impo	rtance,	need a	nd adv	antage	s of va	luation	l <b>.</b>				Remen	nber
CO2	Unc	lerstan	d the k	nowled	lge reg	arding	concep	ot of lai	nd and	property	/.			Under	stand
CO3	Unders	tand a	bout th	e diffei	ent typ	bes of a	ssets a	nd proj	perties.					Under	stand
CO4	Remen	ber th	e price	, cost, 1	narket	and va	lue.							Remei	nber
CO5	Remen	nber tł	ne Depr	reciated	d Repla	icemen	t Cost	(DRC)	)					Remen	nber
MAF	PPING	WITH	I PRO	GRAN	/ME (	OUTC	OMES	AND	PROG	GRAMN	IE SPE	CIFIC	OUTCO	MES	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S															
CO	S	М	L	-	-	-	-	-	-	-	-	-			
CO	S	М	L	S	-	-	-	-	-	-	-	-			

2														
CO 3	S	М	М	S	-	-	-	-	-	-	-	-		
CO 4	S	М	М	М	-	-	-	-	-	-	-	-		
CO 5	S	М	М	-	-	-	-	-	-	-	-	L		

### SYLLABUS

**INTRODUCTION:** Importance Of Valuation – Need Of Valuation – Do's And Don'ts In Valuation – Advantages Of Valuation.

**LAND AND PROPERTY CONCEPTS:** Valuation of Land – Property - personal property - Property Valuers - Asset Valuers – Appraisers - Price changes over time result from specific and general effects of economic and social forces.

**REAL ESTATE, PROPERTY, AND ASSET CONCEPTS:**Real Estate - Real Property - Personal Property-Current Assets - Non-Current Assets - Property, Plant, and Equipment - Other Non-Current Assets – Depreciation.

**PRICE, COST, MARKET AND VALUE** : Price – Cost – Market and Value - Professional, Valuers - The Market Value**VALUATION APPROACHES** : Valuation Approaches - Cost Approach - Sales Comparison Approach- 3 Income Capitalization Approach- Depreciated Replacement Cost (DRC

# **TEXT BOOKS:**

- 1. Principles of Valuation Paperback Import, 27 May 2009 by John Armatys, neerG ekiM& mahksA lihP
- 2. Valuation of Real Properties, PB by Rangwala.

# **REFERENCES:**

- 1. Economics and Property, by Danny Myer
- 2. Advanced Valuation for Secured Lending by Banks and Financial Institutions, by Syamales Datta
- 3. Valuation of Immovable Properties under Direct Taxes, by Girish C. Gupta
- 4. Real Estate Investment: A Strategic Approach, by Andrew Baum.

COURSE	DESIGNERS						
S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in			
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in			
17CVS	E30	REAL ESTATE MANAGEMENT &	Category	L	Т	Р	Credit
------------------------------	------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------	-------------------------	-----------------------	-------------------------	--------------------------
1.0.10		ECONOMICS	CC	3	0	0	3
PREAM	MBLE						
To intro how to manage	oduce the s use real es ment of he	tudents to understand about the concept of manage tate in urban development, regulatory laws and abo pusing and Ownership and tenancies in real estate.	ement in rea out the deve	l-estate a lopers ar	and imple ad promo	mentation ters and h	n procedure, ow to do
PRERE	EQUISIT	£					
NIL							
COUR	SE OBJE	CTIVES					
1	To unders	tand about the Concept of management in real-esta	ite developn	nent and	administ	ration.	
2	To learn a	bout the Housing Finance Development Corporation	on and other	financia	l instituti	ons.	
3	To unders	tand about the developers and promoters and regul	atory laws f	or consti	ruction.		
4	To study a	about the Management of different types of housing	g and public	building	<b>5</b> .		
5	To learn a	bout the Ownership and tenancies in real estate.					
COUR	SE OUTC	COMES					
On the s	successful	completion of the course, students will be able to					
COS	5. Ur developme	derstand about the Concept of management in real ent and administration.	-estate		Underst	and	
CO	6. Re other finar	member about the Housing Finance Development (	Corporation	and	Remem	ber	
CO	7. Ur constructio	derstand about the developers and promoters and r	egulatory la	ws for	Underst	and	
COS	8. Re public bui	member about the Management of different types of different types of different types of the second s	of housing a	nd	Remem	ber	
COS	9. Re	member about the Ownership and tenancies in real	estate.		Remem	lber	
MAPPI	ING WIT	H PROGRAMME OUTCOMES AND PROGR	AMME SP	ECIFIC	OUTCO	OMES	

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			
CO3	S	М	М	S	-	-	-	-	-	-	-	-			
CO4	S	М	М	М	-	-	-	-	-	-	-	-			
CO5	S	М	М	-	-	-	-	-	-	-	-	-			

# SYLLABUS

**INTRODUCTION:** Concept of management in real-estate development and administration; aims, objects and practices renewal of leases and alternate methods for efficient estate management.

**REAL ESTATE IN URBAN DEVELOPMENT:** Urban development finance with particular reference to real-estate: role of Housing Finance Development Corporation and other financial institutions and agencies.

**DEVELOPERS, PROMOTERS AND LAWS:** Private development enterprises by developers and promoters; regulatory laws for construction of multi-storied buildings, transfers and administration.

MANAGEMENT OF HOUSING: Management of co-operative housing, apartment housing, corporate housing and public buildings

**OWNERSHIP IN REAL ESTATE:** Ownership and tenancies in real estate: effect of rent control and other laws. Methods of fixing rent, rigidity and flexibility

# **TEXT BOOKS:**

- 1) Michael Thorncroft, Principles of Estates Management
- 2) W.A Leach, Urban Estates Management Vol. I and II

- 1) John P. Macey, Housing Management, Estate Gazettes.
- 2) Lichfield, Economics of Planning development

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Name of the College	Mail ID							
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in							
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in							

		REA	AL ES	TATE	HUM	AN RI	ESOUI	RCE		Categ	ory L	,	Г	Р	Credit
17CVSE3	1	MA	NAGI	EMEN'	Т					66			2	0	2
										CC	3	(	)	0	3
PREAMB	SLE														
Te interation	1			1					r 1						1
retention s	tratagi	student	ts to un	aerstar		ut the s	trategi	c HKM	l, numa	an resour	rce env	Ironmen	t, recrui	tment an	a
Tetention S	inalegi	es, pen	orman		lageme		legies	and git	Juan III	strategic	28				
PRFRFO	UISIT	F													
IKEREQ															
NIL															
COURSE	OBJE	CTIV	ES												
1	TT (	1 1	1	•		<u> </u>		1 7 77	<u> </u>	1 1	•••				
1	To stu	idy abo	out the	various	s types	of stra	tegies	and HI	<b>k</b> plans	and pol	1cies				
2	To un	derstai	nd abou	ut the C	Global	enviroi	nment;	Globa	l comp	etition a	nd Gloł	oal sourc	ing of l	abour	
3	To lea	rn abo	ut the	recruitr	nent pi	rocess	outsou	rcing, e	employ	ee empo	werme	nt and er	mployee	e involve	ment
4	To stu	ıdy abc	out the	perform	nance	manag	ement	strateg	ies						
5	To kn	ow abo	out the	global	HR str	rategies	8								
COURSE	OUT	COME	S												
On the suc	cessful	comp	letion of	of the c	ourse,	studen	ts will	be able	e to						
CO1 Rer	nembei	• the va	arious t	vnes o	f strate	oies ar	d HR 1	nlans a	nd poli	icies		1	Rememl	her	
	nemoer	the ve	11005	JPC5 0	i strute	5105 ui		piuns u	na pon						
<b>CO2</b> . Und	erstand	l about	the Gl	obal er	nvironr	nent; C	Global	compet	tition a	nd Globa	al	1	Inderst	and	
sou	rcing o	f labor											Underst	anu	
<b>CO2</b> Date	1	41	•								1		D1		
<b>CO3</b> . Ren	nember	the rec	cruitme	ent proc	cess ou	tsourci	ng, em	ployee	empo	werment	and	1	Remem	ber	
emj	ployee	involve	ement												
CO4. Ren	O4. Remember the performance management strategies Remember														
CO5. Und	erstand	l the gl	obal H	R strat	egies							1	Underst	and	
MAPPIN	G WIT	H PR	OGRA	MME	OUT	COME	ES AN	D PRC	GRA	MME S	PECIF	IC OUT	COME	S	
000		DOO	DOC	DO 1	DOT	DOC	D07	DOO	DOO	DO10	DO11	DO12	DCC1	DCCC	DCCC
005	POI	PO2	PU3	PO4	PO2	PO6	PU/	PO8	PO9	PO10	POII	P012	PSUI	PS02	P2O3

CO1	S	М	L	-	-	-	-	-	-	-	-	-		
CO2	S	М	L	S	-	-	-	-	-	-	-	-		
CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		

## SYLLABUS

**INTRODUCTION TO STRATEGIC HRM:** Definition, need and importance; Introduction to business and corporate strategies; Integrating HR strategies with business strategies; Developing HR plans and policies.

**HUMAN RESOURCE ENVIRONMENT :** Technology and structure; Workforce diversity; Demographic changes Temporary and contract labour; Global environment; Global competition Global sourcing of labour; WTO and labour standards

**RECRUITMENT AND RETENTION STRATEGIES:** Online recruitment; Employee referrals; Recruitment process outsourcing Head hunting; Executive education; Flexi timing; Telecommuting Quality of work life; Work - life balance; Employee empowerment Employee involvement; Autonomous work teams

**PERFORMANCE MANAGEMENT STRATEGIES** Defining key result areas (KRA); Result based performance Linking performance to pay; Merit based promotions

GLOBAL HR STRATEGIES: Introduction to global HR strategies; Developing HR as a value added function

## **TEXT BOOKS:**

- 1. Strategic HRM Jeffery Mello, Thompson publication, New Delhi
- 2. Strategic HRM Charles Greer, Pearson education Asia, New Delhi
- 3. Strategic HRM Michael Armstrong, Kogan page, London

- 1. Strategic HRM Agarwal, Oxford university press, New Delhi
- 2. Human resource management Garry dessler, PHI, New Delhi

COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Name of the College	Mail ID								
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in								
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in								

17CVSE32	LAWS FOR ACQUISITION AND	Category	L	Т	Р	Credit
	CUNIRACI	CC	3	0	0	3

# PREAMBLE

To introduce the students to understand about the Legislative laws and its application, Salient features of the Indian Constitution, features of local Government, types of contract and its application and Land Acquisition Act.

# PREREQUISITE

---

NIL															
COUR	COURSE OBJECTIVES														
1	To stu	udy abo	out law	s, Legi	slative	enactr	nents a	ind Jud	icial pr	recedent	s.				
2	To understand about features of the Indian Constitution, legal system and fundamental rights.														
3	To learn about types of Government, revenue system, etc.														
4	To study about types of contract and its guidelines, valuation etc.														
5	To learn about the contract and conveyance, Land Acquisition Act and Rent control laws.														
COUR	SE OU	UTCO	MES												
On the	succes	sful co	mpleti	on of t	ne cou	rse, stu	dents v	will be	able to						
CO1.	Unders	tand th	ne laws	and Ju	dicial	preced	ents					τ	Understa	ind	
CO2. U	Jnderst	and ab	out the	e Indiar	n Const	titution	, legal	system	and fu	ındamer	ntal right	ts. U	Understa	ind	
CO3. ]	Learn a	about t	ypes of	Gover	nment	, reven	ue syst	em, etc	с.			I	Rememb	er	
CO4.	Unders	tand al	bout ty	pes of o	contrac	ct and i	ts guid	elines,	valuati	ion etc.		τ	Understa	ind	
CO5. Control	Rement laws.	nber ab	out the	e contra	ict and	conve	yance,	Land A	Acquisi	tion Act	and Re	nt I	Rememb	er	
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND P	PROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	OS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PSO1       PSO2       PSO3														
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	2   S   M   L   S   -   -   -   -   -   -   -														

CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	Μ	M	-	-	-	-	-	-	-	-	L		

#### SYLLABUS

**ELEMENTARY JURISPRUDENCE:** Law – its origin, source and ramifications. Legislative enactments – subordinate legislation – Judicial precedents.

**INDIAN LEGAL SYSTEM:** Salient features of the Indian Constitution, fundamental rights: directive principles of the state policy. Executive, Legislature and the judiciary Centre – State relationship.

**LOCAL GOVERNMENT:** Types – Rural and Urban, constitutional provisions, powers and functions Sources of revenue: Tax and fee, Municipal Finance, essential civil service.

**CONTRACT AND TORT:** Laws of contract and tort: formation of a contract, parties; void, voidable and unenforceable contract; contingent contract; misrepresentation and fraud-effect thereof termination of contract; remedies for breach; performance of contract; indemnity and guarantee; law of agency; general principles of tort; tort affecting valuation.

**CONVEYANCING:** Outline procedure for sale of immovable property: contract and conveyance; preliminary inquiries open contract; contract by correspondence. Acquisition and requisition of immovable property – enactments. Land Acquisition Act, 1894 (1 to 1894). Provisions for acquisition of land under the municipal laws. Law of arbitration and conciliation: salient features. Rent control laws.

# **TEXT BOOKS:**

- 1) M.J.Sethna, Jurisprudence, Lakhani Book Depot. Lamington Road, Bombay 400 007
- 2) Durga Das Basu, Introduction to Constitution of India, Lakshmi Publications (P) Ltd., (1998), Kolkatta
- 3) B.S. Sinha, Law of Torts, Eastern Book Company, 34 Lal Baugh, Lucknow 226 001.

## **REFERENCES:**

 N.M. Tripathi, Indian Contract Act (Students Edition), Mulla Publishers, Princess Street, Bombay 400 002.

2) Building Bye-law of Muncipa	Corporation of Ahmedabad,	Bombay, Delhi & Madras.
--------------------------------	---------------------------	-------------------------

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in

17CVS	SE33	REAL ESTATE FINANCE & MARKETING	Category	L	Т	Р	Credit
1/0/0	51255		CC	3	0	0	3
PREA	MBLE		I				
To intr techniq sectors	oduce th ques, ma	e students to understand about the financial managen rket-led strategic management, strategic marketing an	nent, capital alysis and a	budgetir pplicatio	ng: proces n to diffe	ss and rent busir	iess
PRER	EQUISI	TE					
NIL							
COUR	RSE OB.	IECTIVES					
1	To stud concep	ly about the evolution of finance, business ethics and a t.	social respo	nsibility,	time valu	ue of mon	iey
2	To lear	n about the decisions, process and techniques of capit	al budgeting	g			
3	To stud	ly about the relationship with corporate vision of marl	keting strate	egy			
4	To und	erstand about the identification of attractive markets a	and industry	or busine	ess analy	sis	
5	To stud	ly about the application to different business sectors a	nd constrain	nts in mai	rketing st	rategy	
COUR	RSE OU'	TCOMES					
On the	success	ful completion of the course, students will be able to					
CO1 U time va	Inderstar	ad the evolution of finance, business ethics and social noney concept.	responsibili	ty,	Underst	and	
CO2 R	emembe	r the decisions, process and techniques of capital bud	geting		Remem	ber	
CO3 R	emembe	r the relationship with corporate vision of marketing	strategy		Remem	ber	
CO4 U analysi	Understar is	nd the identification of attractive markets and industry	or business	6	Underst	and	
CO5 R market	emembe	er the application to different business sectors and con egy	straints in		Remem	ber	

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			
CO3	S	М	М	S	-	-	-	-	-	-	-	-			
CO4	S	М	М	М	-	-	-	-	-	-	-	-			
CO5	S	М	М	-	-	-	-	-	-	-	-	L			

## SYLLABUS

**FINANCIAL MANAGEMENT:** An Overview. Evolution of finance, The Basic Goal: Creating Shareholder Value, Agency Issues, Business Ethics and Social Responsibility, Time value of money concept.

**STRATEGIC INVESTMENT DECISIONS:** Capital Budgeting Decisions – Capital Budgeting: Process and Techniques - Payback period, Accounting rate of return, NPV, IRR, MIRR, Profitability index, Discounted payback period, Estimation of cash flows, NPV vs. IRR, Risk analysis in Capital Budgeting - Sensitivity analysis, Certainty Equivalent Approach, Calculation of RADR, Real options.

**OVERVIEW OF MARKETING STRATEGY:** Relationship with Corporate Vision, Mission and Objectives. Market-led strategic management.

**STRATEGIC MARKETING ANALYSIS:** Identification of attractive markets, Industry/business analysis and sustaining competitive advantage.

**INTEGRATION OF MARKETING STRATEGIES:** Application to different business sectors – FMCG, Industrial, & Services. Constraints in marketing strategy implementation. Periodical assessment.

# **TEXT BOOKS:**

1. Bhalla V.K. (2009). Financial Management. New Delhi: Anmol Publications

2. Brealey, R. R., Myers. S., Allen, F., & Mohanty, P. (2009). Principles of corporate finance (8th ed.). New Delhi: Tata McGraw Hill.

3. Brigham, E F., & Davis, P. (2009). Intermediate financial management (10th ed.). USA: South Western

# **REFERENCES:**

1. Brigham, E. F., & Houston, J. F. (2007). Fundamentals of financial Management (11th Ed.). USA:

Thomson.

- 2. Chandra, P. (2008). Financial management (7th ed.). New Delhi: McGraw Hill.
- Hickman, K. A., Hunter, H. O., & Byrd, J. W. (2008). Foundations of corporate finance (2nd ed.). USA South Western.
- 4. Horne, V. (2008). Fundamentals of financial Management (12th ed.). New Delhi: Pearson Education.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in

17CVS	SE34		VALU	JATIC	)N & I	DOCU	MENT	CATIO	N	Categ	ory L	,	Т	Р	Credit
					VV K.	IIING	r			EC	3		0	0	3
PREA	MBLE	E										I			<u>I</u>
To intr valuati	roduce ion and	the stu to cor	dents to sequer	o undences of	rstand report.	about t	he esse	ential st	tructure	e of a rej	port, pu	rpose ai	nd prope	rties of	
PRER	EQUI	SITE													
NIL															
COUF	RSE O	BJEC	<b>FIVES</b>												
1	To lea	arn abo	out the	various	s metho	ods of l	Essenti	al struc	cture of	a repor	t.				
2	To kr	now ab	out the	differe	ent type	es of st	ructure	in valu	uation.						
3	To understand the purpose of valuation														
4	To learn the procedure of report writing as per court of law														
5 To understand about the pattern of the examination															
COUF	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of t	he cou	rse, stu	dents v	vill be	able to						
CO1.	Rem	ember	the var	ious m	ethods	of Ess	ential s	structu	e of a r	report.			Rememt	ber	
CO2.	Unde	erstand	the dif	ferent	types o	of struc	ture in	valuati	on.				Understa	und	
CO3. 1	Unders	tand th	e purpo	ose of v	aluatio	on						-	Understa	und	
CO4.	Rem	ember	the pro	cedure	of rep	ort wri	ting as	per co	urt of la	aw			Rememt	ber	
CO5. I	05. Understand the pattern of the examination Understand														
MAPI	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			

CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		

#### SYLLABUS

**INTRODUCTION:** Essential structure of a report

STRUCTURE OF A REPORT : The general structure of a report

**PURPOSE OF VALUATION:** Details required according to the purpose of valuation - Details required according to the type of properties

**REPORT WRITING:**Consequences of report – Writing a report – Negotiations, Negligence and leading expert evidence in court of law.

#### **GENERAL PRACTICES:** Practice and Examination

#### **TEXT BOOKS:**

1) Joseph C. Mancuso, Mastering Technical Writing.

2) Matt Young, The Technical Writer's handbook.

3) P.T.Hardikkar, Report writing, Academic Book Center (2006), Ahmedabad.

#### **REFERENCES:**

1) Arlen C. Mills, MAI, Communicating the Appraisal, /The individual condominium or PUD Unit Appraisal Report.

2) S. Sreenivas Rao, Hand book for writers and editors, academic Book Centre, 10 Walkeshwar, Ambawadi, Ahmedabad 380 015.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in

17CVS	SE35	QU	JALIT	Y CON	ITRO	L AND	) ASSU	JRANO	CE IN	Categ	ory L		Т	Р	Credit
				]	REAL	ESTA	TE								
										EC	3		0	0	3
DDFA	MDII	7													
ГЛСА															
To intr	oduce	the stu	dents t	o unde	rstand	about t	he qua	lity, str	ategic	planning	g, and c	ompetit	ive adva	ntage in	real
estate,	princip	oles of	total qu	uality n	nanage	ment, o	custom	er relat	ionship	o manag	ement t	echniqu	es, qual	ity contro	ol and
quality	v assura	nce an	nd bene	fits of	control	charts	and ap	plicati	ons						
PRER	EQUI	SITE													
NIL															
COUR	RSE OI	BJEC	FIVES												
1	To study about the concept of quality, planning and quality and market share														
2	To lea	arn abo	out the	elemer	nts and	benefi	ts of to	tal qua	lity ma	nagemei	nt				
2	To un	dersta	nd abou	ut the c	ustome	er satis	faction	measu	rement	techniq	ues and	custom	er relati	onship	
5	mana	gemen	t techn	iques.						-	-			-	
4	4 To learn about the quality control and quality assurance														
5															
5	TO KI	low ad	out the	benefi		ontrol C	enarts a	na app	incation	15					
COUR	RSE O	UTCO	MES												
On the	succes	sful co	ompleti	onoft	he cou	rse, stu	dents v	will be	able to						
CO1. U	Underst	tand th	e conce	ept of c	luality,	planni	ing and	quality	y and n	narket sł	nare	•	Understa	and	
CO2. I	Remem	ber the	e eleme	ents and	l benef	its of t	otal qu	ality m	anagen	nent			Rememt	ber	
CO3 I	Inderst	and th	e custo	mer sa	tisfacti	on me	asurem	ent tecl	niques	s and cus	stomer				
relation	nship n	nanage	ement t	echniq	ues.				inquo	, und ea			Understa	and	
CO4. I	CO4. Remember the quality control and quality assurance Remember														
CO5.	Unders	tand th	he bene	efits of	contro	l charts	and an	oplicati	ons				Underst	and	
	0110015				• • • • • • • •				0110				01100150		
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGF	RAMMI	E SPEC	CIFIC (	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-			

CO2	S	М	L	S	-	-	-	-	-	-	-	-		
CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	M	M	-	-	-	-	-	-	-	-	L		
a a,														

## SYLLABUS

**QUALITY, STRATEGIC PLANNING, AND COMPETITIVE ADVANTAGE:** Brief History -Definitions of Quality. Quality in Manufacturing and Service Systems. Quality and Price - Quality and Market Share - Quality and Cost - Quality & Competitive Advantage.

**PRINCIPLES OF TOTAL QUALITY MANAGEMENT:** Introduction - Elements of Total Quality Management - Malcolm Baldrige National Quality Award Criteria. Benefits of Total Quality Management. The Deming Management Philosophy – The Juran Philosophy – The Crosby Philosophy.

**CUSTOMER FOCUS:** The Customer-Driven Quality Cycle - Quality Function Deployment –Customer Satisfaction Measurement Techniques – Customer Relationship Management Techniques.

**QUALITY CONTROL AND QUALITY ASSURANCE** Concept of Quality Control – Concept of Process Variation – Acceptance Sampling – Sampling Inspection Vs. 100% Inspection – Attributes and variable sampling plans – OC Curves – Producer and Consumer Risk – AQL, RQL, TQL, AOQL and AOL. (10%)

**STATISTICAL PROCESS CONTROL :** Control Charts – X-R, P, np and C Charts – Benefits of Control Charts and Applications

# **TEXT BOOKS:**

- 1. Quality Control Dale H Besterfield Pearson Education
- 2. Total Quality Management S. Sundarrajan
- 3. Quality Control & Total Quality Management Jain

- 1. The essence of Total Quality Management Hansen & Ghare
- 2. Managing for Total Quality Logothetic
- 3. Quality Problem Solving Smith
- 4. ISO 9000 Kairon

5. Man	uals of various standard	ls											
COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Name of the College	Mail ID									
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in									
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in									

			Category	L	Т	Р	Credit						
17CVS	SE36	RENEWABLE ENERGY SYSTEMS	EC	3	0	0	3						
PREA	MBLE												
Energy a build	v formula a	nd unit, various forms of energy, renewable ener y consumption of any industrial site, Energy effic	gy, non renew ciency calcula	able energ	gy, Energ	gy consun	nption of						
PRER	EQUISIT	Е											
Nil.													
COUR	RSE OBJE	CTIVES											
1	To study a	about the different type of energy.											
2	To learn a	about the principle, reconstruction and the uses o	f solar therma	l energy.									
3 To understand the basics and advancement in Ocean and Geothermal Energy.													
4	To learn about Sustainable energy for all-planning aspect-action.												
5 To understand the concepts of Renewable Energy Policy.													
COUR	SE OUTO	COMES											
On the	successful	completion of the course, students will be able t	0										
CO1. I world.	List and gei	nerally explain the main sources of energy and th	eir primary ap	plications	in the	Apply	7						
CO2. I includi	Describe the ng fossil fu	e challenges and problems associated with the usuels, with regard to future supply and the enviror	se of various e nment.	nergy sou	rces,	Analy	ze						
CO3. Discuss remedies/potential solutions to the supply and environmental issues associated with fossil fuels and other energy resources.													
CO4. C uses, re	CO4. Convert units of energyto quantify energy demands and make comparisons among energy Apply uses, resources, and technologies.												
CO5. C analysi	Collect and is and evalu	organize information on renewable energy techr uation.	ologies as a b	asis for fu	rther	Analy	'ze						
MAPP	PING WIT	H PROGRAMME OUTCOMES AND PROC	GRAMME SP	ECIFIC	OUTCO	MES							

COS	РО	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2													
CO1	S	М	М	-	-	-	-	-	-	-	-	-			
CO2	ç	М	т	м				T							
02	3	IVI	L	IVI	-	-	-	L	-	-	-	-			
CO3	S	L	М	М	-	-	L	-	М	L	-	-			
CO4	S	М	М	М	-	-	-	-	-	L	-	-			
CO5	S	L	М	-	-	-	М	-	-	-	-	-			
~ ~															

## SYLLABUS

**INTRODUCTION:** Types of energy- solar energy- nuclear energy- wind energy- thermal energy- geo thermal energy- fossil fuels-hydroelectric energy- Energy reserves of India- Energy intensity- Energy efficiency- Renewable energy sources-green house effect

**SOLAR THERMAL ENERGY:** Solar thermal water heating- solar distillation-solar pumping systems-solar thermal power plant- solar collectors- thermal storage-solar pond- solar pumping systems-solar cooker-solar air condition and refrigerator-energy efficient buildings- assessment of solar radiation- solar photovoltaic system

**OCEAN, HYDRO AND GEOTHERMAL ENERGY:** Wave and tidal energy, ocean thermal energy conversion - principle, types, power plants- small, mini and micro hydro power plants. Exploration of geothermal energy, geothermal power plants. Introduction to direct energy conversion systems – fuel cells and magneto hydrodynamic power generations

**SUSTAINABLE ENERGY :** Sustainable energy for all-planning aspect-action area- implementation road mapmobilizing action- Sustainable energy futures, global scenarios, promising technologies, development pathways, clean coal and carbon technologies, electric vehicles, energy fluctuation and energy storage, distributed generation and smart grids.

**RENEWABLE ENERGY POLICY:** Renewable energy policies, including feed-in tariffs, portfolio standards, policy targets, tax incentives, and biofuels mandates. International policies for climate change and energy security. Economic analysis and comparisons, Life cycle analysis, financial analysis, cost of conserved energy, and externalities. Cost assessment of supply technologies versus energy-efficiency.

# **TEXT BOOKS:**

- 7. Rai .G .D, -Non-Conventional Energy Sources I, Khanna Publishers, 4th edition, New Delhi, 2009.
- 8. John E Freund's Mathematical Statistics: (7th Ed.), Miller & Miller, Prentice-Hall

9. Probability and Statistics for Engineers -Miller, Freund-Hall, Prentice India Ltd. 2009

4. Roland Wengenmayr, Thomas Buhrke, Renewable energy: Sustainable energy concepts for the future Wiley-VCH, 1st edition, 2008.

## **REFERENCES:**

- 5. -Fundamentals of Renewable Energy Systems^{II}. D. Mukherjee, S. Chakrabarti
- 6. Godfrey Boyle, -Renewable energyll, Oxford University Press, 2nd edition, 2010
- 7. Hans-Josef Fell, -Global cooling strategies for climate protection^{II}, CRC Press, 2012.

4. Ottmar Edenhofen, -Renewable energy sources and climate change mitigation^{II}, Cambridge University Press, 2011.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

										Categ	gory	L	Т	Р	Credit
17C	VSE37	7		THE	RMAI INSTA	L INSU	ILATI	ON		EC	2	3	0	0	3
PREA	MBLE	C													
	One	must 1	underst	and the	e conce	pt of t	hermal	l insula	tion, n	eed for	thermal	insulati	ion, mat	erials, sa	ıfety
hazar	ds for a	a thern	nal insu	lation,	OSHA	standa	ards, B	uilding	g regula	ations, N	/IEP wo	rks			
DDFD	FUII	SITE													
FRER	Nil.	5116													
COUR	RSE OI	BJEC	ΓIVES												
1	To stu	ıdy ab	out the	Purpos	se and a	need of	Insula	tion.							
2	To lea	arn abo	out the	various	s types	ofther	mal in	sulation	n matei	ials.					
3	To un	dersta	nd the l	basic n	eed for	Insula	tion an	d Refr	actorin	ess.					
4	To learn about properties of Thermal Insulation Materials.														
5	To understand the concepts of Insulation Installation For Residential Housing.														
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1.	Identify	y the c	orrect t	ools fo	r instal	lation	of spec	ific the	ermal ir	nsulation	n proces	ses		Appl	y
CO2. I	dentify	the co	orrect n	naterial	s requi	red for	install	ation c	of speci	fic therr	nal insu	lation a	nd	Appl	y
addres	s any d	efects	with m	aterials	8										
CO3. I	dentify	poten	tial inst	tallatio	n faults	s and ca	arry ou	t corre	ctive a	ctions w	here app	plicable		Appl	ý
CO4. 1	Ensure	install	lation a	rea is c	leaned	in acc	ordanc	e with	contrac	ctual, he	alth and	safety a	and	Appl	ý
organiz	zationa	l requi	rement	S											
CO5.	Demon	strate	good p	ractice	in rela	tion to	the hea	alth and	d safety	of the i	individu	al, othe	r	Appl	y
worker	rs and v	visitors	5												
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	М	-	-	-			
CO2	c	М	т	м		М			Т	т					
	ы	171		1/1	-	111	-	-	L	L	-	-			
CO3	S	L	М	М	-	L	L	-	-	-	М	-			

CO4	S	М	L	L	-	-	-	-	-	L	-	-		
CO5	S	М	М	L	-	-	-	-	-	-	-	-		

# SYLLABUS

**INTRODUCTION:** Thermal insulation, Purpose of Insulation, Need for insulation, Benefits of insulation, Feasibility in insulation, Procedure for proving insulation, heat energy transfer, heat radiation, types and Applications.

**THERMAL INSULATION MATERIALS:** Types, mineral wool- Rock or slag, fiber glass, polyurethane foam, polystyrene, cellulose, cellular plastics, plastic fibers, natural fibers, insulating concrete, reflective surface, insulation board.

**INSULATION AND REFRACTORIES:** Insulation and Refractories: Insulation-types and application, Economic thickness of insulation, Heat savings and application criteria, Refractory-types, selection and application of refractories, Heat loss.

**PROPERTIES OF INSULATION MATERIALS :** Mechanism of heat transfer, thermal conductivity, surface emissivity, insulation thickness, density, specific heat capacity, thermal bridging, Insulations used as buildings, factors affecting insulation performance, compaction effects, moisture, air infiltration, other properties, fire performance, corrosion, moisture absorption, summary.

**INSULATION INSTALLATION FOR RESIDENTIAL HOUSING:** Installation tips, thermal bridging, vapour barriers, roof ventilation, gaps, bulk insulation, reflective insulation, roof and ceiling insulation, external wall insulation, flooring insulation, Advantages and disadvantages.

## **TEXT BOOKS:**

- 1. -Thermal insulation, materials and systems for energy conservation in the _80s[∥] by Govan, Greson, Mc Allister.
- 2. -Insulation materials, testing and applications^{||}, Mc Elroy/ Kimpflen.
- 3. -An assessment of Thermal insulation Materials and system for building Applications^{II}, prepared by Brookhaven National Laboratory.

## **REFERENCES:**

- 1. -Thermal Insulation Materials and systems by Powell/ Matthews editors
- 2. -Thermal insulation handbook for the Oil, gas, and petrochemical Industries ||, Alireza Bahadori.
- 3. Sustainable Energy Authority Victoria (SEAV). 2006. Energy smart housing manual, Ch. 7, Insulation

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst .Prof-I	AVIT	abirami.civil@avit.ac.in
2.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

		Categor y	L	Т	Р	Credit
17CVSE38	SUSTAINABLE URBAN SYSTEMS	EC	3	0	0	3

#### PREAMBLE

GIS (geographic information systems) which enables students to process real urban datasets, script and perform spatial analyses, interpret results, and produce visualization. To draw the sketch of urban area in software like CAD. Student must learn to get the plan of urban area from town and country planning authorities.

# PREREQUISITE

Nil.

COUR	RSE O	BJEC	TIVE	S											
1	To st	udy ab	out the	e Susta	inabili	ty urba	ın syste	ems.							
2	To le	arn ab	out the	princi	ple glo	bal Su	stainal	ble in u	ırban s	ystem.					
3	To ur	ndersta	nd the	basics	ecolog	gical a	nd env	ironme	ental Su	ustainat	oility.				
4	To ga	in the	knowl	edge a	bout p	ublic t	ranspo	rt and	urban o	develop	ment				
5 To understand the concepts of sustainable urban water management.															
COUR	RSE O	UTCO	OMES												
On the	succe	ssful c	omple	tion of	the co	urse, s	tudents	s will t	be able	to					
CO1.	Identif ng.	y and	suppor	t the g	ood pr	actices	in gre	en and	efficie	ent urba	n develo	opment	and	Appl	у
CO2. I	Review	polic	ies and	foster	techn	ologies	s used	to pror	note ei	nergy ef	ficiency	and re	duced	Appl	у
GHG e	emissio	ons fro	m buil	dings a	and tra	nsport	ation.								
CO3.	Review	v polic	cies an	d foste	r techr	ologie	s nece	ssary t	o ensu	re healtl	ny water	r and sa	nitation	Appl	у
service	es.														
CO4. I	Examir	ne poli	cies ar	d foste	er tech	nologie	es nece	essary	for the	effectiv	e collec	tion,		Appl	у
dispos	able, a	nd pos	sible r	e-use o	of wast	e and	in pron	noting	circula	ar econo	omy				
CO5.	Exami	ne, tra	ck, and	d analy	ze sus	tainabi	lity me	etrics a	nd ind	icators	for urba	n cente	rs	Appl	у
MAPF	PING	WITH	PRO	GRAM	IME (	DUTC	OME	S AND	PRO	GRAM	IME SP	ECIFI	C OUT	COMES	5
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3

CO1	S	М	L	-	-	-	-	-	-	-	-	-		
CO2	S	М	L	L	-	-	-	-	-	-	-	-		
CO3	S	L	М	М	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	М	S	-	-	-	-	-	-	-	-	-		

#### **SYLLABUS**

**INTRODUCTION TO SUSTAINABLE URBAN SYSTEM:** Sustainability definition, need for sustainability for urban system, land use and urban design issues, sustainability of structures, Design procedure for urban system.

**GLOBAL SUSTAINABILITY :** Urban sustainability, natural systems in crisis, climate change causes and effects, Urbanisation, sustainable urban development, complex urban systems, Urban planning strategy.

**ECOLOGICAL AND ENVIRONMENTAL SUSTAINABILITY:** Urban ecology and restoration, soil, water and air; energy and materials use, sustainable communities, Urban Planning issues.

**PUBLIC TRANSPORT & URBAN DEVELOPMENT:** Sustainable construction techniques, Planning roadways, railways in urban area, Planning national highways which connect various cities, various types of transportation in urban city.

**SUSTAINABLE URBAN DRAINAGE SYSTEMS:** Introduction to sustainable urban water management, technical approaches to reducing water use, Control systems for surface runoff, filter strips and swales, permeable surfaces, paving, ponds and wet lands.

## **TEXT BOOKS:**

- 1. Sustainable Urban Metabolism by Paulo Ferrao, John E. Fernandez
- 2. -The Urban Climatic Map: A methodology for sustainable Urban Planning by Edward Ng, Chao Ren.
- 3. -Local Sustainable Urban Development in a global world by Lauren C. Heberie, Susn M. Opp.

## **REFERENCES:**

1. -Pathways to Urban Sustainability: Research and Development on urban systems by National Research council Policy and Global Affairs Science and technology for Sustainability Program Committee on the challenge of developing Sustainable Urban Systems.

S. No	Name of the Faculty	Designatio n	Name of the College	Mail ID
1.	R. Abirami	Asst .Prof-I	AVIT	abirami.civil@avit.ac.in
2.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

17CV	SE39		EN	ERGY	Y AUD	ITING	IN SI	PECIA	L	Categ y	gor 1		Т	Р	Credit
1/0/1	0107				STRU	UCTU	RES			EC		3	0	0	3
PREA	MBL	E								•			L		<u> </u>
Before energy	e startin and u	ng the nderst	course and the	one m e clear	ust be concej	able to pt of sp	define becial s	e the en structur	nergy a res.	audit an	d its ty	pes. Sou	rces of e	energy, f	forms of
PRER	EQUI	ISITE													
Nil.															
COUI	RSE O	BJEC	TIVE	S											
1	To st	udy ab	out the	e detail	energ	y audit	syster	n.							
2	To le	arn ab	out the	Energ	y reso	urces &	k elect	ricity c	onsur	nption.					
3	To st	udy ab	out the	e vario	us othe	er sour	ces for	produ	ction o	of electri	city.				
4	To ga	ain the	knowl	edge a	bout v	arious	types	of ener	gy aud	lit.					
5	To le	arn ab	out the	Estim	ation o	of energ	gy eco:	nomy o	of the b	ouilding	•				
COUI	RSE O	UTCO	OMES												
On the	succe	ssful c	omple	tion of	the co	ourse, s	tudent	s will t	e able	to					
CO1. ]	ldentif	y and	describ	e the e	energy	conser	vation	opport	unities	s in indu	istrial a	and com	mercial	Appl	у
system	18.														
Co2.	Apply	y energ	gy audi	ting te	chniqu	les								Appl	У
Co3.	Desci	ibe th	e energ	y rate	structu	ires.								Appl	у
Co4. ]	Exami	ne the	econor	nic eva	aluatio	n of en	ergy c	onserv	ation s	olution	5.			Appl	у
CO5.	5. Use computers to monitor and control energy use. Apply														
MAPI	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	РО	PO	РО	РО	РО	РО	РО	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	S	М	L	-	-	-	-	-	-	-	-	-			

L

CO2	S	М	L	L	-	-	-	-	-	-	-	-		
CO3	S	М	М	L	-	-	-	-	-	-	-	-		
CO4	S	М	L	М	-	-	-	-	-	-	-	-		
CO5	S	М	М	_	-	-	-	-	-	-	-	L		
C C4			 											

## SYLLABUS

**INTRODUCTION:** Energy Audit, standard energy audit, detail energy audit, stepwise procedures for energy audit, common energy conservation measures, electrical systems, HVAC systems, Compressed air systems, Energy management controls, Indoor Water Management, New technologies, Case studies.

**ENERGY SOURCES AND UTILITY RATE STRUCTURES:** Energy resources, electricity consumption, service level, Bill based on 4 RTP rates, home energy audit, Energy efficiency.

**ENERGY SAVING TECHNIQUES:** Household- use of CFL, solar panels for usage of electricity. Industrialusage of various other sources for production of electricity such as coal, hydro energy and solar panels huge size. Comparison of energy saving techniques to conventional method of electricity production.

**ENERGY AUDIT:** Define energy audit, macro audit, micro audit, developing an audit plan, defining audit resources, energy analysis methodology, systematic approach, energy management opportunities, Electricity from purchase to end-use, units of energy.

**SPECIAL STRUCTURES:** Estimation of energy economy of the building, control and regulation methods. Special structures – more energy consumption than conventional buildings- comparative study. Case study of few energy audit in special structures.

# **TEXT BOOKS:**

- 1. -Energy Audit of building Systems: An Engineering Approachl, Second Edition by Monoef Krarti
- 2. -Energy management handbook || by Wayne C. Turner.
- 3. -Green energy Audit of buildings: A guide for a sustainable energy audit of Buildings∥, by Giuliano Dall O.

- 1. Energy savings toolbox- An energy audit manual and tool.
- 2. Studies on the structure of the industrial economy : Report on energy audit of paper industry

3. -An energy audit of Kindergartens to improve their energy efficiency∥, by Nikolay et.al, St. Petersburg, Russia.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

1703/000		Category	L	Т	Р	Credit
T/CVSE40	LIFE CYCLE ASSESSMENT FOR COMPLEX SYSTEMS	EC	3	0	0	3

## PREAMBLE

Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as bio based products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: Student teams complete a life cycle assessment of a product or system chosen from industry.

## PREREQUISITE

Nil.

COURSE OBJECTIVES										
1	To study about the Life cycle assessment & goals.									
2	To learn about the History, methodology and benefit of LCA.									
3	To study about the various process of data collection in LCI.									
4	To gain the knowledge about Green sustainable materials & biocompatible materials.									
5	To learn about the LCA on Residential building, Industrial buildings and bridges.									
COUR	SE OUTCOMES									
On the	successful completion of the course, students will be able to									
CO1.	Articulate the value of a Life Cycle Analysis (LCA)	Apply								
CO2. (	Dutline the steps to conduct an attributional LCA.	Apply								
CO3. ]	Describe common environmental impacts associated with a life cycle inventory of processes.	Apply								
CO4. A	Approach complex problems with a systems thinking approach.	Analyze								
CO5.	Conduct a life cycle assessment.	Apply								
MAPP	ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOM	ES								

COS	РО	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2													
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	Μ	L	L	-	-	-	-	-	-	-	-			
CO3	S	М	М	L	-	-	-	-	-	-	-	-			
CO4	S	S	М	L	-	-	-	-	-	-	-	-			
CO5	S	М	L	-	-	-	-	-	-	-	-	L			
a a.			_	-											

## SYLLABUS

**INTRODUCTION:** Life cycle assessment- goals- purpose- life cycle impact assessment- life cycle inventory- life cycle energy analysis-LCA and environmental systems- risk assessment methods- environmental risk assessment.

**DATA COLLECTION AND METHODOLOGY:** Environmental data collection, History of LCA, LCA methodology, LCA benefits and drawbacks.

**LCI DATABASES:** Unit process, data and LCI databases, inventory data and LCIA, LCA interpretation, key points of good LCA and examples, Chemical release in environment.

**GREEN SUSTAINABLE MATERIALS:** Green sustainable materials, biocompatible materials for future construction- straw, grass Crete, rammed earth, hemp Crete, bamboo, recycled plastic, wood, mycelium, ferrock, ashcrete, timbercrete, and design for sustainability.

CASE STUDIES: Case studies – LCA on Residential building, Industrial buildings and bridges.

## **TEXT BOOKS:**

- 1. Life cycle of Structural Systems: Design, Assessment, Maintenance and Management, edited by Hitoshi Furuta, Dan M. Frangopol, Mitsuyoshi Akiyama.
- 2. Eco-efficient Construction and Building Materials: Life Cycle Assessment, by Fernando Pachecco-Torgal, Luisa F. Cabeza, Joao Labrincha, Aldo Giuntini de Magalhaes

## **REFERENCES:**

1. Life-Cycle Civil Engineering: Proceedings of the International Symposium, by Fabio Biondini, Dan Frangopol

- 2. Integrated life cycle assessment of concrete structures: State-of-the-art Report, by Federation International du beton
- 3. NPTEL Notes by Dr. Brajesh Kr. Dubey, Associate Professor in IIT Kharagpur.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID		
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in		
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in		

150										Categ	ory	L	Т	Р	Credit
I/C	VSE4	L	11	NFRAS ]	STRU DEVE	CTUR LOPM	E PRC IENT	)JEC ¹	•	EC		3	0	0	3
PREA	MBLE	E													
	To study the elements of construction planning and scheduling and to apply appropriate tools and														
techn	techniques like networks and coding systems. To study the elements of quality control and safety of construction														
projec	projects. To study the monitoring of projects through cost control.														
PREREQUISITE Nil.															
COURSE OBJECTIVES															
1	To study about the Concepts environment relationship with focus on issues of population														
2	To learn about the Application of ecological principles in sustainability.														
3	To study about the Land capability and suitability analysis in location and planning of urban.														
4	To gain the knowledge about Urban interference in hydrological cycle.														
5	To stu	udy abo	out the	Conce	pts of e	ffects	of air p	ollutio	n and s	olid was	sted is p	osalin c	avities.		
COUR	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1.	Unders	stand in	nfrastru	icture c	organiz	ations								A	Apply
CO2. I	Prepare	infras	tructur	e maste	er plan									A	nalyze
CO3. 5	Schedu	ıle infr	astruct	ure pro	ject act	tivities								A	nalyze
CO4. F	Prepare	projec	t devel	opmen	t plan									A	Apply
CO5. 1	Prepare	e tende	r docu	ments f	or infr	astruct	ure pro	ject co	ntract					A	nalyze
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	COS       PO       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PSO1       PSO2											PSO2	PSO3		
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			

CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	I	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	_	-	-	-	L		

#### **SYLLABUS**

**INFRASTRUCTURE:** Definitions of infrastructure, Governing Features, Historical overview of Infrastructure development in India, Infrastructure Organizations & Systems.

**INFRASTRUCTURE PLANNING:** Typical infrastructure planning steps, Planning and appraisal of major infrastructure projects, Screening of project ideas, Life cycle analysis, Multi-criteria analysis for comparison of infrastructure alternatives, Procurement strategies, Scheduling and management of planning activities, Infrastructure Project Budgeting and Funding, Regulatory Framework, Sources of Funding.

**PROJECT MANAGEMENT IN CONSTRUCTION:** Introduction to project management processes - Initiating, Planning, Executing, Controlling, and Closing processes; Project Integration Management - Project plan development, Project plan execution, and Overall change control; Project Scope Management - Initiation, Scope planning, Scope definition, Scope verification, and Scope change control.

**CONTRACTS AND MANAGEMENT OF CONTRACTS:** Engineering contracts and its formulation, Definition and essentials of a contract, Indian Contract Act 1872, types of contracts and clauses for contracts, Preparation of tender documents, Issues related to tendering process, Awarding contract.

**AIR QUALITY & SOLID WASTE MANAGEMENT:** Sources, types and effects of air pollution and solid wasted is posaline activities, urban industrial processes and land use and transportation implications in air and solid waste pollution; norms, standards, laws, organizations and policies in urban air quality control and solid waste management; example stabilized organic fraction best practices.

## **TEXT BOOKS:**

- 1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.
- 2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999.

3. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi, 2009.

- 1. J. Kelly, S. Male and D. Graham, Value management of construction projects, Blackwell Publishing, Oxford, 2003.
- 2. Vasant Desai, -Project Managementl, Himalaya Publishing, 1st Edition, 2010
- 3. James C. Van Horne, John M. Wachowicz, -Fundamentals of Financial Management,
- 4. PHI, 2nd Edition, 2000 Ronald W Hudson, -Infrastructure Management: integrating design, Construction, maintenance, rehabilitation and renovation, MGH, 1st Edition, 1997.

(	COURSE DESIGNERS												
	S. No	Name of the Faculty	Designation	Name of the College	Mail ID								
	1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in								
Í	2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in								

150	17CVSF42									Categ	ory	L	Т	Р	Credit
17C	VSE42	2	GR	EEN I EFI	BUILD FICIEN	ING A NT BU	ND E. ILDIN	NERG NG	Y	EC	2	3	0	0	3
PREA	MBLE	C													1
	Befo	re sta	rting w	ith thi	s cours	se one	must	get a o	clear k	nowledg	ge on t	he basic	s of gre	en buil	ding,
learni	ng the	plan d	letails o	f HVA	C for a	ı buildi	ng, en	ergy ef	ficient	modelin	ıg.				
PREREQUISITE															
	Nil.														
COURSE OBJECTIVES															
1	To study about the Development & Plan Implementation.														
2	To learn about the fundamentals of electric power systems and building electric wiring.														
3	To study about the Bioclimatic design and concepts.														
4	To gain the knowledge about Water conservation & water management systems.														
5 To learn about the Key components of remodelling project.															
COUR	RSE O	UTCC	OMES												
On the	succes	sful c	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1.	Descrit	be what	at green	ı buildi	ng									Appl	У
CO2.	Unders	tand t	he bene	fits and	d advar	ntages	of gree	n build	ling pra	ctices				Appl	У
CO3. I	dentify	and d	lescribe	green	system	s and f	eatures	s in res	identia	l and co	mmerci	al buildi	ngs	Anal	yze
CO4. I	Define	what 1	nakes u	ip a hea	althy bu	uilding								Appl	У
CO5. 1	Descril	be gree	en and s	sustain	able ma	aterials	and pi	ractices	5					Appl	у
						umaa			Dog				<b>N</b> TCO		
	ING V	PO		PO4	ME O	PO6	MES A	AND P	POG		E SPEC	PO12		MES PSO2	PSO3
005	1	2	105	104	105	100	107	108	109	1010	1011	1012	1501	1502	1505
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	М	L	М	-	-	-	-	-	-	-	-			
CO3	S	М	М	L	-	-	-	-	-	-	-	-			
CO4	S	М	М	М	-	-	-	-	-	-	-	-			

CO5	S	М	L	-	-	-	-	-	-	-	-	L			
C Stur	S. Strong: M. Modium: I. Low														

#### SYLLABUS

**GREEN BUILDING BASICS AND PRACTICES:** Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

**ENERGY MANAGEMENT SYSTEM OF BUILDINGS:** The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observation systems.

**LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN:** Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

WATER MANAGEMENT, BUILDING METHODS & MATERIALS : Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Auto clave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

**ENERGY EFFICIENT REMODELING :** Key components of remodeling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, Incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

#### **TEXT BOOKS:**

- 1. Kibert, C. J. -Sustainable Construction: Green Building Design and Delivery, Second Edition, New York: John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and Mat Santamouris.
- 3. Passive building design by N.K. Bansal, G. Hauser, and G. Minke

#### **REFERENCES:**

1. McDonough, W. and Braungart, M. -Cradle to Cradle: Remaking the Way We Make Things, New York: Farrar, Straus and Giroux, 2002

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

17CVF	<b>S</b> 43	INFRASTRUCTURE PLANNING AND	Category	L	Т	Р	Credit								
	2010	URBANIZATION PROCESS	EC	3	0	0	3								
PREAM	MBLE														
This course offers the various methods of Demonstrate knowledge of and a critical understanding of, statistical methodologies and Show an awareness of how different statistical models and techniques can be applied to financial problems															
PREREOUISITE															
Nil															
COUR	SE OBJE	CTIVES													
1	This course is designed to provide a general understanding of various issues caused by the Infrastructure.														
2	Students can be able to approach a design aspect of the exact urban infrastructure requirements														
3	They can appreciate the planning methodology after the successful learned from the core														
4	We can suggest and comprehend the challenges in the construction Industry exactly the Infrastructure Maintenance														
5	The major water mar	r emphasis in this course will be on water supply, s nagement.	sewerage, sto	orm water	drainage	, roads ar	nd solid								
COUR	SE OUTC	COMES													
On the	successful	completion of the course, students will be able to													
CO1. I (includi	Demonstrating the ma	te knowledge of, and a critical understanding of, st in concepts and methods of inference and modellin	atistical met	hodologie	es	Apply	7								
CO2. U concept	Inderstand ts which co	and apply a range of statistical techniques based o omprise the syllabus, including the central limit the	n the main the orem	heories an	d	Apply	7								
CO3. S financia	how an aw al problem	vareness of how different statistical models and tec s	hniques can	be applied	d to	Apply	7								
CO4. A Infrastr	CO4. Appreciate the Knowledge gained by the Fire Fighting Techniques in the Urban Understand Infrastructure Buildings														
Co5. All the com	bility to un nmunicatio	derstand the procurement process required in the f n Networks	field of powe	er require	nents and	Under	rstand								
MAPE	PING	WITH	PROG	GRAM	ME O	UTCO	MES	AND F	ROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
--------	-------	------	-------	-------	------	------	-----	-------	-----	------	--------	---------	------	------	------
COS	РО	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2													
CO1	L	S	М												
CO2	т	C	М												
02	L	3	IVI												
CO3	L	S	М												
CO4	L	S	Μ												
CO5	L	S	М												
S. Str	ng• M	Medi	um• I	-I ow			•		-				•	-	

# SYLLABUS

**INTRODUCTION:** Concepts of basic needs, formation of objectives and standards. Data requirements for programme planning of urban networks and service; feasibility planning studies for structure the infrastructure systems General Introduction to Infrastructure and its components and overview of the course contents.

**SOLID WASTE DISPOSAL AND MANAGEMENT:** Resource recovery, technology options and determination of type and choice of systems as related to land use, density, economic levels and location of urban industrial and commercial activity areas.Quantity of sewage, quantity of storm water, run off, time of concentration, design of sewers, flow diagrams, laying of sewers, sewer appurtenances. Design and layout of sewerage system.Project Management (Need Assessment, Structure, MIS, Project Management Packages (Brief Introduction to MSPROJ/WINPROJ).Integrated Infrastructure Planning:

**WATER SUPPLY:** Planning water supply; resource analysis quality of water system design; technological choices of alternatives Issues related to the choice of centralized city water supply versus decentralized systems. Water demand (Context, Need Assessment and Planning requirements) - data to be collected, rate of demand, variations in rate of demand and effects of variations on design. Measurements of water qualities, forecasting demand. Conveyance and distribution system - General considerations, methods of distribution, service reservoirs, systems of supply, methods of lay out distribution pipes, wastage of water and permissible factors.

**FIRE FIGHTING:**Planning for fire protection, services and space standards. Prevention fire requirements, fire classification of construction, firefighting, fittings and fixtures and design for tall building and neighborhood lay out fire hazards, water demand calculations.

**OTHER INFRASTRUCTURE**: Concepts and theories for design and operation of electricity networks, power generation (conventional andnon-conventional)communicationnetworksliketelephonefacilities, WLL, cableTV, Fibreopticand other broadband

communications networks,etc.

#### **TEXT BOOKS:**

- 3. John E Freund's Mathematical Statistics: (7th Ed.), Miller & Miller, Prentice-Hall
- 4. Probability and Statistics for Engineers –Miller, Freund-Hall, Prentice India Ltd. 2009

#### **REFERENCES:**

1. Applied Statistics and Probability for Engineers---Montgomery and Runger—Wiley, India.

2. Applied Mathematics for Engineers and Physiscists-pipes and Harvill. McGraw Hill International Edition, 1970 3.Sampling techniques-Cochran, Wiley Series, 2008.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	VES44	ı		URBA MAN	N EN	VIROI 15NT	NMEN AND I			Cate y	gor	L	Т	Р	Credit
				WIAIN	AGEN		ANDI			EC	2	3	0	0	3
PREA	MBLE	E													
	This	course	e offers	the va	arious 1	method	s of kr	nowled	ge of E	Building	Laws &	& Princi	ples of I	Manager	nent
desig	ned to	provi	de the	studen	t with	a thor	ough ı	underst	anding	of botl	n the ro	le that	Enterpri	se Reso	urce
Plann	ing Sys	stems													
PRER	EQUIS	SITE													
	Nil.														
COUR	RSE OI	BJEC	<b>FIVES</b>												
1	This c	course	is desig	gned to	provic	le the s	tudent	with a	thorou	gh unde	rstandir	ig of bot	th the rol	le that E	nterprise
	Resou	irce Pl	anning	Syster	$\frac{\text{ns}(\text{ER})}{1}$	Ps).		-							
2	It is a	Ilso plays an organization growth towards learned technologies													
3	This i functi	is makes a key role importance in the challenging task of managing the Information Systems (IS) action													
4	Production unit has huge scope on ERP and cost cutting elemental tools helps a huge amount of savings in														
•	terms of large scale business industry														
5	Audit	is the	import	ant key	v note v	which i	s upho	lding to	ool for t	this ERI	P so that	it can s	tand the	marketi	ng gain
	and lo	osses i	nto sim	ple bal	ance sł	neet									
COUR	RSE OI	UTCO	<u>MES</u>	0.1											
On the	succes	stul co	ompleti	on of t	he cou	rse, stu	dents v	vill be	able to						
CO1. 2	Descrit	be the	role of	an ERI	in car	rying o	out bus	iness p	rocesse	es in a co	ompany			Appl	ý
Co2. E	xplain	how_	best bu	siness	practic	es' are	incorp	orated	in an E	RP				Appl	y
Co3. E	xecute	an ent	ire bus	iness p	rocess	chain i	n the fo	ollowii	ng areas	5				Appl	y
		$\triangleright$	Sales												
			Procui	rement											
			Accou	nting											
Co4. S	trategiz	ze pric	ing, pro	oductio	n and s	sales in	a com	petitiv	e comn	nodity n	narket			Apply	V
CO5. A	Analyze	e sales	data in	an ER	P to dy	namica	ally res	spond t	o chang	ging ma	rket con	ditions	to	Appl	ý V
maxim	ize pro	fits					•	•	-						
MAPP	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	М	-	_	_			
CO2	S	М	L	М	-	М	-	-	L	L	-	-			
CO3	S	L	М	М	-	L	L	-	-	-	М	-			
CO4	S	М	L	L	-	-	-	-	-	L	-	-			
CO5	S	М	М	L	-	-	-	-	-	-	-	-			

## SYLLABUS

**INTRODUCTION TO URBAN GOVERNANCE:**Meaning Of Governance And Government; Scope Of Governance, Evolution Of Concept Of Governance; Theories Of Local Government; History Of Urban Local Bodies In India, Evolution Of Modern Urban Local Governments During British Rule; Decentralization Of Local Government; Recommendations Of Various Committees; Politics And Progress Of Decentralization.

**GOVERNANCE AND THE GOVERNMENT:**Government, governing and governance; Determinants and indicators of good governance; Citizens charter and other instruments; Decision making processes; Need for openness and transparency; People's participation, collaborative management; Local governance

**GOVERNANCE FOR URBAN MANAGEMENT:** Evolution of development and management systems; Scope of development management at the National, state and local levels; Hierarchy of urban settlements; Institutions and organizations; Stake holders, their perceptions and role in urban management

**GOVERNANCE AND URBANIZATION**Processes of urbanization, developmental conflicts, resource constraints, systems deficiencies; Urban poverty and exclusion from development process; Sustainable development; Impact of globalization and economic reforms; Social diversities; Defects in planning approaches, multiplicity of organizations and authorities.

**GOVERNANCE IN POST 74TH AMENDMENT SCENARIO:**Planning, governance and spatial strategy; Best practices of planning and quality of governance

#### **TEXT BOOKS:**

- 1. Enterprise Resource Planning, 3rd Edition, by Bret Wagner and Ellen Monk, ISBN: 9781423901792, ©2009
- 2. SAP R/3, Business Blueprint, 2nd Edition, by *Thomas A. Curran & Andrew Ladd*, Prentice Hall PTR, ©2000, ISBN: 0-13-085340-2

#### **REFERENCES:**

- 1. Essentials of Business Processes and Information Systems, by *Simha R. Magal and Jeffrey Word*, ©2010, ISBN: 978-0-470-23059-6
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by Simha R. Magal and Jeffrey Word, ISBN: 978-0-470-88424-9

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	VES4	5	1	SUSTA	AINAB	BILITY	TIN B	UILT		Categ	gory	L	Т	Р	Credit
					ENVI	RONM	IENT			EC	2	3	0	0	3
PREA	MBL	E								1			I		
	This	cours	se offer	s the v	arious	metho	ds of e	elemen	ts of c	onstruct	ion pla	nning ar	nd sched	uling and	d to
apply	approj	priate	tools ar	d tech	niques	like ne	twork	s and c	oding s	systems.					
PRER	EQUI	SITE													
	Nil.														
COUF	RSE O	BJEC	TIVES												
1	To stu like n	udy th etwor	e eleme ks and o	nts of coding	constru system	ection p	olannin	g and s	schedul	ing and	to appl	y approp	riate too	ls and tee	chniques
2	To st	udy th	e eleme	nts of	quality	contro	l and s	afety o	f const	ruction j	projects	•			
3	To st	udy th	e monit	oring o	of proje	cts thr	ough c	ost con	trol						
4	Appro	eciate	the glo	oal req	uireme	nts on	the imp	oortanc	e of wa	ater man	agemer	t in the	Urban Ir	frastruct	ure
5	Supp	lying	the filte	red air	is mair	n impor	rtant as	spect in	case o	of the bui	ildings				
COUF	RSE O	UTC	OMES			1		-							
On the	succes	ssful c	ompleti	on of t	he cou	rse, stu	dents v	will be	able to	1					
CO1.	To mo	nitor o	cost con	trol thr	ough p	roject	manag	ement						Apply	,
Co2.	Sched	ule, n	nonitor a	and con	ntrol co	nstruct	tion pro	ojects						Apply	r
Co3.	Appre	hend	the know	wledge	gained	d on the	e liabil	ity asse	ets and	immova	ble asso	ests		Under	stand
Co4.	Know	ledge	about t	ne Qua	lity and	l Quan	tity ma	inagem	ent of	non-rene	ewable	sources	without	Under	stand
that we	e canno	ot proo	luce any	thing	i.e. wat	er									
Co5. 1	Unders	tand t	he solid	dispos	sal safe	ty and	unders	tand th	e Qual	ity of air	sent fr	om the i	ndustry	Apply	,
as was	te disp	osal h	as to be	meant	for Ec	osyster	n impo	ortance							
MAPI	PING V	NITH	I PROC	RAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPE(	CIFIC C	OUTCO	MES	
COS	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	I S	Z M	L	_	_	-	S	М	М	S	_	-			
CO2	S	M	L	S	-	_	S	M	M	M	-	-			
CO3	-	-	-	M	_	-	Ľ	M	-	L					
CO4	L	L	М	-	М	-	L	-	-	L					
CO5	-	-	М	-	-	М	-	-	М	-					
S- Str	Strong; M-Medium; L-Low														
SYLL CONC	<b>VLLABUS</b> ONCEPT AND ISSUES: Changing perspectives in man- environment relationship with focus on issues of population,														
urbaniza	ation, res	source	depletion	and pol	lution; li	mits to g	growth	which is	a sustai	nable eco	nomy; gr	owth and	environme	ental imper	ratives
of devel	f developing vs developed countries; definitions, concepts and parameters in sustainable development with particular reference to														
Brundtl	eveloping vs developed countries; definitions, concepts and parameters in sustainable development with particular reference to indtland Commission,														

**METHODS AND TECHNIQUES** Application of ecological principles in sustainability: energy and resource cycles, food webs, ecological pyramids and evolution and succession of natural ecosystems; Carrying Capacity based planning: concept, parameters and indicator measures, models and case studies in urban and regional development; Environmental Impact and Strategic Environmental Assessment for urban areas; Ecological Foot print Analysis of cities; Sustainable Lifestyle Assessment and behavioral modifications at house hold levels.

LAND, AND ENERGYRESOURCES Land capability and suitability analysis in location and planning of urban land uses; implications of urban form, density, land use pattern and transportation system in land and energy conservation

ROLE OF WATER Urban interference in hydrological cycle, with particular reference to water pollution, water resources, drainage and natural ecosystems; urban water treatment, recycling and harvesting; use of non-conventional energy sources in urban development.

AIR QUALITY & SOLID WASTE MANAGEMENT: Sources, types and effects of air pollution and solid waste disposal in cavities, urban industrial processes and land use and transportation implications in air and solid waste pollution; norms, standards, laws, organizations and policies in urban air quality control and solid waste management; examples of best practices.

#### **TEXT BOOKS:**

- 1. Construction Project planning & Scheduling By Charles Patrick, Pearson, 2012
- 2. Construction Project Management Theory & practice --- Kumar NeerajJha, Pearson, 2012

#### **REFERENCES:**

- 1. Professional Construction Management Barrie-Paulson-McGraw Hill Institute Edition, 2011.
- 2. Construction management Fundamentals by Knutson, Schexnayder, Fiori, Mayo, Tata McGraw Hill, 2nd Edition, 2015.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

170	VFSA	5	CO	ONSTE	RUCTI	ON &	CON	<b>FRAC</b>	Г	Categ	gory	L	Т	Р	Credit
170	V E64(	,		SAF	ETY N	IANA	GEME	ENT		EC		3	0	0	3
PREA	MBLE	E											1		
	This	course	e offers	the va	rious n	nethods	s qualit	y aspe	cts in a	constru	ction p	roject ec	onomic,	financia	al
and n	nanage	ment, I	legal ar	nd adm	inistrat	ive asp	bects.								
PRER	<b>EQUI</b> Nil.	SITE													
COUR	SE OI	BJEC	ΓIVES												
1	To stu	udy the	qualit	y aspec	ts in a	constru	uction	project							
2	To stu	udy in	detail t	he qua	lity cor	trol to	ols								
3	Mana	gemen	it aspec	ts of th	e traffi	c flow	contro	ol and s	ocial a	ctivities					
4	Slum board clearance and improvement aspects schemes has to be understand allotments for the building bylaws														
COUR	SE O	UTCO	MES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1. N	Maintai	in the c	quality	aspects	s in a co	onstruc	tion Pi	rojects						Appl	ý
CO2. I	Learnt 1	the Qu	ality co	ontrol to	ools									Appl	ý
CO3.	Apprai	ise the s	ocial asp	ects of c	conserva	tion, tra	ffic and	manage	ment iss	ues				Appl	ý
CO4.	Slum b	oard c	learanc	e and i	mprov	ement	scheme	es has t	o be ui	nderstan	d the by	aws for	r the	Unde	rstand
allotme	ent has	to be	apprehe	ended											
CO5.	Imple	ment u	urban r	enewal	progra	ims arc	haeolo	gical f	acts ter	nd to be	conside	red for t	he	Unde	rstand
conser	vation	of sites	s in Ind	ia and	abroad										
MAPP	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND P	ROGI	RAMM	E SPE	CIFIC C	OUTCO	MES	
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	М	L	М	L	-	-	-			
CO2	S	М	L	S	-	-	-	М	L	М	L	-			

CO3	М	L	М	-	-	S	S	-	М	L	М	-		
CO4	М	L	М	-	-	S	S	-	М	L	М	-		
CO5	-	S	-	-	М	L	М	L	-	-	S	-		

#### **SYLLABUS**

INTRODUCTION: Overview and introduction of the basic concepts of conservation; values, attitudes and principles for judging

the conservation importance of sites, areas and related Typology; scope and basic technique of urban conservation; Urban

renewal as a part of metropolitan plan; identification of urban renewal areas; conservation, rehabilitation and redevelopment urban

renewal policies and strategies

ECONOMIC, FINANCIAL AND MANAGEMENT ASPECTS: Economic and spatial implications of urban renewal

programs, mobilization of resources; incentive zoning-management of urban renewal areas

**CONSERVATION AND DEVELOPMENT:** Economic and social aspects of conservation, traffic and management issues; Conservation policies- case studies

**SLUMS:** Clearance and improvement schemes, planning aspects, land management, social economic issues, public participation, government schemes and their critical evaluation

**LEGAL AND ADMINISTRATIVE ASPECTS:** National and international experience in implementing urban renewal programs; Legal and administrative aspects, archaeological acts / charters pertaining to conservation, development and conservation; Case studies of proposals for urban conservation of sites / areas in India and abroad

#### **TEXT BOOKS:**

- 5. Mantri Handbook A to Z of Construction Mantri Publications ,2001
- 6. Juran_s Quality Handbook Joseph M. Juran, A. Blanton. Godfrey McGraw Hill International Edition (1998)

#### **REFERENCES:**

- 3. Chitkara. K.K. -Construction Project Management: Planning Scheduling and Control^{II}, Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 4. Calin M. Popescu, Chotchal Charoenngam, -Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications^{||}, Wiley, New York, 2005.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17CVE	FS <b>/7</b>	ICT BASED CITY AND	Category	L	Т	Р	Credit
	L34/	INFRASTRUCTURE PLANNING	EC	3	0	0	3
PREAM	BLE				1		
Г	This cour	rse offers the various methods of changing scenario	o in the spat	ial order o	f cities a	nd regior	ns as
well as t	the emer	rgence of virtual societies in the world social net	works amor	ng commu	nities ac	ross the	city,
country	and glob	e demand for paradigm shift in the spatial planning	g outlook ar	nd governa	nce edge		
PREREC	QUISITI	Έ					
Ni	11.						
COURSE	E OBJE	CTIVES					
1 T	o make s	students aware and exposed to changing scenario o	of virtual soc	ieties in th	e world		
2 T	'he spatia	l order of cities like drinking water provision, trans	sportation, s	anitation f	àcility et	c.,	
3 T	The stude	nts will be in a position to understand the use and I	power of em	erging nev	v technol	ogies	
4 Se	ocial net	works among communities across the city, country	and globe				
5 P	Paradigm	shift in the spatial planning outlook and governan	ce edge.				
COURSE	E OUTC	COMES					
On the su	iccessful	completion of the course, students will be able to					
CO1. Stu	dents are	e able to cope up with the application technology				A	pply
CO2. Stu	dents un	derstand its impact on the infrastructure Planning	and develop	oment at th	ne house,		
neighborh	hood and	city levels.				Ar	nalyze
CO3. Ap	praise th	e spatial order of cities like drinking water provi	sion, transp	ortation, s	anitation		
facility et	,					Ar	nalyze
CO4. Bui	ilding sm	hart cities and smart communities with the help of s	Social netwo	orks among	g		
communit	ties acro	ss the city, country and globe				A	pply
CO5. Abi	ility to U	Jnderstand the Paradigm shift in the spatial plan	ning outlool	k and gove	ernance		
edge.						Ar	nalyze

MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2													
CO1	S	М	L	-	-	-	М	М	S	М	М	-			
CO2	-	L	-	-	М	М	М	-	-	L	-	-			
CO3	-	-	L	L	L	-	L	М	М	М	М	М			
CO4	М	М	-	L	-	L	-	L	L	L	-	М			
CO5	-	L	-	М	М	-	-	L	-	L	-	-			
0 04				T											

# SYLLABUS

**PLANNING VS TECHNOLOGY:** Tradition to modernity – Spatial planning and technology interface - Socioeconomic planning and technology interface – Planning cities and local technologies - Technological innovations and responsive city planning - Planning responsive technology Vs technology responsive planning.

**CITIES-TECHNOLOGY-INFRASTRUCTURE:** Transportation and technology, water, sanitation and technology, energy efficient technology for home, street, neighborhoods and city - Telecommunication, health and education – Security and safety for buildings and people in cities.

**TECHNO CITIES:** Digital cities, virtual cities, technology parks - Smart planning and infill development – Planning, design and communication system - Socio-economic and environmental Impact of techno cities..

**GOVERNANCE:** Role of law and technology, administration and organization, industry and corporate, communities and people in building smart cities and smart communities.

**CASE STUDIES:** Best practices in India and around the world.

#### **TEXT BOOKS:**

1. Brkovic, M. B., _Planning in the Information Age: Opportunities and Challenges of e-Planning, CORP, 2004

2. City Government of Naga, _The Naga City Citizen Chartes- A Guide Book of City Government Services. 2004 **REFERENCES:** 

1. Elizabeth, S. Frans, V. _IDENSITY: Planning Paradigms for the Information Communication Age', Isocarp Congress, 2001.

2. Intelligent Community forum, _Innovation and Employment in the Intelligent Community, Intelligent Community forum, 2012

3. Komakech, D., _Achieving More Intelligent Cities, Municipal Engineer, 2005.

COURSE	DESIGNERS			
S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17C	17CVES48			τ	JRBAI	N FINA	ANCE			Categ	gory	L	Т	Р	Credit
										EC	2	3	0	0	3
PREA	MBLE	2				_			_				_		
	This	course	e offers	the va	arious	method	ts of in	nstitutio	onal m	echanisi	n in pla	ice for t	the gove	rnance a	t the
local	level ai	nd their	r functi	onal ar	d finai	ncial po	owers,	capabil	ities ar	id oppor	tunities	to prepa	are financ	cial oper	ating
plans	for th	e mun	icipal	bodies	and s	uggest	appro	priate	approa	ches an	d finan	cial res	ources f	or	
imple	implementation of various city level projects.														
PRER	PREREQUISITE														
	Nil.														
COUR	COURSE OBJECTIVES														
1	1 To give an understanding to the students of the institutional mechanism														
2	The S	tudent	must t	be able	to app	reciate	the kn	owledg	ge in pla	ace for t	he gove	rnance a	at the loc	al level	
3	The systematic approaches from the government local bodies and their functional relationships between the government and the people has to appraised														
4	The financial powers of the local government implementation in the infrastructure development														
7	Government rural bodies development and implication capabilities and opportunities which is available in														
the local government bodies.															
COUR	COURSE OUTCOMES														
On the	succes	sful co	ompleti	on of tl	ne cou	rse, stu	dents v	will be	able to						
CO1. '	The stu	dents	will gai	in nece	ssary s	kills to	prepa	re the l	kind of	five yea	r plan h	as to be	adopted		
and cre	eated fo	or the p	beople s	scope o	of know	vledge								Apply	ý
CO2. S	Student	s can	acquire	the su	fficien	t know	ledge	in the f	field of	Financi	ial Man	agement	t for the	<b>TT</b> 1	. 1
regulat	ory bo	dies												Unde	rstand
CO3. A	Acknov	vledge	the lea	rned va	alues f	or the s	ake of	Privati	zation	in the C	ivil Ser	vices		Appl	y
CO4.	Fu	nds fro	m vari	ious ar	propri	ate app	oroache	es for	the cit	y enric	hment i	mpleme	entation		
toward	s the g	rowth												Apply	ý
CO5. F	Financi	al reso	urces f	or impl	ement	ation o	f vario	us city	level					Unde	rstand
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	I S	<u></u> M	L	_	М	М	М	М	М	L		_			
CO2	S	S	M	L	-	M	L	M	-	-	S	L			
CO3	- S	<u>~</u> S	-	-	L	L	-	-	-	-	<u>~</u> S	L			
CO4	М	L	М	-	-	М	L	М	-	L	L	-			
CO5	-	-	-	S	-	-	-	-	-	L	L	-			

#### SYLLABUS

**AN OVER-VIEW:** Organization of local self governments - The 74th CAA-context and implications - Election of local body governments-need and process - Urbanization process and its Impacts on civic services - Urban development through Five Year Plans - Status of civic services in urban Sector - Investment requirements - Limitation of funds in government and private Sectors.

**MUNICIPAL FINANCE:** Nature and composition of income and expenditure - Limitations and need for revenue enhancements - Expenditure control methods and mechanisms - Budgetary allocation from central and state governments for urban development - Assistance from foreign donors and multilateral agencies - Non traditional sources of funding – Market access – Pool finance-prerequisite - Conditions for accessing non-traditional funds.

**ADDITIONAL FUNDING SOURCES** : Types of partnership approaches - Privatization of civic services - Public private partnership Mechanisms - Types of contracts and ownerships - Emerging cost- effective technology interventions - User charged projects – Pricing of services.

**RESOURCES BASED ON ACHIEVEMENT OF URBAN REFORMS** : Role of state government and urban local bodies - City's challenge fund - Urban Reforms implications on resources - Incentive fund - State level pooled - Finance development fund.

**INSTITUTIONAL CAPACITY ENHANCEMENT:** Better finance management and management process – Accounting and budgeting, Asset management and receivables management - Cost centre approach – Financial operating plan - City corporate plan - Development of urban indicators – Computerization and management information system.

#### **TEXT BOOKS:**

- 1. Narayanan, Access to Market Fund, EDATEN
- 2. Course Materials for Training Finance Officers of ULBs by TNUDP II at Anna Institute of Management,

Chennai – Administrative Staff College, Hyderabad – HSMI, HUDCO, New Delhi.

#### **REFERENCES:**

1. Broadbent, _Planning and Profit in the Urban Economy', Meuthen & Co. Ltd, U.K. 1997.

2. Edward J. Blakely, _Planning Local Economic Development', SAGE Publications, New Delhi, 1994 COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

17CVES49	URBAN DESIGN PROJECT	Category	L	Т	Р	Credit
		EC	3	0	0	3

#### PREAMBLE

This course offers the various methods of institutional mechanism in place for the governance at the local level and their functional and financial powers, capabilities and opportunities to prepare financial operating plans for the municipal bodies and suggest appropriate approaches and financial resources for implementation of various city level projects.

# PREREQUISITE

Nil

# **COURSE OBJECTIVES**

1	Read a lot of new theories and ideas							
2	Connect disparate ideas and literatures							
3	Brainstorm how these ideas affect our interests.							
4	Be present for, contribute to, and participate in excellent discussions							
5	At the end of this course students will be conversant with Urban Infrastructure Challenges at Present in India							
COUR	SE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1. I	Learnt a knowledge about Infrastructure and Needs for an Infrastructure	Understand						
Co2. I	How to manage Infrastructure Projects by using different ideas and literatures	Understand						
Co3. I	Co3. Privatization effects in Infrastructure has been understood clearly Understand							
Co4. (	Co4. Case Studies has been understood for to avoid future Problems Apply							
CO5.	CO5. Analyse the framework and Mitigation Managements in the Sustainable development Apply							

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COs PO PO PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 1 2 CO1. S S М L Μ L Μ L Μ L --CO1. S Μ L Μ Μ Μ Μ Μ L -CO2. М L Μ L S S L L -Μ _ _ CO3. L L L Μ L Μ L Μ L _ CO4. Μ L М L S L L

S- Strong; M-Medium; L-Low

#### SYLLABUS

**AN OVERVIEW OF BASIC CONCEPTS RELATED TO INFRASTRUCTURE:** Introduction to Infrastructure, An overview of the power, water supply, sanitation, road, rail, air, port, telecommunications, urban & rural infrastructure sectors in India.

**INFRASTRUCTURE PROJECT:** A Historical overview of Infrastructure Privatization-Benefits, Problems. Challenges in Privatization of water supply: A case study of Cochabamba, Bolivia. Challenges in Privitization of Power: Case study from the Philipines. Privitization of Infrastructure in India: Case study of the Tirupur Water supply project. Privitization of Road Transportation Infrastructure in India.

#### CHALLENGES TO SUCCESSFUL INFRASTRUCTURE PLANNING AND IMPLEMENTATION:

Mapping and Facing the Landscape of Risks in Infrastructure Projects. Economic and Demand Risks: The case of the Vadodhara-Halol Expressway. Political Risks-I: The case of the Chand-Cameroon Pipeline. Political Risks-II: The Dabhol Powerplant case study. Socio-Environmental Risks-I: The case of Bujagali Dam in Uganda, Socio-Environmental Risks-II: The case of Conoco's Oil Exploration in South America. Cultural risks in International Infrastructure Projects. Legal and Contractual Issues in Infrastructure. Challenges in Construction and Maintenance of Infrastructure.

**PRIVATE INVOLVEMENT IN INFRASTRUCTURE:** A Historical overview of Infrastructure Privatization-Benefits, Problems. Challenges in Privatization of water supply: A case study of Cochabamba, Bolivia. Challenges in Privitization of Power: Case study from the Philipines. Privitization of Infrastructure in India: Case study of the Tirupur Water supply project. Privitization of Road Transportation Infrastructure in India.

**STRATEGIES FOR SUCCESSFUL INFRASTRUCTURE PROJECT IMPLEMENTATION**: Risk Management Framework for Infrastructure Projects. Shaping the Planning phase of Infrastructure Projects to mitigate risks. Designing Sustainable Contracts, Introduction to Fair process and Negotiation. Negotiating with multiple Stakeholders on Infrastructure Projects. Sustainable development f Infrastructure. Information technology and Systems for successful Infrastructure Management. Innovative Design and Maintenance of Infrastructure Facilities. Infrastructure Modelling and Life Cycle Analysis Techniques

## **TEXT BOOKS:**

- 1. Introduction to Urban Planning, -Anthony James catanese, James C. snyder
- 2. Urban Infrastructure in Transition: Networks, Buildings and Plans, Timothy Moss, Simon Marvinl
- 3. Narayanan, Access to Market Fund, EDATEN
- 4. Course Materials for Training Finance Officers of ULBs by TNUDP II at Anna Institute of Management, Chennai – Administrative Staff College, Hyderabad – HSMI, HUDCO, New Delhi.

#### **REFERENCES:**

1. Broadbent, _Planning and Profit in the Urban Economy', Meuthen& Co. Ltd, U.K. 1997.

2. Edward J. Blakely, _Planning Local Economic Development', SAGE Publications, New Delhi, 1994 COURSE DESIGNERS

# Nome of the

S. No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in			
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in			

17038650		Category	L	Т	Р	Credit
17CVSE30	ENVIRONMENTAL IMPACT ASSESSMENT	EC	3	0	0	3

# PREAMBLE

This Course helps in understanding the importance of EIA and gives knowledge in environmental impact prediction and mathematical modeling for the impact prediction.

PRER	PREREOUISITE														
NIL															
COUR	COURSE OBJECTIVES														
1	Study about the importance of EIA and EIS, and LCA assessments.														
2	Study the components of EIA and the software tools used in the EIA.														
3	Gain the knowledge in environmental impact prediction and mathematical modeling for the impact prediction.														
4	Knov	w abou	t the av	varene	ss Envi	ironme	ntal ma	anagen	nent pla	an and th	ne Risk	assessm	ent.		
5	To g	ain kno	wledge	e on EI	A, rep	ort writ	ting for	variou	us indu	stries.					
COUR	RSE O	UTCO	MES												
On the	succes	ssful co	mpleti	on of t	ne cou	rse, stu	dents v	vill be	able to						
<b>CO1.</b> U	Jnderst	and the	e basic	concep	ots and	import	ance o	f EIA a	and its	docume	ntation.		Und	erstand	
<b>CO2.</b> F	follow	the step	os of E	IA prod	cess an	d will	be able	to acc	ess the	EIA sof	ftware to	ools.	Und	erstand/A	pply
CO3.V assessi	<b>CO3.</b> Work on the impact prediction, and mathematical modeling while preparing EIA assessment.									Ana	lyze/App	ly			
CO4.C sectors	CO4.Gain knowledge in pollution control laws and will be able to implement it in working sectors.														
<b>CO5.</b> P	repare	the EL	A repoi	rt for v	arious	industr	ies.						App	ly	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	PROGI	RAMM	E SPEC	CIFIC O	UTCON	1ES	
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS									PSO2	PSO3					

CO1.	S	М	L	-	-	-	-	-	-	-	-	-		
CO2.	S	М	L	S	-	-	-	-	-	-	-	-		
CO3.	S	М	М	S	-	-	-	-	-	-	-	-		
CO4.	S	М	М	М	-	-	-	-	-	-	-	-		
CO5.	S	М	М	-	-	-	-	-	-	-	-	М		

# SYLLABUS

**INTRODUCTION:** Environmental Impact Assessment (EIA) - Environmental Impact Statement - EIA in Project Cycle - Legal and Regulatory aspects in India according to Ministry of Environment and Forests - Types and limitations of EIA - Cross sectoral issues and terms of reference in EIA - Participation of Public and Non-Governmental Organizations in environmental decision making.

**COMPONENTS AND METHODS:**Components of EIA - Processes - screening - scoping setting - analysis - mitigation. Matrices - Networks - Checklists - Connections and combinations of processes - Cost benefit analysis - Analysis of alternatives - Software packages for EIA - Expert systems in EIA.

**PREDICTION, ASSESSMENT OF IMPACTS AND REPORTING:** Prediction tools for EIA - Mathematical modeling for impact prediction - Assessment of impacts - air - water - soil - noise - biological - socio-cultural environments - Cumulative Impact Assessment - Documentation of EIA findings - planning - organization of information and visual display materials - Report preparation.

**ENVIRONMENTAL RISK ASSESSMENT AND MANAGEMENT PLAN:** Environmental Management Plan - preparation, implementation and review - Mitigation and Rehabilitation Plans - Policy and guidelines for planning and monitoring programs - Post project audit - Ethical and Quality aspects of Environmental Impact Assessment. Hazard identification - Risk characterization - Risk based decision making - HAZOP analysis - Emergency Preparedness Plans - Design of risk management programs.

**CASE STUDIES:** Case studies related to the following sectors - Infrastructure - Mining - Industrial - Thermal Power - River valley and Hydroelectric - Nuclear Power

# **TEXT BOOKS:**

1. Canter, L.W., Environmental Impact Assessment, McGraw-Hill, New York, 1996.

2. Lawrence, D.P., Environmental Impact Assessment - Practical solutions to recurrent problems, Wiley-Interscience, New Jersey, 2003.

# **REFERENCES:**

1. John G. Rau and David C. Wooten, "Environmental Impact Analysis", McGraw-Hill Book Company, 1980.

2. Petts, J., Handbook of Environmental Impact Assessment, Vol., I and II, Blackwell Science London. 1999.

3. Biswas, A.K., and Agarwala, S.B.C. Environmental Impact Assessment for Developing Countries, Butterworth Heinemann, London. 1994.

4. The World Bank Group, Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington, 1991.

5. Kolluru Rao et.al "Risk assessment and management handbook", McGraw-Hill Inc., 1996.

S.No	Name of the Faculty Designatio		Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

			Category	L	Т	Р	Credit				
17CVS	SE51	INSTRUMENTAL MONITORING OF ENVIRONMENT	EC	3	0	0	3				
PREA	MBLE		<u>I</u>				±				
This Course helps in understanding the basics of instrumental measurements of environment and gives knowledge about chromatography, Electro and radio analytical methods.											
PRER	PREREQUISITE										
NIL	NIL										
COUR	SE OBJE	CTIVES									
1	Understand the basics of instrumental measurement and its preliminary corrections while doing the experiments										
2	Gain knowledge on various spectroscopic instruments										
3	Gain knowledge on chromatographs and working principles of various types of chromatographs.										
4	Gain knowledge on basic and working principle of Electro and radio analytical methods.										
5	Understan monitorin	d the principle behind continuous monitoring and g.	the various	instrument	ts used t	for continu	ious				
COUR	SE OUTC	COMES									
On the	successful	completion of the course, students will be able to									
<b>CO1</b> .P	erform the	experiments individually for various environment	al parameter	S	U	nderstand					
CO2.W monito	2.Work on the various spectrographic instruments used for environmental quality Understand/Analyze nitoring.										
CO3.W	<b>D3.</b> Work with various chromatographs in environmental quality monitoring areas. Understand/Analyze										
<b>CO4.</b> U monito	CO4.Use and access various electro and radio instruments in various environmental quality monitoring area. Apply										
CO5.U gaseou	Inderstand s emissions	the principles behind continuous monitoring, for a s and water.	nalyzing the	various	U	nderstand/	Apply				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	S	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			
CO3	S	М	L	S	-	-	-	-	-	-	-	-			
CO4	S	М	М	S	-	-	-	-	-	-	-	-			
CO5	S	М	М	S	-	-	-	-	-	-	-				

# SYLLABUS

**INTRODUCTION:** Instrumental Methods, Selection of method, Precision and Accuracy, Errors in measuring signals, Noise/signal ratio, base line drift, Indicator tubes.

**SPECTROSCOPIC METHODS:**Electromagnetic radiation, matter radiation interactions, Colorimetry and spectrophotometry, fluorimetry, nephelometry and turbidimetry, flame photometry Atomic Absorption Spectrometry (AAS), Atomic Emission Spectrometry (AES) - Inductively coupled plasma (ICP) and Direct Current Plasma (DCP) spectrometry. ICP - MS (Mass spectrometry).

**CHROMATOGRAPHIC METHODS:** Classical methods, Column, Paper and thin layer chromatography (TLC), Gas Chromatrography (GC), GC-MS, High performance liquid chromatography (HPLC) and Ion chromatrography (IC).

**ELECTRO AND RADIO ANALYTICAL METHODS:** Conductometry, potentiometry, coulometry, amperometry polarography, Neutron Activation Analysis (NAA), X-ray Fluorescence (XRF) and X-ray Diffraction (XRD) methods.

**CONTINUOUS MONITORING INSTRUMENTS:** Non-dispersive infra-red (NDIR) analyzer for CO, chemiluminescent analyzer for NOx, Fluorescent analyzer for SO2, Auto analyzer for water quality using flow injection analysis; permeation devices.

# **TEXT BOOKS:**

1. Ewing "Instrumental Methods of Chemical Analysis", 5th Edition., McGraw-Hill, New York, 1995

# **REFERENCES:**

1. Willard, H., Merritt, L., Dean, D.A. and Settle. F.A. "Instrumental methods of analysis, 7th Edition, Worlds Worth, New York, 2004

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Name of the College	Mail ID							
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com							
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in							

										Categ	ory I	,	Т	Р	Credit
17CVS	SE52			IND	OOR	AIR Q	UALI	ТҮ		EC	3		0	0	3
PREA	MBLE	C													
This C	This Course helps in understanding the indoor air quality, its pollution level and how to control it.														
PRER	PREREQUISITE														
NIL	NIL														
COUR	COURSE OBJECTIVES														
1	Understand the knowledge on indoor activities and its pollution levels														
2	Know about air pollution in indoor environments with respect to various buildings.														
3	Gain knowledge on control of air pollutants														
4	Understand the concepts and tools used in air pollution control.														
5 Understand the knowledge on various air pollutants and its sources along with its control technologies.															
COURSE OUTCOMES															
On the	succes	sful co	mpleti	onoft	he cou	rse, stu	dents v	will be	able to						
CO1 A	Assess t	he leve	els of i	ndoor a	ir poll	ution.							Un	derstand	
<b>Co2.</b> D quality	esign t standa	he air o Irds.	circulat	ion and	l venti	lation o	of vario	ous buil	dings Į	prior to a	mbien	air	Un	derstand	Analyze
Co3. 1	Use the	air po	llution	contro	l meas	ures of	arresti	ng air I	olluta	nts in va	rious b	uildings.	Ap	ply	
Co4. L	Jse the	concep	ots and	tools in	n desig	ning th	e ambi	ient air	polluta	ant conti	ol mea	sures.	Un	derstand	Apply
<b>CO5.</b> ]	CO5. Implement pollution control technologies while designing the buildings. Apply														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	S	-	-	-	-	-	-	-	-			
CO2	S	М	L	S	-	-	-	-	-	-	-	-			

CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	S	-	-	-	-	-	-	-	-		
CO5	S	М	L	S	-	-	-	-	-	-	-			

#### **SYLLABUS**

**INTRODUCTION:** Indoor activities of inhabitants - residence time. Levels of many pollutants in indoor and outdoor air. Design and operation of buildings for improvements of public health. IAQ policy issues; sustainability; indoor air quality as a basic human right

**INDOOR AIR POLLUTANTS :** Air pollutants in indoor environments, private residences, offices, schools, sand public buildings, factors that govern pollutant indoors concentrations, including ventilation. Characteristics, Consequences

**CONTROL OF POLLUTANTS:** Control of several pollutant classes, such as radon, toxic organic gases, combustion byproducts, and microorganisms such as molds and infectious bacteria. Case study by an exploration of public policy related to indoor air.

**CONCEPTS AND TOOLS :** Concepts and tools; exposure, material-balance models, statistical models Ventilation

**INDOOR AIR POLLUTION FROM OUTDOOR SOURCES:** Indoor air pollution from outdoor sources; particulate matter and ozone; Combustion byproducts; Radon and its decay products. Volatile organic components: odors and sickbuilding syndrome, Humidity Bio-aerosols: infectious disease transmission. Special indoor environments; A/C units in indoor, museums-labs; museums-labs, Measurement methods, Control technologies, Control strategies.

#### **TEXT BOOKS:**

1. Thad Godish, Indoor air and Environmental Quality, CRC Press, 2000

#### **REFERENCES:**

1. Nazaroff W.W and L Alvarez-Cohen, Environmental Engineering Science Wiley sons, New York, 2001. 2. Moroni Marco, Seifert Bernd and Lindell Thomas, Indoor Air Quality: A Comprehensive Reference Book, Elsevier Science, Vol. 3, 1995.

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

			Category	L	Т	Р	Credit						
17CVS	SE53	ENVIRONMENTAL POLICIES AND LEGISLATIONS	EC	3	0	0	3						
PREA	MBLE						I						
This Correlated	ourse helps to environ	s in gaining knowledge about various environment mental law and powers and responsibilities of pol	tal policies an Ilution contro	nd legisla ol board.	ations and	d various	articles						
PRER	EQUISIT	E											
NIL													
COUR	SE OBJE	CTIVES											
1	Understand the various Sections and subsections of civil and criminal law.												
2	Study the importance of fundamental rights and directive principles of our constitution												
3	Study the various articles related to environmental law and powers and responsibilities of pollution control board.												
4	Know about the awareness of various pollution and control laws related to water and air.												
5	To gain k	nowledge on EIA, Ecolabelling, hazardous and bi	omedical was	ste handl	ing.								
COUR	SE OUTC	COMES											
On the	successful	completion of the course, students will be able to											
CO1. I legislat	Describe th	e importance of civil and criminal law related to e	environmenta	1	Under	stand							
CO2. Constitu	<b>CO2</b> . Gain knowledge on fundamental rights and directive principles of our onstitution. Remember/Understand												
CO3.U industr	Inderstand ies.	the various environmental issues and handle the r	eal time prob	lems in	Under	stand/Ap	ply						
CO4. (	Gain know	ledge in pollution control laws and implement it in	n working see	ctors.	Under	stand/Ap	ply						
CO5. U	Understand	and manage biomedical, hazardous waste, Ecolal	belling, and H	EIA.	Apply								
MAPP	PING WIT	H PROGRAMME OUTCOMES AND PROG	RAMME SP	ECIFIC	OUTC	OMES							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	-	-	-	-	-	-	-	-			
CO2	S	М	L	L	-	-	-	-	-	-	-	-			
CO3	S	М	М	L	-	-	-	-	-	-	-	-			
CO4	S	М	М	L	-	-	-	-	-	-	-	-			
CO5	S	М	L	L	-	-	-	-	-	-	-	Μ			
0.05	5	141			-	-	-	-	-	-	-	141			

# SYLLABUS

**INTRODUCTION:** Basics of jurisprudence - Environmental law relation with other disciplines - Criminal law - Common Law - Relevant sections of the Code of Civil Procedure, Criminal Procedure Code - Indian Penal Code

**INDIAN CONSTITUTION AND ENVIRONMENT :** Introduction - Fundamental Rights - Directive Principles of State Policy - Article 48 (A) and 51- A(g) Judicial enforceability - Constitution and Resources management and pollution control - Indian Forest Policy (1990) - Indian Environmental Policy (1992).

**ADMINISTRATIVE REGIME & LEGAL REGIME:** Administrative regulations - constitution of Pollution Control Boards Powers, functions, Accounts, Audit etc. - Formal Justice Delivery mechanism Higher and Lower of judiciary - Constitutional remedies writ jurisdiction Article 32, 226 136 special reference to Mandamus and Certiorari for pollution abatement - Equitable remedies for pollution control.

**POLLUTION CONTROL LAWS :** Administrative regulation under recent legislations in wear pollution control. Water (prevention & control of pollution) Act 1974 as amended by Amendment Act 1988. Water (prevention and control of pollution) Rules 1975 Water (prevention & Control or Pollution) Cess Act. 1977 as amended by Amendment Act 1987 and relevant notifications.

**ENVIRONMENTAL (PROTECTION) ACT 1986:** Relevant notifications in connection with Hazardous Wastes (management and handling) Biomedical wastes (management and handling), Noise pollution, Eco-labeling, and E.I.A.

#### **TEXT BOOKS:**

1. Environmental, A., Divan and Noble M. Environmental Law and Policy in India (cases, Materials and Statutes) 1991 Tripathi Bombay.

#### **REFERENCES:**

- 1. Constitution of India Eastern Book Company Lucknow 12th Edition. 1997.
- 2. Constitutional Law of India J.N. Pandey 1997 (31st Edition) Central Law Agency, Allahabad.
- 3. Administrative Law U.P.D. Kesari 1998. Universal Book Trade, Delhi.
- 4. Environmental Law H.N. Tiwari, Allahabad Law Agency 1997.
- 5. Environmental Policy. Forest Policy, Bare Acts Government Gazette Notification.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

										Categ	ory ]		Т	Р	Credit
17CVS	SE54		SUST	<b>TAINA</b>	BLE I ENVII	DEVEI RONM	LOPM IENT	ENT A	AND	EC		3	0	0	3
PREA	MBL	£													1
This C	ourse ł	nelps ir	n under	standin	ig abou	it susta	inable	develo	pment	and env	ironme	nt.			
PRER	EQUI	SITE													
NIL															
COUR	RSE O	BJEC	<b>FIVES</b>												
1	Be ac	quaint	ed with	the co	oncept	of susta	inable	develo	pment	based o	n glob	al enviro	nmental	issues.	
2	Be fa	miliar	with so	ocial, eo	conomi	cal and	l envir	onmen	tal dim	ensions	of sust	ainable c	levelopm	nent.	
3	Gain knowledge on achieving sustainability using performance indicators.														
4	Learn the steps of action plan for implementation of sustainable development.														
5 Be familiar with the contribution of developed countries on sustainable development.															
COURSE OUTCOMES															
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
<b>CO1.</b> ]	Develo	p knov	vledge	on sust	ainable	e devel	opmen	t conce	epts				Underst	and	
<b>CO2.</b> [	Describ	e socia	l, econ	omical	and er	vironn	nental	issues	of susta	inable d	evelop	ment.	Underst	and/appl	у
<b>CO3</b> . ]	Be awa	re of th	ne perfo	ormanc	e indic	ators to	o asses	' susta	inable o	developi	nent.		Remem	ber/Unde	erstand
<b>CO4.</b> I	dentify	the ste	eps in a	ction p	lan for	implei	nentat	ion of s	sustaina	able dev	elopm	ent.	Analyze	;	
CO5.F	Relate t	o the in	ntegrate	ed appr	oach fo	or reso	urce pr	otectio	n and 1	nanager	nent.		Underst	and/appl	у
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	-	S	-	-	-	-	-	-			
CO2	S	М	L	L	-	S	-	-	-	-	-	-			
CO3	S	М	М	L	-	S	-	-	-	-	-	-			

CO4	S	М	S	L	-	S	-	-	-	-	-	-		
CO5	S	М	L	L	-	М	-	-	-	-	-	-		

# SYLLABUS

**CONCEPT OF SUSTAINABLE DEVELOPMENT:** Environment and Development - Population, Poverty and Pollution - Global and Local environmental issues - Resource Degradation - Greenhouse gases - Desertification - Industrialization - Social insecurity, Globalization and environment. History arid emergence of the concept of sustainable development - Objectives of Sustainable Development

**COMPONENTS AND DIMENSIONS OF SUSTAINABLE DEVELOPMENT**: Components of sustainability - Complexity of growth and equity - Social, economic and environmental dimensions of sustainable development - Environment - Biodiversity - Natural Resources - Ecosystem integrity - Clean air and water - Carrying capacity - Equity, Quality of Life, Prevention, Precaution, Preservation and Public participation-structural and functional linking of developmental dimensions

**FRAMEWORK FOR ACHIEVING SUSTAINABILITY:** Operational guidelines - Interconnected prerequisites for sustainable development - Empowerment of Women, Children, Youth, Indigenous People, Non-Governmental Organizations, Local Authorities, Business and Industry - Science and Technology for sustainable development - Performance indicators of sustainability and Assessment mechanism - Constraints and barriers for sustainable development.

**SUSTAINABLE DEVELOPMENT OF SOCIO-ECONOMIC SYSTEMS**: Demographic dynamics of sustainability - Policies for socio-economic development - Strategies for implementing eco-development programs - Sustainable development through trade - Economic growth - Action plan for implementing sustainable development - Urbanization and Sustainable Cities - Sustainable Energy and Agriculture - Sustainable Livelihoods.

**SUSTAINABLE DEVELOPMENT AND INTERNATIONAL RESPONSE:** Role of developed countries in the development of developing countries - International summits - Stockholm to Johannesburg - Rio Principles - Agenda 21 - Conventions - Agreements - Tokyo Declaration - Doubling statement - Transboundary issues - Integrated approach for resource protection and management.

# **TEXT BOOKS:**

1. Jeffry Sayer and Campbell, B., The Science of Sustainable Development: Local Livelihoods and the Global Environment (Biological Conservation, Restoration & Sustainability), Cambridge University Press, London, 2003. **REFERENCES:** 

1. Kirkby, J., O'Keefe, P. and Timberlake, Sustainable Development, Earthscan Publication; London, 1993.

2. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publications, London, 1998. 3.

Bowers, J., Sustainability and Environmental Economics - An Alternative Text, Longman London, 1997.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

										Categ	ory L	,	Т	Р	Credit
17CVS	SE55		RE ENV	MOTI VIRON	E SENS	SING A	AND ( APPLI)	GIS FO CATIO	)R )N	EC	3		0	0	3
PREA	MBL	E													
This C	ourse ł	nelps ir	n gainin	ıg knov	wledge	about	remote	e sensin	g and (	GIS for e	environ	ment ap	plication	l.	
PRER	EQUI	SITE													
NIL															
COUR	RSE O	BJECT	<b>FIVES</b>												
1	Be ac	quaint	ed with	the co	oncepts	of Ren	note se	ensing,	EMR i	nteractio	on with	Enviror	imental i	ssues.	
2	Be fa	miliar	with re	mote s	ensing	platfor	m syste	ems, it	s satell	ites and	sensors	•			
3	Gain	knowle	edge or	n data p	process	ing usi	ng ima	ige pro	cessing	softwar	e.				
4	Gain	knowle	edge or	n GIS a	and GIS	S softw	are.								
5 Be familiar with monitoring environment using remote sensing and GIS.															
COURSE OUTCOMES															
On the	succes	ssful co	ompleti	onoft	he cou	rse, stu	dents v	will be	able to						
<b>CO1.</b>	Develo	p knov	vledge	on con	cept of	remot	e sensi	ng.					Underst	and	
<b>CO2</b> . ]	Be awa	re of re	emote s	sensing	platfo	rms an	d senso	ors.					Underst	and	
<b>CO3</b> . ]	Identify	y the st	eps in 1	Image	process	sing so:	ftware.						Apply		
<b>CO4.</b> ]	Relate	the pro	blems	in GIS	softwa	are.							Apply		
<b>CO5</b> . 1	Descrit	be the e	environ	mental	applic	ation u	sing re	emote s	ensing	and GIS	<b>b</b> .		Analyze	;	
MAPF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	-	-			
CO2	S	L	М	L	М	-	-	-	-	-	-	-			
CO3	S	М	М	L	М	-	-	-	-	-	-	-			

CO4	S	S	М	L	-	-	-	-	-	-	-	-		
C05	S	-	М	-	М									

# SYLLABUS

**PRINCIPLES OF ELECTRO MAGNETIC RADIATION:** Concepts of Remote Sensing - Energy sources and radiation principles, Energy interactions in the atmosphere - Spectral reflectance of earth surface features. **REMOTE SENSING PLATFORMS:** Aerial Photographs, Photographic Systems - Visible, Infra Red and Microwave sensing - Active and passive sensors - Satellites and their sensors, Indian Space Program - Satellite data products

**DATA PROCESSING:** Photogrammetry - Satellite data analysis - Visual Interpretation, Interpretation equipments - Digital Image Processing - Image rectification, enhancement, classification, data merging and biophysical modeling - Image Processing software.

**GEOGRAPHIC INFORMATION SYSTEM** : Introduction to GIS concepts - Data base structure - Data analysis - GIS software

**REMOTE SENSING AND GIS APPLICATIONS:** Management and monitoring of environment, conservation of resources, coastal zone management - Limitations.

#### **TEXT BOOKS:**

1. Lillesand, T.M. and Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 2004.

# **REFERENCES:**

1. Burrough, P.A. and McDonnell, R.A., Principles of Geographic Information Systems, Oxford University Press, New York, 2001.

2. Lintz, J. and Simonet, Remote Sensing of Environment, Addison Wesley Publishing Company, New Jersey, 1998.

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

17CV8F56			WASTE WATER MANAGEMENT						т	Categ	ory 1		Т	Р	Credit	
170 80130			WADIE WAIEK WANAGENIEN I						1	EC		3	0	0	3	
PREAMBLE																
This Course helps in understanding about various methods of wastewater treatment and management.																
PREREQUISITE																
NIL																
COURSE OBJECTIVES																
1	Be familiar with the concept of aerobic and anaerobic treatment of waste water.															
2	Be acquainted with the origin of various units of Aerobic treatment of waste water.															
3	Be acquainted with the design and concepts of various units of Anaerobic treatment of waste water.															
4	Gain knowledge on sludge treatment and disposal.															
5 Understand the operations, maintenance and management of sewage treatment plants.																
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1. Describe the concept of aerobic and anaerobic treatment of waste water. Understand																
<b>CO2</b> .Develop knowledge on the design of various unit of Aerobic treatment of waste water.												ste	Understand/Apply			
CO3. Develop knowledge on the design of various unit of Anaerobic treatment of waste water.												lyze				
<b>CO4.</b> ]	CO4. Identify the ways of treatment of sludge and its disposal.												Analyze			
<b>CO5</b> . Be aware of the operation, maintenance and management of sewage treatment plants.												nt	Understand			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	М	М	-	-	-	-	-	-	-	-				

CO2	S	М	L	М	-	-	-	-	-	-	-	-		
CO3	S	М	М	М	-	-	-	-	-	-	-	-		
CO4	S	М	М	L	-	-	-	-	-	-	-	-		
CO5	S	M	L	Μ	-	-	-	-	-	-	-	-		

# SYLLABUS

**INTRODUCTION:** Objectives of biological treatment - significance - aerobic and anaerobic treatment - kinetics of biological growth - Factors affecting growth attached and suspended growth - Determination of Kinetics coefficients for organics removal - Biodegradability assessment - selection of process.

**AEROBIC TREATMENT OF WASTEWATER:** Design of sewage treatment plant units - screen chamber, Grit chamber with proportional flow weir, sedimentation tank - Trickling filters, Rotating Biological contactor, activated sludge process & variations, aerated lagoons, waste stabilization ponds - nutrient removal systems - natural treatment systems - Disinfected disposal options - reclamation and reuse - Flow charts, layout, hydraulic profile - Recent advances.

**ANAEROBIC TREATMENT OF WASTEWATER:** Attached and suspended growth, Design of units - UASB, up flow filters, Fluidized beds - Septic tank and disposal - Nutrient removal systems - Layout and Hydraulic profile - Recent advances.

**SLUDGE TREATMENT AND DISPOSAL:** Design of Sludge management facilities, sludge thickening, sludge digestion, Biogas generation, sludge dewatering (mechanical and gravity) - upgrading existing plants - ultimate residue disposal - Recent Advances.

**OPERATIONS, MAINTENANCE, MANAGEMENT AND CASE STUDIES:** Operational problems - Trouble shooting, Planning, Organizing and Controlling of plant operations - capacity building, Case studies on sewage treatment plants - sludge management facilities.

# **TEXT BOOKS:**

1. Metcalf & Eddy, Inc. "Wastewater Engineering, Treatment and Reuse, Third Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2003.

#### **REFERENCES:**

1. Arceivala, S.J., Wastewater treatment for pollution control, TMH, New Delhi, 1998.

2. Manual on "Sewerage and Sewage Treatment" CPHEEO, Ministry of Urban Development, GOI, New Delhi, 1999.
3. Qasim, S.R, Wastewater Treatment Plant, Planning, Design & Operation Technomic Publications, New York, 1994.

## **COURSE DESIGNERS**

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in