AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation,
Deemed to be University, Salem, Tamil Nadu, India)
(AICTE APPROVED AND NAAC ACCREDITED)

Faculty of Engineering and Technology

REGULATIONS 2017 DEPARTMENT OF CIVIL ENGINEERING

Programme:

B.E / B.Tech. CIVIL ENGINEERING
Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS)

CURRICULUM AND SYLLABUS

(Semester I to VIII)

VINAYAKA MISSION'S RESEARCH FOUNDATION (DEEMED TO BE UNIVERSITY)

SALEM, INDIA

BACHELOR OF ENGINEERING/ TECHNOLOGY (B.E/B.TECH.) FULL TIME DEGREE PROGRAMME UNDER

FACULTY OF ENGINEERING AND TECHNOLOGY REGULATIONS 2017

STRUCTURED CHOICE BASED CREDIT SYSTEM (FOR THE STUDENTS ADMITTED FROM 2017-18 ONWARDS)

In exercise of the powers conferred by the Revised Memorandum of Association (RM2010) and Revised Bye-Laws (RB2010) of the Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Board of Management of the University hereby issue the following regulations pertaining to the undergraduate Programme and the award of the Degree of Bachelor of Engineering/Technology (B.E. / B.TECH.) at this University.

1. TITLE AND COMMENCEMENT

These regulations shall be called "**REGULATIONS FOR BACHELOR OF ENGINEERING/TECHNOLOGY (B.E / B.TECH.)**-FULL TIME DEGREE PROGRAMME –2017 (R2017)".

These regulations **come into force with effect from Academic year 2017-18** and are subject to such modifications as may be approved by the apex bodies of the University from time to time.

2. PREAMBLE

The Degree of Bachelor of Engineering/Technology (B.E/B.TECH.) in Faculty of Engineering and Technology shall be awarded to a candidate who, as per these regulations, has successfully undergone the programme, passed the prescribed examinations and thereby qualified to receive the degree.

3. **DEFINITIONSANDNOMENCLATURE**

In the Regulations, unless the context otherwise requires, certain terms used and their meaning sare as under.

- i. "MHRD"meansMinistryofHumanResourcesDevelopment.
- ii. "UGC"meansUniversityGrantsCommission.
- iii. "AICTE"meansAllIndiaCouncil forTechnicalEducation.
- iv. "University"meansVinayaka Mission's Research Foundation (Deemed to be University), Salem
- v. "Vice Chancellor or VC" means Vice Chancellor of the University.
- vi. "Board of Management or BoM" means Board of the Management- the highest governing body of the University.
- vii. "Academic Council or AC" means Academic Council the highest academic body of the University, chaired by the Vice Chancellor.
- viii. "Board of Studies or BoS" means Board of Studies of the University under the Faculty of Engineering and Technology.
- ix. "CoE" means Controller of Examinations of the University.
- x. "Dean" means Dean for the Faculty of Engineering and Technology of the University.
- xi. "Institution or College" means Engineering College constituted under University.
- xii. "Programme" means Under Graduate Programme leading to the award of Degree B.E./B.TECH. approved by the UGC, AICTE and University.
- xiii. "Branch" means specialization or discipline of B.E./B.TECH. Degree Programme, such as Mechanical Engineering, Electronics and Communication Engineering etc.
- xiv. "Course" means every paper/subject of study offered by various departments.
- xv. "Credit" is the Course work which is measured in units, based on hours conducted/week and content of course.

- xvi. "Head of Institution or HoI" means Principal of the Constituent Engineering College of the University.
- xvii. "HoD" means Head of the Department of the College.
- xviii. "Curriculum and Syllabus" means the various components/courses studied in each programme that provides appropriate knowledge in the chosen branch. The curriculum and syllabus for study is as prescribed by the Board of Studies (BoS) with the approval of the concerned Academic Council (AC) based on the UGC/AICTE regulations.
- xix. "Teaching Staff or Teacher" means The Dean of Faculty, The Principal of the college, Professors, Associate Professors, Assistant Professors, Pro-term Lecturers and other persons engaged in teaching of the students and assisting the students in the conduct of studies and Research in the College/University.

4. ELIGIBILITY FOR ADMISSION

i. First year Admission

The candidate seeking admission to the first semester Bachelor of Engineering/Technology (B.E./B.TECH.) degree programme should have passed the Higher secondary examination or the Indian School Certificate Examination which is equivalent to 10+2 Higher Secondary Examination with Physics, Chemistry, Mathematics/Biology/ Botany and Zoology put together with English OR should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering/Technology withMathematics/Physics/Chemistry as one of the subjects of study) as prescribed by the concerned State Government.

ii. Lateral Entry Admission

The candidate seeking admission to the third semester of Bachelor of Engineering/Technology (B.E./B.TECH.)programme should have passed a 10+3 Diploma (any stream) in Engineering / Technology awarded by State Board of Technical Educationor its equivalent in relevant fields or B.Sc. Degree with Mathematics as a subject are eligible to apply for Lateral entry admission to the third semester.

- iii. The Academic council of the university from time to time may include any other examination which in scope and standard is found to be equivalent to the intermediate technical examination of an Indian University/Board, taking Physics, Chemistry and Biology/ Mathematics including practical test in each of these subjects and English. The candidates also shall satisfy the conditions regarding the minimum marks, age and physical fitness as may be prescribed by the Academic council of the university from time to time.
- iv. The candidates with disability should produce the Disability Certificate issued by the duly constituted District Medical Board.

v. MIGRATION

Migration/Transfer of students from one Engineering college/University to another Engineering college/University may be granted on any genuine ground subject to the availability of vacancy in the college where migration is sought and fulfilling the other requirements. The eligibility criteria decided by Academic Council time to time will be applicable for these students.

5. ADMISSION

Guidelines issued time to time for admission of students in educational institutions by State Govt. of Tamil Nadu and All India Council for Technical Education (AICTE) is adhered and followed strictly for admission of eligible students to various Under Graduate programmes.

6. REGISTRATION OF CANDIDATE IN UNIVERSITY

A candidate admitted in the Under Graduate Programme in the constituent Engineering Colleges of the University shall register with the University by remitting the prescribed fees along with the application form for registration dully filled in and forwarded to the Controller of Examinations of this University through the Head of the Institutions within the stipulated date.

7. DURATION OF THE PROGRAMME

i.Bachelor of Engineering/Technology (B.E/B.TECH.)-REGULAR (Ist Semester Onwards)

The duration for the Bachelor of Engineering/Technology (B.E /B.TECH.)REGULAR DEGREE programmes shall extend over a period of 4 years (8 semesters) for the students admitted in first semester but in any case not more than 8 years (16 semesters).

ii.Bachelor of Engineering/Technology (B.E./B.TECH.)-REGULAR - LATERAL ENTRY (III Semester Onwards)

The duration for the Bachelor of Engineering/Technology (B.E/B.TECH.)REGULAR DEGREE- Lateral Entry programmes shall extend over a period of 3 years (6 semesters) for the students admitted in third semester and not more than 7 years (14 semesters).

- iii. The total duration for completion of the programme reckoned from the commencement of the first semester to which the student was admitted shall not exceed the maximum duration specified.
- iv. The academic year is divided into two Semesters, odd semester normally spanning from July to December and the even semester from January to June.

8. EXTENSION OF MAXIMUM DURATION

The candidates who fail to complete the year-wise programme as mentioned in clause 7 would be permitted to complete the programme within a period of 8 years (7 years for Lateral Entry candidates) from the date of admission to the course. Those who fail to complete within the extended period may apply for extension to the Vice-Chancellor. The decision of Vice-Chancellor will be final.

9. COMMENCEMENT OF THE COURSE

The academic year for the programme shall commence in the month of July every year except first year. The first year classes shall commence in the month of August.

10. WORKING DAYS IN AN ACADEMIC YEAR

Each semester normally consists of **90 working days** including Tests, Model exams and Practicals.

11. BREAK OF STUDY – MAXIMUM ONE YEAR

- i. Maximum **two semesters or One Year break of study** will be allowed in the entire duration of the course for genuine reasons like serious health problems and calamitous family situations.
- ii. The Vice chancellor is vested with the power to permit the break and rejoining the course for which the candidate must apply in the prescribed form enclosing necessary supporting documents and fees through his/her Head of the Institution (HoI).
- iii. If a student is detained for want of requisite attendance, progress and good conduct, the period spent in that semester shall not be considered as permitted Break of Study.

12. CHANGE OF PROGRAMME OF STUDY / BRANCH

A student may opt for changes of his/her programme of study/branch i.e. oneprogramme to another programme. In general, most of the common courses are prescribed in first semester only; this option is admissible maximum up to commencement of 2^{nd} semester only. Even in the midst of 2^{nd} semester, exercising of this option is not feasible.

13. DISCIPLINE

- i. Every student is required to be disciplined and maintain decorum both inside and outside the college campus.
- ii. Students should not indulge in any activity which can bring down the reputation of the University or College.
- iii. The Principal shall constitute a disciplinary committee consisting of Principal, two Heads of Departments, and faculty advisor of the student and others as per the discretion of Principal to

enquire into acts of indiscipline and notify the Academic Council about the disciplinary action taken.

14. PROGRAMMES OF STUDY – B.E./B.TECH DEGREE AND STRUCTURE OF COURSES – SCBCS AND OBE

i) Programmes

Every student shall undergo a period of certified study extending over 4 academic years allocated into 8 semesters (3 academic years allocated into 6 semester for lateral entry students) with the duration of six months period from the date of commencement of his/her study for the subjects comprising the Engineering/Technical curriculum to the date of completion of the examination.

Sl.No.	Degree	Programme	
1.	B.E / B.Tech.	Aeronautical Engineering	
2.	B.E / B.Tech.	Automobile Engineering	
3.	B.Tech.	Biotechnology	
4.	B.E / B.Tech.	Biomedical Engineering	
5.	B.E / B.Tech.	Computer Science and Engineering	
6.	B.E / B.Tech.	Cloud Computing	
7.	B.E / B.Tech.	Civil Engineering	
8.	B.E / B.Tech.	Electronics and Communication Engineering	
9.	B.E / B.Tech.	Electrical and Electronics Engineering	
10.	B.E / B.Tech.	Mechatronics	
11.	B.E / B.Tech.	Mechanical Engineering	
12.	B.E / B.Tech.	Solar and Alternate Energy	
13.	B.Tech.	Information Technology	

ii) Structured Choice Based Credit System (SCBCS)

The tremendous growth of Science and Technology has made inroads in every sphere of human activity. It has created opportunities, challenges and opened new horizon in the pursuit of knowledge, career and accomplishments. Aspirants are crossing oceans in the pursuit of knowledge and for successful career. The globalization and subsequent opening of our economy have provided ample opportunities in the quest of knowledge to the students of our Nation. Hence a need has arisen to provide flexible, need based, versatile and learner oriented Education / Knowledge to our students and make them competitive. If the present rigid academic system and the Institution methodologies are continued to be imposed, the learners may not have the choice of courses of their liking and hence will not meet the requirements to strengthen their knowledge in specific areas needed for their career. In view of the above a move has to be initiated from Institution centric to learner oriented education system.

The **Structured Choice Based Credit System (SCBCS)** provides ample opportunity for multiple entries, large number of electives, flexible pace for earning credits, carryover of such credits, and choice of courses from other branches.

Further it has the ability to accommodate diverse choices that the students may like to have. SCBCS is a way in which a student has complete freedom in tailoring his course the way he wishes. Students have the flexibility to pursue their other interests in sports or club activities and scheduling classes accordingly.

It is a beautiful system that is tailor made to suit all the kinds of students with all learning needs, whether someone wishes to complete subjects early or pursue subjects at his own pace satisfying the criteria of minimum and maximum duration of completion of degree.

In addition, this system ensures offerings of subjects from all disciplines encouraging students to pursue multiple interests and develop themselves wholly.

iii) Outcome Based Education (OBE)

Outcome Based Education (OBE) is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience, each student should have achieved the goal. There is no single specified style of teaching or assessment in OBE; instead, classes, opportunities, and periodic assessments should all help students achieve the specified outcomes. The role of the faculty adapts into instructor, trainer, facilitator, and/or mentor based on the outcomes targeted.

It accommodates the wants and needs of the entire student community as a whole. With this system, a student can prepare his/her own timetable with the specific courses he/she intends to do in that semester along with the timings of classes and choice of teachers.

Outcomes of OBE

(a) Clarity

The focus on outcomes creates a clear expectation of what needs to be accomplished by the end of the course. Students will understand what is expected of them and teachers will know what they need to teach during the course. Clarity is important over years of student's academic tenure and when team teaching is involved. Each team member will have a clear understanding of what needs to be accomplished in each class, or at each level, allowing students to progress. Those designing and planning the curriculum are expected to work backwards once an outcome has been decided upon; they must determine what knowledge and skills will be required to reach the outcome.

(b) Flexibility

With a clear sense of what needs to be accomplished, teachers will be able to structure their lessons around the student's needs. OBE does not specify a specific method of instruction and it provides freedom to the teachers to teach the student using any method.

Teachers will also be able to recognize diversity among students by using various teaching and assessment techniques during their class. OBE is meant to be a <u>student centered learning</u> model. Teachers are meant to guide and help the students understand the material in any necessary way, study guides, and group work are some of the methods teachers can use to facilitate students learning.

(c) Involvement

Student involvement in the classroom is a key part of OBE. Students are expected to do their own learning, so that they gain a full understanding of the material. Increased student involvement allows students to feel responsible for their own learning, and they should learn more through this individual learning. Other aspects of involvement are parental and community, through developing curriculum, or making changes to it. OBE outcomes are meant to be decided upon within the college system, or at a local level. Parents and community members are asked to give input in order to uphold the standards of education within a community and to ensure that students will be prepared for life after college.

15. Curriculum Design and Components

The curriculum shall be submitted to the Academic Council for approval based on the recommendation of concerned Board of faculty and Board of Studies. Eachprogramme shallhaveacurriculum comprising of Theory, Theorycum Practical and Practical courses with well defined Program Outcomes and Programme Educational Objectives (PEO) asper Outcome Based Education (OBE) framework. The content of each course and Course Outcomes (CO) are well mapped with Program Outcomes (PO) and Program Specific Outcomes (PSO)

Thedetails of structure of courses and range of credits (Minimum and Maximum Credits to be earned by students) for each category are as described below.

CREDIT STRUCTURE OF COURSE CATEGORY

Sl. No.	Category of Courses	Credits to be earned Min – Max.
	A.Foundation Courses (FC)	54 - 63
01	i. Humanities and Sciences (English and Management Subjects)	12 – 21
01	ii. Basic Sciences (Maths, Physics and Chemistry Subjects)	24 – 33
1	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen programme of study.	81
	C. Elective Courses (EC)	18 - 27
03	i. Programme Specific (Class Room or Online)	12 – 15
	ii. Open Elective (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
	ii. Internship / Industry Supported Courses	9
	**E. Employability Enhancement Courses + Co - Curricular Courses + Extra Curricular Courses	9 - 18
	i. Employability Enhancement Courses (Personality	3 - 6
Ì	Development Training, Participation in Seminars,	
05	Professional Practices, Summer Project, Case Study	
	etc.)	
	ii. Co - Curricular Courses (NCC, NSS, Sports, Games,	3 - 6
	Drills and Physical Exercises)	
	iii. Extra Curricular Courses	3 - 6
M	nimum Credits to be earned	180

^{** -} Mandatory, Credits would be mentioned in Mark sheets but not included for CGPA Calculations. For overall CGPA calculations, a student has to earn minimum 171 credits in Categories A to D.

i) Components of Curriculum

(a) Category A - Foundation Courses (FC) (Min – 54 & Max 63 Credits)

The student has to choose the course belongs to Humanities and Sciences (English and Management Subjects- Min - 12& Max 21 Credits), Basic Sciences (Maths, Physics and Chemistry Subjects- Min - 24& Max 33 Credits) and Engineering Sciences (Basic Engineering Courses - Min - 18& Max 27 Credits) fulfilling the criteria of minimum and maximum credit to be earned. The credits earned in this category will be used for overall CGPA calculation.

(b) Category B - Core Courses relevant to the Programme (81Credits)

The courses related to the Programme have been specified during board of studies. The students have to choose the course as per their convenience and with consultation of faculty advisor. **It is mandatory for a student to earn 81 Credits in core courses.** The credits earned in this category will be used for overall CGPA calculation.

(c) Category C - Elective Courses (EC) (Min 18 & Max 27Credits)

Thecourses under this category are grouped under two categories:

(i) Programme Specific Elective (Min 12& Max15Credits)

Programme Specific electives are courses offered by the same department relevant to the **core or specialization**. These courses may or may not have any prerequisites and can be chosen as and when required by students. **The students have to select electives from the list specified in respective board of studies**. The credits earned in this category will be used for overall CGPA calculation.

(ii) Open Elective (Min 06& Max09Credits)

A student should opt for minimum TWO (Total 06 Credits) and maximum THREE courses (Total 09 Credits), as Open Elective Course offered byother departments. Course offered under this category should not have pre-requisite conditions. The course will be offered with the approval of both Head of the Departments. The credits earned in this category will be used for overall CGPA calculation.

(d) Category D -Project, Internship and Industry Electives (18 Credits)

(i) Project (9 Credits)

The student has to earn 9 credits compulsorily by doing a quality project depicting his earned knowledge in his/her domain in 8th Semester. Project work cannot be undertaken before and has to be completed in 8th semester or final semester of the studies (if it is after 8th semester). The credits earned in this category will be used for overall CGPA calculation.

(ii) Internship / Industrial Training/Mini Project (Max. 3 Credits)

It is mandatory for every student to undergo In-plant training in any industry/ organization during the program of studies and earn Credits. Every 2 weeks (14 Days) of internship/training/Mini Project, whole or sum total of part, in industry is equivalent to 1 credit. The credits earned(Max. 3) will be awarded to the student after the submission of internship/training report to the Head of the Department. The report will be evaluated by a team of faculty members nominated by the Head of the Department. Based on the recommendation by the team, the student will be awarded credits in this category and the results will be sent to The Controller of Examinations after the approval by the Head of the Institution. The credits earned in this category will be used for overall CGPA calculation.

The final semester project period at industry/research organization will not be considered as industrial training/internship for earning credits in this category.

(iii) Industry Supported Courses (6 Credits)

Students can opt for one-credit, two credit and three credit courses, offered by industry/ research organizations and approved by academic council. Students can register such courses as and when these courses are conducted by different departments. A student is also permitted to register for these courses of other departments, provided the student has fulfilled the necessary pre-requisites of the course being offered and subject to the approval of both the heads of departments. A student can register for only one course in a semester. These courses are evaluated by the respective course coordinator of the programme. The maximum number of credits earned from industry supported courses is limited to 6. The credits earned in this category will be used for overall CGPA calculation.

If a student who registers for industry supported one-credit, two credit and three credit courses does not successfully complete the course, the registration of that course will be considered as cancelled. Further, it will not be treated as arrear and no supplementary examination will be conducted; alternatively, if he/she wishes, he/she can re-register for the same course in the ensuing semesters and successfully complete it as and when it is offered subsequently.

(e) Category E - Employability Enhancement Courses / Co-Curricular Courses / Extra Curricular Courses (Min 09& Max 18 Credits)

(i) Employability Enhancement Courses (Min 03& Max 06 Credits)

Students will be offered a set of employability enhancement courses through placement and training cell such as development of communication skills, skill development programmes related to technical aspects, personality development training, participation in seminars, professional practices, summer project, case study etc. Every 2 weeks (14 Days) of training, whole or sum total of part, is equivalent to 1 credit. The credits earned will be awarded to the student after the submission of training report to the Head of the Department. The report will be evaluated by Head of the Department and based on the recommendation of HoD, the student will be awarded credits in this category and the results will be sent to The Controller of Examinations after the approval by the Head of the Institution. The credits earned in this category will not be used for overall CGPA calculation.

(ii) Co-Curricular Courses(Min 03 & Max 06 Credits)

(a) Personality and Character Development

All students shallregister, on admission,in any one of the **personality** and character development programmes (NCC/NSS) and undergo training and attend camps as prescribed by the respective officers / coordinators. The training shall include classes on hygiene and health awareness and also training in first aid.

National Cadet Corps (NCC) will have a number of parades/campsspecified by the NCC officer.

National Service Scheme (NSS) will have social service activities in and around the college specified by the NSS coordinator.

Sports, games, drills and physical exercises specified by the Physical Director

While the training activities will normally be during weekends, the camp will normally be in vacation period. Every student shall put in a minimum attendance in the training and attend the camp. A student attending 10 days NCC Camp or two weeks (14 days) of NSS Camp, whole or sum total of part, will be awarded One Credit. In sports, representation in Intra-University, Inter-University, State and National Levels will be equivalent to 1,2 and 3 Credits respectively. Based on the recommendation of NCC /NSS Officer, Physical Director, respective HoD and approval of HoI, credits will be awarded to the student and the same will be forwarded to Controller of Examinations. The credits earned in this category will not be used for overall CGPA calculation.

(iii) Extra –Curricular Courses(Min 03 & Max 06 Credits)

Students are encouraged to register for online courses (extra-disciplinary, inter-disciplinary, societal, environmental etc.) in SWAYAM, NPTEL, IIT BOMBAY, NITTTR Chandigarh etc.) which are provided with certificate after evaluation of the performance. The courses should not include areas already covered as core or elective.

15 Hours of the course will be equivalent to One Credit. Credits earned in these courses will not be counted for giving degree with MINOR. On successful completion of the course, he/she has to submit the copy of the certificate to the Head of the Department. Based on the recommendation by the Head of the Department, the student will be awarded credits in this category and the results will be sent to The Controller of Examinations after the approval of Head of the Institution. The credits earned in this category will not be used for overall CGPA calculation.

Employability Enhancement Course, Co-Curricular Course and Extra Curricular Course will be endorsed in marks statement along with credits earned in these courses. A consolidated list of students with all requisite details will be submitted by HoI of constituent college to CoE, VMRFDU for updation and endorsement in marks statement.

Bloom's taxonomy is a set of three (cognitive, affective and psychomotor domain) hierarchical models used to classify educational learning objectives into levels of complexity and specificity. The three models cover the learning objectives in cognitive, affective and sensory domains. The cognitive domain list has been the primary focus of most traditional education and is frequently used to structure curriculum learning objectives, assessments and activities.

Each course contents are structured to fulfil the requirement of learning objectives and course outcomes with respect to "Remember, Understand, Apply, Analyze, Evaluate, and Create" which covers all the three models of Bloom's taxonomy for achieving the targets specified in Program Outcomes.

17. COURSE CODE

Courses are assigned with a Course Code which is based on year of regulation (first two digits), two letters alphabetical code of offering department like ME for Mechanical Engineering, AR for Aeronautical Engineering etc., category (HS for Humanities & Sciences, BS for Basic Sciences, ES for Engineering Sciences, EC for Elective Courses, SE for Specialisation Elective Courses etc.) which it belongs followed by two numerical digits which is based on the order of the course in the category of courses (starts from 01 for theory courses and 81 for Practical Courses).

For Example:

Course Name	Year of	Offering	CATEGORY	Order of	CODE
Regulation		Department		the	
				Course	
Engineering	2017	Mathematics	Basic Science (BS)	01	17MABS01
Mathematics		(MA)			
Technical English	2017	English (EG)	Humanities &	01	17EGHS01
			Sciences (HS)		
English Language	2017	English (EG)	Humanities &	81	17EGHS81
Lab			Sciences (HS)		
Essentials of	2017	Computer	Engineering	01	17CSES01
Computing		Science (CS)	Sciences (ES)		
Principles of Flight	2017	Aeronautical	Core Courses (CC)	01	17ARCC01
		(AR)			
Flight Lab	2017	Aeronautical(AR)	Core Courses (CC)	81	17ARCC81

18. REGISTRATION OF COURSES – EVEN/ODD SEMESTER

a. The students will register courses to be studied in semester (Even/Odd) with their department in first week of commencement of semester or whenever it is asked for. The selection of courses should satisfy the credit structure of courses as per the components of curriculum. A prior confirmation of offering of the course is to be obtained from respective HoD for open electives. Faculty advisor will assist and provide necessary guidance to the students forplanning and selection of courses.

- b. In a semester (Even / Odd), a student can register fresh courses to be studied in the semester for minimum 14 Credits and maximum 30 credits. The criteria for registration of courses for minimum 14 will not be applicable for those students who are having less than 14 credits to be earned for awarding of degree. In such cases, the students will be allowed to register for the remaining courses for less than 14 credits. The limit of Maximum 30 credits do not include courses of reappearance i.e. 'RA' grade in courses awarded in previous attempt. The students are having liberty in registration of any number of courses in which 'RA' grade is obtained. Courses of reappearance with 'RA' grade will be considered as arrears. Students have to register afresh for exams of courses they have not passed in previous semesters.
- c. The students are at liberty to drop the course (except pre-requisite courses) in which reappear "RA" grade is obtained and can choose a new course. The student may attend the class when the course is offered in the department but it is not mandatory.
- d. The students must fulfil the requirement of attendance percentage in Pre-requisite courses in a semester before choosing other courses for which Pre-requisite condition is specified in subsequent semesters.
- e. Internal Assessment (IA) Marks already awarded for the courses studied including prerequisite courses will be taken into consideration and valid for three attempts only. The students, if they wish, can apply for the improvement of IA Marks of the courses to CoE Office through HoI by paying required fee. The student will be awarded with improved IA after submission of fresh assignments and appearing in internal exams conducted by faculty in-charge for that particular course. Improved IA marks with required fee should be forwarded to CoE office through HoI.

19. Medium of Instruction

The medium of instruction for lectures, examinations and project work is English, except for language courses other than English.

20. Course Evaluation in a Semester

Course work is measured in units called credit hours or simply credits. In assigning the credits for the courses, 1 Period lecture/week, 2 Period tutorial/week, 2 Period practical/week, 2 Period project work or 2 seminar/week is equivalent to 1 credit. The number of periods or hours of a course per week is the number of credits for that course. Accordingly, the course is designed and assigned with 1, 2, 3 and 4 Credits.

The total number of credits a student earns during the course of study period will be called the total credits earned. For successful completion of B.E/B.TECH. programme, a student must earn minimum 180 credits including 9 credits from Category 'E' courses if it is a Regular (8 semesters) programme and 130 credits including 9 credits from Category 'E' courses if it is a Lateral Entry (6 semesters) programme. The credits earned in Category 'E' courses will not be used for overall CGPA Calculations. Overall CGPA will be calculated out of 171 Credits and 121 Credits for Regular (8 semesters) and Lateral Entry (6 semesters) programmerespectively.

21. Academic Structure

a) FacultyAdvisor

To help the students in planning the ircourses and for general guidance on the academic programme, the Head of the Department will all ot a certain number of student stoa teacher of the department who shall function as faculty advisor through out their period of study. The faculty advisor shall advise the students and monitor the courses undergone by the students, check attendanceand progress of the students and counsel them periodically. Thefaculty advisor may also discuss with the HoD and inform parents periodically about the progress of the students. The faculty advisor maintains a diary regarding his/her student profile.

b) ClassCommittee

The class committee shall be constituted with in the first week of commencement of every semester.

Every class will have a class committee constituted by the HOD. Members of the class committee will be consisting of Chair-person (a teacher who Is not normally teaching any course fortheclass), all teacher Shandling courses for the class, and Students (minimum of 4 students consisting of 2 boys and 2 girls on pro-rata basis). Duties and responsibilities of the class committee shall include the following:

- i. Clarify the regulations of the programme and the detail so frules there in.
- ii. Inform the student representatives, the academic schedule including the dates of assessment examinations and the syllabus coverage for each assessment.
- iii. Inform the student representatives regarding weightage used for each assessment. In the case of practical courses (laboratory/drawing/projectwork/seminaretc.,) the breakup of marks for each experiment/exercise/module of work etc. should be clearly discussed in the class committee meeting and informed to the students.
- iv. Analyse the performance of the students of the class after eachtestandinitiatestepsforimprovement.
- v. Identify slow learners, if any, and request the teachers concerned to provide help/guidance/coaching to such students.
- vi. Discuss and sortout other problems experienced by students in the classroom and in the laboratories.
- vii. The chairperson of the class committee may invite the faculty advisor and the Head of the Department to the meeting of the class committee. The principal may participate in any class committee meeting of the Institution.
- viii. The chair person is required to prepare the minutes of every meeting, submit the same through the Head of the Department to the Principal with in two days of the meeting and arrange to circulate the same among the students and teachers concerned.
 - ix. Points requiring action by the University shall be brought to the notice of the University by the Principal.
 - x. The first meeting of the class committee shall be held with in one week from the date of commencemen t of these mester, in order to inform the students about the nature and weight age of assessments as per the frame work of the Regulations. Two or three subsequent meetings maybe held in a semester at suitable intervals. During these meetings the student representatives shall meaningfully interact and express opinions and suggestions of the students of the class to improve the effectiveness of the teaching learningprocess.

c) CourseCommitteeforCommonCourses

Generally, in 1st and 2nd semester, common courses are offered to maximum students. Each common course offered to more than one class/ branch by more than one teacher shall have a course committee comprising of all the teachers teaching the common course with one of them nominated asCourse Coordinator.

The HoD will nominate the course committee for common course/courses handled in their department. The Principal will nominate the course committee for common courses handled in more than one department. This course committee will ensure that a common question paper is prepared for the tests/exams and uniform evaluation is carried out. The Course committee will meet a minimum of 3 times in each semester.

22. UNIVERSITY EXAMINATIONS

a) CommencementofExaminations

The University Examinations will be conducted twice in an academic year. The Controller of Examinations would notify the dates of examinations to the candidates. There shall be two main examinations in a year to be held not later than 6 months after the publication of results.

- b) The duration of the Examination should be 3 hours. The maximum marks for each and every question paper is 100 marks. The Evaluation will be for 100 marks for each course, followed by conversion of marks forout of 50 as external assessment which will be added with IA Mark (out of 50) and result will be declared by CoE as per the grades specified.
- c) A student who has appeared and passed in any course is not permitted to reappear in the course/exam for the purpose of improvement of the Grades. However, he/she may apply for revaluation of answer script by paying prescribed fee.

d) AdmissiontoExaminations

No candidate shall be permitted to appear for the Examination unless he/she secures 75% of overall attendance in that semester. Ifacandidatefailstosatisfytherequirement of 75% attendance, he/she is required to repeat that incomplete course(s) wheneveroffered.

Note:All students are expected to attend all classes and secure 100% attendance. The above provision of minimum 75% attendance is made to compensate for unavoidable reasons such as medical leave/permitted participation insports and Co-curricular activities.

The days of suspension of a student ondisciplinary grounds will be considered as days of absence for calculating the percentage of attendance.

Examination applications completed in all respect will be forwarded by HoI of constituent colleges to office of CoE, VMRFDU for further necessary action.

e) Submission of Students Attendance to CoE

The Head of the Institutions of the Constituent Colleges has to furnishattendance particulars specifying the number of working days attended by the candidate to the Controller of Examinations of the University, after 45 days of commencement of semester and before commencement of examination in both hard and soft copy.

The final attendance particulars of students for registration of students for semester ending university examinations are to be submitted two weeks prior to the commencement of the Examination. As the candidate would have paid the fees for the particular Examination, it could be presumed that the she would attend the rest of the classes in there maining two weeks after submission of attendance particulars to the University and appear in the Examination

f) LackofAttendance

A student who has an attendance less than 75% in a course during odd/even semester, will not be allowed to appear for the immediate odd/even semester examination in that course.

g) Condonation

A student who has an attendance between 65% and 74% will be allowed to write the semester ending university examinations provided the student pays the condonation fees as prescribed by the University from time-to-time.

Condonation of lack of attendance shall be taken up for consideration under the following circumstances:

- **i.** Any illness affecting the candidate (The candidate should submit Medical Certificate from a registered Medical Practitioner to the Dean/Principal of the faculty/college immediately after returning tocollege after treatment)
- **ii.** Any unforeseen tragedy in the family. (The parent / guardian should give in writing the reason for the ward's absence to the Principal).
- iii. ParticipationinNCC/NSS/YRCandothercocurricularactivitiesrepresentingthecollegeorUniversity.TheHeadoftheInstitution should permit the candidate to participate and instruct the concerned officers incharge of the student's activities in their college to endorsethe leave. Such cases may be granted 10% attendance for their participation.

iv. Anyother reasonthe Headof Institution deems reasonable for Condonation.

23. Assessment and Evaluation – Internal and External

- a) The Institution / University shall ensure thatthe required number of hours for lecture /practical /seminar etc., in the courses of B.E / B.TECH.are completed and examinations areto be conducted as specified in the regulations.
- **b)** The Institution / University shall ensure that the students of the colleges, who do not fulfil the minimum requirements of Regulations for Engineering/Technology will not be permitted to appear in the semester ending university examinations.
- c) Theory and practical paper examination shall be of three hours duration each.

d) MethodsofAssessment/Evaluation

Evaluation of students will be done by conducting writtentests, practical's, miniprojects, seminars, vivavoce etc. It is achieved by following two independent processes of assessment.

- i) Form ative or Internal Assessment(IA)isdonethrougha seriesoftests and examinations conducted by the institution.
- **ii**)Summativeor External Assessment (EA) is done by evaluation of performance in semester ending university examinations conducted by CoE.

e) Courses for Internal Evaluation Only

The details of credits earned by a student in the courses mentioned below will be forwarded to office of Controller of Examinations through HoI of constituent colleges as and when the course is completed by the student for necessary updation and endorsement in marks statement along with proof of completion of courses as enclosures.

As office of Controller of Examinations do not play an active role in conducting examination and evaluation for these courses except endorsement of the credits earned by students in marks statement on the recommendation of HoI, the students are not liable to pay examination fees for these courses.

Sl. No.	Category of Courses	Credits to
		be Earned
1.	Category D	
	(i) Internship	9
	(ii) Industry Supported Courses for which only internal	
	evaluation by industry expert is prescribed.	
2.	Category E	Min – 9
	(i) Employability Enhancement Courses	Max – 18
	(ii) Co-Curricular Courses	
	(iii) Extra Curricular Courses	
3.	For awarding Degree with MINOR	Min - 20
	(i) Online Courses through MOOCs (Massive Open Online	
	Courses).	
	(ii) Skill Development Courses by external resource persons.	

f) InternalAssessment

- i. Weightage for the internal assessment shall be 50% of thetotalmarksineachcourse.
- ii. Day to day records should be given importance during internal assessment.
- **iii.** Theinternalassessmentmarksfor all courses should be submitted to the University endorsed by the Principal of the College within a week after the last working day.
- **iv.** TheIAMarks shall be based on day to day assessment, evaluation of student assignment, preparation for seminar, Internal/Model/Onlinetestetc.
- v. Internal assessment shall relate to different ways of student's participation in learning process during semesters. For example, Preparation of courses for seminar, tutorials, problem solving exercises, participation in Project Contests in the Engineering/Technology, skill and proficiency in carrying out small research project, Multiple Choice Questions (MCQ)testetc.
- **vi.** Each Assessment mentioned above is examined and recorded. Some of the assessment can be assigned as Home work/ Vacation work.
- vii. Thecontinuing assessment tests / examinations for theory may be held frequently, at least three times, two internal tests and one Model Examination, in a given semester and the marks of that examination shall be taken into consideration for the award of Internal Assessment (IA) marks.
- viii. A minimum of one model practical examination shall be conducted during the semester and marks for that examination shall be taken into consideration for awarding of Internal Assessment (IA) marks for Practical Course.
 - ix. It is mandatory for a student to secure minimum 18 out of 50 marks in Internal Assessment in all courses registered in that semester.
 - x. The students have to register courses including arrears afresh in every semester including pre-requisites. Internal Assessment (IA) Marks already awarded for the courses studied including pre-requisite courses will be taken into consideration and valid for three attempts only. The students, if they wish, can apply for the improvement of IA Marks of the courses to CoE Office through HoI by paying required fee. The student will be awarded with improved IA after submission of fresh assignments and appearing in internal exams conducted by faculty in-charge for that particular course. Improved IA marks with required fee should be forwarded to CoE office through HoI.

g) Parameters for Awarding InternalAssessment (IA) Marks

i. Attendance, Recordand Marksfor attendance

Everyteacherisrequiredtomaintainan'ATTENDANCEAND ASSESSMENT RECORD' for each course handled, which consists of students attendance in each lecture/practical/projectwork classes, the test marks and there cord of classwork(topicscovered).

This should be submitted to the Head of the Department periodically (at least3timesinasemester) for checking the syllabus coverage and there cords of test marks and attendance. TheHoD after due verification will sign the above record. At the endof semester, theRecordshouldbeverifiedbythePrincipal.

Themarksallocatedforattendance in Internal Assessment (IA) marksis as follows.

%of Attendance	Marks
Less than and Equal to 75	0
76 - 80	1
81 - 85	2
86 - 90	3
91 - 95	4
96 - 100	5

ii. IA MARKS CALCULATION

a) Theory Course Internal Assessment for Theory Course

S. No	Components forInternal Assessment Marks	Duration (in minutes)	Maximum Marks
1.	Two Continuous Assessment Tests (CAT) I, II	90	20
2.	Model Exam	180	15
3.	Assignment/ Seminar/ Online test/ Mini Project	-	10
4.	Attendance	-	05
	т	otal Marks	50

b) Practical Courses

Practicals will be conducted in the laboratories. The objective will be to assess proficiency in skills to conduct experiment, interpretation of data and logical conclusion. Every practical exercise experiment in all practical courses will be evaluated based on the conduct of exercise/experiment and records maintained by the students. There will be at least one model practical examination.

University Practical examination will be evaluated jointly by one internal examiner and one external examiner appointed by the Controller of Examinations. The Evaluation will be for 50 marks.

Internal Assessment for Practical Course

S. No	Items	Duration	Maximum
		(in minutes)	Marks
1.	Observation & Record		20
2.	Model Practical	180 Minutes	25
3.	Attendance		05
		Total Marks	50

iii. Online Test

Each online test contains Ten Objective /Multiple Choice type questions from each subject of the current semester with one-minute time for each question. Students will login with his log-in details and start answering by clicking any one of the answers from the choices and at the end students can view the score then & there.

iv. ProjectWork

Theevaluationoftheprojectworkcompletedin 8th Semester bythestudentwillbeplaced in front of a committee constituted by the Principal on there commendation of HoD. For each programme one such review committee will be constituted. The Review committee consists of three senior faculty members including one supervisor/Guide of the student, having expertise in theareas of project

The student shall make a presentation at least three times, on the progress made by him/her before the review committee. There will be equal weightage for all three assessments (each for 100 marks maximum) and the total marks obtained will be reduced for 90 and the remaining 10 marks will be given for attendance.

There port of the committee will be submitted to the Head of the Department for review. The HoD based on there commendation of there view committee will take the appropriate action improve the skill/performance of the student on his/her project with the help of his/her project supervisor.

24. Question Paper Pattern for Theory Courses

a) Theory Courses

- i. The examinations and question papers are to be designed to cover Bloom's taxonomy with a view to ascertain whether the candidate has acquired the necessary knowledge, minimum skills along with clear concepts of the fundamentals in different levels (Remember, Understand, Apply, Analyse, Evaluate and Create) prescribed which are necessary for him/her to carry out his/her professional day to day work competently. Evaluation will be carried out on an objective basis.
- **ii.** The **question paper pattern** must consist of questions in proportion as an assessment of performance of student in different levels. Questions with choice in **EITHER-OR** form should be of same level.
- **iii.** The Question paper setter must apply the concepts mentioned below while setting the question paper for a course.

SI. No.	Cognition Level (Bloom's Taxonomy)	Description	Percentage distribution recommended
a)	LOCQ – Lower order cognitive questions	Covering questions for testing the remembering and understanding of the concepts by the students.	20-30%
b)	IOCQ – Intermediate order cognitive questions	Covering questions that test the applying and analyzing skills of students.	40-50%
c)	Psychomotor Level	Covering questions that test the evaluating and creating abilities of the students with respect to their knowledge.	30-40%

iv. Hol may provide set of questions on each level for a course prepared by respective course handler to CoE if requested for. A common pattern will be followed for each theory courses except some industrial electives for which multiple choice questions (MCQ) are prescribed byrespective industry.

25. Malpractice

If a student indulges in malpractice in any internal test / model examination / end semester examination, he / she shall be liable for punitive action as prescribed by the University.

26. Examiners

Panel of examiners for theory, practical and Project work evaluation will be approved by academic council of the university based on recommendations of the concerned Board of Studies (BOS).

27. Passing Requirements

A candidate securing not less than 50% of total marks (IA + EA) prescribed for the course in both theory and practical courses including project work in the semester ending university examinationswill be declared to have passed the Examination.

28. RESULTS & READMISSION TO EXAMINATION

- i. The University may ensure that the results of the examinations are published in time so that the student who successfully completes B.E / B.TECH. Examination can complete the course within stipulated time prescribed by the regulation.
- **ii.** A student who fails in the examination shall be allowed to appear in next higher Semester examination.
- **iii.** The University may under exceptional circumstances, partially or wholly cancel any examination conducted by it, shall intimate to the Academic Council of the University and arrange to conduct the re-examination in those subjects within the period of 30 days from the date of such cancellation.
- **v.** Grace marks will be awarded after the approval of the Vice Chancellor based on the recommendation of the Result Passing Board constituted by the Vice Chancellor.

29. Redressal of Grievances in Evaluation of Answer Scripts

Students who are not satisfied with the grades awarded can seek redressal of grievances within specified time.

RedressalSought	Methodology
Request for Revaluationof Answer Script.	Any student passed or failed, can applythrough Hol to CoE VMRFDU with prescribed fee, for revaluation of answer script within 10 days from the publication of result.

30. CLASSIFICATIONOFPERFORMANCE

Classification of performance of students in the examinations pertaining to the courses in a programme is done on the basis of numerical value of Cumulative Grade Point Average (CGPA). The concept of CGPA is based on Marks, Credits, Grade and Grade points assigned for different mark ranges.

i. Semester Grade Point Average (SGPA)

Each student is assigned a Semester Grade Point Average (SGPA)on completion and declaration of result of a semester.

$$(SGPA) = \sum (C_i \times G_i) / \sum C_i$$

where C_i is the credit for a course in that semester and G_i is the Grade Point earned by the student for that course. The SGPA is rounded off to two decimals.

ii. Cumulative Grade Point Average (CGPA)

TheoverallperformanceofastudentatanystageoftheDegree programme is evaluated by the Cumulative Grade Point Average (CGPA)upto that point of time.

$$CGPA = \sum_{j} \left\{ \frac{\sum_{i} (c_{ij} * c_{ij})}{\sum_{i} c_{ij}} \right\}$$

RANGE OF MARKS. GRADES AND GRADE POINTS

Grade	Grade Points(GP)	Range of percentage of Marks	Class
O + +	10	95 – 100	
0+	9.5	90 – 94	FIRST CLASS WITH
0	9	85 -89	DISTINCTION
A + +	8.5	80 – 84	
A +	8	70 – 79	
А	A 7		FIRST CLASS
B +	6	55 - 59	CECOND CLACC
В	5.5	51 - 54	SECOND CLASS
С	5	40 - 50	MINIMUM PASS
AB RA			- REAPPEAR

A student is deemed to have passed and acquired the corresponding credits in a particular course if he/she has obtained any one of the following grades: (O + +', (O +', (O', (A + +', (A +', (A + ', (B +', (B' and (C' as mentioned above with a minimum aggregate percentage 50 for MINIMUM PASS.

If the student is detained and not allowed for appearing in university examinations due to insufficient attendance, grade 'RA' will be awarded in that particular course.

Also, if the student has not cleared the course after appearing in university examinations, grade 'RA' will be awarded in that particular course.

If the student is absent in any of the university examinations, grade 'AB' will be awarded in that particular course.

31. AWARD OF DEGREE

AstudentshallbedeclaredtobeeligiblefortheawardoftheB.E./B.TECH.Degreeprovidedthestudenth assuccessfullycompletedthe courserequirements(by earning minimum 180 creditsfor the students joined from first semester onwards and 130 credits for lateral entry students joining from third semester onwards)andhaspassedalltheprescribedexaminations in all the Eight semesters(Sixsemesterforlateralentry)withinamaximumperiodof8years(6yearsforlateralentry)reckon edfromthecommencementofthefirstsemestertowhichthecandidatewasadmitted.

(a) 'MINOR' IN B.E./B.TECH DEGREE PROGRAMME

If a student earns 20 extra credits beyond the minimum requirements of 180 credits for the award of B.E /B.Tech. Degree, he/she shall be awarded B.E/B.Tech. Degree in his parentdiscipline with MINOR in different discipline of engineering. These credits must be earned through MOOCs (Massive Open Online Courses) and Skill Development courses organized by the external resource persons. 10 hours of academic engagement will be considered to be equivalent to 1 credit. An additional Certificate of Recognition will be issued by University along with the Degree Certificate. e.g. B.E/B.Tech.in Aeronautical Engineering with MINOR in Electronics, B.E/B.Tech. in Electronics and Communication Engineering with MINOR in Computer Science.

(b) 'SPECIALIZATION' IN B.E./B.TECH DEGREE PROGRAMME

If a student earns 15 credits in area specific electives as specified in curriculum which are part of "Program Specific Electives" within the minimum requirements of 180 credits for the award of the B.E /B.Tech. Degree, he / she shall be awarded B.E /B.Tech. Degree in his parent discipline with SPECIALIZATION in the area specific to parent discipline. An additional Certificate of Recognition will be issued by University along with the Degree Certificate.For example, Under B.E / B.Tech. Aeronautical Engineering, Four Specializations – Aerospace Propulsion, Aerodynamics, Aircraft Structures and Aircraft Maintenance are offered as specializations.

32. CLASSIFICATION OF THE DEGREEAWARDED

i. First class with Distinction

A student who qualifies for the award of degree having passed the examination in all registered courses in his / her first appearance (including industry supported courses), within FIVE years (FOUR Years for Lateral Entry students) including the authorized Break of Study of One Year, and securing a CGPA of not less than 8.00 shall be declared to have passed in First class with distinction and should not have been prevented from writing end semester examination due to lack of attendance in any of the courses.

ii. First Class

A studentwhoqualifiesfortheawardofdegreehavingpassedtheexaminationin allthecourseswithinFIVE years (FOUR Years for Lateral Entry students) including the authorized Break of Study of One Year and securing a CGPA of not less than 7.0 shall be declared to have passed in First class and should not have been prevented from writing end semester examination due to lack of attendance in any of the courses.

iii. Second Class

All other students not covered above and who qualifies for the award of B.E./B.Tech. Degree having passed the examination in all the courses shall be declared to have passed in Second Class.

33. RANKING

Students obtaining top 3 position sin CGPA ranking in a programme will be considered as a rank holder. They should have passed all the prescribed courses in the first appearance and should have obtain eda CGPA of 8.0 and above. The student should also have a clean record of discipline during the period of study. Special certificates will be given to rank holders.

34. MODIFICATIONS OF REGULATIONS

These regulations are subject to modifications from time to time as per the decisions of the apex body of the University.

PROGRAM OUTCOMES (POs) OR GRADUATE ATTRIBUTES

On completion of program of engineering, graduates will be able to:

Sl. No.	Outcome	Level of Outcome	Description	
PO 1	Engineering knowledge	Apply	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	
PO 2	Problem analysis	Apply	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	
PO 3	Design/development of solutions	Apply	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	
PO 4	Conduct investigations of complex problems	Apply	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	
PO 5	Modern tool usage	Create	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	
PO 6	The engineer and society	Evaluate	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	
PO 7	Environment and sustainability	Analyze	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	
PO 8	Ethics	Evaluate	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	
PO 9	Individual and team work	Analyze	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	
PO 10	Communication	Evaluate	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	
PO 11	Project management and finance	Create	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to	

			manage projects and in multidisciplinary environments.
PO 12	Life-long learning	Create	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

2. PROGRAM SPECIFIC OUTCOMES (PSOs)

On Upon successful completion of the course the students are expected to:

-		l	
Sl.	Outcome	Level of	Description
No.		Outcome	
PSO 1	Multi-Dimensional Approach	Evaluate	Enhance the employability skills by making
			the students capable of qualifying National
			level competitive examinations
PSO 2	Develop/Design/Modify/Involve	Create	Recognise the technical competencies to deal
			with practical aspects of Civil Engineerig.
PSO 3	Entrepreneurial Skills	Create	Cognizance of social awareness and
			environmental necessity along with ethical
			responsibility to have a successful career and
			to become an entrepreneur.

Credit Requirement for Course Categories

CATEGORY	CONTENT	CREDITS TO BE OBTAINED	EARNED CREDIT
	FOUNDATION COURSES (FC)	54-63	62
A	(i). Humanities and Sciences (English, Management Subjects)	12-21	15
71	(ii). Basic Sciences (Maths, Physics, Chemistry Subjects)	24-33	24
	(iii). Engineering Sciences (Basic Engineering Courses)	18-27	23
В	CORE COURSES (CC)	81	81
	ELECTIVE COURSES (EC)	18-27	21
C	(i). Programme Specific (Classroom or online)	12-15	15
	(ii). Open Electives (Classroom or online)	6-9	6
	PROJECT+INTERNSHIP+INDUSTRY ELECTIVES (PII)	18	18
D	(i). Project	9	9
	(ii). Internship / Mini project / Industry supported courses	9	9
E	EMPLOYABILITY ENHANCEMENT COURSES+ CO-CURRICULAR COURSES+ EXTRA CURRICULAR COURSES (EEC)**	9-18	

Minimum Credits to be Obtained	:	180
Total Earned Credit	:	182

^{**-} Mandatory, credit would be mentioned in mark sheets but not included for CGPA calculations.

CURRICULUM B.E / B.TECH.CIVIL ENGINEERING SEMESTER I TO VIII

CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-63)

	В	S.E / B.TECH. –CIVII	L ENGINEER	ING - SEM	ESTI	ER I	TO V	III						
	CATEGORY A – FOUNDATION COURSES - HSS, BS AND ES COURSES - CREDITS (54-63)													
	(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (12 - 21)													
SL. NO	CODE COURSE CATEGORY I T P C PREREQUISITE													
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL					
2.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HSS)	0	0	4	2	NIL					
3.	17YMHS82	YOGA AND MEDITATION	PHYSICAL EDUCATION	FC (HSS)	0	0	4	2	NIL					
4.	17EGHS82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT	ENGLISH	FC (HSS)	0	0	4	2	NIL					
5.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL					
6.	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL					
7.	17MBHS03	ENGINEERING MANAGEMENT AND ETHICS	MANAGEMENT	FC (HSS)	3	0	0	3	NIL					
8.	17MBHS07	PROFESSIONAL ETHICS AND HUMAN VALUES	MANAGEMENT	FC (HSS)	3	0	0	3	NIL					

<u>CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-63)</u>

	(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS) - CREDITS (24 - 33)													
1.	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL					
2.	17MABS08	MATHEMATICS FOR CIVIL ENGINEERS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS					
3.	17MABS13	PDE APPLICATION AND COMPLEX ANALYSIS	MATHEMATICS	FC (BS)	2	2	0	3	MATHEMATICS FOR CIVIL ENGINEERING					
4.	17MABS16	NUMERICAL METHODS	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS					
5.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL					
6.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL					
7.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL					
8.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL					
9.	17CHBS06	GREEN BUILDING MATERIALS	CHEMISTRY	FC (BS)	3	0	0	3	NIL					
10.	17PHBS01	NON-DESTRUCTIVE TESTING OF MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL					
11.	17PHBS09	NANOSCIENCE & TECHONOLOGY	PHYSICS	FC (BS)	3	0	0	3	NIL					

<u>CATEGORY A – FOUNDATION COURSES - HS, BS AND ES COURSES - CREDITS (54-63)</u>

	(iii) ENGINEERING SCIENCES (BASIC ENGINEERING COURSES) - CREDITS (18 - 27)													
1.	17CSES01	ESSENTIALS OF COMPUTING (THEORY + PRACTICE)	CSE	FC(ES)	2	0	2	3	NIL					
2.	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL					
3.	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL					
4.	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	4	0	0	4	NIL					
5.	17CMES81	ENGINEERING SKILLS PRACTICE LAB A. BASIC CIVIL ENGINEERING B. BASIC MECHANICAL ENGINEERING	CIVIL & MECHANICAL	FC(ES)	0	0	4	2	NIL					
6.	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL					
7.	17MEES84	ENGINEERING GRAPHICS (THEORY + PRACTICE)	MECHANICAL	FC(ES)	1	0	4	3	NIL					
8.	17EEES82	ENGINEERING SKILL PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING B. BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2	NIL					

B.E. / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (81)												
	CATEGO	ORY B – CORE COURSES RE	LEVANT TO	THE PROG	RAN	1MI	Ξ-	CRE	CDITS (81)			
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	T	P	С	PREREQUISITE			
1	17CVCC01	CONSTRUCTION MATERIALS	CIVIL	CC	3	0	0	3	NIL			
2	17CVCC02	MECHANICS OF SOLIDS -I	CIVIL	CC	2	1	0	3	NIL			
3	17CVCC03	MECHANICS OF FLUIDS	CIVIL	CC	2	1	0	3	NIL			
4	17CVCC04	SURVEYING I	CIVIL	CC	3	0	0	3	NIL			
5	17CVCC05	CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICES	CIVIL	CC	3	0	0	3	NIL			
6	17CVCC06	MECHANICS OF SOLIDS -II	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS- I			
7	17CVCC07	APPLIED HYDRAULIC ENGINEERING	CIVIL	CC	2	1	0	3	MECHANICS OF FLUIDS			
8	17CVCC08	SURVEYING -II	CIVIL	CC	3	0	0	3	SURVEYING -I			
9	17CVCC09	ENVIRONMENTAL ENGINEERING	CIVIL	CC	3	0	0	3	NIL			
10	17CVCC10	DESIGN OF REINFORCED CONCRETE ELEMENTS	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS - II			
11	17CVCC11	STRUCTURAL ANALYSIS	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS - II			
12	17CVCC12	MECHANICS OF SOILS	CIVIL	CC	2	1	0	3	NIL			
13	17CVCC13	DESIGN OF STEEL STRUCTURES	CIVIL	CC	2	1	0	3	MECHANICS OF SOLIDS- II			
14	17CVCC14	HIGHWAY ENGINEERING	CIVIL	CC	3	0	0	3	NIL			
15	17CVCC15	RAILWAY , AIRPORT AND HARBOUR ENGINEERING	CIVIL	CC	3	0	0	3	HIGHWAY ENGINEERING			
16	17CVCC16	DESIGN OF REINFORCED CONCRETE STRUCTURES	CIVIL	CC	2	1	0	3	DESIGN OF REINFORCED CONCRETE ELEMENTS			
17	17CVCC17	MODERN METHODS OF STRUCTURAL ANALYSIS	CIVIL	CC	2	1	0	3	STRUCTURAL ANALYSIS			
18	17CVCC18	FOUNDATION ENGINEERING	CIVIL	CC	2	1	0	3	MECHANICS OF SOILS			
19	17CVCC19	ESTIMATION AND QUANTITY SURVEYING	CIVIL	CC	2	1	0	3	NIL			
20	17CVCC20	CONSTRUCTION PLANNING AND SCHEDULING	CIVIL	CC	3	0	0	3	NIL			
21	17CVCC81	COMPUTER AIDED BUILDING DRAWING LAB	CIVIL	CC	0	0	4	2	NIL			
22	17CVCC82	STRENGTH OF MATERIALS LAB	CIVIL	CC	0	0	4	2	NIL			
23	17CVCC83	SURVEY PRACTICAL -I LAB	CIVIL	CC	0	0	4	2	NIL			
24	17CVCC84	HYDRAULIC ENGINEERING LAB	CIVIL	CC	0	0	4	2	MECHANICS OF FLUIDS			
25	17CVCC85	SURVEY PRACTICAL -II LAB	CIVIL	CC	0	0	4	2	SURVEY PRACTICAL -I LAB			
26	17CVCC86	SOIL MECHANICS LAB	CIVIL	CC	0	0	4	2	NIL			
27	17CVCC87	ENVIRONMENTAL ENGINEERING LAB	CIVIL	CC	0	0	4	2	NIL			
28	17CVCC88	COMPUTER AIDED DESIGN AND DRAWING LAB	CIVIL	CC	0	0	4	2	DESIGN OF REINFORCED CONCRETE ELEMENTS			
29	17CVCC89	CONCRETE AND CONSTRUCTION TECHNOLOGY LAB	CIVIL	CC	0	0	4	2	CONSTRUCTION MATERIALS			
30	17CVCC90	SURVEY CAMP	CIVIL	CC	0	0	2	1	SURVEY PRACTICAL -II LAB			
31	17CVCC91	COMPREHENSION LAB	CIVIL	CC	1	1	0	2	NIL			

CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (81)

<u>CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)</u>

B.E / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)

	(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE			
1	17CVEC01	ENGINEERING GEOLOGY	CIVIL	EC	3	0	0	3	NIL			
2	17CVEC02	IRRIGATION ENGINEERING	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING			
3	17CVEC03	GEOGRAPHICAL INFORMATION SYSTEM	CIVIL	EC	3	0	0	3	NIL			
4	17CVEC04	REPAIR AND REHABILITATION OF STRUCTURES	CIVIL	EC	3	0	0	3	CONSTRUCTION TECHNIQUES, EQUIPMENTS AND PRACTICES			
5	17CVEC05	TRAFFIC ENGINEERING AND MANAGEMENT	CIVIL	EC	3	0	0	3	HIGHWAY ENGINERING			
6	17CVEC06	HYDROLOGY	CIVIL	EC	3	0	0	3	NIL			
7	17CVEC07	DISASTER MITIGATION AND MANAGEMENT	CIVIL	EC	3	0	0	3	NIL			
8	17CVEC08	REMOTE SENSING TECHNIQUES AND APPLICATIONS	CIVIL	EC	3	0	0	3	NIL			
9	17CVEC09	HOUSING PLANNING AND MANAGEMENT	CIVIL	EC	3	0	0	3	NIL			
10	17CVEC10	MANAGEMENT OF IRRIGATION SYSTEMS	CIVIL	EC	3	0	0	3	IRRIGATION ENGINEERING			
11	17CVEC11	GROUND IMPROVEMENT TECHNIQUES	CIVIL	EC	3	0	0	3	MECHANICS OF SOILS			
12	17CVEC12	INTRODUCTION TO SOIL DYNAMICS AND MACHINE FOUNDATIONS	CIVIL	EC	3	0	0	3	MECHANICS OF SOILS			
13	17CVEC13	ELECTRONIC SURVEYING	CIVIL	EC	3	0	0	3	SURVEYING 1			
14	17CVEC14	AIR POLLUTION MANAGEMENT	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING			
15	17CVEC15	BRIDGE STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURES			
16	17CVEC16	TALL BUILDINGS	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURES			
17	17CVEC17	STRUCTURAL DYNAMICS	CIVIL	EC	3	0	0	3	STRUCTURAL ANALYSIS			
18	17CVEC18	WIND ENGINEERING	CIVIL	EC	3	0	0	3	NIL			
19	17CVEC19	COMPUTER AIDED DESIGN OF STRUCTURES	CIVIL	EC	2	0	1	3	DESIGN OF REINFORCED CONCRETE ELEMENTS			
20	17CVEC20	INDUSTRIAL STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURE			
21	17CVEC21	SMART STRUCTURES AND SMART MATERIALS	CIVIL	EC	3	0	0	3	SMART MATERIALS			
22	17CVEC22	FINITE ELEMENT TECHNIQUES	CIVIL	EC	2	1	0	3	STRUCTURAL ANALYSIS			
23	17CVEC23	DESIGN OF PLATE AND SHELL STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF STEEL STRUCTURES			
24	17CVEC24	GROUND WATER ENGINEERING	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING			
25	17CVEC25	PRINCIPLES OF STRUCTURAL DYNAMICS AND SEISMIC DESIGN	CIVIL	EC	3	0	0	3	FOUNDATION ENGINEERING			
26	17CVEC26	CONTRACT LAWS AND REGULATIONS	CIVIL	EC	3	0	0	3	NIL			
27	17CVEC27	TRANSPORT ECONOMICS	CIVIL	EC	3	0	0	3	HIGHWAY ENGINEERING			
28	17CVEC28	MASS TRANSPORT MANAGEMENT	CIVIL	EC	3	0	0	3	HIGHWAY ENGINEERING			
29	17CVEC29	WATER RESOURCES SYSTEMS ANALYSIS	CIVIL	EC	3	0	0	3	ENVIRONMENTAL ENGINEERING			
30	17CVEC30	ARCHITECTURE	CIVIL	EC	3	0	0	3	NIL			
31	17CVEC31	PAVEMENT ENGINEERING	CIVIL	EC	3	0	0	3	HIGHWAY ENGINEERING			

32	17CVEC32	STORAGE STRUCTURES	CIVIL	EC	3	0	0	3	DESIGN OF REINFORCED CONCRETE ELEMENTS
33	17CVEC33	EXPERIMENTAL ANALYSIS OF STRESS	CIVIL	EC	2	1	0	3	STRUCTURAL ANALYSIS
34	17CVEC34	SHORING, SCAFFOLDING AND FORM WORK	CIVIL	EC	3	0	0	3	CONSTRUCTION MATERIALS
35	17CVEC35	MUNICIPAL SOLID AND WASTE MANAGEMENT	CIVIL	EC	3	0	0	3	NIL
36	17CVEC36	WASTE WATER ENGINEERING	CIVIL	EC	3	0	0	3	NIL

<u>CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)</u>

		(ii) OPEN ELECTIVES (CLASS ROOM OR ONLIN	E) - CREDITS	(6 - 9	9)				
1.	17BTEC02	OCEAN SCIENCE	ВТЕ	OE	3	0	0	3	NIL
2.	17BTEC26	ECO-FRIENDLY MULTI-STOREY BUILDING	ВТЕ	OE	3	0	0	3	NIL
3.	17BTEC27	RENEWABLE ENERGY AND CONSTRUCTION METHODS	BTE	OE	3	0	0	3	NIL
4.	17BTEC28	ENVIRONMENT FRIENDLY PRACTICES IN CIVIL ENGINEERING	BTE	OE	3	0	0	3	NIL
5.	17BTEC25	BIOLOGY FOR NON BIOLOGISTS	BTE	OE	3	0	0	3	NIL
6.	17CSEC06	CRYPTOGRAPHY AND NETWORK SECURITY	CSE	OE	3	0	0	3	NIL
7.	17CSCC19	INTRERNET OF THINGS	CSE	OE	3	0	0	3	NIL
8.	17CSCC17	CYBER SECURITY	CSE	OE	3	0	0	3	NIL
9.	17CSEC11	GREEN COMPUTING	CSE	OE	3	0	0	3	NIL
10.	17CSEC34	WEB DESIGN AND MANAGEMENT	CSE	OE	3	0	0	3	NIL
11.	17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	BME	OE	3	0	0	3	NIL
12.	17BMEC12	HOSPITAL MANAGEMENT	BME	OE	3	0	0	3	NIL
13.	17BMEC20	HOSPITAL INFORMATION SYSTEM	BME	OE	3	0	0	3	NIL
14.	17BMEC05	HOME MEDICARE TECHNOLOGY	BME	OE	3	0	0	3	NIL
15.	17BMEC10	BODY AREA NETWORKS AND MOBILE HEALTHCARE	BME	OE	3	0	0	3	NIL
16.	17ATEC04	SPECIAL TYPES OF VEHICLES	AUTOMOBILE	OE	3	0	0	3	NIL
17.	17ATEC06	AUTOMOTIVE SAFETY	AUTOMOBILE	OE	3	0	0	3	NIL
18.	17ATEC10	ALTERNATIVE ENERGY SOURCES FOR AUTOMOBILES	AUTOMOBILE	OE	3	0	0	3	NIL
19.	17ATEC15	VEHICLE TRANSPORT MANAGEMENT	AUTOMOBILE	OE	3	0	0	3	NIL
20.	17ATEC17	VEHICLE AIR-CONDITIONING	AUTOMOBILE	OE	3	0	0	3	NIL
21.	17EEEC10	POWER QUALITY	EEE	OE	3	0	0	3	NIL
22.	17EEEC11	POWER SYSTEM PLANNING AND RELIABILITY	EEE	OE	3	0	0	3	NIL
23.	17EEEC16	ELECTRIC VEHICLES	EEE	OE	3	0	0	3	NIL
24.	17EEEC18	RENEWABLE ENERGY TECHNOLOGY	EEE	OE	3	0	0	3	NIL
25.	17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EEE	OE	3	0	0	3	NIL
26.	17MESE12	PRODUCT LIFE CYCLE MANAGEMENT	MECH	OE	3	0	0	3	NIL
27.	17MESE21	IRON AND STEEL MAKING	MECH	OE	3	0	0	3	NIL
28	17MESE25	COMPUTATIONAL FLUID DYNAMICS	МЕСН	OE	3	0	0	3	NIL
29.	17MESE34	FAILURE ANALYSIS OF MATERIALS	MECH	OE	3	0	0	3	NIL
30.	17MESE27	POWER PLANT ENGINEERING	MECH	OE	3	0	0	3	NIL
31.	17ECEC04	DSP WITH FPGA	ECE	OE	3	0	0	3	NIL
32.	17ECEC06	MEMS AND SENSORS	ECE	OE	3	0	0	3	NIL
33.	17ECEC21	ADVANCED ROBOTICS	ECE	OE	3	0	0	3	NIL

34.	17ECEC22	INNOVATIVE PROJECT	ECE	OE	3	0	0	3	NIL
35.	17ECEC23	MACHINE VISION	ECE	OE	3	0	0	3	NIL
36.	17MBHS06	LEAN START-UP MANAGEMENT	MBA	OE	3	0	0	3	NIL

$\frac{CATEGORY\ D}{PROJECT + INTERNSHIP + INDUSTRY\ ELECTIVES\ (P+I+I)} \\ \frac{CREDITS\ (18)}{}$

	B.E. / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII													
CA	CATEGORY D – PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)- CREDITS (18)													
	(i) PROJECT - CREDITS (9)													
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE					
1.	17CVPI01	PROJECT WORK AND VIVA VOCE	CIVIL	PI	0	0	18	9	NIL					
(ii)	(ii) INTERNSHIP / MINI PROJECT / INDUSTRY SUPPORTED COURSES - CREDITS (9)													
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	P	С	PREREQUISITE					
1.	17CVPI02	INTERNSHIP TRAINING	CIVIL	PI	0	0	6	3	NIL					
2.	17CVPI03	MINI PROJECT	CIVIL	PI	0	0	6	3	NIL					
3.	17CVPI04	UNIT OPERATIONS AND PROCESS IN WATER AND WASTE WATER	CIVIL	PI	3	0	0	3	NIL					
4.	17CVPI05	CONSTRUCTION PROJECT MANAGEMENT	CIVIL	PI	3	0	0	3	NIL					
5.	17CVPI06	PREFABRICATED STRUCTURES	CIVIL	PI	3	0	0	3	NIL					
6.	17CVPI07	INDUSTRIAL WASTE MANAGEMENT	CIVIL	PI	3	0	0	3	NIL					

CATEGORY E

EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

B.E / B.TECH. - CIVIL ENGINEERING - SEMESTER I TO VIII CATEGORY E - EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR **CGPA CALCULATIONS.) OFFERING CATEGORY** PRE-S.NO. **CODE COURSE TITLE** Т P \mathbf{C} **REQUIST DEPT** i EMPLOYABILITY ENHANCEMENT COURSES (EEC) PERSONALITY SKILLS 2 WEEKS OF 17APEE01 MATHS EE 1 1 NIL TRAINING DEVELOPMENT - I PERSONALITY SKILLS **ENGLISH &** 2 WEEKS OF 17APEE02 2 EE 1 NIL DEVELOPMENT - II MANAGEMENT TRAINING 3 17CVEE01 ADVANCED BUILDING DRAWING CIVIL EE NIL. 4 17CVEE02 QUANTITY SURVEYING CIVIL EE 0 0 NIL MUNICIPALITY BUILDING DESIGN 17CVEE03 5 CIVIL EE NIL STRUCTURAL DETAILING WITH THE 17CVEE04 CIVIL 0 NIL 6 EE USE OF SOFTWARES QUALITY CONTROL IN 7 17CVEE05 CIVIL EE 0 0 2 NIL CONSTRUCTION ADVANCED LAND SURVEYING 8 17CVEE06 CIVIL EE 0 0 4 2 NIL TECHNIQUES ADVANCED BUILDING MATERIALS Q 17CVEE07 CIVII. FF0 0 2 NII. AND CONSTRUCTION CHEMICALS **CO - CURRICULAR COURSES** 2 WEEKS OF 17APEE03 1 NCC NCC CELL EE TRAINING IN NIL NCC CAMP 2 WEEKS OF SOCIAL 2 17APEE04 NSS NSS CELL EE NIL SERVICE IN NSS CAMP SPORTS AND GAMES (INTER -PHYSICAL. 3 17APEE05 EE NIL UNIVERSITY LEVEL) **EDUCATION** SPORTS AND GAMES (INTRA-PHYSICAL 4 17APEE06 EE 2 NIL UNIVERSITY LEVEL) **EDUCATION** SPORTS AND GAMES (STATE AND PHYSICAL 5 17APEE07 2 NIL EE NATIONAL LEVELS) **EDUCATION** EXTRA CURRICULAR COURSES 17CVEE08 1 EXTRA CURRICULAR COURSE - I **CIVIL** EΕ 15 HOURS 1 NIL 17CVEE09 2 EXTRA CURRICULAR COURSE - II **CIVIL** EΕ 15 HOURS 1 NIL. 3 17CVEE10 EXTRA CURRICULAR COURSE - III **CIVIL** 15 HOURS NIL EE 1 4 17CVEE11 EXTRA CURRICULAR COURSE - IV **CIVIL** EE 15 HOURS NIL 1 5 17CVEE12 EXTRA CURRICULAR COURSE - V **CIVIL** EE 15 HOURS 1 NIL

CIVIL

EE

15 HOURS

NIL.

6

17CVEE13

EXTRA CURRICULAR COURSE -VI

FOR DEGREE WITH SPECIALISATION

CATEGORY C –
PROGRAMME SPECIFIC
ELECTIVE COURSES CREDITS (12 - 15)

SPECIALISATION - ERP IN CONSTRUCTION

	SPECIALISATION – ERP IN CONSTRUCTION												
1.	17CVSE01	APPLICATION OF STATISTICAL METHODS IN CONSTRUCTION	MATHS	EC - PS	3	0	0	3	ENGINEERING MATHEMATICS				
2.	17CVSE02	ENTERPRISE WIDE INFORMATION SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL				
3.	17CVSE03	MANAGEMENT AND PROJECT PLANNING IN CONSTRUCTION	CIVIL	EC - PS	3	0	0	3	NIL				
4.	17CVSE04	CONSTRUCTION CONTRACTS AND ADMINISTRATION	CIVIL	EC - PS	3	0	0	3	NIL				
5.	17CVSE05	TQM IN CONSTRUCTION	CIVIL	EC - PS	3	0	0	3	TOTAL QUALITY MANAGEMENT				
6.	17CVSE06	HUMAN RESOURCE MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL				
7.	17CVSE07	ENTERPRISE RESOURCE PLANNING SYSTEM	CIVIL	EC - PS	3	0	0	3	NIL				

		SPECIALISATION - IRF	SPECIALISATION – IRRIGATION ENGINEERING											
1.	17CVSE08	SURFACE AND GROUND WATER HYDROLOGY	CIVIL	EC - PS	3	0	0	3	NIL					
2.	17CVSE09	ENVIRONMENTAL IMPACT ASSESSMENT OF IRRIGATION PROJECTS	CIVIL	EC - PS	3	0	0	3	IRRIGATION ENGINEERING					
3.	17CVSE10	WATERSHED CONSERVATION AND MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL					
4.	17CVSE11	IRRIGATION SYSTEMS MANAGEMENT	CIVIL	EC - PS	3	0	0	3	IRRIGATION ENGINEERING					
5.	17CVSE12	COMPUTATIONAL METHODS IN IRRIGATION MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL					
6.	17CVSE13	AGRICULTURAL ECONOMICS	CIVIL	EC - PS	3	0	0	3	NIL					
7.	17CVSE14	MODERNIZATION OF IRRIGATION SYSTEMS	CIVIL	EC - PS	3	0	0	3	IRRIGATION ENGINEERING					

SPECIALISATION - IRRIGATION ENGINEERING

	SPECIALISATION - DISASTER MITIGATION AND RECOVERY									
1.	17CVSE15	TYPOLOGY OF NATURAL AND MANMADE DISASTERS	CIVIL	EC - PS	3	0	0	3	NIL	
2.	17CVSE16	CRISIS COMMUNICATION & MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL	
3.	17CVSE17	DISASTER PREPAREDNESS AND DECISION MAKING	CIVIL	EC - PS	3	0	0	3	NIL	
4.	17CVSE18	VULNERABILITY MAPPING TECHNIQUES FOR DISASTERS	CIVIL	EC - PS	3	0	0	3	NIL	
5.	17CVSE19	INDUSTRIAL HAZARDS PREVENTIVE MANAGEMENT.	CIVIL	EC - PS	3	0	0	3	NIL	
6.	17CVSE20	APPLICATION OF GIS&RS IN DISASTER MANAGEMENT.	CIVIL	EC - PS	3	0	0	3	NIL	
7.	17CVSE21	FINANCE AND INSURANCE IN DISASTER MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL	

SPECIALISATION - DISASTER MITIGATION AND RECOVERY

SPECIALISATION - MASS TRANSPORT SYSTEMS

	SPECIALISATION – MASS TRANSPORT SYSTEMS									
1.	17CVSE22	ADVANCED SYSTEM DYNAMICS MODELING IN TRANSPORTATION ENGINEERING	CIVIL	EC - PS	3	0	0	3	NIL	
2.	17CVSE23	ENVIRONMENTAL IMPACT ASSESSMENT OF TRANSPORTATION PROJECTS	CIVIL	EC - PS	3	0	0	3	NIL	
3.	17CVSE24	INTELLIGENT TRANSPORTATION SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL	
4.	17CVSE25	LOGISTICS IN TRANSPORTATION ENGINEERING	CIVIL	EC - PS	3	0	0	3	NIL	
5.	17CVSE26	PAVEMENT MANAGEMENT SYSTEM	CIVIL	EC - PS	3	0	0	3	NIL	
6.	17CVSE27	REMOTE SENSING AND GIS IN TRANSPORTATION DEVELOPMENT	CIVIL	EC - PS	3	0	0	3	NIL	
7.	17CVSE28	URBAN TRANSPORTATION INFRASTRUCTURE- PLANNING AND DESIGN	CIVIL	EC - PS	3	0	0	3	NIL	

SPECIALISATION - REAL ESTATE AND VALUATION

		SPECIALISATION - REAL ESTAT	TE AND VALU	JATION					
1	17CVSE29	PRINCIPLES OF VALUATION	CIVIL	EC - PS	3	0	0	3	NIL
2	17CVSE30	REAL ESTATE MANAGEMENT & ECONOMICS	CIVIL	EC - PS	3	0	0	3	NIL
3	17CVSE31	REAL ESTATE HUMAN RESOURCE MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL
4	17CVSE32	LAWS FOR ACQUISITION AND CONTRACT	CIVIL	EC - PS	3	0	0	3	NIL
5	17CVSE33	REAL ESTATE FINANCE& MARKETING	CIVIL	EC - PS	3	0	0	3	NIL
6	17CVSE34	VALUATION & DOCUMENTATION WRITING	CIVIL	EC - PS	3	0	0	3	NIL
7	17CVSE35	QUALITY CONTROL AND ASSURANCE IN REAL ESTATE	CIVIL	EC - PS	3	0	0	3	NIL

SPECIALISATION - SUSTAINABLE CONSTRUCTION TECHNOLOGY

	SPECIALISATION – SUSTAINABLE CONSTRUCTION TECHNOLOGY									
1.	17CVSE36	RENEWABLE ENERGY SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL	
2.	17CVSE37	THERMAL INSULATION INSTALLATION	CIVIL	EC - PS	3	0	0	3	NIL	
3.	17CVSE38	SUSTAINABLE URBAN SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL	
4.	17CVSE39	ENERGY AUDITING IN SPECIAL STRUCTURES	CIVIL	EC - PS	3	0	0	3	NIL	
5.	17CVSE40	LIFE CYCLE ASSESSMENT FOR COMPLEX SYSTEMS	CIVIL	EC - PS	3	0	0	3	NIL	
6.	17CVSE41	INFRASTRUCTURE PROJECT DEVELOPMENT	CIVIL	EC - PS	3	0	0	3	NIL	
7.	17CVSE42	GREEN AND ENERGY EFFICIENT BUILDING	CIVIL	EC - PS	3	0	0	3	NIL	

SPECIALISATION - URBAN INFRASTRUCTURE

	SPECIALISATION – URBAN INFRASTRUCTURE									
1.	17CVSE43	EC - PS	3	0	0	3	NIL			
2.	17CVSE44	URBAN ENVIRONMENTAL MANAGEMENT AND LAW	CIVIL	EC - PS	3	0	0	3	NIL	
3.	17CVSE45	SUSTAINABILITY IN BUILT ENVIRONMENT	CIVIL	EC - PS	3	0	0	3	NIL	
4.	17CVSE46	CONSTRUCTION & CONTRACT SAFETY MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL	
5.	17CVSE47	ICT BASED CITY AND INFRASTRUCTURE PLANNING	CIVIL	EC - PS	3	0	0	3	NIL	
6.	17CVSE48	URBAN FINANCE	CIVIL	EC - PS	3	0	0	3	NIL	
7.	17CVSE49	URBAN DESIGN PROJECT	CIVIL	EC - PS	3	0	0	3	NIL	

SPECIALISATION - ENVIRONMENTAL ENGINEERING

	SPECIALISATION – ENVIRONMENTAL ENGINEERING									
1.	17CVSE50	ENVIRONMENTAL IMPACT ASSESSMENT	CIVIL	EC - PS	3	0	0	3	NIL	
2.	17CVSE51	INSTRUMENTAL MONITORING OF ENVIRONMENT	CIVIL	EC - PS	3	0	0	3	NIL	
3.	17CVSE52	INDOOR AIR QUALITY	CIVIL	EC - PS	3	0	0	3	NIL	
4.	17CVSE53	ENVIRONMENTAL POLICIES AND LEGISLATIONS	CIVIL	EC - PS	3	0	0	3	NIL	
5.	17CVSE54	SUSTAINABLE DEVELOPMENT AND ENVIRONMENT	CIVIL	EC - PS	3	0	0	3	NIL	
6.	17CVSE55	REMOTE SENSING AND GIS FOR ENVIRONMENTAL APPLICATION	CIVIL	EC - PS	3	0	0	3	NIL	
7.	17CVSE56	WASTE WATER MANAGEMENT	CIVIL	EC - PS	3	0	0	3	NIL	

COURSES OFFERED TO OTHER DEPARTMENTS

	B.E. / B.TECH. – CIVIL ENGINEERING - SEMESTER I TO VIII											
		COURSES OFFERED T	O OTHER D	EPA	RT	ME	NTS					
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	С	PRE- REQUISITE	OFFERED TO			
1	17CMES02	BASICS OF CIVIL ENGINEERING	ES	2	0	0	2	NIL	MECHANICAL, AUTOMOBILE, AERONAUTICAL, CIVIL, CSE, ECE, EEE, MECHATRONICS & SAE			
2	17CMES81	ENGINEERING SKILLS PRACTICE LAB B. BASIC CIVIL ENGINEERING	ES	0	0	2	1	NIL	MECHANICAL, AUTOMOBILE, AERONAUTICAL, CIVIL, CSE, ECE, EEE, MECHATRONICS & SAE			
3	17CVCC32	FLUID MECHANICS AND STRENGTH OF MATERIALS	CC	3	0	0	3	NIL	AUTOMOBILE & MECHATRONICS			
4	17CVCC33	STRENGTH OF MATERIALS	CC	3	0	0	3	NIL	MECHANICAL & AERONAUTICAL			
5	17CVCC34	FLUID MECHANICS AND MACHINERY	CC	3	0	0	3	NIL	MECHANICAL , AERONAUTICAL			
6	17CVCC92	FLUID MECHANICS AND STRENGTH OF MATERIALS LAB	CC	0	0	4	2	NIL	AUTOMOBILE, AERONAUTICAL & MECHATRONICS			
7	17CVCC93	HYDRAULICS AND STRENGTH OF MATERIALS LAB	CC	0	0	4	2	NIL	MECHANICAL			
8	17CVCC35	FLUID AND SOLID MECHANICS	CC	3	0	0	3	NIL	SAE			
9	17CVCC94	FLUID AND SOLID MECHANICS LAB	CC	0	0	4	2	NIL	SAE			
10	17CVEC07	DISASTER MITIGATION	EC	3	0	0	3	NIL	BME, EEE, CSE, CSE- CLOUD, IT &			

SYLLABUS SEMESTERS I TO VIII

(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS)

17EGHS01	TECHNICAL ENGLISH	Category	L	Т	P	Credit		
		HSS	3	0	0	3		
PREAMBLE	PREAMBLE							
Technical Engl	Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing							

Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario.

PRER	EQUIS	ITE: N	NIL												
COUF	RSE OB	JECTI	VES												
1				o develo	op LSR	W skill	s in En	glish. (I	Listenin	g, Speak	ing, Re	ading, and	Writing	.)	
2	To ma	ake ther	n to bed	come ef	fective	commu	ınicator	rs.							
3	To en	sure tha	ıt learne	ers use	Electro	nic me	dia mat	erials fo	or devel	oping la	nguage				
4	To aic	the stu	idents v	vith em	ployabi	lity ski	lls.								
5	To mo	otivate s	students	contin	uously	to use I	English	langua	ge						
6	To de	velop tł	ne stude	ents con	nmunic	ation sk	ills in 1	formal a	and info	rmal situ	ations				
COLL	RSE OU														
	success			of the	course	studen	te will h	ne ahle	to.						
			1									Remembe	er		
		isten, remember and respond to others in different scenario Remember Inderstand and speak fluently and correctly with correct pronunciation in different Understand													
situatio															
CO3. 7	Γο make	the stu	dents e	xperts i	n profe	ssional	writing	5				Apply			
CO4	To mak	te the st	udents	in profi	cient te	chnical	comm	unicato	r			Apply			
										e theore	tically	Apply			
strong.															
				_		le of tec	hnical	writing	in their	careers	in	Analyze			
	ss, techr					COME	SAND) PROC	FRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	PSO2	PS
															O3
CO1	M	M			M	M	S		L	S	L	S	S	M	S
CO2	L	M		L	M	M	S		L	S	S	S	S	M	M
CO3	M	L	L	M			L	L	L	M	S	S	S		
CO4		M				M	M		L	S		S	S		S
CO5	M	M		M	M	M	S	M	L	S	M	S	S	M	S
CO6	M		M			M					S	M	S	M	S
S- Stro	ong; M-N	Medium	; L-Lo	W											

SYLLABUS

LISTENING

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills-Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

SPEAKING

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines - Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones - Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

REPORT WRITING

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

READING

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXTBOOK

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.
- 4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Course Designers:

S.No.	Name of the Faculty	Mail ID
1.	Dr.P.Saradha / Associate Professor of English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor/Assistant Professor of English	Prem.english@avit.ac.in

17EG	SHS81			ENG	LISH I	LANG	UAGE	LAB			Catego	gory L I F Cred					
											HSS		0	0	4	2	
Englis		age Lal								. It acts a			r lea	arning,	praction	cing and	
PRER	EQUIS	ITE: N	NIL														
COUF	RSE OB	JECTI	VES														
1	To und	derstand	d comm	unicati	on nuis	ances in	the co	rporate	sector.								
2	To und	derstand	d the ro	le of mo	other to	ngue in	second	l langua	ige lear	ning and	to avoid	d interf	eren	ice of m	nother	tongue.	
3	_				throug			ivities									
4				<u> </u>	e teleph		_										
5	Case study to understand the practical aspects of communication																
6	To improve the oral skills of the students																
COUL	RSE OU	TCOM	1ES														
	success								to								
CO1. 0	Give be	st perfo	rmance	in gro	ıp discı	ission a	nd inte	rview				Under	stan	d			
	O2. Best performance in the art of conversation and public speaking. Apply																
CO3. 0	Give bet	ter job	opportu	inities i	n corpo	rate co	mpanie	S				Apply					
	Better ence and		_		ances o	of Engl	lish lar	iguage	through	h audio-	visual	Apply					
					and o	confide	nce wh	nich in	turn 6	enhances	their	Apply					
	yability																
	•	_	•		to use b	oth spo	oken an	d writte	en langu	age in a	wide	Apply					
	of comn				E OUT	COME	S ANT) PROC	TRAM	ME SPE	CIFIC	OUTC	:OV	1ES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			PSO1	PS	PSO3	
COS	POI	POZ	PO3	PO4	PO3	PO0	PO7	PO8	PO9	POIU	POII	POI	2	P301	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PSOS	
CO1		S	M	S		L			S	S	M			M	32	M	
CO2	M								M	S		M	[S	M	S	
CO3	M									S		M	[M		S	
CO4	M									M				M	M	M	
CO5	M			S						M				S	M	S	
CO6		M	M							M				M	M		

Category L T P Credit

SYLLABUS

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

MODULE V: Case study of Etiquette in different scenario.

S- Strong; M-Medium; L-Low

Cours	se Designers:			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17EGHS82

PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOENT

Category	L	Т	P	Credit
HSS	0	0	2	1

PREAMBLE

To develop students with good presentation and writing skills (Professionally & technically). Articulate and enunciate words and sentences clearly and effectively. Develop proper listening skills. Understand different writing techniques and styles based on the communication being used.

PREREQUISITE: NIL

COUF	RSE OBJECTIVES
1	To develop communication and personality skills.
2	To improve Aptitude skills, train to improve self-learning / researching abilities, presentation skills & technical
	writing.
3	To improve students employability skills.
4	To develop communication and problem solving skills.
5	To develop professional with idealistic, practical and moral values.
6	To produce cover letters, resumes and job application strategies.
COUR	RSE OUTCOMES

On the successful completion of the course, students will	be able to
---	------------

1 '	
CO1. Improve students their vocabulary and use them in appropriate situation	Understand
CO2. Demonstrate effective use of team work skills to complete given tasks.	Apply
CO3. Speaking with clarity and confidence thereby enhancing employability skills of	Apply
the students.	
CO4. Train the students in organized and professional writing	Apply
CO5. Develop students reading skills that could be adopted while reading text	Apply
CO6. Improve communication and personality skills.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2	PSO3
												2			
CO1	M	M				M	M		M	S			S	M	S
CO2	M								S	M				M	S
CO3							M		S	S			S	S	
CO4	S											M		M	M
CO5													M	M	
CO6	S								M	S		M	S		M

S- Strong; M-Medium; L-Low

SYLLABUS

COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication.

GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

SPEAKING SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation

TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria & Sons, New Delhi, Rep''nt 2007

REFERENCE BOOKS

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India
- 3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C.and Krishna Mohan, Tata Mc Graw Hill.

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17EGHS02	BUSINESS ENGLISH	Category	L	T	P	Credit
		HSS	3	0	0	3

PREAMBLE

Language is one of the most valued possessions of men. It acts as a repository of wisdom. Among all other languages English, the international language plays a vital role as a propeller for the advancement of knowledge in different fields and as a telescope to view the dream of the future.

PREREQUISITE: NIL

COUF	RSE OB	JECTI	VES												
1	To in	npart ar	nd enha	nce corj	porate o	commui	nication	1.							
2	To er	nable le	arners t	o devel	op pres	entatio	n skills								
3	To b	uild coi	nfidenc	e in lear	ners to	use En	glish in	Busine	ess cont	ext					
4	To ma	ke ther	n exper	ts in pro	ofession	nal writ	ing								
5	To ass	sist stud	lents ur	derstan	d the ro	ole of th	inking	in all fo	orms of	commun	nication				
6	To eq	uip stuc	lents w	ith emp	loyabili	ity and	job sea	rching s	skills						
COUF	RSE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	e able	to						
	1. Communicate with a range of formal and informal context Understand														
	O2. Students will undergo in activities, demonstrating interaction skills and consider vown communication is adjusted in different scenario Apply														
CO3. S	Strength	ening o	f oral a	nd writt	en skill	ls in the	busine	ess cont	ext			Apply			
										ghts and		Apply			
CO5. I ideas	Make the	e studer	nts to s	tart witl	n pleasi	ng note	and m	ake the	em to gi	ve differ	ent	Apply			
	Make the											Apply			
MAPI	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	M		L		L	S	S		M	S		S	S		
CO2		M	S	M		M	M		L	S		S	M		
CO3	L	M				M		L		S	L	M		M	
~~ .		_					_								T

S- Strong; M-Medium; L-Low

M

M

M

CO₄

CO5

CO₆

SYLLABUS

L

M

M

 \mathbf{L}

S

S

M

L

 \mathbf{S}

M

M

M

M

SUBJECT AND VERB AGREEMENT: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS: Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION: Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

CRITICAL READING: Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXTBOOK

1. 1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai.

REFERENCE BOOKS

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17MBHS04	TOTAL QUALITY	Category	L	Т	P	Credit
1711111304	MANAGEMENT	HSS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Total Quality Management concepts.
- 2. To practice the TQM principles.
- 3. To apply the statistical process control
- 4. To analyze the various TQM tools
- 5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply
Environment.	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	-	L	L	L	M	L	M	-	-	L
CO2	M	-	-	-	L	L	-	L	M	M	-	L	-	-	-
CO3	S	S	M	S	S	-	-	L	-	L	-	L	M	M	-
CO4	L	M	S	L	M	-	L	-	L	M	L	M	-	M	-
CO5	L	L	M	-	L	M	S	S	M	L	L	M	L	-	M

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs - Analysis Techniques for Quality Costs- Basic concepts of Total

Quality Management- Historical Review- Principles - Leadership - Concepts- Role of Top Management- Quality

Council - Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation - Barriers.

TOM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits- Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Management tools.

TOM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

17MBHS03	ENGINEERING MANAGEMENT AND ETHICS	Category	L	T	P	Credit
	ETHICS	HSS	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE - NIL

COU	JRSE OBJECTIVES
1	.To Understand the principles of planning at various levels of the organisation.
2	To analyse and practice the concepts of organizing, staffing to higher productivity.
3	To apply the concepts related to directing and controlling.
4	To understand and apply the case studies to practice code of ethics in organisation.
5	To apply the ethical principles in working environment.

COURSE OUTCOMES

After successful completion of the course, students will be able to

CO1: Understand the importance of planning principles in organization	Understand
CO2: Apply the various strategies of organising and staffing process.	Apply
CO3: Analyse various leadership skills and control techniques for shaping the	Analyse
organization.	
CO4: Understand and apply best ethical practices in organisation	Analyse
CO5: Analyse and Apply relevant ethical practices in engineering.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
	1												1	2	3
CO1.	M	M	M	L	S	M	M	L	S	S	S	S			
CO2.	M	L	L	-	M	M	M	L	M	S	M	M			
CO3.	M	M	L	-	M	M	M	L	L	S	S	M			
CO4.	L	M	-	M	-	M	S	S	S	S	-	M			
CO5.	M	M	-	L	-	M	S	S	S	S	-	M			

S- Strong; M-Medium; L-Low

SYLLABUS PLANNING

9

Management – Nature & Scope – Functions of Management – Levels of Management – Role of Managers - Nature and purpose of planning - Planning process - Types of plans – Objectives Managing by objective (MBO) - Decision Making - Types of decision - Decision Making Process - Decision Making under different conditions.

ORGANIZING & STAFFING

9

Nature and purpose of organizing - Organization structure - Formal and informal Organization - Line and Staff authority - Departmentation - Span of control - Centralization and Decentralization - Delegation of authority - Staffing - Selection and Recruitment - Orientation - Career Development - Career stages - Training Methods - Performance Appraisal.

DIRECTING & CONTROLLING

9

Creativity and Innovation - Motivation and Satisfaction - Motivation Theories - Leadership Styles - Communication - Barriers to effective Communication - Controlling - Controlling Techniques - Organization Culture - Elements and types of culture - Managing cultural diversity..

INTRODUCTION TO ETHICS

9

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger Case Study

ETHICS IN ENGINEERING

9

Employed Engineers Rights and Duties- Collective Bargaining-Occupational Crime- Global Issues- Multinational Corporation- Technology transfer-Engineers as managers-Consulting Engineers-Expert Witness-Moral Leadership

TEXT BOOKS

- 1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.
- 2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.
- 3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

REFERENCES

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).
- 2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.
- 3. Andrew J. Dubrin, 'Essentials of Management', Thomson Southwestern, 7th edition, 2007.
- 4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics An Indian Perspective", Biztantra, New Delhi, (2004)
- 5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate Professor	Management Studies	manickam@vmkvec.edu.in
2	C. M. Muthukrishna	Assistant Professor	Management Studies	Muthukrishna.mba@avit.ac.in

7MBHS07	PROFESSIONAL ETHICSAND HUMAN VALUES	Category	L	Т	P	Credit
	1201,112 () 122 0 2 5	HSS	3	0	0	3

PREAMBLE: Ethics is a system of moral principles governing the appropriate conduct of a person or a group. Good Ethics is a fundamental requirement of any profession. Regardless of profession, ethics is an important part of work. The success depend on how the workers and their dealing with the situations ethically or unethically. Professional ethics are as important as personal ethics. Professional ethics encompass the personal and corporate standards of behavior expected by professional. Human values are the features that guide people to take into account the human element when one interacts with other human. They have many positive characters and positive feelings that create bonds of humanity between people and thus have value for all human beings and have the effect of bonding, comforting, reassuring and procuring serenity. They build space for a drive, a movement towards one another, which leads to peace.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the basic concept of Human Values and Ethics.
- 2. To analyse the common ethical practice in the engineering professionals.
- 3. To Practice various code of ethics in Engineering.
- 4. To apply the rights, legal, ethical issues.
- 5. To practice ethical responsibilities of a professional engineer.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the moral values that ought to be practiced in engineering profession	Understand
CO2: Analyse the role of ethics in the field of engineering.	Analyse
CO3: Practice the code of ethics and Industrial standards	Apply
CO4: Assess the Safety, Quality Management and Risk analysis	Evaluate
CO5: Apply the skills and knowledge to handle the contemporary issues.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO2	PSO
		2								0	1	2	1		3
CO1	M	-	-	-	-	M	-	L	M	M	L	M	-	L	-
CO2	M	-	-	-	-	S	L	M	L	M	L	M	-	L	L
CO3	M	-	M	L	L	M	-	M	-	-	M	M	-	M	-
CO4	M	M	M	-	M	L	-	M	L	L	L	M	L	M	M
CO5	M	M	M	L	L	-	-	M	L	M	M	M	L	M	M

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction to Human Values

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self-Confidence–Discrimination - Character – Challenges in the work place - Spirituality – and stress management.

Overview of Engineering Ethics

Senses of 'Engineering Ethics' – Variety of moral issues – Moral Dilemmas- moral autonomy -Kohlberg'stheory-Gilligan'stheory-consensusandcontroversy-Profession – Types of Profession- Models of professional roles – Theories about right action – Self- Respect- Self-interest – Customs and Religion – Uses of Ethical Theories–Religion - Case study: Choice of the theory

Engineering as Social Experimentation

Engineering as Experimentation – Engineering Projects VS. Standard Experiments - Engineers as responsible Experimenters – Codes of Ethics – anticorruption-A Balanced Outlook on Law.

SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

GLOBAL ISSUES

Transnational and MNC corporations-Environmentalethics-Computerethics-Weaponsdevelopment and Ethical - stand for Engineers in creation-Engineers as managers-Consulting engineers-Engineers as expertwitnessesandadvisorsEthical Responsibilities of a Professional Engineer as an Expert Witness -Moral Leadership –Code of Conduct – Corporate Social Responsibility Case Studies

TEXT BOOK:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 3. R.S. Nagarajan, A Text Book on Professional Ethics and Human Values, New Age International (P) Limited, Publishers, 2006

REFERENCES:

- 1. Charles D. Fleddermann, "Engineering Ethics", Pearson Education/Prentice Hall, New Jersey, 2004
- 2. CharlesEHarris,MichaelS.ProtchardandMichaelJRabins,"EngineeringEthics—Concepts and Cases",WadsworthThompsonLeatning, United States,2000
- 3. John R Boatright, "Ethicsandthe ConductofBusiness", PearsonEducation, NewDelhi, 2003.
- 4. EdmundGSeebauerandRobertLBarry, "FundamentalsofEthicsforScientistsandEngineers", Oxford Press, 2000
- 5. R.Subramanian, "ProfessionalEthics", Oxford University Press, Reprint, 2015.

COURSE DESIGNERS:

;	S.No	Name of the Faculty	Designation	Department	mail id	
1		Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in	
2	2	T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in	

(ii) BASIC SCIENCES	(MATHS, PHYSICS SUBJECTS)	AND CHEMISTRY

17MA	BS01		EN	IGINE	ERING	S MAT	НЕМА	TICS		Cate	gory	L	T	P	Credit
										В	S	2	2	0	3
PREAM	IBLE										I			<u> </u>	
The driv	ing for	rce in E	Engineer	ring Ma	themat	ics is th	e rapid	growth	of tech	nology a	and is de	signed to	provide	the basi	c tools of
calculus	mainl	y for tl	he purp	ose of	modelli	ng the	engine	ering p	roblems	mathen	natically	and obta	ining so	lutions.	This is a
foundati	on cou	irse wh	ich mai	nly dea	ls with	topics	such as	single	variable	e and mu	ıltivariab	le calcul	us and p	lays an i	mportant
role in tl	he und	erstand	ing of s	cience,	engine	ering, e	conomi	cs and	comput	er scienc	e, among	g other di	sciplines	S.	
PRERE	QUIS	ITE													
COURS	SE OB	JECTI	VES												
1	To ide	entify th	ne chara	cteristi	cs of a	linear s	ystem w	vith Eig	en valu	es and E	igen vec	tors.			
2	To im	prove t	heir abi	lity in s	olving	geomet	rical ap	plicatio	ons of di	ifferentia	l calculu	IS			
3	To fin	d a max	ximum	or mini	mum va	alue for	a funct	ion of s	several	variables	subject	to a give	n constra	int.	
4	, c														
5	Incorp	orate tl	he knov	vledge o	of vecto	or calcul	lus to su	ıpport t	heir coi	ncurrent	and subs	equent e	ngineerin	ng studie	S
COURS	SE OU	TCOM	IES												
On the s	uccess	ful con	npletion	of the	course,	student	ts will b	e able	to						
CO1. A	ble to	unders	stand th	e syste	m of li	near ec	uations	arisin	g in all	enginee	ring fiel	ds using	matrix	I I adam	d
methods	S.													Unders	stand
CO2. D	D etermi	ine the	evolute	and en	velope	for a giv	ven fam	ily of c	urves					Apply	
CO3. A	pply di	ifferent	iation to	solve	maxima	a and m	inima p	roblem	ıs.					Apply	
CO4. C	ompute	e the ar	ea and v	volume	of plan	e using	integra	tion						Apply	
CO5. E	valuate	the sur	rface an	d volur	ne integ	gral usii	ng Gree	n's, Sto	okes and	d Gauss 1	Divergen	ce theore	ems	Analyz	ze
MAPPI	NG W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	M							M	S	M	M
CO2	S	M	M	M	M							M	S	M	M
CO3	S	M	M	M	M							M	S	M	M
CO4	S	M	M	M	M							M	S	M	M
CO5	S	M	M	M	M							M	S	M	M
S- Stron	g; M-N	Medium	ı; L-Lov	W					<u> </u>		1	I	<u> </u>		<u> </u>

SYLLABUS

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Ms.S.Gayathri	Asst.Prof.Grade I	AVIT	gayathri@avit.ac.in

17MABS08	MATHEMATICS FOR CIVIL ENGINEERS	Category	L	Т	P	Credit
171111500		BS	2	2	0	3

PREAMBLE

An engineering student needs to have some basic mathematical tools and techniques to apply in diverse applications in Engineering. This emphasizes the development of rigorous logical thinking and analytical skills of the student and appraises him the complete procedure for solving different kinds of problems that occur in engineering. The Laplace transform method is a powerful method for solving linear ODEs and corresponding initial value problems as well as systems of ODEs arising in Engineering. The knowledge of transformations is to create a new domain in which it is easier to handle the problem that is being investigated.

PREREOUISITE

Engineering Mathematics (17MABS01)

COURSE OBJECTIVES

- 1 To familiarize with the applications of differential equations.
 - 2 To learn Laplace transform and its Inverse method to solve differential Equations and integral transforms
 - To calculate the Fourier transforms of periodic function.
 - 4 To gain the knowledge in Z Transform and its applications.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Predict the suitable method to solve second and higher order differential equations	Apply
CO2. Learn the properties of Laplace transforms techniques	Understand
CO3. Apply Applications of Laplace transform to solve an ordinary differential equation.	Apply

CO4. To use the Fourier transform as the tool to connect the time domain and frequency domain to evaluate the given integral

Analyze

CO5. Solve the given difference equations using Z-transform.

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	S	M	M	M							M	M	M	M	
CO2	S	S	M	M	M							M	M	M	M	
CO3	S	S	M	M	M							M	M	M	M	
CO4	S	S	M	M	M							M	M	M	M	
CO5	S	S	M	M	M							M	M	M	M	

S- Strong; M-Medium; L-Low

SYLLABUS

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions

INVERSE LAPLACE TRANSFORMS AND APPLICATIONS

Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms.

FOURIER TRANSFORMS

Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z-TRANSFORMS

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

TEXT BOOKS:

- 3. "Engineering Mathematics I & II", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 4. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 5. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 5. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi (2011).
- 6. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012)
- 7. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 8. Kandasamy .P, Thilagavathy. K. and Gunavathy. K., "Engineering Mathematics", Volumes I & II (10th Edition), S. Chand & Co., New Delhi (2014).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Ms.S.Gayathri	Asst.Prof.Grade I	AVIT	gayathri@avit.ac.in

17MA	BS13	PDE APPLICATIONS AND COMPLEX	Category	L	Т	P	Credit			
		ANALYSIS	BS	2	2	0	3			
PREA	MBLE									
rigorou Hydrau	is logical think ilics, predicting	quations frequently arise in the field of science and ing and analytical skills of the student for solving quantities of materials necessary for construction etc. ructing buildings.	g different ki	nds of prol	blems that	at occur in	n field of			
PREREQUISITE Engineering Mathematics (17MABS01)										
COUR	SE OBJECTI	VES								
1	To formulate	and solve partial differential equations.								
2	To represent a	a periodic function as a Fourier series.								
3	To be familiar	r with applications of partial differential equations.								
4	To expose the	concept of Analytical function.								
5	To familiarize	e with Complex Integration.								
COUR	SE OUTCOM	ES								
On the	successful com	pletion of the course, students will be able to								
CO1 I	Inderstand the	hasic concepts of linear non-linear partial differenti	al aquations r	alated to E	nainaarin	Œ				

on the successful completion of the course, students will be used to	
CO1. Understand the basic concepts of linear, non-linear partial differential equations related to Engineering Field	Understand
CO2. Demonstrate periodic functions arising in the study of engineering problems as Fourier series of sine and cosines and compute the Fourier coefficients numerically.	Apply
CO3 . Solve partial differential equations arising in engineering problems like wave equations and heat flow equation by Fourier series.	Apply
CO4. Apply bilinear transformations and conformal mappings	Apply
CO5. Identify the applicability of theorems and evaluate the contour integrals.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	M							M	M	M	M
CO2	S	S	M	M	M							M	M	M	M
CO3	S	S	M	M	M							M	M	M	M
CO4	S	S	M	M	M						-	M	M	M	M
CO5	S	S	M	M	M							M	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0, f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations - Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of two-dimensional heat equation - Fourier series solutions in Cartesian coordinates.

ANALYTIC FUNCTIONS

Function of a complex variable – Analytic function – Necessary conditions - Cauchy Riemann equations – Sufficient conditions (excluding proof) – Harmonic conjugate–Constructions of analytic functions-conformal mapping

$$\left(w=z+c, w=z^2, w=\frac{1}{z}\right)$$
 bilinear transformations.

COMPLEX ANALYSIS

Statement and applications of Cauchy's integral theorem and integral formula – Taylor's and Laurent's expansions –Residues – Cauchy's residue theorem-contour integration over unit circle.

Text Books

- 1. Kreyszig, E., "Advanced Engineering Mathematics" (8th Edition), John Wiley and Sons, (Asia) Pte Ltd., Singapore, 2000.
- 2. Kandasamy .P., Thilagavathy. K., and Gunavathy. K., "Engineering Mathematics", Volumes I & II (4th edition), S.Chand & Co., New Delhi.
- 3. Grewal, B.S., "Higher Engineering Mathematics" (35th Edition), Khanna Publishers, Delhi 2000.

Reference Books

- 1. T. Veerarajan, "Engineering Mathematics" (for semester III), Third Edition Tata McGraw- Hill Publishing Company limited, 2006.
- 2. A.Singaravelu,"Transforms and Partial Differential Equations", Meenakshi Agencies, Chennai.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Dr.A.K.Bhuvaneswari	Asst.Prof. grade II	AVIT	bhuvaneswari@avit.ac.in

17MABS16	NUMERICAL METHODS	Category	L	Т	P	Credit
		BS	2	2	0	3

PREAMBLE

This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. An under graduate of Engineering student needs to know sufficient numerical methods and techniques for solving engineering problems such as static or steady state problems, vibration or stability problems and initial value or transient problems etc.

PREREQUISITE

- 1. Engineering Mathematics (17MABS01)
- 2.Differential Equations and Transforms (17MABS06)

COURSE OBJECTIVES

1	To familiar with numerical solution of equations							
2	To be get exposed to finite differences and interpolation							
3	To be thorough with the numerical Differentiation and integration							
4	To find numerical solutions of ordinary differential equations							
5	To find numerical solutions of partial differential equations							

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Solve the system of linear algebraic equations and single non linear equations arising in the field of Engineering.						
CO2. Apply methods to find intermediate numerical value & polynomial of numerical data.						
CO3. Apply methods to find integration, derivatives of one and two variable functions.						
CO4. Solve the initial value problems using single step and multistep methods.						
CO5. Solve the boundary value problems using finite difference methods.	Analyze					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	M							M	S	M	M
CO2	S	S	M	M	M							M	S	M	M
CO3	S	S	M	M	M							M	S	M	M
CO4	S	S	S	S	M					-	-	M	S	M	M
CO5	S	S	S	S	M							M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS: Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method. Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS: Finite difference solution for the second order ordinary differential equations, Finite difference solution for one dimensional heat equation (both implicit and explicit). One dimensional wave equation and two dimensional Laplace and Poisson equations.

TEXT BOOKS:

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers, 2015.
- 2. S. R. K. Iyengar, R. K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition, 2012.
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2004).

REFERENCES:

- 1. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3 rd Edition, 2015, Tata Mc-Graw Hill. (New York).
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education, 2010.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the college	Mail ID		
1	Dr. S.Punitha	Associate Professor	VMKVEC	punitha@vmkvec.edu.in		
2	Dr.A.K.Bhuvaneswari	Asst.Prof. grade II	AVIT	bhuvaneswari@avit.ac.in		

17PCBS02		PHYSICAL SCIENCES PART A - ENGINEERING PHYSICS						Categ	-	L 2	T 0	P 0	Cred it		
DDEA												2	0	U	
Engineering Physics is the study of advanced physics concepts and their applications in various technological and engineering domains. Understanding the concepts of laser, types of lasers, thepropagation of light through fibers, applications of optical fibers in communication and different types of non-destructive techniques will help an engineer to analyze, design and to fabricate various conceptual based devices. PREREQUISITE: NIL															
COURSE OBJECTIVES															
1	To re	call the	proper	ties of 1	aser an	d to exp	olain pr	inciple	es of la	ser					
2	To as	sess the	applic	ations c	of laser										
3	To de	tail the	princip	les of f	iber op	tics									
4	To stu	ıdy the	applica	tions of	f fiber o	optics									
5															
COUR	RSE OU	JTCON	MES												
On th	he succ	essful c	omplet	ion of t	he cour	se, stuc	dents w	ill be a	able to						
CO6.	. Undei	stand 1	the prin	ciples l	aser, fil	ber opti	ics and	non-d	estructi	ve testin	g		Underst	and	
CO7.	. Under		the co	nstructi	on of	laser,	fiber	optic	and N	on-Dest	ructive	testing	Underst	and	
CO8.		nstrate onents a		_	of lase	r, fiber	optic	and N	Non-De	structive	testing	based	Apply		
CO9.	CO9. Interpret the potential applications of laser, fiber optics and Non-Destructive testing in various fields. Apply														
CO10	CO10. Differentiate the working modes of various types of laser, fiber optic and Non-Destructive testing based devices. Analyze														
MAPF	PING V	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PR	OGRA	MME S	PECIF	IC OUT	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
CO1	S		M									M	S		
CO2	S		L									M	S		
CO3	S			M			M					M	S		
CO4	S	M		M	M	S	M					M	S		

S- Strong; M-Medium; L-Low

M

SYLLABUS

UNIT-I

LASERS: Laser characteristics - Stimulated Emission - Population Inversion - Einstein coefficients - Lasing action - Types of Laser - Nd:YAG laser, CO2 laser, GaAs laser - Applications of Laser - Holography - construction and reconstruction of a hologram

UNIT-II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

UNIT-III

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

- 1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.
- 2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.
- 3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co, 2010.

REFERENCE BOOKS

- 1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.
- 2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.
- 3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.
- 4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.
- 5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.
- 6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

Subject Code	Subject Title PHYSICAL SCIENCES	Category	L	Т	P	Credit
17PCBS02	PART B - ENGINEERING CHEMISTRY (Common to All Branches)	BS	2	0	0	2

Objective of this course is to present a better understanding of basic concepts of chemistry and its applications on different engineering domains. It also imparts knowledge on fundamentals of Electrochemistry, Energy storage technologies, properties of water and its treatment methods, classification of fuels, Non conventional sources of Energy and various advanced Engineering materials.

PREREQUISITE

Nil

COURSE OBJECTIVES

1	To impart basic knowledge in Chemistry so that the student will understand the engineering concept
2	To familiar with electrochemistry and Battery and fuel Cells
3	To lay foundation for practical applications of water softening methods and its treatment methods in engineering aspects.
4	To inculcate the knowledge of fuels and advanced material.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the electrochemistry, batteries and working principle of energy storage devices	Understand					
CO2. Estimate the hardness of water	Apply					
CO3 Identify suitable water treatment methods	Analyze					
CO4.Outline the important features of fuels and advanced materials	Analyze					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	S	M	-	M	-	S	S	S	-	-	L	M	M	-	M
CO2	S	S	M	-	-	M	M	M	-	-	-	M	M	M	M
CO3	S	S	M	-	-	M	S	M	-	-	-	M	M	M	M
CO4	S	-	-	-	L	L	M	L	-	-	-	S	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

ELECTROCHEMISTRY, BATTERIES AND FUEL CELLS:

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H2-O2 fuel cell)

WATER TECHNOLOGY AND CORROSION:

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite &Demineralisation) – Domestic water treatment – Desalination (Electrodialysis&ReverseOsmosis).

FUELS AND CHEMISTRY OF ADVANCED MATERIALS:

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite).

TEXT BOOKS:

1. Engineering Chemistry piled by Department of Chemistry, Vinayaka Missions University, Salem.

REFERENCES:

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand& company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by ShashiChawla, Edition 2012 Dhanpatrai& Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry	asmgill80@gmail.com
3	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4	Dr.K.Sanghamitra	Associate Professor	Chemistry	sanghamitra.chemistry@avit.ac.in

17PCBS81	PHYSICAL SCIENCES LAB: PART A – REAL	Category	L	Т	P	Credit
	AND VIRTUAL LAB IN PHYSICS	CC	0	0	2	1

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL

COURSE OBJECTIVES

- 1 To impart basic skills in taking reading with precision of physics experiments
- 2 To inculcate the habit of handling equipments appropriately
- 3 To gain the knowledge of practicing experiments through virtual laboratory.
- 4 To know the importance of units
- 5 To obtain results with accuracy

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO11.	Understand					
CO12.	CO12. Operate the equipments with precision					
CO13.	Practice to handle the equipments in a systematic manner	Apply				
CO14.	CO14. Demonstrate the experiments through virtual laboratory					
CO15.	Calculate the result with accuracy	Analyze				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	S	S													
CO 2	S	S	M	M	S				M			M	M	M	
CO 3	S														
CO 4	S	S	M	M	S							S	M	M	
CO 5	S	S													

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Young's modulus of a bar Non-uniform bending
- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Missions Research Foundation (Deemed to be University), Salem.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

17PCBS81	PHYSICAL SCIENCES LAB PART B - ENGINEERING CHEMISTRY LAB	Category	L	Т	P	Credi t
	(Common to All Branches)	BS	0	0	2	1

Engineering Chemistry Lab experiments explains the basics and essentials of Engineering Chemistry. It also helps the students to understand the applications of Engineering Chemistry. The electrodes, Cell and batteries study gives clear basic application oriented knowledge about electrochemistry. Water technology study gives the idea about hardness and its disadvantages.. Now-a-days the practical and handling of equipments are needed for our fast growing life style.

PREREQUISITE

Nil

COURSE OBJECTIVES

1	To impart basic skills in Chemistry so that the student will understand the engineering concept.
2	To inculcate the knowledge of water and electrochemistry.
3	To lay foundation for practical applications of chemistry in engineering aspects.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Estimate the chemical properties of water	Apply
CO2. Determine the presence of various elements in the water	Analyze
CO3. Calculate the strength of acids, oxidizing and reducing agents	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	S	M	M	-	L	M	M	S	-	-	-	M	M	S	S
CO2	S	M	M	-	L	M	M	L	-	-	-	M	M	S	S
CO3	S	S	M	-	L	M	M	M	-	-	-	M	M	S	M

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. Estimation of Iron by Spectrophotometer

TEXT BOOK

1. Engineering Chemistry Lab Manual by VMU.

5	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	l.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2	2.	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry	asmgill80@gmail.com

3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate Professor	Chemistry	sanghamitra.chemistry@avit.ac.in

17PHBS05	SMART MATERIALS	Category	L	Т	P	Credit
		Basic Sciences	3	0	0	3

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PREROUISITE

NIL

COURSE OBJECTIVES

- To explain the fundamental properties and classification of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.
- 2 To paraphrase the basic crystalline structure and its properties.
- 3 To illustrate the synthesis and fabrication of Nano materials.
- To predict the application of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.
- 5 To analyze the various parameters of crystalline materials.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

*	
CO1. Restate the properties of various materials.	Understand
CO2. Summarize the various structures of materials.	Understand
CO3. Predict the applications of various materials to designing equipments.	Apply
CO4. Illustrate the properties of materials to designing equipments.	Apply
CO5. Calculate the crystalline parameters of the materials.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO3
	1												1	2	
CO1	S	S	S	M	S				M			S	M	M	
CO2	S	M	S	M	S				M			M			
CO3	S	S	S	S	S				S			M	M		
CO4	S	M	S	M	S				M			M			
CO5	M	S	S	M	M				S			M			

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2018

REFERENCES:

- 1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

(CO	T	R	CF	D	FSI	C	VER:	C

S.No	Name of the Faculty	Designation	Department	Mail ID						
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in						
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in						
3	Dr .G. LATHA	Professor	Physics	latha.physics@avit.ac.in						
4	Dr. R. N. VISWANATH	Professor	Physics	viswanath.physics@avit.ac.in						

17CHBS01

ENVIRONMENTAL SCIENCE & ENGINEERING (COMMON TO ALL BRANCHES)

Category	L	Т	P	Credit
BS	3	0	0	3

Preamble

Environmental science and Engineering is an interdisciplinary field that integrates physical, chemical, biological, information sciences and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protect it. Furthermore, it deals the social issues and ethics to develop quality engineer in our country.

PREREQUISITE

NIL

COURSE	OBJECTIVES	
	UDAIDA LIVES	

1	Applying Science and Engineering knowledge to protect environment
2	To provide comprehensive insight in natural resources and protect natural resources
3	To create awareness on the various pollutions and their impact.
4	To educate the ways and means to manage natural calamities
5	To impart fundamental knowledge on human welfare measures

COURSE OUTCOMES

After Successful completion of this course, the students will be able to:

*	
CO1.Comprehend the impact of engineering solutions in a global and societal context	Understand
CO2.Illustrate the contemporary issues that results in environmental degradation and would	Understand
attempt to provide solutions to overcome those problems	
CO3.Illustrate the importance of ecosystem and biodiversity	Apply
CO4.Practice to improve the environment and sustainablity	Apply
CO5.Conclude the importance of conservation of resources.	Analyze
CO6. Estimate the important role of IT in healthy environment for future generations	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO	PO1	PS	PS	PSO3
										0	11	2	O1	O2	
CO1	S	M	-	-	-	M	S	S	M	M	-	S	M	M	S
CO2	S	-	-	-	-	S	S	S	-	-	-	S	M	M	S
CO3	S	-	-	-	-	M	S	M	L	-	-	S	M	M	S
CO4	S	-	-	-	-	M	S	S	M	M	-	S	M	M	S
CO5	S	-	-	-	-	M	S	S	M	M	-	S	M	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES: Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over - exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development

ECOSYSTEMS AND BIO – DIVERSITY: Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity: values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION: Pollution - Definition , manmade impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation - Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and landslides - Clean technology options

SOCIAL ISSUES AND ENVIRONMENT: Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board

HUMAN POPULATION AND ENVIRONMENT:Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights — Value education - Women and child welfare, Role of information technology in environment and human health.

TEXT BOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES:

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and tandards Vol I & II, Enviro media.
- 4. Dr. J. Meenambal, Environmental Science and Engineering, MJP Publication, Chennai
- 5. Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0, 2004

S.	Name of the Faculty	Designation	Department	Mail ID
No				
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
	_	Professor	-	

Subject Code	Subject Title	Category	L	T	P	Credit
17CHBS06	GREEN BUILDING MATERIALS	BS	3	0	0	3

This course is designed to enlighten students to the current greenbuilding trend, and to help them realize the impact and applications of green materials as a practice.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 Interpret the concept of green building and its characteristics
- 2 Classify the design of green buildings
- 3 Demonstrate the role of green materials in civil engineering
- 4 Categories the various green materials for interior design
- 5 Execute the importance of nano green building materials

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1- Identify the nature of green buildings	Understand
CO2- Recognize the rating system of green buildings and life cycle of sustainable buildings.	Understand
CO3- Classification of green building designs	Apply
CO4- Compare different green building materials	Analyze
CO5- Predict the various types of nano green building materials and its engineering application	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

C	COS	PO	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		1				5										
C	CO1	S	-	S	M	M	S	S	-	-	M	M	-	S	M	S
C	CO2	S	M	S	S	M	S	S	M	-	M	M	-	S	M	S
C	CO3	S	M	S	M	S	S	S	M	-	M	M	-	S	M	S
C	CO4	S	M	S	M	M	S	S	M	-	M	-	-	S	-	S
C	CO5	S	S	S	S	S	S	S	M	-	M	-	-	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

CONCEPT OF GREEN BUILDINGS :Green building initiatives, characteristics of a green building, certification of green buildings rating systems (BREEAM,USGBC,LEED,IGBC) criteria for rating, sustainability.

DESIGN OF GREEN BUILDINGS: Sustainable sites, life cycle assessment. considerations of energy consumption, water use, and system reliability, indoor air quality, noise level, comfort, cost efficiency in building design.

GREEN BUILDING MATERIALS: Green materials - introduction, Depleting natural resources of building materials, renewable and recyclable resources, energy efficient materials - green cement, biomaterials, biopolymers, bioplastics, smart materials and composites

GREEN MATERIALS FOR INTERIOR Natural clay plaster, Natural fiber flooring, Low/no-VOC (volatile organic compound) paints, stains, and coatings, Paperless drywall-Heating and Air Conditioning, Solar hot water, Focus on high efficiency and proper sizing.

NANOMATERIALS FOR GREEN SYSTEMS : Windows, Skylights, and Lighting - Paints, Roofs, Walls, and Cooling - Multifunctional Gas Sensors, Biomimetic Sensors, Optical Interference Sensors

TEXT BOOKS:

1.Green building materials by Ross Spiegel and Dru Meadows

REFERENCES:

1.Understanding Green building materials by Traci Rose Rider, Stacy Glass and Jessica McNaughton. Green building materials, Energy & Civil Engineering by Jimmy C.M. Kao, Wen-Pei Sung, Ran Chen COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.S.Krishnaraj	AsstProf	Chemistry/VMKVEC	Srajkrishna85@gmail.com
2	Dr. R. Nagalakshmi	Professor	Chemistry/AVIT	nagalakshmi.chemistry@avit.ac.in

17PHB	S01	NON-DESTRUCTIVE TESTING OF	Category	L	Т	P	Credit		
171110	501	MATERIALS	CC	3	0	0	3		
PREAM	BLE		•		•		•		
properties	s of a material	g is a wide group of analysis/techniques used without causing damage. It is a highly valuable toting, and research.							
PREREQUISITE NIL									
COURSI	E OBJECTIV	YES							
1 7	To understand	the principles of visual inspection							
2 7	Γo know abou	t the procedure followed in liquid penetrant meth	nod						
3 7	Γo learn the m	agnetic particle testing							
4 7	Γo know abou	t in radiographic testing							
5 To learn about ultrasonic testing									
COURSI	E OUTCOMI	ES							
On the	successful cor	mpletion of the course, students will be able to							
CO1. Describe the principles of visual inspection to detect the defects Understand									

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO1. Describe the principles of visual inspection to detect the defects

CO4. Application of various NDT techniques

CO5. Inspect the defects using various techniques

CO2. Identify the surface defects using LPT and Magnetic particle inspection

CO3. Identify the internal defects using X ray radiography and Ultrasonic flaw detector

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S			M	M							M			
CO2	S			M	M							M		S	S
CO3	S	M	M	M	M							M		S	S
CO4	S	S	M	M	M							M		M	M
CO5	S	S	S	M	M							M		M	M

Apply

Apply

Apply

Analyze

S- Strong; M-Medium; L-Low

SYLLABUS

VISUAL INSPECTION: Scope and advantages of NDT, Comparison of NDT with DT, classifications of NDT - Visual inspection - Equipment used for visual inspection - Borescope, endoscopes or endoprobes, Flexible fiber optic borescope, video imagescope – confocal laser scanning microscopy – optical coherence tomography – laser thermography.

LIQUID PENETRANT TESTING: Liquid penetration testing - Introduction, Principle, equipment, procedures, Characteristics of penetrants - developers -Advantages, limitations and applications – High temperature penetrant testing–Low temperature penetrant testing.

MAGNETIC PARTICLE TESTING: Principle of magnetic particle testing - different methods to generate magnetic fields magnetic particle testing equipment - magnetic particle testing procedures method of De-magnetization - Applications, advantages and limitations

RADIOGRAPHIC TESTING: X-ray radiography principle, equipment & methodology - Type of industrial radiation sources and application - Radiographic exposure factors and technique - Gama ray and X- ray equipment - Precautions against radiation hazards.

ULTRASONIC TESTING: Introduction, Principle of operation type of ultrasonic propagation - Ultrasonic probes. Types of transducers - Ultrasonic testing techniques. Method of evaluating discontinuities - applications, advantages and limitations.

TEXT BOOKS

Prasad J, Nair C G K, Non-destructive Testing and Evaluation of Materials, Tata McGraw Hill Education Private Limited, 2011(Second Edition)

REFERENCES:

- 4. American Metals Society, Non-destructive Examination and Quality Control, Metals Hand Book, Vol. 17, 9th Ed, Metals Park, OH, 1989.
- 5. Bray, Don E and Stanley, Roderic K, Non-destructive Evaluation: A tool in Design, Manufacturing and Service Revised, CRC Press New York, Edition 1997.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in
3	Dr .G. LATHA	Asso.Professor	Physics	latha.physics@avit.ac.in
4	Dr. R. N. VISWANATH	Asso.Professor	Physics	rnviswanath@avit.ac.in

17PHBS09	NANOSCIENCE AND	Category	L	T	P	Credit
171111111111111111111111111111111111111	TECHNOLOGY	CC	3	0	0	3
·						· · · · · · · · · · · · · · · · · · ·

Nanotechnology is the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science and engineering. Nanomaterials exhibit enhanced properties such as higher strength, lighter weight and greater chemical reactivity than their larger-scale counterparts. The study about nanomaterials is extremely important for an engineer to understand its properties and design equipments.

QUISIT	E NIL													
E OBJE	ECTIV	ES												
To ide	ntify th	e propert	ies and t	ypes of n	anomat	terials								
To illustrate the preparation methods of nanomaterials														
^ ^														
To idea	ntify th	e various	charact	erization t	techniq	ues								
E OUT	COME	ES				•								
success	ful com	pletion o	of the co	urse, stud	ents wi	ll be abl	e to							
escribe	the pr	operties	of nanoi	materials						U	nderstan	d		
CSCITOC	the pr	operties	or nuno	materials										
CO2. Demonstrate the preparation methods of nanomaterials Apply														
nterpret	the pro	operties (of carbo	n nanotul	bes					A	pply			
Utilize	the lith	ographic	technic	ques						A	pply			
ategori	ze vari	ous char	acteriza	tion techr	niques					A	nalyze			
IG WIT	TH PR	OGRAN	IME OU	JTCOMI	ES AN	D PROC	GRAM	ME S	PECI	FIC OU	TCOM	ES		
PO 1	PO2	PO 3	PO4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PS0
M			M								M			
S M M M M S S														
S	M	S	S	S							M		S	S
S	M	S	S	S							M		M	M
S	S	M	S	S							M		M	M
	To ider To illus To illus To cata To ider E OUTO successi Describe Demons nterpret Utilize to categoriz PO 1 M S S S	E OBJECTIV To identify the To illustrate at To catagorize To identify the E OUTCOME successful compostrate the property of the	NIL E OBJECTIVES To identify the propert To illustrate the prepar To illustrate about lithe To catagorize about ca To identify the various E OUTCOMES successful completion of Describe the properties Demonstrate the prepar Interpret the properties Utilize the lithographic Categorize various characteristics NG WITH PROGRAM PO 1 PO2 PO 3 M S M S S M S S M S	NIL E OBJECTIVES To identify the properties and to To illustrate the preparation means To illustrate about lithography To catagorize about carbon nary To identify the various characters of the corresponding to the corresponding to the properties of the properties of nanotate the preparation means the properties of carbon to the properties of the properties of carbon the properties of the properties of carbon the properties of the properti	NIL E OBJECTIVES To identify the properties and types of norms of illustrate the preparation methods of To illustrate about lithography techniques. To catagorize about carbon nano tubes. To identify the various characterization of the course, studies of the properties of the prop	NIL E OBJECTIVES To identify the properties and types of nanomal To illustrate the preparation methods of nanomal To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students with escribe the properties of nanomaterials Demonstrate the preparation methods of nanomateriate the properties of carbon nanotubes Utilize the lithographic techniques Categorize various characterization techniques NG WITH PROGRAMME OUTCOMES AND PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 M M M M M M M M M M M M S M S S S S S	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be abluescribe the properties of nanomaterials Demonstrate the preparation methods of nanomaterial enterpret the properties of carbon nanotubes Utilize the lithographic techniques Categorize various characterization techniques OF WITH PROGRAMME OUTCOMES AND PROCESSING WITH PROGR	To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to describe the properties of nanomaterials Demonstrate the preparation methods of nanomaterials Interpret the properties of carbon nanotubes Utilize the lithographic techniques Actegorize various characterization techniques NG WITH PROGRAMME OUTCOMES AND PROGRAM PO 1 PO2 PO 3 PO4 PO5 PO6 PO 7 PO8 M M M M M M M M M M M S M S S S S S S	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to Describe the properties of nanomaterials Demonstrate the preparation methods of nanomaterials Interpret the properties of carbon nanotubes Utilize the lithographic techniques Categorize various characterization techniques NG WITH PROGRAMME OUTCOMES AND PROGRAMME S PO 1 PO2 PO 3 PO4 PO5 PO6 PO 7 PO8 PO9 M M M M M M M M M M S M S S S S S S S	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to Describe the properties of nanomaterials Demonstrate the preparation methods of nanomaterials Interpret the properties of carbon nanotubes Categorize various characterization techniques ON WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIAL PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 1 O M M M M M M M M M M M M M M M M M	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to Describe the properties of nanomaterials U Demonstrate the preparation methods of nanomaterials A A A A A A A A A A A A A	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to Describe the properties of nanomaterials Demonstrate the preparation methods of nanomaterials Apply Interpret the properties of carbon nanotubes Apply Categorize various characterization techniques Apply Categoriz	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to Describe the properties of nanomaterials Demonstrate the preparation methods of nanomaterials Apply Interpret the properties of carbon nanotubes Apply Utilize the lithographic techniques Apply Apply Apply Apply Autilize the lithographic techniques Apply Appl	NIL E OBJECTIVES To identify the properties and types of nanomaterials To illustrate the preparation methods of nanomaterials To illustrate about lithography techniques To catagorize about carbon nano tubes To identify the various characterization techniques E OUTCOMES successful completion of the course, students will be able to Describe the properties of nanomaterials Demonstrate the preparation methods of nanomaterials Demonstrate the properties of carbon nanotubes Apply Interpret the properties of carbon nanotubes Apply Apply Apply Attribute the lithographic techniques Apply Apply Analyze NG WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO 1 PO2 PO 3 PO4 PO5 PO6 PO 7 PO8 PO9 PO1 PO11 PO12 PS01 PS02 M M M M M M M M M M M M M M M M M M M

SYLLABUS

INTRODUCTION AND DEFINITION OF NANOTECHNOLOGY

Introduction, Definition, Length scales, Importance of Nanoscale and Technology, History of Nanotechnology, Future of Nanotechnology: Nanotechnology Revolution, Silicon based Technology, Benefits and challenges in Molecular manufacturing, The Molecular assembler concept, Controversies and confusions, Understanding advanced capabilities, Visions and Objective of Nanotechnology, Nanotechnology in Different Fields: Automobile, Electronics, Nano biotechnology, Materials, Medicine, Dental care, Nano computers, Power storage, Nanotechnology products.

S- Strong; M-Medium; L-MLow

NANO PARTICLES

Introduction, Types of Nanoparticles, Pure Metal, Gold, Silicon, Silver, Cobalt, Metal Oxides, Silica, Zinc oxide, Iron oxide, Alumina, Titania, Techniques to Synthesize Nanoparticles, Characterization of Nanoparticles, Applications, Toxic effects of Nanomaterials, Significance of Nanoparticles.

PROPERTIES

Mechanical properties: Strength of Nano crystalline SiC, Preparation for strength measurements, Mechanical properties, Magnetic properties. Electrical properties: Switching glasses with nanoparticles, Electronic conduction with nanoparticles. Optical properties: Optical properties, special properties and the coloured glasses

NANO-POWDERS

Process of synthesis of Nano powders, Electro deposition, Important Nanomaterials

LATEST DEVELOPMENTS IN NANOTECHNOLOGY & APPLICATIONS

Introduction, Current situation, Future Assumptions, Latest Developments, Nano copters, Nanotubes, Biosensors, Nano structure fluid, Computers, Plastic electronics, Light emitting diodes, Solar cells, Nanotechnology in Mechanical Industries, Nanotechnology in Health and Life Sciences, Nanotechnology in Smart Materials, Nanotechnology in Defense, Nanotechnology in Optics, Optical industry, Metrology, Nanotechnology in Environment.

TEXT BOOKS

- 1. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 2. N John Dinardo, "Nanoscalecharecterisation of surfaces & Interfaces", 2nd Edition, Weinheim Cambridge, Wiley-VCH, 2000

REFERENCES:

1. Timp (Editor), "Nanotechnology", AIP press/Springer, 1999
Akhilesh Lakhtakia (Editor), "The Hand Book of Nano Technology, Nanometer Structure", Theory, Modeling and Simulations", Prentice-Hall of India (P) Ltd, New Delhi, 2007.

COURSE DESIGNERS S.No. Name of the Faculty **Designation Department Mail ID** 1 Dr. S. MOHAMMED Asst. Professor **Physics** harshulkhan@vmkvec.edu.in **HARSHULKHAN** 2 Mr. R. SAKTHI GANAPATHY Asst. Professor **Physics** sakthiganapthy@vmkvec.edu.in 3 Dr.G. LATHA Asso. Professor Physics latha.physics@avit.ac.in 4 Dr. R. N. VISWANATH Asso. Professor **Physics** rnviswanath@avit.ac.in

(iii) ENGINEE	RING SCIENCES (BA COURSES)	SIC ENGINEERING

17CSES01	ECCENTELA I C OE COMPLITANO	Category	L	T	P	Credit	
	ESSENTIALS OF COMPUTING	ES	3	0	0	3	
DDEAMDLE							

This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles application packages. Studying the fundamentals concepts of Algorithms, to resolve the real world

PRERQUISITE - Nil

COURSE OBJECTIVES

1	To provide basic knowledge of hardware and software components of computers.
2	To introduce and demonstrate various software application packages.
3	To study Problem solving Techniques and program development cycle.
4	To learn about various algorithm and identifying the algorithm efficiency.
5	To learn different algorithm for various application.

COURSE OUTCOMES

On the successful completion of the course students will be able to

On the successful completion of the course, students will be able to					
CO1. To understand the Basic knowledge on hardware and software terminologies.	Understand				
CO2. To Demonstrate the various Application Packages like MS-word, MS- Excel etc.	Apply				
CO3.To Understand Program Devolvement Cycle and apply various Problem Solving Techniques.	Apply				
CO4.To analyze the efficiency of Algorithms.	Analyze				
CO5.To Implement of Algorithms for various concepts.	Apply				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	M	M	-	M	-	-	-	-	-	-	M	M	M	-
CO3	S	S	S	-	M	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	-	S	-	-	-	-	-	-	-	-	M	-
CO5	S	M	M	-	M	-	-	-	_	-	-	S	-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer - Components of a computer system -Hardware and software definitions - Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation – Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

- 1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.
- 2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

S. No.	Name of the Faculty	ulty Designation Depart		Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

17CSES05	PROGRAMMING IN PYTHON	CATEGORY	L	Т	P	CREDIT	
		ES	3	0	0	3	
PREAMBLE							
The purpose of this course is to introduce Python, a remarkably powerful dynamic programming language to write							

code for different operating systems along with application domain. Python has evolved on more popular and

powerful open source programming tool **PREROUISITE**

NIL

COURSE	OBJECTIVES	

COURSE OBJECTIVES					
1	To provide basic knowledge on Python programming concepts.				
2	To introduce different methods in list, string, tuple, dictionary and sets.				
3	To compute different programs using python control statements.				
4	To learn about different functions in python.				
5	To compute the exception handling functions, file concepts and CSV and JSON.				
COLI					

COURSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1. Learn python statements, comments and indentation, tokens, input and output	Understand
methods using various example programs.	
CO2. Apply the different methods involved in List, String, Tuples and Dictionary.	Apply
CO3. Design solutions for complex programs using decision making and looping	Apply.
statements.	
CO4. Apply the function programs with all the concepts like lambda, decorators and	Apply.

CO5. Compute the exception handling programs, file concept programs and understand the concepts of CSV and JSON.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PO6 PS **PSO** O2 CO1 S M M S M M M CO₂ S Μ M Μ M Μ -_ _ _ CO3 M S S S M M M CO4 S S S S M M M CO5 S M M M M M M

S- Strong; M-Medium; L-Low

SYLLABUS

generators.

UNIT-1 INTRODUCTION

 $Introduction\ to\ python-Advantages\ of\ python\ programming-Tokens-Variables-Input/output\ methods-Data\ types-Operators$

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files:File input/output operations-Dictionary operations-Reading and writing in structured files:CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "Dive Into Python" by Mark Pilgrim

REFERENCES:

- Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
 David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
 Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUL	COURSE DESIGNERS								
S.No	Name of the Faculty	Designation	Department	Mail ID					
•									
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in					
2	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in					

17CCEC92	PROGRAMMING IN PYTHON LAB	Category	L	T	P	Credit
17CSES83		ES	0	0	4	2

This laboratory enables the students clearly understand the basic concepts of python, control statements and file commands in python.

PRERQUISITE

NIL

COURSE OUTCOMES

COCKE OCICONES					
On the successful completion of the course, students will be able to					
CO1. Learn Syntax and Semantics and create Functions in Python	Understand				
CO2. Handle Strings and Files in Python.	Understand				
CO3. Design solutions for complex programs using decision making and looping Apply					
statements.					
CO4.Understand Lists, Dictionaries in Python.	Apply				
CO5. Compute the exception handling programs	Apply				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	S	M	-
CO2	S	M	L	-	-	-	-	-	-	-	-	-	M	-	-
CO3	S	M	M	-	-	-	-	-	-	-	-	-	M	M	-
CO4	S	M	M	-	-	-	-	-	-	-	-	-	M	M	-
CO5	S	M	M	-	-	-	-	-	-		-	-	-	M	M

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
3	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

17C	ИE	S ₀₂

BASICS OF CIVIL AND MECHANICAL ENGINEERING PART -A BASICS OF CIVIL ENGINEERING (Common to All Branches) Category L T P ES 2 0 0

Credit

2

PREAMBLE

The aim of the subject is to provide a fundamental knowledge of basic Civil Engineering

PREREQUISITE- NIL

COURSE OBJECTIVES

- 1 To understand the basic concepts of surveying and construction materials.
- To impart basic knowledge about building components.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. An ability to apply knowledge of mathematics, science, and engineering.	Apply
CO2. An ability to design and conduct experiments, as well as to analyze and interpret data.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	S	-	-	-	-	-	-	M	-	-
CO2	S	M	L	S	M	S	-	-	M	-	1	-	-	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

SURVEYING AND CIVIL ENGINEERING MATERIALS

SURVEYING: Objects – types – classification – principles – measurements of distances – angles – levelling – determination of areas – illustrative examples.

CIVIL ENGINEERING MATERIALS: Bricks – stones – sand – cement – concrete – steel sections.

BUILDING COMPONENTS AND STRUCTURES:

FOUNDATIONS: Types, Bearing capacity – Requirement of good foundations.

SUPERSTRUCTURE: Brick masonry – stone masonry – beams – columns – lintels – roofing – flooring – plastering – Mechanics – Internal and external forces – stress – strain – elasticity – Types of Bridges and Dams – Basics of Interior Design and Landscaping.

TEXT BOOKS:

1. "Basic Civil and Mechanical Engineering", VMU, (2017). Company Ltd., New Delhi, 2009

REFERENCES:

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.
- 2. Seetharaman S., "Basic Civil Engineering", Anuradha Agencies.

S. No.	Name of the Faculty	Designation	Dept/ College	Mail ID
1	S. Supriya	Assist. Professor	Civil / VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

									1		1				
17CN	MES02		B-BA					A L							
				ENG											
engine	Mechanering.	An eng	ineer 1	needs t	o unde										
Prere	quisite	-NIL													
Cours	e Obje	ctive													
			te the	princij	oles of	castin	g and	metal j	oining	process	es in ma	anufacti	ıring.		
2	To des	cribe a	nd to a	pply t	he in d	epth k	nowle	dge in	autom	otive eng	gines an	d impo	rtant o	componer	nts.
Cours	e Outc	omes:	On th	e succ	essful	comp	letion	of the	course	e, studer	nts will	be able	to		
CO1.	manu	facturi	ng.		•					3	0 1	ocesses	in	Apply	
CO2.	Expla	in the	operat	ion of	autom	otive e	ngines	and in	nporta	nt comp	onents.			Understa	nd
Mapp	ing wit	h Prog	gramn	ne Ou	tcomes	and l	Progra	amme	Specif	ic Outco	omes				
СО	PO1	PO 2	PO 3							PO10					
CO1	S	M	M	L	-	1	-	-	-	-	-	-	M	L	-
CO2	S	M	L	L	-	-	-	-	-	-	-	-	M	L	-
S- Str	ong; M	-Medi	ium; L	-Low											
Syllab															
	DRY A														
applica Weldin Defini	ation. ng: Ir tions. <i>I</i>	itroduc Arc W	ction t	o wel - Metl	ding, (Classit	fication chanis	n – G ms – A	as we	lding, A					
					•			, Cluto	enes, C	Jovernoi	, Flywl	neel, A	xies, i	Drives et	c., Fuel
Text I		10, LAI	iaust C	1113310	11 4114 (
1		Civil	and M	lechan	ical En	gineer	ring, S	chool o	of Mec	hanical	Enginee	ering Sc	ience	s, VMU,	Salem
Refer	ence Bo	oks													
1	K.Vei	nugopa	al, Bas	ic Med	hanica	ıl Engi	neerin	g, Anu	radha	Publicat	ions, Cl	hennai			
2	NR. E	Banapu	rmath,	Basic	Mech	anical	Engin	eering,	Vikas	s Publica	tions, N	Voida			
	1														

TJ.Prabu, Basic Mechanical Engineering, SCITECH Publications, Chennai

Designation

Associate

Professor

Asst. Prof

Department / Name

Mech / VMKVEC

of the College

Mech /AVIT

Email id

sduraithilagar@vmkvec.edu.in

saravanakumar@avit.ac.in

Course Designers

S.No

1

2

Faculty Name

S. Duraithilagar

M.Saravanakumar

17CMES81 ENGINEERING SKILLS PRACTICE LAB PART A - BASIC CIVIL ENGINEERING (Common to All Branches) ENGINEERING SKILLS PRACTICE LAB Category L T P Credit ES 0 0 2 2

PREAMBLE

Engineering Skills Practice is a hands-on training practice to Mechanical, Civil and Mechatronics Engineering students. It deals with fitting, carpentry, sheet metal and related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution

PREREQUISITE

Nil

COURSE OBJECTIVES

- 1 To understand the basic concepts of surveying and construction materials.
- 2 To impart basic knowledge about building components.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Prepare the different types of fitting.

CO2.Prepare the different types of joints using wooden material

Apply

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	S	L	L	L	L	L	L	L	L	L	L	L	-	S	-
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

Buildings:

1. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

Plumbing Works:

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- 3. Study of pipe connections requirements for pumps and turbines.
- 4. Preparation of plumbing line sketches for water supply and sewage works.
- 5. Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- 6. Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

7. Study of the joints in roofs, doors, windows and furniture.

Hands-on-exercise: Wood work, joints by sawing, planning and cutting.

TEXT BOOK

1. Basic civil engineering Lab Manual by Department of Civil Engineering, VMRF.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

150	MECO1	E	CNGIN	EERIN	IG SKI LAB		RACT	TICE	Cate	gory	L	Т	P	Cre	edit
17C	MES81		В.		C MEC GINEE		CAL		FC((ES)	0	0	4	2	2
Preamb	ole										<u>I</u>	I	I	1	
Worksh	op is a h	ands-	on train	ing pra	ctice to	Mech	anical	Engin	eering	stude	nts. It	deals	with fitt	ting, car	pentry
	and wel	ding re	elated e	xercise	s. Also,	it will	induce	e the h	abit of	select	ing rig	ht tool	s, plann	ing the j	ob an
its execu	ıtion.														
Prerequ	iisite –N	IL													
Course	Objectiv	⁄e													
1	Top	erforr	n the pr	actice	n diffe	rent typ	es of f	itting j	proces	ses.					
2			the diff												
3			n and a	_						ng pro	cesses	•			
4	То	lemon	strate th	ne patte	rn usin	g found	lry pro	cesses	•						
Course	Outcom	es: Or	ı the su	ccessfu	ıl comp	oletion	of the	cours	e, stud	lents v	vill be	able to	0		
CO1.	Id	entify	the diff	erent t	ypes of	fitting	using l	MS pla	ite.					Apply	
CO2.	Pı	edict t	he diffe	erent ty	pes of j	oints u	sing w	ooden	materi	ial				Apply	
CO3.	U	tilize t	he diffe	rent ty	pes of j	oining _]	proces	s in me	etal by	Arc W	Velding	g		Apply	
CO4.	M	ake us	se of dif	ferent	types of	f green	sand n	nould						Apply	
Mappin	g with F	rogra	mme C	utcom	es and	Progra	amme	Specif	ic Ou	tcome	S				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	S	M	L	L	L	-	-	-	-	-	-	-	L	L	-
CO2	S	M	L	L	L	-	-	-	-	-	-	-	L	L	-
CO3	S	M	L	L	L	-	-	-	-	-	-	-	L	L	-
CO4	S	M	L	L	L	-	-	-	-	-	-	-	L	L	-
S- Stroi	ng; M-M	ediun	ı; L-Lo	W			•	•		•	•	•			•
Syllabu	S														
	F EXPE	RIMI	ENTS												
Tee – Fi															
Vee – F	\mathcal{C}														
	ion of a														
•	tion of a a			ont piec	e pane	rn									
	ail Joint i	_	-												
	nt – Weld	_	ociici y												
_	nt – Wel	_													
Text Bo															
1	В	ASIC	MECH	IANIC	AL EN	GINE	ERIN	G, LA	B MA	NUAI					
Referen	ce Book	S													
1	K	Venug	gopal, E	Basic M	[echanic	cal Eng	ineerin	ng, An	uradha	Publi	cations	s, Cher	nnai		
2	N	R. Bar	apurma	ath, Bas	sic Mec	hanical	Engir	neering	, Vika	s Publ	ication	s, Noi	da		
Course	Designe	rs													
							Dena	artmen	t / Nan	ne of	_				
S.No	Fa	culty	Name	Desi	gnation	l	_	College			Ema	ıl ıd			

Mech/AVIT

selvababu@avit.ac.in

Krishnan_

B.SELVA

BABU

2

Professor

Assistant

Professor

17EE	ES03	E	BASICS	S OF E	LECTI EN(RICAL GINEE		ELECT	ΓRONI	CS	Categor	ry L	Т	P	Credit
	.2500		A.	BASI	IC ELE			NGINE	EERIN	G	ES	2	0	0	2
PREA	MBLE	1													
•		•		_	_		-				ical engin	_		•	
		,	o deliv	er expla	ınation	on basi	c electr	ical eng	gineerin	g for beg	ginners of	fall eng	gineerir	ıg grad	uates.
	EQUIS	SITE													
Nil															
	RSE OF														
1				lectrica	ll inven	tions, b	asic co	ncepts o	of AC a	nd de cir	cuit and l	oasic la	ws of e	lectric	al
	_	eering.													
2	_		_		he worl	king pri	nciple,	constru	ction, a	pplication	on of DC	and AC	mach	ines an	d
	_	uring ir													
3				undame	entals o	f safety	proced	ures, E	arthing	and Pow	er system	1.			
	RSE OU														
			_		course										
	•				•	name th	e inven	tors, ele	ectrical	quantitie	es and		Rem	ember	
basic la	aws of	electric	al engii	neering											
CO 2:	Demon	strate (Ohm's a	ınd Fara	aday's I	Law.							Aţ	pply	
CO 3:	Unders	tand the	e basic	concept	ts of me	easuring	g instrui	ments, e	electrica	ıl machii	neries		Unde	rstand	
	applica														
	•			• •	s of ele uipmen		loads,	power	rating	of elec	etrical		Ana	alyze	
macini	ileries a	iiu eiiei	gy enn	zieni eq	urpinen	ιι.							Undo	rstand	
CO 5:	Explair	the ele	ectrical	safety a	and pro	tective	devices						Office	rstand	
CO 6:	Compa	re the	various	types e	lectrica	ıl powe	r gener	ation sy	stems l	y applic	cation			1	
of con	vention	al and r	non-cor	vention	nal sour	ces.							Ana	alyze	
MAPF	PING V	VITH I	PROGI	RAMM	E OUT	ГСОМ	ES AN	D PRO	GRAM	IME SP	ECIFIC	OUTC	OMES	1	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO
CO1	S	M	L	-	S	-	-	-	-	-	-	L	-	-	-
CO2	S	M	S	S	-	_	_	_	M	_	_	M	_	_	_
CO3	L	S	L	-	S	-	-	-	-	L	-	L	-	_	_
CO4	S	M	S	L	L	S	S	-	-	S	-	L	-	_	_
									 		+		1	+	
CO5	L	M	S	M	-	S	M	M	-	S	-	L	-	_	_

DACICE OF ELECTRICAL AND ELECTRONICS

S- Strong; M-Medium; L-Low

SYLLABUS

HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor& vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials - Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domesticloads. Energy Efficient equipments – star ratings.

ELECTRICALSAFETY AND INTRODUCTIONTOPOWERSYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)-Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- $1. \quad Metha. V. K, Rohit Metha, "Basic Electrical Engineering", Fifthedition, Chand. S\&Co, 2012$
- 2. Kothari.D.PandNagrath.I.J,"BasicElectricalEngineering",Secondedition,TataMcGraw-Hill,2009
- 3. R.K.Rajput, "Basic Electrical and Electronics engineering", Second Edition, Laxmi Publication, 2012

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second edition, PHIL earning, 2007, and the support of the engineering of the engineering

S.No.	Name of the Faculty Designation Department		Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in

17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	Category	L	Т	P	Credit
17EEES03	B. BASIC ELECTRONICS ENGINEERING	FC(ES)	2	0	0	2

The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, demultiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems.

PRERQUISITE - Nil

COURSE OBJECTIVES

- 1 To learn and identify various active and passive components and their working principles.
- 2 To understand the number conversion systems.
- 3 To learn the digital logic principles and realize adders, multiplexer, etc.,
- 4 To understand the application oriented concepts in the communication systems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be able to	
CO1. Interpret working principle and application of various active and passive electronic components like resistors, capacitors, inductors, diodes and transistors.	Understand
CO2. Construct the rectifiers and regulators circuits and explore their operations.	Apply
CO3. Execute number system conversions and compute several digital logic operations.	Apply
CO4. Design adders, Multiplexer, De-Multiplexer, Encoder, Decoder circuits.	Apply
CO5. Apply the modern technologies in developing application oriented gadgets like the UHD, OLED, HDR.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M							M				-	-	-
CO2	S	M	M	M			M		M			M	-	-	-
CO3	S	M	M						M				S	-	-
CO4	S	M	M	M			M		M			M	-	-	-
CO5	S	M	1	1	M	1	M	1	M	M	-	M	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17MEES84	ENGINEERING GRAPHICS	Category	L	Т	P	Credit
1/NIEES04	(Theory & Practice)	FC(ES)	1	0	4	3

Preamble

Engineering Graphics is referred as language of engineers. An engineer needs to understand the physical geometry of any object through its orthographic or pictorial projections. The knowledge on engineering graphics is essential in proposing new product through drawings and interpreting data from existing drawings. This course deals with orthographic and pictorial projections, sectional views and development of surfaces.

Prereo	uisite –	NIL
110104	uisite –	TILL

Course	e Objective
1	To implement the orthographic projections of points, straight lines, plane surfaces and solids.
2	To construct the orthographic projections of sectioned solids and true shape of the sections.
3	To develop lateral surfaces of the uncut and cut solids.

- 4 To draw the pictorial projections (isometric and perspective) of simple solids.
- To sketch by free hand the orthographic views from the given pictorial view.

Course Outcomes: On the successful completion of the course, students will be able to

Course	Course Outcomes: On the successful completion of the course, students will be able to							
CO1.	To Interpret the physical geometry of any object through its orthographic or pictorial	UNDERSTAND						
CO1.	projections							
CO2.	Apply in the form of drawing of the orthographic projections of points, straight lines,	Apply						
	plane surfaces and solids.							
CO3.	To establish in the form of drawing of the orthographic projections of sectioned	Apply						
	solids and true shape of the sections.							
CO4.	Develop lateral surfaces of the solid section and cut section of solids.	Apply						
CO5.	Sketch the pictorial projections (isometric and perspective) of simple solids.	Apply						
CO6.	To apply free hand sketch of the orthographic views from the given pictorial view.	Apply						

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO 1	PO 2	PO3	PO 4	PO5	PO 6	PO7	PO8	PO 9	PO1 0	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	S	S	L	S	L	-	-	-	-	-	-	-	S	-	L
CO2	S	S	L	S	L	-	ı	ı	-	-	ı	-	S	-	L
CO3	S	S	L	S	L	-	ı	ı	-	-	ı	-	S	-	L
CO4	S	M	L	S	S	-	ı	ı	1	ı	ı	1	S	-	L
CO5	S	S	L	S	L	-	-	-	-	-	1	-	S	-	L
CO6	S	S	L	S	L	-	-	-	-	-	-	-	S	-	L

S- Strong; M-Medium; L-Low

Syllabus

PLANE CURVES AND FREE HAND SKETCHING

Conics – Construction of ellipse– First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

PROJECTION OF POINTS, LINES

Projection of points, Projection of straight lines located in the first quadrant: inclined to both planes – Determination of true lengths and true inclinations – rotating line method only.

PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to any one reference plane by change of position method.

SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to any one reference plane and perpendicular to the other – Obtaining true shape of section. Development of lateral surfaces of simple and truncated solids like Prisms, pyramids, cylinders and cones.

ISOMETRIC VIEW AND PERSPECTIVE PROJECTION

Principles of isometric View – isometric scale – isometric view of simple solids- Introduction to Perspective projection

Text Books

1	Natarajan K V, "Engineering Graphics", Tata McGraw-Hill Publishing Company Ltd. New Delhi.							
2		<u> </u>		International Private Limited.				
3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.							
Refere	Reference Books							
1	N.D. Bhat and V.M. Panchal, Engineering Graphics, Charotar Publishers 2013							
2	E. Finkelstein, "AutoC.	AD 2007 Bible", Wiley	Publishing Inc., 2007					
3	R.K. Dhawan, "A text book of Engineering Drawing", S. Chand Publishers, Delhi,2010.							
4	DhananjayA.Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw Hil							
	Publishing Company Limited, 2008.							
5	G.S. Phull and H.S.Sandhu, "Engineering Graphics", Wiley Publications, 2014.							
Course	e Designers							
			Department /					
S.No	Faculty Name	Designation	Name of the	Email id				
			College					
1	Prof. N.Rajan	Associate Professor	Mech / VMKVEC	rajan@vmkvec.edu.in				
2	Prof.			saravanan@avit.ac.in				
4	M.SARAVANAN	Asst. Prof	Mech / AVIT	saravanan@avit.ac.iii				

17EEES81	ENGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING LAB	Category	L	T	P	Credit			
		ES	0	0	2	2			
PREAMBLE	PREAMBLE								
It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various									
types of earthi	types of earthing methods.								

PREREQUISITE

Nil

COURSE	OBJECTIVES
	1 / 13.1 P.4 . 1 1 V P.3

- 1 To learn the residential wiring and various types of electrical wiring.
- 2 To measure the various electrical quantities.
- To know the necessity and types of earthingand measurement of earth resistance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO 1: Implement various types of electrical wiring.	Apply
CO 2: Measure fundamental parameters of AC circuits.	Analyze
CO 3: Measure the earth resistance of various electrical machineries.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO 3
CO1	S	M	L	-	S	-	-	-	-	-	-	L	-	-	-
CO2	S	M	S	S	-	-	-	-	M	-	-	M	-	-	-
CO3	L	S	L	-	S	-	-	-	-	L	-	L	-	-	-

S- Strong; M-Medium; L-Low

List of Experiments

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring.
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual

S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in						
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in						

17EEES82

ENGINEERING SKILLS PRACTICES LAB PART B - BASIC ELECTRONICS ENGINEERING

Category	L	T	P	Credit
FC(ES)	0	0	2	1

PREAMBLE

This course is to provide a practical knowledge in Basic Electronics Engineering. It starts with familiarization of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects.

PRERQUISITE - Nil

COURSE OBJECTIVES

- 1 To familiarize the electronic components, basic electronic equipments and soldering techniques.
- 2 To study the characteristics of Diodes, BJT and FET.
- 3 To understand the principles of various digital logic gates.
- 4 To understand the concept of basic modulation techniques.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Construct experiments for PN and Zener diode characteristics	Understand
CO2. Demonstrate the fundamentals of soldering techniques.	Apply
CO3. Classify the characteristics of Diodes, BJT and FET.	Apply
CO4. Distinguish between amplitude and frequency modulation techniques.	Apply
CO5. Verify the truth tables of logic gates (AND, OR, NOT, NAND, NOR, XOR).	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M							M		M				
CO2	M	M	M						M		M		S	M	M
CO3	S	M							M		M				
CO4	S	M							M		M		M		M
CO5	S	M	M						M		M				

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Identifying Electronics Components.
- 2. Practicing of Soldering and Desoldering.
- 3. Characteristics of PN junction Diode.
- 4. Characteristics of Zener diode.
- 5. Input & Output characteristics of BJT.
- 6. Transfer characteristics of JFET.
- 7. Verification of Logic Gates.
- 8. Study of Amplitude Modulation.
- 9. Study of Frequency Modulation.

S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in	

2	2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
	4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME

												_	_	_	~
17CVCC01		1	(CONST	RUCT	TION M	IATE F	RIALS		Categ	· ·	L	T		Credit
										CC	2	3	0	0	3
PRE	AMBL	E													
The aim of the course is to know about the various materials, both conventional and modern, that are commonly used in															
civil engineering construction.															
PREREQUISITE - NIL															
COURSE OBJECTIVES															
1 He should be able to appreciate the criteria for choice of the appropriate material and the various tests for quality control.															
2															
3	The stu	ıdent w	ill learı	n in deta	ail the	manufa	cturing	process	s of all tl	he mater	rials				
4	4 Special Materials used for architectural purposes also will be taught in detail														
5	5 Glass and Composite materials used for architectural purposes also will be taught in detail.														
COU	RSE O	UTCO	MES												
On th	e succe	ssful co	ompleti	on of th	ne cour	se, stud	ents wi	ll be ab	le to						
CO1.	Know	about	Bricks,	Classi	fication	and M	anufact	turing o	of clay b	ricks, Te	ests on b	ricks.		Under	rstand
Co2.					oaratio	n of lim	e morta	ır ,Cem	ent, Mai	nufactur	ing proc	ess of cer	ment	Under	rstand
	s and C				3.4	<u> </u>			•	TD '1	1 1		.1 C	77 1	, 1
						itacture ortionii		s, Com	pressive	, Tensile	e and sne	ear streng	th of	Under	rstand
Co4.	Know	about T	Timber	.Plywo	od .Ste	el .Alur	ninium	and Ot	her Meta	allic Ma	terials			Under	rstand
												Geo me	mbranes	Under	
and C	eo text	iles for	earth r	einforce	ement										
MAP	PING	WITH	PRO G	RAM	ME OU	JTCON	IES A	ND PR	OGRAN	MME SI	PECIFI	C OUTC	COMES		
CO	PO1	PO2	PO3	PO4	РО	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO
S	2.7	3.5			5	*	*							2	3
CO 1	M	M				L	L						M		
CO 2	S	S	M			M	M			L	L			M	
CO 3	L	L				L	-			L			L		

S- Strong; M-Medium; L-Low

M

M

S

M

SYLLABUS

S

S

CO

4 CO

STONES – BRICKS – CONCRETE BLOCKS: Stone as building material – Criteria for selection – Tests on stones – Deterioration and Preservation of stone work – Bricks – Classification – Manufacturing of clay bricks – Tests on bricks – Compressive Strength – Water Absorption – Efflorescence – Bricks for special use – Refractory bricks – Cement, Concrete blocks – Light weight concrete blocks

M

L

M

L

L

M

L

L

M

LIME – CEMENT – AGGREGATES – MORTAR: Lime – Preparation of lime mortar – Cement, Ingredients – Manufacturing process – Types and Grades – Properties of cement and Cement mortar – Hydration – Compressive strength – Tensile strength – Soundness and consistency – Setting time – Aggregates – Natural stone aggregates – Industrial by products – Crushing strength – Impact strength – Flakiness – Abrasion Resistance – Grading – Sand Bulking CONCRETE: Concrete – Ingredients – Manufacture – Batching plants – Ready Mix Concrete – Properties of fresh concrete – Slump – Flow and compaction – Principles of hardened concrete – Compressive, Tensile and shear strength – Modulus of rupture – Tests – Mix specification – Mix proportioning – IS method – High Strength Concrete and High Performance Concrete – Other types of Concrete.

TIMBER AND OTHER MATERIALS: Timber - Industrial timber - Plywood - Veneer - Thermocole -Bitumen - Market forms Panels of laminates - Steel - Aluminium and Other Metallic Materials - Composition - Uses - Market forms - Mechanical treatment - Paints - Varnishes - Distempers.

MODERN MATERIALS : Glass – Ceramics – Sealants for joints – Fibre glass reinforced plastic – Clay products – Refractories – Composite materials – Types – Applications of laminar composites – Fibre textiles – Geo membranes and Geotextiles for earth reinforcement.

TEXT BOOKS:

- 1. Rangwala, S.C., "Engineering Materials", Charotar Publishing House, Anand, 2008
- 2. R.K.Rajput, "Engineering Matererials, S. Chand Publications, 2008
- 3. Shetty.M.S., "Concrete Technology (Theory and Practice)", S. Chand and Company Ltd., 2008 2008

REFERENCES:

- 1 Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2012.
- 2 Gambhir.M.L., "Concrete Technology", 3rd Edition, Tata McGraw Hill Education, 2004
- 3 Duggal.S.K. "Building Materials", 4th Edition, New Age International, 2008.

S.No	Name of the Faculty	Designation	Dept /Name of the College	Mail ID		
1	A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in		
2	Ms.C.Vaidevi	Asst. Professor	Civil / AVIT	vaidevi.c@avit.ac.in		

17CVCC02	MECHANICS OF SOLIDS I	Category	L	Т	P	Credit
		CC	2	1	0	3

The mechanics of deformable solids is more concerned with the internal forces and associated changes in the geometry of the components involved. Of particular importance are the properties of the materials used, the strength of which will determine whether the components fail by breaking in service, and the stiffness of which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by loads. Theoretical analyses and experimental results have equal roles in this field.

PREREQUISITE - NIL

TKL	ADQUISITE IVE								
COU	RSE OBJECTIVES								
1	To acquire knowledge about behavior of members subjected to various types of forces.								
2	To study the basics of stress and strain in two dimension								
3	Analyse of trusses using various methods								
4	To acquire knowledge about types of beam, loading conditions								
5	To Analyse the deflection characteristics of beams								
COU	RSE OUTCOMES								
On	the successful completion of the course, students will be able to								
CO	5. Structural members subjected to tension, compression, torsion	Analyse							
CO	7. Structural bending and combined stresses using the fundamental concept of stress , strain and elastic behavior of materials	Analyze							
COS	B. Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight.	Apply							
CO	2. Calculate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings	Apply							
CO	0. Calculate the stresses and strains associated with spherical and cylindrical pressure vessels and deflection of beams.	Analyze							
MAP	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUT	COMES							

COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	L	-	-	-	S	S
CO2	S	M	L	S	-	-	L	-	-	-	-	-	L	-	-
CO3	S	M	M	S	1	-	-	-	M	-	L	-	1	M	-
CO4	S	M	M	M	ı	-	-	M	-	-	ı	-	1	ı	L
CO5	S	M	M	-	-	-	-	-	-	S	-	L	M	L	-

S- Strong; M-Medium; L-Low

SYLLABUS

STRESS, STRAIN AND DEFORMATION OF SOLIDS: Rigid bodies and deformable solids - Stability, strength and stiffness - tension, compression and shear stresses - Deformation of simple and compound bars - Thermal Stresses - Elastic Constants.

ANALYSIS OF PLANE TRUSSES: Stability and equilibrium of plane frames - perfect frames - types of trusses - analysis of forces in truss members - Method of joints - Method of tension coefficients - Method of sections.

TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAMS: Beams - Types and transverse loading on beams - Shear force and bending moment in beams - Cantilevers - Simply supported beams and over-hanging beams. Theory of simple bending - analysis of stresses - Load carrying capacity - Proportioning sections - Leaf springs - Flitched beams -Shear stress distribution - shear flow

TORSION: Stresses and deformation in circular and hollow shafts - Stepped shafts - shafts fixed at the both ends - Stresses in helical springs - Deflection of springs.

ANALYSIS OF STATES OF STRESS (TWO DIMENSIONAL) AND DEFLECTION OF BEAMS: Biaxial state of stress - Thin cylinders and shells - Deformation of thin Cylinders and shells - Stresses at a point - Stress as tensor - Stresses on inclined planes - Principal stresses and principal planes - Mohr's circle of stress. Double integration method - Macaulay's method - Area moment theorems for computation of slopes and deflections in beams - Conjugate beam method.

TEXT BOOKS:

- 1. Er.R.K.Rajput,"Strength of Materials"S.Chand Publications, New Delhi, 2006
- 2. Dr.R.K.Bansal,"A Textbook of Strength of Materials"Laxmi Publications, 2010
- 3. Srinath L.N., " Advanced Mechanics of Solids ", Tata McGraw Hill Publishing Ltd., New Delhi, 2009

Company

REFERENCES:

- 1. Junarkar S.B., "Mechanics of Structures", Vol. 1, 21st Edition, Charotar Publishing House, Anand, India, 2007
- Kazimi S.M.A., "Solid Mechanics", Tata McGrawHill Publishing Company, New Delhi, 1991
 Raghunath H. M., "Strength of materials", New Age International (P) Limitted Publishers.

1		ı	1		
S.No Name of the Faculty		Name of the Faculty	Designation	Department	Mail ID
	1	S.Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com
2 Dr.R.Divahar			Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

17CVCC03	MECHANICS OF FLUIDS	Category	L	T	P	Credit
		CC	2	1	0	3

Fluid Mechanics is a subject of engineering science deals with the behaviour of fluids at rest as well as in motion. It is an important subject with unlimited practical applications ranging from biological system systems to automobiles, airplanes and spacecraft propulsion. Thus this subject is given considerable importance in Civil, Mechanical and Chemical Engineering at core as well as at professional levels.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 The student is introduced to the definition and properties of fluid.
- 2 Principles of fluid statics, kinematics and dynamics are dealt with subsequently.
 - The application of similitude and model study is covered subsequently
- 4 After undergoing this course, the student would have learnt fluid properties
- 5 Application to real situations of fluid flow will be learned

COURSE OUTCOMES

On the si	iccessful co	mnletion c	of the course,	students wi	ll be able to
On the st	iccessiui cc	morenon c	n me course.	. Students wi	n be able to

CO1. Explain the basic properties of fluids and their application in real world problems.	Understand
CO2. Distinguish between various types of flows and derive the continuity equation for compressible and incompressible flow	Apply
CO3. Understand the use and limitations of the Bernoulli's equation and apply it to solve a variety of fluid flow problems.	Apply
CO4. Determine the boundary layer thickness and other boundary layer properties	Apply
CO5. To analyse the fluid flow characteristics	Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	О														
	1														
CO1	S	M	M	L	M	L	-	-	L	-	M	-	-	L	-
CO2	S	M	M	L	L	L	-	-	-	-	-	-	-	-	-
CO3	S	S	S	M	L	L	-	L	-	-	-	-	M	S	L
CO4	S	S	S	M	M	-	-	-	-	-	S	-	-	-	
CO5	S	S	S	M	L	L	-	_	M	-	-	-	M	L	-

S- Strong; M-Medium; L-Low

SYLLABUS

FLUID PROPERTIES AND STATISTICS: Definitions - Fluid and Fluid Mechanics - Dimensions and units - Fluid properties - Continuum - Concept of system and control volume - Pascal's law and Hydrostatic equation - Forces on plane and curved surfaces - Buoyancy - Pressure measurement.

FLUID KINEMATICS: Classification of flows -stream, streak and path lines - Continuity equation - Stream and potential functions - Flow nets - Velocity measurement

FLUID DYNAMICS : Euler and Bernoulli's equations - Application of Bernoulli's equation - Discharge measurement-Momentum Principle - Laminar flows through pipes and between plates - Hagen Poiseuille equation - Darcy Weisbach formula - Moody diagram -Turbulent flow

BOUNDARY LAYER AND FLOW THROUGH PIPES: Definition of boundary layer - Thickness and classification - Displacement and momentum thick nesses - Development of Laminar and Turbulent flows in circular pipes - Major and minor losses of flow in pipes - Pipes in series and in parallel - Pipe network

DIMENSIONAL ANALYSIS AND MODEL STUDIES: Dimensional analysis - Rayleigh's method - Buckingham P - Theorem - similitude and models - Scale effect and distorted models.

TEXT BOOKS:

- 1. Kumar K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi, 2008
- 2. Dr.R.K.Bansal, "FluidMechanics", LakshmiPublications, 2008

REFERENCES:

- 1. Streeter, Victor L. and Wylie, Benjamin E., "Fluid Mechanics", McGraw-Hill Ltd., 1998.
- 2. Natarajan M.K., "Principles of Fluids Mechanics", Anuradha Agencies, Vidayal Karuppur, Kumbakonam, 1995.
- 3. Jain A. K. "Fluid Mechanics", Khanna Publishers, 2010 4. Roberson J.A and Crowe C.T., "Engineering Fluid Mechanics", Jaico Books Mumbai, 2000.
- 4. FM White, Fluid Mechanics, Tata Mc Graw Hill Publications 2011

S.No Name of the Faculty			Designation	Department	Mail ID	
	5.110	Name of the Pacuity	Designation	Department	Ivian 1D	
•						
	1	A.Fizoor Rahman	Asst. Professor	CIVIL / VMKVEC	fizoorrahman@vmkvec.edu.in	
	2	Mrs.Pa.Suriya	Assist. Professor	Civil / AVIT	suriya@avit.ac.in	

17CVCC04	SURVEYING I	Category	L	Т	P	Credit
		CC	3	0	0	3

Surveying is the process of determining by measurement, the relative positions of points on or near the earth surface. The data collected from a survey is used in the preparation of plans, maps, profiles, charts and diagrams. In addition survey may be used for the delineation of property boundaries, computation of areas and volumes also to set out the proposed work on the ground.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To posses knowledge about Chain surveying
- 2 Students get knowledge about Compass surveying,
 - To learn Principles of Plane table surveying and Levelling,
- 4 To acquire Basic knowledge about Theodolite surveying
- 5 The Students learn about Engineering surveys.

COURSE OUTCOMES

On the successful	aomnlation	of the course	ctudonte will	ha abla to
On the successing	complenon	or the course	singenis wii	i de adie io

CO1. Study the linear and angular measurement using chain and Compass.	Understand
CO2. Study the importance of plane table surveying in preparation of plans	Apply
CO3. Know to fix the relative position of points on the ground using Levels.	Apply

- CO4. Understand the measurement of distance and heights of objects using tachometric principle Apply
- CO5. Understand the importance of advanced techniques involved in surveying such as
 Total station and GPS

 Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2	PSO3
	1	2										2			
CO1	S	M	L	M	S	M	M	S	S	S	-	_	M	_	S
CO2	S	M	L	-	-	-	-	S	S	S	-	-	-	L	-
CO3	S	M	M	-	-	-	-	S	S	S	-	-	M	-	S
CO4	S	M	M	-	-	-	-	S	S	S	-	-	-	S	-
CO5	S	M	M	-	-	-	-	L	-	-	-	L	M	-	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION AND CHAIN SURVEYING: Definition - Principles - Classification - Fields and office work - Scales - Conventional signs- Survey instruments, their care and adjustment - Ranging and chaining - Reciprocal ranging - Setting perpendiculars - well-conditioned triangles - Traversing - Plotting - Enlarging and Reducing figures.

COMPASS SURVEYING AND PLANE TABLE SURVEYING: Prismatic compass - Surveyor's compass - Bearing - Systems and conversions - Local attraction – Magnetic declination - Dip - Traversing - Plotting - adjustment of error - Plane table instruments and accessories - Merits and demerits - Methods - Radiation - Intersection - Resection - Traversing.

LEVELLING AND APPLICATIONS: Level line - Horizontal line - Levels and Staves - Sprit level - Sensitiveness - Bench marks - Temporary and permanent adjustments - Fly and Check leveling - Booking - reduction - Curvature and Refraction - reciprocal levelling - Longitudinal and cross sections - Plotting - Calculation of areas and volumes - Contouring - Methods - Characteristics and uses of contours - Plotting - Earth work volume - Capacity of reservoirs

THEODOLITE SURVEYING: Theodolite - Vernier and micro optic - Description and uses - temporary and permanent adjustments of vernier transit - Horizontal angles - Vertical angles - Heights and Distances - Traversing - Closing error and distribution - Gales's tables - Omitted measurements

ENGINEERING SURVEYS: Reconnaissance, Preliminary and location surveys for engineering projects - Layout - Setting out works - Route Surveys for highways, railways and waterways - Mine Surveying - Instruments - Tunnels - Correlation of underground and surface surveys - Shafts - Audits

TEXT BOOKS:

- 1. Kanetkar T.P., "Surveying and Levelling", Vols. I and II, United Book Corporation, Pune, 2006
- 2. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, 2005.

REFERENCES:

- 1. Clark D., "Plane and Geodetic Surveying ", Vols. I and II, C.B.S. Publishers and Distributors, New Delhi, Sixth Edition, 1991.
- 2. James M. Anderson and Edward M. Mikhail, "Introduction to Surveying", McGraw Hill Book Company, 1995.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mr.R.Johnson Daniel	Assist. Professor	Civil / AVIT	johnsondaniel@avit.ac.in

17CVCC05

CONSTRUCTION TECHNIQUES, EQUIPMENT AND PRACTICES

Category	L	Т	P	Credit
CC	3	0	0	3

PREAMBLE

A construction technique focuses more on detailed understanding of concrete making materials and production process. Recent developments in concrete materials are also given adequate consideration. Going through the course. Student would develop adequate understanding on concrete production process and properties and use of concrete as a modern material of construction.

PREREQUISITE- NIL

COURSE OBJECTIVES

- 1 The basics of various construction techniques, practices
- 2 The equipment needed for different types of construction activities
- 3 The student shall have a reasonable knowledge about the various construction procedures for sub to super structure
- 4 The equipment needed for construction of various types of structures from foundation to super structure.
- 5 The students should know the Building services in a building.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the properties and tests of various constituents present in Concrete	Understand
CO2. Explain the Construction Practices such as masonry – stone masonry – Bond in masonry	Apply
CO3. Understand various sub structure construction and Tunneling techniques	Understand
CO4. To study details about Super structure Construction	Apply
CO5. Explain the various construction Equipments and Earth moving operation	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
CO1	S	M	L	-	-	-	S	L	-	M	L	L	-	L	-
CO2	S	M	L	S	-	-	S	S	-	M	L	L	-	-	
CO3	S	M	M	S	-	-	S	-	-	-	L	M	-	L	M
CO4	S	M	M	M	-	-	S	-	-	-	S	M	S	M	M
CO5	S	M	M	-	-	-	-	-	-	S	-	L	-	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

CONCRETE TECHNOLOGY Cements – Grade of cements - concrete chemicals and Applications – Grade of concrete - manufacturing of concrete – Batching – mixing – transporting – placing – compaction of concrete – curing and finishing - Testing of fresh and hardened concrete – quality of concrete – Extreme Weather Concreting - Ready Mix Concrete.

CONSTRUCTION PRACTICES: Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry – concrete hollow block masonry – flooring – damp proof courses – construction joints – movement and expansion joints – pre cast pavements – Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick — weather and water proof – roof finishes – acoustic and fire protection.

SUB STRUCTURE CONSTRUCTION: Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation

SUPER STRUCTURE CONSTRUCTION: Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors -Erection of articulated structures, braced domes and space decks

CONSTRUCTION EQUIPMENT: Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching and mixing and concreting - Equipment for material handling and erection of structures - Equipment for dredging, trenching, tunneling,

TEXT BOOKS:

- 1. Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997.
- 2. Varghese, P.C. "Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007.
- 3. Shetty, M.S, "Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.

REFERENCES:

- 1. Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
- 2. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in
2	C.Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com

Subject Code	Subject Title	Category	L	T	P	Credit
17CVCC06	MECHANICS OF SOLIDS -II	CC	2	2	0	3

The mechanics of deformable solids is more concerned with the internal forces and associated changes in the geometry of the components involved. Of particular importance are the properties of the materials used, the strength of which will determine whether the components fail by breaking in service, and the stiffness of which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by loads. Theoretical analyses and experimental results have an equal role in this field.

PREREQUISITE

Mechanics of Solids – I

COURSE OBJECTIVES

1	To study details about forces and their effects along with some suitable protective measures for the safe working condition
2	Will design all types of structures and machines
3	The student will study the causes of failure by various failure theories

- The student will learn the state of stress in three dimensions with respect to various theories
- To impart the knowledge of Unsymmetrical bending in beams

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Structural members subjected to tension, compression, torsion	Analyse
Co2. Structural bending and combined stresses using the fundamental concept of stress , strain and elastic behavior of materials	Analyze
Co3. Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight.	Apply
Co4. Calculate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings	Apply
CO5. Analyse the stresses and strains associated with thin-wall spherical and cylindrical pressure vessels.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

11111															
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S															
CO 1	S	M	M	-	-	-	-	-	-	L	-	1	M	1	
CO 2	S	M	L	S	-	-	L	-	-	-	-	1		M	-
CO 3	S	M	M	S	-	S	-	-	M	-	L	ı	M	ı	
CO 4	S	M	M	M	-	-	-	M	-	-	-	-	-	L	
CO 5	S	M	M	-	-	-	-	-	-	S	-	L	M		

S- Strong; M-Medium; L-Low

SYLLABUS

ENERGY PRINCIPLES: Strain energy and strain energy density - Strain energy in traction, shear, flexure and torsion - Castigliano's and Engessor's energy theorems - Principle of virtual work - application of energy theorems for computing deflections in beams and trusses - Maxwell's reciprocal theorem.

INDETERMINATE BEAMS: Propped Cantilever and Fixed Beams - Fixed end moments and Reactions for standard cases ofloading - slopes and deflections in fixed beams - Continuous beams - Theorem of three moments - Analysis of continuous beams - S.F. and B.M. diagrams for continuous beams.

COLUMNS: Eccentrically loaded short columns middle third rule - core of section - Columns of unsymmetrical sections - Euler's theory of long columns - Critical loads for prismatic columns with different end conditions Rankine - Gordon Formula eccentrically loaded long columns.

STATE OF STRESS IN THREE DIMENSIONS: Determination of principal stresses and principal planes – Volumetric strain – Theories of failure – Principal stress - Principal strain – shear stress – Strain energy and distortion energy theories – application in analysis of stress, load carrying capacity

ADVANCED TOPICS IN BENDING OF BEAMS : Unsymmetrical bending of beams of symmetrical and unsymmetrical sections - curved beams - Winkler Bach Formula – Thick Cylinders - Compound Cylinders

TEXT BOOKS:

- 1. Rajput, "Strength Of Materials", Chand Publications, New Delhi, 2011
- 2. Dr.R.K.Bansal,"A Textbook of Strength of Materials", Laxmi ublications, NewDelhi, 2010
- 3. Srinath N., "Advanced Mechanics of Solid", Tata McGraw Hill Publishing Company, New Delhi, 2009

REFERENCES:

- 1. Junarkar S.B., "Mechanics of Structures", Vol.1, 21st Edition, Charotar Publishing House, Anand, India, 1995.
- 2. Kazimi S.M.A. "Solid Mechanics", Tata McGraw Hill Publishing Company, New Delhi, 1991.
- 3. Ghosh D,Dutta A. K. "A Textbook of Strength of Materials", New Age International (P) Limited Publishers.
- 4. Swaroop, Adarsh "Mechanics of Materials", New Age International (P) Limitted Publishers.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

Subject Code	Subject Title	Category	L	Т	P	Credit
17CVCC07	APPLIED HYDRAULIC ENGINEERING	CC	2	2	0	3

This course aims at an experimental way of studying the fluid flow, which deals with measurement, design and behavior of flow in open channels. Further, it also involves Dimensional analysis, model testing and design of hydraulic machines at an optimum cost.

PREREQUISITE

Mechanics Of Fluids

COURSE OBJECTIVES

1	Student is introduced to open channel flow characteristics including hydraulic jump and surges.
2	To study and analyse performance characteristics and design aspects are taught
3	Student, at the end of the semester will have the abilities to analyse flow characteristics in open channel
4	To design hydraulic machines
5	To study all types of pumps, their working principle will be taught

COURSE OUTCOMES

On the successful completion of the course, students will be able to

Co1. Explain the various types of open channels and their flows.	Understand
Co2. Design the various types of most efficient channel sections.	Apply
Co3. Describe the Dimensional Analysis and Model Analysis in hydraulic engineering problems.	Analyse
Co4. Design and study the performance of various types hydraulic turbines.	Apply
Co5. Design and study the performance of various types pumps.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO1	PO1	PO1	PSO	PSO	PSO3
									9	0	1	2	1	2	
CO1	S	M	M	-	-	-	-	-	-	-	-	M	M	-	L
CO2	S	S	S	M	M	M	M	-	-	L	-	M	-	L	-
CO3	S	S	S	M	M	-	L	-	1	-	-	L	-	1	1
CO4	S	S	S	M	M	L	L	-	-	-	-	L	S	1	M
CO5	S	S	S	M	M	L	L	-	-	-	-	L	-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

OPEN CHANNEL FLOW: Open channel flow - types and regime of flow - Velocity distribution in open channel - wide open channel - specific energy - critical flow and its computation

UNIFORM FLOW: Uniform flow - Velocity measurement - Manning's and Chezy's formula - determination of roughness coefficients - determination of normal depth and velocity - most economical sections - minimum permissible velocity determination - non-erodible channels.

VARIED FLOW: Dynamic equation of gradually varied flow - assumptions - characteristics of flow profiles - drawdown and backwater curves - profile determination - graphical integration, direct step, standard step method-hydraulic jump - types - energy dissipation - surges - surge through channel transitions

TURBINESImpact of jets on plane and curved plates - turbines - classification - radial flow turbines - draft tube - axial flow turbines - performance of turbines - similarity laws - centrifugal pump - minimum speed to start the pump - multistage pumps - cavitations

PUMPS: Positive displacement pumps - reciprocating pump - negative slip - flow separation conditions - air vessels - indicator diagram and its variation - savings in work done - rotary pumps.

TEXT BOOKS:

- 1. Jain A.K., "Fluid Mechanics (including Hydraulic Machines) ", Khanna Publishers, 8th edition, 1995.
- 2. R.K.Bansal,"Fluid Mechanics and Hydraulic Machines", Laxmi Publications, 2005
- 3. Applied Hydraulic Engineering by Dr.G.K.vijayaraghavan, N.aravind , AR Publishers

REFERENCES:

- 1. Subramanya K., "Flow in Open channels", Tata McGraw Hill Publishing Company, 2001.
- 2. Ramamirtham S., "Fluid Mechanics, Hydraulics and Fluid Mechines", Dhanpat Rai & Sons, Delhi, 1998.
- 3. John A. Roberson, "Hydraulic Engineering", Jaico Publishing House, 1998.
- 4. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2002

S.No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in			
2	C.Kathirvel	Asso Professor	Civil / VMKVEC	geologykathir@gmail.com			

Subject Code	Subject Title	Category	L	Т	P	Credit
17CVCC08	SURVEYING II	CC	3	0	0	3

This course the student will possess knowledge about Tachometric surveying, Control surveying, Survey adjustments, Astronomical surveying and Photogrammetry.

PREREQUISITE - SURVEYING -I

COURSE OBJECTIVES

- To get the basics knowledge about Tachometric systems
- 2 To study concepts in control surveying
- To calculate and adjust the errors in triangulation
- The concepts of Electro-optical and Microwave system.
- The concepts in Route Surveying

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. To carry outTachometric surveying	Understand
CO2. To understand the basic concept in control surveying	Understand
Co3. To adjust the errors in triangulation	Analyze
Co4. Tounderstand the concepts of Electro-optical and Microwave system.	Understand
CO5. To carry out Route Surveying	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	M	L	-	-	-	-	-	-	-	-	-	L	-
CO2	S	M	M	L	ı	-	-	-	L	-	L	-	S	-	L
CO3	S	S	M	M	M	-	-	-	-	-	-	-	-	-	-
CO4	S	-	M	S	L	-	-	-	-	-	L	L	-	M	-
CO5	S	-	M	S	L	-	-	-	-	-	M	M	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

TACHEOMETRIC SURVEYING: Tachometric systems - Tangential, Stadia and sub tense methods - Stadia systems - Horizontal and inclined sights - Vertical and normal staffing - Fixed and movable hairs - Stadia constants - Analectic lens - Subtense bar

CONTROL SURVEYING: Working from whole to part - Horizontal and vertical control methods - Triangulation - Signals - Base line - Instruments and accessories - Corrections - Satellite station - Reduction to centre - Trigonometric leveling - Single and reciprocal observations - Modern trends.

SURVEY ADJUSTMENTS: Errors - Sources, precautions and corrections - Classification of errors - True and most probable values - weighted observations - Method of Equal shifts - Principle of least squares - Normal equation - Correlates - Level nets - Adjustment of simple triangulation networks.

TOTAL STATION SURVEYING: Basic Principle – Classifications -Electro-optical system: Measuring principle, Working principle, Sources of Error, Infrared and Laser Total Station instruments. Microwave system, measuring principle, working principle, Sources of Error, Microwave Total Station instruments. Comparison between Electro-optical and Microwave system. Care and maintenance of Total Station instruments. Modern positioning systems – Traversing and Trilateration.

ADVANCED TOPICS IN SURVEYING: Route Surveying - Reconnaissance - Route surveys for highways, railways and waterways - hydrographic surveying - Tides - MSL - Sounding methods - Strength of fix - Sextants and station pointer-

Astronomical Surveying – field observations and determination of Azimuth by altitude and hour angle methods – fundamentals of Photogrammetry and Remote Sensing basic concepts of GPS.

TEXT BOOKS:

- 1. Kanetkar T.P., "Surveying and Levelling ", Vols. I and II, United Book Corporation, Pune, 2006
- 2. Punmia B.C., "Surveying ", Vols. I, II and III, Laxmi Publications, 1999.

REFERENCES:

- . 1. Alfred Leick, "GPS satellite surveying", John Wiley & Sons Inc., 3 rd Edition, 2004.
- 2. Guocheng Xu, "GPS Theory, Algorithms and Applications", Springer Berlin, 2003.
- 3. SatheeshGopi, rasathishkumar, N. madhu, "Advanced Surveying, Total Station GPS and Remote Sensing" Pearson education , 2007
- 4. S.S.Bhavikatli, Surveying Theory & Practice, I K. International Publishing HousePvt. Ltd, New Delhi2010.
- 5. T.P.Kanntkar & S.V.Kulkarne surveying & Levelling, Parts! & 2, Pune Vidyarth

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	C.Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com		
2	Mr.R.Johnson Daniel	Asst. Professor	Civil / AVIT	johnsondaniel@avit.ac.in		

Subject Code	Subject Title	Category	L	T	P	Credit
17CVCC09	ENVIRONMENTAL ENGINEERING	CC	3	0	0	3

This course work aims at imparting the knowledge on various stages of works involved in planning, designing and execution of protected water supply system to a town / city. Starting from demand estimation, identification of sources, studying the quality aspects of water at these sources, evolving a suitable treatment method to bring the quality to the permissible standards and finally, distribution of this treated water to the individual dwelling units are well addressed.

PREREOUISITE - NIL

PRE	REQU	ISITE	- NIL													
COU	RSE (OBJEC	TIVES	;												
1	The st	udent is	s expec	ted to k	now ab	out the	design	princip	les invo	lved in t	reatment	of muni	cipal wat	er,		
2	The st	udent is	s expec	ted to k	now lay	ying of	joints a	nd testi	ng of pi	pes.						
3	The st		vill stud	ly abou	t the De	esign p	rinciple	s of wa	ter treat	tment and	d teach r	ural abou	ıt basic w	ater trea	ment	
4	The st	tudent v	vill lear	rn abou	t the an	alysis o	of water	r distrib	oution							
5	The st	tudent v	vill hav	e a kno	wledge	about h	ow to s	supply v	water to	a buildi	ng					
COU	COURSE OUTCOMES															
On the successful completion of the course, students will be able to																
CO1-	Estim	ate the	total wa	ater den	nand fo	r a towi	n/city							Unde	Understand	
CO2-	Identi	fy suita	ble sou	rces of	water to	o meet t	the dem	nand						Apply	Apply	
	_	n the co			sportati	ion of w	vater fro	om the	source t	0				Unde	rstand	
CO4-	Fix th	e physi	cal, Ch	emical	and bio	logical	charact	eristics	differe	nt source	of water	•		Unde	rstand/	
CO5-	Desig	n an ap	propria	te treati	nent sy	stem fo	r the wa	ater ava	ilable a	t the sou	rce			Unde	rstand	
MAP	PING	WITH	PROC	GRAM	ME OU	JTCON	IES A	ND PR	OGRA	MME S	PECIFIC	COUTO	COMES	l		
CO	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
S CO 1	S	S	S	S	S	S	S	-	-	M		S	S	S	S	
CO 2	M	M	S	S	M	S	S	-	-	S	-	S	M	M	S	

S- Strong; M-Medium; L-Low

S

S

S

S

M

S

S

M

S

S

M

S

M

S

S

M

S

S

SYLLABUS

CO

3 CO

4 CO S

M

S

PLANNING FOR WATER SUPPLY: Objectives of Public Water Supply – Design Period – Population Forecasting – Water Demand – Sources of Water – Source Selection – Water Quality – Characterisation – Water Quality Standards.

L

M

S

M

S

M

S

S

S

S

S

M

S

CONVEYANCE SYSTEM: Water Supply – Intake Structures – Pipe Materials – Hydraulics of Flow in Pipes – Transmission Main Design – Laying, Jointing & Testing of Pipes – Appurtenances – Pumps – Design of pumping mains.

DESIGN PRINCIPLES OF WATER TREATMENT: Objectives – Selection of unit operations and processes – Principles of coagulation and flocculation, sedimentation, filtration, disinfection – Design principles of flash mixer, flocculator, clarifiers, filters – Disinfection devices – Softening – Demineralisation – Aeration – Iron removal – Defluoridation – Operation and Maintenance aspects - Residue Management

WATER DISTRIBUTION: Requirements of Water Distribution – Components – Service Reservoirs – Network Design – Economics – Computer Applications – Analysis of Distribution Networks – Appurtenances – Operations and Maintenance – Leak Detection.

WATER SUPPLY IN BUILDINGS: Principles of Design of Water Supply in Buildings – House Service Connection – Design of water distribution pipes in buildings - applications

TEXT BOOKS:

- 1.Garg, S.K., "Environmental Engineering I", Khanna Publishers, New Delhi, 2005
- 2.Modi, P.N., "Environmental Engineering I", Standard Book House, Delhi 6, 2006

REFERENCES:

- 1. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999
- 2. Hand book on Water Supply and Drainage, SP35, B.I.S., New Delhi, 1987
- 3. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005 COURSE DESIGNERS

,	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
	1	C. Kathirvel	Asso. Professor	CIVIL / VMKVEC	geologykathir@gmail.com
	2	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in

Subject Code	Subject Title	Category	L	Т	P	Credit
17CVCC10	DESIGN OF REINFORCED CONCRETE ELEMENTS	CC	2	2	0	3

The primary concern of an engineer is design. Structural design consists conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure. Idealization involves reducing the conceived structure into primary elements. By analysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear.

PREREQUISITE

Nil

COURSE OBJECTIVES

		7102 0502011+26
1	1	All the methods of design of Reinforced concrete structures will be studied
		This course covers the different types of philosophies related to Design of Reinforced Concrete Structures with
2	2	emphasis on Limit State Method.
		The design of Basic elements such as slab, beam, column and footing which form part of any structural system with
3	3	reference to Indian standard code of practice for Reinforced Concrete Structures and Design Aids are included.
2	4	At the end of course the student shall be in a position to design the basic elements of reinforced concrete structures.
4	5	Design of masonry wall will be taught

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1- Concept of elastic method ultimate load method and limit state method

CO2- Analysis and design of one way and two way slabs	Analyze
CO3- Understand the behaviour of RC beams in shear and torsion-shear and torsion reinforcement-limit state.	Understand
CO4- Design of columns	Apply
CO5 -Design and detail of wall footing	Apply

Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
													1		
CO1	S	-	M	-	L	M	-	S	M	L	-	-	S	-	-
CO2	S	-	M	-	L	M	-	S	M	L	-	-	-	-	S
CO3	M	-	M	-	L	M	-	S	M	L	L	-	-	M	-
CO4	M	-	M	-	L	M	-	S	M	L	M	-	L	-	-
CO5	M	-	M	-	L	M	-	S	M	L	L	-	-	L	S

S- Strong; M-Medium; L-Low

SYLLABUS

METHODS OF DESIGN OF CONCRETE STRUCTURES: Concept of elastic method ultimate load method and limit state method- advantages of limit state method over other methods-design codes and specification -Introduction to IS 456 -limit state philosophy as detailed in current IS codes.

LIMIT STATE DESIGN FOR FLEXURE: Analysis and design of one way and two way slabs – rectangular slab subjected to uniformly distributed and concentrated loads – boundary conditions and corner effects – singly and doubly reinforced rectangular and flanged beams - design aids for flexure-deflection.

LIMIT STATE DESIGN FOR SHEAR TORSION BOND AND ANCHORAGE: Behaviour of RC beams in shear and torsion-shear and torsion reinforcement-limit state design of RC members for combined bending shear and torsion- use of design aids

LIMIT STATE DESIGN OF COLUMNS : Types of columns-analysis and design of short columns for axial, uniaxial and bi axial bending-design of long columns- use of design aids

LIMIT STATE DESIGN OF FOOTING: Design of wall footing – Design of axially and eccentrically loaded rectangular pad and sloped footings – Design of combined rectangular footing for two columns only

TEXT BOOKS:

- 1. N.KRISHNA RAJU, "Design of Reinforced Concrete Structures (IS: 456-2000)", CBS Publishers & Distributors Pvt Ltd.
- 2. Dr.B.C. PUNMIA, Er.ASHOK KUMAR JAIN, Dr.ARUN KUMAR JAIN, "Limit State Design of Reinforced concrete (As per IS 456: 2000)", Laxmi Publications(P)Ltd.
- 3. VARGHEESE P C," Limit State Design of Reinforced Concrete", Prentice Hall of India, Private, Limited New Delhi, 2004
- 4. NEELAM SHARMA, "Reinforced Cement Concrete Design", S K Kataria & Sons New Delhi.

REFERENCES:

- 1. S. Ramamrutham, R. Narayan,"Design of Reinforced Concrete Structures (conforming to IS 456) Dhanpat Rai, 1993
- 2. Unnikrishna Menon and Pillai, 'Reinforced concrete Design', Tata Mc Graw hill, 2007
- 3. Dayaratnam P," Brick and Reinforced Brick Structures", Oxford & IBH Publishing Company Private Limited 2008
- 4. Bhavikatti, S S, "Design of R.C.C. Structural Elements Vol. I new age Publications, 2005
- 5. I S456:2000, Code of practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, 2000 7.
- 6. SP16, IS456:1978 "Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi,

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in

17CVCC11 STRUCTURAL ANALYSIS CC 2 2 0 3	Subject Code	Subject Title	Category	L	Т	P	Credit
	17CVCC11	STRUCTURAL ANALYSIS		2	2	0	3

This course offers the various methods of analysis for indeterminate beams and portal frames. It aims at determination of end moments and constructing shear force and bending moment diagrams for the beams and frames.

Also, ILD for indeterminate beams will be dealt with.

PREREQUISITE

Mechanics of Solids -II

COURSE OBJECTIVES

- The basics of a structure subjected to internal forces like axial forces, shearing forces, bending and torsional moments while transferring the loads acting on it will be taught
- 2 Analyzing the internal forces in the members of the structures.
- 3 To calculate deflection using slope deflection and moment distribution method
- 4 To analysis different types of arches
- At the end of this course students will be conversant with classical method of analysis

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Calculate the Deflection of Determinate Structures	Apply
CO2. Analyse beams by Slope Deflection Method	Analyze
CO3. Analyse beams by Moment Distribution Method	Analyze
C04. Draw influence line for Moving Loads and Influence Lines (Determinate & Indeterminate Structures)	Apply
CO5. Analyse three hinged, two hinged and fixed arches	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
	1												1		
CO1	S	M	L	-	-	-	-	-	-	-	-	-	M	-	1
CO2	S	M	L	S	-	-	-	-	-	-	-	-	-	L	-
CO3	S	M	M	S	-	-	-	-	-	-	-	-	S	-	-
CO4	S	M	M	M	-	ı	ı	1	ı	-	ı	-	ı	1	M
CO5	S	M	M	-	-	-	-	-	-	-	-	L	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

DEFLECTION OF DETERMINATE STRUCTURES : Principles of virtual work for deflections – Deflections of pin-jointed plane frames and rigid plane frames – Willot diagram - Mohr's correction

SLOPE DEFLECTION METHOD: Continuous beams and rigid frames (with and without sway) – Simplification for hinged end – Support displacements.

MOMENT DISTRIBUTION METHOD: Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous beams – Plane rigid frames with and without sway.

MOVING LOADS AND INFLUENCE LINES (DETERMINATE & INDETERMINATE STRUCTURES): Influence lines for reactions in statically determinate structures – influence lines for members forces in pin-jointed frames – Influence lines for shear force and bending moment in beam sections. Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames

ARCHES: Arches as structural forms – Examples of arch structures – Types of arches – Analysis of three hinged, two hinged and fixed arches, parabolic and circular arches – Settlement and temperature effects.

TEXT BOOKS:

- 1 Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications Pvt. Ltd, New Delhi, 2003.
- 2 Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 2004
- 3 Reddy. C.S., "Basic Structural Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
- 4 BhavaiKatti, S.S, "Structural Analysis Vol. 1 & Vol. 2", Vikas Publishing Pvt Ltd., New Delhi, 2008

REFERENCES:

- 1 Devadas Menon, "Structural Analysis", Narosa Publishing House, 2008
- 2 Ghali.A., Nebille and Brown. T.G., "Structural Analysis A unified classical and matrix approach" Sixth Edition, SPON press, New York, 2013.
- 3 Gambhir. M.L., "Fundamentals of Structural Mechanics and Analysis"., PHI Learning Pvt. Ltd., New Delhi, 2011.
- 4 L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 6th Edition, 2003.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

Subject Code	Subject Title	Category	L	T	P	Credit
17CVCC12	MECHANICS OF SOILS	CC	2	2	0	3

This course is a branch of Civil Engineering which deals with the application of law of Mechanics and Hydraulics to Engineering problems related with soils like Permeability, stresses within soils, Shear strength and compressibility of soils. These form the basis for the computation of discharge through earthen dams, shear strength parameters required for determining the bearing capacity of soils and calculating settlement of structures.

PREREOUISITE

Nil

COURSE OBJECTIVES

- Understand the principle of effective stress, and then calculate stresses that influence soil behaviour.
- 2 Calculate water flow through ground, and understand the effects of seepage on the stability of structures
- Determine soil deformation parameters, and calculate settlement magnitude and rate of settlement.
- Appreciate the difference between total and effective stress approaches in soil strength determination, and discriminate between drained and undrained conditions.
- Give an Engineering classification of a given soil.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

stand
ly
ly
oly
yse
ָ ע

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO3
S													1	2	
CO 1	S	S	M	M	L	-	-	-	-	-	M	ı	L	-	-
CO 2	M	M	M	M	L	-	-	-	-	-	M	-	-	-	L
CO 3	S	S	M	M	L	-	-	-	-	-	M	-	M	L	-
CO 4	M	M	M	M	L	-	-	-	-	-	M	-	L	-	L
CO 5	M	M	M	M	L	-	-	_	-	_	M	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Nature of soil - Soil description and classification for engineering purposes - IS Classification system - Phase relationships - Soil compaction - Theory, comparison of laboratory and field compaction methods - Ground improvement by compaction

SOIL WATER AND WATER FLOW :Soil water - static pressure in water - Permeability measurement in the laboratory and field - Seepage - Introduction to flow nets - Simple problems.

STRESS DISTRIBUTION AND SETTLEMENT: Effective stress concepts in solids - Stress distribution in soil media - Use of influence charts - Components of settlement - Immediate and consolidation settlement - Terzaghi's one dimensional consolidation theory

SHEAR STRENGTH: Shear strength of cohesive and cohesion less soils - Mohr - Coulomb failure theory - saturated soil mass - Measurement of shear strength, direct shear - Triaxial compression, UCC and Vane shear tests - Pore pressure parameters

SLOPE STABILITY: Slope failure mechanisms - Types - Infinite slopes - Finite slopes - Total stress analysis for saturated clay - Method of slicese - friction circle method - Use of stability number - Slope protection measures. TEXT BOOKS:

- 1. Punmia P.C., Ashok Kumar Jain, Arun Kumar Jain, "Soil Mechanics and Foundations", Laximi Publications Pvt.Ltd,New Delhi,2005
- 2. Arora K.R., "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 1997.

REFERENCES:

- 1. Holtz R.D. and Kovacs W.D., "Introduction to Geotechnical Engineering", Prentice-Hall, 2010
- 2. McCarthy D.F., "Essentials of Soil Mechanics and Foundations", Prentice-Hall, 1997.
- 3. Sutten B.H.C., "Solving Problems in Soil Mechanics", Longman Group Scientific and Technical, U.K. England, 1994. COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C.Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

17CLCC13	DESIGN OF STEEL STRUCTURES	Category	L	Т	P	Credit
1,020010	2201011010122201100101120	CC	2	2	0	3

The primary concern of an engineer is design. Structural design consist conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure. Idealization involves reducing the conceived structure into primary elements. By analysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure

without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear....

PREREQUISITE - NIL

COURSE OBJECTIVES

- To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections.
- Design of structural systems such as roof trusses, gantry girders as per provisions of current code (IS 800 2007) of practice.
- To introduce the students to limit state design of structural steel members subjected to compressive, tensile and bending loads, including connections.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Infer concepts of basic Design	Understand
CO2. Design and detail of steel tension members	Apply
CO3. Design and detail of compression members and flexure members.	Apply
CO4. Design of laterally supported and unsupported beams	Apply
CO5. Design and detail the Roof Trusses and Industrial Structures	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
CO1	S	-	M	-	L	M	-	S	M	L	-	-	L	L	-
CO2	S	-	M	-	L	M	-	S	M	L	-	-	-	-	M
CO3	M	-	M	-	L	M	-	S	M	L	L	-	M	-	-
CO4	M	-	M	-	L	M	-	S	M	L	M	-	-	M	-
CO5	M	-	M	-	L	M	-	S	M	L	L	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures – Connections using rivets, welding, bolting – Design of bolted and welded joints – Eccentric connections - Efficiency of joints

TENSION MEMBERS: Types of sections – Net area – Net effective sections for angles and Tee in tension – Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

COMPRESSION MEMBERS: Types of compression members – Theory of columns – Basis of current codal provision for compression member design – Slenderness ratio – Design of single section and compound section compression members – Design of laced and battened type columns – Design of column bases – Gusseted base

BEAMS: Design of laterally supported and unsupported beams – Built up beams – Beams subjected to uniaxial and biaxial bending – Design of plate girders - Intermediate and bearing stiffeners – Flange and web splices

ROOF TRUSSES AND INDUSTRIAL STRUCTURES: Roof trusses – Roof and side coverings – Design of purlin and elements of truss; end bearing – Design of gantry girder.

TEXT BOOKS:

- 1. Gambhir. M.L., "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd., 2013
- 2. Shiyekar. M.R., "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, Learning Pvt. Ltd., 2nd Edition, 2013.
- 3. Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2013.

REFERENCES:

- 1. Narayanan.R.et.al. "Teaching Resource on Structural Steel Design", INSDAG, Ministry of Steel Publications, 2002.
- 2. Duggal. S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing Company, 2005
- 3. Bhavikatti.S.S, "Design of Steel Structures" By Limit State Method as per IS:800–2007, IK International Publishing House Pvt. Ltd., 2009
- 4. Shah.V.L. and Veena Gore, "Limit State Design of Steel Structures", IS 800–2007 Structures Publications, 2009.
- 5. IS800:2007, General Construction In Steel Code of Practice, (Third Revision), Bureau of Indian Standards, New Delhi, 2007

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in		
2	Mrs.R.Abirami	Asst. Professor	Civil / AVIT	abirami.civil@avit.ac.in		

17CVCC14	HIGHWAY ENGINEERING	Category	L	T	P	Credit
270,001		CC	3	0	0	3

The course aims to make the students learn the principles of highways, their components and design of flexible and rigid pavements. Further, students will get acquainted with treatment for Failures and remedial measures during maintenance of pavements...

PREREQUISITE- NIL

COURSE OBJECTIVES

- The objective of the course is to educate the students on the various components of Highway Engineering.
- 2 It exposes the students to highway planning, engineering surveys for highway alignment
- Design of Geometric Elements of Highways and Urban roads, Rigid and Flexible pavements design
- The students further learn the desirable properties of highway materials and various practices adopted for construction
- This course enables the students to develop skill on evaluation of the pavements and to decide appropriate types of maintenance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Infer various components of Highway Engineering.	Apply
CO2. Infer concepts of highway planning and cross sectional elements of pavement	Understand
CO3.Make use of the concepts for determination of sight distance requirements and design	
of geometric elements, horizontal profile and vertical profile	Apply
CO4.Make use of the concepts for design of flexible pavement and rigid pavement structure	Understand
CO5. Infer material properties and procedure for construction of highways and explain appropriate maintenance for the distress	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
													1	2	3
CO1	M			L	-	L	-	-	-	-	-	-	-	-	ı
CO2	S	M	M	L	-	-	-	-	-	M	-	-	-	L	-
CO3	S	L	S	L	-	L	M	-	-	M	-	-	L	-	M
CO4	M	L		L	-	L	-	-	-	-	M	-	-	S	ı
CO5	S	Н	L	L	-	L	-	L	L	-	L	L	-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

HIGHWAY PLANNING AND ALIGNMENT: Highway Development in India, Macadam's Method of Road Construction, Jayakar Committee Recommendations and Realisations, Twenty-year Road Development Plans, Concepts of On-going Highway Development Programmes at National Level, Institutions for Highway Development at National level - Indian Roads Congress, National Highway Authority of India, Ministry of Road Transport and Highways (MORTH) and Central Road Research Institute. Requirements of Ideal Alignment, Factors Controlling Highway Alignment

Engineering Surveys for Alignment - Conventional Methods and Modern Methods (Remote Sensing, GIS and GPS techniques)Classification and Cross Section of Urban and Rural Roads (IRC), Highway Cross Sectional Elements – Right of Way, Carriage Way, Camber, Kerbs, Shoulders and Footpaths [IRC Standards]

GEOMETRIC DESIGN OF HIGHWAYS: Design of Horizontal Alignments – Superelevation, Widening of Pavements on Horizontal Curves and Transition Curves [Derivation of Formulae and Problems] Design of Vertical Alignments – Rolling, Limiting, Exceptional and Minimum Gradients, Summit and Valley Curves Sight Distances - Factors Affecting Sight Distances, PIEV Theory, Stopping Sight Distance (SSD), Overtaking Sight Distance (OSD), Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sight Distance [Derivations and Problems in SSD and OSD] Geometric Design of Hill Roads [IRC Standards Only].

DESIGN OF RIGID AND FLEXIBLE PAVEMENTS: Rigid and Flexible Pavements- Components and their Functions Design Principles of Flexible and Rigid Pavements, Factors Affecting the Design of Pavements - ESWL, Climate, Subgrade Soil and Traffic Design Practice for Flexible Pavements [CBR method, IRC Recommendations- Problems] Design Practice for Rigid Pavements - [IRC Recommendations-Problems]

HIGHWAY MATERIALS AND CONSTRUCTION PRACTICE: Desirable Properties and Testing of Highway Materials: - (Tests have to be demonstrated in Highway Engineering Laboratory) Soil – California Bearing Ratio Test, Field Density Test Aggregate - Crushing, Abrasion and Impact Tests- Bitumen - Penetration, Ductility, Viscosity, Binder Content and Softening Point Tests. Construction Practice - Water Bound Macadam Road, Bituminous Road and Cement Concrete Road [as per IRC and MORTH specifications] Highway Drainage [IRC Recommendations]

HIGHWAY MAINTENANCE: Types of Defects in Flexible Pavements – Surface Defects, Cracks, Deformation, Disintegration – Symptoms, Causes and Treatments. Types of Pavement Failures in Rigid Pavements – Scaling, Shrinkage, Warping, Structural Cracks, Spalling of Joints and Mud Pumping – and Special Repairs Pavement Evaluation – Pavement Surface Conditions and Structural Evaluation Overlay Design by Benkleman Beam Method [Procedure only]

TEXT BOOKS:

- 1. Khanna K and Justo C E G, "Highway Engineering", Khanna Publishers, Roorkee, 2001.
- 2. Kadiyali L R," Principles and Practice of Highway Engineering", Khanna Technical Publications, Delhi, 2000

REFERENCES:

- 1.IRC Standards (IRC 37 2001 & IRC 58 -1998)
- 2. Bureau of Indian Standards (BIS) Publications on Highway Materials
- 3. MORTH Guidelines for Highway Engineering

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

1703	CC15		RAIL					RBOU	R	Categ	gory	L	eering, their component ntenance of railway trac GPS and remote sensing way and taxiway geome stal structures such as purs. Understand	Credit	
170	CCIS				ENGI	NEERI	NG			CC	CC 3 0 0 3 Poort and harbour engineering, their components In construction and maintenance of railway tracks. In this component is a construction and maintenance of railway tracks. In this construction and maintenance of railway tracks. In this construction and remote sensing in the prime focus on runway and taxiway geometrics in and materials of coastal structures such as piers, and planning of harbours. Understand				
PREA	MBLE									•	,	•	•		•
The co	ourse air	ns to 1	make th	e stude	nts lear	n the pr	inciples	s of rail	way, air	rport and	harbour	engine	ering, the	ir compoi	nents
and de	esign														
PREF	REQUIS	SITE -	HIGH	WAYE	NGINE	EERING	j								
COUI	RSE OF	BJEC	rives												
1	This co	ourse i	mparts	to the st	tudents	knowle	edge of	plannin	g, desig	n, constr	ruction a	nd main	tenance o	of railway	tracks
	The st	udents	acquire	e profic	iency in	n the ap	plicatio	on of mo	odern te	chniques	s such as	GIS, G	PS and re	emote sen	sing in
2	Railway Engineering														
3	The student develops skills on airport planning and design with the prime focus on runway and taxiway geometrics														
									, locatio	on and m	naterials	of coast	tal structi	ires such	as piers,
4	breakw	aters,	wharve	s, jettie	es, quay	s and sp	oring fe	nders.							
5	The stu	dents	acquire	knowl	edge or	site in	vestigat	ion for	location	n and pla	nning of	harbou	rs.		
COU	RSE OU	JTCO	MES												
On t	the succ	essful	comple	tion of	the cou	rse, stu	dents w	ill be al	ole to						
CO1	. Under	rstand	the Rai	lway P	lanning	and De	esign						Understa	ınd	
CO2	. Infer	concep	ots of ra	ilway t	rack co	nstructi	on, mai	ntenanc	e and C	Operation	1		Apply		
CO3	. Make	use o	f the co	ncepts	for Air	ort Pla	nning A	And Des	sign				Apply		
CO4	. Make	use of	f the co	ncepts f	for harb	our eng	ineerin	g & oth	er mode	es of tran	sport		Understa	ınd	
CO5	CO5. Evaluation of Highway and Railway Projects Apply														
MAP	PING V	VITH	PROG	RAMN	AE OU	TCOM	ES AN	D PRO	GRAN	IME SP	ECIFIC	OUTO	COMES		
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M			L	-	L	-	-	-	-	-	-	M	-	M
CO2	S	M	M	L	-	-	-	-	-	M	-	-	-	-	-
	_	l	ļ	l									-		ļ

S- Strong; M-Medium; L-Low

S

M

L

L

Η

S

L

L

L

L

L

L

L

M

CO3

CO4

CO5

SYLLABUS

RAILWAY PLANNING AND DESIGN: Role of Indian Railways in National Development. Engineering Survey for Track Alignment. Permanent Way, its Components and Functions of Each Component, Gauges in Railway Tracks. Coning of Wheels. Geometric Design of Railway Tracks – Gradient, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Vertical Curves and Grade Compensation (Derivations of formulae and Problems)

L

M

L

M

L

L

L

L

S

RAILWAY TRACK CONSTRUCTION, MAINTENANCE AND OPERATION: Points and Crossings, Signaling, Interlocking and Track Circuiting, Construction and Maintenance – Conventional and Modern methods (Remote Sensing, GIS & GPS) for Railway Alignment, Track Construction, Maintenance and Materials - Track Drainage. Lay outs of Railway Stations and Yards

AIRPORT PLANNING AND DESIGN: Airport Planning, Components of Airports, Airport Site Selection Runway Design- Orientation, Geometric Design and Correction for Gradients Terminal area, Airport Layout, Airport Buildings, Passenger Facilities, Parking Area and Airport Zoning.

HARBOUR ENGINEERING & OTHER MODES OF TRANSPORT: Definition of Terms - Harbours, Ports, Docks, Tides and Waves. Harbours – Requirements, Classification – Site Investigation for Locations, Planning and Layouts Concept of Satellite Ports. Terminal Facilities – Port Buildings, Warehouse, Transit Sheds, Inter-modal Transfer Facilities, Mooring Accessories, Navigational Aids Coastal Structures- Piers, Breakwaters, Wharves, Jetties, Quays, Spring Fenders Coastal Shipping, Inland Water Transport and Container Transportation. Pipe Ways, Rope Ways

ECONOMIC EVALUATION OF TRANSPORT PROJECTS: Evaluation of Highway and Railway Projects- Cost Benefit Analysis (Benefit Cost Ratio, Net Present Value, International Rate of Returns (Problems) Environmental Impact Assessment, Financial Appraisal Build, Operate and Transfer for Highway and Railway Projects (Basic Concepts only)

TEXT BOOKS:

- 1. 1S. P. Bindra," A Course in Docks and Harbour Engineering", Dhanput Rai, 1992
- 2. Khanna S K, Arora M G and Jain S S, Airport Planning and Design, Nemchand and Brothers, Roorkee, 1994.
- 3. S.P. Arora, S.C. Saxena," A Textbook of Railway Engineering" Dhanpat Rai Publications, 2001

REFERENCES:

- 1. Rangwala, Railway Engineering, Charotar Publishing House, 1995.
- 2. Rangwala, Airport Engineering, Charotar Publishing House, 1996.
- 3. Kadiyali L R, Principles and Practice of Highway Engineering, Khanna Technical Publication, Delhi, 1992

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com				
2	Mrs.R.Abirami	Asst. Professor	Civil / AVIT	abirami.civil@avit.ac.in				

17CVCC16	
1/CYCCI	,

DESIGN OF REINFORCED CONCRETE STRUCTURES

Category	L	Т	P	Credit
CC	2	2	0	3

PREAMBLE

The primary concern of an engineer is design. Structural design consist conceptualization, idealization, analysis, design, construction and maintenance. Conceptualization is required to arrive at the final shape and size of the structure. Idealization involves reducing the conceived structure into primary elements. By analysis internal forces like bending moments, shear, torsion, compression and tension in each and every element is determined. Design assigns every element a particular material and size. Construction involves putting all the elements together to perform like the originally conceived structure. Maintenance is needed to keep the performance of the structure without deterioration. In this course, designs of structural elements, like beam, walls and columns, made of specific materials like timber, masonry and steel are dealt with. Further the elements are designed for internal forces like tension, compression, bending moment and shear.

PREREQUISITE - DESIGN OF REINFORCED CONCRETE ELEMENTS

COURSE OBJECTIVES

- This course covers the design of reinforced concrete structures such as retaining wall,
- Student has a comprehensive design knowledge related to structures, systems that are likely to be encountered in professional practice.
- To develop the knowledge about Principles of Prestressing will be studied
- 4 Application of virtual work theory for design of slabs
- 5 The design of reinforced concrete structures water tanks, staircases, flat slabs and bridges.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Classify the types & behaviour, arriving the dimensions and detailing of brick masonry wall &column and also its foundation	Understand
CO2. Design and detail the timber joists and columns.	Apply
CO3.Summarize the codal provisions in IS800:2007 for tension members, compression members and connections.	Analyze
CO4. Explain the force transferring mechanism, design and detail the connections as bolted and welded connections.	Analyze
CO5. Design and detail of steel tension members, compression members and flexure members.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
CO1	S	M	L			L		L					L	-	-
CO2	S	M	L		L	M		L		L	L		M	-	M
CO3	S	M	L		L	M		L		L			1	L	-
CO4	S	M	M		L			L		L		L	S	-	-
CO5	S	M	M					M		M	L		-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

RETAINING WALLS: Design of cantilever and counter fort retaining walls

WATER TANK: Underground rectangular tanks – Overhead circular and rectangular tanks – Design of staging and foundations.

PRINCIPLES OF PRESTRESSING: Materials for pre stressed concrete – Different methods and systems – introduction to pre stressing and post tensioning- Uniform and non uniform pre stressing – Losses in pre stress – Analysis of simply supported beams with straight and parabolic tendons.

YIELD LINE THEORY: Application of virtual work method to Square, Rectangular and Triangular slabs. **ADVANCED TOPICS:** Design of staircases (ordinary and doglegged) – Design of deep beams -flat slabs – Design of

Reinforced concrete walls – Principles of design of road bridges for IRC loading

TEXT BOOKS:

TEXT BOOKS:

- 1. N.KRISHNA RAJU, "Design of Reinforced Concrete Structures (IS: 456-2000)", CBS Publishers & Distributors Pvt Ltd.
- 2. Dr.B.C. PUNMIA, Er.ASHOK KUMAR JAIN, Dr.ARUN KUMAR JAIN, "Limit State Design of Reinforced concrete (As per IS 456: 2000)", Laxmi Publications(P)Ltd.
- 3. VARGHEESE P C," Limit State Design of Reinforced Concrete", Prentice Hall of India, Private, Limited New Delhi, 2004
- 4. NEELAM SHARMA, "Reinforced Cement Concrete Design", S K Kataria & Sons New Delhi.
- 5. Prestressed concrete BY N Krishna Raju -Tata McGraw-Hill Education

REFERENCES:

- 1. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.
- 2. Dayaratnam, P., "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 3. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.

NOTE:IS 456:2000,SP 16,IS:1343, IRC Bridge codes, BIS 3370, ISI 343 are permitted in the Examinations.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
2	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in

17CX	VCC17		MODI	ERN M		ructural Analysis I. Here in advanced method of and Space Structures are covered finite element and matrix will be taught estudent will be able to Differentiate between vaplane frame, space frame, arches, cables, plates a degree of static and kinematic indeterminacy of the distribution method diffexibility methods rem of three moments and frames dof tension coefficients COMES AND PROGRAMME SPECIFIC OUT 1.1	L	T		P	Credit					
1701	CCI			ANALYSIS						CO	C	2	2		0	3
This co	ds like n	natrix r	nethods	s of stru	ictural a	analysis	of stru	ctures, j	plastic t							
PRER	EQUIS	ITE														
	Structu	ıral Ana	alysis													
COUR	RSE OB	JECTI	VES													
1						tructura	al Analy	ysis I. H	Iere in a	advanced	l method	d of a	naly	sis like	Matrix	method
2			nalysis pics su			od and S	Space S	tructure	es are co	overed						
	Advar	nced me	ethod o	f analys	sis like i	finite el	ement a	and mat	rix will	be taugh	nt					
3												vorio	at	tmiotim	1 form	a auah
4		•													u ioriii	s sucii
5			tudies t and frai		late the	degree	of stati	ic and k	inemati	ic indeter	minacy	of a g	giver	n struct	ure suc	h as
	RSE OU															
									e to					Δ	nalyze	
															nalyze	
			•												nalyze	
								ioments							nalyze	
								afficiar	nto						nalyze	
												0.7.77	100		naryze	
COS	PO1	PO2	ROGR PO3	AMMI PO4	E OUT PO5							PO		MES PSO	PS	PSO3
COS	POI	PO2	PO3	PO4	POS	PO6	PO7	POS	PO9	POIU	POII	2	' 1	1	O2	P303
CO1	S	S	M	-	-	L	-	-	-	M	-	S	S	L	-	-
CO2	M	M	-	-	-	-	-	-	-	-	L	5	S	L	-	L
CO3	S	S	-	-	-	M	-	-	-	-	-	S	S	M	L	-
CO4	S	S	-	M	M	L	M	-	-	-	-	S	S	M	L	-

SYLLABUS

S

S- Strong; M-Medium; L-Low

CO5

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES: Equilibrium and compatibility – Determinate vs Indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pinjointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

M

S

L

L

M

M

MATRIX STIFFNESS METHOD: Element and global stiffness matrices – Analysis of continuous beams – Coordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames

FINITE ELEMENT METHOD: Introduction – Discretisation of a structure – Displacement functions – Truss element – Beam element.

PLASTIC ANALYSIS OF STRUCTURES: Statically indeterminate axial problems – Beams in pure bending – Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems

SPACE AND CABLE STRUCTURES: Analysis of Space trusses using method of tension coefficients – Suspension bridges- cables with two and three hinged stiffening girders

TEXT BOOKS:

- 1. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis Vol. I & II", Laxmi Publications, New Delhi, 2003
- 2. Manicka Selvam V.K., Elementary Matrix Analysis of Structures, Khanna Publishers, Delhi, 1994

REFERENCES:

1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" –5th edition. Spon Press,

London and New York, 2003.

- 2. Vazirani V.N, & Ratwani, M.M, "Analysis of Structures", Khanna Publishers, Delhi
- 3. Structural Analysis A Matrix Approach G.S. Pandit & S.P. Gupta, Tata McGraw Hill

S.No.	Name of the Faculty	Designation	Dept / College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

17CVCC18	FOUNDATION ENGINEERING	Category	Dory L T P Credit 3 0 0 3			
		CC	3	0	0	3

This course offers the various methods of analysis for indeterminate beams and portal frames. It aims to learn advanced methods like matrix methods of structural analysis of structures, plastic theory, analysis of special structures like arches and suspension cables and influence line for indeterminate structures.

PREREQUISITE - MECHANICS OF SOILS

PKEK	EQUIS.	11 L - N	IECH	MICS	OF SOI	LS									
COUR	SE OB	JECTI	VES												
1	The ca	apacity	to inve	stigate 1	the soil	conditi	on								
2	To de:	sign sui	table fo	oundatio	on										
3	The m	The methods of minimizing settlement													
4	Design aspects of combined and mat foundation														
5	The knowledge about pressure distribution on retaining walls														
COUR	SE OU	TCOM	IES												
On th	ne succe	essful co	mpletion	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1 A	Analyse	site cor	nditions	and ap	plying	samplin	g techn	iques					A	apply	
	nderstar low four		mporta	nce of a	dvance	d techn	iques ir	nvolved	-				A	apply	
CO3 S	Study the	e impor	tance o	f struct	ural des	ign of s	spread f	ooting					Unc	lerstan	d
	now to		relative	positio	n of po	ints on	the gro	und usi	ng				A	apply	
						of foun	dations	and ex	plain th	e Signifi	cance of		A	pply	
	mpactio														
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAMI	ME SPE	CIFIC C	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO 1	PS O2	PSO3
CO1	S	S	M	-	L	L	-	-	-	M	-	-	-	-	L
CO2	M	M	-	-	L	-	-	-	-	-	L	-	-	M	-
CO3	S	S	-	-	L	M	-	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

M

M

M

M

L

L

L

L

M

M

S

S

SYLLABUS

CO4

CO₅

SITE INVESTIGATION AND SELECTION OF FOUNDATION: Introduction – Scope and objectives – Method of exploration boring – Sampling – disturbed and undisturbed sampling – sampling techniques – Bore log and report – Penetration tests (SPT and SCPT) – Data interpretation – Selection of foundation based on soil condition

S

M

M

M

L

M

SHALLOW FOUNDATION: Introduction – Location and depth of foundation – codal provisions – bearing capacity of shallow foundation on homogeneous deposits – bearing capacity from insitu tests – Factors influencing bearing capacity – codal provisions – Settlement – Components of settlement – Settlement of foundations on granular and clay deposits – Allowable and maximum differential settlements of buildings – Codal provision – Methods of minimizing settlement

FOOTINGS AND RAFTS: Types of foundation – structural design of spread footing – Design aspects of combined and mat foundation – Codal provisions

PILES: Types of piles – Factors influencing the selection of pile – Carrying capacity in granular and cohesive soils – Static and dynamic formulae – Capacity from insitu tests (SPT and SCPT) – Piles subjected to uplift – Negative skin friction – Group capacity – Settlement of pile groups – Interpretation of pile load test – Pile caps – Codal provisions

RETAINING WALLS: Earth pressure theory – Plastic equilibrium in soils – active and passive states – Rankine's theory – Coloumb's wedge theory – Classical and limit equilibrium solution – Earth pressure on retaining walls of simple configurations – pressure on the wall due to single line load alone – Graphical method (Culmann's method alone) – Stability of retaining wall

TEXT BOOK:

- 1. Punmia, B.C., Soil mechanics and foundations, Laxmi publications pvt. Ltd., New Delhi, 2005
- 2. Arora, K.R. Soil mechanics and foundation engineering, standard publishers and distributors, New Delhi, 1997.

REFERENCES:

- 1. Khan, I.H., A text book of Geotechnical Engineering, Prentice Hall of India, New Delhi, 1999.
- 2. Gopal Ranjan and Rao, A.S.R. Basic and applied soil mechanics, Wiley Eastern Ltd., New, Delhi (India), 1997.

S.No.	Name of the Faculty	Designation	Dept / College	Mail ID
1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

17CVCC19	ESTIMATION AND QUANTITY SURVEYING	Category	L	Т	P	Credit
170,001	Brinding Quartin Benyanik	CC	3	0	0	3

This course helps to understand estimating of quantities of items of works involved in buildings, water supply and sanitary works, road works and irrigation works

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 This covers the rate analysis, valuation of properties and preparation of reports for estimation of various items.
- The end of this course the student shall be able to estimate the material quantities, prepare a bill of quantities, make specifications and prepare tender documents.
- 3 Student should also be able to prepare value estimates.
- 4 Student will also be able to Exercise on cash flow in Civil engineering projects

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Study the estimation of quantities for buildings	Apply
CO2. Study the importance of Specifications And Tenders	Understand
CO3. Know to contract conditions and contract problems	Understand
CO4. Understand the principles of valuation and Value and cost	Apply
CO5. Understand the Principles for report preparation	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	M	S	M	M	S	S	S	-	-	S	-	M
CO2	S	M	L	-	-	-	-	S	S	S	-	-	-	-	-
CO3	S	M	M	-	-	-	-	S	S	S	-	-	-	L	S
CO4	S	M	M	-	-	-	-	S	S	S	-	-	-	-	S
CO5	S	M	M	-	-	-	-	L	-	-	-	L	-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

ESTIMATION: Philosophy – purpose - Methods of estimation – advantages – types of estimates – approximate estimates – definite estimate – estimation of quantities for buildings, roads, canals and hydraulic structures – Sluices – Head and wing wall type

SPECIFICATIONS AND TENDERS : Specifications-Detailed and general specifications-construction specifications – sources –types of specifications – Tender notices – types – corrigendum notice – tender procedures – Drafting model tenders

CONTRACTS: Contract – types of contracts – formation of contract - contract conditions - contract problems-contract for labour, material, design and construction – drafting of contract documents – construction contracts – arbitration and legal requirements.

VALUE ENGINEERING: Basics - principles of valuation - Value and cost -value engineering - value analysis - phases in value engineering - information - function - Escalation - evaluation - recommendation implementation - Audit-Depreciation-rent fixation.

REPORT PREPARATION: Principles for report preparation – report on estimate of residential building – Culvert – Roads – Water supply and sanitary installations – cost control in construction projects – Exercise on cash flow in Civil Engineering projects

TEXT BOOKS:

- 1. Estimating and costing in civil Engineering B.N.Dutta, S.Dutta & Company, Lucknow,2005 2. Rangwala, "Estimating Costing and Valuation," Charotar Publishing House ,2011.

REFERENCES:

- $1.\ A\ text\ book\ on\ Estimating\ and\ costing-G.S. Birdie-Dhanpat\ Rai\ and\ Sons,\ New\ Delhi. 1982$
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S. Chand & Company Ltd., 2004

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2.	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

17CVCC20

CONSTRUCTION PLANNING AND SCHEDULING

Category	L	Т	P	Credit	
CC	3	0	0	3	

PREAMBLE

The purpose of this course is to learn about the Construction plan and construction method. To develop the knowledge about Quality control and safety during construction

PREREQUISITE- NIL

COURSE OBJECTIVES

- 1 Plan construction projects
- 2 Schedule the activities using network diagrams
- 3 Control the cost of the project by creating cash flows
- 4 Budgeting and how to use the project information as an information and decision making tool.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Study the Basic concepts in the development of construction plans	Apply
CO2. Study the Scheduling Procedures And Techniques	Understand
CO3. Know to Cost Control Monitoring And Accounting	Apply
CO4. Understand the Quality Control And Safety During Construction	Apply
CO5. Understand the Organization And Use Of Project Information	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
	1												1	2	3
CO1	S	M	L	M	S	M	M	S	S	S	-	-	L		-
CO2	S	M	L	-	-	-	-	S	S	S	-	-		L	-
CO3	S	M	M	-	-	-	-	S	-	S	-	-	L		-
CO4	S	M	M	-	-	-	-	S	S	S	-	-		L	M
CO5	S	M	M	-	-	-	-	L	-	L	-	L	L		-

S- Strong; M-Medium; L-Low

SYLLABUS

CONSTRUCTION PLANNING: Basic concepts in the development of construction plans-choice of Technology and Construction method-Defining Work Tasks- Definition- Precedence relationships among activities-Estimating Activity Durations-Estimating Resource Requirements for work activities-coding systems.

SCHEDULING PROCEDURES AND TECHNIQUES: Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process -Introduction to application software.

COST CONTROL MONITORING AND ACCOUNTING: The cost control problem-The project Budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

QUALITY CONTROL AND SAFETY DURING CONSTRUCTION: Quality and safety Concerns in Construction-Organizing for Quality and Safety-Work and Material Specifications-Total Quality control-Quality control by statistical methods -Statistical Quality control with Sampling by Attributes-Statistical Quality control by Sampling and Variables-Safety.

ORGANIZATION AND USE OF PROJECT INFORMATION: Types of project information-Accuracy and Use of Information-Computerized organization and use of Information -Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow

TEXT BOOKS:

- 1. Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw-Hill Publishing Co., New Delhi, 1998.
- 2. Srinath, L.S., "Pert and CPM Priniples and Applications", Affiliated East West Press, 2001

REFERENCES:

- 1. Chris Hendrickson and Tung Au, "Project Management for Construction Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000.
- 2. Moder.J., C.Phillips and Davis, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., Third Edition, 1983.
- 3. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons 1986.
- 4. Halpin, D.W., "Financial and cost concepts for construction Management", John Wiley and Sons, New York, 1985.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com		
2	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in		

17CVCC81	COMPUTER AIDED BUILDING DRAWING LAB	Category	L	Т	P	Credit
170 (0001		CC	0	0	4	2

Preamble

The aim of this course is to prepare the plan, elevation and sections of various types of buildings using any design software

Prerequisite - NIL

Course Objective

- At the end of this course the student should be able to draft on computer building drawings (Plan, elevation and sectional views) in accordance with development and control rules satisfying orientation and functional requirements.
- The students will be able to draft the plan, elevation and sectional views of the buildings, industrial structures, and framed buildings using computer software.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	To know about load bearing wall concept	Apply
CO2.	To know RCC framed structure concept	Apply
CO3.	To gain the knowledge about Office building drawings.	Apply
CO4.	To draw the industrial drawings as per industrial standard	Apply
CO5	To know about the orientation of the building construction	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSO	PSO	PSO
												12	1	2	3
CO1	S	M	S	-	-	-	-	-	-	-	-	-	M	L	L
CO2	S	M	S	-	-	-	L	-	-	-	-	-	-	L	-
CO3	S	M	M	-	-	-	-	-	-	L	-	-	M	L	L
CO4	S	M	M	-	-	-	M	-	-	-	-	-	-	L	L

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- . Buildings with load bearing walls (Flat and pitched roof) $-\,$
- Including details of doors and windows
- 2. RCC framed structures
- 3. Office Buildings
- 4. Industrial buildings North light roof structures Trusses
- 5. Perspective view of one and two storey buildings

Text Books

1 cad manual – Department of Civil engineering

Course Designers

S.	No	Faculty Name	Designation	Dept / College	Email id
	1	M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
	2	Ms.P.Subathra	Asst. Professor	Civil / AVIT	subathra@avit.ac.in

17CVCC82	STRENGTH OF MATERIALS LAB	Category	L	T	P	Credit
1,0,0002		CC	0	0	4	2

This laboratory course work is intended to provide students with opportunities to acquire knowledge and to develop skills in testing different materials used for the construction of building under the action of various forces and determining their characteristics experimentally. The experimental work involved in this laboratory will make the student to determine the mechanical and physical properties of materials like steel, wood, aluminium, cement, fine and coarse aggregate, etc. The students will be able to infer the suitability of these materials for construction.

PREREQUISITE- NIL

COURSE OBJECTIVES

- The Experimental work involved in this laboratory should make the student understand the fundamental modes of loading of the structures and also make measurements of loads, displacements and strains.
- Relating these quantities, the student should be able to obtain the strength of the material and stiffness properties of structural elements.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be able to	
CO1. Determine the behavior of structural elements, such as bars, beams and springs subjected to tension, compression, shear, bending, and torsion by means of experiments	Apply
CO2. Determine the physical properties of constituent materials.	Apply
CO3. Determine the properties of materials and hardened including strength and durability.	Apply
CO4. Determine the Deflection strength of the materials.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	PSO3
													1	O2	
CO1	M	M	M	L	-	L	-	M	L	M	M	L	-	-	-
CO2	M	M	M	L	-	L	-	M	L	M	M	L	-	M	-
CO3	M	M	M	L	-	L	-	M	L	M	M	L	-	L	-
CO4	M	M	M	L	-	L	-	M	L	M	M	L	-	-	-

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Tension test on mild steel and tor steel rods
- 2. Compression test on wooden specimen
- 3. Double shear test on mild steel and Aluminium rods
- 4. Torsion test on mild steel rods
- 5. Impact test on metal specimen
- 6. Hardness test on metals
- 7. Deflection test on metal beam
- 8. Compression test on Helical spring
- 9. Tension test on Helical spring
- 10. Deflection test on carriage spring.

TEXT BOOKS:

1. Strength of Materials Lab Manual by VMKV Engineering College.

REFERENCES:

- 1. Bansal, R.K., "A Text Book of Strength of Materials", Laxmi Publications (P) Ltd. New Delhi 2010
- 2. James M. Gere and Stephen P. Timoshenko, "Mechanics of Materials" (3rd edition), McGraw Hill Book Company, Singapore, 2002.
- 3. IS 1608: 1995 Mechanical testing of metals Tensile Testing.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.D.Parthiban	Asst. Professor	Civil / AVIT	parthiban.civil@avit.ac.in
2	Sathiyaraj R	Asst.Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in

17CVCC83	SURVEY PRACTICAL -I LAB	Category	L	Т	P	Credit
1701000	5611/21110110112 1212	CC	0	0	4	2
DDEAMDLE						

The theory part of Surveying can be experimented in Survey lab I. This includes the experiments on chains, compass, plane table and levels.

PREREQUISITE- NIL

COURSE OF IECTIVES

COURSE OBJECTIVES						
	1	Apply the basic principles of engineering surveying and measurements				
	2	Follow effectively field procedures required for a professional surveyor				

Use techniques, skills and conventional surveying instruments necessary for engineering practice.

COURSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1. Use the surveying tools like chain, tape, compass, plane table and levels in the field and take accurate measurements, booking and plotting	Apply
CO2. Adjust or compensate the errors in the field measurements	Apply
CO3. Locate the field position on the plan or vice versa	Apply

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO4. Locate the elevation of given points with respect to a given datum

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO3
													1	<u> </u>	
CO1	S	L	L	L	-	-	L	L	-	-	L	-	L	L	-
CO2	S	L	-	L	L	-	-	-	-	-	-	L	-	L	-
CO3	S	S	S	-	-	-	-	-	L	L	L	-	L	-	M
CO4	S	L	S	L	-	L	-	L	-	L	-	L	-	M	-

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1. CHAIN SURVEYING

• Ranging – changing and traverse.

2. COMPASS SURVEYING

• Traverse.

3. PLANE TABLE SURVEYING.

• Triangulation to find the distance between inaccessible points with and without known scale. – Three-point problem, two point problem.

4. LEVELLING

• Study of levels and leveling staff – Fly leveling using dumpy level. – fly leveling using tilting level. – Check leveling.

5. THEODOLITE SURVEYING

• Study of theodolite measurement of angles by reiteration and repetition - measurement of vertical angles.

REFERENCES:

- 1. SURVEY PRACTICAL -I LAB MANUAL by VMKV Engineeing College
- 2. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill, 2001.
- 3. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.
- 4. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.

COURSE DESIGNERS								
S.No	Name of the Faculty	Designation	Name of the College	Mail ID				
1	C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com				
2	Mr.R.Johnson Daniel	Asst. Professor	Civil / AVIT	johnsondaniel@avit.ac.in				

17CVCC84	HYDRAULIC ENGINEERING LAB	Category	L	Т	P	Credit
170,000		CC	0	0	4	2

3

The purpose of this course is to get exposure about the function of various hydraulic equipment.

PREREQUISITE

Mechanics of Fluids

COURSE OBJECTIVES

1	Student should be able to verify the principles studied in theory by conducting the experiments
2	The students will be able to measure flow in pipes and determine frictional losses.
2	The students will be able to develop characteristics of pumps and turbines

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Conducting experiments by using the principles studied in theory	Apply
CO2. Calculate flow in pipes and Frictional losses	Analyze
CO3. Developing characteristic curves of pumps and turbines	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	PSO3
													1	O2	
CO1	S	S	-	S	-	-	-	-	M	L	-	-	L		M
CO2	S	L	M	M	-	-	-	-	L	L	-	L		L	
CO3	S	M	M	S	-	-	-	-	M	M	L	-	M		

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

CYCLE-I

- 1. Determination of co-efficient of discharge for orifice
- 2. Determination of co-efficient of discharge for notches
- 3. Determination of co-efficient of discharge for venturimeter
- 4. Determination of co-efficient of discharge for orifice meter
- 5. Study of impact of jet on flat plate (normal / inclined)
- 6. Study of friction losses in pipes

CYCLE-II

- 1. Study of minor losses in pipes
- 2. Study on performance characteristics of Pelton turbine
- 3. Study on performance characteristics of Francis turbine
- 4. Study on performance characteristics of Kaplan turbine
- 5. Study on performance characteristics of Centrifugal pumps (Constant speed / variable speed)
- 6. Study on performance characteristics of reciprocating pump.

REFERENCES:

HYDRAULIC ENGINEERING LAB MANUAL by VMKV Engineering College

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

17CVCC85	SURVEY PRACTICAL -II LAB	Category	L	Т	P	Credit
170 (000)		CC	0	0	4	2

Knowledge on basic survey methods (Survey Lab I) is essential in order to determine the distance and heights of the objects using stadia, tangential as well as trignometrical principle.

PREREQUISITE

Fundamentals of surveying and Survey Lab I

COURSE OBJECTIVES

1	At the end of the course the student wil	posses knowledge about Survey	field techniques.
---	--	-------------------------------	-------------------

- The basic concepts in control surveying
- The concepts in Route Surveying

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1 -Use the surveying tools like Theodolite and Total Station in the field	Apply
CO2 -Take linear and angular measurements, booking and plotting accurately.	Apply
CO3 -Locate the position of the object after finding the distance	Apply
and heights using stadia, tangential and trignometrical principle	Арріу
CO4 -Set out a simple circular curve in the field	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
														2	
CO1	S	L	L	-	L	L	L	-	L	-	-	-	S	L	L
CO2	S	L	L	L	L	-	L	-	L	-	-	L	S	L	L
CO3	S	S	S	L	S	L	L	-	L	-	L	-	S	S	S
CO4	S	S	S	S	S	S	M	-	L	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

CYCLE-I

- 1. Study of theodolite and measurement of horizontal angle by repetition method.
- 2. Measurement of horizontal angle by reiteration method.
- 3. Determine the distance and heights of the objects using Stadia tacheometric method.
- 4. Determine the distance and heights of the objects using tangential tacheometric method.
- 5. Find the gradient between two points using stadia and tangential tacheometric principle.

CYCLE-II

- 6. Find the distance and elevation of the inaccessible (single) object by single plane method.
- 7. Find the distance and elevation of the inaccessible (single) object by double plane method.
- 8. Find the elevation of the inaccessible (double) object by double plane method.
- 9. Determine the elevation of the given point using subtense bar.

- 10. Measurement of horizontal, sloping and vertical distances of the object using Total station.
- 11. Setting out a circular curve using Total Station.
- 12. Using profile leveling, plot the longitudinal section and cross section of road

REFERENCES:

Surveying II Lab Manual by VMKV Engineering College

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mr.R.Johnson Daniel	Asst. Professor	Civil / AVIT	johnsondaniel@avit.ac.in

17CVCC86	SOIL MECHANICS LAB	Category	L	Т	P	Credit	
----------	--------------------	----------	---	---	---	--------	--

	CC	0	0	4	2
PREAMBLE					
To provide the hands on training in determination of Engineering problems.	and index pr	operties o	of soils, ap	oplied in f	ield
PREREQUISITE- Nil					
COURSE OBJECTIVES					
At the end of this course, the student acquires the capacity to test	the soil to ass	sess its Er	ngineering	and Index	x

COURSE OUTCOMES

properties

On the successful completion of the course, students will be able to

	on the successful completion of the course, students will be use to	
C	CO1. Grain size distribution - Hydrometer analysis	Apply
C	CO2. Relative density of sands	Apply
C	O3. One dimensional consolidation test (Determination of co-efficient of consolidation	
O	nly)	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Students know the techniques to determine index properties and engineering properties such as shear strength, compressibility and permeability by conducting appropriate tests.

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	M	L	L	L	L	L	-	-	-
CO2	S	L	S	L	L	L	L	L	L	L	S	L	-	M	L
CO3	S	S	S	L	L	L	S	L	L	L	L	L	-	L	-

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Grain size distribution Sieve analysis
- 2. Grain size distribution Hydrometer analysis
- 3. Atterberg limits test
- 4. Determination of moisture Density relationship using standard proctor.
- 5. Permeability determination (constant head and falling head methods)
- 6. Specific gravity of soil grains
- 7. Relative density of sands
- 8. Determination of shear strength parameters
 - a) Direct shear test on cohesion less soil
 - b) Unconfined compression test in cohesive soil
 - c) Triaxial compression test
- 9. One d imensional consolidation test (Determination of co-efficient of consolidation only)

REFERENCES:

- 1.SOIL MECHANICS LAB MANUAL by VMKV Engineeing College
- 2. "Soil Engineering Laboratory Instruction Manual", Published by the Engineering College Co operative Society, Chennai, 1996.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

17C	VCC87	ENVIRONMENTAL ENGINEERING LAB	Category	L	Т	P	Credit
	, , , ,		CC	0	0	4	2

This subject includes the list of experiments to be conducted for characterization of water and municipal sewage. At the end of the course, the student is expected to be aware of the procedure for quantifying quality parameters for water and sewage.

PREREQUISITE- Nil

COURSE OBJECTIVES

- 1 The students completing the course will be able to characterize wastewater and conduct treatability studies.
- 2 To expected to be aware of the procedure for quantifying quality parameters for water and sewage.
- To be conducted for characterization of water and municipal sewage.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

r	
CO1. Sampling and preservation methods and significance of characterization of water and Wastewater.	Apply
CO2. Determination of iron & fluoride	Apply
CO3. Determination of dissolved oxygen	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	M	L	L	L	L	L	L	L	M
CO2	S	L	S	L	L	L	L	L	L	L	L	L	-	L	-
CO3	S	S	S	L	L	L	L	L	S	L	L	M	L	-	-

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Sampling and preservation methods and significance of characterization of water and
- 2. Wastewater.
- 3. Determination of PH and turbidity Hardness
- 4.Determination of iron & fluoride
- 5.Determination of residual chlorine
- 6.Determination of Chlorides
- 7. Determination of Ammonia Nitrogen
- 8.Determination of Sulphate
- 9. Determination of Optimum Coagulant Dosage
- 10.Determination of available Chlorine in Bleaching powder
- 11. Determination of dissolved oxygen
- 12. Determination of suspended, volatile and fixed solids
- 13.B.O.D. test
- 14.C.O.D. test
- 15.Introduction to Bacteriological Analysis (Demonstration only) To provide adequate knowledge and to assess the quality of water like hardness, pH, etc., for rural people

REFERENCES:

1.ENVIRONMENTAL ENGINEERING LAB MANUAL by VMKV Engineeing College

- 2.Standard methods for the examination of water and wastewater, APHA, 20th Edition, Washington, 1998
- 3. Garg, S.K., "Environmental Engineering Vol. I & II", Khanna Publishers, New Delhi, 199

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mrs.S.Monisha	Asst. Professor	Civil / AVIT	monisha.civil@avit.ac.in

17CVCC88	COMPUTER AIDED DESIGN AND DRAWING	Category	L	T	P	Credit
	LAB	CC	0	0	4	2

This course helps to know the design of R.C.C cantilever and counterfort retaining walls, Design of solid slab, Design of various types of steel structures

PREREQUISITE- Design Of Reinforced Concrete Elements

COURSE OBJECTIVES

- The student acquires hands on experience in design and preparation of structural drawings for concrete structures normally encountered in Civil Engineering practice.
- The student acquires hands on experience in design and preparation of structural drawings for steel structures normally encountered in Civil Engineering practice.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Develop drafting skills in drawing R.C.C. cantilever and counter fort type retaining	Apply
walls with reinforcement details.	
CO2. Develop drafting skills in Design of solid slab and R.C. Tee beam bridges	Apply
CO3. Design of rectangular, pressed and hemispherical bottomed steel tank –staging –	Apply
rivetedjoints detailed drawing	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	M	L	L	L	L	L	L	L	L	-	-
CO2	S	L	S	L	L	L	L	L	L	L	L	L	L	-	M
CO3	S	S	S	L	L	L	L	S	L	L	L	L	L	-	M

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Design and drawing of R.C.C. cantilever and counter fort type retaining walls with reinforcement details
- 2. Design of solid slab and R.C. Tee beam bridges for IRC loading and reinforcement detail
- 3. Design of rectangular, pressed and hemispherical bottomed steel tank –staging –riveted joints detailed drawing
- 4. Design of circular, rectangular and intze type water tank reinforcement details
- 5. Design of plate girder twin girder deck type railway bridge through type and deck type highway bridges Truss girder bridges detailed drawing riveted connection

REFERENCES:

- 1.Computer Aided Design And Drawing Lab Manual by VMKV Engineeing College
- 2.Structural design & drawing (concrete & steel) Krishnaraju, CBS Publishers.2005
- 3. Krishnaraju, N. "Structural Design & Drawing, Universities Press, 2009.

S.No.	Name of the Faculty	Designation	Dept / College	Mail ID
1	M.Senthilkumar	Asst. Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in
2	Ms.P.Subathra	Asst. Professor	Civil / AVIT	subathra@avit.ac.in

17CVCC89

CONCRETE AND CONSTRUCTION TECHNOLOGY LAB

Category	L	Т	P	Credit	
EC	0	0	4	2	

PREAMBLE

This course helps to know the To understand and perform various tests on cement, aggregates and concrete.

PREREQUISITE

Construction Materials

COURSE OBJECTIVES

Student knows the techniques to characterize various pavement materials through relevant tests.

2 To understand and perform various tests on cement, aggregates and concrete.

COURSE OUTCOMES

On the successful completion of the course, students will be able to
CO1. Develop the skills in testing the strength of construction materials.

CO2. Develop the skills in materials toughness.

CO3. To develop special concrete.

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO
														2	3
CO1	S	L	L	L	-	L	S	L	L	L	L	L	L	L	L
CO2	S	L	-	L	M	L	-	L	-	-	L	-	L	L	L
CO3	S	S	S	-	L	-	L	-	L	L	-	L	L	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

LIST OF EXPERIMENTS:

- 1. Compressive Strength Test on Bricks
- 2. Water Absorption Test on Bricks
- 3. Specific gravity Test on Cement
- 4. Soundness Test on Cement
- 5. Consistency and Setting Time Test on Cement
- 6. Compaction Factor test on Concrete
- 7. Crushing Strength Test on Aggregates
- 8. Impact Resistance Test on Aggregates
- 9. Slump cone on concrete
- 10. Cube and Cylinder strength on concrete The student will have to trainrural people to check the quality of building materials in the lab by the students through the knowledge acquired in this lab

TEXT BOOKS:

- 1. Concrete And Construction Technology Lab Manual by VMKV Engineering College
- 2. M.S. Shetty, Concrete Technology (Theory and Practice), S. Chand & Company Ltd., 2003

S.No.	Name of the Faculty	Designation	Dept / College	Mail ID
1	R. Sathiyaraj	Asst. Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in
2	Ms.C.Vaidevi	Asst. Professor	Civil / AVIT	vaidevi.c@avit.ac.in

17CVCC90	SURVEY CAMP	Category	L	Т	P	Credit
		CC	0	0	2	1

This course helps to know the elevation of points by advanced methods and instruments.

PREREQUISITE

Survey Practical -II Lab

COURSE OBJECTIVES

- Students completing this course would have acquired practical knowledge on handling survey instruments
- Students knowledge to carryout Triangulation and Astronomical surveying including general field marking for various engineering projects and curves setting.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.	Develop the skills in field knowledge of surveying in Triangulation, Trilateration methods	Apply
CO2.	Develop the skills in Levelling and calculation of area	Apply
CO3.	Mapping of contoured area	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S															
CO	S	L	L	L	L	L	M	L	L	L	L	L	M	S	-
1															
CO	S	L	S	L	L	L	L	L	L	L	M	L	-	S	L
2															
CO	S	S	S	L	L	M	L	L	L	L	L	M	M	-	-
3															

S- Strong; M-Medium; L-Low

SYLLABUS

Ten days survey camp using Theodolite, cross staff, levelling staff, tapes, plane. The camp must involve work on a large area of not less than 400 hectares. at the end of the camp, each student shall have mapped and contoured the area. the camp record shall include all original field observations, calculations and plots

LIST OF EXPERIMENTS:

- 1. Triangulation
- 2. Trilateration
- 3. Road Profile leveling
- 4. Calculation of area using Offset Method
- 5. Height of a building

TEXT BOOKS:

- 1. James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, 7th Edition, McGraw Hill,
- 2. Bannister and S. Raymond, "Surveying", 7th Edition, Longman, 2004.3. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.

S.No.	Name of the Faculty	Designation	Dept / College	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mr.D.Parthiban	Asst. Professor	Civil / AVIT	parthiban.civil@avit.ac.in

17CVCC91	COMPREHENSION LAB	Category	L	Т	P	Credit
1,0,001		CC	1	1	0	2

This course helps to know the at the end of the course the students able to attend interviews and competitive exams

PREREQUISITE - NIL

COURSE OBJECTIVES

- The objective of "Comprehension" is to provide opportunity for the student to apply the knowledge acquired during the earlier semesters to real-life problems which he/she may have to face in future as an engineer.
- 2 At the end of the course the students able to attend interviews and competitive exams

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.	Develop the skills of students in interview point of view	Apply
CO2.	Develop the skills in objective type of question for competitive Examination	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	M	L	L	L	L	L	S	S	L	L
CO2	S	L	S	L	L	L	L	L	L	L	L	L	S	L	L

S- Strong; M-Medium; L-Low

SYLLABUS

The comprehension assessment will consist of 3 tests covering all the subject of study in Civil Engineering Course. **TEXT BOOKS:**

1. Text book of R.S Agarwall.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com
2	Mr.Sanjay Kumar	Asst. Professor	Civil / AVIT	sanjay.civil@avit.ac.in

CATEGORY C – ELECTIVE COURSES (i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE)

										Catego	rv	L	Т	P	Credit		
17CV	EC01		E	ENGIN	EERIN(G GEO	LOGY	7	-		•	3	0	0	3		
DDEA) (DY E									EC		<i>3</i>	o				
PREA	MBLE	Enci		. Caala	arria tha	o nnli o	ation of	fthaga	مامحناء		to oncin		amontina t	for the my	umasa af		
assurir	ng that th													for the pu l for. Eng			
														to under			
engine	engineering geologic report, and incorporate adequate measures into the design of engineering works.																
PRER	EQUIS	ITE															
		NIL															
COUR	RSE OB	JECTI	VES														
1	At the e	nd of th	is cour	se the s	tudent s	hall be	able to	underst	and ab	out Geol	ogical f	ormatio	ns				
	Classific																
	Morpho																
	Learn te																
	The stud						ne impo	ortance	of geol	ogical fo	rmation	in caus	ing earth	iquakes a	nd		
	RSE OU			the run	ar people	· .											
	he succe			on of th	e course	e, stude	nts will	be able	to								
			•							or earth,	gradati	onal					
										s which			Understa	nd			
	reason	for the	occurre	ence of	earthqu	ake, lan	dslides	in an a	rea.								
CO2.	•		erals aı	nd rock	as and a	assess i	ts phys	sical, m	echani	cal and	enginee	ering	Apply				
G02	proper		1 .	1		1.1. 1		,									
	. Deterr											I	Analyze				
CO4.										rust, soil writing a		rith .	Analyze				
				_	geophy g projec		грюган	on and	report v	writing a	specis w	viui 1	Anaryze				
CO5.							tability	with re	levance	e to the d	esign of	-					
		ructures				5100 501	.uc III v	***************************************					Analyze				
MAPF	PING W	TTH P	ROGR	AMMI	E OUT	COMES	S AND	PROG	RAMI	ME SPE	CIFIC	OUTC	OMES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO3		
													1	2			
CO1	S	M	L	S	S	M	S	M	M	S	S	S	S	-	-		
CO2	S	M	M	L	L	M	M	L	L	L	L	M					
CO3	S	S	S	S	L	L	M	L	L	L	L	L					
CO4	S	S	S	M	M	S	S	L	L	L	M	M					
	CO5 S S S S S S S S S																
S- Strong; M-Medium; L-Low																	

SYLLABUS

GENERAL GEOLOGY: Geology in Civil Engineering - Branches of geology - Earth Structure and composition - Elementary knowledge on continental drift and plate tectonics. Earth processes - Weathering - Work of rivers, wind and sea and their engineering importance - Earthquake belts in India. Groundwater - Mode of occurrence - prospecting - importance in civil engineering

MINERALOGY: Elementary knowledge on symmetry elements of important crystallographic systems - physical properties of minerals - study of the following rock forming minerals - Quartz family. Feldpar family, Augite, Hornblende, Biotite,

Muscovite, Calcite, Garnet - properties, behavior and engineering significance of clay minerals - Fundamentals of process of formation of ore minerals - Coal and Petroleum - Their origin and occurence in India.

PETROLOGY: Classification of rocks - Distinction between Igneous, Sedimentatary and Metamorphic rocks. Decription occurence, engineering properties and distribution of following rocks. Igneous rocks - Granite, Syenite, Diorite, Gabbro, Pegmatite, Dolerite and Basalt Sedimentary rocks sandstone, Limestone, Shale, Conglomerate and breccia. Metamorphic rocks, Quartzite, Marble, Slate, Thyllite, Gniess and Schist.

STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD: Attitude of beds - Outcrops - Geological maps - study of structures - Folds, Faults and joints - Their bearing on engineering Construction. Seismic and Electrical methods for Civil Engineering investigations. Remote sensing techniques - study of air photos and satellite images - Interpretation for Civil Engineering

GEOLOGY FOR ENGINEERING PROJECTS: Geological Investigations - Geophysical Investigations - Remote Sensing-Techniques - Geological Considerations for Dam Reservoirs, Tunnels and Road-Cuts - Practice in Geology - Demonstration for Clinometer, Electrical Resistivity Meter, Geological Maps - Identification of Crystals, Minerals and Rocks

TEXT BOOKS:

- 1. Parbin Singh, "Engineering and General Geology", Katson Publication House, 2009
- 2. P.C. Rao & D.B. Rao,"A Text Book Of Geology", Discovery Publishing House, 2010

REFERENCES:

- 1. Legeet, "Geology and Engineering", McGraw Hill Book Company, 1998.
- 2. Blyth, "Geology for Engineers", ELBS, 1995.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Ms.P.Subathra	Asst. Professor	Civil / AVIT	subathra@avit.ac.in

17CVEC02	IRRIGATION ENGINEERING	Category	L	T	P	Credit
		EC	3	0	0	3

This subject deals with study of irrigations practices and methods adopted in our country. Also to know the irrigation water requirement in order to design the structures like dams, weirs and canals.

PREREQUISITE

Environmental engineering

COURSE OBJECTIVES

- 1 To understand the need and mode of irrigation.
- 2 To know the irrigation management practices of the past, present and future.
- To understand about the Water distribution efficiency and optimization techniques

COURSE OUTCOMES

On the successful completion of the course, students will be able to

Co1. Describe the importance of National Water Policy.	Understand
Co2. Determine the storage capacity of reservoir for a given demand.	Understand
Co3. Explain the different types and methods of irrigation practices	Apply
Co4. Compute the design parameters of canal	Apply
Co5. Discuss the various concepts of irrigation water management and softwares	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO-	PO	DO0	PO	PO1	PO1	PO1	PSO	PSO	DCO2						
COs	1	2	3	4	5	6	7	7 PO8	9	0	1	2	1	2	PSO3
CO1	L	-	-	L	-	L	-	L	-	L	-	-	L	L	-
CO2	S	M	S	L	-	-	-	-	-	-	-	M	L	-	-
CO3	S	S	S	L	-	-	M	-	-	S	-	-	-	-	M
CO4	S	S	S	L	-	-	-	-	-	-	-	-	M	-	-
CO5	L	-	-	-	L	-	-	-	S	-	M	-	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

SOIL – PLANT WATER RELATIONSHIP: Definition – Need – Benefits- developments – Historical - Scope in the country and state. Soil – Water relationship - Wilting point – Soil fertility- Principal crops – Crop rotation – Crops and cropping season.

CROP WATER REQUIREMENTS: Duty and Delta – Definitions – Factors affecting Duty – Methods of Improving Duty, Consumptive use of water (Evapo – Transpiration) – Estimation of Evapo – Transpiration – Blaney and Criddle Method – Penman Methods – Lysimeter.

SOURCES, CONVEYANCE AND DISTRIBUTION OF WATER: Sources of Water – Rivers – Streams – Reservoirs and Tanks. Lift irrigation – Devices and equipment for Lift irrigation. Components of irrigation networks – Main and

Branch canal – Distributors – Minors – Water courses and field chak. Water application methods – Surface irrigation – Border – Check and Furrow – Subsurface irrigation – Sprinkler and Drip irrigation.

CONTROL AND REGULAR WORKS: Canal regulation works – Necessity and location of falls – Head and cross regulator – Canal escapes. Cross drainage works – Types of cross drainage work. River training works – Classification of River training works – Groynes or Spurs – Bank protection.

IRRIGATION WATER MANAGEMENT: Irrigation Efficiencies – Water conveyance efficiency – Water application efficiency – Water storage efficiency – Water distribution efficiency. Need for optimization – Need for interdisciplinary and participation approach. Roles and responsibilities of farmer's and government agencies in Turn Over.

TEXT BOOKS:

- 1. Garg, S.K., "Irrigation Engineering and Hydraulic Structures", Khanna Publishers, 2009.
- 2. Sharma R.K., Irrigation Engineering and Hydraulic Structures, Oxford and IBH Publishing Company, New Delhi, 1994.

REFERENCES:

- 1. Dilip Kumar Majumdar, "Irrigation Water Management (Principles & Practices)", Prentice Hall of India (P), Ltd.
- 2. Sathyanarayana Murthy, Irrigation Design and Drawing, Published by Mrs.L.Banumathi, Tuni, East Godavari District, A.P. 1998.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1.	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com		
2.	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in		

17CV	EC03	CE	OCDA	ршс	AT IN	FODM	IATIO	N SYSTEM	Cate	gory	L	T	P	Cı	edit
1700	ECUS	GE	OGKA	XI III C	AL III	r OKIV.	IATIO	NSISIEM	Е	С	3	0	0		3
PREA	MBLE	1								•	•			•	
Geographical Information System is the application of the geologic sciences to engineering practice for the															
purpose of assuring that the geologic factors affecting the engineering works are recognized and adequately provided															
for. E	nginee	ring ge	ologic	studies	may b	e perfo	rmed d	uring the plan	ning an	d design	. A civi	l engine	er should	be able	to
under	stand a	ın engi	neering	g geolog	gic repo	ort, and	incorp	orate adequate	measu	res into	the desi	gn of en	gineerin	g works.	•
PRER	_	SITE													
~~~	NIL														
COUR				to to on	nligatio	one of (	TIC in t	various applica	tion do	maina tl	rough a	oco ctud	ios		
1	•			•	•						ilough C	ase stud	168		
2	2 Students will learn about the use of zone mapping for water bodies.														
3	3 Students will learn about the use of mapping techniques for Agriculture and Earth sciences														
4	Students will also learn about the recent techniques used for GPS system														
5	The student shall also be able to appreciate the importance of geological formation in causing earthquakes and landslides and literate the rural people														
COUR															
On the	succes	sful co	mpletio	on of th	e cour	se, stud	ents wi	ill be able to							
(CO1)	Acquir	e the k	nowled	lge of t	he topo	ographi	cal for	nation, interior	earth,	gradati	onal	Unders	stand		
activiti	es and	GIS T	echniqu	ie and o	data IN	PUT						Chach	, turia		
(CO2)	) Unde	erstand	the im	portan	ce of ac	lvance	l techni	iques involved				Unders	stand		
in data	Analys	sis and	model	ling								0110011	, , , , , , , , , , , , , , , , , , , ,		
(CO3)	Study	the imp	ortanc	e of Da	ıta Outj	put And	l Error	Analysis.				Analys	se		
(CO4)	Unders	stand th	ne impo	ortance	of Nat	ural Re	sources	s And Wastelan	nd Mar	nagemen	t	Unders	stand		
using (	GIS											0110011	, , , , , , , , , , , , , , , , , , , ,		
(CO5)	Analy	sis of F	RS and	GIS da	ta and	interpr	eting th	e data for mod	leling a	pplication	ons	Analys	se		
MAPP	ING V	VITH	PROG	RAMN	ME OU	JTCON	MES A	ND PROGRA	MME	SPECI	FIC OU	JTCOM	ES		
COs	РО	РО	РО	РО	PO	PO	РО	PO8	PO	PO1	PO1	PO1	PSO	PSO	PSO3
COS	1	2	3	4	5	6	7	100	9	0	1	2	1	2	1303
CO1.	S	M	L	S	S	M	S	M	M	S	S	S	L	L	-
CO2.	S	M	M	L	L	M	M	L	L	L	L	M	L	S	-
CO3.	S	S	S	S	L	L	M	L	L	L	L	L	-	-	M
CO4.	S	S	S	M	M	S	S	L	L	L	M	M	M	M	-
CO5.	S	S	S	S	S	S	S	S	S	S	S	S	L	-	-
S- Stro	ng; M-	Mediu	m; L-L	ow											_

**SYLLABUS** 

GIS TECHNIQUE AND DATA INPUT: MAP – Types of Maps – Development of GIS – Components of GIS –

Hardware, software, organisation – Types of data – Spatial and non-spatial data – Print, Line and Polygon – Vector and Raster data – Database structures – Files – Vector and Raster data structures.

**DATA ANALYSIS AND MODELLING:** Data Retrieval – Query – Simple Analysis – Spatial Analysis – Overlay – Vector Data Analysis – Raster Data Analysis – Modelling using GIS – Digital Elevation Model – Cost and path analysis – Expert Systems – Artificial Intelligence – Integration with GIS.

**DATA OUTPUT AND ERROR ANALYSIS:** Data Output – Types – Devices used – Raster and Vector Display Devices – Printers – Photo write Devices – Sources of Errors – Types of Errors – Elimination – Accuracies.

GIS APPLICATIONS IN RESOURCE MANAGEMENT: Fields of Applications – Natural Resources – Agriculture – Soil – Water Resources – Wasteland Management - Social Resources - Cadastral Records – LIS

**ADVANCED GIS APPLICATION:** AM/FM – Utility Network Management – Integration with Remote Sensing – Knowledge based techniques – Multicriteria Techniques – Introduction to Object Oriented Data base Model.

#### **TEXT BOOKS:**

- 1. Burrough P A, Principles of GIS for Land Resources Assessment, Oxford Publication, 2000
- 2. Michael N Demers, Fundamentals of Geographical Information Systems, Second Edition, John Wiley Publications, 2002 **REFERENCES:**
- 1. Paul A Longley, Michael F Goodchild etal, Geographical Information Systems Volume I and II, Second Edition, John Wiley Publications, 1999

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1.	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com		
2.	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in		

17CVEC04

# REPAIR AND REHABLITATION OF STRUCTURES

Category	L	Т	P	Credit
EC	3	0	0	3

# **PREAMBLE**

To impart knowledge on understanding the properties of concrete, causes of its failure, effects and measures to repair and rehabilitate it

# **PREREQUISITE**

Construction techniques equipments and practices

# **COURSE OBJECTIVES**

1	To know about the various construction techniques, practices
2	To know about the equipment needed for different types of construction activities.
3	To understand about the various construction procedures for sub to super structure
4	To know about the various types of structures from foundation to super structure.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

Co1. Explain the factors affecting the durability of concrete structures	Understand
Co2. Identify the causes and effects of distress in concrete structures	Understand
Co3Diagnose distress in concrete structures and suggest suitable maintenance and repair strategies	Apply
Co4. Enumerate the concept of quality assurance in structures, basic mechanisms by which quality assurance schemes are developed and operated with case studies	Apply
Co5. Suggest suitable materials of repair related to the distress with case studies	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	РО	PO	РО	РО	РО	РО				PO1	PO1	PO1	PSO	PSO	
COs	10	FU	FU	FU	FU	тО	PO7	PO8	PO9	FUI	101	FUI	130	130	PSO3
COS	1	2	3	4	5	6	107	100	109	0	1	2	1	2	1503
001		-		-					-		3.5			-	
CO1.	-	L	-	L	-	-	-	-	L	-	M	-	-	L	-
CO2.	M	M	L	M	-	L	M	S	-	-	M	-	-	M	S
CO3.	S	S	S	M	M	-	L	-	M	-	S	S	M	L	-
CO4.	T	M	M	M		T	T				S		_	Ţ	M
CO4.	L	1V1	1V1	1V1	-	L	L	ı	_	_	S	-	_	L	IVI
CO5.	L	M	M	M	-	S	M	L	M	M	M	-	L	M	-
	1				1	1									

S- Strong; M-Medium; L-Low

# **SYLLABUS**

**GENERAL**: Quality assurance for concrete construction as built concrete properties, strength, permeability, thermal properties and cracking

# INFLUENCE ON SERVICEABILITY AND DURABILITY

Effects due to climate, temperature, chemicals, wear and erosion, design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, Method of corrosion production., corrosion inhibitors, corrosion resistant steels, coatings, cathodic production

# MAINTENANCE AND REPAIR STRATEGIES

Definitions: Maintenance, Repair, Rehabilitation, Facets of maintenance, Importance of maintenance, preventive measures on various aspects, assessment procedure for evaluating damaged structure, causes of deterioration – Testing techniques

#### MATERIALS FOR REPAIR

Special concrete and mortar, Concrete chemicals, special elements for accelerator, strength gain, expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, fibre reinforced concrete.

# TECHNIQUES FOR REPAIR

Rust Eliminators and Polymers coatings for rebars during repair foamed concrete, mortar and dry pack, vacuum concrete, Guniting, shotcrete epoxy injection, mortar repair for cracks, shoring and under pining. Examples of repairs to structures Repairs to overcome low member strength, deflection, cracking, chemical disruption, weathering wear, fire, leakage, marine exposure

# **TEXT BOOKS:**

- 1. M.S. Shetty, Concrete Technology Theory and Practice S.Chand and Company, New Delhi 2008
- 2. Dr. B. Vidivelli, Rehabilitation of Concrete Structures, Standard Publishers Distributors, 2007

#### **REFERENCES:**

- 1. Denison Campbell, Allen and Harold Roper, Concrete Structures, materials, maintenance and repair, Long man, Scientific and Technical UK 1991
- 2. Santha kumar A.R. Training Course Notes on Damage Assessment and Repair in Low Cost Housing, "RHDC NBO", Anna Univ July 91.

3.chaterjee B. K., Theory and Design of Concrete Shells, Oxford & IBH, New Delhi, 1998

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2.	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in

17CVEC05	TRAFFIC ENGINEERING MANAGEMENT	Category	L	T	P	Credit
176 (2600		EC	3	0	0	3

Students will acquire comprehensive knowledge of traffic surveys and studies such as volume count, Speed and delay, origin and destination, Parking, pedestrian and accident surveys. They will achieve knowledge on design of atgrade and grade separated intersections. Students will become familiar with various traffic control and traffic management measures.

# **PREREQUISITE**

Railway, Airport and Harbor Engineering

# **COURSE OBJECTIVES**

1	To achieve knowledge on design of 'at grade' and 'grade separated' intersections.
2	To become familiar with various traffic control and traffic management measures
3	To give an overview of Traffic engineering
4	To know about the Various surveys to be conducted, traffic regulation, management and traffic safety

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

Co1. Explain road user and vehicular characteristics	Understand		
Co2. Bring out speed and volume studies and their relationships	Understand		
Co3.Enumerate the various road safety requirements	Understand		
Co4. Design geometrics of intersections	Apply		
Co5. Design the signal phasing and design a rotary	Apply		

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOME

COs	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1.	S	M	L	L	S	M	S	M	M	S	S	S	L	L	-
CO2.	S	L	-	-	L	M	M	L	M	L	M	M	M	L	M
соз.	S	S	S	S	L	L	S	L	L	M	L	L	-	-	M
CO4.	L	L	L	L	M	L	S	L	M	L	M	M	M	M	L
CO5.	S	S	M	-	S	S	L	S	S	S	S	S	L	-	-

S- Strong; M-Medium; L-Low

# **SYLLABUS**

**INTRODUCTION:** Significance and scope, Characteristics of Vehicles and Road Users, Skid Resistance and Braking Efficiency (Problems), Components of Traffic Engineering-Road, Traffic and Land Use Characteristics.

**TRAFFIC SURVEYS AND ANALYSIS:** Surveys and Analysis - Volume, Capacity, Speed and Delays, Origin and Destination, Parking, Pedestrian Studies, Accident Studies and Safety Level of Services- Problems.

**TRAFFIC CONTROL:** Traffic signs, Road markings, Design of Traffic signals and Signal co-ordination (Problems), Traffic control aids and Street furniture, Street Lighting, Computer applications in Signal design.

**GEOMETRIC DESIGN OF INTERSECTIONS:** Conflicts at Intersections, Classification of Intersections at Grade, - Chanallised and Unchanallised Intersection - Grade Separators (Concepts only), Principles of Intersection Design, Elements of Intersection Design, Chanallisation and Rotary design (Problems), Grade Separators

**TRAFFIC MANAGEMENT:** Traffic Management-Traffic System Management (TSM) and Travel Demand Management (TDM), Traffic Forecasting techniques, Restrictions on turning movements, One-way Streets, Traffic Segregation, Traffic Calming, Tidal flow operations, Exclusive Bus Lanes - Introduction to Intelligence Transport System (ITS)

# **TEXT BOOKS:**

- 1. Kadiyali L R, Traffic Engineering and Transport Planning, Khanna Technical Publications, Delhi, 2000.
- 2. Khanna Kand Justo CEG, Highway Engineering, Khanna Publishers, Roorkee, 2001.

#### **REFERENCES:**

1.Indian Roads Congress (IRC) specifications: Guidelines and special publications on Traffic Planning and Management 2.Guidelines of Ministry of Road Transport and Highways, Government of India.

		Designation	Department	Mail ID
1. D	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2. M	Mr.D.Parthiban	Asst. Professor	Civil / AVIT	parthiban.civil@avit.ac.in

17CVEC06	HYDROLOGY	Category	L	Т	P	Credit
17CVEC00	III DROEGGI	EC	3	0	0	3

It is the science that deals with the waters of the earth, their occurrence, circulation, distribution and their reaction with environment including their relation to living things.

# **PREREQUISITE**

**NIL** 

#### **COURSE OBJECTIVES**

- The mechanics of rainfall, its spatial and temporal measurement and their applications will be understood.
- 2 The mechanics of rainfall, its distribution and measurement of rainfall using Hydrograph.
- 3 Analysis of Simple statistical and application of probability
- 4 Student will also learn simple methods of flood routing and ground water hydrology.
- 5 Distribution of rainfall and run off shall also be understood.

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

on the baccessful completion of the course, stadents will be usic to	
CO1. Explain the importance of Hydrological cycle and the measurement and analysis of rainfall data	Understand
CO2. Compute the quantity of runoff generated from a catchment	Apply
CO3.Develop hydrographs to measure the stream flow	Create
CO4. Estimate floods and propose suitable control measures	Evaluate
CO5. Suggest methods of conserving surface and groundwater storage	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	M	-	-	-	L	S	L	-	-	-	M	L	L	L
CO2	S	M	L	L	-	-	S	-	-	-	-	M	L	L	-
CO3	S	M	L	L	-	-	M	-	-	-	-	L	L	L	-
CO4	S	M	-	L	-	-	S	-	-	-	-	L	L	L	-
CO5	L	-	L	-	-	L	M	L	L	L	-	L	L	L	S

S- Strong; M-Medium; L-Low

# **SYLLABUS**

**PRECIPITATION:** Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfall – Spatial measurement methods – Temporal measurement methods – Frequency analysis of point rainfall – Intensity, duration, frequency relationship – Probable maximum precipitation.

**ABSTRACTION FROM PRECIPITATION:** Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration process – Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.

**HYDROGRAPHS:** Factors affecting Hydrograph – Baseflow separation – Unit hydrograph – Derivation of unit hydrograph – S curve hydrograph – Unit hydrograph of different deviations - Synthetic Unit Hydrograph

**FLOODS AND FLOOD ROUTING:** Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

**GROUND WATER HYDROLOGY:** Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.

# **TEXT BOOKS:**

4. Subramanya, K., "Engineering Hydrology", Tata McGraw-Hill Publishing Co., Ltd., 2000

Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000

# **REFERENCES:**

- 4. Chow, V.T. and Maidment, "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- Singh, V.P., "Hydrology", McGraw-Hill Inc., Ltd.,
   Raghunath, H.M, Ground Water, New Age International (P) Limited, Publishers.
- 7. Raghunath, H.M., Hydrology: Principles, Analysis & Design, New Age International (P) Limited, Publishers.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Ms.C.Vaidevi	Asst. Professor	Civil / AVIT	vaidevi.c@avit.ac.in

										_					
17C\	/EC0 <b>7</b>	DIC	SASTE	R MIT	IGATI	ON AN	ID MA	NAGEM	(ENT	Categ	gory	L	T	P	Credit
1/01	ECU/	DIS	AGIL.		IJAII		WIA.	MALIN	1151/11	EC		3	0	0	3
PREA	MBL	E													
	ires, ar	nd Haza		essment	proced	ure in I	ndia. T	expose this cours d.							
PRER	REQUI														
		NII													
COU		BJEC													
1	To Understand basic concepts in Disaster Management														
2	To Understand Definitions and Terminologies used in Disaster Management														
3	To Understand the Challenges posed by Disasters														
4	4 To understand Impacts of Disasters														
COU	RSE O	UTCO	MES												
								ill be abl							
CO1.	Unders	stand th	e vario	us types	of disa	ster viz	Hydro	ological, (	Coasta	l and Ma	rine				
Disast	ers, At	mosphe	eric Dis	asters,	Geologi	ical, Ma	ass Mov	vement a	nd Lan	nd Disast	ers, Win	ıd	U	nderstand	l
and W	ater D	riven D	isasters	S.											
CO2.	Identif	y the po	otential	deficie	ncies of	existin	g build	ings for l	Earthq	uake disa	aster and	l	***	. 1	1
sugges	st suita	ble rem	nedial m	neasures	S.								U	nderstand	1
CO3.I	Derive	the guid	de lines	for the	precau	tionary	measur	res and re	ehabilit	tation me	easures f	or		A 1	
Eartho	quake d	lisaster.												Apply	
CO4.	Derive	the pro	tection	measur	res agai	nst floo	ds, cyc	lone, land	d slide	s				Apply	
CO5.	Unders	stand th	e effect	s of dis	asters o	n built	structui	res in Ind	lia				U	nderstand	1
MAPI	PING	WITH	PROG	RAMN	Æ OU	ТСОМ	ES AN	D PRO	GRAN	IME SP	ECIFIC	OUTC	OMES		
COS	РО	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1 M	_	_	L	_	_	_	_	_	_	_	_	L	_	-
CO2	M	M	L	L	_	M	_	_	_	_	_	_	L	_	
							-			-	-				-
CO3	S	M	S	M	-	L	-	M	-	-	-	-	M	L	-

# S- Strong; M-Medium; L-Low

M

L

S

L

# **SYLLABUS**

S

CO4

CO5

**INTRODUCTION:** Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards

M

L

L

**RISK ASSESSMENT AND VULNERABILITY ANALYSIS:** Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

**DISASTER MANAGEMENT MECHANISM:** Concepts of risk management and crisis management; Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for relief

**DISASTER RESPONSE:** Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

**DISASTER MANAGEMENT IN INDIA:** Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

# **TEXT BOOKS:**

- 1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- 2. Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.
- 3. Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

# **REFERENCES:**

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

17CVEC08
1/CVECU8

# REMOTE SENSING TECHNIQUES AND APPLICATIONS

On the successful completion of the course, students will be able to

Category	L	Т	P	Credit	
EC	3	0	0	3	

#### **PREAMBLE**

Remote sensing is the science and art of obtaining information about an object, area or phenomenon, by the use of either recording or real time sensing devices that are not in physical contact with the object. The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. These GPS satellites circle the earth twice a day in a very precise orbit and transmit signal information to earth. Remote sensing and GPS data are further used in numerous applications, including GIS data collection, surveying, and mapping.

# **PREREQUISITE**

**NIL** 

#### **COURSE OBJECTIVES**

1	Students will learn about the land use mapping techniques, site suitability techniques
2	Students will learn about the use of zone mapping for water bodies
3	Students will learn about the use of mapping techniques for Agriculture and Earth sciences
4	Students will also learn about the recent techniques used for GPS system

#### COURSE OUTCOMES

on the successful completion of the course, students will be use to	
CO1. Recollect the fundamentals of physics of Remote sensing and concepts.	Remember
CO2. Outline the various data acquisition systems and collection methods for remote sensing	Understand
data information and storage	Onderstand

CO3.Apply knowledge of satellites on various Civil Engineering applications.  App
-----------------------------------------------------------------------------------

CO4. Utilize the various data input methods for mapping

Apply

CO5. Creation of data models using remote sensing techniques and GPS

Create

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	M
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	L	-	-	L	-	-	-	L	L	L	-	L	L	-
CO5	S	L	-	-	L	-	-	-	L	L	L	-	L	L	L

S- Strong; M-Medium; L-Low

# **SYLLABUS**

**INTRODUCTION:** Definition – Physics of remote sensing – electromagnetic radiation (EMR) – remote sensing windows – interaction of EMR with atmosphere, earth surface, soils, water and vegetation – platform and sensors – image interpretations.

**LAND USE STUDIES:** Definition of land use – land use / land cover classification – schemes and levels of classification systems with RS data – land use mapping – change detection – urban land use planning, site suitability analysis, transportation planning.

**WATER RESOURCES:** Areal assessment of surface water bodies – Capacity survey of water bodies – mapping of snow-covered areas – flood risk zone mapping – identification of groundwater potential zones, recharge areas – droughts, definition, drought assessment and management.

**AGRICULTURE, SOIL AND FORESTRY:** Crop inventory mapping – production estimation – command area monitoring – soil mapping – crop stress detection - estimation of soil erosion – forest types and density mapping – forest fire risk zone mapping.

**EARTH SCIENCE:** Lithology – lithological mapping – structural mapping – Geomorphology – nature and type of landforms – identification – use of remote sensing data for landslides – targeting mineral resources – Engineering geology and Environmental geology.

#### **TEXT BOOKS:**

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman., Remote Sensing and Image Interpretation. V Edn. John Willey and Sons (Asia) Pvt. Ltd., New Delhi, 2004
- 2. Lo. C.P.and A.K.W.Yeung, Concepts and Techniques of Geographic Information Systems. Prentice-Hall of India Pvt. Ltd., New Delhi, 2002

# **REFERENCES:**

- 1. Chandra, A.M, Geo Informatics, New Age International (P) Limited, Publishers.
- 2. Fazal, Shahab, GIS Basics, New Age International (P) Limited, Publishers.
- 3. Space Applications Centre. Manual for Forest mapping and Damage detection using satellite data, Report No.IRS-UP/SAC/FMDD/TN/16/90,1990, pp-253.
- 4. Sabins, F.F.Jr. Remote sensing principles and interpretation, W.H.Freeman & Co., 1978.
- 5. Manual of Remote Sensing Vol. II. American Society of Photogrammetry

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mr.D.Parthiban	Asst. Professor	Civil / AVIT	parthiban.civil@avit.ac.in

										_			<u>.</u>		
17CX	/EC09	п	OHSIN	IC PI A	NNIN	C AND	) MAN	<b>ACEM</b>	FNT	Categ	gory	L	T	P	Credit
1/0	ECO	11	OUSIN	GILA		GAND	VIAIN	AGEM	EI I	EC	C	3	0	0	3
PREA	MBLE	1								•	•	•			
	This co								nding th	ne genera	al princip	les of bu	ilding pl	anning aı	ıd
PRER	EQUIS	ITE NIL													
COUR	SE OB	JECTI	VES												
1	An in	troducti	on to h	ousing	plannin	g									
2	Const	ruction	and fin	ancing	of hous	ing pro	jects.								
3	The co	ourse fo	ocuses o	on cost	effectiv	e const	ruction	materia	ls and r	nethods.					
4	Emph	asis has	s also b	een give	en on th	ne princ	iples of	sustain	able ho	using po	licies and	d prograi	nmes.		
COUR	SE OU	TCOM	IES												
	ne succe														
CO1. A	Apply th	e genei	al plan	ning co	nsiderat	tions an	d devel	opment	contro	l rules fo	r differe	nt		Apply	
types o	f buildi	ngs.												FF-7	
CO2. A	Apply th	e princ	iples of	electric	al and	lighting	service	es for di	ifferent	uses in b	ouildings			Apply	
CO3. U	Indersta	and and	apply t	he prin	ciples o	f plumb	oing ser	vices fo	or dome	stic and	industria	1	U	nderstand	1
CO4. P	lan and	design	the req	uireme	nts for l	HVAC	systems	s, fire fi	ghting a	and other	r necessa	ry			
service	s for a v	arious	types b	uilding	S									Apply	
CO5. In	ncorpor	ate the	integrat	ed plan	ning an	d desig	ning of	necessa	ary buil	ding serv	vices for				
better u	ısage of	buildir	ngs											Apply	
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAMI	ME SPE	CIFIC (	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	-	-	-	-	-	-	-	-	M	L	-	-
CO2	S	S	S	M	M	M	M	-	-	L	-	M	L	M	-
CO3	S	S	S	M	M	-	L	_	-	-	-	L	-	-	-

COS	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	PO10	POH	PO12	PSOI	PSO2	PSO3
CO1	S	M	M	-	-	-	-	-	-	-	-	M	L	-	-
CO2	S	S	S	M	M	M	M	-	-	L	-	M	L	M	-
CO3	S	S	S	M	M	-	L	-	-	-	-	L	-	-	-
CO4	S	S	S	M	M	L	L	-	-	-	-	L	L	M	M
CO5	S	S	S	M	M	L	L	-	-	-	-	L	L	-	M

S- Strong; M-Medium; L-Low

### **SYLLABUS**

**INTRODUCTION TO HOUSING:** Definition of Basic Terms – House, Home, Household, Apartments, Multi storeyed Buildings, Special Buildings, Objectives and Strategies of National Housing Policies, Principle of Sustainable Housing, Housing Laws at State level, Bye-laws at Urban and Rural Local Bodies – levels - Development Control Regulations, Institutions for Housing at National, State and Local levels.

**HOUSING PROGRAMMES:** Basic Concepts, Contents and Standards for Housing Programmes - Sites and Services, Neighbourhoods, Open Development Plots, Apartments, Rental Housing, Co-operative Housing, Slum Housing Programmes, Role of Public, Private and Non-Government Organisations.

**PLANNING AND DESIGN OF HOUSING PROJECTS:** Formulation of Housing Projects – Site Analysis, Layout Design, Design of Housing Units (Design Problems)

# CONSTRUCTION TECHNIQUES AND COST-EFFECTIVE MATERIALS:

New Constructions Techniques – Cost Effective Modern Construction Materials, Building Centers – Concept, Functions and Performance Evaluation

**HOUSING FINANCE AND PROJECT APPRAISAL:** Appraisal of Housing Projects – Housing Finance, Cost Recovery – Cash Flow Analysis, Subsidy and Cross Subsidy, Pricing of Housing Units, Rents, Recovery Pattern (Problems)

#### **TEXT BOOKS:**

- 1. Meera Mehta and Dinesh Mehta, Metropolitan Housing Markets, Sage Publications Pvt. Ltd., New Delhi, 1999.
- 2. Francis Cherunilam and Odeyar D Heggade, Housing in India, Himalaya Publishing House, Bombay, 1997.

#### **REFERENCES:**

- 1. Development Control Rules for Chennai Metropolitan Area, CMA, Chennai, 2002.
- 2. Dhir,B.M,Construction Planning And Management, New Age International(P)Limited,Publishers.
- 3. Lal, A.K, Hand Book Of Low Cost Housing, New Age International (P) Limited, Publishers.
- 4. Panchdhari, A.C, Water Supply & Sanitary Installations, New Age International (P) Limited, Publishers.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Mrs.S.Monisha	Asst. Professor	Civil / AVIT	monisha.civil@avit.ac.in

		Category	L	Т	P	Credit
17CVEC10	MANAGEMENT OF IRRIGATION SYSTEMS	EC	3	0	0	3
	oject deals with study of irrigations practices and methods r requirement in order to design the structures like dams,			y. Also to	know the	
PREREQUIS	ITE NIL					

COURSE	ODJECTIVES	

- He/she shall also be able to appreciate the importance due and duly given to stake holders.
- The structural and non structural activities for the management of water resources
- 3 The management plans involved in scheduling
- 4 Case studies on use of ground water will be taught

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Describe the importance of National Water Policy.	Understand
CO2. Determine the storage capacity of reservoir for a given demand.	Understand
CO3. Explain the different types and methods of irrigation practices	Apply
CO4. Compute the design parameters of canal	Apply

CO5. Discuss the various concepts of irrigation water management and softwares

Understand

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
CO1	L	-	-	L	-	L	-	L	-	-	-	-	L	L	S
CO2	S	M	S	L	-	-	-	-	-	-	-	-	L	-	M
CO3	S	S	S	L	-	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	L	-	-	-	-	-	-	-	-	M	L	L
CO5	L	-	-	-	L	-	-	-	-	-	-	-	L	M	M

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**IRRIGATION SYSTEM REQUIREMENTS:** Irrigation systems – Supply and demand of water – Cropping pattern – Crop rotation – Crop diversification – Estimation of total and peak crop water requirements – Effective and dependable rainfall – Irrigation efficiencies.

**IRRIGATION SCHEDULING:** Time of irrigation – Critical stages of water need of crops – Criteria for scheduling irrigation – Frequency and interval of irrigation

**MANAGEMENT:** Structural and non-structural strategies in water use and management – Conjunctive use of surface and ground waters – Quality of irrigation water.

**OPERATION:** Operational plans – Main canals, laterals and field channels – Water control and regulating structures – Performance indicators – Case study

**INVOLVEMENT OF STAKE HOLDERS:** Farmer's participation in System operation – Water user's associations – Farmer councils – Changing paradigms on irrigation management – Participatory irrigation management

#### TEXT BOOKS:

- 1. Dilip Kumar Majumdar, "Irrigation Water Management Principles and Practice", Prentice Hall of India Pvt. Ltd., New Delhi, 2000
- 2. Hand book on Irrigation Water Requirement, R.T. Gandhi, et. al., Water Management Division, Department of Agriculture, Ministry of Agriculture, New Delhi

#### **REFERENCES:**

- 1. Hand Book on Irrigation System Operation Practices, Water Resources Management and Training Project, Technical report No. 33, CWC, New Delhi, 1990
- 2. Maloney, C. and Raju, K.V., "Managing Irrigation Together", Practice and Policy in India, Stage Publication, New Delhi, India, 1994

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CVEC11	GROUND IMPROVEMENT TECHNIQUES	Category	L	Т	P	Credit
		EC	3	0	0	3

This course deals with the different ground improvement methods adopted for improving the properties of remolded and in-situ soils by adopting different techniques such as in- situ densification, consolidation and dewatering methods. This course enables the students to understand how reinforced earth walls can obviate the problems associated with conventional retaining walls. Also the students would be exposed to the concepts of grouting, soil stabilization and the use of geo textiles to improve the engineering performance of soils.

## **PREREQUISITE**

Mechanics of soils

#### **COURSE OBJECTIVES**

- Further he/she is in a position to decide various ways and means of improving the soil and implementing techniques of improvement.
- 2 About the drainage and dewatering techniques available
- 3 About the various treatments available for soil
- 4 About the reinforcement and grout techniques
- 5 Further he/she is in a position to decide various ways of ground improvements.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Enumerate the role of ground improvement and select appropriate ground improvement technique for the given subsoil condition.	Understand
CO2. Suggest appropriate dewatering technique for lowering the ground water table	Apply
CO3. Recommend suitable techniques for densifyingcohesionless soil deposit	Apply
CO4. Suggest appropriate techniques for consolidating cohesive deposits	Apply
CO5. Perform simple design of reinforced earth walls and illustrate the role of geo-textile in	Apply
ground improvement	

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
	1				5										3
CO1	S	M	L			L		L					S	M	L
CO2	S	M	L		L	M		L		L	L		S	M	L
CO3	S	M	L		L	M		L		L			S	M	L
CO4	S	M	M		L			L		L		L	S	M	M
CO5	S	M	M					M		M	L		S	M	M

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**INTRODUCTION:** Role of ground improvement in foundation engineering - methods of ground improvement – Geotechnical problems in alluvial, laterite and black cotton soils -Selection of suitable ground improvement techniques based on soil condition.

**DRAINAGE AND DEWATERING:** Drainage techniques - Well points - Vaccum and electroosmotic methods - Seepage analysis for two dimensional flow-fully and partially penetrating slots in homogenous deposits (Simple cases only).

**INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS:** Insitu densification of cohesionless and consolidation of cohesive soils -Dynamic compaction and consolidation - Vibrofloation - Sand pile compaction - Preloading with sand drains and fabric drains — Stone columns — Lime piles - Installation techniques only - relative merits of various methods and their limitations.

**EARTH REINFORCEMENT:** Concept of reinforcement - Types of reinforcement material - Applications of reinforced earth – use of Geotextiles for filtration, drainage and separation in road and other works.

**GROUT TECHNIQUES:** Types of grouts - Grouting equipment and machinery - Injection methods - Grout monitoring - Stabilisation with cement, lime and chemicals - Stabilisation of expansive soils.

#### **TEXT BOOKS:**

- 1. Koerner R.M., "Construction and Geotechnical Methods in Foundation Engineering", McGrawHill, 1994.
- 2. Purushothama Raj, P. "Ground Improvement Techniques", Laxmi Publications, New Delhi, 2005

#### **REFERENCES:**

- 1. Moseley M.P., Ground Improvement Blockie Academic and Professional, Chapman and Hall, Glassgow, 1993.
- 2. Jones J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1995.
- 3. Koerner, R.M., "Design with Geosynthetics", (3rd Edition) Prentice Hall, New Jersey, 2002.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com
2	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in

# **17CVEC12**

# INTRODUCTION TO SOIL DYNAMICS AND MACHINE FOUNDATIONS

Category	Category L		P	Credit
EC	3	0	0	3

#### **PREAMBLE**

The aim of the course is to assess the dynamic properties of soil. To decide various ways and means of improving the soil and implementing techniques of improvement. The drainage and dewatering techniques available in field.

#### **PREREQUISITE**

Mechanics of soils

#### COURSE OBJECTIVES

- 1 To learn the various design parameters required for the design of machine foundation
- 2 About different vibratory systems available for designing
- 3 To study the dynamic properties of soil
- 4 About the various isolation techniques available
- 5 Design of foundation for various reciprocating machines

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

- CO2. Estimate consolidation parameters and compute consolidation Apply
- CO3. Perform simple design of reinforced earth walls and illustrate the role of geo-textile in Apply

ground improvement

- CO4. Calculate the lateral earth pressure also check the stability of retaining walls.

  Evaluate
- CO5. Perform simple design of reinforced earth walls and illustrate the role of geo-textile in Apply

ground improvement

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2													
CO1	S	M	L			L		L					S	M	L
CO2	S	M	L		L	M		L		L	L		S	M	L
CO3	S	M	L		L	M		L		L			S	M	-
CO4	S	M	M		L			L		L		L	S	M	-
CO5	S	M	M					M		M	L		S	M	M

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**INTRODUCTION:** Vibration of elementary systems-vibratory motion-single degree freedom system-free and forced vibration with and without damping

**WAVES AND WAVE PROPAGATION:** Wave propagation in an elastic homogeneous isotropic medium- Raleigh, shear and compression waves-waves in elastic half space

**DYNAMIC PROPERTIES OF SOILS:** Elastic properties of soils-coefficient of elastic, uniform and non-uniform compression - shear-effect of vibration dissipative properties of soils-determination of dynamic properties of soil- codal provisions

**DESIGN PROCEDURES:** Design criteria -dynamic loads - simple design procedures for foundations under reciprocating machines - machines producing impact loads - rotary type machines

**VIBRATION ISOLATION:** Vibration isolation technique-mechanical isolation-foundation isolation-isolation by location-isolation by barriers- active passive isolation tests.

#### **TEXT BOOKS:**

1. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998

2. IS code of Practice for Design and Construction of Machine Foundations, McGraw-Hill, 1996.

# **REFERENCES:**

- 1. Kameswara Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003
- 2. Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd., 1999

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com		
2	Mrs.J.Srija	Asst. Professor	Civil / AVIT	srija.civil@avit.ac.in		

17CVEC13				EI E <i>C</i> '	rd∧N⊓	IC SUR	X/EX/P	NC		Categ	gory	L	Т	P	Credit
1/CVE	LCIS			ELEC	IKON	IC SUR	VEYII	NG		EC	C	3	0	0	3
PREAN	<b>ABLI</b>	E E											<u> </u>		1
The aim equipme		e cours	se is to	underst	and the	workin	g of EI	OM equ	ipment	and solv	e the sur	veying p	problems	with EDI	M
PRERE	EQUI	SITE													
			Surve	ying I											
COURS	COURSE OBJECTIVES														
1 T	The student will posses knowledge about Electronic surveying														
2 A	About the propagation of electromagnetic waves and its main principles														
3 \ \	Various implementations of surveying														
4 T	The student will Study about different EDM instruments and Total Station.														
5 Methods of measuring distance, historical development															
COURSE OUTCOMES															
								ill be al							
	_	oute the		measu	ırement	in cha	iin surv	eying a	and ang	gular me	asureme	nts in	Apply		
				nifican	ce of pl	ane tab	le surve	ying in	prepara	ation of p	olans		Understa	nd	
					_			• •	• •	g princip			Apply		
CO4.F	ind th	ne dista	nce and	l height	s of ob	jects us	ing tacl	neometr	ic princ	iple			Apply		
			_					nvolved					Apply		
										IME SP				T =	T
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L			L		L					S	M	L
CO2	S	M	L		L	M		L		L	L		S	M	L
CO3	S	M	L		L	M		L		L			S	M	L
CO4	S	M	M		L			L		L		L	S	M	L
CO5	S	M	M					M		M	L		S	L	M
C Ctuon	og: M	Medin	ım; L-L	OW		<u> </u>	<u> </u>	<u> </u>	<u> </u>					L	<u></u>

# SYLLABUS

**FUNDAMENTALS:** Methods of measuring distance, historical development, basic principles of EDM, classifications, applications and comparison with conventional surveying

**BASIC ELETRONICS:** Fundamentals of electronics, resonant circuits, semiconductors, Lasers, Cathode ray tube, photo multiplier tube, transducers, oscillators, frequency mixing, modulation and demodulation, Kerrcell modulator, measurement of phase difference, reflectors and power sources.

**PROPAGATION OF ELECTROMAGNETIC WAVES:** Definition, classification, applications, propagation properties, wave lower propagation higher frequencies. Refractive index, affecting, computation group refractive index for light and near infrared waves standard conditions ambient conditions, reference at refractive index, first velocity correction, computation of refractive index for microwaves, atmospheric parameters, mean refractive application of index, real time velocity correction, second velocity correction and total atmospheric correction

ELECTROMAGNETIC DISTANCE MEASURING SYSTEM : Electro-optical system, measuring principle, working principle, sources of error, infrared **EDM EDM** and principle, instruments, instruments total station. Microwave system, measuring Laser working principle, sources of error, microwave EDM instruments, comparison with Electrooptical system, care and maintenance of EDM instruments, Modern Positioning Systems. EDM traversing, trilateration and base line measurement using EDM.

**FIELD STUDIES :** Study of different EDM instruments and Total Station. EDM traversing, trilateration and base line measurement using EDM.

# **TEXT BOOKS:**

- 1. Satheesh Gopi, K. Sathikumar, "Advanced Surveying" Dorling Publication, 2008
- 2. Rueger, J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 1990.

### **REFERENCE BOOKS:**

1. Laurila, S.H. Electronic Surveying in Practice, John Wiley and Sons Inc, 1983..Soastamoinen, J.J.

2.Surveyor's guide to electro-magnetic Distance Measurement, Adam Hilger Ltd., 1967.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com
2	Mr.D.Parthiban	Asst. Professor	Civil / AVIT	parthiban.civil@avit.ac.in

17CVEC14	AIR POLLUTION MANAGEMENT	Category	L	Т	P	Credit
	12201 0220 1101 1120 11020 1201	EC	3	0	0	3

The course work offers the basic knowledge on various sources of air pollutants and their possible effects on local, regional and global environment. It provides various techniques for sampling and analyzing he pollutants. Also, it deals with the principles and design of control of particulate/gaseous air pollutants and its emerging trends to fulfil the legal aspects of air pollution to have a sustainable environment for future generation. In addition.

# **PREREQUISITE**

	Environmental engineering									
COU	RSE OBJECTIVES									
1	About noise pollution and the methods of controlling the same.									
2	The student is expected to know about source inventory and control mechanism.									
3	To impart knowledge on the sources, effects									
4	The control techniques of air pollutants and noise pollution									
5	The sources, characteristics and effects of air									
COU	RSE OUTCOMES									
On	On the successful completion of the course, students will be able to									
CO1.	CO1. Identify the sources of air pollution, impacts of air pollutants and their measurements  Apply									

On the successful completion of the course, students will be able to									
CO1. Identify the sources of air pollution, impacts of air pollutants and their measurements	Apply								
CO2. identify the significance of meteorological factors in pollutants dispersion and to predict the pollutant concentration	Understand								
CO3. Suggest preventive and control measures for air pollution.	Apply								
CO4. Suggest locations for industries and appropriate city planning tips for the effective air pollution management of a city	Apply								
CO5. The course offers the basic knowledge on various sources of air pollutants and their possible effects on local, regional and global environment.	Apply								

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
CO1	S	M	L	L		L		L					M	M	S
CO2	S	M	L	L	L	M		L		L	L		M	M	S
CO3	S	M	L	L	L	M		L		L			M	M	S
CO4	S	M	M	S	L			L		L		L	M	M	S
CO5	S	M	M	S				M		M	L		S	L	S

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

SOURCES AND EFFECTS OF AIR POLLUTANTS: Classification of air pollutants - Particulates and gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

**DISPERSION OF POLLUTANTS:** Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate -Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

AIR POLLUTION CONTROL: Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

**AIR QUALITY MANAGEMENT**: Air quality standards – Air quality monitoring – Preventive measures - Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

**NOISE POLLUTION:** Sources of noise pollution – Effects – Assessment - Standards – Control methods - Prevention

# **TEXT BOOKS:**

- 1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996

# **REFERENCE BOOKS:**

- 1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997
- 2.Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing Company, New Delhi, 1991.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in
2	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com

17CVEC15	BRIDGE STRUCTURES	Category	L	Т	P	Credit
	2-12-0-2-11-0-2-1	EC	3	0	0	3

Bridge is a structure built to span physical obstacles without closing the way underneath such as a body of water, valley, or road, for the purpose of providing passage over the obstacle. There are many different designs that each serve a particular purpose and apply to different situations. Designs of bridges vary depending on the function of the bridge, the nature of the terrain where the bridge is constructed and anchored, the material used to make it, and the funds available to build it. This course offers the design of bridges such as RCC bridges, design principles of steel and prestressed concrete bridges, design principles of substructure and design of different types of bearings as per IRC loadings standards, Indian Railway standards bridge rules and MOST codes. It aims at determination of safe as well as economical section using different kinds of material used in construction and maintenance

# **PREREQUISITE**

Design of steel structures

# **COURSE OBJECTIVES**

1	To impart exposure on various aspects of structural design
2	Compare the behavior of bridge structures with that of the normal reinforced concrete structures.
3	Understand the performance of composite members.
4	Finally to learn the design of bridge structures.
5	Common types of steel and concrete bridges
~ ~ ~	

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to	
CO1. Identify the type of bridge and its basic requirements for particular location	Understand
Co2. Design the culverts and deck slab bridges	Create
Co3. Design the long span bridges	Apply
Co4. Demonstrate the design principles of steel bridges	Apply
CO5. Design the bridge bearings and piers	Create

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	S	S		L	S	L					S	S	I.
CO2	S	S	S	S	L	M	S	L		L	L		S	S	L
CO3	S	S	S	S	L	M	S	L		L			S	S	L
CO4	S	S	S	S	L		S	L		L		L	S	S	L
CO5	S	S	S	S			S	M		M	L		S	S	L

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**INTRODUCTION:** Design of through type steel highway bridges for IRC loading - Design of stringers, cross girders and main girders - Design of deck type steel highway bridges for IRC loading - Design of main girders

**STEEL BRIDGES:** Design of pratt type truss girder highway bridges - Design of top chord, bottom chord, web members - Effect of repeated loading - Design of plate girder railway bridges for railway loading - Wind effects - Design of web and flange plates - Vertical and horizontal stiffeners.

**REINFORCED CONCRETE SLAB BRIDGES:** Design of solid slab bridges for IRC loading - Design of kerb - Design of tee beam bridges - Design of panel and cantilever for IRC loading

**REINFORCED CONCRETE GIRDERS BRIDGES**: Design of tee beam - Courbon's theory - Pigeaud's curves - Design of balanced cantilever bridges - Deck slab - Main girder - Design of cantilever - Design of articulation.

**PRESTRESSED CONCRETE BRIDGES:** Design of prestressed concrete bridges - Preliminary dimensions - Flexural and torsional parameters - Courbon's theory - Distribution coefficient by exact analysis - Design of girder section - Maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - cable zone in girder - Check for stresses at various sections - Check for diagonal tension - Diaphragms - End block - Short term and long term deflections.

#### **TEXT BOOKS:**

- 1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. New Delhi, 2007
- 2. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 2008

# **REFERENCE BOOKS:**

1. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CV	FC14			Tr /	ATT D	UILDI	NCS			Categ	ory	L	T	P	Credit
1/00	EC10			17	ALL D	UILDI	NGS			EC	1,	3	0	0	3
PREA	MBL	E								<u> </u>	<u> </u>	<u> </u>	<u> </u>		
				underst				ociated	with la	rge heigh	ts of str	uctures v	with respe	ect to load	ds (wind
PRER	EQUI	SITE													
			Desig	n of Ste	eel stru	ctures									
COUI	RSE O	BJECT	TIVES												
1 1	He sho	uld kno	w the r	udimer	itary pi	rinciple	s of des	signing	tall buil	ldings as	per the e	existing	course.		
2	Γo pro	vide an	insight	to the	design	of tall l	ouilding	gs.							
3	Γo enli	ghten t	he stud	ents on	moder	n techn	iques a	vailable	e for the	analysis	of tall b	uildings			
COUI	RSE O	UTCO	MES												
								will be a							
Co1.	Unde	rstandir	ng on th	ne beha	viour o	f tall bu	uildings	subjec	ted to la	ateral bui	lding.		Understai	nd	
Co2.	The s	tudents	should	have k	nowled	dge abo	ut the d	lesignin	g tall b	uildings			Apply		
Co3. 1	Rudim	entary ₁	principl	les of de	esignin	g tall b	uilding	s as per	the exi	sting cod	es.		Apply		
Co4.	Analys	is of Bo	earing <b>V</b>	Wall Bu	uilding	s ,The C	Cross W	Vall Stru	ıcture				Apply		
CO5.	Expla	in the i	mporta	nce of I	High-R	ise Sus	pensior	1 Syster	ns ,Pne	umatic H	igh -Ris	e	Apply		
Buildi	ngs												Арргу		
MAPI	PING	WITH	PROG	RAMN	AE OU	JTCON	MES A	ND PR	OGRA	MME SI	PECIFI	C OUT	COMES		
COS	РО	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1 S	M	L	M	5	L	M	L	S						•
	S						M	L		 L			S	S	L
CO2		M	L	M	L	M			S		L		S	S	M
CO3	S	M	L	S	L	M	M	L		L			S	S	L
CO4	S	M	M	S	L		M	L	S	M		L	S	S	L

S- Strong; M-Medium; L-Low

M

#### **SYLLABUS**

CO5

INTRODUCTION: The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development Rise Building Structures General Planning Considerations. Dead Loads - Live Loads-Construction Loads -Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading -Water and Earth Pressure Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads -Combination of Loads.

M

M

M

M

THE VERTICAL STRUCTURE PLANE: Dispersion of Vertical Forces- Dispersion of Lateral Forces - Optimum Ground Level Space - Shear Wall Arrangement - Behaviour of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel - Frame Systems - Multistory Box Systems.

COMMON HIGH-RISE BUILDING STRUCTURES AND THEIR BEHAVIOUR UNDER LOAD: The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures - Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings - Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response.

APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF BUILDINGS: Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall Structure The Rigid Frame Structure Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading - Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame - Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure.

**OTHER HIGH-RISE BUILDING STRUCTURE:** Deep - Beam Systems - High-Rise Suspension Systems - Pneumatic High - Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture.

#### **TEXT BOOKS:**

- 1. WOLFGANG SCHUELLER "High rise building Structures", John Wiley and Sons.
- 2. Bryan Stafford Smith and Alex Coull, "Tall Building Structures", Analysis and Design, John Wiley and Sons, Inc., 1991

#### **REFERENCE BOOKS:**

- 1. Coull, A. and Smith, Stafford, B. "Tall Buildings", Pergamon Press, London, 1997.
- 2. LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers", John Wiley, 1994.
- 3. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 4. Taranath.B.S., Structural Analysis and Design of Tall Buildings, Mc Graw Hill 1998.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com
2	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

17CVE	EC17	STRUCTURAL DYNAMICS	Category	L	Т	P	Credit
1/CVE	ECI7	STRUCTURAL DINAMICS	EC	2	2	0	3
PREAM	IBLE				1		
The purp	pose of t	the course is to understand how to arrive the dynamic force	ces and struct	ures			
PRERE	QUISI	ГЕ					
		Structural analysis					
COURS	SE OBJ	ECTIVES					
1 7	To learn	how to idealise the structure into systems of reduced num	nber of degre	es of free	dom		
2 7	To learn	about the discritization of various structures					
3 7	To unde	rstand about the seismic design of various structures					
4 7	They als	so be able to interpret the results.					
5 Т	To learn	how to idealise analyse these systems for the forces.					
COURS	SE OUT	COMES					
On the	success	sful completion of the course, students will be able to					
CO1. Sc	olve pro	blems of single degree of freedom (SDOF) systems			Understa	and	
CO2. S	Solve dy	namic problems in multi-degree of freedom (MDOF) sys	tems		Apply		
CO3. To	o introd	uce dynamic analysis of continuous systems			Apply		
CO4. A ₁	pply str	uctural dynamic principles to the analysis of structures for	r seismic and	wind	A 1		

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L			L		L					M	-	-
CO2	S	M	L		L	M		L		L	L		M	-	-
CO3	S	M	L		L	M		L		L			M	-	-
CO4	S	M	M		L			L		L		L	M	L	M
CO5	S	M	M					M		M	L		M	-	-

Apply

Apply

S- Strong; M-Medium; L-Low

CO5. Introduce blast loading

# **SYLLABUS**

loading

**PRINCIPLES OF DYNAMICS**: Difference between static loading and dynamic loading – Nature of dynamic loads – Wind, Earthquake and Impact Loads – Damping – Viscous and structural damping – single degree of freedom (SDOF) Systems – Formulation of equation of motion – Newton's Law and D'Alembert'sprinciples – Examples of SDOF modeling.

**SINGLE DEGREE FREEDOM SYSTEMS :** Free vibration response of SDOF system – Response of undamped and damped SDOF system to harmonic excitation – characteristic of resonance – Response to impulse and an arbitrary forcing function – Duhamel Integral formulation.

**MULTIDEGREE OF FREEDOM SYSTEMS**: MDOF systems – examples – Lumped parameter model – Formulation of equation of motion – Free vibration of MDOF systems as Eigen value problem – concept of mode shapes and natural frequencies – 2 DOF example – orthogonal properties of normal modes.

**SUPERPOSITION PRINCIPLES:** Harmonic excitation of 2 DOF system – Principle of mode superposition (principle only) for dynamic analysis – vibration isolation – vibration measuring instruments.

**DESIGN FOR WIND AND EARTHQUAKE:** Effect of wind and earthquake on structures – Principles of aseismic design – Methods of Vibration control – codal provisions for design for wind and earthquake (explanation of Provisions only – no design)

# **TEXT BOOKS:**

- 1. Mario Paz," Structural Dynamics Theory and Computation", Van Nostrand Reinhold, 2004
- 2. Anil K.Chopra, "Dynamics of Structures Theory and Applications to Earthquake Engineering" Pearson Education., 2003.

# **REFERENCE BOOKS:**

- 1. Clough R.W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1990
- 2. Craig R.R. Jr., Structural Dynamics An Introduction to Computer Methods, John Wiley and Sons, 1981

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

17CVEC18	WIND ENGINEERING	Category	L	Т	P	Credit
		EC	3	0	0	3

The course includes studies of sustainable development and energy sources. Basic mathematical and physical concepts will be covered. An introduction to prerequisites for wind power development including how a wind turbine works, planning for wind energy, environmental impact, location and economic aspects will be given. The phases of wind power projects is studied. Oral and written presentations in a scientific context will be discussed and practiced in the course. A site study visit to an operating wind farm is included.

#### **PREREQUISITE**

Nil

#### **COURSE OBJECTIVES**

To learn about the forces generated on structures due to normal wind as well as gus
-------------------------------------------------------------------------------------

- To analyse the dynamic effects produced due to chimney, tower and silos
- To understand about the seismic design of various structures
- 4 To analyses the application in design and its implementations
- To learn about the forces generated on structures due to normal wind as well as gusts.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to								
CO1. Give an account of and analyse energy sources and their sustainability	Understand							
CO2. Identify and explain a wind power project's phases	Apply							
CO3. Identify and evaluate factors affecting wind energy development	Apply							
CO4 Analyse the siting conditions for wind power development	Apply							

CO5.	Present an individual or group project of wind power.	Create
------	-------------------------------------------------------	--------

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	S	S		L	S	L			L		S	M	S
CO2	L	S	S	S	L	M	S	L		L	L		S	M	S
CO3	S	S	S	S	L	M	L	L		L			M	S	S
CO4	L	S	L	S	L		S	L		L		L	M	S	S
CO5	S	S	S	S			S	M		L	L		S	S	S

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**INTRODUCTION:** Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height – Shape factor – Aspect ratio – Drag and lift.

**EFFECT OF WIND ON STRUCTURES :** Static effect – Dynamic effect – Interference effects (concept only) – Rigid structure – Aeroelastic structure (concept only)..

**EFFECT ON TYPICAL STRUCTURES**: Tail buildings – Low rise buildings – Roof and cladding – Chimneys, towers and bridges

**APPLICATION TO DESIGN:** Design forces on multistorey building, towers and roof trusses.

**INTRODUCTION TO WIND TUNNEL:** Types of models (Principles only) – Basic considerations – Examples of tests and their use.

#### **TEXT BOOKS:**

- Peter Sachs, "Wind Forces in Engineering, Pergamon Press, New York, 1992.
   Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

# **REFERENCE BOOKS:**

- 1. Devenport A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 1990.
- 2. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
2	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com

										Categ	gory	L	Т	P	Credit
17CV	EC19	CO	MPUT	ER AII	DED D	ESIGN	OF ST	FRUCTU	URES	EC	2	3	0	0	3
PREA	MBLE	<u>'</u>										ı			
The pu	irpose o	of the co	ourse is	to train	the stu	dents to	design	n and ana	ılysis a	structur	e by usin	ng comp	uters.		
PRER	EQUIS	SITE													
		Desi	gn of re	inforce	d concr	ete									
COUF	RSE OF	BJECT	IVES												
1	1 To create a computer code as well as using commercially														
2	To know about the available softwares for the design of Civil Engineering structures.														
3	To understand concepts of finite element techniques in structural analysis.														
4	To de	sign and	d optim	ization	involve	ed in ste	el and	RCC stru	ictures						
COUF	RSE OU	JTCON	MES												
							ents wi	ll be able	e to			,			
CO1. I	Learn th	ne desig	n optim	nization	of stru	ctures							Apply		
Co2.	Adopt t	hese me	ethods i	n the fi	eld								Analyze		
Co3. I	Develop	draftin	g skills	in drav	ving pla	n, secti	on and	elevation	n of res	sidential	building	s	Create		
using A	AutoCA	ΔD													
Co4.D	evelop	drafting	g skills i	in draw	ing pla	n, sectio	on and e	elevation	of pul	olic build	lings usi	ng	<u></u>		
AutoC	AD sof	tware											Create		
MAPI	PING V	VITH I	PROGE	RAMM	E OUT	COMI	ES ANI	D PROG	RAM	ME SPI	ECIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		M	M	M			M	L	L
CO2	S	S		L	S	M		M	M	M			M _		-
CO3	S	S		L	S	M		M	M	M			M	L	-

S- Strong; M-Medium; L-Low

S

L

L

S

S

M

M

#### **SYLLABUS**

S

S

CO4

CO5

**INTRODUCTION:** Fundamentals of CAD - Hardware and software requirements -Design process - Applications and benefits.

M

M

M

M

M

M

M

M

L

**COMPUTER GRAPHICS :** Graphic primitives - Transformations -Wire frame modeling and solid modeling -Graphic standards –Drafting packages

**STRUCTURAL ANALYSIS**: Fundamentals of finite element analysis - Principles of structural analysis - Analysis packages and applications.

**DESIGN AND OPTIMISATION:** Principles of design of steel and RC Structures -Applications to simple design problems – Optimisation techniques - Algorithms - Linear Programming – Simplex method

**EXPERT SYSTEMS:** Introduction to artificial intelligence - Knowledge based expert systems -Rules and decision tables –Inference mechanisms - Simple applications.

#### **TEXT BOOKS:**

- 1. Groover M.P. and Zimmers E.W. Jr., "CAD/CAM, Computer Aided Design and Manufacturing", Prentice Hall of India Ltd, New Delhi, 2000
- 2. Krishnamoorthy C.S.Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 2006 **REFERENCE BOOKS:**
- 1. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford, 1990.
- 2. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in
2	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com

17CVEC20	INDUSTRIAL STRUCTURES	Category	L	Т	P	Credit				
	2.2 05 2222 5 220 0 2 0225	EC	3	0	0	3				
PREAMBLE										
The purpose of	The purpose of the course is to know about the special aspects with respect to Civil Engineering structures in industries.									

# PREREQUISITE

Design of steel structures

#### **COURSE OBJECTIVES**

1	To know about the functional requirements involved in the design
2	To know about the design of RCC structures.
3	To understand about the design of Steel structures.
4	To design and ontimization involved in prefabricated, structures

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to								
CO 1. Data required to design industrial structures	Understand							
CO 2. Data required to design RCC structure	Understand							
CO 3. Designing industrial structures	Apply							
CO 4. Designing RCC structure	Apply							
CO 5. Principles of prefabrication	Understand							

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
CO1	S	S		L	S	M		M	M	M			L		L
CO2	S	S		L	S	M		M	M	M			L		L
CO3	S	S		L	S	M		M	M	M			L	L	L
CO4	S	S		L	S	M		M	M	M			L		L
CO5	S	S		L	S	M		M	M	M			L	L	L

S- Strong; M-Medium; L-Low

# **SYLLABUS**

**PLANNING:** Classification of Industries and Industrial structures – General requirements for industries like cement, chemical and steel plants – Planning and layout of buildings and components.

**FUNCTIONAL REQUIREMENTS:** Lighting – Ventilation – Accounts – Fire safety – Guidelines from factories act **DESIGN OF STEEL STRUCTURES:** Industrial roofs – Crane girders – Mill buildings – Design of Bunkers and Silos.

**DESIGN OF R.C. STRUCTURES:** Silos and bunkers – Chimneys – Principles of folded plates and shell roofs.

**PREFABRICATION:** Principles of prefabrication – Prestressed precast roof trusses- Functional requirements for Precast concrete units

#### **TEXT BOOKS:**

1.N. Subramanian, "Design of Steel Structures: Theory and Practice, Oxford University Press, Incorporated, Mar-2011 2.P.C. Varghese, "Advanced Reinforced Concrete structures", PHI Learning Pvt. Ltd., 09-Jan-2009

#### **REFERENCES:**

- 1. Henn W. Buildings for Industry, vols.I and II, London Hill Books, 1995
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of IndianStandards, New Delhi 1990

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Mrs.R.Abirami	Asst. Professor	Civil / AVIT	abirami.civil@avit.ac.in							
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com							

17CVEC21	SMART STRUCTURES AND SMART	Category	L	Т	P	Credit
176 (1621	MATERIALS	EC	3	0	0	3

The purpose of the course is designed to give an insight into the latest developments regarding smart materials and their use in structures

# **PREREQUISITE**

Smart materials.

# COURSE OBJECTIVES

1	To know about the measuring techniques for various materials
2	To know about the concepts of sensors for various materials
3	To understand about the concepts of signal processing and control systems for various materials
4	To deals with structures which can self adjust their stiffness with load.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO 1 Measuring techniques for various materials	Understand
CO 2 Concepts of sensors for various materials	Understand
CO 3 The concepts of signal processing and control systems for various materials	Analyze
CO 4 Using structures which can self adjust their stiffness with load	Analyze

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		M	M	M			L	L	L
CO2	S	S		L	S	M		M	M	M			L		
CO3	S	S		L	S	M		M	M	M			L	L	L
CO4	S	S		L	S	M		M	M	M			L		

S- Strong; M-Medium; L-Low

## **SYLLABUS**

**INTRODUCTION:** Introduction to Smart Materials and Structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors

**MEASURING TECHNIQUES:** Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.

SENSORS: Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strain measurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement

**ACTUATORS:** Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magnetostructure Material – Shape Memory Alloys – Electro orheological Fluids– Electromagnetic actuation – Role of actuators and Actuator Materials..

SIGNAL PROCESSING AND CONTROL SYSTEMS: Data Acquisition and Processing – Signal Processing and

Control for Smart Structures – Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear.

# **TEXT BOOKS:**

Brain Culshaw - Smart Structure and Materials Artech House - Borton. London-1996.

# **REFERENCES:**

- 1. L. S. Srinath Experimental Stress Analysis Tata McGraw-Hill, 1998.
- 2. J. W. Dally & W. F. Riley Experimental Stress Analysis Tata McGraw-Hill, 1998.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in		
2	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com		

17CVE	2 FINITE ELEMENT T	ECHNIQUES	Category	L	Т	P	Credit
			EC	2	2	0	3

The purpose of the course is to understand & analyses linear elastic structures, that has been studied about in core courses, using finite element method.

# **PREREQUISITE**

Structural analysis

#### COURSE OBJECTIVES

1	To analyze linear elastic structures that he has studied about in core courses using finite element method.
2	To know about the concepts of finite element analysis of one dimensional problems
3	To understand about the concepts of finite element analysis of two dimensional problems
4	To deals with finite element analysis of isoparametric problems and its applications with software packages

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO 1. Analyzing with the use of FE Method	Analyze
CO 2. Analysis of one dimensional problems with the use of FE Method	Analyze
CO 3. Analysis of two dimensional problems with the use of FE Method	Analyze
CO 4. Analyzing structure with the use of software	Analyze

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		M	-	M		M	S	M	
CO2	S	S		L	S	M		-	M	M			S	M	L
CO3	S	S		L	S	M		M		M			S	M	
CO4	S	S		L	S	M		M	-	M			S	M	L

S- Strong; M-Medium; L-Low

### **SYLLABUS**

INTRODUCTION – VARIATIONAL FORMULATION: General field problems in Engineering – Modelling – Discrete and Continuous models – Characteristics – Difficulties involved in solution – The relevance and place of the finite element method – Historical comments – Basic concept of FEM, Boundary and initial value problems – Gradient and divergence theorems – Functionals – Variational calculus – Variational formulation of VBPS. The method of weighted residuals – The Ritz method.

**FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS :** One dimensional second order equations – discretisation of domain into elements – Generalised coordinates approach – derivation of elements equations – assembly of elements equations – imposition of boundary conditions – solution of equations – Cholesky method – Post processing – Extension of the method to fourth order equations and their solutions – time dependant problems and their solutions – example from heat transfer, fluid flow and solid mechanics

**FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS:** Second order equation involving a scalar-valued function – model equation – Variational formulation – Finite element formulation through generalised coordinates

approach – Triangular elements and quadrilateral elements – convergence criteria for chosen models – Interpolation functions – Elements matrices and vectors – Assembly of element matrices – boundary conditions – solution techniques. **ISOPARAMETRIC ELEMENTS AND FORMULATION:** Natural coordinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elements in - 2 dimensional problems – Isoparametric elements in 1,2 and 3 dimensional – Largrangean and serendipity elements – Formulations of elements equations in one and two dimensions - Numerical integration

**APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS**: Equations of elasticity – plane elasticity problems – axisymmetric problems in elasticity – Bending of elastic plates – Time dependent problems in elasticity – Heat – transfer in two dimensions – incompressible fluid flow

#### **TEXT BOOKS:**

- 1 . Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2003
- 2. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.

#### **REFERENCES:**

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.
- 2. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

1′	7CVEC23	DESIGN OF PLATE AND SHELL STRUCTURES	Category	L	T	P	Credit
			EC	2	2	0	3

The purpose of the course is to understand the rudimentary principles involved in the analysis.

# **PREREQUISITE**

Design of steel structures

# **COURSE OBJECTIVES**

1	To design rectangular plates.
2	To know about the design of thin shells
3	To analyse shells
4	To design folded plates

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Designing of rectangular plates	Analyze
CO2. Designing of thin shells	Analyze
CO3. Analysis of shells	Analyze
CO4. Designing of folded plates	Analyze

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L	S	M	L	M	-	M		M	M	S	
CO2	S	S	M	L	S	M	L	-	M	M			M	L	
CO3	S	S	M	L	S	M	L	M		M			M	S	
CO4	S	S	M	L	S	M	L	M	-	M			M	L	

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**THIN PLATES WITH SMALL DEFLECTION:** Laterally loaded thin plates – governing differential equations – Simply supported and fixed boundary conditions

**RECTANGULAR PLATES:** Simply supported rectangular plates – Navier's solution and Levy's method.

**THIN SHELLS**: Classification of shells-structural actions – membrane theory.

ANALYSIS OF SHELLS: Analysis of spherical dome – cylindrical shells – folded plates

**DESIGN OF SHELLS**: Design of spherical dome – cylindrical shells – folded plates

## **TEXT BOOKS:**

- 1. G.S. Ramaswamy, Design and Construction of Shell Structures, CBS Publishers, New Delhi, 1996
- 2. S. Timoshenko & S. Woinowsky Krieger, "Theory of Plates and Shells", McGraw Hill Book Company, 2010

#### **REFERENCES:**

Theory and analysis of plates, Rudolph szilard, Prentice Hall Inc, 1995

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CVEC24	GROUND WATER ENGINEERING	Category	L	Т	P	Credit
		EC	3	0	0	3

The purpose of the course is to understand the ground improvement techniques and quality of ground water.

# **PREREQUISITE**

Environmental engineering

#### **COURSE OBJECTIVES**

1	To know the types of aquifers
2	To understand the surface and subsurface investigation in detail
3	To integrate the fundamental and basic knowledge of ground water movement
4	To introduce the different model studies.

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Analyze the types of aquifers	Analyze
CO2. Analysis of the surface and subsurface investigation in detail	Analyze
CO3. Analysis of ground water movement	Analyze
CO4. Analyzing different model studies	Analyze

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		M		M		M	L		
CO2	S	S		L	S	M		-		M			L	M	
CO3	S	S		L	S	M		M		M			L		
CO4	S	S		L	S	M		M		M			L		

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**HYDROGEOLOGICAL PARAMETERS:** Introduction - Water bearing Properties of Rock - Properties of aquifer - Transmissivity and storage coefficient - Problems in Specific yield - specific capacity -Darcy's law and permeability - Methods of Estimation - Ground water table fluctuation and its interpretations - Type of aquifers - Groundwater development and Potential in India - groundwater legislation, GEC norms.

**EVALUATION OF AQUIFER PROPERTIES:** Darcy's equation - governing equation of ground water flow - steady and unsteady flow equations for confined and unconfined aquifer - water table aquifer - Dupit Forchheimer assumption - one dimensional flow - well hydraulics - hydro geological boundaries - concept of image - image well - well theory - interference of wells - partial penetration of well

**GROUNDWATER HYDRAULICS AND EXPLORATION:** Geological methods - Geophysical - electrical resistivity - seismic refraction - water wells classification - drilling of deep wells - well design, construction and maintenance - well development. Pumping test analysis - well characteristics - draw down test - Tracer tests.

**GROUNDWATER QUALITY AND MOVEMENT:** Ground water chemistry - Origin, movement and quality - Water quality standards - Remediation of saline intrusion - Remediation schemes - Artificial recharge techniques - Ground water Pollution and legislation

**GROUNDWATER MANAGEMENT:** Need for management model - database for groundwater management - protection zone delineation groundwater balance. Introduction to groundwater model - Types, model formulation, and boundary conditions - case study.

#### **TEXT BOOKS:**

- 1. Todd D. K.," Ground water hydrology", John Wiley & Sons, 3rd Edition, 2005
- 2. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi, 2010. 3. Bouwer H., "Groundwater Hydrology", Tata Mc Graw Hill, Company Ltd, Indian Edition 1978

# **REFERENCES:**

1. Health R. C. and Trainer F.W., "Introduction of Ground water Hydrology", John Wiley and sons, 1985

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in

17CVEC25	PRINCIPLES OF STRUCTURAL	Category	L	T	P	Credit
176 (1623	DYNAMICS AND SEISMIC DESIGN	EC	2	1	0	3

The purpose of the course is to impart the knowledge about the fundamentals definitions of earthquake, their responses to earthquake, and their application to the design of earthquake resistant structures.

# **PREREQUISITE**

Foundation engineering

#### **COURSE OBJECTIVES**

- 1 To introduce dynamic loading and the dynamic performance of the structures to the students
- 2 To understand the different types of dynamic loading.
- To know the performance of structures under earthquake loading.

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Analyze dynamic loading and the dynamic performance of the structures to the students	Analyze
CO2. Analyse different types of dynamic loading	Analyze
CO3. Analyse of the performance of structures under earthquake loading	Analyze

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		M		M		M	L	L	
CO2	S	S	L	L	S	M	L		M	M			L		
CO3	S	S		L	S	M		M		M	L	M	L		

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**ELEMENTS OF SEISMOLOGY:** Elements of Engineering Seismology - Causes of Earthquake – Plate

Tectonic theory – Elastic rebound Theory – Characteristic of earthquake – Estimation of earthquake parameters - Magnitude and intensity of earthquakes – Spectral Acceleration

RESPONSE OF STRUCTURES TO EARTHQUAKE: Effect of earthquake on different type of structures — Behaviour of Reinforced Cement Concrete, Steel and Prestressed Concrete Structure under earthquake loading — Evaluation of earthquake forces as per IS:1893 — 2002 - Response Spectra — Lessons learnt from past earthquakes DESIGN METHODOLOGY: Causes of damage — Planning considerations / Architectural concepts — Guidelines for Earthquake resistant design — Earthquake resistant design for masonry and Reinforced Cement Concrete buildings — Design and detailing as per IS: 13920 — 1993..

**SEISMIC HAZARD ANALYSIS:** Identification and Evaluation of Earthquake Sources – Geologic Evidence – Tectonic Evidence – Historical Seismicity – Instrumental Seismicity – Deterministic Seismic Hazard Analysis – Probabilistic Seismic Hazard Analysis

**SPECIAL PROBLEMS AND CASE STUDIES:** Structural Configuration - Seismic performance - Irregular Buildings - Soil performance, Modern Concepts – Base Isolation - Adoptive system - Case studies

#### **TEXT BOOKS:**

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", 4th Edition, Pearson Education, 2011.
- 2. Agarwal. P and Shrikhande. M., "Earthquake Resistant Design of Structures", Prentice Hall of India Pvt. Ltd. 2007

# **REFERENCES:**

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw Hill Book Co., New York, 1964
- 2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 2009
- 3. Paz, M. and Leigh.W. "Structural Dynamics Theory & Computation", 4th Edition, CBS Publishers & Distributors, Shahdara, Delhi, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in
2	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com

17CVEC26	CONTRACT LAWS AND REGULATIONS	Category	L	Т	P	Credit
		EC	3	0	0	3

To study the various types of construction contracts and their legal aspects and provisions. To study the of tenders, arbitration, legal requirement, and labour regulations.

# **PREREQUISITE**

Nil

# **COURSE OBJECTIVES**

1	To study the various types of construction contracts and their legal aspects and provisions. Policy
	$\mathbf{I}$

2 To study the of tenders, arbitration, legal requirement, and labour regulations.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. To know about the construction contracts	Apply
CO2. To Study about the tender documents.	Apply
CO3. To Know about the rules of evidence of contract.	Apply
CO4. To Study the planning about legeal requirements.	Apply
CO5. To Understand about the labour requirements	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	L	L	-
CO2	S	M	L	S	-	-	-	-	-	-	-	-	L	L	-
CO3	S	M	M	S	-	-	-	-	-	-	-	-	L	L	M
CO4	S	M	M	M	-	-	-	-	-	-	-	-	L	L	-
CO5	S	M	M	-	-	-	-	-	-	-	-	L	L	L	L

S- Strong; M-Medium; L-Low

# **SYLLABUS**

**CONSTRUCTION CONTRACTS:** Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability –Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts.

**TENDERS:** Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual

Problems – World Bank Procedures and Guidelines – Tamilnadu Transparency in Tenders Act.

**ARBITRATION**: Comparison of Actions and Laws – Agreements – Subject Matter – Violations – Appointment of Arbitrators – Conditions of Arbitration – Powers and Duties of Arbitrator – Rules of Evidence – Enforcement of Award – Costs

**LEGAL REQUIREMENTS:** Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land –Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law– Local Government Laws for Approval – Statutory Regulations

**LABOUR REGULATION:** Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamilnadu Factory Act – Child Labour Act - Other Labour Laws.

#### TEXT BOOKS:

- 1. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India,
- 2. Jimmie Hinze, Construction Contracts, McGraw Hill, 2001.
- 3. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, McGraw Hill, 2000.

#### **REFERENCES:**

- 1. Kwaku, A., Tenah, P.E. Jose M.Guevara, P.E., Fundamentals of Construction Management and Organisation, Printice Hall, 1985.M.M.Tripathi Private Ltd., Bombay,1982.
- 2. Patil. B.S, Civil Engineering Contracts and Estimates, Universities Press (India) Private Limited, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in

17CVEC27	TRANSPORT ECONOMICS	Category	L	Т	P	Credit
		EC	3	0	0	3

The purpose of the course is to creates awareness among the engineering students about transport economics.

## **PREREQUISITE**

Highway engineering

#### **COURSE OBJECTIVES**

1	To know the effects of human activities &modern technology on transport
2	To understand the pricing of transport services
3	To know the performance of transport financing.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Analyzing the effects of human activities &modern technology on transport	Analyze
CO2. Analysis of the pricing of transport services	Analyze
CO3. Analysis of the performance of transport financing	Analyze

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		L	S	M		M		M		M	L	L	L
CO2	S	S		L	S	M			M	M			L		
CO3	S	S		L	S	M		M		M		M	L	L	

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**INTRODUCTION:** Introduction to Transportation Economics - Purpose and major considerations in Transport economics Transportation Demand and Supply - Transport Costing: Types of cost and their behavior: direct and indirect; fixed and variable, Treatment of assets and capital depreciation - infrastructure, vehicle/carrying unit and others, Transport costs: Internal and External

**PRICING OF TRANSPORT SERVICES:** Vehicle operations cost - running cost - pollution cost - value of travel time - road damage cost - congestion cost - accident cost.

**ECONOMIC EVALUATION**: Economic Evaluation of Highway schemes - Need and Methods of Economic Evaluation - Economic Analysis economic evaluation, economic studies - Transportation plans - Benefit cost method, Net present value method, and internal rate of return method and comparison of various methods.

**TRANSPORT FINANCING:** Revenue Sources, Expenditure Sources, Traditional Project Delivery Methods, Innovative Financing, Credit financing, Private financing, BOT, BOOT, dedicated road funds, road pricing, tolls, Private provisions, advantages & limitations - Methods for raising funds for maintenance, improvement and expansion of transportation networks: Taxation and user fee, Financing through loans, bonds, PPPs and concessions.

**TRANSPORT ECONOMICS:** Transport Coordination policies - Objectives and method to achieve coordination among different modes and between private and public undertakings - Case Studies

## **TEXT BOOKS:**

- 1. Kadiyali L.R, "Traffic Engineering and Transport Planning", 6th Edition, Khanna Technical Publications, 2005.
- 2. Patrick Mccarthy, Transportation Economics, Blackwell Publishing, 2000.

## **REFERENCES:**

- 1. Wohl and Martin, "Traffic System Analysis for Engineering and Planners", Tata McGraw Hill, 1983.
- 2. Emile Quinet and Roger Vickerman, Principles of Transportation Economics, Edward Elgar Publishing, 2004

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

17CVEC28	MASS TRANSPORT MANAGEMENT	Category	L	Т	P	Credit					
170 12020	WINDS TRANSPORT WITH WINDEWILL	EC	3	0	0	3					
PREAMBL	E	1									
The purpose	The purpose of the course is to develop and systematize the basic concepts and technical aspects of mass transport										
management.											
PREREQU	PREREQUISITE										
Hig	hway Engineering										
COURSE C	BJECTIVES										
1 To kn	ow the different Mass Transportation Systems										
2 To un	derstand the Provisions of Transport Facilities										
3 To kn	ow the Evaluation of Mass transport system.										
COURSE C	UTCOMES										
On the succe	ssful completion of the course, students will be ab	ole to									
CO1. This	course will have an indepth knowledge in Traffic	Engineering, Trans	port		A1						
Planning					Apply						
CO2. Tran	sport Planning, Highway Design and Construction	1,			Apply						
CO3. Sust	inable Urban and Transport Development and wil	ll be efficient enoug	gh to		Apply						
take up proje	ects in the field.				Apply						

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO4. Calculate the stresses and strains in axially-loaded members, circular torsion

CO5. Calculate the stresses and strains associated with thin-wall spherical and

members, and members subject to flexural loadings

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	M	-	-	-	L	M	-
CO2	S	M	L	S	S	-	M	-	1	-	-	L	L	M	L
CO3	S	M	M	S	-	-	-	M	-	-	-	-	L	M	L
CO4	S	M	M	M	M	-	-	-	=	M	-	-	L	M	-
CO5	S	M	M	-	-	M	-	-	-	-	L	-	S	S	-

Apply

Analyze

S- Strong; M-Medium; L-Low

cylindrical pressure vessels.

## **SYLLABUS**

**INTRODUCTION:** History and Role of Transit - Recent Trends in Mass Transportation Characteristics - Different Mass Transportation Systems - Demand Characteristics - Spatial, Temporal and Behavioral Characteristics of Transportation Demand - Structures of Urban Areas - Provisions of Transport Facilities - Basic Management Issues Ridership prediction and routing.

**FARE STRUCTURE:** Methods of Financing - Budgeting and Recounting - Fare Structures - Replacement Programs - Fare Collected System – Incentives.

**SCHEDULING:** Preparation of Schedules and Duty Roasters - Earning of Occupancy - Cost of operation - Capital Cost Accident cost.

TERMINAL: Utility Designs - Fleet Location and Maintenance - Depot Localities - Bus Terminals - Case studies

**EVALUATION:** Evaluation of Mass transport system - BRTS, MRTS, LRTS, Metro rail and Mono rail.

## **TEXT BOOKS:**

- 1. Hutchinson, Urban Transport Planning, John Wiley, 2006
- 2. Hay, W.W., An Introduction to Transportation Engineering, 2nd Ed., John Wiley & Sons, 2001

#### **REFERENCES:**

- 1. Agarwal M.K., "Urban Transportation in India", INAE, Allied Publishers Ltd., 1996.
- 2. Vuchic V.R., "Urban Public Transportation System and Technology", Prentice Hall, Inc. Englewood Cliffs, 1991.
- 3. Stubbs P.C et al, "Transport Economics", George Allen and Ubwin, Boston, 1984. 6. Stephen Gelaster, "Fundmental of Transport Economics", Basil Black Well, Oxford, 1981

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2.	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in

1501	T (20	**		DEGO	LIDGE	a a <b>z</b> tat		4 N.J. 4 N.	ZOTO	Categ	gory	L	T	P	Credit
17CV	EC29	· ·	ATER	RESU	UKCE	SSYS	TEMS.	ANALY	818	EC	C	3	0	0	3
PREA	MBLE										<u> </u>				
Focusin	ng on co	onflict 1	esolutio	on, Wat	er Reso	urces S	Systems	Analysi	s discu	isses sys	tematic a	pproache	es to the	mathe	matical
nodelii	ng of va	arious v	vater re	sources	issues,	which	helps de	ecision-r	nakers	allocate	water ef	fectively	and effi	ciently	7.
Reader	s will g	ain an u	ındersta	anding o	of simul	ation, o	optimiza	ation, mu	ulti-cri	terion-de	ecision-n	naking, a	s well as	engin	eering
conon	nics.														
'RERI	EQUIS	ITE													
	Enviro	nmenta	al Engir	neering											
COUR	SE OB	JECTI	VES												
1	The st	udent i	s expos	ed to di	fferent	phases	in Wate	er Resou	rces M	lanagem	ent and N	Vational '	Water Po	olicy	
2	To Le	arn abo	out kno	wledge	on Res	ervoir p	olanning	3							
3	To lea	ırn aboı	ıt mana	gement	and ec	onomic	analys	is includ	ing Irr	igation .					
4	To Le	arn abc	ut Irrig	ation m	anagen	nent pra	ctices.								
5	To un	derstan	d the co	oncepts	of radio	oisotope	e and nu	ıclear in	naging.						
	SE OU														
								be able		eering to	solve re	na1			
	roblem		рргу кп	owieug	e or ma	unemau	ics, scie	ince, and	i engin	eering to	SOIVE IC	ai	A	Analys	e
			lecian a	nd con	duct evi	arimar	nte ae v	zall as to	analyz	za intarr	rets and				
zoz. zalidate		nty to c	iesigii a	ina com	auct exp	Jei IIIIei	115, as w	en as to	anaryz	ze, mierp	nets and		A	Analyz	e
		lity to a	lacion o	existen		onant (	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	as to ma	at dagi	rad naad	la within				
		•	_	-	_		-			nical, hea	ls within			A nnls	
	and sus			COHOIIII	c, envii	Omnem	iai, soci	ai, poiiti	icai, eu	iicai, iie	aiui aiiu			Apply	
				on mult	i-discip	linory t	oome							A nnls	
		•			•	•		anainaa	ring to	ala ta ra	al engine	orina		Apply	
oroblen		ny to u	se me u	eciliiqu	ies, skii	is, and	modem	engmee	ing to	ois to rea	ai engine	ering		Apply	
		///// DIV D	DO GD	4 3 63 6		GOL (F		- DD O G	D 4 3 63	TE CDE	CIETO 4		· · · · · · · · · · · · · · · · · · ·		
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG.	RAMI	ME SPE	CIFIC (	OUTCO	MES PSO1	PS	PSO3
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1501	02	1503
CO1.	S	M	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2.	S	M	L	S	S	M	_	-	-	-	-	-	M	-	_
CO3.	S	M	M	S	-	-	L	M	M	-	-	-	-	L	L
CO4.	S	M	M	M	-	-	-	-	-	L	M	-	-	-	L
		M	M	_	<del> </del>		_	_	_		_	L	L	_	

#### **SYLLABUS**

**WATER RESOURCES**: Water resources survey – Water resources of India and Tamilnadu – Description of water resources planning – Estimation of water requirements for irrigation and drinking- Single and multipurpose reservoir – Multi objective – Fixation of Storage capacity -Strategies for reservoir operation – Design flood-levees and flood walls.

**WATER RESOURCE MANAGEMENT:** Economics of water resources planning – National Water Policy – Consumptive and non consumptive water use – Water quality – Scope and aims of master plan – Concept of basin as a unit for development – Water budget - Conjunctive use of surface and ground water.

**IRRIGATION ENGINEERING:** Need – Merits and Demerits – Duty, Delta and Base period – Irrigation efficiencies – Crops and Seasons – Crop water Requirement – Estimation of Consumptive use of water.

**CANAL IRRIGATION:** Types of Impounding structures: Gravity dam – Diversion Head works – Canal drop – Cross drainage works – Canal regulations – Canal outlets – Canal lining – Kennady's and Lacey's Regime theory.

**IRRIGATION METHODS AND MANAGEMENT:** Lift irrigation – Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub-Surface and Micro Irrigation – Merits and demerits – Irrigation scheduling – Water distribution – Participatory irrigation management with a case study.

#### **TEXT BOOKS:**

- 1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2000.
- 2. Punmia B.C., et. al; Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009
- 3. Garg S. K., "Irrigation Engineering and Hydraulic structures", Khanna Publishers, 23rd Revised Edition, New Delhi, 2009

#### **REFERENCES:**

- 1. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New AgeInternational Publishers, 2005
- 2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 1997

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mrs.S.Monisha	Asst. Professor	Civil / AVIT	monisha.civil@avit.ac.in

17CVEC30	ARCHITECTURE	Category	L	Т	P	Credit
270 (200		EC	3	0	0	3

The Bachelor of Architecture degree programme prepares students for professional practice in the field of Architecture. Being an undergraduate programme, it has bright scope, providing exposure to a variety of interests in this field and assisting students to discover their own directions for future development.

## **PREREQUISITE**

**NIL** 

## **COURSE OBJECTIVES**

1	To Learn about architectural design

- To Learn survey and layout design.
- To Learn about basic Design & Principle
- 4 To know about Building Rules
- 5 To learn about Landscape concept.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

1	
CO1. Ability to gain knowledge of Humanities, Sciences and Architecture.	Understand
CO2 . Ability to understand elements of Architecture and apply basic principles in Architectural Design.	Understand
CO3. Ability to identify social, economical and cultural issues in Architectural Design.	Understand
CO4. Ability to analyze and apply theoretical knowledge to achieve Architectural Design solutions.	Understand
CO5. Ability to understand ethical and professional responsibilities.	Understand

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M	L	-	-	-	-	M	-	-	-	-	L	-	-
CO2.	S	M	L	S	-	M	-	-	-	-	M	-	L	-	-
CO3.	S	M	M	S	-	-	M	-	_	-	-	-	-	M	M
CO4.	S	M	M	M	-	-	-	-	S	-	-	-	-	-	S
CO5.	S	M	M	-	M	-	-	-	-	L	-	L	-	L	L

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**ARCHITECTURAL DESIGN:** Architectural Design – an analysis – integration of function and aesthetics – Introduction to basic elements and principles of design.

**SITE PLANNING:** Surveys – Site analysis – Development Control – Layout regulations- Layout design concepts.

**BUILDING TYPES:** Residential, institutional, commercial and Industrial – Application of anthropometry and space standards-Inter relationships of functions – Safety standards – Building rules and regulations

**CLIMATE AND ENVIRONMENTAL RESPONSIVE DESIGN:** Man and environment interaction- Factors that determine climate – Characteristics of climate types – Design for various climate types – Passive and active energy controls – Green building concept.

**IRRIGATION METHODS AND MANAGEMENT:** Planning – Definition, concepts and processes- Urban planning standards and zoning regulations - Urban renewal – Conservation – Principles of Landscape design.

#### **TEXT BOOKS:**

- 1. Pramar. V.S. "Design fundamental in Architecture", Somaiya Publications Pvt. Ltd., New Delhi, 1997.
- 2. Muthu Shoba Mohan.G.,"Principles of Architecture"., Oxford University Press., New Delhi, 2006.

#### **REFERENCES:**

- 1. Rangwala. S.C. "Town Planning" Charotar Publishing House., Anand, 2005.
- 2. De Chiara.J., Michael. J. Crosbie.,"Time Saver Standards for Building Types", McGraw Hill

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in		
2	Mr.M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in		

17CVEC31	PAVEMENT ENGINEERING	Category	L	Т	P	Credit
		EC	3	0	0	3

Transportation is necessary for a nation's growth and development. In fact, it has consumed a considerable portion of human race's time and resources for as long as it has existed. Several factors should be taken into account in a pavement design, for example the traffic flow, the asphalt mixtures materials and also the environmental factor.

## **PREREQUISITE**

**Highway Engineering** 

COUR	SE OBJECTIVES
1	To know about Pavement design.
2	To develop skills in conducting analysis of pavements by calculating the response due to vehicular loading
3	To perform design of rigid and flexible pavements based on traffic and environmental factors
4	To develop skills in engineering economics (especially life-cycle cost calculations for
4	alternative designs)
5	To develop basic understanding of the principles of pavement management
COUR	SE OUTCOMES

On the successful completion of the course, students will be able to										
Co1. Design pavement Structures, counting stress parameters.	Analyse									
Co2 . Analyze traffic and geotechnical data from real-life projects and theoretical examples	Apply									
Co3. Calculate pavement response using state-of-the-art mechanistic software. Students will also use technology to present their semester design projects.	Apply									
Co4. Evaluate pavement for structural performances.	Apply									
CO5. The students are tasked with developing pavement designs and then selecting the optimum design based on several factors, including life-cycle cost analysis.	Apply									

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M	L	-	-	-	-	M	-	-	-	-	M	-	-
CO2.	S	M	L	S	-	M	-	-	-	-	M	ı	-	-	-
CO3.	S	M	M	S	-	-	M	-	-	-	-	-	M	S	-
CO4.	S	M	M	M	-	-	-	-	S	-	-	1	M	-	L
CO5.	S	M	M	-	M	-	-	-	-	M	-	L	M	L	L

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM:** Introduction – Pavement as layered structure – Pavement types rigid and flexible. Resilient modulus - Stress and deflections in pavements under repeated loading.

**DESIGN OF FLEXIBLE PAVEMENTS:** Flexible pavement design factors influencing design of flexible pavement, Empirical – Semi empirical and theoretical methods – Design procedure as per IRC guidelines – Design and specification of rural roads.

**DESIGN OF RIGID PAVEMENT:** Cement concrete pavements factors influencing CC pavements – Modified Westergaard approach – Design procedure as per IRC guidelines – Concrete roads and their scope in India.

**PERFORMANCE EVALUATION AND MAINTENANCE:** Pavement Evaluation - causes of distress in rigid and flexible pavements – Evaluation based on Surface Appearance, Cracks, Patches and Pot Holes, Undulations, Raveling, Roughness, Skid Resistance. Structural Evaluation by Deflection Measurements - Pavement Serviceability index. - Pavement maintenance (IRC Recommendations only).

**STABILIZATION OF PAVEMENTS:** Stabilisation with special reference book to highway pavements – Choice of stabilizers –Testing and field control Stabilisation for rural roads in India – use of Geo synthetics in roads.

#### **TEXT BOOKS:**

- 1. Wright P.H. "Highway Engineers", John Wiley and Sons, Inc., New York, 1996.
- 2. Khanna, S.K., Justo C.E.G. and Veeraragavan. A., "Highway Engineering", Nem Chand and Brothers, 10th Edition, Roorkee, 2014.

#### **REFERENCES:**

- 1. Wright P.H. "Highway Engineers", John Wiley and Sons, Inc., New York, 1996.
- 2. Khanna, S.K., Justo C.E.G. and Veeraragavan. A., "Highway Engineering", Nem Chand and Brothers, 10th Edition, Roorkee, 2014.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in		
2	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com		

17CVEC32	STORAGE STRUCTURES	Category	L	T	P	Credit
170 ( 1002	21011020111001011110	EC	3	0	0	3

To introduce the student to basic theory and concepts of design of storage structures like steel and concrete tanks, bunkers and silos.

#### **PREREQUISITE**

Design of Reinforced Concrete elements

#### **COURSE OBJECTIVES**

- To introduce the student to basic theory and concepts of design of storage structures.
- To know about Design Concepts of Steel and concrete tanks.
- To Know about Design Concepts of Bunker and Silos

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

on the successful completion of the course, students will be used to	
CO1. At the end of the course the student shall be able to design concrete and steel material storage structures.	Analyse
CO2 . To Know about Design Procedure as per IRC guide lines	Apply
CO3. To know about scope of concrete road construction in india.	Apply
CO4. To Study about Pavement Maintenance	Apply
CO5. To get the knowledge about the Geo synthetics in roads	Apply

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M	L	-	-	-	-	M	-	-	-	-	M	M	-
CO2.	S	M	L	S	-	M	-	-	-	-	M	ı	-	-	-
CO3.	S	M	M	S	-	-	S	-	-	-	-	-	M	L	-
CO4.	S	M	M	M	-	-	-	-	S	-	-	1	-	-	L
CO5.	S	M	M	-	M	-	-	-	-	L	-	L	-	L	L

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**STEEL WATER TANKS:** Design of rectangular riveted steel water tank – Tee covers – Plates – Stays – Longitudinal and transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design of pressed steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side plates – Bottom plates – joints – Ring girder – Design of staging and foundation.

**CONCRETE WATER TANKS:** Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear forces and moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – Staging – Bracings – Raft

foundation – Design of rectangular tanks – Approximate methods and IS methods – Design of under ground tanks – Design of base slab and side wall – Check for uplift.

**STEEL BUNKERS AND SILOS:** Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side plates – Stiffeners – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates – Ring girder – stiffeners.

**CONCRETE BUNKERS AND SILOS:** Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – Design of cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction

**PRESTRESSED CONCRETE WATER TANKS:** Principles of circular prestressing – Design of prestressed concrete circular water tanks

### **TEXT BOOKS:**

- 1. Rajagopalan K., "Storage Structures", Tata McGraw Hill, New Delhi, 1998.
- 2. Krishna Raju N., "Advanced Reinforced Concrete Design", CBS Publishers and Distributors, New Delhi, 1998.

#### **REFERENCES:**

- 1. Punmia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Concrete Structures", Laxmi Publications Pvt. Ltd., New Delhi, 2006.
- 2. Gambhir.M.L., "Design of Reinforced Concrete Structures", Prentice Hall of India Private Limited, 2012.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.S.Aravind Raj	Asso. Professor	Civil / AVIT	aravindraj.civil@avit.ac.in
2	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com

17CVEC33	EC33	EXPERIMENTAL ANALYSIS OF STRESS	Category	L	Т	P	Credit					
	Less		EC	2	2	0	3					
PREAMBLE												
	To mal	ke students aware of various measurement techniques and e	experimental	planning	and proced	dures adop	ted					
in labo	oratory											
PRERI	EQUISIT	TE										
	Structura	al Analysis										
COUR	SE OBJI	ECTIVES										
1	To know about deffrent types of Strain gauges.											

#### **COURSE OUTCOMES**

To Know about Brittle Coatings

To know about Design Concepts of Photo Elasiticity, Model Analysis

On the successful completion of the course, students will be able to	
Co1. Students will be able to select the appropriate strain gauges for strain measurements and	Analyse
they have sufficient knowledge in model analysis and predict the behaviour of prototypes.	7 Mary Se
Co2 . Students get knowledge about the photo elasiticity.	Apply
Co3. Ability to know about the model analysia	Apply
Co4. To take the proper measurements in stain gauge .	Apply
CO5. To know the details about the coating to protect from brittle.	Apply

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M	L	-	-	-	-	M	-	-	-	-	M		-
CO2.	S	M	L	S	-	M	-	-	-	-	M	-	-	L	-
CO3.	S	M	M	S	-	-	L	-	-	-	-	-	M	-	-
CO4.	S	M	M	M	-	-	-	-	S	-	-	-	-		M
CO5.	S	M	M	-	M	-	-	-	-	L	-	S	M	S	

S- Strong; M-Medium; L-Low

## **SYLLABUS**

STRAIN GAUGES: Definition of Gauge length, sensitivity and range – Characteristics of an ideal strain gauge – Different types of mechanical strain gauges for use in metal and concrete specimens – Optical strain gauge – Acoustic strain gauge – Pneumatic strain gauge – Merits and demerits.

ELECTRICAL STRAIN GAUGES: Inductance, capacitance and piezo-electric gauges – Bonded and unbounded resistance gauges and their application in stress analysis – Fixing technique and measurement of strains Rosettes– Determination of principal strains using rosettes – Use of Murphy's construction for drawing circle of strains – Mohr's stress circle – Analytical solution.

**PHOTO ELASTICITY:** Principles – Maxwell's stress optic law – Plane and circularly polarised light and their use in photo elasticity – Polariscopes – Diffusion type, lense type and reflection type polariscopes – Isochromatics and Isoclinics – Model materials – Calibration methods for finding material fringevalue – Model fringe value – Examples of beam flexure and diametrically loaded circular plates.

**MODEL ANALYSIS:** Direct and indirect models – Laws of structural similitude – Choice of scales – Limitation of model studies - Buckingham piktheorem – Dimensional analysis – Model materials – Begg's deformeter and its use in model analysis – Simple design of models for direct and indirect model analysis.

**BRITTLE COATINGS:** Historical review – Stress Coat – Ceramic coatings – Application – Moire fringe method of stress analysis.

#### **TEXT BOOKS:**

- 1. T.K.Roy, "Experimental Analysis of Stress and Strains", S.Chand and Company Ltd., New Delhi, 2000
- 2. Hetenyi. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons Inc., New York, 1966

#### **REFERENCES:**

- 1. J.W.Dally and W.F.Riley, "Experimental Stress Analysis", McGraw Hill Book, New York, 1990.
- 2. L.S. Srinath, "Experimental Stress Analysis", Tata-McGraw Hill Book Company, New Delhi, 2001.
- 3. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2004.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

17CV	/EC34	СП	ODINO	Z SCA	FF∩I I	OINC A	ND F	ORM W	OPK	Categ	gory	L	T P	P	Credit
170	EC34	311	OKIN	J, SCA	FFOLI	JING F	MD F	OKWI W	OKK	EC	C	3	0	0	3
PREA	MBLE	•								1	•	,		•	
	Form	work f	unction	Suppor	ting St	ructure,	Scaffo	lding fur	nction f	for work	ing plate	forms	arrangen	nent,Sho	ring
functi	on for s	upporti	ing met	hod for	unsafe	structu	re.								
PRER	EQUIS:	ITE													
	Constr	uction	materia	ls											
COUR	SE OB	JECTI	IVES												
1	To study and understand the overall and detailed planning of formwork, plant and site														
	To understand the Design and erection of forms for various elements such as slabs, beams, columns, walls, shells														
2	and tu	nnels													
3	To kn	ow the	latest n	nethods	of form	n constr	uction.								
COUR	SE OU	TCOM	<b>IES</b>												
								l be able	to						
Co1.	To Stud	y the m	aterials	associa	ated wit	th form	work							Apply	
Co2 . 7	To Stud	y the d	esign as	pects o	f formv	vork un	der vari	ious requ	iiremer	nts.				Apply	
Co3. T	o Kno	w the d	esign of	f forms	and sho	ores								Apply	
Co4.	To Stud	y the p	lanning	and ere	ection a	spects o	of form	work for	r buildi	ngs				Apply	
	Γο Unde													Apply	
					• •									търгу	
								PROG:						ı	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M	L	-	-	-	-	_	-	-	1	-			
CO2.	S	M	L	S	S	M	=	-	=	-	=	=	M		-
CO3.	S	M	M	S	-	-	L	M	M	-	-	-		L	L
CO4.	S	M	M	M	-	-	-	-	-	L	M	-	M		-

#### **SYLLABUS**

S- Strong; M-Medium; L-Low

CO5.

**PLANNING, SITE EQUIPMENT & PLANT FOR FORM WORK:** Introduction - Forms for foundations, columns, beams walls etc., General objectives of formwork building - Planning for safety - Development of a Basic System - Key Areas of cost reduction - Planning examples. Overall Planning - Detailed planning - Standard units - Corner units - Pass units - Calculation of labour constants - Formwork hours - Labour Requirement - Overall programme - Detailed programme - Costing - Planning crane arrangements - Site layout plan.

**MATERIALS ACCESSORIES PROPRIETARY PRODUCTS & PRESSURES:** Lumber - Types - Finish - Sheathing boards working stresses - Repetitive member stress - Plywood - Types and grades - Jointing Boarding - Textured surfaces and strength - Reconstituted wood - Steel - Aluminum - Hardware and fasteners - Nails in Plywood - Allowable withdrawal

load and lateral load. Pressures on formwork - Examples - Vertical loads for design of slab forms - Uplift on shores - Laterals loads on slabs and walls.

**DESIGN OF FORMS AND SHORES:** Basic simplification - Beam formulae - Allowable stresses - Deflection, Bending - Lateral stability - Shear, Bearing - Design of Wall forms - Slab forms - Beam forms - Column forms - Examples in each. Simple wood stresses - Slenderness ratio - Allowable load vs length behaviour of wood shores - Form lining Design Tables for Wall formwork - Slab Formwork - Column Formwork - Slab props - Stacking Towers - Free standing and restrained - Rosett Shoring - Shoring Tower - Heavy Duty props.

**BUILDING AND ERECTING THE FORM WORK:** Carpentry Shop and job mill - Forms for Footings - Wall footings - Column footings - Sloped footing forms - Strap footing - Stepped footing - Slab form systems - Sky deck and Multiflex - Customized slab table - Standard Table module forms - Swivel head and uniportal head - Assembly sequence - Cycling with lifting fork - Moving with table trolley and table prop. Various causes of failures - ACI - Design deficiencies - Permitted and gradual irregularities.

FORMS FOR DOMES AND TUNNELS, SLIP FORMS AND SCAFFOLDS: Hemispherical, Parabolic, Translational shells - Typical barrel vaults Folded plate roof details - Forms for Thin Shell roof slabs design considerations - Building the forms - Placing concrete - Form removed -Strength requirements -Tunnel forming components - Curb forms invert forms - Arch forms - Concrete placement methods - Cut and cover construction - Bulk head method - Pressures on tunnels - Continuous Advancing Slope method - Form construction - Shafts. Slip Forms.

#### **TEXT BOOKS:**

- 1. Austin, C.K., Formwork for Concrete, Cleaver -Hume Press Ltd., London, 1996.
- 2. Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996

#### **REFERENCES:**

- 1. Austin, C.K., Formwork for Concrete, Cleaver -Hume Press Ltd., London, 1996.
- 2. Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996
- 3. Michael P. Hurst, Construction Press, London and New York, 2003. 4. Robert L. Peurifoy and Garold D. Oberlender, Formwork For Concrete Structures, McGraw

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.D.S.Vijayan	Asst. Professor	Civil / AVIT	vijayan@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CVEC	35

# MUNICIPAL SOLID AND WASTE MANAGEMENT

Category	L	Т	P	Credit
EC	3	0	0	3

#### **PREAMBLE**

Structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals.

#### **PREREQUISITE**

**NIL** 

## **COURSE OBJECTIVES**

1	The on-site/off-site processing of the same and the disposal methods.
2	The student is expected to know about the various effects and disposal options for the municipal solid waste.
3	The collection and supply of water
4	The offsite processing involved in site

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to	
Co1. To know about the types of waste & Sources	Analyse
Co2 . To Study the on site Storage & Processing	Apply
Co3. To study about the collection & transfer the waste	Apply
Co4. To Study the process of off site processing	Apply
CO5. To know about the solid waste disposal	Apply

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M	L	-	-	-	-	-	-	L	-	-	-	-	M
CO2.	S	M	L	S	S	S	-	-	-	-	-	-	L	-	-
CO3.	S	M	M	S	-	-	L	M	M	-	-	-	-	S	M
CO4.	S	M	M	M	-	ı	ı	-	-	L	M	-	-	-	ı
CO5.	S	M	M	-	-	ı	ı	-	-	-	-	L	S	-	ı

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

**SOURCES AND TYPES OF MUNICIPAL SOLID WASTES:** Sources and types of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization; Effects of improper disposal of solid wastes – public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

ON-SITE STORAGE & PROCESSING: On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

COLLECTION AND TRANSFER: Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

**OFF-SITE PROCESSING:** Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions.

**DISPOSAL:** Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

#### **TEXT BOOKS:**

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

#### **REFERENCES:**

- 1. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997.
- 2. Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mrs.C.Nivetha	Asst. Professor	Civil / AVIT	nivetha.c@avit.ac.in

17CVEC36	WASTE WATER ENGINEERING	Category	L	Т	P	Credit
170,200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EC	3	0	0	3

The objectives of this course is to help students develop the ability to apply basic understanding of physical, chemical, and biological phenomena for successful design, operation and maintenance of sewage treatment plants..

## **PREREQUISITE**

## **Environmental Engineering**

#### **COURSE OBJECTIVES**

1	To Understand basic concepts in Transmission of water system
2	To Understand the process and Treatment of waste water.
3	To Understand the methods of Sewage Disposal
4	To understand the advances in sewage treatment

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. An ability to estimate sewage generation and design sewer system including sewage	Understand
pumping stations	
CO2. The required understanding on the characteristics and composition of sewage, self	Understand
purification of streams	Chacistana
CO3. An ability to perform basic design of the unit operations and processes that are used in	Apply
sewage treatment	Прріу
CO4. Understand the standard methods for disposal of sewage.	Apply
CO4. Charistana the standard methods for disposar of sewage.	11.
CO5. Gain knowledge on sludge treatment and disposal.	Understand

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	S	S	-	-	M	-	S	S	S	S
CO2	M	M	S	S	M	S	S	-	-	S	-	S	M	M	S
CO3	S	S	S	S	S	M	M	-	M	-	-	-	S	S	S
CO4	M	S	M	M	M	S	S	L	-	-	-	-	M	S	M
CO5	S	S	S	S	S	S	S	-	-	-	M	S	S	S	S

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

#### SEWERAGE SYSTEM: COLLECTION & TRANSMISSION

Sources of wastewater – Quantity of sanitary sewage – Estimation of storm runoff – Wastewater characteristics and significance – Effluent disposal standards – Design of sewers – Computer applications – Laying, jointing and testing of sewers – Sewer appurtenances – Pump selection – Drainage in buildings – Sanitary fixture and fittings – Systems of Sanitary plumbing – House Drainage – House Sewer connection.

#### SEWAGE TREATMENT – PRIMARY TREATMENT

Objectives – Unit Operations & Processes - Materials for sewers – Layout of wastewater Treatment Plant - Characteristics and composition of sewage – Principles, functions and design of screen, grit chambers and primary sedimentation tanks.

## SEWAGE TREATMENT – SECONDARY TREATMENT

Secondary Treatment – Activated Sludge Process and Trickling filter – Stabilisation Ponds and Septic tanks – Advances in Sewage Treatment

#### SEWAGE DISPOSAL

Methods – Dilution – Self purification of surface water bodies – Oxygen sag curve – Land disposal – Sewage farming – Deep well injection – Soil dispersion system – Wastewater reclamation techniques.

#### SLUDGE TREATMENT AND DISPOSAL

Thickening – Sludge digestion – Biogas recovery – Design of Drying beds – Conditioning and Dewatering – Sludge disposal.

## **TEXT BOOKS:**

- 1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2015.
- 2. Duggal K.N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain, A.K., and Jain.A.K., Environmental Engineering, Vol.II, Laxmi Publications, 2010.

#### **REFERENCES:**

- 1. Manual on Sewerage and Sewage Treatment Systems Part A,B and C, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 2. Metcalf and Eddy- Wastewater Engineering-Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2010.
- 3. Syed R. Qasim "Wastewater Treatment Plants", CRC Press, Washington D.C.,2010
- 4. Gray N.F, "Water Technology", Elsevier India Pvt. Ltd., New Delhi, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com
2	Mrs.S.Monisha	Asst. Professor	Civil / AVIT	monisha.civil@avit.ac.in

17BTEC02	OCEAN SCIENCE	Category	L	Т	P	Credit
1/BIECU2	OCEAN SCIENCE	EC (PS)	3	0	0	3

Ocean science deals with the various aspects of marine ecosystem. It gives the basic knowledge about availability of the bio resources and its applications. It also deals with exploration of various culturing techniques of few marine organisms in the laboratory conditions. This study further facilitates the student to understand the economic importance of marine derived products.

#### **PREREOUISITE - NIL**

### **COURSE OBJECTIVES**

1	To sate the art of marine ecosystem and their properties
2	To describe the about biodiversity in marine environment and their resources
3	To perform various culture techniques of marine organisms
4	To develop drug from marine compounds and their economic Values
5	To assess the human impact on marine environment

#### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. Recall the Marine ecosystem sources and their properties	Remember
CO2.Describe the biodiversity in marine environment	Understand
CO3. Demonstrate the different culture techniques of marine organisms	Apply
CO4. Assess the drug developed from natural marine derived compounds	Analyse
CO5. Examine the human impact on marine environment	Analyse

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO	PSO3
CO1	L	-	-	-	-	L	L	-	-	-	-	L	M	-	1
CO2	L	-	-	L	-	M	-	-	-	L	-	L	ı	-	M
CO3	S	M	M	M	M	-	M	-	M	L	L	-	-	-	-
CO4	S	S	S	S	S	M	S	M	S	L	M	L	-	-	-
CO5	S	L	M	M	M	S	S	M	S	M	M	M	-	M	-

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

#### INTRODUCTION TO MARINE ENVIRONMENT

Stratification of coastal environment- Bathymetric map, Thermo cline; components of marine ecosystem; Biotic and Abiotic and their interrelationships-Role in food chain, food web; Tropic systems; Taxonomy of marine flora and fauna; Physico chemical properties of marine water.

## **BIODIVERSITY AND BIORESOURCES**

Biodiversity of marine ecosystem – Phytoplankton; Algal bloom; Indicator organisms. Bio-geocycles; Bioresources and their economic importance; Adaptations of flora and fauna in marine & estuarine environment.

## **CULTURE TECHNIQUES**

Culture Techniques of microalgae; seaweeds; tiger shrimp; lobsters; Common marine pathogens and symptoms; Transgenesis and cryopreservation.

## **ECONOMIC VALUE**

Economic importance of marine products; Economic value - corals, sponges, pearls, oysters, molluscs; Drug development from natural marine derived compounds.

## IMPACTS ON MARINE ENVIRONMENT

Human Impact on Marine Environment – Oil spill, Nuclear reactors, Thermal impact, Bio fouling; Heavy metal pollution.

## **TEXT BOOKS:**

- 1. Milton Fingerman and Rachakonda Nagabhushanam, Recent Advances in Marine Biotechnology (Series) Biomaterials and Bioprocessing, Science Publishers 2009.
- 2. Proksch and Werner E.G.Muller, Frontiers in Marine Biotechnology. Horizon Bioscience, 2006

#### **REFERENCES:**

- 1. Le Gal, Y.Ulber, marine Biotechnology 1: Advances in Biochemical Engineering/Biotechnology (Series editor: T. Scheper) Springer Verlag Berlin Heideberg. Vol. 96,97, 2007
- 2. Mun and Munn, Marine Microbiology Ecology & Applications. BIOS, Scientific Publisher. 1996

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	subbaiya@avit.ac.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

17BTEC26	ECO FRIENDLY MULTI STOREY	Category	L	Т	P	Credit
2.2.2.0.20	BUILDING	EC (PS)	3	0	0	3

The built environment is a major source of society's environmental impact, and is a major opportunity to find solutions. Recent attention to "green construction" emerges in many domains including energy systems, water use, construction processes, architectural design, site planning and brownfield development, At present, environmental issues can be considered in seemingly unlimited areas of the design and construction process.

## PREREQUISITE -NIL

## **COURSE OBJECTIVES**

- 1 To state about the infrastructure providing clean drinking water, clean air to breath and safe building to live in.
  - To explain the students about the threats due to pollution leading to sustainable infrastructure
  - To demonstrate the impact and aspects of green building and Architecture

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be able to	
CO1. Explain the concepts related to pollution problem during construction.	Understand
CO2. Classify the design of system for comfortable living	Understand
CO3. Apply geochemical transport model to maintain the thermodynamics equilibrium and kinetic control.	Apply
CO4. Model the Construction of buildings for economically, environmentally and socially sustainable to future.	Apply
CO5. Analyse the resources and sustainability of construction and green buildings	Analyse

### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO	РО	РО	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3
			3	4	5					0	1	2			
CO1	M	L	M	L	S	-	L	-	-	L	M	L	-	-	-
CO2	S	M	S	S	-	-	-	-	-	-	L	-	-	-	-
CO3	M	L	M	M	-	-	-	-	M	M	L	L	M	-	-
CO4	L	L	L	L	-	-	-	-	S	L	-	M	-	M	M
CO5	S	M	L	L	-	-	-	-	-	-	-	S	-	M	-

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

#### CONCEPTS OF CONSTRUCTING MULTI STOREY BUILDING

Study of water, soil, air and their related pollution problems in construction. Identification and development of technical solution to solve / control problems- legislative, economic and social concern.

#### **CONCEPT OF HUMAN HABITAT**

Design of systems – Living area, ventilation, electrical circuits (less consumption) technologies and structures to suit the growing population for comfortable living.

#### GEOCHEMICAL ASPECTS OF GREEN BUILDING

Geochemical transport model maintaining thermodynamics equilibrium and kinetic control-Hydrology transfer resources and impact of bioremediation, treatment plant design, problem solving techniques, civil and environmental application of engineering science and creative problems solving methods

#### **ENGINEERING ARCHITECTURE**

Impact of architecture, engineering and construction on individuals, communities and nation. Construction of buildings which are economically, environmentally and socially sustainable to future - knowledge, tools and materials that enhance the safety and cost effective

## RESOURCES AND SUSTAINABILITY

Environmental chemistry, advanced air and water treatment technologies durability of construction, green building (sustainable buildings). Resource efficient building from planning to design, construction, maintenance, renovation and demolition.

## **REFERENCE BOOKS:**

- 1. Adaptation and mitigation of climate change Scientific Technical Analysis. Cambridge University Press, Cambridge, 2006
- 2. Arvind Krishnan et al. Climate Responsive Architecture, Tata Mcgraw Hill New Delhi 2001.
- 3. Sandra Mendler, William Odell, The Guide Book Of Sustainable Design, John Wiley & Sons, 2000.
- 4. 4. Lawson.B, Bulding Materials, Energy And The Environment; Towards Ecologically Sustainable Development Raia, Act, 1996

0002				
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com
2	Dr. S. Chozhavendhan	Associate Professor	Biotechnology	scvibt@gmail.com
3	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

17BTEC27	RENEWABLE ENERGY AND CONSTRUCTION	Category	L	Т	P	Credit				
	METHODS	EC (PS)	3	0	0	3				
PREAMBLE	PREAMBLE									
Course provides an introduction to energy systems and renewable energy resources, with a scientific examination of the										
energy field ar	nd an emphasis on alternate energy sources and their technology	and applicati	on.							

## PREREQUISITE -NIL

#### **COURSE OBJECTIVES**

- 1 To list out the explore society's present needs and future energy demands.
- 2 To explain conventional energy sources and systems, including fossil fuels and nuclear energy.
- To perform on alternate, renewable energy sources such as solar, biomass (conversions), wind power, geothermal, and hydro.
- 4 To outline the energy conservation methods will be emphasized.

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Relatethe challenges and problems associated with the use of various energy sources, including fossil	Understand
fuels, with regard to future supply and the environment.	
CO2. Explain remedies/potential solutions to the supply and environmental issues associated with fossil	Understand
fuels and other energy resources.	
CO3. Identifyand describe the primary renewable energy resources and technologies.	Apply
CO4. Choose the basic electrical concepts and system components.	Apply
CO5. Analyseandquantify energy demands and make comparisons among energy uses, resources, and	Analyse
technologies	

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO	PO3	PO4	PO	PO6	PO	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
		2			5		7								3
CO1	M	L	-	L	-	L	L	-	-	-	-	-	-	-	-
CO2	S	M	S	S	-	M	S	-	L	-	-	L	M	-	-
CO3	M	L	M	M	-	S	M	-	-	-	-	L	M	-	-
CO4	L	L	L	L	-	L	S	-	-	-	-	M	S	-	-
CO5	S	M	L	L	-	M	M	-	-	-	-	S	M	-	-

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

## PRINCIPLES OF SOLAR RADIATION

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

#### SOLAR ENERGY COLLECTION STORAGE AND APPLICATIONS

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors. Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

## WIND ENERGY

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria

## **BIO-MASS**

Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engine operation and economic aspects.

#### OCEAN ENERGY AND DIRECT ENERGY CONVERSION

OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. Need for DEC, Carnot cycle, limitations, principles of DEC.

## **TEXT BOOKS:**

- 1. GD Rai- Non-Conventional Energy Sources, Khanna Publishers, 2004
- 2. Twidell & Wier Renewable Energy Resources 3rd Edition –, CRC Pres, Taylor & Francis, 2015

## **REFERENCES:**

1. D.O.hall and R.P. Overeed - Biomass Renegerable Energy – John Wiley and Sons, New york, 1987.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com
2	Ms.G.Arthi	Assistant Professor	Biotehnology	arthi@vmkvec.edu.in

**17BTEC28** 

# ENVIRONMENT FRIENDLY PRACTICES IN CIVIL ENGINEERING

Category	L	T	P	Credit
EC (PS)	3	0	0	3

#### PREAMBLE

This course will make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

## PREREQUISITE -NIL

#### **COURSE OBJECTIVES**

- To list out thestudents, who can work in a multi-disciplinary environment to anticipate and address evolving challenges of the 21st century.
- To summarize the synthesize data with sound engineering principles, methodologies, and the latest technology into creative, sustainable, safe and economical engineering solutions to environmental engineering problems.
- 3 To classify the Characterize and mitigate natural and man-made hazards
- 4 To outline the fundamental knowledge of the inter-relationships between the built environment and natural systems.
- 5 To design the technological innovations needed to safeguard, improve, and economize infrastructure and society
- 6 To generate and apply high performance eco-friendly structural materials and systems.

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the function on multidisciplinary teams.	Understand
CO2. Illustrate, formulate, and solve engineering problems.	Understand
CO3. Identify the professional and ethical responsibility. An ability to communicate effectively.	Apply
CO4. Inspectthe broad education necessary to understand the impact of engineering solutions in a global,	Analyse
economic, environmental, and societal context.	
CO5.Examine the units of energy—to quantify energy demands and make comparisons among energy uses,	Analyse
resources, and technologies.	I

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO
														2	3
CO1	S	M	L	L	S	M	S	-	M	L	-	-	M	M	-
CO2	S	M	L	M	-	L	S	-	-	-	-	S	M	M	-
CO3	S	M	M	M	-	M	S	S	-	-	-	M	-	-	S
CO4	S	M	M	M	-	-	S	-	-	L	-	M	M	M	-
CO5	S	M	L	L	-	_	S	-	-	-	-	S	-	-	-

S- Strong; M-Medium; L-Low

## SYLLABUS

#### CIVIL ENGINEERING IN TWENTY FIRST CENTURIES

Essential skills and strategies- critical thinking, finance and economics, design skill, communication, law and ethics, heritage and future.

#### **ENVIRONMENTAL IMPACT DESIGN (EID)**

Definition, scope and strategies of EID, categorical types- Direct, indirect and cumulative and its impact. Focus on construction process, materialization and building efficiencies and its life cycle.

#### GEOCHEMICAL ASPECTS OF GREEN BUILDING

Geochemical transport model maintaining thermodynamics equilibrium and kinetic control-Hydrology transfer resources and impact of bioremediation, treatment plant design, problem solving techniques, civil and environmental application of engineering science and creative problems solving methods

## **ENVIRONMENTAL GEOLOGY**

Introduction, definition, scope, geological factors- location, design, construction, operation and maintenance (residential, commercial and industrial development)  $\square$  stormwater drainage system, sewage treatment plant, geohazards.

## ENVIRONMENTAL PUBLIC HEALTH PROTECTION

Definition, discipline - epidemiology, toxicology, exposure science, environmental engineering, law. Environmental health profession.

#### **TEXT BOOKS**

- 1.Prof. D. Venkat Reddy, NIT-Karnataka, Engineering Geology, Vikas Publishers, 2010 ISBN 978-81259-19032
- 2. Novice, Robert (editor) (1999-03-29). "Overview of the environment and health in Europe in the 1990s" (PDF). World Health Organization.
- 3. Neil S. Grigg, P.E.D.WRE, Marvin E. Crisus, P.E.Darrell, G. Fontune, J.Siller. 2001. Civil Engineering practice in twenty first century. ASCE Press.

## REFERENCE BOOKS

- 1.Legget, Robert F., and Karrow, Paul F., 1983, Handbook of geology in civil engineering: McGraw-Hill Book Company, 1,340 pages, 50 chapters, five appendices, 771 illustrations. <u>ISBN 0-07-037061-3</u>
- 2. Price, David George, Engineering Geology: Principles and Practice, Springer, 2008 ISBN 3-540-29249-7

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com
2	Mrs.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in

.===== ~		Category	L	T	P	Credit
17BTEC25	BIOLOGY FOR NON BIOLOGISTS	EC (PS)	3	0	0	3

The purpose of this course is to provide a basic understanding of biological mechanisms of living organisms from the perspective of engineers. In addition, the course is expected to encourage engineering students to think about solving biological problems with engineering tools.

#### PREREOUISITE -NIL

#### **COURSE OBJECTIVES**

- To list out the students with the basic organization of organisms and subsequent building to a living being

  To summarize about the machinery of the cell functions that is ultimately responsible for various daily activities.
- To implement the knowledge about biological problems that requires engineering expertise to solve them.

#### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

•	
CO1: Outline the structure and cell theory of living organism.	Understand
CO2: Infer about the biological diversity of life.	Understand
CO3: Utilize the application of enzymes in industrial level.	Apply
CO4: Identify the uses of Bioremediation and Biosensors using molecular machines.	Apply
CO5: Analyse in detail about the principles of cell signalling in nervous system and immune system.	Analyse

MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	РО	PO	РО	РО	РО	РО	PO9	PO	PO11	PO1	PSO1	PSO	PSO3
CO1	M	-	-	-	-	-	-	-	-	-	-	L	M	M	-
CO2	S	M	S	-	-	M	S	-	L	L	-	L	S	S	-
CO3	-	L	M	-	L	S	M	-	M	M	L	L	-	M	M
CO4	L	L	L	L	-	L	S	M	S	L	-	M	S	S	M

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

## INTRODUCTION TO BIOLOGY - CELL AND CELL STRUCTURE AND FUNCTION

Introduction, Scope, Disciplines of biology –An over View of plants, animal, Microorganism.

## INTRODUTION TO BIOLOGY – BIO CHEMISTRY, ENZYME, INDUSTRIAL USE

Prokaryotes – Eukaryotes, Cell, Cell structure, Organelles and their functions, Yeast, Bacteria – Friends and Foe.

## FOOD DIET NUTRITION

Major constituents of food – carbohydrate, protein, lipids, vitamins and minerals. Balanced diet-BI-Junk food, Fermented food, nutritional values.

### **ENVIRONMENT**

Clean environment-Reduce, Recycle and Reuse-Renewable energy-Waste management —water-waste water management — personal hygiene, Global Climatic Changes -Tsunami, global warming, storms, vardha, Okhi. Recycled products -Paper, No to plastic, go green.

#### HEALTH, IMMUNE SYSTEM AND MEDICINE

Immunology- Blood Grouping – Antigen- Antibody. Antibiotics, Vaccines their significance. Diagnosis –Parameters in Urine and Blood. Instruments – ECG, ECHO, MRI, X-ray. Prophylaxis, Chemotherapy and Allergy.

#### **TEXT BOOKS:**

- 1. J.M.Berg, J.L.Tymosczko and L.Sryer. Biochemistry, W.H Freeman publication.
- 2. Student Companion to accompany Biochemistry, Fifth Edition-Richard I. Gum port.
- 3. Frank H.Deis, Nancy Count Gerber, Roger E.Koeppe, 2 Molecular motors

## **REFERENCE BOOKS:**

- 1. Albert's, 2003, Molecular Biology of the cell
- 2. Lodish, 2004, Molecular cell Biology

S.No	Name of the Faculty	Designation	Department	Mail ID					
1	Dr. R. Deepapriya	Assistant Professor	Biotechnology	deepapriya21@gmail.com					
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in					

#### **SECURITY** EC 0 0 3 3 **PREAMBLE** To understand the concepts in cryptography and network security and their applications in real time **PREREQUISITE NIL COURSE OBJECTIVES** To understand the basic concepts in understanding cryptography and network security To know about various encryption techniques. 2 To understand the concept of Public key cryptography. To study about message authentication and hash functions To impart knowledge on Network security **COURSE OUTCOMES** On the successful completion of the course, students will be able to Understand **CO1:** Classify the symmetric encryption techniques CO2: Illustrate various Public key cryptographic techniques Apply **CO3:** Evaluate the authentication and hash algorithms. Apply CO4: Discuss authentication applications Apply **CO5:** Summarize the intrusion detection and its solutions to overcome the attacks. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COs **PO1** PO₂ PO₃ PO4 PO₅ **PO6** PO7 PO8 PO9 **PO10** PO11 **PO12** PSO₁ PSO2 PSO3 **CO1** S M L M M M CO₂ S M L M M _ M **CO3** S M L M M M M -

## **SYLLABUS**

**CO4** 

CO₅

### INTRODUCTION

S

S

M

L

S- Strong; M-Medium; L-Low

L

L

M

M

Security trends – Attacks and services – Classical crypto systems – Different types of ciphers – LFSR sequences – Basic Number theory – Congruences – Chinese Remainder theorem – Modular exponentiation – Fermat and Euler's theorem – Legendre and Jacobi symbols – Finite fields – continued fractions.

M

M

M

M

M

M

### **METHODS**

Simple DES – Differential cryptanalysis – DES – Modes of operation – Triple DES – AES – RC4 – RSA – Attacks – Primality test – factoring

## **TECHNIOUES**

Discrete Logarithms - Computing discrete logs - Diffie-Hellman key exchange - ElGamal Public key cryptosystems -Hash functions – Secure Hash – Birthday attacks -MD5 – Digital signatures – RSA – ElGamal – DSA.

#### AUTHENTICATION

Authentication applications – Kerberos, X.509, PKI – Electronic Mail security – PGP,S/MIME – IP security – Web Security – SSL, TLS, SET.

#### SECURITY AND FIREWALLS

System security - Intruders - Malicious software - viruses - Firewalls - Security Standards

#### TEXT BOOKS

- 1. Dr. S. Bose and Dr.P. Vijayakumar, "Cryptography and Network Security", First Edition, Pearson Education, 2016.
- 2. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson, 2007.
- 3. William Stallings, "Cryptography and Network Security Principles and Practices", Pearson/PHI, 6th edition, 2013. **REFERENCES**

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education, Second Edition, 2007.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing Third Edition Prentice Hall of India, 2006.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikala@vmkvec.edu.in

17CS	CC19	INTRERNET OF THINGS									Category	L	T	C	redit		
	EC 3 0										0 (	0 0 3					
	MBLE dy and u	ndersta	nd the te	chnolo	gies inv	volved	in Inter	net of Th	ings (Io	T) and a	pply ther	n pract	ically				
PRER	EQUIS	ITE: N	Nil														
	RSE OB.																
1	Γo under	stand tl	ne basic	concep	ts of IC	T											
2	Γο study	the me	thodolog	gy of IC	T												
3	To Develop IOT applications using Raspberry PI																
4	To Develop IOT applications using Arduino and Intel Edison																
5	Γο apply	y cloud	concept	s in IO	T												
	RSE OU'																
			•			student	s will b	e able to									
CO1:	Able to 1	understa	and basi	es in IC	T								Unde	Understand			
CO2:	Able to 1	understa	and Met	hodolo	gy in I	TC							Appl	Apply			
<b>CO3:</b>	Able to	design	IOT app	lication	ns using	g Raspb	erry						Analy	Analyze			
<b>CO4</b> :	Able to o	design I	OT appl	ication	s using	Aurdin	o and I	Intel Edis	on				Anal	yze			
CO5:	Able to	apply C	Cloud co	mputin	g in IO	T							Appl	У			
MAPI	PING W	ITH P	ROGRA	MME	OUTO	COMES	S AND	PROGR	RAMMI	E SPECI	IFIC OU	TCO	MES				
CO	P	PO	РО	P	P	PO	PO	DO0	PO	PO	PO	PO	PSO	PSO	PSO3		
COs	01	2	3	04	05	6	7	PO8	9	10	11	12	1	2	P303		
CO1	М	М	M	M	-	-	-	-	-	-	-	-	М	М	-		
CO2	M	M	M	M	-	-	-	-	-	-	-	-	M	M	-		
CO3	M	M	S	M	-	-	-	-	-	-	-	-	M	M	-		

S- Strong; M-Medium; L-Low

M

M

M

## **SYLLABUS**

CO₄

CO₅

## INTRODUCTION

S

 $Introduction-Characteristics-Physical\ design-Protocols-Logical\ design-Enabling\ technologies-IoT\ Levels-Domain\ Specific\ IoTs-IoT\ vs\ M2M.$ 

M

M

M

M

M

M

## IOT METHODOLOGY

 $\label{local-systems} \ \text{Management-IoT Design Methodology-Specifications Integration and Application Development}$ 

## **IOT WITH RASPBERRY**

Basics of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

#### IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

#### **APPLICATIONS**

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT.

## **TEXT BOOKS:**

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.
- 2. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

## **REFERENCE BOOKS:**

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

COURS	COURSE DESIGNERS														
S. No.	Name of the Faculty	Designation	Department	Mail ID											
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in											
2.	Dr.M. Nithya	Professor	CSE	nithya@vmkv@edu.in											

	Catagory	T	Т	р	Cradit
	Category	L	I	P	Creatt

17C	CSCC1	1		CYBER	C	C	3	0	0		3					
PREA	PREAMBLE															
To unde	Γο understand the need for Cyber Security in real time and to study techniques involved in it.															
		SITE:														
COUR	COURSE OBJECTIVES															
<b>1.</b> To u	1. To understand the fundamentals of Cyber Security															
	2. To study various attacking techniques															
	3. To apply exploitation in cyber space															
	4. To study about Malicious codes															
	5. Defending against cyber attacks															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
													Under	staı	nd	
CO1: A	ble to	Underst	tand bas	sics in cy	ber secu	urity										
~~~			_		_								Apply	,		
CO2: A	Able to	apply a	ittacker	s techniq	ues in re	eal time	e									
													Apply	,		
CO3: A	ble to	apply e	xploitat	ion in we	eb appli	cations										
CO4: A	hle to	underet	and and	apply m	alicious	in nets	works						Apply	,		
CO4. /1	ioic to	unacisa	aria aria	арргу пт	ancious	in net	works.									
COS	\hlata	opply o	lafanaa	and anal	vaia ta al	ممتمتم	. in maa	1 +i					Apply	,		
COS: F	ADIE 10	арргу с	ierense	and anai	ysis teci	iiiiques	s III Tea	ı ume								
MAPP	'ING	WITH	PROGI	RAMME	OUTO	COME	S AND	PROG	RAMN	IE SPE	CIFIC	OUT	COME	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3
CO1	M	М	M	М									M		M	-
CO1	M	M	M	M	_	_			_	_						
CO2	M	M	M	M	M	-	-	-		-	-	-	M		M	M
CO3	M	M	S	M	M	-	-	-	_	-	-	-	M		M	M
CO4	S	M	M	M		_	_	_	_	_		_	-		M	-
	~	27.2													3.5	3.6
CO5	S	M	M	M	S	-	-	-	-	-			-		M	M
S- Stro	ng; M	-Mediu	m; L-Lo	ow		-						-				
INTR	ODLIC	TION														

Network and security concepts – basic cryptography – Symmetric encryption – Public key Encryption – DNS – Firewalls - Virtualization - Radio Frequency Identification - Microsoft Windows security Principles.

ATTACKER TECHNIQUES

Antiforensics – Tunneling techniques – Fraud Techniques - Threat Infrastructure.

EXPLOITATION

Techniques to gain a foot hold – Misdirection, Reconnaissance, and disruption methods.

MALICIOUS CODE

Self Replication Malicious code – Evading Detection and Elevating privileges – Stealing Information and Exploitation.

DEFENSE AND ANALYSIS TECHNIQUES

Memory Forensics - Honeypots - Malicious code naming - Automated malicious code analysis systems - Intrusion detection systems – Defense special file investigation tools.

TEXT BOOKS

- 1. James Graham, Richard Howard and Ryan Olson, "Cyber Security Essentials", CRC Press, Taylor & Francis Group, 2011.
- 2. By Dan Shoemaker, Ph.D., William Arthur Conklin, Wm Arthur Conklin, "Cyber security: The Essential Body of Knowledge", Cengage Learning, 2012.

REFERENCES

1.. Ali Jahangiri, "Live Hacking: The Ultimate Guide to hacking Techniques & Counter measures for Ethical Hackers & IT Security Experts", 2009.

COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department	Mail ID						
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE	rjaichandran@avit.ac.in						
2.	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in						

17CSEC11	GREEN COMPUTING	Category	L	T	P	Credit
		EC	3	0	0	3

PREAMBLE

To acquire knowledge to adopt green computing practices and To learn about energy saving practices

PREREQUISITE

NII.

COURSE OBJECTIVES

1	To acquire knowledge to adopt green computing practices
2	To minimize negative impacts on the environment
3	To learn about energy saving practices
4	To learn about green compliance. And implementation using IT

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Explain the significance knowledge to adopt green computing practices	Understand
CO2: Design and develop the green asset used to minimize negative impacts on the environment	Apply
CO3: Identify an appropriate cooling technologies and infrastructure for optimizing the cost of data center operations	Apply
CO4: Make use of an knowledge about energy saving practices ,the impact of e-waste and carbon waste	Apply
CO5: Analyze about green compliance, implementation using IT and derive the case study.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	S	-	-	-	M	-	-	-	-	-	-	-	S
CO2	S	S	M	_	L	_	S	S	-	M	-	M	-	-	S
CO3	S	M	M	-	-	M	S	M	-	-	-	-	M	M	M
CO4	S	S	-	-	-	-	S	S	-	M	-	M	-	M	M
CO5	S	M	M	-	1	S	M	ı	M	-	M	S	-	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Systems Seamless Sharing Across. Collaborating and Cloud Computing, Virtual Presence.

GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green

Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and

Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative

Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligence, CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with IT, John Wiley and Sons, 2010.

REFERENCES

- 1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journeyl, Shoff/IBM rebook, 2011.
- 2. John Lamb, —The Greening of ITI, Pearson Education, 2009.
- 3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industryl, Lulu.com, 2008.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

-17CSEC34	WEB DESIGN AND MANAGEMENT	Category	L	T	P	Credit
		EC	3	0	0	3

PREAMBLE

To understand and learn the scripting languages with design of web applications, and maintenance and evaluation of web design management.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	To introduce the student to the tools and facilities of web design
2	To understand and learn the scripting languages with design of web applications
3	To learn the maintenance and evaluation of Web design/development process, with Macromedia Dreamweaver as the primary Web development tool
4	Topics covered include basic and enhanced site structure, local and remote site management, and optimization of Web graphics

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Apply an Information Architecture document for a web site.	Apply
CO2: Construct a web site that conforms to the web standards of today and includes e-commerce and web marketing	Analyze
CO3: Perform regular web site maintenance (test, repair and change).	Analyze
CO4: Understand the principles of various process of Project management	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	-	M	-	-	-	-	-	-	-	S	M	M
CO2	S	M	M	-	L	-	-	-	-	-	S	M	M	M	M
CO3	S	M	M	-	M	-	-	-	-	-	M	M	M	-	-
CO4	S	M	S	-	M	-	-	M	-	-	S	M	-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

SITE ORGANIZATION AND NAVIGATION

User Centered Design—Web Medium—Web Design Process—Basics of Web Design—Introduction to Software used for Web Design – ADOBE IMAGE READY, DREAM WEAVER, FLASH – Evaluating Process – Site Types and Architectures – Navigation Theory – Basic Navigation Practices – Search – Sitemaps.

ELEMENTS OF PAGEDESIGN

Browser Compatible Design Issues-Pages and Layout – Templates – Text – Color – Images – Graphics and Multimedia – GUI Widgets and Forms – Web Design Patterns – STATIC pages: Slice– URL in ADOBE IMAGE READY. Creation and Editing of site map – Layer, Tables, Frame set, - CSS style – Forms – Tools like Insert, Rollover etc., in DREAM WEAVER SCRIPTING LANGUAGES AND ANIMATION USING FLASH

Client side scripting: XHTML – DHTML – JavaScript – XML Server Side Scripting: Perl–PHP– ASP/JSP Designing a Simple Web Application - Introduction to MACROMEDIA FLASH, Importing Other File Formats to Flash – Saving and Exporting Flash Files, Frame by Frame Animation–Motion Tweening – Shape Tweening.

PRE-PRODUCTION MANAGEMENT

Principles of Project Management – Web Project Method – Project Road Map – Project Clarification – Solution Definition – Project Specification – Content – Writing and Managing Content.

PRODUCTION, MAINTENANCE AND EVALUATION

Design and Construction – Testing, Launch and Handover – Maintenance – Review and Evaluation – Case Study: Using the Skills and Concepts Learn with the ADOBE IMAGE READY, DREAM WEAVER, FLASH, and Scripts, Develop Portfolios in the Form of Web Pages which have to be uploaded in Free Public Domain.

TEXT BOOKS

- 1. Themas A. Powell, —The Complete Reference-Web Design, Tata McGraw Hill, Third Edition, 2003.
- 2. Ashley Friedlein, —Web Project Managementl, Morgan Kaufmann Publishers, 2001.

3.H.M. Deitel, P.J. Deitel, A.B. Goldberg, —Internet and World Wide Web – How to Programl, Third Edition, Pearson Education, 2004.

REFERENCES

- 1. Joel Sklar, —Principles of Web Design, Thomson Learning, 2001.
- 2. Van Duyne, Landay and Hong, —The Design of Sites: Patterns for Creating Winning Websitesl, Second Edition, Prentice Hall, 2006.
- 3.Lynch, Horton and Rosenfeld, —Web Style Guide: Basic Design Principles for Creating Websites^{||}, Second Edition, Yale University Press, 2002.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	R.Bharanidharan	Professor	CSE	bharanidharan@vmkvec.edu.in

17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	Category	L	Т	P	Credit			
17BWE204	WENG AND ITS DIOWEDICAL ATTEICATIONS	EC-PS	3	0	0	3			
PREAMBLE To enable the students to acquire knowledge about the principles and applications of MEMS & Nanotechnology in Biomedical Industry.									
PREREQUISITE – NIL									
COURSE OBJECTIVES									

1	To understand the working principle of MEMS & Microsystems.

- 2 To understand the working of MOEMS Technology.
- To give an insight to the microfluidic systems.
- 4 To give an insight to the Bio-MEMS & its application in healthcare.
- 5 To study about the biomedical Nanotechnology & its application in research domain.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be able to	
CO1. Discuss the concepts of microfluidic systems.	Understand
CO2. Explain about the basics of working of MOEMS Technology.	Understand
CO3. Illustrate the working principle of MEMS & Microsystems.	Apply
CO4. Analyze the nanomaterial in various biomedical applications.	Analyze
CO5. Evaluate about the biomedical Nanotechnology & its application in research domain.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M							1	L			M	M		
CO2	M		L					1	L			M			
CO3	S	M	M					1	M			S			
CO4	S	S	M	L	M	M	M	M	M			S	S	M	M
CO5	S	S	S	M	M	S	M	S	M			S	S	M	S

S- Strong; M-Medium; L-Low

SYLLABUS

MEMS & MICROSYSTEM

MEMS and Microsystems-Introduction-Typical MEMS and Microsystem Products-Application of Micro- system in Healthcare Industry – Working Principles of Microsystems Micro-sensors – Micro-actuation – MEMS with Microactuation – Micro-accelerators.

MICRO-OPTO ELECTROMECHANICAL SYSTEMS (MOEMS)

Fundamental principle of MOEMS Technology, Advantages - Light Modulators, Beam splitter - Micro-lens, Micro-mirrors - Digital Micro-mirror Device, Grating Light Valve, Optical Switch, Waveguide and Tuning

MICROFLUIDIC SYSTEMS

Microfluidics - Introduction and Fluid Properties, Applications of MFS-Fluid Actuation Methods - Electrophoresis, Dielectrophoresis, Electrowetting, Optoelectrowetting, Electro osmosis Flow, Electrothermal Flow, Thermocapillary Effect - Microfluidic Channel - Microdispenser - Microneedle - Microfilter

BIOMEMS

Introduction to BioMEMS, BioMEMS for Clinical Monitoring, Lab on a chip, DNA Sensors, E-Nose, E-Tongue, Microsystem approaches to PCR, MEMS based Implantable Drug Delivery System, Emerging, BioMEMS Technology.

BIOMEDICAL NANOTECHNOLOGY

Introduction to nanoscale phenomena, Nanoparticles - Nanomaterial characterization – XRD,SAXS,TEM,SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MRImaging, Nano-devices in biomedical applications.

TEXT BOOKS:

- 1. Tai-Ran Hsu, "MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley & Sons, 2nd Edition, 2008.
- 2. Nitaigour Premch and Mahalik, "MEMS", Tata McGraw Hill, 2nd Reprint 2008.
- 3. Wanjun Wang & Steven A. Soper, "BioMEMS Technologies and applications", CRC Press, First Edition 2007.

REFERENCES:

- 1. Steven S. Saliterman, "Fundamentals of BioMEMS & Medical Microdevices", International Society for Optical Engineering, 1st Edition 2006.
- 2. Gerald A Urban, "BioMEMS", Springer, 1st Edition 2006.
- 3. Abraham P. Lee and James L. Lee, "BioMEMS and Biomedical Nanotechnology", Volume-I, Springer, 1st Edition, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in
2	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Mr.S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

17BMEC12	HOSPITAL MANAGEMENT	Category	L	T	P	Credit
----------	---------------------	----------	---	---	---	--------

											EC-PS	3	0	0	3
PREA	MBLE											l			
To prov	vide the	knowle	edge of	plannii	ng, desi	gning a	nd safe	ty mana	agemen	t in hosp	ital servi	ces.			
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	VES												
1	To obtain the knowledge about the basic planning and organization of hospitals.														
2	To study about the clinical and administrative services.														
3	To ii	mpart k	nowled	ge on d	esignin	g of ho	spital se	ervices.							
4	To s	tudy an	d analy	ze the s	afety m	anagen	nent in	hospita	ls.						
5	To s	tudy an	d analy	ze the i	nfection	n contro	ol in hos	spitals.							
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	e able	to						
CO1. S	Summar	rize the	importa	ance of	hospita	l in hea	lthcare	and pla	nning o	of hospita	ıl design.	Ţ	Jndersta	and	
CO2. E	Examine	e the va	rious cl	inical s	ervices	needed	in the l	hospital	l.			1	Apply		
CO5. (Outline	the imp	lementa	ation of	various	s infecti	ion con	trol tecl	nniques	•		1	Analyze		
CO4. F	Recomn	nend the	e suppo	rting se	rvices 1	needed	to build	the ho	spital aı	nd safety	guidelin	es. I	Evaluate	;	
CO3. E	Build th	e idea a	bout th	e hospi	tal servi	ices des	ign.					(Create		
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC (OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	L						L				M	S	M	M
CO2	S	M	L	L			-	M	M			M			M
CO3	S	M	M	M	M	M	M	M	M			M			M
CO4	S	M	S	M	S	M	M	S	M	S	L	M	S	S	M
CO5	S	S	S	S	S	M	S	S	M	S	M	M	S	S	S
S- Stro	ng; M-N	Medium	r; L-Lo	w											

SYLLABUS

PLANNING AND ORGANIZATION OF THE HOSPITALS

Roles of hospital in healthcare – hospital planning and design-outpatient services the nursing unit – intensive care Unit – nursing services – effective hospital management – directing and leading – controlling – financial management.

CLINICAL AND ADMINISTRATIVE SERVICES

Radiology and imaging services – laboratory services – operation theatre suite pharmacy – central sterile supply department – hospital infection – materials management – evaluation of hospital services.

DESIGNING OF HOSPITAL SERVICES

Engineering department – maintenance management – clinical engineering electrical system – air conditioning system – water supply and sanitary system centralized medical gas system – communication system – solid waste management and transportation.

DESIGNING SUPPORT SERVICES AND SAFETY MANAGEMENT

Admitting department – medical records department – food service department laundry and linen service housekeeping – Volunteer department – safety in hospital fire safety – Alarm system – disaster management.

HOSPITAL INFECTION CONTROL

Importance of infection control – hand hygiene – aseptic techniques – isolation precautions – disinfection and Sterilization – clinical laboratory standards to infection control – health care workers safety.

TEXT BOOKS:

- 1. Kunders G D, "Biomechanics: Hospitals, facilities planning and management", Tata Mcgraw Hill, 2008.
- 2. Sakharkar B M, "Principles of hospital administration and planning", Jaypee Brothers Medical Publishers Pvt. Limited, 2nd Edition, 2009.

REFERENCE:

1. Sanjiv Singh, Sakthikumar Gupta, Sunil Kant, "Hospital infection control guidelines, principles and practice", Jaypee Brothers Medical Publishers Pvt Limited, 1st Edition, 2012.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S. Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Mr. R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Ms.S.Mythrehi	Assistant Professor (G-I)	BME	mythrehi@avit.ac.in

17DX4	ECO		ш	CDIT A	T TAILS		TION	CVCTI	ZN/IC		Categor	y L	T	P (Credit
17BM	EC2U		но	SPITA	L INF	UKMA	TION	51511	FINIS		EC-PS	3	0	0	3
With a encomp		nanagei	ment pr	inciples	s, staffii	ng and	marketi	_			ards hosp g their si		_		
PRER	EQUIS	ITE:N	IL												
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the ho	ospital i	nforma	tion sys	stem an	d suppo	orting se	ervice.					
2	To stu	idy the	hospita	l manag	gement	informa	ation sy	stems.							
3	To kn	ow abo	ut the c	oncepts	of staf	fing pro	ocess.								
4	To study the concept of marketing and management.														
5	To pla	an the n	naintena	ance of	records	in the	other su	ıpportiv	e depar	tments o	of hospita	1.			
COUR	SE OU	TCOM	IES												
On the	success	sful con	npletion	of the	course,	studen	ts will b	e able	to						
CO1. I	Explain	the info	ormatio	n syster	n of hos	spital &	suppo	rting se	rvice.				Uno	lerstand	
CO3. I	Discuss	the vari	ious coi	ncept of	staffin	g proce	ess.						Uno	lerstand	
CO4. I	Describe	e the co	ncept o	f marke	ting an	d mana	gement	•					Uno	lerstand	
CO5.	Utilize (compute	er to ma	aintenar	nce of re	ecords i	in the o	ther sup	portive	departm	ents of h	ospital.	App	oly	
CO2. A	Analyze	the pri	nciple o	of hospi	tal man	agemei	nt.						Ana	ılyze	
MAPP	ING W	/ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	M					L			L			M	M	S	S
CO2	M					L			L			M			
CO3	M				-	L			L			M			
CO4	S	L				M			L			M	M	M	S
CO5	S	M				M			L			M	M	S	S

SYLLABUS

HOSPITAL INFORMATION SYSTEMS & SUPPORTIVE SERVICES

Management Decisions and Related Information Requirement - Clinical Information Systems - Administrative Information Systems - Support Service Technical Information Systems - Medical Transcription, Medical Records Department - Central Sterilization and Supply Department - Pharmacy - Food Services - Laundry Services.

PRINCIPLE OF HOSPITAL MANAGEMENT

Importance of management and Hospital, Management control systems. Forecasting techniques decision - making process.

STAFFING

Staffing pattern in hospitals, Selection, Recruiting process, Training of staff, Organizational structures, Career development

MARKETING AND MANAGEMENT

Basic concepts marketing, Principles of social marketing, Social marketing in health sector, Consumer behavior and research health, Advertising in Health Sector, Relevance of e-marketing of Health care services

COMPUTER IN HOSPITAL

System Development life cycle, Reasons to use computers in hospital, main categories of information systems in hospitals

TEXT BOOKS:

- 1. Goyal R.C., "Human Resource Management in Hospital", Prentice Hall of India Pvt. Ltd., New Delhi, 2000.
- 2.G.D.Kunders, "Hospitals Facilities Planning and Management" TMH, New Delhi Fifth Reprint 2007.

REFERENCES:

- 1. Nauhria R.N. and Rajnish Prakash, "Management & systems", New Delhi Wheeler publishing, 1995.
- 2. Koontz, "Essentials of Management", McGraw Hill, 1995.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in

17BMEC05	HOME MEDICARE TECHNOLOGY	Category	L	Т	P	Credit
----------	--------------------------	----------	---	---	---	--------

					ı	
		EC-P	3	0	0	3
The p	•	the course on home medicare technology for biomedical engineering stude available at home along with recent digital and tele-health technologies.	nts is to	outlin	e the	health care
PREF	REQUISIT	ΓE – NIL				
COU	RSE OBJ	ECTIVES				
1	To intro	oduce the biomedical instruments that can be used at home.				
2	To unde	erstand the skills required for home medicare for the elderly and the child	en.			
3	To emp	hasize the need for home medicare system.				
4	To learn	n the advances in healthcare technologies and wireless technology related	o health	are s	ysten	1.
5	To prov	ride the advance medical technology in home medicare.				
COU	RSE OUT	COMES				
On the	e successfu	al completion of the course, students will be able to		•		<u>- </u>
CO1	. Describe	e the biomedical instruments that can be used at home.		Un	dersta	and
CO2	. Examin	e the healthcare technologies and wireless technology.		Ap	ply	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO3. Analyze the skills required for home medicare for the elderly and the children.

CO4. Summarize the organization and the need for home medicare system.

CO5. Develop the digital technical advancements with home medicare.

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L	L				L				M			M
CO2	S	M	M	L	L			M	L	L		M			M
CO3	S	S	M	M	L	M		M	M	M		S	M	M	M
CO4	S	S	S	M	M	S		S	S	M		S	M	M	M
CO5	S	S	S	S	M	S		S	S	M		S	M	S	M

Analyze

Evaluate

Create

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO HOME MEDICARE

Home health care, purpose, legal and ethical aspects, Organization of homecare system, Historical development of home care, Environmental influences on home care, Home care organization, Home care nursing practice, Role of home care nurse and orientation strategies, Infection control in home, Patient education in home.

WORKING WITH USERS

Basic human needs, communication and interpersonal skills, Caregiver observation, recording and reporting, confidentiality, Working with elderly, aged, Working with children, need for home care, Mobility transfers and ambulation, range of motion exercises, Skin care and comfort.

MEDICAL INSTRUMENTS AND DEVICES AT HOME

Medical devices at home and its implementation, Scope of market for home medical devices, Unique challenges to the design & implementation of hightech home care devices, Infant monitors, Medical alert services, Activity monitors.

DIGITAL HOME CARE

Video communication to support care delivery to independently living seniors, Establishing an infrastructure for telecare, Implementation of mobile computing in home care programs, Home medicare management by videophone, Continuous home care through wireless bio-signal monitoring system.

ADVANCES IN MEDICAL TECHNOLOGIES

Dynamic configuration of home services, Personalized ambient monitoring, Support for mental health at home, Multi model interaction and technologies for care at home, User centered design of technologies to support care at home.

TEXT BOOKS:

- 1. Robyn Rice, "Home care nursing practice: Concepts and Application", Elsevier, 4th Edition, 2006.
- 2. Lodewijk Bos, "Handbook of Digital Homecare: Successes and Failures", Vol.3, Springer, 2011.

REFERENCES:

- 1. Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D,Bronzino, "Clinical Engineering", CRC Press, 1st Edition, 2010.
- 2. KenethJ. Tumer, "Advances in home care technologies", AT research series, Vol 31, 1st Edition, IOS press, 2012.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Ms.S.Mythrehi	Assistant Professor (G-I)	BME	mythrehi@avit.ac.in

17BM	FC10	E	BODY A	AREA	NETW	ORKS	AND	MOB	ILE	Ca	tegory	L	T	P	Credit
17DN1	ECIU			I	HEALT	HCAF	RE			Е	C-PS	3	0	0	3
To enal	PREAMBLE To enable the students to gain knowledge in various aspects of BAN related to health and the techniques to apply these in proper health care delivery.														
PRER	PRERQUISITE - NIL														
COUR	SE OB	JECTI	VES												
1	To Le	arn abo	ut body	area no	etwork.										
2	To stu	dy the	differen	t BAN	hardwa	re relat	ed to it	t.							
3	To Pro	ovide kı	nowled	ge in th	e applic	ations	of Bod	y Area	Netwo	orks.					
4	To stu	dy the	concept	of tele	medicir	ie.									
5	To Pro	ovide kı	nowled	ge in th	e applic	ations	of Tele	medic	ine.						
COUR	SE OU	TCOM	IES												
On the	success	ful com	pletion	of the	course,	student	ts will	be able	e to						
CO1. E	Explain a	about co	oncept (of Body	Area N	Networl	ζ.						Under	stand	
CO2. D	escribe	about 1	fundam	entals c	f telem	edicine							Under	stand	
CO3. II	llustrate	the app	olication	ns of te	lemedic	ine & I	BAN ir	healtl	n care.				Apply		
CO4. A	nalyze	the Har	dware	for BAl	N in phy	ysiolog	ical sys	stem.					Analy	ze	
CO5. C	Compare	BAN a	and tele	medicii	ne.								Evalua	ate	
	MAPPI	ING W	ITH P	ROGR	AMME	OUT	COME	S AN	D PRO	GRAN	IME S	PECIF	IC OU	ГСОМЕ	S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M											M	1		
CO2	M					L						M			M
CO3	S	M	L	L	L	M				L		M	M		M
CO4	S	M	L	L	M	M				M		M	-		M
CO5	S	S	L	L	M	S		S	M	M	M	M	-	M	S
S- Stro	ng; M-N	/ledium	; L-Lov	w											

SYLLABUS

INTRODUCTION

Definition, BAN and Healthcare, Technical Challenges - Sensor design, biocompatibility, Energy Supply, optimal node place

HARDWARE FOR BAN

Processor – Low Power MCUs, Mobile Computing MCUs, Integrated processor with radio transceiver, Memory, Antenna – nodes.

APPLICATIONS OF BAN

Monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymias monitoring, Multi patient monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymias monitoring, Multi patient monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymias monitoring, Multi patient monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymias monitoring, Multi patient monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymias monitoring, Multi patient monitoring patients with the chronic disease, Hospital patients are patients and the chronic disease, Hospital patients are patients are patients.

FUNDAMENTALS OF TELEMEDICINE

History of telemedicine, definition of telemedicine, tele-health, tele-care, scope, Telemedicine Systems, benefits & limitations

APPLICATIONS OF TELEMEDICINE

Teleradiology, telepathology, telecardiology, teleoncology, teledermatology, telesurgery, e Health and Cyber Medicine.

TEXT BOOK:

- 1. Annalisa Bonfiglio, Danilo De Rossi, "Wearable Monitoring Systems", Springer, 2011.
- 2. Norris A C, "Essentials of Telemedicine and Telecare", John Wiley, New York, 2002.

REFERENCES:

- 1. Zhang, Yuan-Ting, "Wearable Medical Sensors and Systems", Springer, 2013.
- 2. H K Huang, "PACS and Imaging Informatics: Basic Principles and Applications", Wiley, New Jersey, 2010.
- 3. Guang-Zhong Yang (Ed.), "Body Sensor Networks", Springer, 2006.
- 4. Mehmet R. Yuce, Jamil Y. Khan, "Wireless Body Area Networks Technology, Implementation, and applications", Pa
- 5. Khandpur R S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2003

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	
1	Mr.S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in
2	Ms.B.Farhana Ansoor	Assistant Professor (G-I)	BME	farhanaansoor@avit.ac.in

17ATEC04	SPECIAL TYPES OF VEHICLES	Category	L	T	P	Credit
		EC	3	0	0	3

PREAMBLE

This course reviews the fundamental concepts of earth moving equipments, power train concepts, sub systems of special types of vehicles, farm equipment, military and combat vehicles and special purpose vehicles for industrial applications.

PREREQUISITE: Nil

COURSE OBJECTIVES															
1	To learn	the det	ailed stu	dy of e	arth mo	oving a	nd cons	structiona	l equipn	nents					
2	To learn the detailed study of power train concepts														
3	To learn	the det	ailed stu	dy of s	sub syst	tems of	special	l types of	vehicle	S					
4	To learn	the det	ailed stu	dy of fa	arm equ	iipmen	ts, milit	tary and o	combat v	vehicles					
5	To learn	of deta	iled stud	ly of sp	ecial pi	urpose	vehicle	s for indu	ıstrial ap	plication	ns				
COU	RSE OU	TCOM	IES												
On th	e success	ful com	pletion	of the c	ourse,	student	s will b	e able to							
CO1:	CO1: Understand earth moving and constructional equipments Understand														
CO2:	CO2: Know the power train concepts Understand										nd				
CO3:	Know th	e sub sy	ystems o	f specia	al types	of veh	icles						Ţ	Jndersta:	nd
CO4:	Use farm	n equipr	ments, m	ilitary	and cor	nbat ve	hicles							Apply	
CO5:	Use spec	ial purp	ose veh	icles fo	r indus	trial ap	plicatio	ons						Apply	
MAF	PING W	TTH P	ROGRA	MME	OUTO	COME	S AND	PROGR	RAMMI	E SPEC	FIC OU	UTCOM	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M				M				M	M		
CO2	S	M	M	M				M				M	M		
CO3	S	S	S	M				M				M	M		
CO4	S	S	S	M				M				M	M		
CO5	S	S	S	M				M				M	M		

SYLLABUS

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Construction layout, capacity and applications. Power Plants, Chassis and Transmission, Multivalve vehicles.

EARTH MOVING MACHINES

S- Strong; M-Medium; L-Low

Earthmovers like dumpers, loaders - single bucket, Multi bucket and rotary types- bulldozers, excavators, backhoe loaders, scrappers, drag and self powered types, Bush cutters, stumpers, tree dozer, rippers etc. – Power and capacity of earthmoving machines.

SCRAPPERS, GRADERS, SHOVELS AND DITCHERS

Scrappers, elevating graders, motor graders, self powered scrappers and graders, Power shovel, revolving and stripper shovels – drag lines – ditchers – capacity of shovels.

FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES

Power take off, special implements. Special features and constructional details of tankers, gun carriers and transport vehicles.

VEHICLE SYSTEMS, FEATURES

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydropneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Design aspects on dumper body, loader bucket and water tank of sprinkler.

TEXT BOOKS:

1. Off the road wheeled and combined traction devices – Ash gate Publishing Co.Ltd. 1988

2. Satyanarayana. B., Construction planning and equipment, standard publishers and distributors, New Delhi.

REFERENCE BOOKS:

- 1. Abrosimov.K. Branberg.A and Katayer.K, Road making machinery, MIR Publishers, Moscow, 1971.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Ltd., London.
- 3. Nakra C.P., "Farm machines and equipments" Dhanparai Publishing company Pvt. Ltd.

Robert L Peurifoy, "Construction, planning, equipment and methods" Tata McGraw Hill Publishing company Ltd.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC06	AUTOMOTIVE SAFETY	Category	L	T	P	Credit
		EC	3	0	0	3

PREAMBLE

To study and purpose is to understand Automotive Safety.

PREREQUISITE: Nil

COURSE OBJECTIVES

1	To under	rstand tl	ne Safet	v Svste	ms										
2	To under														
3	To under														
4	To under					and Av	oidance)							
5	To under	rstand tl	ne Comf	ort and	Conve	nience	System	Standar	ds						
COU	OURSE OUTCOMES														
On th	e success	ful com	pletion	of the c	ourse,	student	s will b	e able to							
CO1:	To under	stand a	bout veh	nicle sat	fety wh	ile run	ning						J	Indersta	nd
CO2:	To under	stand a	bout the	vehicle	e operat	ting sys	stem						Į	J nderst a:	nd
CO3:	To learn	about h	ow to ha	andle th	e safet	y equip	ment's	in vehicl	e				J	Jndersta	nd
CO4:	How to d	lrive the	e vehicle	in safe	ety met	hod and	d avoid	the accid	ents					Apply	
CO5:	O5: To learn about how to use the modern technology in vehicle Apply														
MAP	PING W	TTH P	ROGRA	MME	OUTO	COME	S AND	PROGR	RAMME	E SPECI	FIC OU	JTCOM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M				M				M	M		
CO2	S	M	M	M				M				M	M		

S

S

S

S

S

S

M

M

M

SYLLABUS

CO3

CO4

CO₅

INTRODUCTION

S

S

Design of the body for safety, energy equation, engine location, deceleration of vehicle inside passenger compartment, deceleration on impact with stationary and movable obstacle, concept of crumble zone

M

M

M

M

M

M

M

M

M

SAFETY CONCEPTS

Active safety: driving safety, conditional safety, perceptibility safety, operating safety, passive safety: exterior safety, interior safety, deformation behavior of vehicle body, speed and acceleration characteristics of passenger compartment on impact

SAFETY EQUIPMENTS

Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions

COMFORT AND CONVENIENCE SYSTEM

Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system

TEXT BOOKS:

- 1. Bosch, "Automotive Handbook", 8th Edition, SAE publication, 2011.
- 2. Powloski. J., "Vehicle Body Engineering", Business books limited, London, 1969.

REFERENCE BOOKS:

Ronald.K.Jurgen, "Automotive Electronics Handbook", Second Edition, McGraw-Hill Inc.,

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC10	ALTERNATIVE ENERGY SOURCES FOR	Category	L	Т	P	С
	AUTOMOBILES	EC(PS)	3	0	0	3

PREAMBLE

To study and understand the substitute for conventional automobile fuels and energy source

PREREQUISITE: Nil

COURSE OBJECTIVES

1	To impart the knowledge of various alternate fuels in vehicles.
2	To understand the entire properties of alcohols.
3	To understand the various fuels like natural gas, LPG, hydrogen and biogas
4	To impart the knowledge of vegetable oils
5	To impart the knowledge of electric and solar vehicles

COURSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1: To learn the detailed study of alternate fuel	Understand
CO2: To learn the detailed study of alternate fuel's properties	Understand
CO3: To learn the detailed study LPG and Hydrogen fuels	Understand
CO4: To learn about how to use the bio fuel in IC engine	Apply
CO5: To learn how to design the electric drive vehicle	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M				M				M	M		
CO2	S	M	M	M				M				M	M		
CO3	S	S	S	M				M				M	M		-
CO4	S	S	S	M				M				M	M		
CO5	S	S	S	M				M				M	M		

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Estimation of petroleum reserve - Need for alternate fuel - Availability and properties of alternate fuels— general use of alcohols - LPG - Hydrogen - Ammonia, CNG, and LNG - Vegetable oils and Biogas - Merits and demerits of various alternate fuels.

ALCOHOLS

Properties as engine fuel, alcohols and gasoline blends, performance in SI engine. Methanol and gasoline blends Combustion characteristics in engines - emission characteristics.

CNG, LPG, HYDROGEN AND BIOGAS

Availability of CNG, properties, modification required to use in engines - performance and emission characteristics of CNG using LPG in SI & CI engines. Performance and emission for LPG - Hydrogen – Storage and handling, performance and safety aspects.

VEGETABLE OILS

Various vegetable oils for engines - Esterification - Performance in engines - Performance and emission Characteristics

ELECTRIC AND SOLAR POWERED VEHICLES

Layout of an electric vehicle - Advantage and limitations - Specifications - System component. Electronic control system - High energy and power density batteries - Hybrid vehicle - Solar

TEXT BOOKS:

1. K. K. Ramalingm, internal Combustion Engines, Scitech publications, Chennai, 2003.

MaheswarDayal, " Energy today & tomorrow ", I & B Horishr India, 1982

REFERENCE BOOKS:

- 1. "Alcohols and motor fuels progess in technology", Series No.19, SAE Publication USA 1980.
- 2. SAE Paper Nos. 840367, 841156, 841333, 841334.
- 3. "The properties and performance of modern alternate fuels" SAE Paper No.841210.

~ ~ ~				
COUR	CE D	FCIA	INFPC	

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

]	EC(PS)	3	0	O	3		
	PREAMBLE This course reviews the methods of training and training procedure in the transport management, scheduling and fare																
					_		- 1	rocedure nt underta		•	_		_				
structu	ire or var	nous pu	idhe and	private	e and st	ate gov	eriinei	nt underta	iking ve	mcies, i	паппепа	ince and	motor v	emcie ac	iί		
PRER	EQUIS	ITE: 1	Nil														
COUF	COURSE OBJECTIVES																
1	To study the various test of selection processes and personal management																
2	To learn the various transport system																
3	To learn the various fare collecting methods and problems on scheduling																
4	To study the Motor vehicle Act of India																
5	To study the maintenance of transport industry and design of Rus depot layout																
COUR	COURSE OUTCOMES																
			_					e able to									
CO1: A	Apply th	ne perso	onal man	ageme	nt and t	raining	for sel	ection pro	ocesses				Ţ	J nderst a:	nd		
CO2; U	Understa	nd the	various o	division	of trar	isport r	nanage	ment						Apply			
CO3: 0	Construc	t table	for vario	ous fare	collec	ting me	ethods a	and apply	it					Apply			
CO4: I	Know th	ne moto	r vehicle	e Act of	f India									Apply			
CO5: A	Apply th	e maint	enance s	system	of trans	sport								Apply			
MAPI	PING W	TTH P	ROGRA	MME	OUTO	COME	S AND	PROGR	RAMMI	E SPECI	FIC OU	JTCOM	IES				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	S	M	M	M				M				M	M				
CO2	S	M	M	M				M				M	M				
CO3	S	S	S	M				M				M	M				
CO4	S	S	S	M				M				M	M				

S

S

M

SYLLABUS

CO₅

INTRODUCTION

Personnel management; objectives and functions of personnel management, psychology, sociology and their relevance to organization, personality problems. Selection process: job description, employment tests, interviewing, introduction to training objectives, advantages, methods of training, training procedure, psychological tests..

M

M

M

TRANSPORT SYSTEMS

Introduction to various transport systems. Advantages of motor transport. Principal function of administrative, traffic, secretarial and engineering divisions. Chain of responsibility forms of ownership by state, municipality, public body and private undertakings

SCHEDULING AND FARE STRUCTURE

Principal features of operating costs for transport vehicles with examples of estimating the costs. Fare structure and method of drawing up of a fare table. Various types of fare collecting methods. Basic factors of bus scheduling. Problems on bus scheduling

MOTOR VEHICLE ACT

Traffic signs, fitness certificate, registration requirements, permit insurance, constructional regulations, description of vehicle-tankers, tippers, delivery vans, recovery vans, Power wagons and fire fighting vehicles. Spread over, running time, test for competence to drive.

MAINTENANCE

Preventive maintenance system in transport industry, tyre maintenance procedures. Causes for uneven tyre wear; remedies, maintenance procedure for better fuel economy, Design of bus depot layout.

TEXT BOOKS:

1.John Duke, "Fleet Management", McGraw-Hill Co, USA, 1984.

REFERENCE BOOKS:

1. Government Motor Vehicle Act, Publication on latest act to be used as on date.

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC17	VEHICLE AIR-CONDITIONING	Category	L	Т	P	С
----------	--------------------------	----------	---	---	---	---

											EC(PS)	3	0	0	3
	MBLE									<u> </u>		1	<u> </u>		
To tea	ch the st	udents a	about the	e vehic	le air-co	onditio	ning								
PRER	EQUIS	ITE:	Nil												
COUL	RSE OB	JECTI	VES												
	Understand the principles and applications of Air conditioning systems.														
1	To understand the air conditioner – heating system.														
2															
3	To understands the properties of air conditioning coolant.														
4	To study about air routing and temperature control														
5	To study heater- air conditioner trouble shooting &service														
COUI	RSE OU	TCOM	IES												
			_					e able to					1		
CO1:	Gain kno	owledge	about v	arious	air con	ditionin	ig syste	ems					1	Understa	nd
CO2:	Gain the	knowle	edge of	cooling	and he	eating lo	oads in	an air-co	nditioni	ng syste	m		1	Understa	nd
CO3: 1	Evaluate	the dia	gnostic	charact	eristics	of Ref	rigerati	on systen	1				Apply		
CO4: 1	Evaluate	the var	ious test	ing of	air cont	rol and	handli	ng systen	ns.					Apply	
CO5: 1	Learn the	e variou	ıs metho	ds of T	rouble	shootin	g in aiı	conditio	ning sys	stems			1	Understa	nd
					,			PROGE							Т
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M				M				M	M		
CO2	S	M	M	M			M	M	M			M	M		
CO3	S	S	S	M			M	M	M			M	M		
CO4	S	S	S	M			M	M	M			M	M		
CO5	S	S	S	M			M	M	M			M	M		

SYLLABUS

AUTOMOTIVE AIR-CONDITIONING FUNDAMENTALS

Basic Air conditioning system- Location of Air conditioning components in a car – schematic layout of a Refrigeration system. Compressor components- condenser and high-pressure service ports. Thermostatic expansion valve and Orifice tube – expansion valve calibration – evaporator temperature controls for air conditioning systems

AIRCONDITIONER – HEATING SYSTEM

Manually controlled air conditioner- Heater system- ford automatically controlled air conditioner- Heater systems- Chrysler automatically controlled air conditioner- heater system, general motors automatically controlled Air conditioner- heater system- Flushing and evacuating

REFRIGERANT

Containers- handling refrigerant – discharging, charging and leak detection – refrigeration system Diagnosis – Diagnostic procedure – Ambient conditions affecting system pressures

AIR ROUTING AND TEMPERATURE CONTROL

Objectives – Evaporators case air flow through the Dash recalculating unit – Automatic Temperature control – Duct system-Controlling flow – vacuum reserve – testing the air control and handling systems.

HEATER- AIR CONDITIONER TROUBLE SHOOTING

Air conditioner maintenance and service- servicing heater system. Removing and replacing components.

trouble shooting of air conditioner- heating system- compressor service

TEXT BOOKS:

1. William H Crouse and Donald L Anglin, Automotive Air Conditioning McGraw Hill inc; 1990.

REFERENCE BOOKS:

- 1. Mitchell information services, Inc., Mitchell Automotive Heating and Air conditioning systems, prentice Hall Inc, 1989.
- 2. McDonald K.L., Automotive Air conditioning., Theodore Audel series., 1978
- 3. Goings.L.F., Automotive Air conditioning., American Technical services, 1974
- 4. Paul Weisler, Paul Weisler, Automotive Air conditioning, Restone Publishing Co. Inc., 1990.

COCIO	L DESIGNATION			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17EEF	EC10			POWEI	R QUAL	ITY			Categoi	ry L	T	P	Credit
									EC-PS	3	0	0	3
PREAN		orte Iznov	dadaa ah	out voric	vuc alaatr	ical povy	or quality	v icenoc	and tha	ir origi	and add	Iross tl	ne effects of pow
	•	on elect	Ū			•		•		· ·			ne effects of pow
	QUISI		Ticai pow	ei syste	III. It also	emphasi	is need i	or FQ II	101111011	ing and	ileasulei	nent.	
TREAL	QUISIT	IE:NII											
COURS	SE OBJ	ECTIVE	\mathbf{S}										
	Descri	be variou	is power	quality p	problems								
2	Identif	y the roo	t cause o	f power	quality p	roblems.							
3	Explai	n the imp	act of P	Q issues	on vario	us electri	cal comp	onents.					
4	Explain the impact of PQ issues on various electrical components. Interpret the need for PQ monitoring and measurement.												
5	Illustrate the harmonics distortion in the given electical drive.												
6	Deterr	nine vario	ous powe	er quality	issues a	nd their s	solutions	in resid	lential /	comme	ercial / in	dustri	al facilities.
		COMES											
On the s	successfu	ıl comple	tion of th	ne course	e, student	s will be	able to						
CO1: E	xplain va	rious pov	ver quali	ty proble	ems.						Under	stand	
CO2: D	iscuss th	e root cau	ise of po	wer qual	lity probl	ems.					Under	stand	
CO3: E	xplain th	e impact	of PO is	sues on v	various el	ectrical c	compone	ents					
CO3. L	xpiain tii	e impact	011 Q 15.	sues on v	arrous cr	ectricar c	ompone	ть.			Under	stand	
CO4: D	iscuss th	e need fo	r PQ mo	nitoring	and meas	surement					Under	stand	
CO5: Co	ompute t	he harmo	onics dist	ortion in	the give	n electica	al drive.				Apply	,	
		arious po	wer qual	ity issue	s and the	ir solutio	ns in res	idential	/ comm	nercial /	Analy	76	
	al faciliti										Anary		
		TH PRO		,		•	DO7	DOS	DOO	DO10	DO11	DO1	2
COS CO1	PO1 M	PO2 L	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 L	PO1	<u> </u>
		L											
	M				i	1	1	1	1		1	Ī	
CO2	M	L					M						

M

S

L

M

L

M

SYLLABUS

CO5

CO6

Introduction

Power quality - Impact of PQ on end users, Need for PQ monitoring, Various PQ Problems

M

M

Voltage disturbances

S

S

Voltage dips, over voltages, short supply interruptions, voltage fluctuations and flicker - sources, effects, measurement and mitigation

M

M

L

S

S

M

Transients

Transient system model, examples of transient models and their response, power system transient model, types and causes of transients, lightning, other switching transients.

Voltage and Current Unbalance

Symmetrical components of currents and voltages, sources, effects, measurements and mitigation

Harmonics

Definition, odd and even harmonics, harmonic phase sequence, voltage and current harmonics, individual and total harmonic distortion, harmonic standards, sources, effects on various electrical components, measurements and mitigation, passive and active filters (Case Studies)

Power factor

Active and reactive power flow with nonlinear load, displacement and distortion power factor, power factor penalty, power factor improvement, applications of synchronous condensers and static VAR compensators, automatic power factor controller (Case Studies)

Grounding

Shock and fire hazards, essential of a grounded system, earth resistance tests, methods of grounding.

Solving power quality problems using CPD

Power quality measuring equipment-Smart power quality analyzers, Introduction to custom power devices (CPD) – STATCOM, DVR, UPQC.

Text Book

1. Sankaran C,"Power Quality", CRC Press special Indian edition 2009.

Reference Books

- 1. Angelo Baggini, "Handbook of Power Quality" John Wiley & Sons Ltd, 2008.
- 2. Roger .C. Dugan, Mark F.Mcgranaghan & H.Wayne Beaty," Electrical power system Quality" McGraw-Hill Newyork Second edition 2003.
- 3. Barry W.Kennedy, "Power Quality Primer", McGraw-Hill, New York, 2000.
- 4. Math H.J.Bollen, « Understanding Power Quality Problems : Voltage Sags and Interruptions », IEEE Press, New York, 2000.
- 5. Arrillaga.J, Watson.N.R and Chen.S, « Power System Quality Assessment », John Wiley & Sons Ltd., England, 2000
- 6. Bhim Singh, Ambrish Chandra and Kamal Al-Haddad: Power Quality: Problems and Mitigation Technique, Wiley Publications, 2015

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Sankarganesh	Associate Professor	EEE/VMK VEC	sankarganesh@vmkvec.edu.in
2	Mr. S. Prakash	AP (Gr–II)	EEE/AVIT	sprakash@avit.ac.in

17EE	17EEEC11 POWER SYSTEM PLANNING AND RELIABILITY Category L									Т	P	Credit				
											EC-PS	3	0	0	3	
PREA	MBLE															
	Т	o make	e studei	nts bed	come fa	miliar	with no	ower sv	stem o	peration	and the	various	s contro	1 action	s to be	
	implem						_	ower by	Stelli o	peration	and the	variou.	contro	i uction		
PRERI	EQUISI'	TE : N	IL .													
COUR	SE OBJ	ECTIV	ES													
1	To intro	duce th	e stude	nts lear	n the ob	jective	s of pov	ver syst	em							
2	To make the students learn the reliability stability analysis of generation in power system															
3	To make the students learn the reliability stability analysis of transmission in power system															
4	To familiarize the students with the planning of expansion of power system															
5	To intro	duce th	e stude	nts with	the ov	erview	of plan	ning of	distribu	ition syst	em					
COUR	SE OUT	COMI	ES													
On the	successf	ul comp	oletion	of the c	ourse, s	tudents	will be	able to)							
CO1: E	Explain th	e load	forecas	ting , L	oad gro	wth pat	tterns aı	nd their	import	ance in p	olanning			Underst	and	
	Determine		•				_		•	ns, reliab	ility			Underst	and	
	ndices lil Determine									mand n						
	Served in		•		S IIKE L	OLF an	iu expec	cieu vai	ue or u	ziiiaiiu ii	Ji			Underst	and	
	olve the				lem in t	ransmi	ssion sy	stem aı	nd radia	ıl distribu	utions			Apply		
S	ystem.													1 1PP1.	,	
CO5: D	Design the	e prima	ry and	seconda	ary dist	ributio	n syster	ns						Creat	e	
CO6: D	Describe t	he plan	ning of	expans	sion of j	power s	system a	and dist	ribution	n system				Underst	and	
MAPP	ING WI	TH PR	OGRA	MME	OUTC	OMES	SAND	PROG	RAMM	IE SPEC	CIFIC OU	JTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO	
CO1	S	S	S		M							M	L	L	3	
			٥		1 V1											
CO2		S										L	L	L		
CO3		S										L		L		
CO4	S	S											M	L		
CO5	S	S	S		S		S			S		M	M	M		

SYLLABUS

CO6

LOAD FORECASTING

Objectives of forecasting - Load growth patterns and their importance in planning - Load forecasting Based on discounted multiple regression technique-Weather sensitive load forecasting-Determination of annual forecasting-Use of AI in load forecasting.

M

L

L

M

GENERATION SYSTEM RELIABILITY ANALYSIS

Probabilistic generation and load models- Determination of LOLP and expected value of demand not served – Determination of reliability of iso and interconnected generation systems.

TRANSMISSION SYSTEM RELIABILITY ANALYSIS

Deterministic contingency analysis-probabilistic load flow-Fuzzy load flow probabilistic transmission system reliability analysis-Determination of reliability indices like LOLP and expected value of demand not served.

EXPANSION PLANNING

Basic concepts on expansion planning-procedure followed for integrate transmission system planning, current practice in India-Capacitor placer problem in transmission system and radial distributions system.

DISTRIBUTION SYSTEM PLANNING OVERVIEW

Introduction, sub transmission lines and distribution substations-Design primary and secondary systems-distribution system protection and coordination of protective devices.

TEXT BOOKS

- 1.Roy Billinton and Allan Ronald, "Power System Reliability."
- 2.J.Endreny,"Reliability modeling in electric power systems"John Wiley & sons

REFERENCES

- 1. Proceeding of work shop on energy systems planning & manufacturing CI.
- 2. R.L .Sullivan, "Power System Planning",.
- 3. Turan Gonen, Electric power distribution system Engineering 'McGraw Hill,1986

COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	P. Loganathan	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in									
2	Mr. S. Prakash	AP (Gr–II)	EEE/AVIT	sprakash@avit.ac.in									

17EF	EEC16			EI	LECTI	RIC VI	EHICL	ES		(Category	L	T	P	Credit
											EC	3	0	0	3
	MBLE ourse int	roduces	the fun	dament	al conc	epts, p	rinciple	es, analysi	s and de	esign of l	nybrid, e	lectric v	ehicle	S.	
PRER	EQUIS	ITE: H	Basic Ele	ectrical	& Elec	etronics	Engin	eering.							
COUI	RSE OB	JECTI	VES												
1	To under	rstand tl	he basic	concep	ts and	dynami	cs of el	lectric vel	nicles.						
2	To familiarize and design of battery backup.														
3	To analyze the characteristics of different types of DC & AC Motors.														
								configura		utch and	braking.				
	To study			• •	•										
	RSE OU					-									
				of the c	ourse.	student	s will b	e able to							
	Describe		•											Underst	and
CO2: 1	Design tl	ne propi	ulsion sy	stem fo	or elect	ric veh	icles.							Evalua	ite
CO3: 1	Explain t	he cons	struction	, charac	cteristic	es and a	pplicat	ion of bat	tteries.					Analy	ze
							• •	ectrical m						Analy	
	Design tl	•												Evalua	
								C1 1 1 1	1	1 ' 1					
								of hybrid e						Appl	<i>y</i>
					•			PROGR							
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO		_
CO1	S	L	-	-	M	-	L	L	-	-	-	L	M	L	I
CO2	S	M	S	L	M	S	L	M	M	L	M	S	M	L	I
CO3	S	L	-	-	M	L	-	-	-	L	L	-	M	L	I

CO6 S L -S- Strong; M-Medium; L-Low

M

S

L

S

S

SYLLABUS

CO4

CO5

ELECTRIC VEHICLES

Introduction, Components, vehicle mechanics – Roadway fundamentals, vehicle kinetics, Dynamics of vehicle motion - Propulsion System Design.

L

M

L

M

S

L

M

M

M

L

S

L

L

L

M

L

M

L

L

L

L

L

L

M

M

L

BATTERY

Basics – Types, Parameters – Capacity, Discharge rate, State of charge, state of Discharge, Depth of Discharge, Technical characteristics, Battery pack Design, Properties of Batteries.

DC & AC ELECTRICAL MACHINES

Motor and Engine rating, Requirements, DC machines, Three phase A/c machines, Induction machines, permanent magnet machines, switched reluctance machines.

ELECTRIC VEHICLE DRIVE TRAIN

Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing.

HYBRID ELECTRIC VEHICLES

Types – series, parallel and series, parallel configuration – Design – Drive train, sizing of components.

TEXT BOOKS:

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press,
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.

REFERENCE BOOKS:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals", CRC Press, 2010.
- 2. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009

COURS	E DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Dr. P. Selvam	Professor	EEE/VMKVEC	hodeee@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE/AVIT	rattankumar@avit.ac.in

17E	EEC18		REN	EWAE	BLE EN	NERGY	Y TEC	HNOLO	GY	C	Category	L	T	P		C
											CC	3	0	0		3
	MBLE roduce the	ne funda	amentals	s of PV	& WIN	ND tech	nologi	es and Co	onverters	s used in	renewał	ole ener	gy tec	hnc	ologies	
PRE	REQUIS.	ITE:	Non Cor	iventio	nal Ene	rgy So	urces a	nd its app	lications	S						
COU	RSE OB	JECTI	VES													
1	To learn	about I	PV techn	ology _l	princip	les.										
2	To learn	econon	nical and	d enviro	onment	al meri	ts of so	lar energy	for var	iety app	lications					
3	To learn	moderi	n wind to	arbine o	control	& mon	itoring.									
4	4 To learn various power converters in the field of renewable energy technologies.															
COU	COURSE OUTCOMES															
On the	e success	ful con	pletion	of the c	course,	student	s will b	e able to								
CO1:	COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Understand the PV technologies Understand															
On the successful completion of the course, students will be able to CO1: Understand the PV technologies Understand CO2: Applications of PV technology. Apply																
To learn various power converters in the field of renewable energy technologies. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Understand the PV technologies CO2: Applications of PV technology. CO3: Design the solar power plant. CO4: Understand modern wind turbines and its control. CO5: Analyze various power converters to select for particular application. Analyze																
To learn economical and environmental merits of solar energy for variety applications. To learn modern wind turbine control & monitoring. To learn various power converters in the field of renewable energy technologies. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Understand the PV technologies CO2: Applications of PV technology. CO3: Design the solar power plant. CO4: Understand modern wind turbines and its control. CO5: Analyze various power converters to select for particular application. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M M S M M M M M M M M M M M M M M M																
CO5:	PREREQUISITE: Non Conventional Energy Sources and its applications COURSE OBJECTIVES 1 To learn about PV technology principles. 2 To learn economical and environmental merits of solar energy for variety applications. 3 To learn modern wind turbine control & monitoring. 4 To learn various power converters in the field of renewable energy technologies. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1: Understand the PV technologies Understand CO2: Applications of PV technology. Apply CO3: Design the solar power plant. Apply CO4: Understand modern wind turbines and its control. Understand CO5: Analyze various power converters to select for particular application. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M M S M M M M M M M M M M M M M M M															
MAP	PING W	TTH P	ROGRA	AMME	OUT	COME	S AND	PROGR	RAMMI	E SPEC	FIC OU	JTCON	AES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3
CO1	M	M	S				M			L		M			-	-
CO2	M	L	L				M			M		M			-	-
CO3	S	S	S	S	M				L						-	-
CO4	L	L	L		S		M		L						-	-

S

M

S

M

SYLLABUS

CO5

CO6

SOLAR THERMAL TECHNOLOGIES

Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal

Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying. Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal

L

M

Energy storage systems – Solar Desalination – Solar cooker: domestic, community – Solar pond – Solar drying

M

SPV SYSTEM DESIGN AND APPLICATIONS

S

M

M

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cellarray design concepts - PV system design - design process and optimization - detailed array design - storage autonomy - voltage regulation - maximum tracking - centralized and decentralized SPVsystems - stand alone - hybrid and grid connected system - System installation - operation andmaintenances - field experience - PV market analysis and economics of SPV systems.

DIRECT ROTOR COUPLED GENERATOR (MULTIPOLE) [VARIABLE SPEED VARIABLE FREQ.]

Excited Rotor Synch. Generator / PMG Generator, Control Rectifier, Capacitor Banks, Step Up / BoostConverter (DC-DC Step Up), Grid Tied Inverter, Power Management, Grid Monitoring Unit (Voltageand Current), Transformer, Safety Chain Circuits.

MODERN WIND TURBINE CONTROL & MONITORING SYSTEM

Details of Pitch System & Control Algorithms, Protections used & Safety Consideration in Wind turbines, Wind Turbine Monitoring with Error codes, SCADA & Databases: Remote Monitoring and Generation Reports, Operation & Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), FACTS control & LVRT & New trends for new Grid Codes.

POWER CONVERTERS

Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing.

Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

TEXT BOOKS:

- 1. Goswami, D.Y., Kreider, J. F. and & Francis., Principles of Solar Engineering, Taylor and Francis, 2000
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, 1996

REFERENCE BOOKS:

- 1. Sukhatme S P, J K Nayak, Solar Energy Principle of Thermal Storage and collection, Tata McGraw Hill, 2008.
- 2. Solar Energy International, Photovoltaic Design and Installation Manual New Society Publishers, 2006
- 3. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1983
- 4. John D Sorensen and Jens N Sorensen, Wind Energy Systems, Woodhead Publishing Ltd, 2011
 - 5. Rashid .M. H "power electronics Hand book", Academic press, 2001.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

1500	SE C21	NON GONUNIA ENERGY GOVERGE	Category	L	Т	P	Credit				
I/EE	EEC21	NON CONVENTIONAL ENERGY SOURCES	EC-PS	3	0	0	3				
(biomas technolo It conce commen solar en technolo outside	onventiona ss), waves, ogies proderned with rcially and lergy, fuels ogies that ogies, sucl	al resources include solar energy, wind, falling water, the heat of ocean currents, temperature differences in the oceans and the energluce power, heat or mechanical energy by converting those resource in development of the national grid system will focus on those resoluted are cost effective for on grid applications. Such commercial tects derived from biomass, wind energy and geothermal energy. Wave that are in the research or early commercial stage, as well as in the as solar water heaters and geothermal heat pumps, are also base of this Manual. E-NIL	gy of the tide is either to e ources that chnologies i e, ocean curn non-electric	es. No lectrichave nclud rent, o	on Corcity or estable hydocean to Con	to mo ished roeled therm	ional energy otive power. themselves ctric power, nal and other onal energy				
COUR	SE OBJE	CTIVES									
1	To learn	n about PV technology principles.									
2	To learn economical and environmental merits of solar energy for variety applications.										
3	To learn modern wind turbine control & monitoring.										
4	To learn various power converters in the field of renewable energy technologies.										
5	To stud	ly and analyse different types of Power converters for Renewable	energy conv	versio	on						
COURS	SE OUTO	COMES									
On the s	successful	completion of the course, students will be able to									
CO1	Methods	and to Renewable Energy Sources, Principles of Solar Radi s of Solar Energy Storage and its Applications, Concepts of Sol ion and Photo Voltaic Energy Conversion					stand and nalyse				
CO2	Learn to	the Flat Plate and Concentrating Collectors, Classification of ors	f Concentr	ating		An	nalyse				
CO3	Learn th	ne Wind Energy, Horizontal and Vertical Access Wind Mills, Bio C	Conversion			An	nalyse				
CO4	Types or	f Bio-Gas Digesters and Utilization for Cooking Geothermal Energ	gy Resource	es	U		stand and pply				
CO5	Types of Plants	f Wells and Methods of Harnessing the Energy, Ocean Energy and S	Setting of O	TEC		Und	erstand				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Conversion, Concepts of Thermo-Electric Generators and MHD Generators

CO6

Tidal and Wave Energy and Mini Hydel Power Plant, Need and Principles of Direct Energy

Analyse

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S				M			L		M	S	M	S
CO2	M	L	L				M			M			S	L	M
CO3	S	M	S	S	M									M	S
CO4	L	L	L		S		M						L	L	S
CO5	S	S	S	M	M									M	
CO6												M	S	M	

SYLLABUS

INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Solar Energy-Energy available form Sun, Solar radiation data, Solar energy conversion into heat, Flat plate and Concentrating collectors, Mathematical analysis of Flat plate collectors and collector efficiency, Principle of Natural and Forced convection, Solar engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite.

WIND ENERGY CONCEPT

Wind energy conversion, General formula -Lift and Drag- Basis of wind energy conversion – Effect of density, frequency variances, angle of attack, and wind speed. Windmill rotors Horizontal axis and vertical axis rotors. Determination of torque coefficient, Induction type generators- working principle.

GEOTHERMAL AND BIOMASS ENERGY

Nature of Geothermal sources, Definition and classification of resources, Utilization for electric generation and direct heating, Well Head power generating units, Basic features Atmospheric exhaust and condensing, exhaust types of conventional steam turbines. Pyrolysis of Biomass to produce solid, liquid and gaseous fuels, Biomass gasification, Constructional details of gasifier, usage of biogas for chulhas, various types of chulhas for rural energy needs.

TODAL AND WAVE ENERGY

Wave, Tidal and OTEC energy- Difference between tidal and wave power generation, Principles of tidal and wave power generation, OTEC power plants, Operational of small cycle experimental facility, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC. Status of multiple product OTEC systems.

TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. Loganathan	Assistant Professor	EEE	loganathan@vmkvec.edu.in
2	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

			PRAD	пст	LIFE	CYCL	F	Cate	egory	L		T	P	Cre	dit
17ME	SE12	•		ANA		-	11 5		(SE)	3		0	0	3	
Preamble To enable to		ents to	unders	tand tl	ne vari	ious pro	oduct	life m	anage	ment to	ools & F	PLM c	oncepts		
Course Ob															
1	То Ехр	lain th	ne prod	duct lit	fe cycl	le mana	igeme	ent of	a prod	uct					
2	To und	Γο understand the process flow, work flow, & product data management													
	To Ann	oly the	conce	nts of	new n	roduct (devel	onmei	nt						
3		Γο Apply the concepts of new product development Γο Modify the concepts of new product development													
4	Product life cycle management strategy and PLM assessment.														
5		•													
Course Ou	itcomes:	On th	ie suc	cessfu	l com	pletion	of th	e coui	rse, sti	udents	will be	able t	to		
CO1.	Expl	ain the	conce	epts of	produ	ict data,	, info	rmatic	n, stru	ictures	and PL	M.	Understand	d	
CO2.	Describe the benefits of PLM implementation in daily operations, material costs, productivity of labor and quality costs. Understand														
Co3.	Perform PLM Concepts For Service Industry And E-Business.											Apply			
CO4.	Determine the Use of tools and standards in PLM.											Apply			
CO5.					-	ganizati ng, and				ding pr	oductio	on,	Apply		
Mapping v	with Pro	gramı	ne Ou	tcome	es and	Progra	amm	e Spec	cific O	utcom	es				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	M	-	-
CO2	S	M	S	S	-	-	-	-	-	S	-	-	M	-	-
CO3	S	S	L		-	-	-	-	-	-	-	-	-	L	-
CO4	S	M	L	-	-	-	-	-	-	-	-	-	-	L	-
CO5	S	S	M	L	-	-	-	-	-	-	-	-	M	-	-
S- Strong;	M-Med	ium; I	L-Low	,		<u>. </u>			1	1	1	1		1	

SYLLABUS

INTRODUCTION TO PRODUCT LIFE CYCLE MANAGEMENT

Definition - PLM Lifecycle model - Threads of PLM - Need for PLM - Opportunities and benefits of PLM - Views - Components and Phases of PLM - PLM feasibility study - PLM visioning - Characteristics of PLM - Environment driving PLM - PLM Elements - Drivers of PLM - Conceptualization - Design - Development - Validation - Production - Support of PLM

PRODUCT DATA MANAGEMENT (PDM) PROCESS AND WORKFLOW

Engineering vaulting - product reuse - smart parts - engineering change management - Bill of materials and process consistency - Digital mock-up and prototype development - design for environment - virtual testing and validation - marketing collateral.

COLLABORATIVE PRODUCT DEVELOPMENT

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

DIGITAL MANUFACTURING - PLM

Digital manufacturing - benefits manufacturing - Manufacturing the first-one - Ramp up - virtual learning curve - manufacturing the rest - production planning.

DEVELOPING A PLM STRATEGY AND CONDUCTING A PLM ASSESSMENT

Strategy - Impact of strategy - implementing a PLM strategy - PLM initiatives to support corporate objectives - Infrastructure assessment - assessment of current systems and applications.

Text	Ro	ol	ζS

	Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-
1	Verlag, 2004.

Product Lifecycle Management, Michael Grieves, Tata McGraw Hill 2012

Reference Books

Fabio Giudice, Guido La Rosa, Product Design for the environment-A life cycle approach, Taylor & Francis 2006

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in
2	Dr. R.Jayaraman	ASSOPROF	Mech/VMKVEC	jayaramanr@vmkvec.edu.in

EC(SE) 3 0 0 3	17MESE21	IRON AND STEEL MAKING	Category	L	T	P	Credit
	171120221		EC(SE)	3	0	0	3

This course aims to understand the process of production of iron and steel from raw material, primary processing to refinement to special steels. The student will understand the kinetics involved in the production of iron and steel. The student also gains knowledge on the refinement of steels to obtain a quality product.

PREREQUISITE- NIL

COURSE OBJECTIVES

1	To understand the basic knowledge of raw materials and burden preparation
2	Demonstrate the principles and processes of iron making
3	Illustrate the principles and processes of steel making
4	Demonstrate on various steel making processes
5	Examine the production practice followed and recent development

COURSE OUTCOMES

CO1	Understand the principle and making steel manufacturing.	Understand
CO2	Solve the problems associated with raw materials and burden preparation	Apply
CO3	Experiment with the extraction techniques of pig iron by reduction and smelting in blast furnace from iron ores.	Apply
CO4	Demonstrate the principles and need for development of steel making processes	Understand
CO5	Illustrate on various furnaces for steel manufacturing and select suitable furnaces.	Apply
CO6	Apply the modern development in the steel and cast iron making production practice	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO 2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	S	L	L	-	-	ı	-	-	-	-	-	L	-	1
CO2	S	M	M	L	-	-	ı	-	-	-	-	-	L	-	1
CO3	S	S	M	S	-	-	M	-	-	-	-	-	L	L	-
CO4	S	M	M	L	-	-	ı	-	-	-	-	-	L	-	-
CO5	S	M	M	S	-	-	M	-	-	-	-	-	L	L	1
CO6	S	S	M	S	-	-	M	-	-	-	-	-	L	L	-

S- Strong; M-Medium; L-Low

SYLLABUS

RAW MATERIALS AND BURDEN PREPARATION

Iron ore classification, Indian iron ores, limestone and coking coal deposits, problems associated with Indian raw materials.

Iron ore beneficiation and agglomeration, Briquetting, sintering, Nodulising and pelletizing, testing of burden materials, burden distribution on blast furnace performance.

PRINCIPLES AND PROCESSES OF IRON MAKING

Blast furnace parts, construction and design aspects, ancillary equipment for charging, preheating the blast, hot blast stoves, gas cleaning, Blast furnace operation, irregularities and remedies Blast furnace instrumentation and control of furnace Compositional control of metal and slag in blast furnace, modern trends in blast furnace practice. Reduction of iron ores and oxides of iron by solid and gaseous reductions-thermodynamics and kinetics study of direct and indirect reduction, Gruner's theorem, blast furnace reactions. C-O and Fe-C-O equilibria, Rist diagrams, Ellingham diagram, material and heat balance- Sponge Iron making.

PRINCIPLES OF STEEL MAKING

Development of steel making processes, physico-chemical principles and kinetic aspects of steel making, carbon boil, oxygen transport mechanism, desulphurisation, dephosphorisation, Slag Theories, slagfunctions, composition, properties and theories, raw materials for steel making and plant layout

STEEL MAKING PROCESSES

Open Hearth process- constructional features, process types, operation, modified processes, Duplexing, pre-treatment of hot metal. Bessemer processes, Side Blown Converter, Top Blown processes-L.D, L.D.A.C., Bottom blown processes, combined blown processes, Rotating oxygen processes-Kaldo and Rotor, Modern trends in oxygen steel making processes-Electric Arc and Induction furnace-constructional features. Steel Classifications and Standards-National and International.-Alloy Designation.

STEELS AND CAST IRON LADLE METALLURGY

Production practice for plain carbon steels, low alloy – Cast irons and ductile iron, stainless, tool and special steels, modern developments. Secondary steel making processes, continuous steel casting process – De-oxidation and teeming practice. Principle, methods and their comparison, Killed, Rimmed and Capped steels, Degassing practices, ingot production, ingot defects and remedies. Recent trends in steel making technology.

Text Books:

- 1. Tupkary, R. H., "Modern Iron Making", 4th edition, Khanna Publishers, New Delhi.
- 2. Tupkary, R. H., "Modern Steel Making", 4th Edition, Khanna Publications, New Delhi.

Reference:

- 1. Biswas, A. K., "Principles of blast furnace iron making: theory and practice", SBA Publications, Kolkata.
- 2. Bashforth, G. R., "Manufacture of Iron and Steel", Vol. I, Chapman and Hall London.
- 3. Bashforth, G. R., "Manufacture of Iron and Steel", Vol.2, 3rd Edition, Chapman & Hall, London.
- 4. "Making, Shaping and Treating of Steel", US Steel Corporation, 11th edition.
- 5. AhindraGhosh and Amitchatterjee, "Iron Making and Steel Making Theory and Practice", Prentice Hall of India Private Ltd., New Delhi.

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	C.THANGAVEL	Assistant Professor	Mech/VMKVEC	thangavel@vmkvec.edu.in`
2	A.ELANTHIRAIYA N	AP-II	Mech/AVIT	aelanthirayan@avit.ac.in

17MESE25	COMPUTATIONAL FLUID	Category	L	T	P	Credit
	DYNAMICS	EC(SE)	3	0	0	3

Preamble

This course introduces the finite difference methods as a means of solving different type of differential equations that arise in fluid dynamics. Fundamentals of numerical analysis, ordinary differential equations and partial differential equations related to fluid mechanics and heat transfer will be reviewed. Error control and stability considerations are discussed and demonstrated.

Prerequisite

- 1. Engineering Thermodynamics.
- 2. Fluid Mechanics and Machinery.
- 3. Heat and mass Transfer.
- 4. Numerical Methods.

Course Objective

1	To understand basic properties of computational methods
2	To introduce Governing Equations of viscous fluid flows
3	To enable the students to understand the various discretization methods and solution procedures.
4	To introduce numerical modeling and its role in the field of fluid flow and heat transfer
5	To learn computational solution techniques for time integration of differential equations and turbulence modeling.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Discuss the basic properties of computational methods	Understand
CO2.	Discuss the Governing Equations of viscous fluid flows	Understand
CO3.	Determine the various discretization methods, solution procedures and turbulence modeling.	Apply
CO4.	Analyzes of numerical modeling and its role in the field of fluid flow and heat transfer.	Analyze
CO5.	Analyzes of computational solution techniques for time integration of differential equations	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	M	-	-	L	-	-	-	-	-	-	-	M	-	-
CO2	S	M	-	-	L	-	-	-	-	-	-	-	M	-	-
CO3	S	M	L	M	M	-	-	-	-	-	-	-	M	-	L
CO4	S	S	L	M	S	-	-	-	-	-	-	-	M	L	L
CO5	M	S	L	M	S	-	-	-	-	-	-	-	M	L	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Computational Fluid Dynamics, Advantages, Applications, Future of CFD. Problem set up-pre-process, Numerical solution – CFD solver

GOVERNING EQUATIONS FOR CFD

Introduction, the continuity equation, the momentum equation, the energy equation, the additional equations for turbulent flows, generic form of the governing equations for CFD, boundary conditions.

CFD TECHNIQUES

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy-Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems

FLOW FIELD ANALYSIS

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation (k-€) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

Text Books

2

1	Versteeg, H.K., and Malalasekera, W.,"An Introduction to Computational Fluid Dynamics": The finite
1	volume Method, Pearson Education Ltd. Third Edition – 2014.
	CI 11 '1 DC "C

Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd.,

Reference Books

1	John D. Anderson "Computational Fluid Dynamics - The basics with Applications", McGrawHill International Editions.
_	

- Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge University Press, Reprinted 2010.
- Yogesh Jaluria & Kenneth E. Torrance, "Computational Heat Transfer", CRC press, 2nd Edition.
- 4 John. F. Wendt, "Computational Fluid Dynamics An Introduction", Springer, Third Edition, 2013.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in
2	R CHANDRASEKAR	Assistant Professor	Mech / VMKVEC	chandrasekar@vmkvec.edu.in

17MESE34	Failure Analysis of Materials	Category L		Т	P	Credit						
171111511534	· ·	CC	3	0	0	3						
Preamble The primary aim of this course is to provide knowledge on the procedures and mechanisms involved in failure analysis.												
			Prerequisite –Strength of Materials									

Course Objective

1	To understand the various types of fracture of materials
2	To study the failure modes and root cause of the materials failure
3	To study the fracture toughness of materials
4	Apply the various metallurgical factors influencing the fatigue performance of materials
5	Apply the appropriate processing route for the life enhancement of materials

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain reasons for failure of materials.	Understand				
CO2.	CO2. Describe the failure modes and root cause of the materials failure based on fracturemechanics and fractography approach.					
CO3.	Determine fracture toughness of materials.	Apply				
CO4.	Analyzethe various metallurgical factors influencing the fatigue performance of materials for different structural engineering applications.	Analyze				
CO5.	Analyze appropriate processing route and alter the microstructure for the life enhancement of materials at room and elevated temperatures.	Analyze				

Mapping with Programme Outcomes and Programme Specific Outcomes

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	-	M	-	-
CO2	S	M	-	-	-	-	-	-	-	-	-	-	M	-	-
CO3	S	-	-	-	M	1	1	1	-	-	-	-	-	-	-
CO4	S	M	M	-	M	-	-	-	-	-	-	-	M	-	L
CO5	S	M	-	-	M	-	-	-	-	-	-	-	M	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

Introduction to Fracture of Materials

Fracture modes: Shear mode, cleavage mode, other fracture modes, factors affecting the ductile-brittle relationship, stress systems related to fracture of ductile and brittle metals: Pure loading systems-Tension, Torsion, Compression, Bending and Fatigue. Effect of stress concentration, study of fractograph of metallic components.

Fracture Mechanics

Introduction, types of fracture in metals, theoretical cohesive strength of metals, Griffiththeory of brittle fracture, fracture of single crystals, metallographic aspects of fracture, fractography, fracture under combined stresses.

fracture toughness

Introduction, strain energy release rate, stress intensity factor, fracture toughness anddesign, KIC plane strain toughness testing, plasticity corrections, crack openingdisplacement, J integral, R curve, toughness of materials.

Fatigue of Materials

Characteristics of fatigue failure, initiation and propagation of fatigue cracks,; methods of improving fatigue behavior, fatigue testing; analysis of fatigue data, fracture mechanics of fatigue crack propagation, corrosion fatigue, case studies

Creep of Materials

Introduction to creep - creep mechanisms, creep curve, Presentation and practical application of creep data; accelerated creep testing, time-temperature parameters for conversion of creep data; creep resistant alloys, creep testing, stress rapture test,

Text Books

1	S. Suresh, Fatigue of Materials, 2nd Edition, Cambridge University Press, 1998.
2	G.E. Dieter, Mechanical Metallurgy (SI Metric Edition), McGraw-Hill, 1988.
3	W.F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, 2009.

Reference Books

1	A.J. McEvily, J. Kasivitamnuay, Metal Failures: Mechanisms, Analysis, Prevention, Wiley-Interscience,
1	2013.

- 2 ASM Metals Hand Book, Failure Analysis and Prevention, Vol. 11, 10th Edition, ASM International, 2002.
- 3 S. Suresh, Fatigue of Materials, 2nd Edition, Cambridge University Press, 1998.
- 4 Richard W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th Edition, John Wiley & Sons, New York, 2012.

Course Designers

S.No	Faculty Name	Designatio n	Department/ Name of the College	Email id
1	Dr.S.Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in
2	J.Senthil	Assistant Professor	Mech / AVIT	senthilj@avit.ac.in

17MES	SE27			R PLA				Ca	tegory	L	T	1	P	Cre	dit
			ENGINEERING					E	C(SE)	3	0		0	3	
the p	Plant E rocess	ngineeri of powe	r gener											and macl	hineries
rereq	uisite -	Therm	al Engi	ineerin	g										
Course	Objec	tive													
1	To ur	nderstan	d the ob	ojective	s of pov	wer pla	nts in	a coun	try's el	lectrical	power r	equirer	nent.		
2	To u	nderstan	d the op	peration	al meth	ods of	power	gener	ation 1	using di	fferent e	nergy s	ources.		
3	То рі	ovide th	ne know	ledge o	f instru	mentat	ion inv	olved	in the	operatio	on and co	ontrol o	of power	plants.	
	To es	stimate t	he cost	and eco	nomics	s of pov	ver ge	neratio	n in di	fferent t	vnes of	nower	plants.		
5		culcate				•									
		omes: O											rocs	T] 1	erstand
CO1.	know	erstand to rledge of er plants.	f instrui											Unde	erstand
CO2.	To u	nderstaı	nd the 1	ayout o	f variou	ıs pow	er pla	nts and	l its the	e enviro	nmental	impac	ts.	Unde	erstand
CO3.	To ap	ply the	modyn	amic cy	cles to	calcula	ite effi	ciency	of the	power p	olants.			Ap	pp
														1 <u>y</u>	
CO4.		alculate of elect					haract	eristics	s of po	wer plai	nts and e	estimate	e the	Ap ly	_
CO5.		ications onmenta			s while	extend	their	knowle	edge to	power	plant ec	onomic	s and	Ap ly	
Mappi	ng with	ı Progra	amme (Outcom	nes and	Progr	amme	Speci	fic Ou	tcomes					
СО	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	-	-	-	-	-	-	-	-	M	-	-
CO2	S	S	M	M	-	-	-	-	-	-	-	-	M	-	-
CO3	S	S	M	M	-	-	-	-	-	-	_	-	M	-	-
CO4	S	M	M	M	-	-	-	-	_	_	-	-	M	-	-
	S	M	M	M	-	-	-	-	-	-	-	-	M	-	-
CO5															

INTRODUCTION

Power Generation: Global Scenario, Present status of power generation in India, Role of private and governmental organizations, Load shedding, Carbon credits, Power reforms, concept of cascade efficiency.

General layout of modern power plant with different circuits, working of thermal power plant, coal classification, coal, ash and dust handling, selection of coal for Thermal Power Plant, FBC boilers, high pressure boiler, cogeneration power plant (with numerical)

Steam Condenser: Necessity of steam condenser, Classification, Cooling water requirements, Condenser efficiency, Vacuum efficiency, Cooling towers, air Leakage, Effects of Air Leakage on condenser performance, (Numerical Treatment)

HYDROELECTRIC AND NUCLEAR POWER PLANTS

HEPP: Introduction, Plant Layout, Site Selection, Advantages and Disadvantages of HEPP, Hydrograph, Flow duration curve, Mass Curve, Classification of HEPP with layout.

NPP : Elements of NPP, Nuclear reactor & its types, fuels moderators, coolants, control rod, classification of NPP, N-waste disposal

DIESEL & GAS TURBINE POWER PLANT

DEPP: Plant Layout, Diesel Engine Power Plant Performance Analysis, application, selection of engine size, advantages & disadvantages of diesel power plant.

GTPP: Introduction, fuels, materials selection for GTPP, Brayton Cycle analysis, Thermal Efficiency, Work ratio, maximum & optimum pressure ratio, Actual cycle effect of operating variables on thermal efficiency, inter-cooling reheating, & regeneration cycle, Open, Closed & Semi Closed cycles Gas Turbine Plant, combined cycle plant (Numerical Treatment).

NON-CONVENTIONAL POWER PLANTS

Wind Power plant: Introduction, wind availability measurement, types of wind machines, site selection, and wind power generation.

Solar Power Plant: Introduction, components, Types of Collectors & Solar Ponds, Low & High Temperature Solar Power Plant. Photovoltaic Power System, Heliostat Tidal, OTEC, geothermal, magneto hydrodynamics, fuel cell, hybrid power plants, Challenges in commercialization of Non-Conventional Power Plants.

INSTRUMENTATION, ECONOMICS AND ENVIRONMENTAL IMPACT

Power Plant Instrumentation Layout of electrical equipment, generator, exciter, short circuits & limiting methods, switch gear, circuit breaker, power transformers, methods of earthing, protective devices & Control system used in power plants, Control Room.

Economics of Power Generation: Introduction, Cost of electric energy, Fixed and operating cost, (with

numerical treatment), Selection and Type of generation, Selection of generation equipment, Performance and operation characteristics of power plants and Tariff methods.

Environmental impact due to power plants. Environmental aspects, introduction, constituents of atmosphere, different pollutants due to thermal power plants and their effects of human health, Environmental control of different pollutant such as particulate matter, Oxides of sulphur, nitrogen, global warming & green house effect, thermal pollution of water & its control. Noise pollution by power plants.

Text Bo	oks												
1	E.I.Wakil, —Power Plant Engineering II, McGraw Hill Publications New Delhi												
2	P.K.Nag, —Power Plan	P.K.Nag, —Power Plant Engineering II, McGraw Hill Publications New Delhi											
3	K K Ramalingam , II Po	K K Ramalingam, II Power Plant Engineering, SCITECH Publications Pvt Ltd.											
4	Domkundwar & Arora, —Power Plant Engineering II, Dhanpat Rai & Sons, New Delhi												
Referen	ce Books												
1	R.K.Rajput, —Power P	R.K.Rajput, —Power Plant Engineering II, Laxmi Publications New Delhi											
2	R.Yadav , —Steam and	l Gas Turbines II	,Central Publishing Ho	use, Allahabad									
3	G.D.Rai, — Non-Conv	entional Energy	Sources Khanna Publ	ishers,Delhi									
4	S.P.Sukhatme, —Solar	Energy II Tata M	IcGraw-Hill Publication	ns, New Delhi									
Course	Designers												
S.N o	Faculty Name	Designation	Department/Name of the College	Email id									
1	N.Lakshminarayanan	Associate Professor	MECH / AVIT	nlakshminarayanan@avit.ac.in									
2	R ANANDAN	Associate Professor	MECH / VMKVEC	MKVEC anandan@vmkvec.ac.in									

17FC	17ECEC04		De	SP WI	ΓH FP(~ A		Cate	gory	I	1	T	P	Cre	edit
1/EC	ECU4		D)1 VVI		JA		EC((PS)	3	3	0	0	3	3
FPGA	. It pro	vides b	oth the	fixed	point a	tudents, nd floatin way of in	ng poir	nt repre	sentati	on of da	ta used	for impl	ementati	on. It co	nsiders
PRER	EQUI	SITE –	Nil												
COURSE OBJECTIVES															
1 To program FPGA device.															
2	To discriminate from growing point aritimization of other aritimization rogic.														
3	To implement the mid-fire their using piperming und paramet processing														
4	4 To design communication blocks using different types of FFT algorithms														
COUI	COURSE OUTCOMES														
On the	succes	ssful co	mpletic	on of th	e cours	e, student	ts will	be able	e to						
CO1. 1	Explore	the de	sign flo	w of F	PGA ar	nd program	mmin	g langu	age.					Apply	
CO2.	Compu	te simp	le FPG	A logic	using	floating p	oint a	rithmet	ic, MA	C and S	OP units	3		Apply	
CO3.	Impler	nent FII	R and I	IR Filt	ers usin	g distribu	ited ar	ithmeti	c, pipel	lining an	d/or para	allel pro	cessing	Apply	
CO4. I		ne the di	fferent	types	of FFT	algorithm	ns incl	uding (Cooley-	Tukey, \	Winogra	d and G	ood-	Analyz	e
CO5. 1	Design	commu	ınicatio	n blocl	ks for m	odulation	n, dem	odulati	on, cor	nvolution	codes			Analyz	e
MAPI	PING V	WITH 1	PROG	RAMN	IE OU	TCOME	S AN	D PRO	GRAN	MME SI	PECIFIC	C OUT	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6 1	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	L	-	-	-	-	M	-	M	S	-	-
CO2	S	S	L	M	M	-	-	-	-	M	-	M	-	-	-
CO3	S	S	M	M	L	-	-	-	-	L	-	M	S	-	-
CO4	S	S	M	M	-	-	-	L	-	L	-	M	-	S	M
CO5	S	Madian	M	M	-	-	-	L	-	L	-	M	-	-	-
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

FPGA Technology

Introduction to FPGA, FPGA Design flow, Programming languages, programming technology

Basic Building Blocks

Number Representation, Binary adders, Binary dividers, Floating point arithmetic, MAC & SOP unit

Digital filter implementation

FIR filter - Theory and structure, Filter Design, Constant coefficient, FIR Design, IIR filter - IIR theory, Coefficient computation, Implementation detail, Fast IIR filter

Fourier Transform

DFT algorithms, Goertzel algorithm, Hartley transform, Winograd DFT, Blustein chirp-z transform, Rader algorithm, FFT algorithms, Cooley-tukey, Good thomas, Winograd FFT

Communication blocks

Error control codes, Linear block code, Convolution codes, Modulation and Demodulation, Adaptive filters, LMS, RLS, Decimator and Interpolator, High Decimation Rate filters.

TEXT BOOKS:

- Uwe.Meyer-Baese, —Digital Signal Processing with Field Programmable Gate Arrays, Springer, Third edition, May 2007.
- 2. Keshab K. Parhi, —VLSI Digital Signal Processing systems, Design and implementation , Wiley, Inter Science, 1999.

REFERENCE BOOKS:

- 1. John G. Proakis, —Digital Communications, Fourth Ed. McGraw Hill International Edition, 2000.
- 2. Michael John Sebastian Smith, Applications Specific Integrated Circuits, Pearson Education, Ninth Indian reprint, 13th edition, 2004.
- 3. Sophocles J. Orfanidis, —Introduction to Signal Processing, Prentice Hall, 1996

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Assistant Professor	ECE	sheela@vmkvec.edu.in
2	Mr.S.Selvam	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in

		Catagory	T	Т	n	Credits
17ECE(C06 MEMS AND SENSORS	Category EC (PS)	3	0	0	3
PREAMB		,		U	O .	3
_	sic knowledge on MEMS (Micro Electro Mecha e MEMS based components.	nical System). T	This er	ables t	them to	design, analyze, fabricate
PREREQ	UISITE: Nil					
COURSE	OBJECTIVES					
1	To understand the concepts of basic MEMS stru	actures.				
2	To learn about the various MEMS Sensors and	its construction.				
3	To learn about the micro machining products.					

Course Outcomes

4

On the successful completion of the course, students will be able to

To study the various applications of MEMS Sensors

To understand the functioning of various optical MEMS Sensors.

CO1. Understand the basic fabrication of MEMS systems.	Understand
CO2. Design various MEMS sensors for required applications.	Apply
CO3.Apply the different micromachining process in MEMS sensor fabrication.	Apply
CO4. Analyze the light source utilization in MEMS sensors.	Analyze
CO5. Evaluate the various real time applications of MEMS Sensors.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	ı	M	-	-
CO2	S	L	M	-	-	-	-	-	1	ı	ı	L	S	M	1
CO3	L	S	M	-	L	-	-	-	1	ı	ı	L	S	S	1
CO4	S	S	S	-	M	-	-	-	1	ı	ı	L	M	M	1
CO5	S	S	S	-	M	M	M	M	-	-	-	L	S	M	-

S - Strong; M - Medium; L - Low

SYLLABUS

INTRODUCTION

MEMS and Microsystems, Typical products of MEMS and Microsystem products, Micro sensors, Micro actuator, Evolution of Micro fabrication, Microsystems and Microelectronics, MEMS materials.

MICRO SENSORS AND MICROSYSTEMS

Micro sensors- Acoustic wave sensors, Biomedical Sensors and Biosensors, Optical Sensors, Pressure sensors, Micro actuation- Actuation using Thermal Forces, Piezoelectric Crystals, Electrostatic Forces, MEMS with Micro actuators-Micro grippers , Micro motors , Micro valves, Micro accelerometers.

PRINCIPLES OF MICROMACHINING

Introduction, Photolithography, Bulk Micromachining, Thin Film Deposition, Etching, surface Micromachining, LIGA

OPTICAL MEMS

Fundamental Principle of MOEMS Technology, Review Properties of Light, Light Modulators, Beam Spliotter, Micro lens, Micro mirrors, Digital Micro mirror Device (DMD), Light Detectors, Grating Light Valve, Optical Switch.

REAL TIME UTILISATION OF MEMS SENSORS

Health Care, Micro fluid Dispenser, Micro needle, Micro pumps, Chem-Lab-On-A-Chip(CLOC), E-Nose, DNA sensors, Surface Acoustic Wave(SAW) Sensors.

TEXT BOOKS:

- 4. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu, "MEMS", Pearson education, 2000.
- 5. N. P. Mahalik, "MEMS", Tata McGraw hill, Sixth reprint, 2012.

REFERENCE BOOKS:

- Stephen Santeria," Microsystems Design", Kluwer publishers, 2000.
 Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
 Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000

17ECEC21	ADVANCED ROBOTICS	Category	L	T	P	Credit
17ECEC21	AD VARVELD ROBOTICS	EC(PS)	3	0	0	3

PREAMBLE Advanced Robotics will explore in great depth areas relevant to not only industrial robotics but service robots (i.e. robots outside a factory environment particularly mobile robots) and the application of this technology to real world environments e.g. driverless vehicles, unmanned aerial vehicles and tele-robots. Students will also master robot kinematics and dynamics.

PREREQUISITE - NIL

COURSE OBJECTIVES

- 1 To gain knowledge in robotic elements
- 2 To explore the kinematics of serial and parallel robotics
- To know the motion of robot in various coordinates and surfaces

COURSE OUTCOMES

On the successful completion of the course, students will be able to

r	
CO1. Illustrate the kinematics of parallel robotics	Apply
CO2. Examine about the kinematics of serial robot such as the direct and inverse kinematic problems	Apply
CO3. Discriminate various robotic elements like sensors and actuators	Analyze
CO4. Investigate the motion of robot in various coordinates	Analyze
COS Evaluation of what in according that the flat confers amount towning	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO5. Explore the motion of robot in several surfaces like flat surface, uneven terrain

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	-	-	-	-	-	-	-	-	-	M	-	-	-
CO2	S	M	-	-	-	-	-	-	-	-	-	M	-	-	-
CO3	S	S	S	-	-	-	-	M	-	-	-	M	M	-	-
CO4	S	S	S	-	-	-	-	M	-	-	-	M	-	-	-
CO5	S	S	S	-	-	-	-	M	-	-	-	M	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

Elements of robots -- joints, links, actuators, and sensors

Position and orientation of a rigid body, Homogeneous transformations, Representation of joints, link representation using D-H parameters, Examples of D-H parameters and link transforms, different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor, Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.

Kinematics of serial robots

Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for fixed and free robots and multi-body systems, simulations and experiments, Solution procedures using theory of elimination, Inverse kinematics solution for the general 6R serial manipulator.

Kinematics of parallel robots

Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms, Direct kinematics of Gough-Stewart platform.

Motion planning and control

Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.

Modeling and analysis of wheeled mobile robots

Introduction and some well known wheeled mobile robots (WMR), two and three-wheeled WMR on flat surfaces, Slip and its modeling, WMR on uneven terrain, Design of slip-free motion on uneven terrain, Kinematics, dynamics and static stability of a three-wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.

Reference Books

- 1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2nd reprint, 2008.
- 2. Fu, K., Gonzalez, R. and Lee, C.S. G., Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.

COUL	RSE DES	IGNE	RS	
		-		

S.No	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.L.K.Hema	Professor	ECE	hemalk@avit.ac.in			
2	N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in			
3	G.Murali	Assistant Professor	ECE	muraligvmkvec@vmkvec.edu.in			

17ECEC22	INNOVATIVE PROJECT	Category	L	T	P	Credit
	I WWW VALLACTED	EC(PS)	0	0	6	3

This course is an introductory course on Project. It focuses on providing you with the knowledge and fundamental understanding of Creativity, Innovation, and some contemporary approaches to innovation including design thinking.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To Develop Creativity and Innovation
- 2 To Recognize the significance of innovation
- To Examine the approaches of innovation practiced by various organizations

COURSE OUTCOMES

On the successful completion of the course, students will be able to

- CO1. Discuss both individual and contextual factors that are linked to creativity

 Analyze
- CO2. Discuss key concepts and principles that guide innovative practices

 Analyze
- CO3. Discuss the need for and significance of adopting a design thinking mindset

 Analyze
- CO4. Explain design thinking practices and their applications
- CO5. Develop the design thinking principles and process

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	M	M	L	-	1	ı	M	M	1	M	M	-	-
CO2	S	L	L	M	M	-	1	ı	M	M	1	M	M	-	-
CO3	M	M	M	M	L	-	1	ı	M	L	1	M	M	-	-
CO4	S	S	M	M	-	-	1	L	-	L	S	M	S	M	M
CO5	S	M	M	M	-	-	-	L	-	L	M	M	S	S	M

Evaluate

S- Strong; M-Medium; L-Low

Norms

- 1. Group Case Studies/Assignments
 - a. Overall understanding of the case/assignment
 - b. Highlighting innovations and various approaches adopted
 - c. Clarity and coherence of presentation
- 2. Group Project
 - a. Overall, application of Innovation and Design thinking process
 - b. Originality of ideas from the modernization
 - c. Quality and relevance of final prototype
 - d. Preparation of Project Report
 - e. Preparation and Submission of Projects to funding agencies.(Optional)

S. No	Name of the Faculty	Designation	Dept	Mail ID
1	Dr.T.Muthumanickam	Professor	ECE	muthumanickam@vmkvec.edu.in
2	Dr. L. K. Hema	Professor	ECE	hemalk@avit.ac.ins
3	Mr. S. Selvaraj	Professor	ECE	selvaraju@vmkvec.edu.in
4	Dr. D. Vijendra Babu	Professor	ECE	vijendrababu@avit.ac.in

17ECEC23	MACHINE VISION	Category	L	Т	P	Credit
		EC(PS)	3	0	0	3

In the current automated world, Machine Vision plays a major role in several significant applications such as imaging-based automatic inspection and analysis, Intelligent transportation system, Logistics, Robot guidance, Packaging industries and many. It provides an detailed view of the various process involved.

PREREQUISITE - Nil

COURSE OBJECTIVES

- 1 To understand the Image filtering operations, Morphological operationsThreholding Images.
- To determine the concepts of Binary shape & Boundary Pattern analysis, Detection & Pattern matching techniques.
- 3 To examine the concepts of 3-D Vision, Image Transformations & Motion.
- To illustrate the automated visual inception, in vehicle vision systems, inspection of cereal grains & surveillance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Intrepret the Low Level Vision techniques and methods of Machine Vision	Understand
CO2.Demonstrate the Intermediate Level Vision techniques.	Apply
CO3.Paraphase the 3-D Vision and Motion procedures.	Apply
CO4.Infer the various Real-Time Pattern Recognition systems.	Analyse

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO12	PSO1	PS O2	PSO 3
CO1	S	M	M	L	-	-	-	-	-	-	-	-	S	M	-
CO2	S	S	M	L	-	-	-	-	-	-	-	-	-	-	M
CO3	S	S	M	L	-	-	-	-	-	-	-	-	M	M	-
CO4	S	S	S	M	-	-	-	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

LOW-LEVEL VISION

Images and Imaging Operations, Basic Image Filtering Operations, Thresholding Techniques, Edge Detection, Corner and Interest Point Detection, Mathematical Morphology, Texture

INTERMEDIATE-LEVEL VISION

Binary Shape Analysis, Boundary Pattern Analysis , Line Detection, Circle and Ellipse Detection, The Hough Transform and Its Nature, Pattern Matching Techniques

3-D VISION AND MOTION

The Three-Dimensional World, Tackling the Perspective n-point Problem, Invariants and Perspective, Image Transformations and Camera Calibration, Motion

REAL-TIME PATTERN RECOGNITION SYSTEMS

Automated Visual Inspection, Inspection of Cereal Grains, Surveillance, In-Vehicle Vision Systems, Statistical Pattern Recognition, Image Acquisition, Real-Time Hardware and Systems Design Considerations

TEXT BOOK

1. Computer and Machine Vision: Theory, Algorithms, Practicalities, E.R. Davies, Fourth Edition, 2012, Academic Press, Elsevier

REFERENCE BOOKS

- 1. Computer Vision: Algorithms and Applications, Richard Szeliski, Springer, 2010
- 2. Machine Vision Algorithms and Applications, C Steger, M Ulrich Christian Wiedemann, Wiley-VCH, 2007, ISBN: 3527407340.
- 3. Hands-On Algorithms for Computer Vision, Amin Ahmadi Tazehkandi, Packt, 2018, ISBN:9781789130942

17MBHS06	LEAN AND START-UPS	Category	L	T	P	Credit
	MANAGEMENT	HSS	3	0	0	3

Lean and start-ups Management is an management approach to build new business standards, entrepreneurs must investigate experiment, test and iterate as they develop products. It is a methodology for developing business and products, to shorten product development cycle and discover proposed business model is viable achieved by adopting a combination of business-hypothesis-driven experimentation, iterative product releases, and validated learning.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Lean Startups Management basics.
- 2. To analyse the different managerial activities involved in lean and startups of Management
- 3. To analyse the lean startups approaches and problem solving in startups.
- 4. To apply the lean six sigma concepts and its application in startups management.
- 5. To impart the various issues, and entrepreneurial traits.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Explain the concept of lean startups, objectives and functions of lean starts-ups	Understand
management.	
CO2: Analyze startups management process and its execution in business.	Apply
CO3: Analyze the lean startups approaches and its application in lean startups business.	Apply
CO4: Reduce project completion cycle times and results by using lean six sixma methodologies	Analyse
and tools.	
CO5: Assess the entrepreneurial problems and its traits.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	M	S	S	-	M	-	M	L	L	-
CO2	S	S	S	M	M	M	-	-	-	-	-	L	M	-	L
CO3	S	S	L	M	M	M	-	-	-	-	-	M	-	L	M
CO4	S	S	S	S	M	M	-	-	-	-	-	M	M	L	-
CO5	S	S	S	M	-	M	-	-	-	-	-	L	L	-	-

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction: Startup – Entrepreneur – Self Assessment – Setting Lean Startup Methods and Non-tech small business-Picking the Right type of lean startup.

Starting and Growing a business: Identification of Innovation – Idea Formation – Brain storming – Risk Assessment – Value and Growth - Startup company operations management – The build - Measure, Lean Loop.

Lean Approach and Problems Solving: Solving Business Challenges with a Lean Approach: Identify the problem - Identify the root causes - Brainstorm the solutions - Select the appropriate solution - Implement and check the impact of the solution - The Frugal Entrepreneur – Saving Money and Pay off Later Approach – Bootstrap Business.

Lean Startups and Lean Six Sigma: Lean Startup a stepping stone: vision and concept - Maximize the probability-Protect against making obvious mistakes - Attract co-creators - Attract finance - Attract Joint Ventures – Project track - Lean Six Sigma reduce costs for Startup Businesses.

Startup Issues: Niche Marketing: Meaning, Benefits – Strategy for Niche Approach – Business Startup: Difference between small business and startup – Startup Problems - Becoming an entrepreneur: Entrepreneurial Traits

Text Book:

1. Harry Altman (2017), Lean Startup: Essential Guide to Build Your Lean Startup and How to Start Step-by-step, Create Space Independent Publishing Platform.

Reference Books:

- 1. Osterwalder, A & Pigneur, Y. (2010) Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Hoboken, NJ: John Wiley & Sons.
- 2. Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Random House Digital, Inc.

S.No	Name of the Faculty	Designation Department		Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	T. Thangaraja	. Thangaraja Assistant Management Professor Studies		thangaraja@avit.ac.in

17CVS	SE01	l l				TISTI	CAL M	ІЕТНО	DS IN	Categ	ory L	,	Т	P	Credit
1,0,1	,201	CON	NSTRU	CTION	V					EC	3		0	0	3
PREA	MBLE	ı								1	"				
												hods which			
PRER	EQUIS	ITE													
	Engin	eering ?	Mathen	natics.											
COUF	RSE OB	JECTI	VES												
1	To gain the knowledge of Analyze the one dimensional random variable and their properties and functions.														
2	To foo	cused o	n Analy	ze and	study a	bout th	e estim	ation th	eory usi	ing vario	us meth	ods.			
3	To stu	dy abo	ut Anal	yze and	l test the	e hypot	heses b	ased on	differe	nt distrib	utions a	nd attribu	ıtes		
4	To ga	in the k	nowled	ge Ana	lyze the	varian	ce and	perform	randor	nized blo	ock and	Latin squ	are desig	n.	
5	To cal	culate	the Ana	lyze an	d work	on diff	erent qu	ieuing r	nodels.						
COUF	RSE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	student	ts will t	e able t	:0						
CO1.A	Analyze	the one	dimens	sional ra	andom	variable	and th	eir prop	erties a	nd funct	ions.			Anal	yze
CO2.	Analyze	and stu	ıdy abo	ut the e	stimatio	on theor	y using	yariou	s metho	ds.				Anal	yze
CO3. A	Analyze	and tes	t the hy	pothese	s based	on diff	erent d	istributi	ons and	l attribut	es			Anal	yze
CO4. <i>A</i>	Analyze	the vari	iance ar	nd perfo	rm rand	domize	d block	and La	tin squa	re desig	n.			Anal	yze
CO5.A	Analyze	and wo	rk on d	ifferent	queuin	g mode	ls.							Anal	yze
MAPI	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMI	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M			S											

S- Strong; M-Medium; L-Low

--

--

S

S

S

SYLLABUS

M

M

M

CO₂

CO₃

CO4

CO₅

PROBABILITY AND DISTRIBUTIONS: Probability theory and its importance: Definition of probability, Rules of Probability, The Baye's theorem. Random variable. Probability distribution. Mean or Expectation of Random variable. Properties of Mean of Expectation. Theoretical probability Distributions: Binomial Distribution, Poisson distribution. Normal Distribution, Exponential Distribution, Beta, Gamma.

L

--

L

--

S

--

M

M

M

TESTING OF HYPOTHESIS: Sampling distributions - Small and large samples -Tests based on Normal, t, Chi square, and F distributions for testing of means, variance and proportions – Analysis of r x c tables – Goodness of fit.

CORRELATION ANALYSIS: Correlation types, co-efficient. Bi-variate Frequency Distribution, Scatter Diagram, Correlation Analysis.

REGRESSION ANALYSIS: Regression and Multivariate Analysis, Multiple Regression Analysis on linear Regression. Use of regression analysis in resources management.

APPLICATIONS: Use of mathematical models based on probabilistic and statistical methods, simulation in risk identification, analysis and mitigation of project risks. EOQ in civil engineering, Sensitivity analysis, ABC analysis.

TEXT BOOKS:

- 1. John E Freund's Mathematical Statistics: (7th Ed.), Miller & Miller, Prentice-Hall
- 2. Probability and Statistics for Engineers –Miller, Freund-Hall, Prentice India Ltd. 2009

REFERENCES:

1. Applied Statistics and Probability for Engineers---Montgomery and Runger—Wiley, India.

- 2. Applied Mathematics for Engineers and Physiscists-pipes and Harvill. McGraw Hill International Edition, 1970.
- 3. Sampling techniques-Cochran, Wiley Series, 2008.

	JE DEDIGITERD			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

17CVSE02	ENTERPRISE WIDE INFORMATION SYSTEMS	Category	L	Т	P	Credit
	SISIEMS	EC	3	0	0	3
PREAMRI E			•	•	•	

This course is designed to provide the student with a thorough understanding of both the role that Enterprise Resource Planning Systems (ERPs) play in an organization and the challenging task of managing the Information Systems (IS) function.

PREREQUISITE

Nil

COL	DCE	OBIE	CTIVES	
	111111111111111111111111111111111111111	1 / 1).1 1 2		

	1	To introduce Enterprise resource planning
	2	To make students understand the financial accounting
	3	Explain how 'best business practices' are incorporated in an ERP
	4	Execute an entire business process chain in the areas of sales, Procurement, Production and Accounting
	5	To study about the Materials requirement planning, billing & work centers.
- 1		

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. The introduce Enterprise resource planning	Apply
CO2. Definition 'best business practices' are incorporated in an ERP	Understand
CO3. The 'best business practices' are incorporated in an ERP	Apply
CO4. An entire business process chain in the areas of sales, Procurement, Production and Accounting	Understand
CO5 Apply appropriate methods to collect the Materials requirement planning billing & work centers	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L						-				L		S
CO2	M	M	L	L		M	L		M						
CO3	M	M	M			M	L		M		M			L	
CO4	M	M	M	M		M	M		M				S		M
CO5	L		M	L										M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Overview - database applications -Business function vs business process-Introduction to Enterprise Resource Planning (ERP)

FINANCIAL ACCOUNTING: Financial Accounting basics – Balance sheet, Profit and Loss Statement-General Ledger, Chart of Accounts –Posting financial transaction-Controlling – Cost centers and cost elements-Allocating Costs – Assessments and distributions.

BUSINESS PROCESSES: Sales and fulfillment cycle -Master Data and its role in ERP systems -Creating customer master data, material master data and pricing conditions -Implementing a Sales Cycle

PROCUREMENT PROCESSES: Forecasting raw material requirements using sales information, production requirements, sales forecast-Raw Material procurement-Vendors and pricing conditions-Payment.

PLANNING AND CONTROL: MRP – Materials requirement planning-Independent and dependent materials requirements-Creating Production orders and schedules-Bill of Materials-Executing a Production process-Inventory and Goods movement-Routing and work centers.

TEXT BOOKS:

- 1. Enterprise Resource Planning, 3rd Edition, by Bret Wagner and Ellen Monk, ISBN: 9781423901792,2009
- 2. SAP R/3, Business Blueprint, 2nd Edition, by *Thomas A. Curran & Andrew Ladd*, Prentice Hall PTR, 2000, ISBN: 0-13-085340-2

REFERENCES:

- 1. Essentials of Business Processes and Information Systems, by Simha R. Magal and Jeffrey Word, ©2010, ISBN: 978-0-470-23059-6
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by Simha R. Magal and Jeffrey Word, ISBN: 978-0-470-88424-9

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Name of the College	Mail ID						
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in						
2	Mr.M.Senthilkumar	Asst.Profess or	Civil / VMKVEC	senthilkumar@vmkvec.edu.in						

17CVSE03	MANAGEMENT AND PROJECT PLANNING IN CONSTRUCTION	Category	L	Т	P	Credit
	IN CONSTRUCTION	EC	3	0	0	3

To study the elements of construction project management; consisting of owners' perspective, organization, design and construction procedures, resource utilization and cost estimation.

PREREQUISITE

Nil

0002	22 0202011,25
1	Know the types and financing of construction and changing environment of the industry.
2	Understand the organization of project management. Understand the organization of project management.
3	Know the design and construction process as an integrated system.
4	Know the labour, material and equipment utilization

Understand Cost Estimates and the Costs Associated with Construction Facilities.

COURSE OUTCOMES

On the successful completion of the course, students will be able to	
CO1. The types and financing of construction and changing environment of the industry.	Apply
CO2. The organization of project management.	Understand
CO3. The design and construction process as an integrated system.	Apply
CO4. The labour, material and equipment utilization	Understand
CO5. Cost Estimates and the Costs Associated with Construction Facilities.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L						-				L		L
CO2	M	M	L	L					M					M	
CO3	M	M	M	L			L		M		M		L		L
CO4	S	M	M	M			L	L	M				L	M	
CO5	S	M	M									L	M	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

Basics of Management: Modern scientific management, Management Functions, Management Styles

Project Management: Basic forms of organization with emphasis on Project and matrix structures; project life cycle, planning for achieving time, cost, quality, project feasibility reports based on socio-techno-economic-environmental impact analysis, project clearance procedures and necessary documentation for major works like dams, multistoried structures, ports, tunnels, Qualities, role and responsibilities of project Manager, Role of Project Management Consultants, Web based project management.

Project Scheduling and Project Controlling: Construction Scheduling, Work break down structure, activity cost and time estimation in CPM, PERT, RPM (Repetitive Project Modeling) techniques. LOB technique, Mass haul diagrams. Precedence Network Analysis, software in Construction scheduling (MSP, primavera, Construction manager). Monitoring and Control, Crashing, Resource Leveling, Updating.

Construction Management and Work Study: Site mobilization – demobilization aspects, various Resources management based on funds availability. Co-coordinating, communicating & reporting techniques. Application of MIS to construction. Training of Construction Managers. Definition, Objectives, basic procedure, method study and work measurement, work study applications in Civil Engineering. Method study – Definition, Objective, Procedure for selecting the work, recording facts, symbols, flow process charts, multiple activity charts, string diagrams. Work measurement – Time and motion studies, Concept of standard time and various allowances, time study, equipment performance rating. Activity sampling, time-lapse photography technique, Analytical production studies.

Safety Engineering and Administration of Incentive Schemes: Causes of Accidents on various sites, safety measures and safety policies to be adopted, determination of safety parameters, personal protective equipments. Workmen Compensation Act. Necessity, Merit rating, job evaluation, installation, modification and maintaining of incentive schemes based on implementation experience.

TEXT BOOKS:

1. Construction Planning & management By P S Gahlot & B M Dhir, New Age International Limited Publishers

- 2. Construction Project planning & Scheduling By Charles Patrick, Pearson, 2012
- 3. Construction Project Management Theory & practice --- Kumar Neeraj Jha, Pearson, 2012
- 4. Construction management Fundamentals by Knutson, Schexnayder, Fiori, Mayo, Tata McGraw Hill, 2nd Edition, 2011

REFERENCES:

- 1. Construction Project Management Planning, Scheduling and Controlling-Chitakara Tata McGraw Hill, New Delhi
- 2. Construction Management Roy, Pilcher
- 3. Construction Management O'Brien.
- 4. Project Management-Planning and Control---Rory Burkey 4th ed.—Wiley, India.

COCIDE	COURSE DESIGNATION										
S.No	Name of the Faculty	Designation	Name of the College	Mail ID							
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in							
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com							

17CVSE04	CONSTRUCTION CONTRACTS AND ADMINISTRATION	Category	L	Т	P	Credit
	ADMINISTRATION	EC	3	0	0	3

This course will create awareness on contracts for construction industry; impart knowledge on tender preparation, tendering process, laws on arbitration, arbitration procedure and laws on dispute resolution in India.

PREREOUISITE

Nil

COURSE OBJECTIVES

1	To construct contracts
2	To study the procedures of contracts
3	To understand resolution methods
4	Conditions of contracts
5	To study in detail about arbitration

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the laws on contracts for construction industry in India	Understand
CO2. Apply knowledge of contracts in preparation of contract document and tendering process	Apply
CO3. Apply appropriate methods to assess the critical factors in contracts leading to arbitration and disputes between the parties	Apply
CO4. Apply appropriate methods to assess the critical factors in contracts leading to arbitration and disputes between the parties	Apply
CO5. Understand the Objectives, general provisions of Indian Arbitration And Conciliation Act 1996	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S								M		S			L	
CO2	S	L				M	S		S		S	M			M
CO3	S	S	M			M			S		S	M	L	L	M
CO4	S	M	M			M			S		S				
CO5	S	L							M				S	M	

S- Strong; M-Medium; L-Low

SYLLABUS

CONSTRUCTION CONTRACTS: Standard forms of contracts, methods of inviting tenders, pre-bid meetings, prequalification system, scrutiny of tenders and comparative statement-Contract formation, conditions of contracts, contracts with various stakeholders on a major construction projects, contract pricing by the client, project management consultants and the contractor, contract performance, contract correspondence and contract closure

CONSTRUCTION CLAIMS: Extra items and causes of claims. Types of construction claims, documentation. Settlement of claims, extension of time.

DISPUTE RESOLUTION: Causes of disputes and importance of role of various stakeholders in prevention of disputes, Alternate Dispute Resolution methods- mediation, conciliation, arbitration and Dispute Resolution Boards.

CONTRACT CONDITIONS: a) General condition and Particular conditions, conditions of Ministry of Statistics and Program Implementation- Government Of India. Model forms of contract. Role of Planning Commission.

b) ICE conditions-Introduction, FIDIC conditions- evolution of FIDIC document, types based on whether design is of employer or contractor, Design & Build contract, EPC contract, short forms of contract- Colour Code.

ARBITRATION: Indian Arbitration And Conciliation Act 1996 Difference between 1940 Act and 1996 Act. Extent of application of 1996 Act. Objectives, general provisions. Composition of the arbitral tribunal, jurisdiction of arbitral tribunal, duties, power of arbitrators

TEXT BOOKS:

- 1. Civil Engineering Contracts and Estimates B. S. Patil Universities Press 2006 Edition reprinted, in 2009.
- 2. The Indian Contract Act (9 of 1872), 1872- Bare Act- 2006 edition, Professional Book Publishers.
- 3. The Arbitration and Conciliation Act, (1996), 1996 (26 of 1996) 2006 Edition, Professional Book Publisher.

REFERENCES:

1. Arbitration, Conciliation and Alternative Dispute Resolution Systems- Dr. S.R. Myneni- 2004 Edition,

2. Standard General Conditions for Domestic Contracts- 2001 Edition- Published by Ministry Of Statistics and Program Implementation, Government of India.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID				
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in				
2	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com				

17CVSE05	TQM IN CONSTRUCTION	Category	L	Т	P	Credit
		EC	3	0	0	3
DDELICOTE						

The purpose of this course to provide the knowledge of quality in a particular system.

PREREQUISITE

Total quality Management

COURSE OBJECTIVES

1	Understand quality concepts and philosophies of TQM
2	To gain knowledge about the Apply TQM principles and concepts of continuous improvement
3	To study the analyze of the quality tools, management tools and statistical fundamentals to improve quality
4	Understand the TQM tools as a means to improve quality
5	Remember and understand the quality systems and procedures adopted

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Quality concepts and philosophies of TQM	Understand
CO2. Apply TQM principles and concepts of continuous improvement	Apply
CO3. Apply and analyze the quality tools, management tools and statistical fundamentals to improve quality	Analyze
CO4. The TQM tools as a means to improve quality	Apply
CO5. The quality systems and procedures adopted	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L							L			L	M	
CO2	S	M	L	S						L	S				L
CO3	S	M	M	S				M	M				S	L	
CO4	S	M	M	M				M	M					L	M
CO5	S	M	M									L			M

S- Strong; M-Medium; L-Low

SYLLABUS

CONCEPTS OF QUALITY: Definition of quality as given by Deming, Juran, Crosby, difference between Quality control, Quality Assurance (QA/QC). Total quality control (TQC) and Total Quality Management (TQM), Need for TQM in construction industry. Organization necessary for implementation of quality- Quality aspects in every phase in the life cycle of Construction project.

QUALITY CONTROL TOOLS AND STATISTICAL QUALITY CONTROL: Histogram, Pareto diagram, Fishbone diagram, Quality control chart-Testing required for quality control of construction material used in RCC Work- destructive and Non destructive Test (NDT) - Statistical Quality Control- Necessity, Benchmarking, Application of dispersion methods in quality control of construction activity

DEVELOPMENT OF HUMAN RESOURCES: Training needs assessment, technical and managerial competencies necessary for achieving quality, preparation for training. Training on Project Rework Reduction Tool (PRRT) software-training for preparation of checklist necessary for RCC work, for commonly used formats

QUALITY CIRCLE: Development of quality circles, quality inspection team, inspection reports, monitoring and control, 360' feedback for quality.

TQM ON CONSTRUCTION PROJECTS: Advantages, barriers, principles, steps in implementation, seven types of construction defects. Determining cost of poor quality including hidden cost. Quality functions deployment (QFD). Importance of third party quality audits.

TEXT BOOKS:

- 1. Mantri Handbook A to Z of Construction Mantri Publications ,2001
- 2. Juran's Quality Handbook Joseph M. Juran, A. Blanton. Godfrey Mcgraw Hill International Edition (2004)

REFERENCES:

1. Chitkara. K.K. "Construction Project Management: Planning Scheduling and Control", Tata McGraw Hill Publishing Company, New Delhi, 2008.

2. Calin M. Popescu, Chotchal Charoenngam, "Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications", Wiley, New York, 2005.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

										1		T			
17CVS	SE06	H	HUMAI	N RES	OURCI	E MAN	AGEM	IENT		Catego	ory L		T	P	Credit
										EC	3		0	0 3	3
PREA			Under	stand th	e most	theoreti	ical mo	dels and	l key co	ncepts ir	Human	Resourc	es Mana	gement	within
in orga	nization	S.													
	EQUIS!	ITE													
Nil															
COUR	SE OB.	JECTI	VES												
1			IRD pa												
2		Inderstand the principle techniques concerning people management within organizations													
3		o understand HRD policies													
4			manpov												
5			areer ar	nd deve	lopmen	t									
	SE OU														
	success		_												
CO1.D objective		ow to	strategi	cally pl	an for tl	ne hum	an resou	arces ne	eeded to	meet or	ganizatio	onal goal	s and	Appl	у
			ess of jo	b analy	sis and	discuss	its imp	ortance	as a fo	undation	for hum	nan resou	ırce	Unde	erstand
	ement p													Onde	ıstanu
	Compreb								_					Appl	у
	Rememb ny proje		underst	and the	Techni	iques of	f manpo	wer pla	nning,	Estimatio	on of ma	npower	for	Unde	erstand
	Jndersta		Career	& Deve	elopmer	nt Planr	ning and	l marke	t surve	ying.				Unde	erstand
										ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L							L			L		M

L S- Strong; M-Medium; L-Low

M

M

L

S

--

--

--

M

M

S

SYLLABUS

S

M

M

CO₂

CO3

CO₄

CO₅

INTRODUCTION: Need of HRD in the context of globalization, various HRD parameters viz. performance appraisal, potential appraisal, training rewards and recognition etc. Elements of the ICDP i.e. integrated construction development paradigm, key elements of HRD such as basic literacy, functional skills, supervisory skills, entrepreneurship skills. Personal Management - Concept of Personal Management, Role and Function of Personal Manager, Necessity of Personal

--

S

M

M

--

L

M

S

--

L

M

M

M

M

TRAINING: Training of multi-skilled workforce, quality, productivity and employee relations in construction, training of engineers related to issues such as management capabilities, formation 26 of joint ventures, privatization and BOT type of systems

HRD DEPARTMENT AND HRM: Structure of department, personal office at head office and project site, personal selection, placement, training, transfer, promotion, retirement, health, welfare, working conditions, relation with other departments, workers participation in management, distinct processes associated with human resource management viz. sourcing, outsourcing, de-centering, flexi working, multi-skilling issues related with subcontracting.

MANPOWER CALCULATIONS: Techniques of manpower planning, Estimation of manpower for company project, Manpower estimation at various stages, considering Risk due to Lead – time. Remuneration – Remuneration of personal, Job evaluation, performance appraisal, merit – rating, various methods of deciding the Remuneration.

EMPLOYEE DEVELOPMENT AN RETENTION: Career & Development Planning- Approaches to Employee Career Development- Mentoring, Coaching and Succession Planning- Managing Turnover- Measuring & Monitoring Job Satisfaction- External Equity & Market Surveys

TEXT BOOKS:

- 1. Human Resource Management by Biswajeet Pattanayak, 2005
- 2. Personnel Management by Monappa A. Tata McGraw Hill, New Delhi1997
- 3. Nair M. R. R, "Excellence through Human Resource Development", Tata McGraw Hill., 2006

REFERENCES:

- 1. Rao T, "HRD in the New Economic Environment", Tata McGraw Hill, 1994.
- 2. Pareck, "HRD in the New Millenium", Tata McGraw Hill,1999

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Professor	AVIT	sudipdas@avit.ac.in
2	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com

17CV	SE07		ENTER		RESO	URCE	PLAN	NING		Catego	ry L		T	P (Credit
2,0,,	J_0.	S	YSTE	M						EC	3		0	0 3	}
	MBLE	•								•	•	1			
To unc	lerstand	the key	techni/	cal term	ninologi	ies in er	nterpris	e inforn	nation s	systems					
PRER	EQUIS	ITE													
Nil															
COUF	RSE OB	JECTI	VES												
1	To tea	ch basi	ics of E	RP											
2			ife cycle												
3				ain insi	ght into	proces	s views	of orga	anizatio	ons and too	ols and	technique	es used to	o model l	ooth as-
	To understand and gain insight into process views of organizations and tools and techniques used to model both asis and to-be models.														
4	To Know and be able to apply key technical terminology in enterprise information systems as they apply in different ERP products and development methods														
_	Key differences between the major ERP applications and issues specific to these applications their configuration														
5		anagen			<u> </u>					1		11			
	RSE OU														
	success		_												
					to proce	ess view	vs of or	ganizati	ons and	d tools and	d techni	ques use	d to	Appl	v
	both as-				. 1 .	1 .		• .	•			.1	1		,
	know an erent ER							y in ente	erprise	informatio	on syste	ms as the	ey apply	Appl	y
		_			•			ive gap	analys	is before a	ın ERP	impleme	ntation	Analy	vze
										cts and tra					,
										ated with j				Unde	rstand
	ement o														
	Synthesine currer								T deve	lopment a	nd proje	ect mana	gement	Appl	y
with th									RAM	ME SPEC	CIFIC (OUTCO	MES		
MAPI			PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1	PSO2	PSO3
	P ∩1			/4	103	100	10/	1 00	1 07	1010	1 011	1012	1201	1502	1202
COS	PO1	PO2 M		1									-M		
	PO1 S S	M M	L L	 S		 S	 M		 L			 L	-M	 L	

M S- Strong; M-Medium; L-Low

M

S

CO4

CO₅

INTRODUCTION AND OVERVIEW: Enterprise Level and ERP Concepts - Business and IT Integration Trends Case-Review of Project Planning & Management concepts Case on ERP Project Planning-Big Bang - Adopting SAP

M

L

LIFE CYCLE CONCEPTS: Development life cycle rationale- traditional ERP life cycles - accelerated ERP life cycles -Enterprise process modeling concepts. Enterprise process modeling tools and techniques ERP Implementation Challenges and Success Factors - Business Process Reengineering (BPR and ERP) ERP Fits and Misfits Analysis

ERP REQUIREMENTS MANAGEMENT: ERP Project Team Selection, Development and Project Communications -Change Management & Control ERP Configuration and Control - Data migration and Data Cleansing -Quality Assurance -**ERP Risk Management**

CODING TECHNIQUES: Control -Testing Security- Coding Techniques- Defection of Error –Validating -Cost Benefit Analysis -Assessing the value and risk of Information System

INTEGRATED CONSTRUCTION MANAGEMENT: Integrated Construction Management- Information System-Project Management Information System- Functional Areas finance, Marketing Production, Personnel – levels, DSS, EIS, ES- Comparison Concepts and Knowledge representation – Managing Inter- national Information System **TEXT BOOKS:**

1. Manufacturing Resource Planning (MRP II) with Introduction to ERP; SCM; an CRM by Khalid Sheikh, Publisher: McGraw-Hill,2011.

2. ERP and Supply Chain Management by Christian N. Madu, Publisher: CHI 4. Implementing SAP ERP Sales & Distribution by Glynn C. Williams, Publisher McGraw-Hill,2013

REFERENCES:

1. Gordon B. Davis, "Management Information System: Conceptual Foundations Structure and Development", McGraw Hill 2004

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in
2	Mr.Sathiyaraj R	Asst.Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in

17CVSE08	SURFACE AND GROUND WATER	Category	L	Т	P	Credit			
	HYDROLOGY	EC	3	0	0	3			
PREAMBLE				l		1			
This cours	se is to introduce the students about the surface and gre	oundwater hyd	rology and	enabling	the studer	its to			
work professional	work professionally in the environmental engineering sector and other related industry.								

PREREQUISITE

Nil

COURSE	ODIECTI	TTTC
COURSE	OBJECT:	I V H.S

1	To understand the influence of meteorology in hydrology
2	To understand the hydrological processes in surface and groundwater hydrology
3	To determine various components of aquifer characteristics
4	To determine various reservoir characteristics
5	At the end of this course students will be aware of hydrological cycle and its processes.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. The students know the various methods of rainwater and runoff harvesting. Then apply the knowledge of soil erosion and sedimentation to estimate the life of the reservoir	Apply
CO2. Students are able to understand aquifer properties and its dynamics after the completion of the course. It's imparts exposure towards well design and practical problems of ground water aquifers.	Apply
CO3. Analyze the influence of meteorology in hydrology	Analyze
CO4. Calculate the components of aquifer characteristics	Apply
CO5. Analyze the reservoir capacity	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CO1	M	M	L					M					M		
(CO2	M	M	L											S	M
(CO3	S	-	M										L		M
(CO4	S	-	M					M					L	M	
(CO5	S	M	M											L	L

S- Strong; M-Medium; L-Low

SYLLABUS

HYDROLOGY AND ITS IMPORTANCE : Definition - Branches of hydrology - Role in water resources - Meteorological and Geological parameters influencing hydrology - National Water Policy

SURFACE HYDROLOGY: Hydrology cycle - Precipitation and its abstractions - Processes, measurements and analysis of precipitation, infiltration, evaporation and evapotranspiration

RUNOFF: Process - Components - Measurement of flow - Hydrograph - Unit hydrograph - Simple models for run off estimation - Stream gauging

GROUND WATER: Aquifers - Geological formations influencing ground water - Darcy's law - Permeability Conductivity -

Transmissivity - Well hydraulics - Pump tests

RESERVOIRS: Types - Storage capacity and yield estimation - Rule curve of operation - Design flood and PMF

TEXT BOOKS:

- 1. Garg S.K. Hydrology and Water Resources Engineering, 9th Edition, Khanna Publications, 1996.
- 2. Linsley R.K. and Franzini J.B., Water Resources Engineering, McGraw Hill Book Co., Inc., New York, 1990.
- 3. Raghunath H.M., Hydrology, Wiley Eastern Limited, New Delhi, 1985.

REFERENCE BOOKS

- 1. Todd,D.K., Ground Water Hydrology 2nd Edition, Wiley Eastern Limited,1985.
- 2. Ven Te Chow, Hand book of Applied Hydrology, McGraw Hill Book Co., Inc., New York 1964

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com

17CV	/SE09	ENV	VIRON		AL IM			SSMEN S	T OF	Categ		L 3	T 0	P 0	Credit 3
PREA	MBLE									EC	,	3	U	U	3
	To in									nt and e try for the				onduct a	and
PRER	EQUIS Irriga	ITE tion En	gineeri	ng											
COUR	SE OB	JECTI	VEGS												
1	Under	stand th	ne EIA	studies	and hel	p in ca	rrying o	out the E	EIA stud	dies at va	rious hy	dro and i	rrigation	projects	
	Obtain	n essent	ial skil	ls to un	derstand	d, critic	ally rea	d and e	valuate	, review	and begin	n to cond	luct impa	ict assess	ments
2	and to	balanc	e and in	ntegrate	enviro	nmenta	l, socia	l and ec	onomic	needs					
3											of envir	onmenta	l impact a	assessme	nt
	Apply Knowledge and skills in relation to the framework and procedures of environmental impact assessment Use basic knowledge and skills to practice a number of selected methods used in Environmental impact														
4	assessments														
			- hasis		1 : 6	4: 4	مادند م	منعند		ıt whethe			1 ::		40 04 4
5					I IIIIOIII	іаноп і	o guide	decisio	ns adot	ii whethe	er some i	iyaro and	ı ırrıganc	m projec	ts and
	_	es shou		jected											
	RSE OU														
	success														
					-		0.5	ocumen	tation a	nd usefu	lness of	environn	nental	Apply	ý
	assessn The stud							nment	in wate	r resourc	es develo	opment a	nd		
	tand cur											ope.		Apply	У
Co3. S	Students	will be	come a	ware of	future	challen	iges fac	ing wat	er resou	irces mai	nagemen	t		Analy	ze
	Calculat					nental	impacts							Apply	
	nalyze													Analy	ze
										ME SPE				I	I
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M M	M M	L L	-	M	<u>M</u>	- S	M S	-	-	-	-	- L	- M	S
CO2					M	M	-	-				_		141	
CO3	S	L	L		IVI	IVI	-	_	-	-	-	_	-	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENTAL ISSUES: Water resources development and environmental issues – Environmental regulations and requirements - The EIA (Environmental Impact Assessment) notification

EIA FUNDAMENTALS: Environmental Impact Assessment (EIA) – EIA in Project Cycle – Legal and Regulatory aspects in India according to Ministry of Environment and Forests – Types and limitations of EIA – Participation of Public and Non-Governmental Organizations in environmental decision making

ENVIRONMENTAL IMPACTS: Hydrological and water quality impacts – Ecological and biological impacts – Social and cultural

impacts – Soil and landscape changes – Agro economic issues – Human health impacts – Ecosystem changes.

METHODS OF EIA: EIA team formation—Development of scope, mandate and study design—Base line survey—Check lists—Ad hoc procedures—Network and matrix methods—Semi-quantitative methods—ICID checklist—Economic approaches—Environmental Impact Statement (EIS) preparation.

ENVIRONMENTAL MANAGEMENT PLAN: In-stream ecological waterrequirements - Public participation inenvironmental decision making – Sustainable water resources development – Ecorestoration – Hydrology and global climate change – Human ecology – Ecosystem services – Environmental monitoring programs.

TEXT BOOKS:

- 1. L.W. Canter, "Environmental Impact Assessment", McGraw-Hill Book Company, 1995
- 2. Liu and Liptak, "Environmental Engineer's Handbook", CRCnet Base, 2008
- 3. Anjaneyulu and Valli Manickam, "Environmental Impact Assessment Methodologies", BS Publications, 1998.

REFERENCES:

- 1. Barthwal, R.R., Environmental Impact Assessment. New Age International Publishers, New Delhi. 2002.
- 2. .Petts, J., Handbook of Environmental Impact Assessment, Vol., I and II, Blackwell Science London. 1999.
- 3. Lawrence, D.P., Environmental Impact Assessment– Practical solutions to recurrent problems, Wiley- Inter Science, New Jersey. 2003.
- 4. Arnel, N., Hydrology and global environmental change. Prentice Hall, Harlow. 2002.
- 5. Chari. B., Richa Sharma and S.A. Abbasi, Comprehensive Environmental Impact Assessment of Water Resources Projects: With Special Reference to Sathanur Reservoir Project (Tamil Nadu)/K. Discovery Pub., New Delhi, 2005.

5	S.No	Name of the Faculty	Designation	Name of the College	Mail ID
	1	Mr.R.Johnson Daniel	Asst. Professor	Civil / AVIT	johnsondaniel@avit.ac.in
	2	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com

170	CVSE10	WATERSHED CONSERVATION AND MANAGEMENT	Category	L	Т	P	Credit
		MANAGEMENT	EC	3	0	0	3
PREA	MBLE						
		adents to surface and groundwater hydrology and enal	bling the studer	its to work	c profession	onally in	ı the
enviro	nmental engi	neering sector and other related industry.					
PRER	REQUISITE						
	Nil						
COU	RSE OBJEC	TIVES					
1	To underst	and concept of need for Water conservation .					
2	To analyze	e degradation of soil and water resources					
3	To perform	n of the measures for soil and water conservation.					
4	To provide	a comprehensive treatise on the engineering practice	s for watershed	managem	nent.		
5	To acquire	knowledge on national programs on watershed conse	ervation and soi	l degradat	ion		
COU	RSE OUTCO	OMES					
On the	e successful c	ompletion of the course, students will be able to					

Co5. Analyze the wasteland development MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO1. Students are able to develop and apply numerical model for various application along with better

It's imparts exposure towards well design and practical problems of ground water aquifers.

CO2. Students are able to understand aquifer properties and its dynamics after the completion of the course.

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	M	L	-	-	-	-	-	-	-	-	-	M	-	-
CO2	M	M	L		-	-	-	-	-	-	-	-	M	L	-
CO3	S	M	M		-	-	-	-	-	-	-	-	-	M	L
CO4	S	M	M		-	-	-	-	-	-	-	-	-	-	-
CO5	S	M	M	-	-	-	-	-	-	-	-	L	L	M	L

Apply

Apply

Analyze

Apply

Analyze

S- Strong; M-Medium; L-Low

understanding aquifer characteristics.

Co3. Analyze the watershed management

Co4. Calculate the components of aquifer characteristics

SYLLABUS

INTRODUCTION: Watershed concept - Classification - Characteristics – Land use classifications.

SOIL CONSERVATION: Water eristic - Types of erosion - Estimation of soil loss - Conservation measures - Agricultural land, wastelands, gulley - Mechanical and agronomical options - Design details - Wind erosion and its effects - Estimation of soil loss - Prevention measures Silting of reservoirs - Catchment treatment.

WATERSHED MANAGEMENT: Basics of remote sensing technique - Data collection - Preparation of overlays use of GIS for data processing - Drought prone area program - Integrated watershed management

WATER CONSERVATION: Need for water conservation - Augmentation - Water harvesting in agricultural land and Urban lands - Traditional and new concepts

WASTELAND DEVELOPMENT: Degradation of land - Role of human and cattle - Waste land development program in India - Role of NGO - Participatory approach - Case studies

TEXT BOOKS:

- 1. Datta S.K., Soil Conservation and Land Management, International Book distribution, Dehra Dun, India, 1986.
- 2. Glenn O.Schwab et al., Soil and Water Conservation Engineering, John Wiley and Sons, New York, 1981

REFERENCES:

- 1. Garde R.J., Reservoir Sedimentation, INCOH Secretariat, National Institute of Hydrology, Roorkee, 1995.
- 2. Murthy JVS., Watershed Management in India, Wiley Eastern Limited, 1995.
- 3. Report of the High Level Committee on Waste Land, Development Department of Waste Land development, Ministry of Rural Areas and Employment, GOI, New Delhi, 1995

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

										1	-	F		1 1	
170	CVSE11		IRRI	GATIO	N SYS	TEMS	MAN	AGEM	ENT	Categ	gory	L	T	P	Credit
									EC		3	0	0	3	
To intr	PREAMBLE To introduce the students to surface and groundwater hydrology and enabling the students to work professionally in the environmental engineering sector and other related industry.														
PRER	PREREQUISITE Irrigation Engineering														
COUR	SE OB	JECTI	VES												
1	To inc	culcate	the diff	erent ty	pes of i	rrigatio	n syste	ms and	their pe	erforman	ce based	on servi	ce orient	ed approa	ach
2	To acquire knowledge on advancements in irrigation systems														
3	To analyze various irrigation system practices														
4	To perform irrigation scheduling														
5	To develop participatory irrigation system														
COUR	SE OU	TCON	1ES												
On the	success	ful con	npletior	of the	course,	student	ts will b	e able t	0						
CO1 irrigation					•			•		ship and ems for v	•	oply it to ops	schedul	e Appl	у
CO2	Student	s can d	esign s	urface, o	drip and	l sprink	ler irrig	gation sy	ystems	for vario	us crops			Appl	y
Co3. T		rstand t	he clim	ate cha	nge phe	nomen	on and	its relate	ed issue	es on wat	er, irriga	tion and	its socia	l Anal	yze
		toward	ls the g	lobal cli	mate cl	nange a	nd its ii	npact o	n water	resource	es.			Appl	y
	nalyse t													Anal	
						COME	S AND	PROG	RAMI	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
													1		
CO1	M	M	L	S	S	-	-	-	-	-	-	-	-	M	M

S- Strong; M-Medium; L-Low

M

M

M

M

L

M

M

M

S

S

SYLLABUS

M

S

S

CO2

CO3

CO₄

CO₅

IRRIGATION DEVELOPMENT IN INDIA: Importance of Irrigation in Agriculture - Historical evolution of irrigation in India – Irrigation development during pre-colonisation – Colonisation and post-colonization – Different types of Irrigation prevalent in India: Warabandi, Shejpali and South Indian systems - Focus of Irrigation in India – Command area development approach and farmers participation.

L

_

M

L

L

S

S

L

M

M

M

L

IRRIGATION SYSTEMS AND PERFORMANCE INDICATORS: Systems classification - Institutions for irrigation management—Diagnostic Analysis of Irrigation Systems -Rehabilitation and modernization — Performance indicators — Improving system performance — Conjunctive management — constraints faced.

MAIN SYSTEM MANAGEMENT : Main system components – Reservoir allocation rule, Operating rule and optimization methods to improve main system performance - irrigation scheduling – Constraints

L

COMMAND AREA DEVELOPMENT AND PARTICIPATORY IRRIGATION MANAGEMENT: Command area development principles – Participatory Irrigation Management and Irrigation management transfer – Constraints – Case studies

IRRIGATION POLICY AND INSTITUTIONS: Present status of irrigation policy and institutions – Irrigation related conflicts – Institutional transformation needed – Constraints in effecting institutional transformation – Irrigation financing – Water pricing – Water market – Policy changes.

TEXT BOOKS:

- 5. Rakesh Hooja, Management of Water for Agriculture: Irrigation, Water sheds and Drainage Rawat Publications, New Delhi, 2006.
- 6. Kijne, J.W., Barker, R and Molden, D, Water Productivity in Agriculture; Limits and Opportunities for improved, CABI Publishing, Walling ford, U.K, 2003.

REFERENCES:

1. Giodano. M and Villbolth K.G, The Agricultural Ground Water Revolution -Opportunities and threats to development, CABI Publishing, Walling ford, U.K, 2007

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Mr.R.Johnson Daniel	Asst. Professor	Civil / AVIT	johnsondaniel@avit.ac.in		
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com		

17CVSE12	COMPUTATIONAL METHODS IN IRRIGATION MANAGEMENT	Category	L	Т	P	Credit		
	IRRIGATION MANAGEMENT	EC	3	0	0	3		
PREAMBLE								
To unders	stand the knowledge of necessary information about the	location of rec	cords, medi	a upon w	hich reco	ords		
are stored, methods of protection, and the value of individual records.								
PREREQUISITE								
Nil								

COURSE OBJECTIVES

1	To acquire basic knowledge on various computational methods
2	To execute various models used for irrigation engineering
3	To simulate irrigation practices using computed based software
4	Application of advanced simulation techniques for irrigation practices
5	To acquire basic knowledge about estimating water quality using current methods

COURSE OUTCOMES	
On the successful completion of the course, students will be able to	
CO1 Students would have knowledge of soils and crops, which they can beneficially use as specialists in irrigation water management.	Apply
CO2 Students could relate water quality and its dependence on sources of water pollution.	Apply
Co3. Students would understand and interpret water quality data for beneficial uses and in water quality models.	Analyze
Co4. On completion of this course the students will be able to solve various problems in the field of engineering employing probability and statistical methods.	Apply
Co5. Students will able to estimate water quality using current methods and make evaluation of it for beneficial uses.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	M	L	S	S	L	-	-	-	-	-	-	-	S	S
CO2	M	M	L		-	-	L	L	-	-	-	-	L	L	-
CO3	S	M	L	S	M	-	-	-	-	-	-	-	L	-	-
CO4	M	M	L		-	-	-	-	-	-	-	-	L	M	M
CO5	S	M	M	-	-	-	-	-	-	-	-	L	-	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

ADVANCED COMPUTING TECHNIQUES: Computing methods in water resources -Computing techniques - Solution to ordinary and partial

differential equation using Finite difference and Method of Characteristics- Numerical integration and differentiation Design of digital models - Visual programming

ARTIFICIAL INTELLIGENCE: Principle of Artificial Neural Network (ANN), Fuzzy Logic concepts and Applications –Genetic Algorithms-Heuristic Optimization techniques -Application of Artificial Intelligence to Hydrology and Crop Water Requirement model.

DIGITAL DATA MANAGEMENT: Data base structure -Data acquisition -Data warehouse -Data retrieval-Data format Attribute -RDBMS -Data analysis -Network data sharing -Statistical Analysis (SYSTAT) -Regression -factor analysis -

histogram -scatter diagram -Goodness of fit

SIMULATION SOFTWARE IN WATER RESOURCES: Surface water models (HMS) -Storm Water Management Models (SWMM) – culvert hydraulic design(HY) – River Analysis system models (HEC-RAS)-Ground Water Flow models

SIMULATION MODELS IN IRRIGATION WATER MANAGEMENT: Soil water assessment simulation models (SWAT) -Basin simulationmodels (MITSIM, VASIM) Real time operation models -Water Resources Information System, Management Information System. Decision support system for Irrigation management.

TEXT BOOKS:

- 4. Aliev R. A, and Aliev Rashad "Soft Computing and its Applications" World Scientific Publications Co. Pvt. Ltd. Singapore, 2001.
- 5. Janusz Kacprzyk Applied Decision with Soft Computing Springer, 2003

- 6. Carlos A. Coello, David A Van Veldhuizen, Gary B Lamont, "Evolutionary Algorithms for Solving Multi-objective problems", Springer, 2002.
- 7. Tayfur Gökmen "Soft computing in water resources engineering", WIT Press, Great Britain, UK, 2012.

REFERENCES:

- **1.** Remson I, Hornberger G.M. and Moiz F.J., "Numerical methods in Sub-Surface Hydrology". Wiley Inter Science, 1985
- **2.** Kazda, I., "Finite element Techniques in ground water flow studies (with Applications in Hydraulic and Geotechnical Engineering)", Else vier, 1990.
- 3. Abbott M.B, and Minns A.W. "Computational hydraulics" Ashgate, London, UK, 2007.
- **4.** Loucks Daniel P., Jery R Stedinger and Douglas, A. Haith, Water Resources systems Planning and Analysis. Prentice Hall Inc., Englewood Clifts, New Jersey, 1981

S.No	Name of the Faculty	Designation	Name of the College	Mail ID							
1	Ms.P.Subathra	Asst. Professor	Civil / AVIT	subathra@avit.ac.in							
2	Mr.M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in							

17C	17CVSE1	,	AGRICULTURAL ECONOMICS						Categ	gory	L	T	P	Credit	
										EC	C	3	0	0	3
PREA															
	To introduce the students to computational methods in irrigation management and enabling the students to work professionally in the agricultural sector and other related industry.														
profess	ionally	in the a	gricultu	ıral sec	tor and	other re	elated in	ndustry.	•						
PRER	EQUIS NIL														
COLID			VEC												
	COURSE OBJECTIVES 1 To understand nature and scope of agricultural economics														
2					_				ics c activit	*7					
3											Theory	and aget	of produ	otion	
	To determine demand and supply; its applications to agricultural goods, Theory and cost of production														
4	1 0														
	To understand the Role of welfare economics, welfare economics in comparison with agricultural economics. COURSE OUTCOMES														
				of 410 o		a4da		l- l - 4	<u> </u>						
On the			•								11.				
COI	o prov	ide an (overan (exposur	e on the	e use or	econor	me con	cepts in	ı ırrıganc	on develo	pment.		Appl	y
			vledge (on econ	omic pl	anning	so as to	enable	viable	allocatio	on of reso	ources in	the	A	pply
irrigatio			11 1	4 1 . 41			4 -	C-1	C	11		-1	. 1 1		11 7
on the										rali irriga	tion dev	eiopmen	t based	Analy	
on the t	Julient	irenus (n prout	iction, c	Olisulli	puon ai	iu iaiiii	econor	mes.					Allai	yze
Co4 Th	e stude	nts will	acquai	nt them	selves i	n the a	llocatio	n of res	ources	and finar	ncial anal	lysis in th	ne	Α.	
irrigatio														A	pply
				to unde	rstand a	applicat	ion of t	he lates	t inforn	nation te	chnology	to water	ſ	An	alyze
resourc	es engi	neering												7 111	auryze
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAMI	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	M	L	S	S	-	S	S	-	-	-	-	-	M	L
CO2	M	L	L		-	-	S	-	-	-	-	-	S	-	-
CO3	S	M	L	S	M	S	-	-	L	L	-	-	S	M	L
CO4	S	L	L		-	-	-	-	-	-	-	-	-	M	-
CO5	S	M	M	-	-	-	-	-	-	M	-	L	L	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Definition – Nature and scope of agricultural economics – Basic skills of Agricultural economist

MACRO – ECONOMICS: Monetary policy – Money supply and economic activity – Inflation and deflation – Fiscal policy – Agricultural policy – Discounting techniques

MICRO – ECONOMICS: Demand and supply; its applications to agricultural goods – Concept of elasticity – Money and financial market – Market supply function – Price determination – Theory and cost of production – Production function – Production management – Conditions of competition.

WELFARE ECONOMICS: Role of welfare economics – Welfare economics in comparison with agricultural economics – Social welfare function – Economy stabilization – Income redistribution – regional development.

FARM ECONOMICS: Concept of farm management – Whole farm planning – Farm records and budgeting – Uncertainty in farming – Farm business analysis

TEXT BOOKS:

- 3. Allan C.Deserpa., Micro economic theory Issues and applications Allyn and Bacon, Inc. Massachusetts, 1985.
- 4. Mithani D.M., Macro-economics-Analysis and Policy Oxford and IBH Publishing Co., New Delhi, 1981

REFERENCES:

1. Douglas James L and Robert R.Lee., Economics of Water Resources Planning McGraw Hill Co., New Delhi, 1994.

- 2. John W.Goodwin and Evan Drummond H., Agricultural Economics Reston Publishing Co., Virginia, 1982.
- 3. Ronald D.Kay., Farm Management, Planning, control and Implementation-McGraw Hill Co., 1981.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
2	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com

17CVSE14

MODERNIZATION OF IRRIGATION SYSTEMS

Category	L	Т	P	Credit
EC	3	0	0	3

PREAMBLE

To introduce the students to modern irrigation methods and enabling the students to work professionally in the irrigation technology and agricultural sector and other related industry.

PREREQUISITE

Irrigation Engineering

COURSE OBJECTIVES

L		
	1	To study about the nature of system modernization and rehabilitation
	2	To know about the essential of system maintenance.
Ī	3	To study about the history of inflow, Operational constraints, Management constraints, Resource constraints
Ī	4	To know about deferred maintenance-causes-criteria used for taking rehabilitation.
Ī	5	To study about the case study of rehabilitation and modernization of old projects

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Understand various irrigation methods and techniques	Understand					
CO2: Apply modern technique in irrigation management	Apply					
CO3: Construct and maintain various water bodies for irrigation purposes A						

CO4: Posses knowledge on the various scenario for water management for irrigation purpose

Understand

CO5: Understand case study of rehabilitation and modernization of old projects

Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	S	L	-
CO2	S	M	-	-	M	-	-	-	-	-	-	-	S	M	-
CO3	S	-	S	M	-	-	-	-	-	-	-	-	S	-	S
CO4	S	-	-	M	-	-	-	-	-	-	-	-	S	-	-
CO5	S	-	-	M	-	-	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Irrigation system-Classification-Nature of system modernization and rehabilitation

SYSTEM MAINTENANCE: Maintenance - Essential, Catch up, Preventive and normal- Diagnostic analysis of flow, seepage, participatory rural appraisal- Rapid rural appraisal- Walk through survey- Development of maintenance program-Kudimaramath- Turnover to WUA

PROBLEM IDENTIFICATION: System Performance- History of inflow, cropping pattern, system alterations, distribution performance-Operational constraints –Management constraints-Resource constraints

REHABILITATION: Base line survey-Deferred maintenance-Causes-Criteria used for taking rehabilitation programs-software and hardware improvements-prioritization-Role of WUA-Monitoring and evaluation

CASE STUDIES: Rehabilitation and modernization programs- Periyar Vaigai Project- Walawe Project-Tank modernization project-Water resources consolidation project.

TEXT BOOKS:

- Base Line Survey of Irrigation Command, Centre for Water Resources, Anna University, Chennai-25, 2000.
 Diagnostic analysis of Irrigation Systems, Volume2, Evaluation Techniques, Water Management Synthesis Project,
 Colorado State University, 1984.
- 2. Improving Irrigation (performance through the use of MIS). The case of Mahi Kadana Gujarat, India.
- 3. International Irrigation Management Institute and WALMI, Gujarat, 1994.

REFERENCES:

- 1. Lecture Notes Sixth Training of Trainers Course, volume 2 Centre for water Resources, Anna University, Chennai-25, 1997.
- 2. Phase II Extension Tank Modernization Project with EEC Assistance, Monitoring and Evaluation Final Report, Centre for Water resources, Anna University, Chennai, November 2000.
- 3. Planning and Mobilization of Farmers Organization and Turnover- Tamil Nadu Water Resources Consolidation Project –Centre for Water Resources and Ocean Management, Anna University, Chennai-25, 1997.
- 4. Tank Modernization Project with EEC assistance Monitoring and Evaluation: Final Reports-Centre for Water Resources, Anna University, Chennai, November, 2000.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in
2	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com

		TYPOLOGY OF NATURAL AND Category L T									P	Credit			
17C	VSE15		MANMADE DISASTERS							EC	3		0	0	3
PREAM	PREAMBLE														
	To introduce the students to agricultural economics and enabling the students to manage information														
throug	throughout the total life cycle, from creation or inception, through its use, storage, retrieval, to its final disposition,														
are mo	are more likely to properly place disaster planning in their total management program.														
	PREREQUISITE Nil														
	COURSE OBJECTIVES														
1		o Understand basic concepts of disaster													
2	To understand causes and factors controlling natural and technological disasters.														
3 To distinguish between processes controlling various disasters.															
4	To participate in various disaster mitigation program														
5 To participate in various disaster management program															
COURS	SE OU	ГСОМ	ES												
On the s	uccessi	ful com	pletio	n of the	course	, studer	nts will	be able	to						
CO1:Uı	ndersta	nd vario	ous fac	ctors ca	using d	isaster								Unders	tand
CO2:U1														Unders	tand
CO3:A ₁														Apply	
CO4:Po										aster				Apply	
	5:Participate in disaster management activities during a disaster										Apply				
MAPPI													,		1
COS	PO1 PO2 PO PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 1										PSO2	PSO3			
CO1	S	M	-	-	-	-	S	-	-	-	-	-	S	M	-
CO2	S	1	-	-	-	-	S	-	-	-	1	-	S	_	-
CO3	S	M	-	-	-	M	_	-	-	-	M	-	S	M	-
CO4	S	-	-	-	-	-	-	-	-	-	M	-	S	-	L

L

M

S

CO5

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Introduction - Hazard, Risk, Vulnerability, Disaster - Meaning, Nature, Importance, Dimensions & Scope of Disaster Management - Disaster Management Cycle

NATURAL DISASTERS - GEOLOGICAL: Natural Disasters - Meaning and nature of natural disasters, their types and effects - Hydrological Disasters - Flood, Flash flood, Drought, cloud burst - Geological Disasters - Earthquakes, Tsunamis, Landslides, Avalanches, Volcanic eruptions, Mudflow.

NATURAL DISASTERS - HYDROLOGICAL & METEOROLOGICALTypes of Natural Disasters Wind related-Cyclone, Storm, Storm surge, Tidal waves, Heat and cold Waves - Climatic Change - Global warming - Sea Level rise - Ozone Depletion.

TECHNOLOGICAL DISASTERS: Man – made Disasters Chemical disasters, biological disasters, radiological disasters, nuclear disasters - Fire – building fire, coal fire, forest fire, Oil fire-Types of Man – made Disasters - Accidents-road accidents, rail accidents, air accidents, sea accidents - Pollution - air pollution, water pollution - Deforestation, Industrial waste.

FACTORS AFFECTING DISASTER MANAGEMENT: Disaster Determinants-Factors affecting damage – types, social status, habitation pattern, physiology and climate - Factors affecting mitigation measures, prediction, preparation, communication, area and accessibility, population, physiology and climate.

TEXT BOOKS:

- 1. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.
- 2. Carter, W. Nick, 1991: Disaster Management, Asian Development Bank, Manila.

REFERENCES:

- 1. Central Water Commission, 1987, Flood Atlas of India, CWC, New Delhi.
- 2. Central Water Commission, 1989, Manual of Flood Forecasting, New Delhi.
- 3. Government of India, 1997, Vulnerability Atlas of India, New Delhi.
- 4. Sahni, Pardeep et.al. (eds.) 2002, Disaster Mitigation Experiences and Reflections, Prentice Hall of India, New Delhi.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in
2	Mr. S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in

17CVSE16

CRISIS COMMUNICATION & MANAGEMENT

Category	L	Т	P	Credit
EC	3	0	0	3

PREAMBLE

To introduce the students to agricultural economics and enabling the students to manage information throughout the total life cycle, from creation or inception, through its use, storage, retrieval, to its final disposition, are more likely to properly place disaster planning in their total management program.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	To posses knowledge on Foundational principles and theory of crisis communication
2	To understand various phases of a crisis management
3	To understand various types theoretical fundamentals in crisis management
4	To acquire knowledge on the role of culture and organizational context in crisis communication
5	To understand various crisis communication theory, crisis management approaches

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Understand foundational principles and theory of crisis communication	Understand
CO2: Analyze various factors involving fundamental management during crisis and recovery activities	Analyze
CO3:Evaluate various crisis phases	Evaluate
CO4: Understand role of culture and organizational context in crisis communication	Understand
CO5: Analyze various crisis communication theory, crisis management approaches	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO11	PO12	PSO1	PSO2	PSO3
		2	3							10					
CO1	S	-	-	L	-	-	L	L	-	-	L	-	L	-	-
CO2	S	S	-	-	-	-	-	-	-	-	S	-	S	S	-
CO3	S	-	-	S	-	-	L	-	-	-	-	-	L	-	-
CO4	S	-	-	-	-	-	M	M	-	-	-	-	S	-	M
CO5	S	S	-	-	-	-	-	-	-	-	S	-	S	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Introduction- Before, During, and after crisis - How to Handle - Preparing for a Crisis - Implementing a Crisis Audit-Creating, Simulating, revising a Crisis Plan-Technology Attacks

TERM RELATED TO CRISIS: Types of Crises- Natural, Man-made, Combination -Technologies

ACTIONS TO BE TAKEN BEFORE CRISIS:Long-range preparation- reputation management - issues identification-crisis audit

ACTIONS TO BE TAKEN DURING THE CRISIS:Implementing the plan-conduct situation - prioritize actions- dos and don'ts in dealing with media-human issues in crisis situations

ACTIONS TO BE TAKEN AFTER THE CRISIS AND RECOVERY: Short-term and long-term - immediate organizational resumption - long-term recovery - updating the plan - lessons learned

TEXT BOOKS:

- 8. Fearn-Banks, Kathleen Crisis Communications, A Casebook Approach, 3rd Ed. (2007) Pub: Erlbaum. "Textbook" Cases.
- **9.** Rumors and Cybercrises. Natural Disasters. Cultures: Foreign and Domestic. Death and Injury.Consumer-Caused Crises. The Crisis Communications Plan. Appendices

REFERENCES:

Central Water Commission, 1987, Flood Atlas of India, CWC, New Delhi. Central Water Commission, 1989,
 Manual of Flood Forecasting, New Delhi. Government of India, 1997, Vulnerability Atlas of India, New Delhi.

2.	2. Sahni, Pardeep et.al. (eds.) 2002, Disaster Mitigation Experiences and Reflections											
COURSE DESIGNERS												
S.No.	Name of the Faculty Designation Department Mail ID											
1	1 Dr.D.S.Vijayan Asst. Professor Civil / AVIT vijayan@avit.ac.in											
2	Mr.A.Fizoor Rahman Asst. Professor Civil / VMKVEC fizoorrahman@vmkvec.edu.in											

17CVSE17

DISASTER PREPAREDNESS AND DECISION MAKING

Categor y	L	Т	P	Credit
CC	3	0	0	3

PREAMBLE

To introduce the students to agricultural economics and enabling the students to understand the plan and to identify specific risks such as building and equipment hazards that can result in flooding to records storage areas, dangerous storage practices that increase the risk of fire near irreplaceable research and development records, and periodic electric storms or tornados that endanger electronically generated vital records

PREREQUISITE

NIL

	Γ	NIL												
COURS	E OBJE	CTIVE	S											
1	To crea	te appro	priate pla	nning,	prepara	tion and	d respon	se for e	mergenc	y treati	ment in o	disaster	situation.	
2			he role o											
3		To implement disaster drills and provide opportunities to participate in disastrous situation.												
4	To learn efficient emergency skills for providing support to disaster survivors.													
5														
COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to CO1: Understand the importance of preparedness in disaster management Understand													
								_				Underst	and	
	CO2: Perform various preparedness related activities during disaster management											Apply		
	CO3:Understand the role of various institutions in disaster management and response													
activities	understand Understand											and		
CO4 : Pr	CO4: Prepare response plan for disaster management Apply													
CO5 : Pa	rticipate	and coo	rdinate di	saster 1	manager	ment ac	tivity					Apply		
MAPPI	NG WIT	H PRO	GRAMN	Æ OU	TCOM	ES AN	D PRO	GRAM	ME SP	ECIFIC	COUTO	COMES		
COS	P PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO	PSO2	
	O 1									1		1		
CO1	S -	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	S S - M												-	
CO3	S L M											-	-	
CO4	S -	S	-	L	M	-	-	-	-	M	-	-	-	
CO5	S -	S	-	L	-	-	-	-	-	M	-	-	-	

S- Strong; M-Medium; L-Low

SYLLABUS

DISASTER PREPAREDNESS:Disaster Preparedness- concept and significance - Disaster Preparedness Measures - Institutional Mechanism for Disaster Preparedness - Disaster preparedness with special needs/ vulnerable groups - Disaster Preparedness: Policy and Programs

DISASTER PREPAREDNESS PLAN:Concept and Significance of Disaster Preparedness Plan - Disaster Preparedness Plan essentials - Community Based Disaster Preparedness plan - Prediction, Early Warnings and Safety Measures of Disaster

ROLE OF DIFFERENT ORGANIZATIONS/INSTITUTIONS:Role of Information, Education, Communication, and Training - Role of Government, International and NGO Bodies - Role of Information Technology (IT) in Disaster Preparedness - Role of Geographers on Disaster Management

DISASTER RESPONSE:Essential Components of Disaster Response, Disaster Response Plan, Resource Management-Financial, Medical, equipment, communication, Human, transportation, Food and essential commodity (Identification, Procuring, Propositioning and deployment), Directing and controlling functions - Communication, Participation &

activation of Emergency Preparedness Plan, Logistics Management, Emergency support functions, Need and damage assessment

COORDINATION IN DISASTER RESPONSE:Disaster Response Plan - Communication, Participation, and Activation of Emergency Preparedness Plan - Search, Rescue, Evacuation and Logistic Management - Psychological Response and Management - Psychological Response and Management (Trauma, Stress, Rumor and Panic) - Relief and Recovery - Medical Health Response to Different Disasters

TEXT BOOKS:

- 5. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.
- 6. Roy, P.S. (2000): Space Technology for Disaster management: A Remote Sensing & GIS Perspective, Indian Institute of Remote Sensing (NRSA) Dehradun

REFERENCES:

- 1. M Sharma, R.K. & Sharma, G. (2005) (edition) Natural Disaster, APH Publishing Corporation, New Delhi.
- 2. www.gis.development.net
- 3. www.iirs.nrsa.org
- 4. http://quake.usgs.gov.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.C.Vaidevi	Asst. Professor	Civil / AVIT	vaidevi.c@avit.ac.in
2	Mr.M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in

17C	VSE18	VULNERABILITY MAPPING TECHNIQUES FOR DISASTERS	Category	L	Т	P	Credit				
		FOR DISASTERS	CC	3	0	0	3				
PREAMBLE											
	agement to	roduce the students to agricultural economics and enabling of for determining the likelihood of a disaster and its final potential disaster by calculating an Annual Loss Expectange of the control of th	ncial impact								
PRER	REQUISIT	ГЕ									
		NIL									
COUI	RSE OBJ	ECTIVES									
1	Discus	s the foundational principles and theory of vulnerability m	napping techn	iques for	disasters						
2	Describ	e the phases of a hazard and theoretical foundations of vu	lnerability ma	apping tec	chniques f	or disaster	rs				
3	Underst	tand the importance of in vulnerability mapping in cultura	l context								
4	Underst	tand the role of various organizations in vulnerability map	ping								
5	To acqu	nire knowledge of remote sensing and GIS for risk assessn	nent								
COU	RSE OUT	COMES									
On t	he success	sful completion of the course, students will be able to									
CO1 :	Understan	nd the importance of risk and vulnerability in disaster man	agement		Remem	ber					
CO2 :	Analyze v	various risk techniques	-		Analyze	;					

MAPPING WITH PROCE	AMME OUTCOMES	AND PROGRAMME SPECIFIC	OUTCOMES
WIAPPING WITH PROGRE	ANNINE OUTCONES	AND PROGRAMME SPECIFIC	OUTCOMBS

CO3:Understand vulnerability parameters and importance of organizational structure in

CO4: Apply remote sensing and GIS for Risk assessment

CO5: Possess knowledge on Indian Scenario in Risk management

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	L	-	M	M	-	M	-	-	-	S	-	-
CO2	S	S	M	-	-	-	-	-	-	-	-	-	S	S	M
CO3	S	M	-	-	-	M	M	-	-	-	-	-	L	M	-
CO4	S	S	-	L	M	-	-	-	-	-	-	-	M	S	-
CO5	S	-	-	-	-	-	-	-	-	-	-	-	S	-	M

Apply

Apply

Analyze

S- Strong; M-Medium; L-Low

vulnerability analysis

SYLLABUS

HAZARD, RISK AND VULNERABILITY: Hazard, Risk and Vulnerability: Concept and Relationship- Understanding Risk: Concepts and Elements - Disaster Risk Reduction- Risk Analysis Techniques- People Participation in Risk Assessment

VULNERABILITY CONCEPT AND PARAMETERS: Vulnerability: Concept and Parameters- Vulnerability Analysis-Observation and Perception of Vulnerability - Vulnerability Identification

SURVIVAL: Socio-Economic Factors of Vulnerability-Vulnerability of Shanty Town- Experience of Vulnerability in India-Strategies for Survival

TECHNIQUES OF RISK AND VULNERABILITY ANALYSIS: Risk Assessments and Vulnerability Analysis Techniques, Remote Sensing and GIS Basic

CASE STUDIES: Regional planning in India - Regional planning-National & International case studies **TEXT BOOKS**:

- 1. White, Gilbert F. and J. Eugene Hass, 1975, Assessment of Research on Natural Hazards, Cambridge, the MIT Press, MA.NOAA Coastal Services Center, "Linking People Information and Technology,:
- 2. "Risk and Vulnerability Assessment Tool".

REFERENCES:

- 1. http://www.csc.noaa.gov/rvat/criticaledd.html
- 2. www.nidmindia.nic.in

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.Pa.Suriya	Asst. Professor	Civil / AVIT	suriya@avit.ac.in
2	Mr.Sathiyaraj R	Asst.Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in

17CVSE19 INDUSTRIAL HAZARDS PREVENTIVE Category L MANAGEMENT

Category	L	T	P	Credit
CC	3	0	0	3

PREAMBLE

To introduce students to industrial hazard and enabling them in assessing various industrial hazard and plan for safe disposal for the betterment of related industry and society.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	To understand various industrial hazards and their effects.
2	To assess risk and hazard analysis of Industries.
3	To prepare offsite and onsite plans.
4	To understand the importance operating procedures in disaster management
5	To understand the importance of training and mock drills in disaster management

COURSE OUTCOMES

On the successful completion of the course, students will be able to

On the successful completion of the course, students will be able to	
CO1: Understand factors affecting various technological disaster	Understand
CO2: Categorize various industrial disasters based on their occurrence	Understand
CO3:Analyze various factors affecting Risk	Analyze
CO4: Prepare onsite and offsite plans for disaster management	Apply
CO5: To participate in training and mock drills in disaster management activities	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	L	-	-	-	-	-	S	-	L
CO2	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO3	S	S	-	M	-	-	-	-	-	-	-	-	S	S	-
CO4	S	M	S	-	-	-	-	-	-	-	S	-	L	M	S
CO5	S	M	-	-	-	-	-	L	S	_	S	-	S	M	-

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Concept, Need and Importance of Industrial Disaster Management

INDUSTRIAL HAZARDS: Chemical hazards, Biological hazards, Radiological hazards, nuclear hazards, Physical hazards, Electrical hazards, Fire hazard, Gas hazards etc..

RISK ASSESSMENT & HAZARD IDENTIFICATION: Checklist procedure, Preliminary hazard analysis, What if analysis, Failure mode effect analysis, Hazard and operability (HAZOP) studies, Hazard analysis techniques: Fault tree analysis, Event tree analysis, General outline of DOW index, Risk estimation and management, Major hazard control. Identification of hazard, Categorization methods for elimination of hazard, Mechanical hazards.

DISASTER MANAGEMENT ONSITE PLANS: Standard operating procedures, control room, safety officer, and Different committees for Disaster management, rescue team, training, exercises and mock drills.

DISASTER MANAGEMENT OFFSITE PLANS: Dissemination of information, identification of vulnerable locations, need and damage assessment, rescue and relief plans, compensation.

TEXT BOOKS:

- 3. Disaster Administration and Management, Text & Case studies- SL Goel-Deep and Deep Publications.
- 4. Hazardous Materials Disaster Management-Arun kumar Talwar, Commonwealth Publisher.

REFERENCES:

1. Heinrich H.W. "Industrial Accident Prevention" McGraw-Hill Company, New York,

2.	2. "Safety in Industry" N.V. Krishnan Jaico Publisher House, 1996											
COUR	COURSE DESIGNERS											
S.No.	S.No. Name of the Faculty Designation Department Mail ID											
1	1 Mrs.R.Abirami Asst. Professor Civil / AVIT abirami.civil@avit.ac.in											
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com								

17CV	SE20	A	PPLIC					DISAST	ΓER	Categ	gory	L	Т	P	Credit
	MANAGEMENT EC 3												0	0	3
PREAN	MBLE														
To unde									location	of recor	ds, me	dia upoi	n which re	cords are	stored
PRERE	EQUISI	TE NIL													
COURS	SE OBJ	ECTI	VES												
1	Т	o und	erstand	the bas	ic conce	epts of 1	remote	sensing	and GI	S					
2	To understand the importance of file management														
3	T	o acqu	ire bas	ic conc	ept of ir	nage pr	ocessin	g in dis	aster m	anageme	ent stud	ies			
4			icipate i												
5				use of 1	emote	sensing	and GI	S in sol	ving pro	oblems i	n water	resour	ces throug	h case stu	dies.
COUR															
	e succes		•										•		
CO1. Ir													Apply		
				n mode	ls and u	se the 1	atest in	telligen	t techno	logy and	d algori	thms	Apply		
in disast										C 1 .	c c	. 111			
imageri		eoreti	cal expl	anation	s on Im	age pro	cessing	and ex	traction	of data	from S	atellite	Analyze		
				g GIS ₁	olatforn	n by into	egrating	g Satelli	te Data	with GI	S Produ	icts	Apply		
the for I				and CI	C in a a 1		- l -1	:							
CO5. Apply remote sensing and GIS in solving problems in water resources MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
			,										1	T====	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSO1	PSO2	PSO3

COS	POI	PO2	POS	PO4	POS	POo	PO/	PO8	PO9	POIU	POH	PO12	PSOI	PSO2	PSO3
CO1	S	M	L	S	S	L	-	-	-	-	-	-	L	M	L
CO2	S	M	L		-	-	L	L	-	-	-	-	L	M	L
CO3	S	M	L	S	M	-	-	-	-	-	-	-	S	M	L
CO4	S	S	M	-	S	-	-	-	-	-	-	L	S	S	M
CO5	S	M	M	-	-	-	-	-	-	-	_	L	M	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

GEOGRAPHICAL INFORMATION SYSTEM (GIS): Definition of GIS, Concept of Space and Time, Spatial data - Map Projection and Datum - Domains of Spatial information system, Components of GIS (/Hardware, Software, Data, People and Process) - GIS Functionalities for end user / system (Data Acquisition, Data Input, Data Management, Data Analysis, Data Modeling and Data Output) - Web based GIS Technology

FILE MANAGEMENT: File management, data base management systems in GIS- data base, query, SQL statement - data manipulations and product generation, Environmental GIS, Data acquisition system using GPS, component of GPS, DGPS, Kinematic GPS, factors that affect GPS, GPS application

DIGITAL IMAGE PROCESSING: Digital image processing – image rectification and restoration, image enhancement, contrast manipulation, multi image manipulation, image classification- supervised and unsupervised classification, data merging, Hyper spectral image analysis, introduction to image processing software. Spatial data- field, object, computer representation of geographic information, raster representation, vector representation, point, line and polygon representation, topology, scale and resolution, sources of error and data quality, database design, convention, mapping concepts and coordinate systems- types of projection, geographic and planar, projection.

AERIAL PHOTOGRAPHY: Aerial photography, advantages, limitations, geometric characters – film, spectral sensitivity of Black and White films, color film, color infra red film - filter – Aerial film cameras, single lens frame camera, panoramic cameras, film resolution, electronic imaging, aerial videography, multi band imaging,. Elements of aerial photo interpretation, Preparation of photogeological map

REMOTE SENSING: Aerial photography, advantages, limitations, geometric characters – film, spectral sensitivity of Black and White films, color film, color infra red film - filter – Aerial film cameras, single lens frame camera, panoramic cameras,

film resolution, electronic imaging, aerial videography, multi band imaging,. Elements of aerial photo interpretation, Preparation of photogeological map

TEXT BOOKS:

- 3. P.A. Burrough, 2007, Principles of Geographical Information System for Land Resource Assessment, Oxford University Press, p.345.
- 4. Tor Bernhardsen, 2009, Geographic information system an introduction, 3rd edition, Wiley student edition, p.428
- 5. P.A. Longley, M.F. Goodchild, D.J. Manguire, D.W. Rhino, Geographical Information System, Volume I: Principal and Technical Issues, Volume II: Management Issues and Applications, John Wiley & Sons, p432.
- 6. Thomas M. Lillesand, Ralph W. Kiefer, Jonathan W. Chipman, 2007, Remote sensing and image interpretation, Fifth edition, Wiley student edition.
- 7. Agarwal, C.S. and Garg, P.K. 2000, Textbook on remote sensing in natural resources monitoring and management, Wheeler Publishing, A division of A.H.Wheeler & Co. Ltd., New Delhi

REFERENCES:

- 1. Seelye Martin, 2004, An introduction to Ocean Remote sensing, Cambridge
- 2. Lee-Lueng Fu Anny Cazenave, 2010, Satellite altimetry and earth sciences, Academic press, International geophysics series, p.432.
- 3. John. R. Schott, 2007, Remote sensing the image chain approach, Oxford university press, p.394.
- 4. Ian Heywood, 2006, An introduction to GIS, Prentice Hall, 464p.
- 5. Paul A. Longley, 2010, Geographic Information Systems and Sciences, John Wiley and Sons Ltd, 536p.
- 6. Michael f. Goodchild, 2005, Geographical Information System

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.K.Naveen Kumar	Asst. Professor	Civil / AVIT	naveen.civil@avit.ac.in
2	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com

1/0/01				7. //	ABTAC	TOR ATTOR	Tre									
				M	ANAG	EME	NT.			EC	7	3	0		0	3
r	Γο intro	oduce t	he stuc	lents to	under	stand t	he fina	nce and	d insur	ance rela	ated red	cords tl	hat are r	orn	nally us	ed and
filed as a	unit th	nat can	be eval	luated.												
PREREQ	UISIT	E														
	ľ	NIL														
COURSE	OBJE	ECTIV	ES													
1	To in	troduce	e to var	ious ba	nking j	practic	es									
2										I & LIC						
3									in ins	urance p	ractice	S				
4			in disa													
5	_		te in di					S								
6	To in	troduce	e to var	ious ba	ınking p	practic	es									
COURSE	OUT	COME	ES													
On the s	success	ful con	npletion	n of the	course	e, stude	ents wil	l be ab	le to							
CO1: Und	derstan	d impo	rtance (of bank	ing in	disaste	r mana	gemen	t				Unders	stan	d	
CO2: Und													Unders	stan	d	
CO3: Car	ryout v	arious	bankin	g pract	ices du	ring en	nergen	cy and	crisis s	ituation			Apply			
CO4: Per	form va	arious o	lisaster	related	d banki	ng prac	ctices in	ncludir	ng insu	rance			Apply			
CO5: Adv	ocate v	various	insura	nce po	licies ir	n disast	er man	ageme	nt activ	ities			Apply			
MAPPIN	G WI	TH PR	OGRA	MME	OUTO	COME	S AND) PRO	GRAN	IME SP	ECIF	IC OU	TCOM	ES		
COS	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO1	PO1	PO1	l PSC)	PSO	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2	1		2	
CO1	S	-	-	-	-	-	-	-	-	-	-	-	M	[-	L
CO2	S	-	-	-	-	-	-	-	-	-	-	-	_		-	-
CO3	S	S	-	L	-	M	-	-	-	-	-	-	L	,	L	M
CO4	S	S	-	-	-	M	-	-	-	-	-	-	-		L	M

Category

L

FINANCE AND INSURANCE IN DISASTER

Credit

M

SYLLABUS

S- Strong; M-Medium; L-Low

CO₅

17CVSE21

INTRODUCTION TO BANKING & FINANCE: Concept of Banking, Types of banks, Functions of banks; Tax administration; Public budgeting and finance systems; State and local finances

CENTRAL BANK / RESERVE BANK : Role and function of central bank, RBI and Monetary Policy

INTRODUCTION TO INSURANCE: Evolution and Features of Insurance, Classification of Insurance, Conditions relating to risk, selection or Risk

LIFE INSURANCE & GENERAL INSURANCE: Principles of LIC, Privatization of Life Insurance Business, Role and performance of LIC, Non-life insurance – Fire, Automobile, Marine, Health, Rural, Social and miscellaneous insurances.

INSURANCE POLICIES FOR DISASTER MANAGEMENT: Evaluation of risk funding and risk transfer policies; Catastrophe insurance pool; Reserve funds and contingent credit policies; Role of Government and market participants; Insurance policy design; Fiscal cost of relief and reconstruction; Grants and low interest loan for reconstruction

TEXT BOOK

- 1. Money, Banking & Public Finance T.N.Hajela- Ane Books Pvt. ltd-8th Edition.
- 2. Banking and Financial Markets in India BhasinNiti-New Century Publications-1947 to 2007.
- 3. Banks & Institutional Management- Vasant Desai-Himalaya PublishingHouse-1st Edition.

4. Banking theory and practices – K.C.Shekhar, LekshmyShekhar – Vikas Publishing House-19th Edition.

REFERENCES:

- 5. Insurance principles & practice -M.N.Mishra, S.B.Mishra -S.Chand Publication- 17th Edition
- 6. Life Insurance in India- H. Sadhak (Response Books) 1stEdition
- 7. Insurance in India- P.S.Palande, R.S.Shah, M.L.Lunawat (Response Books) 6th Edition
- 8. National Disaster Response Plan, NCDM, New Delhi, 2001.

S.No.	Name of the Faculty	Designation	Department	Mail ID			
1	Mr.D.Parthiban	Asst. Professor	Civil / AVIT	parthiban.civil@avit.ac.in			
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com			

17CVSE22	ADVANCED SYSTEM DYNAMICS MODELING IN TRANSPORTATION	Category	L	Т	P	Credit
17CVSE22	ENGINEERING	EC	3	0	0	3

PREAMBLE

To provide advanced level of knowledge in System Dynamics Modeling in Transportation Engineering

PREREQUISITE

NIL

COURSE OBJECTIVES

- 1 To gain knowledge the simulation techniques in System Dynamics Modeling in Transportation Engineering
- 2 To learn subsystems modelling
- 3 To learn system dynamic modelling
- 4 Learn alternative view of dynamic modelling
- 5 To analyze case studies on dynamic modeling of transport systems.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Students would have understood the simulation techniques used in Transportation Engineering	Understand
Co2. Students would have understood subsystems modelling	Apply
Co3. Students would have understood system dynamic modelling	Apply
Co4. Students would have understood alternative view of dynamic modelling	Apply
CO5. Students would have analyses case studies on dynamic modeling of transport systems	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
S														2	
CO 1	S	S	L	-			L						M	L	
CO 2	S	M	L	S									M		L
CO 3	S	M	S	S					L					M	
CO 4	S	S	M	M											M
CO 5	S	M	S	-					L				L	L	L

S- Strong; M-Medium; L-Low

SYLLABUS

COMPLEXITY AND SYSTEMS THINKING: Change – Complexity and Interdependency – Systems thinking – Floundering – Level of abstractions - Tools and Transitions in Systems Thinking – Synthesis and Organizational Learning ADVANCED MODELING EFFORTS: Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity – Harmonic Analysis. Steady State Modeling – Discrete vs. Continuous – Generic infrastructures – Subsystems – Sensitivity parametering - Case Studies

ADVANCED SIMULATING TECHNIQUES: Graphical Bulletin function – Conveyor flows – Converter – Flow substitutes – Connector – Normalizing Inputs – Generic flow activities – Case Studies

MODELING PROCESS: System Dynamics Modeling challenges – Steps in Modeling Process – Guidelines – Model Boundary– Modeling soft variables – Quantification vs. Measurement

SOPHISTICATED DYNAMICS MODELING: Need – Isolation Process – Demand Expansions – Cycle functions – Sensitivity Analysis – Alternative view of Dynamic Modeling

TEXT BOOKS:

- 1. Pratab Mohapatra K.J. et al., "Introduction to System Dynamics Modeling", University Press, Hyderabad, 1994
- 2. Thirumurthy A.M., Environmental Facilities and Urban Development in India A System Dynamics Model for Developing Countries, Academic Foundations, India, 1992

REFERENCES:

- 3. Technical Manual on An Introduction to Systems Thinking STELLA Research Software, High Performance Systems Inc., Hannover, 1996
- 4. Advanced Manual on An Introduction to Systems Thinking STELLAII Research Software, High Performance Systems Inc., Hannover, 2002

S.No	Name of the Faculty	Designation	Name of the College	Mail ID				
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com				
2	Mr.Sanjay Kumar	Asst. Professor	Civil / AVIT	sanjay.civil@avit.ac.in				

1,01	CVSE23 ENVIRONMENTAL IMPACT ASSESSMENT TRANSPORTATION PROJECTS I						SMENT OF		•		Γ	P	Credit
			HINDI C	KIAI	IONTK	OJECISI		EC	3)	0	3
PREA	MBLE	•						•	•	•	1		1
-	oose the ment of					ogy, documenta	ation and re	quirement	ts of env	ironment	al and so	ocial impa	act
PREF	REQUIS	SITE - N	NIL										
COUI	RSE OE	BJECTI	IVES										
1			•			ironmental Lav intrusion etc	ws and impo	rtance of	EIA on	Transpor	tation Pro	ojects wit	th
2					stood the neasures.	impact of Tran	sportation p	rojects or	the env	rironment	and are	able to d	evelop
3	They	will als	o know	about t	the legal 1	requirements of	f Environme	ntal Asse	essment	for projec	ets		
1	Stude	nts wou	ıld have	unders	stood Imp	pact of Traffic o	on Environn	ent and I	Energy E	Efficiency	strategie	es	
5	Stude	nts wou	ıld have	unders	stood Mea	asures for Air a	and Noise Po	ollution P	olicies				
COUI	RSE OU	JTCOM	1ES										
On the	succes	sful con	npletion	of the	course, st	tudents will be	able to						
CO1. 1	Provides	an exp	osure to	various	s Environ	nmental Laws ar	nd importan	ce of EIA	on Tran	sportation	1 Analy		
CO1. Projec	Provides ts with 1	s an experespect	osure to	various, air po	s Environ llution, vi	nmental Laws and isual intrusion of	nd importanetc.,				Anary	yze	
CO1. Projec	Provides ts with 1 Students	s an experespect	osure to to noise	various, air po	s Environ llution, vi	nmental Laws ar	nd importanetc.,				Anary		
CO1. Projection CO2. Sure ab	Provides ts with the Students le to dev	s an experespect swould velop an	osure to to noise have ur	various , air pol nderstocement m	s Environ llution, vi od the imp nitigation	nmental Laws and isual intrusion of Transpo	nd importanetc.,	ects on the	e enviroi	nment and	Anary	yze	
CO2. Some ab	Provides ts with the Students le to deverted They with the Students students are the studen	s an exprespect swould velop an	osure to to noise have ur ad imple	various , air ponderstocement mout the	s Environ Illution, vi od the imp nitigation legal req	nmental Laws and isual intrusion of the pact of Transport measures	nd importantetc., ortation projection	ects on the	e environ	projects	Analy Analy Apply	yze	
CO2. Sare ab	Provides ts with a Students le to deverte They wing Students gies	s an experespect s s would velop and ll also k	osure to to noise have un id imple know ab	o various e, air pol ement n pout the	s Environ Illution, vi od the imp nitigation legal req	nmental Laws and isual intrusion of Transpoor measures	nd importancetc., ortation projection	nl Assessi	e environ ment for Energy	projects	Analy Analy Apply Apply	yze	
CO1. Project CO2. Pare ab CO3. CO4. CO4. Strateg	Provides ts with the Students le to dev They with Students gies Students	s an experespect is would velop and it also keep sould be would be	osure to to noise have ured implession ab	o various e, air pol ement mout the mout the	s Environ Illution, vi od the imp nitigation legal req ood Impa	pact of Transpo measures quirements of E	nd importantetc., ortation projectivironments on Environments d Noise Poll	ects on the	e environment for Energy licies	projects	Analy Analy Apply Apply Unde	yze y	
CO1. Projection of the control of th	Provides ts with the Students le to dev They with Students gies Students	s an experespect is would velop and it also keep sould be would be	osure to to noise have ured implession ab	o various e, air pol ement mout the mout the	s Environ Illution, vi od the imp nitigation legal req ood Impa ood Measu	pact of Transpo measures quirements of E act of Traffic o	nd importantetc., ortation projectivironments on Environments d Noise Poll	ects on the	e environment for Energy licies	projects	Analy Analy Apply Apply Unde	yze y	PSO3
CO1. Projection of the control of th	Provides ts with the Students le to dev They with Students gies Student	s an experespect swould velop and ll also kes would be would be would with P	osure to to noise have und impless that the table to table to the table to table	o various e, air pole ement mout the understoo	s Environ Illution, vi od the imp nitigation legal req ood Impa ood Measu E OUTC	pact of Transpo measures quirements of E act of Traffic o ures for Air and	nd importantetc., ortation projectivironments on Environments d Noise Poll PROGRAM PO8 PO9	al Assessi ent and I ution Poli	e environment for Energy licies	projects Efficiency	Analy Apply Apply Unde	yze y y rstand	PSO3
CO1. Projection of the control of th	Provides ts with a Students le to dev They wi Students gies Student PING V	s an experespect is would velop and it also keep swould be would with PO2	osure to to noise have und imple know ab have und have und have und PROGR	o various e, air pos ement mout the ndersto andersto AMMI	s Environ Illution, vi od the imp nitigation legal req ood Impa ood Measu E OUTC	pact of Transpo measures quirements of E act of Traffic o ures for Air and OMES AND F	nd importantetc., ortation projectivity on Environmental Noise Poll PROGRAM PO8 PO9	ects on the al Assessivent and I wition Political PO10	e environment for Energy licies CIFIC PO11	projects Efficiency OUTCO PO12	Analy Analy Apply Apply Unde	y y rstand PSO2	
CO1. Projection of the control of th	Provides ts with a Students le to dev They wi Students gies PING V PO1 S	s an experespect is would velop and it also keep swould be would be written as would be with PO2	osure to to noise have und implestance about the latest	o various c, air poi ment m cout the understo AMMI PO4	s Environ Illution, vi od the imp nitigation legal req ood Impa ood Meass E OUTC	pact of Transpo measures quirements of E act of Traffic o ures for Air and OMES AND F	nd importantetc., ortation projection projection Environmentation Environ	ent and I ution Poli	ment for Energy Dicies CIFIC PO11	projects Efficiency OUTCO PO12	Analy Analy Apply Apply Unde	yy rstand PSO2	L
CO1. Project CO2. CO3. CO3. CO3. CO4. Strateg	Provides ts with a Students le to dev They wi Students gies Student PING V	s an experespect swould velop and li also kes would swould be with the policy	osure to to noise have und imple know ab have und have un	o various and a restorment mout the country of the	s Environ llution, vi od the imp nitigation legal req ood Impa ood Measu FO5	pact of Transpo measures quirements of E act of Traffic o ures for Air and OMES AND F	nd importantetc., ortation projectivity on Environmental Noise Poll PROGRAM PO8 PO9	ent and I ution Poli ME SPE PO10 -	e environment for Energy I	projects Efficiency OUTCO PO12	Analy Analy Apply Apply Unde MES PSO1 L	yy rstand PSO2 -	-

SYLLABUS

ENVIRONMENTAL STANDARDS IN URBAN AREAS AND EIALaws concerned with protection of the environment such as Environmental Protection Act, Air and Noise Pollution Act, Motor Vehicle Act, Town and Country Planning Act, Development Control Regulation, Coastal Regulation Zone

MEASUREMENT AND POLLUTION PREDICTION: Stability and equilibrium of plane frames - perfect frames - types of trusses - analysis of forces in truss members - Method of joints - Method of tension coefficients - Method of section Measurement of Air and Noise Pollution, Land Acquisition, Rehabilitation, Collection, Compilation and Presentation of Pollution and Impact Data, Measuring Impact before construction, at the time of construction and after construction, Prediction, Modeling and Validations.

ENVIRONMENTAL QUALITY AND MANAGEMENT Importance of EIA, Environmental Appraisal, EIA Statement, Vehicle and Traffic Noise, Ambient Noise Level, Heath Effects, Vibration – Damage to building, Exhaust Emission – Pollutant, Health effects, Air Pollution, Urban Ambient Air Quality Standards, Effects on Human being

ENVIRONMENTAL MAINTENANCE AND LEGAL SYSTEMS: Impact of Traffic on Environment – Network Pattern, Urban Growth Indicators of Environmental Quality, Energy use, Fuel Economy in Transportation, Energy Efficiency strategies

MITIGATIVE MEASURES AND POLICIESMitigate Measures for Air and Noise Pollution Policies and Strategies, Involvement of Stakeholders, Public Participation, And Institutional Arrangements.

TEXT BOOKS:

- 6. Larry W Canter, "Environmental Impact Assessment", McGraw Hill Publishers, 1996.
- 7. RaoV.Kolluru; "Environmental Strategies Handbook", McGraw Hill Publishers, 1994.
- 8. David Banister; "Transport Policy and Environment" E&FN Spain, 1999

REFERENCES:

- 10. World Bank; "the Impact of Environmental Assessment A Review of World Bank Experience, Washington, 1997.
- 11. World Bank; Road and the Environment, Washington, 1997.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Mr.C. Kathirvel	Asso. Professor	Civil / VMKVEC	geologykathir@gmail.com		
2	Dr. D. S. Vijayan	Asso.Prof	Civil / AVIT	vijayan@avit.ac.in		

1501	CE24	INIT			CD A NIC	DODE	ATION	AL CINICIT	TEN AC	Ca	ategory	L	Т	P	Credit
17CV	SE24	INI	ELLIC	FENI I	IKANS	POKI	AHO	N SYST	ENIS	CO	C	3	0	0	3
PREA	MBLE	<u> </u>													
•	To le	arn the	fundan	nentals (of ITS.										
•	To st	udy the	ITS fu	nctional	l areas										
•	To ha	ive an o	overviev	w of ITS	S imple	mentati	on in d	evelopi	ng cour	ntries					
PREF	REQUI	SITE -	NIL												
COU	RSE O	ВЈЕСТ	IVES												
1	The S	tudents	should	be able	to Unc	lerstand	the ser	nsor and	l comm	unicatio	n technol	logies.			
2	The S	tudents	should	be able	to App	oly the v	arious	ITS me	thodolo	ogies					
3										der India	an condit	ions			
4										ignment					
5										d inform		tom			
				be able	to una	erstand	auvan	ced trav	eier and	u IIIIOIIII	ation sys	tem			
	RSE O														
			_					be able							
CO1.	The Stu	idents s	hould b	e able t	o Unde	rstand t	he sens	sor and	commu	nication	technolo	gies.		Understa	ınd
CO2.	The St	udents	should l	be able	to App	ly the v	arious I	TS met	hodolog	gies				Apply	
CO3.	The St	udents	should 1	be able	to Defi	ne the s	ignifica	ance of	ITS und	der India	n conditi	ons		Understa	ınd
CO4.	The Stu	idents s	hould b	e able t	o Unde	rstand t	he Dyn	amic T	raffic A	ssignme	nt			Understa	ınd
CO5.	The Stu	idents s	hould b	e able t	o Unde	rstand t	he adva	anced tr	aveler a	and infor	mation s	ystem		Apply	
MAP	PING V	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	GRAM	IME SP	ECIFIC	OUTCO	OMES		
CCC	DO1	DC2	DC2	DC 4	DO 7	DO C	DOZ.	DC0	DO0	DO10	DC 11	DC 12	DG C 1	DGGG	DGGG
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L											L		M
CO2	S	S	M	L	_	-	-	-	-	-	-	-	S		
CO3	S	S	-	L	S	-	-	-	-	-	-	-	-	L	L
CO4	S	S	-	M	S	-	-	-	-	-	-	-	S	M	L
CO5	M	S	M	M	M	-	-	-	-	-	-	-	S	M	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO INTELLIGENT TRANSPORT SYSTEMDefinition – Role and Responsibilities – Advanced Traveler Information System – Fleet Oriented ITS Services – Electronic Toll Collection – Critical issues – Security – Safety

ITS ARCHITECTURE AND HARDWAREITS Architecture Framework – Hardware Sensors – Vehicle Detection – Techniques –Dynamic Message Sign – GPRS – GPS – Toll Collection.

INTERSECTION MANAGEMENT: Video Detection – Virtual Loop - Cameras - ANPR – IR Lighting – Integrated Traffic Management –Control Centre – Junction Management Strategies

ADVANCED TRANSPORT MANAGEMENT SYSTEM: ATMS – Route Guidance – Issues - Travel Information – Pre Trip and Enroute Methods – Historical – Current – Predictive Guidance – Data Collection – Analysis – Dynamic Traffic Assignment (DTA) – Components – Algorithm

ADVANCED TRAVELLER AND INFORMATION SYSTEM: ATIS Concepts – Smart Route System – Data Collection – Process – Dissemination to Travelers – Evaluation of Information – Value of Information – Business Opportunities

TEXT BOOKS:

- 1. Intelligent Transport Systems, Intelligent Transportation Primer, Washington, US, 2001
- 2. Henry F.Korth, and Abraham Silberschatz, Data Base System Concepts, McGraw Hill, 1992
- 3. E.Turban, "Decision Support and Export Systems Management Support Systems", Maxwell Macmillan, 1998

REFERENCES:

- 1. Sitausu S.Mittra, "Decision Support Systems Tools and Techniques", John Wiley, New York, 1986
- 2. Cycle W.Halsapple and Andrew B.Winston, "Decision Support Systems Theory and Application", Springer Verlog, New York, 1987

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

17CVS	SE25		LOC			RANS	PORTA NG	ATION	ſ	Catego	ory L		T 0	P 0	Credit 3
DDEA	MDII	7													
PREA	MIBLI	i.													
To Pro	ovide a	n under	standin	g on Fre	eight Tı	ransport	t, Mode	ling, Lo	ocation	of the Fa	cility an	d its Ma	nagemen	t	
PRER	EQUI	SITE													
NIL															
COUF	RSE O	ВЈЕСТ	TVES												
1	Provid	des an u	ındersta	nding o	n Freig	sht Tran	isport, N	Modelin	ıg, Loca	ation of t	he Facili	ty and it	s Manage	ement	
	Stude	nts will	have a	knowle	dge on	the prin	nciples	and pra	ctice of	Freight	Transpor	t Model	ing and r	rovision	of the
2	Facili			10	6: 311	. F	F	- F-W		0			6 P		
3	Stude	ents wil	l have a	knowl	edge on	the Di	stributio	on Syste	em, Vel	hicle Rou	iting and	Schedu	ling		
4	Stude	ents wil	l have a	knowl	edge on	the Int	ermoda	l Trans	portatio	on					
5	Stude	ents wil	l have a	knowle	edge on	the To	ll Plaza	Analys	sis						
COLIE		UTCO													
On the	succe	ssful co	mpletio	n of the	course	e, studei	nts will	be able	to						
			nderstar	nding o	n Freigl	ht Trans	sport, M	Iodeling	g, Loca	tion of th	e Facility	y and	Understa	nd	
its Ma	nagem	ent													
			have a k sion of t		-	the prin	ciples a	nd prac	tice of	Freight 7	Transport		Apply		
CO3. S		ts will h	iave a k	nowled	ge on tl	he Distr	ribution	Systen	n, Vehic	cle Routi	ng and		Understa	nd	
							1.17	.					T T 1		
CO4. S	Studen	is will h	ave a k	nowled	ge on th	he Inter	modal	Transpo	ortation				Understa	nd	
CO5. S	Studen	ts will h	ave a k	nowled	ge on tl	he Toll	Plaza A	analysis					Understa	nd	
MAPI	PING V	WITH	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	GRAM	IME SP	ECIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	L	-	M
CO2	S	M	L	S	-	-	-	-	-	-	-	-	-	M	-
CO3	S	M	M	S	-	-	-	-	-	-	-	-	L	-	-
GC 1		I N/I	M	M	-	-	-	_	_	_	-	-	L	M	S
CO4 CO5	S S	M M	M	171	_	_	_				_	L	-	M	L

 $\textbf{LOGISTICS:} \ Introduction-Trade \ Logistics \ Service, \ Freight \ Costs-Freight \ Demand \ \ Models$

SYLLABUS

FREIGHT TRANSPORT: Econometric Models for Freight Forecasting – Input Output Models – Regional Network Systems – Graph Theory Application in Network Planning

DISTRIBUTION MANAGEMENT: Supply Chain – Warehousing – Facility Location, Inventory – Mode Choice – Distribution System, Vehicle Routing and Scheduling

LOGISTICS MANAGEMENT: Logistics out sourcing – IT Application in Freight Logistics – Technology in Logistics Management – Intermodal Transportation

APPLICATION IN FREIGHT TRANSPORT: Commercial Fleet Management, Toll Plaza Analysis

TEXT BOOKS:

- 1. Blanchard ST.Benjamen, "Logistics Engineering and Management", Prentice Hall, Inc, Eaglewood Cliffs, New Jersey 07632, 1986
- 2. Coyle J.J.Bardi JE, "The Management of Business Logistics", West Publishing Company, New York, 1984
- 3. Daganzo F.C and Newell FG, Vol.19B, No.5, pp.397-407, Physical Distribution from a Warehouse; Vehicle Coverage and Inventory Levels, Transportation Research, 1985
- 4. Edwin Bacht J.A., "Geography of Transportation and Business Logistics", Wm C Brown Company Publishers, Dubuque, IOWA, 1970
- 5. Herron P.David, "Managing Physical Distribution for Profit", Harvard Business Review, 1979

REFERENCES:

- 1. Khanna K.K., "Physical Distribution Management", Logistical Approach, Himalaya Publishing House, Bombay, 1985
- 2. Planning Commission, Government of India, Total Transport System Study Report on Commodity Flows, Railways, Highways and Coastal Shipping, (Interim) by RITES, New Delhi, 1987
- 3. Shapiro D. Roy and Heskett L.James, "Logistics Strategy-Cases and Concepts", Wesg Publishing Company, New York, 1985

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

17CVS	SE26		PA VI	EMENT	 ΓMAN	 IAGEN	IENT S	 SYSTE	M	Categ	ory L	·	Γ	P	Credi
170 11)12 2 0		IAVI	51 VII 51 V 1	I IVIII	AGEN		71,5112.		CC	3	()	0	3
PREA	MBLE														
Γο intr	oduce t	he conc	epts of	design,	evaluat	tion and	l perfor	mance	of exist	ing and r	new flex	ible and 1	rigid pav	ements w	ith due
	sis on s		_	_			_								
PRER	EQUIS	ITE													
NIL															
	RSE OB	IFCTI	VES												
JOUR															
l				•	_			•		e of exist	_	new flexi	ble and	rigid pave	ements
							•								
2	Stude	nts will	have a	knowle	dge on	the ev	aluation	of pav	ement j	performa	ince				
3	Stude	nts will	have a	knowle	dge on	the des	ign obj	ectives	and cor	nstraints					
1	Stude	nts will	have a	knowle	dge on	the Tec	hnique	s for de	velopir	ng predic	tion mo	dels			
5	Stude	nts will	have a	knowle	dge on	the Rei	oair of p	oaveme	nt defe	ets					
COLID	RSE OU														
On the	success	sful con	npletion	of the	course,	studen	ts will b	e able t	to						
								•		on and p					
	g and no		ble pav	ements	with d	ue empl	nasis on	ı systen	ns appro	oach and	perform	nance	Und	erstand	
				1 1	.1	1		r		C				1	
								•	•	formanc	e		App	ly	
CO3.	Student	s will h	ave a kı	nowledg	ge on th	e desig	n objec	tives ar	nd const	traints			Und	erstand	
	Students	will ha	ve a kn	owledg	e on the	e Techr	iques fo	or deve	loping	predictio	n model	S	App	ly	
CO4. S	Ctudont	s will h	ave a kı	nowledg	ge on th	e Repa	ir of pa	vement	defects	<u> </u>			App	ly	
	Student		DOCD	АММІ		COME	S AND	DDOC	'DAM	ME SDE	CIFIC	OUTCO			
CO5.		лти р		TATATTATT	COL	COME									
CO5.	PING W			1				DO0	PO9	L DO 10	DO 11	I DO12			
COS. S	PING W	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10	PO11	PO12	PSO1	PSO2	
COS. S	PO1	PO2 M	PO3 L	-	-	PO6 -	-	M -	-	-	-	-	L		L
COS. S	PING W	PO2 M M	PO3 L L	- S		-					- -		L M		L
CO5.	PO1	PO2 M	PO3 L	-	-	PO6 L	-		-	-	-	-	L		1

SYLLABUS

PAVEMENT MANAGEMENT PROCESS Historical background – general nature and applicability of systems methodology – basic components of Pavement Management System –Network and Project level of PMS - PMS functions-planning pavement investments

EVALUATION AND PERFORMANCE: General concepts – economic and functional evaluation – evaluation of pavement performance – evaluation of structural capacity – pavement distresses – condition surveys – safety evaluation

DESIGN STRATEGIES: Framework for pavement design – design objectives and constraints – basic structural response models – characterization of physical design inputs – generating alternative pavement design – economic evaluation of alternative design – analysis of alternative design strategies – selection of optimal design strategy.

PERFORMANCE PREDICTION MODELS: Techniques for developing prediction models – AASHO, CRRI and HDM models – computer applications – Identification of alternatives –deterioration modeling- priority programming Methods

REHABILITATION: Repair of pavement defects – maintenance of flexible and rigid pavements – bituminous and cement concrete overlays – system analysis,

TEXT BOOKS:

- Ralph Haas, W.Ronald Hudson and John Zaniewski, Modern Pavement Management, Kreigar Publishing Company, New York, 1994
- 2. M.Y.Stalin, Chapman and Hall Pavement Management for Airports, Roads and Parking Lots, New York, 1992

REFERENCES:

1. Michael Sargious, Pavements and Surfacing for Highways and Airports, AppliedScience Publishers Limited, London, 1975

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Mrs.J.Srija	Asst. Professor	Civil / AVIT	srija.civil@avit.ac.in		
2	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com		

17CVS	SE27			SENSI						Categ	ory L	-	Γ	P	Credit
17015	,1,2,1	TRA	ANSPO	RTAT	ION D	EVEL	OPME	NT		EC	3	()	0	3
PREA	MBLE									I	 	I			
Introdu	ice the s	tudents	s, the re	cent tec	hniques	s of Rei	note Se	ensing a	nd GIS	and I Its	applicat	ion in Tı	affic an	d Transpo	rtation
Engine	ering														
PRER	EQUIS	ITE													
NIL															
COUR	SE OB	JECTI	VES												
1	The S	tudents	e would	have k	nowled	ge on ti	ne hasio	es of rei	note sen	neina					
2	The St	udents	would	have kr	owledg	ge on th	e basics	s of gis	techniq	ues and	their app	lication	in the tra	ansport sec	ctors
3	The S	tudents	s would	have k	nowled	ge on tl	ne data	structui	res and a	analysis					
4	The S	tudents	s would	have k	nowled	ge on tl	ne basic	applic	ations in	ı transpo	rtation				
5	The S	tudents	s would	have k	nowled	ge on tl	ne Adva	anced T	raveler	Informa	tion Syst	em			
COUR	SE OU'	TCOM	IES												
On the	success	ful con	nletion	of the	COURCA	etudan	te will b	a abla i	to.						
CO1. T	he Stud	ents w	ould ha	ve knov	vledge (on the b	oasics of	f remot	e sensin	g			A	pply	
	The Stud		ould ha	ve knov	vledge (on the b	pasics of	f gis tec	chniques	s and the	ir applic	ation in t	the A	pply	
CO3. T	he Stud	ents w	ould ha	ve knov	vledge	on the o	lata stru	ictures	and anal	lysis			A	nalyze	
CO4. T	he Stud	ents w	ould ha	ve knov	vledge (on the b	pasic ap	plicatio	ns in tra	ansportat	tion		A	pply	
CO5 T	he Stud	ents w	ould ha	ve knov	vledge (on the A	Advance	ed Trav	eler Info	ormation	System		A	nalyze	
MAPP	'ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMN	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	-	-	-	-	-	M	M	-	-	M	L	S
CO2	S	M	-	-	-	M	-	-	-	-	-	-	M	-	-
CO3	S	M	-	-	-	-	-	L	-	-	-	-	L	L	-
CO4	S	L	M	M	-	-	-	L	-	L	-	-	L	-	M
CO5	S	M	M	-	-	-	-	-	-	-L	-	L	-	M	M
	ng; M-N	/ledium	ı; L-Lo	W											
SYLL	ABUS														

INTRODUCTION TO REMOTE SENSING: Definition – Components of Remote Sensing – Energy, Sensor, Interacting Body – Active and Passive Remote Sensing – Platforms – Aerial and Space Platforms – Balloons, Helicopters, Aircraft and Satellites – Electromagnetic Radiation – EMR Spectrum

INTRODUCTION TO GIS: Basic Concept and Components – Hardware, Software – Data Spatial and non-spatial – Georeferencing – Map Projection – Types of Projection – Simple Analysis – Data retrieval and querying DATA STRUCTURES AND ANALYSIS: Database – Raster and Vector data structures – Data storage – Run length, Chain and Block coding – Vector data storage – Topology – GIS Modelling - Raster and Vector data analysis – Buffering and overlaying techniques – Network Analysis – Spatial Analysis

BASIC APPLICATIONS IN TRANSPORTATION: Highway and Railway Alignment, location of transport terminals and roadside facilities, bus stops – Route optimization – Bus route rationalization – Accident analysis – Applications of Aerial Photography and Satellite Imageries

ADVANCED APPLICATIONS: GIS as an integration technology – Integration of GIS,GPS and Remote Sensing Techniques – Advanced Traveler Information System (ATIS) – Automatic Vehicle Location System (AVLS)

TEXT BOOKS:

- 3. Anji Reddy, "Remote Sensing and Image Interpretation", John Wiley and Sons Inc. New York, 1987.
- 1. M.G.Srinivas, "Remote Sensing Applications", Narosa Publishing House, 2001.
- 2. Burrough P.A, "Principles of GIS for Land Resources Assessment", Oxford Publication, 1994.

REFERENCES:

- 1. Jeffrey Star and John Ester, Geographical Information System An Introduction, Prentice Hall Inc., Englewood Cliffe, 1990.
- 2. Marble, D.F, Calkins, H.W and Penquest, Basic Readings in GIS, Speed System Ltd., New York, 1984.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com		
2	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in		

17CVS	SE28	INF		_		NSPOI PLANN		ON AND DES	SIGN	Catego			T	P	Credit
										EC	3		0	0	3
PREA	MBLE	•								•	•	•	•		•
Helps i	n Desig	n of Int	tersection	ons, Into	erchang	ges, Par	king an	d Termin	al Fa	cilities to	o be pro	vided in	an urban	area	
PRER	EQUIS	TE -	NIL												
COUR	SE OB	JECTI	VES												
1	Helps	in Des	sign of l	Intersec	tions, I	ntercha	nges, P	arking an	d Teri	minal Fa	acilities	to be pro	ovided in	an urban	area
2	The s	tudents	would	have ga	ained kı	nowled	ge on R	ail Infras	tructu	re Mana	gement				
3	The s	tudents	would	have ga	ained kı	nowled	ge on D	Design of (Grade	Separate	ors and	intersect	ions		
4	The st	udents	would l	nave ga	ined kn	owledg	ge on De	esign of N	Multi-	Storey an	nd Surfa	ce Parki	ng facility	y	
5	The st	udents	would l	nave ga	ined kn	owledg	ge on De	esign and	Case	Studies	of Inter	Modal T	ransfer F	acilities	
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	studen	ts will t	be able to							
			ould hav	e gaine	d know	vledge (on Rail	Infrastruc	cture I	Planning,	Operat	ion	Apply		
and Ma	anageme	ent.											1 - PP-J		
CO2. T	he stude	ents wo	ould hav	e gaine	d know	vledge (on Rail	Infrastruc	cture N	Managen	nent.		Understa	nd	
CO3. T		ents wo	ould hav	e gaine	d know	vledge (on Desi	gn of Gra	de Se	parators	and		Apply		
	The stude g facility		ould hav	e gaine	ed know	vledge (on Desi	gn of Mu	lti Sto	ried and	Surface		Apply		
CO5. T	he stude	ents wo	ould hav	e gaine	d know	vledge o	on Desi	gn and Ca	ase St	udies of	Inter Mo	odal			
Transfe	er Facili	ties						-					Apply		
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROGE	RAMI	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 I	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	S -	-	-	L	-	-	S	L
CO2	S	-	L	S	M	-	M	- -	-	-	-	-	M	-	-
CO3	S	-	M	S	-	M	-	- -		-	-	-	-	-	-
CO4	S	M M	- M	-	-	-	M	1	Ĺ	-	-	- M	M	L L	L
CO5	S				_	_	-	_ -		_	-		-		-

SYLLABUS

PRINCIPLES OF INTERSECTION DESIGN: Basic considerations – simplicity – uniformity – Manoeuvre Elements – Separation of conflict points – Design Elements – Design Speed – Intersection Curves – Super elevation for curves at Intersection – Intersection Sight Distance

DESIGN OF AT-GRADE INTERSECTIONS: Capacity and LOS, Design of Rotary and Signalised Intersections, Vehicle Actuated Signals, Signal Co-ordination, Area Traffic Control System (ATCS), Pedestrian Planning at Grade Intersections

DESIGN OF GRADE SEPARATED INTERSECTIONS: Design of Grade Separators – Principles, Design Criteria – Layout Design, GAD Preparation – Pedestrian Foot Over-bridge and Subway Design – Pedestrian Planning for Grade Separated Intersections

PARKING FACILITIES: Parking – Demand – Characteristics – Space Inventory – Accumulation – Duration – Turn over – Index – Design of Multi Storey and Surface Parking facility

DESIGN OF TERMINAL FACILITIES: Bus Terminus – Design Principles – Design Elements – Design and Case Studies of Inter Modal Transfer Facilities – Design – Case Studies of Bus and Rail Terminals.

TEXT BOOKS:

- 1. Robert F Baker, (Edition) "Hand Book of Highway Engineering, Van Nostrand Reinhold Company, New York, 1975
- 2. Kanna, S.K. and Justo, C.E.G. "Highway Engineering, Nemchand.

REFERENCES:

1 .New Jersy, "Transportation and Traffic Engineering Hand Book, Institute of Transportation Engineers, Prentice Hall, INC, 1982

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.T.Subramani	Professor & Head	Civil / VMKVEC	tsm2007@rediffmail.com
2	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in

			Category	L	Т	P	Credit
17CV	SF20						
1701	SE29	PRINCIPLES OF VALUATION	EC	3	0	0	3
PREA	MBLE		.		l	l .	l
		e students to understand about the importance and depreciation, the market value and depreciated re		ion, conce	epts of valuer	s and app	raisers, to
PREF	REQUIS	TTE: Nil					
COUI	RSE OB.	IECTIVES					
1	To learn	about the importance, need and advantages of val	uation.				
2	To deve	lop the knowledge regarding concept of land and I	property.				
3	To unde	erstand about the different types of assets and prop	erties.				
4	To knov	v about the price, cost, market and value.					
5	To stud	y about the Depreciated Replacement Cost (DRC)					
COU	RSE OU'	TCOMES					
On the	e success:	ful completion of the course, students will be able	to				
CO1R	Remembe	r the importance, need and advantages of valuation	1.			Ren	nember
CO2	Unders	tand the knowledge regarding concept of land and	property.			Unc	lerstand
CO3U	Jnderstan	d about the different types of assets and properties	· ·			Unc	lerstand

MAPPING WITH PROGR	AMME OUTCOMES	AND PROGRAMME	SPECIFIC OUTCOMES

COS	P	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	О														
	1														
CO1	S	M	L	-	-	-	L	-	L	-	-	-	-	-	-
CO2	S	M	L	S	-	-	-	L	L	-	-	-	S	L	L
CO3	S	M	M	S	-	-	-	-	-	M	-	-	S	-	L
CO4	S	M	M	M	-	-	-	-	-	-	-	-	M	M	-
CO5	S	M	M	-	-	M	-	-	-	-	S	M	L	L	M

Remember

Remember

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Importance Of Valuation – Need Of Valuation – Do's And Don'ts In Valuation – Advantages Of Valuation.

LAND AND PROPERTY CONCEPTS: Valuation of Land – Property - personal property - Property Valuers - Asset Valuers – Appraisers - Price changes over time result from specific and general effects of economic and social forces.

REAL ESTATE, PROPERTY, AND ASSET CONCEPTS:Real Estate - Real Property - Personal Property- Current Assets - Non-Current Assets - Property, Plant, and Equipment - Other Non-Current Assets - Depreciation.

PRICE, COST, MARKET AND VALUE: Price – Cost – Market and Value - Professional, Valuers - The Market Value**VALUATION APPROACHES**: Valuation Approaches - Cost Approach - Sales Comparison Approach - 3 Income Capitalization Approach- Depreciated Replacement Cost (DRC

TEXT BOOKS:

- 1. Principles of Valuation Paperback Import, 27 May 2009 by John Armatys, Phil Askham & Mike Green
- 2. Valuation of Real Properties, PB by Rangwala.

CO4Remember the price, cost, market and value.

CO5 Remember the Depreciated Replacement Cost (DRC)

REFERENCES:

- 1. Economics and Property, by Danny Myer
- Advanced Valuation for Secured Lending by Banks and Financial Institutions, by Syamales Datta
 Valuation of Immovable Properties under Direct Taxes, by Girish C. Gupta
- 4. Real Estate Investment: A Strategic Approach, by Andrew Baum.

$\frac{COU}{COU}$	COURSE DESIGNERS											
S.No	0	Name of the Faculty	Designation	Name of the College	Mail ID							
	1.	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in							
	2.	Mr.M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in							

17CVSE30	REAL ESTATE MANAGEMENT &	Category	L	Т	P	Credit
	ECONOMICS	CC	3	0	0	3

To introduce the students to understand about the concept of management in real-estate and implementation procedure, how to use real estate in urban development, regulatory laws and about the developers and promoters and how to do management of housing and Ownership and tenancies in real estate.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	To understand about the Concept of management in real-estate development and administration.
2	To learn about the Housing Finance Development Corporation and other financial institutions.
3	To understand about the developers and promoters and regulatory laws for construction.
4	To study about the Management of different types of housing and public buildings.
5	To learn about the Ownership and tenancies in real estate.

COURSE OUTCOMES

On the si	nccessful a	completion	of the course.	students wil	l he able to
On the st	uccessiui		or the course.	Students wil	i io aine io

CO1.Understand about the Concept of management in real-estate development and administration.	Understand
CO2.Remember about the Housing Finance Development Corporation and other financial institutions.	Remember
CO3.Understand about the developers and promoters and regulatory laws for construction	Understand
CO4.Remember about the Management of different types of housing and public buildings	Remember
CO5.Remember about the Ownership and tenancies in real estate.	Remember

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	L	-	M	-	-	-	-	S	L	M
CO2	S	L	L	S	-	-	-	M	M	-	-	M		S	
CO3	S	M	M	S	-	-	L	-	-	M	-	-	L		
CO4	S	M	M	M	-	-	M	-	-	-	L	-		M	M
CO5	S	M	M	-	-	-	-	-	-	-	L	-	L	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Concept of management in real-estate development and administration; aims, objects and practices renewal of leases and alternate methods for efficient estate management.

REAL ESTATE IN URBAN DEVELOPMENT: Urban development finance with particular reference to real-estate: role of Housing Finance Development Corporation and other financial institutions and agencies.

DEVELOPERS, PROMOTERS AND LAWS: Private development enterprises by developers and promoters; regulatory laws for construction of multi-storied buildings, transfers and administration.

MANAGEMENT OF HOUSING: Management of co-operative housing, apartment housing, corporate housing and public buildings

OWNERSHIP IN REAL ESTATE: Ownership and tenancies in real estate: effect of rent control and other laws. Methods of fixing rent, rigidity and flexibility

TEXT BOOKS:

- 1) Michael Thorncroft, Principles of Estates Management
- 2) W.A Leach, Urban Estates Management Vol. I and II

REFERENCES:

- 1) John P. Macey, Housing Management, Estate Gazettes.
- 2) Lichfield, Economics of Planning development

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
				-
2.	Mr.M.Senthilkumar	Asst.Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in

17CVS	E31		AL EST		HUMA	N RES	OURC	E		Catego	ry L	7	Γ	P	Credit
		141/4	TATOL							CC	3	C)	0	3
PREAM	MBLE										l		<u> </u>		
To intro							•			resource	environ	ment, rec	ruitmen	t and rete	ntion
PRERI	EQUIS	TE													
NIL															
COUR	SE OB	JECTI	VES												
1	To stu	dy abo	ut the va	arious t	ypes of	strateg	ies and	HR pla	ns and j	policies					
2	To und	lerstan	d about	the Glo	bal env	ironme	ent; Glo	bal con	npetitio	n and Glo	bal soui	rcing of l	abour		
3										npowerm				ement	
4										прожени					
			ut the po				ent strat	egies							
5	To kno	ow abo	ut the g	lobal H	R strate	egies									
COUR	SE OU	ГСОМ	IES												
On the	success	ful con	pletion	of the o	course,	student	s will b	e able t	0						
CO1. I	Remem	per the	various	types o	of strate	gies an	d HR pl	ans and	d policie	es				Rememb	er
CO2. U	Jndersta	nd abo	ut the C	Global e	nvironr	nent; G	lobal co	mpetit	ion and	Global					
	sourcing							•						Understa	ınd
				ent pro	cess ou	tsourci	no emr	olovee e	emnowe	erment an	d			Rememb	ner
		01 1110 1	COLORUM	ioni pro	CC BB GG	too aren		nojec c	mpo we	TITICITE UIT	•			rememe	, 01
	employe	e invo	lvement												
6	employe				000000	ant stee	otogica.							Damamk	
CO4 . R	Rememb	er the j	perform	ance ma		ent stra	ntegies							Rememb	
6	Rememb	er the j	perform	ance ma		ent stra	ntegies							Rememb	
CO4. R	Rememb Jndersta	er the j	perform global I	ance ma	tegies			PROG	GRAMN	ME SPEC	CIFIC (OUTCO	MES		
CO4. R CO5. U MAPP	Rememb Jndersta ING W PO1	er the production of the produ	global I ROGR	ance ma	tegies E OUT		S AND	PROG	FRAMN PO9	PO10	CIFIC (OUTCO!	PSO1	Understa PSO2	PSO3
CO5. U MAPP	Rememb Jndersta ING W PO1 S	er the just and the ITH P PO2 M	global I ROGR PO3 L	HR strat AMME PO4 -	E OUTO	СОМЕ	S AND		,		PO11 -		PSO1	Understa	PSO3
COS. U MAPP COS CO1 CO2	Rememb Jndersta ING W PO1 S S	er the post of the	global I ROGR PO3 L L	AMME PO4 S	PO5 S -	PO6	S AND PO7 L -		,	PO10			PSO1 M M	PSO2 L	PSO3
CO5. U MAPP	Rememb Jndersta ING W PO1 S	er the just and the ITH P PO2 M	global I ROGR PO3 L	HR strat AMME PO4 -	E OUTO	СОМЕ	S AND		,	PO10	PO11 -		PSO1	Understa PSO2	PSO3

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO STRATEGIC HRM: Definition, need and importance; Introduction to business and corporate strategies; Integrating HR strategies with business strategies; Developing HR plans and policies.

HUMAN RESOURCE ENVIRONMENT: Technology and structure; Workforce diversity; Demographic changes Temporary and contract labour; Global environment; Global competition Global sourcing of labour; WTO and labour standards

RECRUITMENT AND RETENTION STRATEGIES: Online recruitment; Employee referrals; Recruitment process outsourcing Head hunting; Executive education; Flexi timing; Telecommuting Quality of work life; Work - life balance; Employee empowerment Employee involvement; Autonomous work teams

PERFORMANCE MANAGEMENT STRATEGIES Defining key result areas (KRA); Result based performance Linking performance to pay; Merit based promotions

GLOBAL HR STRATEGIES: Introduction to global HR strategies; Developing HR as a value added function

TEXT BOOKS:

- 1. Strategic HRM Jeffery Mello, Thompson publication, New Delhi
- 2. Strategic HRM Charles Greer, Pearson education Asia, New Delhi
- 3. Strategic HRM Michael Armstrong, Kogan page, London

REFERENCES:

- 1. Strategic HRM Agarwal, Oxford university press, New Delhi
- 2. Human resource management Garry dessler, PHI, New Delhi

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.R.Divahar	Asso. Professor	Civil / AVIT	divahar.civil@avit.ac.in
2.	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

		1													Т
17CVS	SE32	LA	WS FO	RACC	DUISIT	ION A	ND CO	NTRA	СТ	Catego	ory L		T	P	Credit
170 (2	,202		,,,,,,		201011	101111	1,2 00	/1 \ 1 1 1 1		CC	3		0	0	3
PREA	MBLE														
To intr	oduce tl	he stude	ente to 1	inderete	and aho	ut the I	egiclati	ive law	and its	s a nn licat	ion Sali	ent feat	ares of th	e Indian	
							_							c maran	
DDED	FOLIE	TTE													
PKEK	EQUIS	IIL													
NIL															
COUR	SE OB	JECTI	IVES												
1	To stu	ıdv abo	ut laws	. Legisl	ative er	nactmer	its and .	Judicial	preced	ents.					
									•						
2	To un	derstan	d about	feature	es of the	Indian	Consti	tution, l	legal sy	stem and	fundam	ental rig	ghts.		
3	To lea	ırn aboı	ut types	of Gov	ernmer	nt, revei	nue syst	tem, etc							
4	To stu	ıdy abo	ut types	s of con	tract an	d its gu	ideline	s, valua	tion etc	.					
5	To lea	ırn aboı	ut the c	ontract	and con	veyanc	e, Lanc	l Acquis	sition A	ct and Re	ent conti	ol laws.			
COLID															
COUR	SE OU	ICON	IES												
On the	success	ful con	npletior	of the	course,	studen	ts will t	e able t	.0						
CO1.	Unders	tand the	e laws a	ınd Judi	icial pre	ecedents	S						Understa	nd	
CO2. U	Jndersta	and abo	ut the I	ndian C	Constitu	tion, les	gal syste	em and	fundan	nental rigi	hts.		Understa	nd	
													D		
CO3.	Learn a	ibout ty	pes of C	Joverni	ment, re	evenue	system,	eic.					Kememo	er	
CO4.	Unders	tand ab	out typ	es of co	ntract a	nd its g	uidelin	es, valu	ation et	tc.			Understa	nd	
CO5. 1	Remem	ber abo	ut the c	ontract	and cor	nveyand	ce, Lan	d Acqui	sition A	Act and R	ent cont	rol	Damamb	or.	
laws.													Kememo	CI	
PREAMBLE To introduce the students to understand about the Legislative laws and its application, Salient features of the Indian Constitution, features of local Government, types of contract and its application and Land Acquisition Act. PREREQUISITE NIL COURSE OBJECTIVES 1 To study about laws, Legislative enactments and Judicial precedents. 2 To understand about features of the Indian Constitution, legal system and fundamental rights. 3 To learn about types of Government, revenue system, etc. 4 To study about types of contract and its guidelines, valuation etc. 5 To learn about the contract and conveyance, Land Acquisition Act and Rent control laws. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the laws and Judicial precedents CO2. Understand about the Indian Constitution, legal system and fundamental rights. Understand CO3. Learn about types of Government, revenue system, etc. Remember CO4. Understand about types of contract and its guidelines, valuation etc. Understand CO5. Remember about the contract and conveyance, Land Acquisition Act and Rent control Remember															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
					-		-	-						-	
CO2	L	M	L	S	M	-	-	-	-	-	L	-	-	L	S
CO3	S	M	M	S	-	-	-	-	-	M	-	-	-		
CO4	S	M	L	M	-	-	-	L	-	-	-	-	L	L	
CO5	L	L	M	-	-	-	-	-	L	-	-	L	L	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

ELEMENTARY JURISPRUDENCE: Law – its origin, source and ramifications. Legislative enactments – subordinate legislation – Judicial precedents.

INDIAN LEGAL SYSTEM: Salient features of the Indian Constitution, fundamental rights: directive principles of the state policy. Executive, Legislature and the judiciary Centre – State relationship.

LOCAL GOVERNMENT: Types – Rural and Urban, constitutional provisions, powers and functions Sources of revenue: Tax and fee, Municipal Finance, essential civil service.

CONTRACT AND TORT: Laws of contract and tort: formation of a contract, parties; void, voidable and unenforceable contract; contingent contract; misrepresentation and fraud-effect thereof termination of contract; remedies for breach; performance of contract; indemnity and guarantee; law of agency; general principles of tort; tort affecting valuation.

CONVEYANCING: Outline procedure for sale of immovable property: contract and conveyance; preliminary inquiries open contract; contract by correspondence. Acquisition and requisition of immovable property – enactments. Land Acquisition Act, 1894 (1 to 1894). Provisions for acquisition of land under the municipal laws. Law of arbitration and conciliation: salient features. Rent control laws.

TEXT BOOKS:

- 1) M.J.Sethna, Jurisprudence, Lakhani Book Depot. Lamington Road, Bombay 400 007
- 2) Durga Das Basu, Introduction to Constitution of India, Lakshmi Publications (P) Ltd., (1998), Kolkatta
- 3) B.S. Sinha, Law of Torts, Eastern Book Company, 34 Lal Baugh, Lucknow 226 001.

REFERENCES:

- 1) N.M. Tripathi, Indian Contract Act (Students Edition), Mulla Publishers, Princess Street, Bombay 400 002.
- 2) Building Bye-law of Muncipal Corporation of Ahmedabad, Bombay, Delhi & Madras.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	Professor	Civil / AVIT	sangeetha@avit.ac.in
2.	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

17CV	SE33	RF	'AI FS	ТАТЕ	FINAN	ICE &	MARI	KETIN	G	Categor	y L		Т	P	Credit
1701	SE33	KL	AL ES	IAIL	FIII	ice a	WITTE			CC	3		0	0	3
PREA	MBLE	<u> </u>													
								•		, capital l cation to	•			•	es,
PRER	EQUIS	SITE- N	IIL												
COUF	RSE OI	BJECTI	VES												
1 T	o study	about tl	he evol	ution of	financ	e, busir	ness eth	ics and	social	responsib	oility, tin	ne value	of mon	ey conce	pt.
2 T	o learn	about th	ne decis	ions, pı	cocess a	nd tech	niques	of capi	tal bud	geting					
3 T	o study	about tl	he relat	ionship	with co	orporate	e vision	of mar	keting	strategy					
4 T	o unde	rstand al	out the	identif	ication	of attra	active n	narkets	and ind	lustry or 1	business	analysis	<u> </u>		
5 T	o study	about tl	he appli	cation	to diffe	rent bu	siness s	sectors a	ınd con	straints i	n market	ing strat	egy		
COUF	RSE OU	UTCOM	IES												
On the	succes	sful con	npletion	of the	course,	studen	ts will	be able	to						
CO1 U	Indersta	and the e	evolutio	n of fir	nance, b	usiness	ethics	and soc	cial resp	ponsibilit	y, time				
		ey conce							•		•	Un	derstan	d	
CO2 R	tememb	per the d	ecision	s, proce	ess and	techniq	ues of	capital l	oudgeti	ng		Re	membei	:	
CO3 R	lememb	er the re	elations	hip wit	h corpo	rate vis	sion of	marketi	ng stra	tegy		Re	membei	:	
CO4 L	Indersta	and the i	dentific	ation o	f attrac	tive ma	rkets a	nd indu	stry or	business	analysis	Un	derstan	d	
CO5 R		per the a	pplicati	on to d	ifferent	busine	ss secto	ors and	constra	ints in m	arketing	Re	membei	·	
		VITH P	ROGR	AMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPE	ECIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO3
				10.									1	2	
CO1	S	M M	L L	- S	-	-	M -	-		L -	-	_	M L	L	M
CO3	S	M	M	S	S	-	-	-	-	-	L	-	L	S	L
CO4 CO5	S S	M M	M M	M -	-	- S	M -	-	- L	L -	-	- M	L	S	M
	ı ~	1	1		1	-	1	1	_	I	1		l —	1 ~	1

SYLLABUS

FINANCIAL MANAGEMENT: An Overview. Evolution of finance, The Basic Goal: Creating Shareholder Value, Agency Issues, Business Ethics and Social Responsibility, Time value of money concept.

STRATEGIC INVESTMENT DECISIONS: Capital Budgeting Decisions – Capital Budgeting: Process and Techniques - Payback period, Accounting rate of return, NPV, IRR, MIRR, Profitability index, Discounted payback period, Estimation of cash flows, NPV vs. IRR, Risk analysis in Capital Budgeting - Sensitivity analysis, Certainty Equivalent Approach, Calculation of RADR, Real options.

OVERVIEW OF MARKETING STRATEGY: Relationship with Corporate Vision, Mission and Objectives. Marketled strategic management.

STRATEGIC MARKETING ANALYSIS: Identification of attractive markets, Industry/business analysis and sustaining competitive advantage.

INTEGRATION OF MARKETING STRATEGIES: Application to different business sectors – FMCG, Industrial, & Services. Constraints in marketing strategy implementation. Periodical assessment.

TEXT BOOKS:

- 1. Bhalla V.K. (2009). Financial Management. New Delhi: Anmol Publications
- 2. Brealey, R. R., Myers. S., Allen, F., & Mohanty, P. (2009). Principles of corporate finance (8th ed.). New Delhi: Tata McGraw Hill.
- 3. Brigham, E F., & Davis, P. (2009). Intermediate financial management (10th ed.). USA: South Western

REFERENCES:

1. Brigham, E. F., & Houston, J. F. (2007). Fundamentals of financial Management (11th Ed.). USA:

Thomson

- 2. Chandra, P. (2008). Financial management (7th ed.). New Delhi: McGraw Hill.
- 3. Hickman, K. A., Hunter, H. O., & Byrd, J. W. (2008). Foundations of corporate finance (2nd ed.). USA South Western.
- 4. Horne, V. (2008). Fundamentals of financial Management (12th ed.). New Delhi: Pearson Education.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

										Categ	gory	L	T	P	Credit
17CVS	SE34	VA	LUAT	ION &	DOCU	J MEN T	ГАТІО	N WRI	ITING	E		3	0	0	3
PREAN	/RI F														
To intro				under	stand al	out the	essent	1al struc	cture of	a report,	purpose	and pro	perties of	valuatio	n and to
PRERE	EQUIS	ITE													
NIL															
COURS	SE OB	JEC	TIVES												
1 T	o lear	ı abou	it the va	arious n	nethods	s of Ess	ential s	tructure	of a re	port.					
2 T	o kno	w abo	ut the d	ifferent	types	of struc	ture in	valuatio	n.						
3 T	o und	erstan	d the pu	irpose (of valua	ition									
4 T	o lear	n the p	procedu	re of re	port wi	riting as	per co	urt of la	ıw						
5 T	o und	erstan	d about	the pat	tern of	the exa	minatio	on							
COURS	SE OU	TCO	MES												
On the s	succes	sful co	mpletion	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1.	Reme	mber	the vari	ious me	thods	of Essen	ıtial strı	ucture o	f a repo	ort.			Remembe	er	
CO2.	Under	rstand	the dif	ferent t	ypes of	structu	re in va	luation	•				Understa	nd	
CO3. U	ndersta	and th	e purpo	se of v	aluatio	1							Understa	nd	
CO4.	Reme	mber	the pro	cedure	of repo	rt writir	ng as pe	er court	of law				Remembe	er	
CO5. U	ndersta	and th	e patter	n of the	e exami	nation							Understa	nd	
MAPPI	NG W	/ITH	PROG	RAMN	ME OU	TCOM	IES AN	ND PRO	OGRA	MME SI	ECIFIC	COUTO	OMES		
COS	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
CO1	S	2 M	L	L	_	L	L	M	_	L	-	_	L	2	L
	S	M	L	S	-	L	-	-	-	-	-	-	L		
CO3	S	S	L	S	-			-	M	-	-	-	M	M	
	S	L	S	M	-	M	-	-	L	-	L	-			
	S	L	S	-	-	-	-	M	-	-	-	L		M	M
S Stron	10. M-J	Medin	ım; L-L	OW											

INTRODUCTION: Essential structure of a report

STRUCTURE OF A REPORT : The general structure of a report

PURPOSE OF VALUATION: Details required according to the purpose of valuation - Details required according to the type of properties

REPORT WRITING:Consequences of report – Writing a report – Negotiations, Negligence and leading expert evidence in court of law.

GENERAL PRACTICES: Practice and Examination

TEXT BOOKS:

- 1) Joseph C. Mancuso, Mastering Technical Writing.
- 2) Matt Young, The Technical Writer's handbook.
- 3) P.T.Hardikkar, Report writing, Academic Book Center (2006), Ahmedabad.

REFERENCES:

- 1) Arlen C. Mills, MAI, Communicating the Appraisal, /The individual condominium or PUD Unit Appraisal Report.
- 2) S. Sreenivas Rao, Hand book for writers and editors, academic Book Centre, 10 Walkeshwar, Ambawadi, Ahmedabad 380 015.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

17CV	VSE35	Q	UALI		NTRO			RANC	E IN	Categ	gory	L	T	P	Credit
					REAL	ESTA	1 E			EC	C	3	0	0	3
PREA	MBLE														1
princip		tal qua	lity mar	nageme	nt, custo	omer re		_	_	-	_		ntage in the strol and o		
PRER	EQUIS	ITE - N	NIL												
COUR	SE OB	JECTI	VES												
1	To stu	dy abo	ut the co	oncept	of quali	ty, plan	ning ar	nd quali	ty and 1	market sl	nare				
2	To lea	rn abou	ıt the el	ements	and bei	nefits o	f total c	luality r	nanage	ment					
3	To untechni		d about	the cus	stomer s	atisfact	tion me	asurem	ent tech	niques a	nd custo	mer rela	tionship 1	managem	ent
4	To lea	rn abou	ıt the qı	uality c	ontrol a	nd qual	ity assu	ırance							
5	To kn	ow abo	ut the b	enefits	of contr	rol char	ts and a	applicat	ions						
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	e able t	to						
CO1. U	Jndersta	nd the	concept	of qua	lity, pla	nning a	ınd qua	lity and	market	t share			Understa	nd	
CO2. R	Rememb	er the e	element	s and b	enefits o	of total	quality	manage	ement				Rememb	er	
	Jndersta ement te			er satisf	faction r	neasur	ement to	echniqu	ies and	custome	relation	nship	Understa	nd	
CO4. 1	Rememl	per the	quality	control	and qua	ality as	surance)					Rememb	er	
CO5. 1	Underst	and the	benefit	s of co	ntrol cha	arts and	l applic	ations					Understa	nd	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAMI	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	L	-	-	M	-	-	-	-	M	M	L
CO2	S	L	L	S	-	-	-	-	-	-	-	-	-		
CO3	L	M	M	S	M	M	-	-	-	M	-	-	M	L	
~~ 4	S	L	M	M	-	-	-	S	-	M	-	-		L	L
CO4 CO5	S	L	M		_				_		M	L			M

SYLLABUS

QUALITY, STRATEGIC PLANNING, AND COMPETITIVE ADVANTAGE: Brief History -Definitions of Quality. Quality in Manufacturing and Service Systems. Quality and Price - Quality and Market Share - Quality and Cost - Quality & Competitive Advantage.

PRINCIPLES OF TOTAL QUALITY MANAGEMENT: Introduction - Elements of Total Quality Management - Malcolm Baldrige National Quality Award Criteria. Benefits of Total Quality Management. The Deming Management Philosophy – The Juran Philosophy – The Crosby Philosophy.

CUSTOMER FOCUS: The Customer-Driven Quality Cycle - Quality Function Deployment –Customer Satisfaction Measurement Techniques – Customer Relationship Management Techniques.

QUALITY CONTROL AND QUALITY ASSURANCE Concept of Quality Control – Concept of Process Variation – Acceptance Sampling – Sampling Inspection Vs. 100% Inspection – Attributes and variable sampling plans – OC Curves – Producer and Consumer Risk – AQL, RQL, TQL, AQQL and AQL. (10%)

STATISTICAL PROCESS CONTROL : Control Charts – X-R, P, np and C Charts – Benefits of Control Charts and Applications

TEXT BOOKS:

- 1. Quality Control Dale H Besterfield Pearson Education
- 2. Total Quality Management S. Sundarrajan
- 3. Quality Control & Total Quality Management Jain

REFERENCES:

- 1. The essence of Total Quality Management Hansen & Ghare
- 2. Managing for Total Quality Logothetic
- 3. Quality Problem Solving Smith
- 4. ISO 9000 Kairon
- 5. Manuals of various standards

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com

1-0-						. ~ ~-				Categ	ory I		T	P	Credit
17CV	SE36	F	RENEV	VABLE	E ENEF	RGY SY	YSTEN	AS		EC	3	3	0	0	3
	AMBL										•				1
												ergy, Ene	rgy cons	umption o	of a
buildi	ing, Ene	ergy co	nsumpt	ion of a	ny indu	istrial si	ite, Ene	ergy effi	iciency	calculati	on.				
	REQUI	SITE													
Nil.															
COU	RSE O	BJEC	TIVES												
1	To stu	idy abo	ut the d	lifferent	type o	f energy	у.								
2	To lea	ırn abo	ut the p	rinciple	, recons	structio	n and tl	he uses	of solar	thermal	energy.				
3	To un	derstan	d the ba	asics an	d advar	ncemen	t in Oce	ean and	Geothe	rmal En	ergy.				
4	To lea	ırn abo	ut Susta	inable	energy	for all- _I	olannin	g aspec	t-action						
5	To un	derstan	d the co	oncepts	of Ren	ewable	Energy	Policy	•						
COU	RSE O	UTCO	MES	_											
On th	On the successful completion of the course, students will be able to														
CO1.	CO1. List and generally explain the main sources of energy and their primary applications in the world. Apply														
									use of	various e	nergy so	ources, in	cluding	Analy	ze
	fuels, v														
fuels	and oth	er ener	gy reso	urces.								iated with		Analy	ze
					antify e	energy o	lemand	ls and m	nake con	mparison	s among	g energy ι	ises,	Apply	1
	rces, an														
			ganize	informa	ation on	renewa	able en	ergy tec	chnolog	ies as a b	asis for	further ar	nalysis	Analy	ze
	valuatio		DDOC	DAMA	TE OU	TCOM	TEC AN	ID DD	CDAN	AME CD	ECIEI		OMEC		
												COUTC			
CO S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	S	M	M	-	-	-	-	-	-	-	M	-	L	S	L
1													L		L
CO 2	S	M	L	M	L	-	-	L	-	-	-	-	-	L	1
CO 3	S	L	M	M	-	M	L	-	M	L	-	M	L	-	M
CO	S	M	M	M	-	-	-	-	-	L	-	-	-	-	-
CO	S	L	M	-	L	L	M	-	_	-	-	-	M	S	L

INTRODUCTION: Types of energy- solar energy- nuclear energy- wind energy- thermal energy- geo thermal energy- fossil fuels-hydroelectric energy- Energy reserves of India- Energy intensity- Energy efficiency- Renewable energy sources-

SOLAR THERMAL ENERGY: Solar thermal water heating- solar distillation-solar pumping systems-solar thermal power plant- solar collectors- thermal storage-solar pond- solar pumping systems-solar cooker-solar air condition and

refrigerator-energy efficient buildings- assessment of solar radiation- solar photovoltaic system

S- Strong; M-Medium; L-Low

green house effect

OCEAN, HYDRO AND GEOTHERMAL ENERGY: Wave and tidal energy, ocean thermal energy conversion - principle, types, power plants- small, mini and micro hydro power plants. Exploration of geothermal energy, geothermal power plants. Introduction to direct energy conversion systems – fuel cells and magneto hydrodynamic power generations SUSTAINABLE ENERGY: Sustainable energy for all-planning aspect-action area- implementation road map-mobilizing action- Sustainable energy futures, global scenarios, promising technologies, development pathways, clean coal and carbon technologies, electric vehicles, energy fluctuation and energy storage, distributed generation and smart grids.

RENEWABLE ENERGY POLICY: Renewable energy policies, including feed-in tariffs, portfolio standards, policy targets, tax incentives, and biofuels mandates. International policies for climate change and energy security. Economic analysis and comparisons, Life cycle analysis, financial analysis, cost of conserved energy, and externalities. Cost assessment of supply technologies versus energy-efficiency.

TEXT BOOKS:

- 7. Rai .G .D, "Non-Conventional Energy Sources", Khanna Publishers, 4th edition, New Delhi, 2009.
- 8. John E Freund's Mathematical Statistics: (7th Ed.), Miller & Miller, Prentice-Hall
- 9. Probability and Statistics for Engineers –Miller, Freund-Hall, Prentice India Ltd. 2009
- 4. Roland Wengenmayr, Thomas Buhrke," Renewable energy: Sustainable energy concepts for the future", Wiley-VCH, 1st edition, 2008.

REFERENCES:

- 5. "Fundamentals of Renewable Energy Systems". D. Mukherjee, S. Chakrabarti
- 6. Godfrey Boyle, "Renewable energy", Oxford University Press, 2nd edition, 2010
- 7. Hans-Josef Fell, "Global cooling strategies for climate protection", CRC Press, 2012.
- 4. Ottmar Edenhofen, "Renewable energy sources and climate change mitigation", Cambridge University Press, 2011. **COURSE DESIGNERS**

S. No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in		
2	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com		

18000000		Category	L	Т	P	Credit
17CVSE37	THERMAL INSULATION INSTALLATION	EC	3	0	0	3

One must understand the concept of thermal insulation, need for thermal insulation, materials, safety hazards for a thermal insulation, OSHA standards, Building regulations, MEP works

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To study about the Purpose and need of Insulation.					
2	To learn about the various types of thermal insulation materials.					
3	To understand the basic need for Insulation and Refractoriness.					
4	To learn about properties of Thermal Insulation Materials.					
5	To understand the concepts of Insulation Installation For Residential Housing.					

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Identify the correct tools for installation of specific thermal insulation processes	Apply
CO2. Identify the correct materials required for installation of specific thermal insulation and address any	Apply
defects with materials	
CO3. Identify potential installation faults and carry out corrective actions where applicable	Apply
CO4. Ensure installation area is cleaned in accordance with contractual, health and safety and	Apply
organizational requirements	
CO5. Demonstrate good practice in relation to the health and safety of the individual, other workers and	Apply
visitors	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	M	-	-	-	M		L
CO2	S	M	L	M	-	M	ı	-	L	L	-	-	M		L
CO3	S	L	M	M	-	L	L	-	-	-	M	-		L	
CO4	M	M	L	L	-	-	-	-	-	L	-	-			
CO5	M	M	M	L	-	-	-	-	-	-	-	-	L	L	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Thermal insulation, Purpose of Insulation, Need for insulation, Benefits of insulation, Feasibility in insulation, Procedure for proving insulation, heat energy transfer, heat radiation, types and Applications.

THERMAL INSULATION MATERIALS: Types, mineral wool- Rock or slag, fiber glass, polyurethane foam, polystyrene, cellulose, cellular plastics, plastic fibers, natural fibers, insulating concrete, reflective surface, insulation board.

INSULATION AND REFRACTORIES: Insulation and Refractories: Insulation-types and application, Economic thickness of insulation, Heat savings and application criteria, Refractory-types, selection and application of refractories, Heat loss.

PROPERTIES OF INSULATION MATERIALS: Mechanism of heat transfer, thermal conductivity, surface emissivity, insulation thickness, density, specific heat capacity, thermal bridging, Insulations used as buildings, factors affecting insulation performance, compaction effects, moisture, air infiltration, other properties, fire performance, corrosion, moisture absorption, summary.

INSULATION INSTALLATION FOR RESIDENTIAL HOUSING: Installation tips, thermal bridging, vapour barriers, roof ventilation, gaps, bulk insulation, reflective insulation, roof and ceiling insulation, external wall insulation, flooring insulation, Advantages and disadvantages.

TEXT BOOKS:

1. "Thermal insulation, materials and systems for energy conservation in the '80s" by Govan, Greson, Mc Allister.

- 2. "Insulation materials, testing and applications", Mc Elroy/ Kimpflen.
- 3. "An assessment of Thermal insulation Materials and system for building Applications", prepared by Brookhaven National Laboratory.

REFERENCES:

- 1. "Thermal Insulation Materials and systems" by Powell/ Matthews editors
- 2. "Thermal insulation handbook for the Oil, gas, and petrochemical Industries", Alireza Bahadori.
- 3. Sustainable Energy Authority Victoria (SEAV). 2006. Energy smart housing manual, Ch. 7, Insulation

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst .Prof-I	AVIT	abirami.civil@avit.ac.in
2.	Mr.P.Sankar	Asst. Professor	Civil / VMKVEC	Sankarp35vidhu@gmail.com

17CVSE38	CUCTAINADI E UDDAN CVCTEMC	Category	L	Т	P	Credit
1/CVSE30	SUSTAINABLE URBAN SYSTEMS	EC	3	0	0	3

GIS (geographic information systems) which enables students to process real urban datasets, script and perform spatial analyses, interpret results, and produce visualization. To draw the sketch of urban area in software like CAD. Student must learn to get the plan of urban area from town and country planning authorities.

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To study about the Sustainability urban systems.
2	To learn about the principle global Sustainable in urban system.
3	To understand the basics ecological and environmental Sustainability.
4	To gain the knowledge about public transport and urban development
5	To understand the concepts of sustainable urban water management.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Identify and support the good practices in green and efficient urban development and planning.	Apply
CO2. Review policies and foster technologies used to promote energy efficiency and reduced GHG	Apply
emissions from buildings and transportation.	
CO3. Review policies and foster technologies necessary to ensure healthy water and sanitation services.	Apply
CO4. Examine policies and foster technologies necessary for the effective collection, disposable, and	Apply
possible re-use of waste and in promoting circular economy	
CO5. Examine, track, and analyze sustainability metrics and indicators for urban centers	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L	-	L	-	S	M	-	L	S	L	
CO2	S	M	L	L	-	-	-	M	-	-	-	-	-		S
CO3	M	L	M	S	-	S	-	-	-	-	-	-	M	M	
CO4	S	M	L	L	-	-	S	-	-	-	M	L			L
CO5	S	L	S	-	-	-	-	M	-	L	ı	-	1	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO SUSTAINABLE URBAN SYSTEM: Sustainability definition, need for sustainability for urban system, land use and urban design issues, sustainability of structures, Design procedure for urban system.

GLOBAL SUSTAINABILITY: Urban sustainability, natural systems in crisis, climate change causes and effects, Urbanisation, sustainable urban development, complex urban systems, Urban planning strategy.

ECOLOGICAL AND ENVIRONMENTAL SUSTAINABILITY: Urban ecology and restoration, soil, water and air; energy and materials use, sustainable communities, Urban Planning issues.

PUBLIC TRANSPORT & URBAN DEVELOPMENT: Sustainable construction techniques, Planning roadways, railways in urban area, Planning national highways which connect various cities, various types of transportation in urban city.

SUSTAINABLE URBAN DRAINAGE SYSTEMS: Introduction to sustainable urban water management, technical approaches to reducing water use, Control systems for surface runoff, filter strips and swales, permeable surfaces, paving, ponds and wet lands.

TEXT BOOKS:

- 1. Sustainable Urban Metabolism" by Paulo Ferrao, John E. Fernandez
- 2. "The Urban Climatic Map: A methodology for sustainable Urban Planning" by Edward Ng, Chao Ren.
- 3. "Local Sustainable Urban Development in a global world" by Lauren C. Heberie, Susn M. Opp.

REFERENCES:

1. "Pathways to Urban Sustainability: Research and Development on urban systems" by National Research council Policy and Global Affairs Science and technology for Sustainability Program Committee on the challenge of developing Sustainable Urban Systems.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst .Prof-I	AVIT	abirami.civil@avit.ac.in
2.	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CVSE39

ENERGY AUDITING IN SPECIAL STRUCTURES

Category	L	Т	P	Credit
EC	3	0	0	3

PREAMBLE

Before starting the course one must be able to define the energy audit and its types. Sources of energy, forms of energy and understand the clear concept of special structures.

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To study about the detail energy audit system.
2	To learn about the Energy resources & electricity consumption.
3	To study about the various other sources for production of electricity.
4	To gain the knowledge about various types of energy audit.
5	To learn about the Estimation of energy economy of the building

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Identify and describe the energy conservation opportunities in industrial and commercial systems.	Apply
Co2. Apply energy auditing techniques	Apply
Co3. Describe the energy rate structures.	Apply
Co4. Examine the economic evaluation of energy conservation solutions.	Apply
CO5. Use computers to monitor and control energy use.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO1	PSO2	PSO3
										0					
CO1	S	M	L	-	L	-	M	M	L	-	L	-	L	M	-
CO2	S	L	L	L	-	-	-	-	-	-	-	L			S
CO3	S	M	M	L	-	L	-	-	-	-	-	-	L		
CO4	L	M	L	M	-	-	-	-	L	-	-	-		M	L
CO5	L	L	M	-	-	-	-	L	-	-	-	L			M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Energy Audit, standard energy audit, detail energy audit, stepwise procedures for energy audit, common energy conservation measures, electrical systems, HVAC systems, Compressed air systems, Energy management controls, Indoor Water Management, New technologies, Case studies.

ENERGY SOURCES AND UTILITY RATE STRUCTURES: Energy resources, electricity consumption, service level, Bill based on 4 RTP rates, home energy audit, Energy efficiency.

ENERGY SAVING TECHNIQUES: Household- use of CFL, solar panels for usage of electricity. Industrial- usage of various other sources for production of electricity such as coal, hydro energy and solar panels huge size. Comparison of energy saving techniques to conventional method of electricity production.

ENERGY AUDIT: Define energy audit, macro audit, micro audit, developing an audit plan, defining audit resources, energy analysis methodology, systematic approach, energy management opportunities, Electricity from purchase to enduse, units of energy.

SPECIAL STRUCTURES: Estimation of energy economy of the building, control and regulation methods. Special structures – more energy consumption than conventional buildings- comparative study. Case study of few energy audit in special structures.

TEXT BOOKS:

- 1. "Energy Audit of building Systems: An Engineering Approach", Second Edition by Monoef Krarti
- 2. "Energy management handbook" by Wayne C. Turner.
- 3. "Green energy Audit of buildings: A guide for a sustainable energy audit of Buildings", by Giuliano Dall O.

REFERENCES:

- 1. Energy savings toolbox- An energy audit manual and tool.
- 2. Studies on the structure of the industrial economy: Report on energy audit of paper industry
- 3. "An energy audit of Kindergartens to improve their energy efficiency", by Nikolay et.al, St. Petersburg, Russia.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CVSE40	LIFE CYCLE ASSESSMENT FOR COMPLEX	Category	L	Т	P	Credi t
	SYSTEMS	EC	3	0	0	3

Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as bio based products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: Student teams complete a life cycle assessment of a product or system chosen from industry.

PREREQUISITE

Nil.

COURSE OBJECTIVES

0001	22 0202112
1	To study about the Life cycle assessment & goals.
2	To learn about the History, methodology and benefit of LCA.
3	To study about the various process of data collection in LCI.
4	To gain the knowledge about Green sustainable materials & biocompatible materials.
5	To learn about the LCA on Residential building, Industrial buildings and bridges.
COLID	

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Articulate the value of a Life Cycle Analysis (LCA)	Apply
CO2. Outline the steps to conduct an attributional LCA.	Apply
CO3. Describe common environmental impacts associated with a life cycle inventory of processes.	Apply
CO4. Approach complex problems with a systems thinking approach.	Analyze
CO5. Conduct a life cycle assessment.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	M	-	-	M	-	-	L	-	L	S	
CO2	S	L	L	M	-	-	-	-	-	-	-	-	S		M
CO3	S	L	M	L	-	M	-	-	-	L	-	-		L	
CO4	L	S	M	L	-	-	M	M	-	-	L	-		L	M
CO5	S	M	L	-	-	-	-	ı	ı	L	-	L	L	L	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Life cycle assessment- goals- purpose- life cycle impact assessment- life cycle inventory- life cycle energy analysis-LCA and environmental systems- risk assessment methods- environmental risk assessment.

DATA COLLECTION AND METHODOLOGY: Environmental data collection, History of LCA, LCA methodology, LCA benefits and drawbacks.

LCI DATABASES: Unit process, data and LCI databases, inventory data and LCIA, LCA interpretation, key points of good LCA and examples, Chemical release in environment.

GREEN SUSTAINABLE MATERIALS: Green sustainable materials, biocompatible materials for future construction-straw, grass Crete, rammed earth, hemp Crete, bamboo, recycled plastic, wood, mycelium, ferrock, ashcrete, timbercrete, and design for sustainability.

CASE STUDIES: Case studies – LCA on Residential building, Industrial buildings and bridges.

TEXT BOOKS:

- 1. Life cycle of Structural Systems: Design, Assessment, Maintenance and Management, edited by Hitoshi Furuta, Dan M. Frangopol, Mitsuyoshi Akiyama.
- 2. Eco-efficient Construction and Building Materials: Life Cycle Assessment, by Fernando Pachecco-Torgal, Luisa F. Cabeza, Joao Labrincha, Aldo Giuntini de Magalhaes

REFERENCES:

1. Life-Cycle Civil Engineering: Proceedings of the International Symposium, by Fabio Biondini, Dan Frangopol

- 2. Integrated life cycle assessment of concrete structures: State-of-the-art Report, by Federation International du beton
- 3. NPTEL Notes by Dr. Brajesh Kr. Dubey, Associate Professor in IIT Kharagpur.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID			
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in			
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com			

17CVSE41	INFRASTRUCTURE PROJECT	Category L T			P	Credit
17078211	DEVELOPMENT	EC	3	0	0	3

To study the elements of construction planning and scheduling and to apply appropriate tools and techniques like networks and coding systems. To study the elements of quality control and safety of construction projects. To study the monitoring of projects through cost control.

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To study about the Concepts environment relationship with focus on issues of population
2	To learn about the Application of ecological principles in sustainability.
3	To study about the Land capability and suitability analysis in location and planning of urban.
4	To gain the knowledge about Urban interference in hydrological cycle.
5	To study about the Concepts of effects of air pollution and solid wasted is posalin cavities.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand infrastructure organizations	Apply				
CO2. Prepare infrastructure master plan	Analyze				
CO3. Schedule infrastructure project activities					
CO4. Prepare project development plan	Apply				
CO5. Prepare tender documents for infrastructure project contract	Analyze				

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	M	-	L	-	L	-	-	-	M	L	
CO2	S	M	L	S	-	-	-	-	-	-	-	-		L	L
CO3	S	M	M	L	-	-	-	M	-	M	M	-	M		
CO4	M	M	L	M	-	L	-	-	-	-	L	-			
CO5	M	L	L	-	-	ı	-	M	-	-	-	L	M		L

S- Strong; M-Medium; L-Low

SYLLABUS

INFRASTRUCTURE: Definitions of infrastructure, Governing Features, Historical overview of Infrastructure development in India, Infrastructure Organizations & Systems.

INFRASTRUCTURE PLANNING: Typical infrastructure planning steps, Planning and appraisal of major infrastructure projects, Screening of project ideas, Life cycle analysis, Multi-criteria analysis for comparison of infrastructure alternatives, Procurement strategies, Scheduling and management of planning activities, Infrastructure Project Budgeting and Funding, Regulatory Framework, Sources of Funding.

PROJECT MANAGEMENT IN CONSTRUCTION: Introduction to project management processes - Initiating, Planning, Executing, Controlling, and Closing processes; Project Integration Management - Project plan development, Project plan execution, and Overall change control; Project Scope Management - Initiation, Scope planning, Scope definition, Scope verification, and Scope change control.

CONTRACTS AND MANAGEMENT OF CONTRACTS: Engineering contracts and its formulation, Definition and essentials of a contract, Indian Contract Act 1872, types of contracts and clauses for contracts, Preparation of tender documents, Issues related to tendering process, Awarding contract.

AIR QUALITY & SOLID WASTE MANAGEMENT: Sources, types and effects of air pollution and solid wasted is posaline activities, urban industrial processes and land use and transportation implications in air and solid waste pollution;

norms, standards, laws, organizations and policies in urban air quality control and solid waste management; example stabilized organic fraction best practices.

TEXT BOOKS:

- 1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.
- 2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999.
- 3. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi, 2009.

REFERENCES:

- 1. J. Kelly, S. Male and D. Graham, Value management of construction projects, Blackwell Publishing, Oxford, 2003.
- 2. Vasant Desai, "Project Management", Himalaya Publishing, 1st Edition, 2010
- 3. James C. Van Horne, John M. Wachowicz, "Fundamentals of Financial Management",
- 4. PHI, 2nd Edition, 2000 Ronald W Hudson, "Infrastructure Management: integrating design, Construction, maintenance, rehabilitation and renovation", MGH, 1st Edition, 1997.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Mr.J. Karthick Rajan	Asst. Professor	Civil / VMKVEC	Karthickrajan078@gmail.com

17CVSE42	GREEN BUILDING AND ENERGY	Category	L	Т	P	Credit
170 (22 12	EFFICIENT BUILDING	EC	3	0	0	3

Before starting with this course one must get a clear knowledge on the basics of green building, learning the plan details of HVAC for a building, energy efficient modeling.

PREREOUISITE

Nil.

COURSE OBJECTIVES

1	To study about the Development & Plan Implementation.								
2	To learn about the fundamentals of electric power systems and building electric wiring.								
3	To study about the Bioclimatic design and concepts.								
4	To gain the knowledge about Water conservation & water management systems.								
5	To learn about the Key components of remodelling project.								

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe what green building	Apply					
CO2. Understand the benefits and advantages of green building practices	Apply					
CO3. Identify and describe green systems and features in residential and commercial buildings						
CO4. Define what makes up a healthy building	Apply					
CO5. Describe green and sustainable materials and practices	Apply					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	S	M	L	-	-	M	-	S	-	-	M	-			M
	CO2	M	L	L	M	-	-	S	-	M	L	-	-	L	1	-
	CO3	S	M	M	L	-	-	-	-	-	-	M	L			
	CO4	S	M	M	M	-	M	-	-	-	-	-	-		M	L
ſ	CO5	M	L	L	-	-	-	M	-	-	M	L	L	L	M	L

S- Strong; M-Medium; L-Low

SYLLABUS

GREEN BUILDING BASICS AND PRACTICES: Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

ENERGY MANAGEMENT SYSTEM OF BUILDINGS: The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observation systems.

LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN: Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

WATER MANAGEMENT, BUILDING METHODS & MATERIALS: Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Auto clave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

ENERGY EFFICIENT REMODELING: Key components of remodeling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, Incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

TEXT BOOKS:

- 1. Kibert, C. J. "Sustainable Construction: Green Building Design and Delivery," Second Edition, New York: John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and Mat Santamouris.
- 3. Passive building design by N.K. Bansal, G. Hauser, and G. Minke

REFERENCES:

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

	S. No	Name of the Faculty	Designation	Name of the College	Mail ID
Ī	1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
	2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com

This course offers the various methods of Demonstrate knowledge of and a critical understanding of, statistical methodologies	17CVES43	INFRASTRUCTURE PLANNING AND	Category	L	Т	P	Credit					
This course offers the various methods of Demonstrate knowledge of and a critical understanding of, statistical methodologies		URBANIZATION PROCESS	EC	3	0	0	3					
	PREAMBLE This course offers the various methods of Demonstrate knowledge of and a critical understanding of, statistical methodologies and Show an awareness of how different statistical models and techniques can be applied to financial problems											

Nil

COURSE OBJECTIVES

1	This course is designed to provide a general understanding of various issues caused by the Infrastructure.
2	Students can be able to approach a design aspect of the exact urban infrastructure requirements
3	They can appreciate the planning methodology after the successful learned from the core
4	We can suggest and comprehend the challenges in the construction Industry exactly the Infrastructure Maintenance
5	The major emphasis in this course will be on water supply, sewerage, storm water drainage, roads and solid water
3	management.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Demonstrate knowledge of, and a critical understanding of, statistical methodologies (including the main concepts and methods of inference and modelling)	Apply
CO2. Understand and apply a range of statistical techniques based on the main theories and concepts which	Apply
comprise the syllabus, including the central limit theorem	
CO3. Show an awareness of how different statistical models and techniques can be applied to financial	Apply
problems	
CO4. Appreciate the Knowledge gained by the Fire Fighting Techniques in the Urban Infrastructure	Understand
Buildings	
Co5. Ability to understand the procurement process required in the field of power requirements and the	Understand
communication Networks	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	L				L		L	M				M
CO2	S	S	M		L		M								
CO3	L	L	L							L		M	L	L	M
CO4	M	S	L			L			M					S	
CO5	L	S	M					-M		L			L	S	L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Concepts of basic needs, formation of objectives and standards. Data requirements for programme planning of urban networks and service; feasibility planning studies for structure the infrastructure systems General Introduction to Infrastructure and its components and overview of the course contents.

SOLID WASTE DISPOSAL AND MANAGEMENT: Resource recovery, technology options and determination of type and choice of systems as related to land use, density, economic levels and location of urban industrial and commercial activity areas. Quantity of sewage, quantity of storm water, run off, time of concentration, design of sewers, flow diagrams, laying of sewers, sewer appurtenances. Design and layout of sewerage system. Project Management (Need Assessment, Structure, MIS, Project Management Packages (Brief Introduction to MSPROJ/WINPROJ). Integrated Infrastructure Planning:

WATER SUPPLY: Planning water supply; resource analysis quality of water system design; technological choices of alternatives Issues related to the choice of centralized city water supply versus decentralized systems. Water demand (Context, Need Assessment and Planning requirements) - data to be collected, rate of demand, variations in rate of demand and effects of variations on design. Measurements of water qualities, forecasting demand. Conveyance and distribution system - General considerations, methods of distribution, service reservoirs, systems of supply, methods of lay out distribution pipes, wastage of water and permissible factors.

FIRE FIGHTING:Planning for fire protection, services and space standards. Prevention fire requirements, fire classification of construction, firefighting, fittings and fixtures and design for tall building and neighborhood lay out fire hazards, water demand calculations.

OTHER INFRASTRUCTURE: Concepts and theories for design and operation of electricity networks, power generation (conventional andnon-conventional)communicationnetworksliketelephonefacilities,WLL,cableTV,Fibreopticand other broadband communications networks,etc.

TEXT BOOKS:

- 3. John E Freund's Mathematical Statistics: (7th Ed.), Miller & Miller, Prentice-Hall
- 4. Probability and Statistics for Engineers -Miller, Freund-Hall, Prentice India Ltd. 2009

REFERENCES:

- 1. Applied Statistics and Probability for Engineers---Montgomery and Runger—Wiley, India.
- 2. Applied Mathematics for Engineers and Physiscists-pipes and Harvill. McGraw Hill International Edition, 1970 3. Sampling techniques-Cochran, Wiley Series, 2008.

O O CINE D	DDI GI (DIK)							
S. No	Name of the Faculty	Designation	Name of the College	Mail ID				
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in				
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com				

17CVES44 URBAN ENVIRONMENTAL MANAGEMENT AND LAW Category L T P Credit EC 3 0 0 3

PREAMBLE

This course offers the various methods of knowledge of Building Laws & Principles of Management designed to provide the student with a thorough understanding of both the role that Enterprise Resource Planning Systems

PREREQUISITE

Nil.

COURSE OBJECTIVES

- This course is designed to provide the student with a thorough understanding of both the role that Enterprise Resource Planning Systems (ERPs).
- 2 It is also plays an organization growth towards learned technologies
- 3 This makes a key role importance in the challenging task of managing the Information Systems (IS) function
- Production unit has huge scope on ERP and cost cutting elemental tools helps a huge amount of savings in terms of large scale business industry
- Audit is the important key note which is upholding tool for this ERP so that it can stand the marketing gain and losses into simple balance sheet

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the role of an ERP in carrying out business processes in a company	Apply
Co2. Explain how 'best business practices' are incorporated in an ERP	Apply
Co3. Execute an entire business process chain in the following areas (i)Sales, (ii)Procurement,	Apply
(iii)Production, (iv)Accounting.	
Co4. Strategize pricing, production and sales in a competitive commodity market	Apply
CO5. Analyze sales data in an ERP to dynamically respond to changing market conditions to maximize	Apply
profits	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	M	-	-	-	M		M
CO2	S	M	L	M	-	M	ı	-	L	L	-	-	M	L	
CO3	S	L	M	M	-	L	L	-	-	-	M	-			
CO4	S	M	L	L	L	-	-	-	-	L	-	-		L	M
CO5	S	M	M	L	S	-	ı	M	-	-	-	-		L	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO URBAN GOVERNANCE: Meaning Of Governance And Government; Scope Of Governance, Evolution Of Concept Of Governance; Theories Of Local Government; History Of Urban Local Bodies In India, Evolution Of Modern Urban Local Governments During British Rule; Decentralization Of Local Government; Recommendations Of Various Committees; Politics And Progress Of Decentralization.

GOVERNANCE AND THE GOVERNMENT:Government, governing and governance; Determinants and indicators of good governance; Citizens charter and other instruments; Decision making processes; Need for openness and transparency; People's participation, collaborative management; Local governance

GOVERNANCE FOR URBAN MANAGEMENT: Evolution of development and management systems; Scope of development management at the National, state and local levels; Hierarchy of urban settlements; Institutions and organizations; Stake holders, their perceptions and role in urban management

GOVERNANCE AND URBANIZATIONProcesses of urbanization, developmental conflicts, resource constraints, systems deficiencies; Urban poverty and exclusion from development process; Sustainable development; Impact of globalization and economic reforms; Social diversities; Defects in planning approaches, multiplicity of organizations and authorities.

GOVERNANCE IN POST 74TH AMENDMENT SCENARIO: Planning, governance and spatial strategy; Best practices of planning and quality of governance

TEXT BOOKS:

- 1. Enterprise Resource Planning, 3rd Edition, by Bret Wagner and Ellen Monk, ISBN: 9781423901792, ©2009
- 2. SAP R/3, Business Blueprint, 2nd Edition, by *Thomas A. Curran & Andrew Ladd*, Prentice Hall PTR, ©2000, ISBN: 0-13-085340-2

REFERENCES:

- 1. Essentials of Business Processes and Information Systems, by Simha R. Magal and Jeffrey Word , ©2010, ISBN: 978-0-470-23059-6
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by *Simha R. Magal and Jeffrey Word*, ISBN: 978-0-470-88424-9

I	S. No	Name of the Faculty	Designation	Name of the College	Mail ID			
	1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in			
	2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com			

17CVES45	SUSTAINABILITY IN BUILT ENVIRONMENT	Category	L	Т	P	Credit
	ENVIRONMENT	EC	3	0	0	3

This course offers the various methods of elements of construction planning and scheduling and to apply appropriate tools and techniques like networks and coding systems.

PREREOUISITE

Nil.

3

COURSE OBJECTIVES

- To study the elements of construction planning and scheduling and to apply appropriate tools and techniques like networks and coding systems.
- To study the elements of quality control and safety of construction projects. To study the monitoring of projects through cost control
- Appreciate the global requirements on the importance of water management in the Urban Infrastructure 4
- Supplying the filtered air is main important aspect in case of the buildings

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. To monitor cost control through project management	Apply
Co2. Schedule, monitor and control construction projects	Apply
Co3. Apprehend the knowledge gained on the liability assets and immovable assests	Understand
Co4. Knowledge about the Quality and Quantity management of non-renewable sources without that we	Understand
cannot produce anything i.e. water	
Co5. Understand the solid disposal safety and understand the Quality of air sent from the industry as waste	Apply
disposal has to be meant for Ecosystem importance	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	S	M	M	S	-	-	S	M	M
CO2	S	M	L	S	-	-	S	M	M	M	-	-	M	M	L
CO3	-	-	-	M	-	-	L	M	-	L			L	M	-
CO4	L	L	M	-	M	-	L	-	-	L			L	-	-
CO5	-	_	M	-	-	M	-	_	M	-			-	-	M

S- Strong; M-Medium; L-Low

SYLLABUS

CONCEPT AND ISSUES: Changing perspectives in man-environment relationship with focus on issues of population, urbanization, resource depletion and pollution; limits to growth which is a sustainable economy; growth and environmental imperatives of developing vs developed countries; definitions, concepts and parameters in sustainable development with particular reference to Brundtland Commission,

METHODS AND TECHNIQUES Application of ecological principles in sustainability: energy and resource cycles, food webs, ecological pyramids and evolution and succession of natural ecosystems; Carrying Capacity based planning: concept, parameters and indicator measures, models and case studies in urban and regional development; Environmental Impact and Strategic Environmental Assessment for urban areas; Ecological Foot print Analysis of cities; Sustainable Lifestyle Assessment and behavioral modifications at house hold levels.

LAND, AND ENERGYRESOURCES Land capability and suitability analysis in location and planning of urban land uses; implications of urban form, density, land use pattern and transportation system in land and energy conservation

ROLE OF WATER Urban interference in hydrological cycle, with particular reference to water pollution, water resources, drainage and natural ecosystems; urban water treatment, recycling and harvesting; use of non-conventional energy sources in urban development.

AIR QUALITY & SOLID WASTE MANAGEMENT: Sources, types and effects of air pollution and solid waste disposal in cavities, urban industrial processes and land use and transportation implications in air and solid waste pollution; norms, standards, laws, organizations and policies in urban air quality control and solid waste management; examples of best practices.

TEXT BOOKS:

- 1. Construction Project planning & Scheduling By Charles Patrick, Pearson, 2012
- 2. Construction Project Management Theory & practice --- Kumar NeerajJha, Pearson, 2012

REFERENCES:

- 1. Professional Construction Management Barrie-Paulson-McGraw Hill Institute Edition, 2011.
- 2. Construction management Fundamentals by Knutson, Schexnayder, Fiori, Mayo, Tata McGraw Hill, 2nd Edition, 2015.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in		
2	Mr.S.Prakash	Asst. Professor	Civil / VMKVEC	tsprakashcivil@gmail.com		

170	CVES4	6	CONS	TRUC				CT SAF	ETY	Categ	gory	L	Т	P	Credit
					MAN	AGEM	ENT			EC	2	3	0	0	3
PRE	AMBL	E													
This course offers the various methods quality aspects in a construction project economic, financial and															
management, legal and administrative aspects.															
PREREQUISITE Nil.															
COU	RSE O	BJEC	ΓIVES												
1	To study the quality aspects in a construction project														
2	To study in detail the quality control tools														
3	Management aspects of the traffic flow control and social activities														
4	Slum board clearance and improvement aspects schemes has to be understand allotments for the building bylaws														
COU	RSE O	UTCO	MES												
On th	e succe	ssful co	ompletio	on of th	e cours	e, stude	nts will	be able	e to						
CO1.	Maint	tain the	quality	aspects	s in a co	nstruct	ion Pro	jects						Apply	7
			ality co											Apply	
CO3.	* *		ocial asp											Apply	
CO4.				e and in	mprove	ment sc	hemes	has to b	e unde	rstand th	e bylaws	for the a	llotment	Unde	rstand
CO5.	be app			newal r	rogram	s archa	eologic	al facts	tend to	he cons	idered fo	r the con	servation	Under	rstand
	es in Inc			newai j	nogran	is aicha	cologic	ai racis	tena te	oc cons.	idered re	i the con	isci vatioi		Istanu
MAP	PING	WITH	PROG	RAMN	IE OU'	TCOM	ES AN	D PRC	GRAN	AME SP	ECIFIC	OUTC	OMES	•	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S CO	S	M	L		_	M	L	M	L	_		L	L		S
1	۵ ا	1V1		-	_	1V1	L	171	L	_	-	L	L		ာ
СО	S	M	L	S	-	-	-	M	L	M	L	-	M		
2 CO	M	L	M		_	S	S	_	M	L	M	_	M	M	
3	141		141	_		5	S		141		141	_	141	141	

S- Strong; M-Medium; L-Low

L

S

M

SYLLABUS

M

 $\overline{\text{CO}}$

CO

INTRODUCTION: Overview and introduction of the basic concepts of conservation; values, attitudes and principles for judging the conservation importance of sites, areas and related Typology; scope and basic technique of urban conservation; Urban renewal as a part of metropolitan plan; identification of urban renewal areas; conservation, rehabilitation and redevelopment urban renewal policies and strategies

L

M

M

S

M

L

L

L

S

L

M

S

M

ECONOMIC, FINANCIAL AND MANAGEMENT ASPECTS: Economic and spatial implications of urban renewal programs, mobilization of resources; incentive zoning-management of urban renewal areas

CONSERVATION AND DEVELOPMENT: Economic and social aspects of conservation, traffic and management issues; Conservation policies- case studies

SLUMS: Clearance and improvement schemes, planning aspects, land management, social economic issues, public participation, government schemes and their critical evaluation

LEGAL AND ADMINISTRATIVE ASPECTS: National and international experience in implementing urban renewal programs; Legal and administrative aspects, archaeological acts / charters pertaining to conservation, development and conservation; Case studies of proposals for urban conservation of sites / areas in India and abroad

TEXT BOOKS:

- 5. Mantri Handbook A to Z of Construction Mantri Publications ,2001
- 6. Juran's Quality Handbook Joseph M. Juran, A. Blanton. Godfrey McGraw Hill International Edition (1998)

REFERENCES:

- 3. Chitkara. K.K. "Construction Project Management: Planning Scheduling and Control", Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 4. Calin M. Popescu, Chotchal Charoenngam, "Project Planning, Scheduling and Control in Construction: An Encyclopedia of terms and Applications", Wiley, New York, 2005.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in

17CVES47	ICT BASED CITY AND INFRASTRUCTURE PLANNING	Category	L	T	P	Credit
	LAMMING	EC	3	0	0	3

This course offers the various methods of changing scenario in the spatial order of cities and regions as well as the emergence of virtual societies in the world social networks among communities across the city, country and globe demand for paradigm shift in the spatial planning outlook and governance edge

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To make students aware and exposed to changing scenario of virtual societies in the world
2	The spatial order of cities like drinking water provision, transportation, sanitation facility etc.,
3	The students will be in a position to understand the use and power of emerging new technologies
4	Social networks among communities across the city, country and globe
5	Paradigm shift in the spatial planning outlook and governance edge.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Students are able to cope up with the application technology	Apply
CO2. Students understand its impact on the infrastructure Planning and development at the house, neighborhood and city levels.	Analyze
CO3. Appraise the spatial order of cities like drinking water provision, transportation, sanitation facility etc.,	Analyze
CO4. Building smart cities and smart communities with the help of Social networks among communities across the city, country and globe	Apply
CO5. Ability to Understand the Paradigm shift in the spatial planning outlook and governance edge.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	M	M	S	M	M	ı	M	M	L
CO2	-	L	-	-	M	M	M	-	-	L	-	ı	1	L	ı
CO3	-	-	L	L	L	-	L	M	M	M	M	M	1	ı	L
CO4	M	M	-	L	-	L	-	L	L	L	-	M	M	M	-
CO5	-	L	-	M	M	-	-	L	-	L	-	-	-	L	L

S- Strong; M-Medium; L-Low

SYLLABUS

PLANNING VS TECHNOLOGY: Tradition to modernity – Spatial planning and technology interface - Socio-economic planning and technology interface – Planning cities and local technologies - Technological innovations and responsive city planning - Planning responsive technology Vs technology responsive planning.

CITIES-TECHNOLOGY-INFRASTRUCTURE: Transportation and technology, water, sanitation and technology, energy efficient technology for home, street, neighborhoods and city - Telecommunication, health and education – Security and safety for buildings and people in cities.

TECHNO CITIES: Digital cities, virtual cities, technology parks - Smart planning and infill development – Planning, design and communication system - Socio-economic and environmental Impact of techno cities..

GOVERNANCE: Role of law and technology, administration and organization, industry and corporate, communities and people in building smart cities and smart communities.

CASE STUDIES: Best practices in India and around the world.

TEXT BOOKS:

1. Brkovic, M. B., 'Planning in the Information Age: Opportunities and Challenges of e-Planning, CORP, 2004

- 2. City Government of Naga, 'The Naga City Citizen Chartes- A Guide Book of City Government Services. 2004 **REFERENCES:**
- 1. Elizabeth, S. Frans, V. 'IDENSITY: Planning Paradigms for the Information Communication Age', Isocarp Congress, 2001.
- 2. Intelligent Community forum, 'Innovation and Employment in the Intelligent Community", Intelligent Community forum, 2012
- 3. Komakech, D., 'Achieving More Intelligent Cities", Municipal Engineer, 2005.

S. No	Name of the Faculty	Designation	Name of the College	Mail ID			
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in			
2	Mr.A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in			

17CVES48	URBAN FINANCE	Category	L	Т	P	Credit
		EC	3	0	0	3
DDEAMDLE						

This course offers the various methods of institutional mechanism in place for the governance at the local level and their functional and financial powers, capabilities and opportunities to prepare financial operating plans for the municipal bodies and suggest appropriate approaches and financial resources for implementation of various city level projects.

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To give an understanding to the students of the institutional mechanism
2	The Student must be able to appreciate the knowledge in place for the governance at the local level
3	The systematic approaches from the government local bodies and their functional relationships between the government and the people has to appraised
4	The financial powers of the local government implementation in the infrastructure development
5	Government rural bodies development and implication capabilities and opportunities which is available in the local government bodies.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. The students will gain necessary skills to prepare the kind of five year plan has to be adopted and	A 1
created for the people scope of knowledge	Apply
CO2. Students can acquire the sufficient knowledge in the field of Financial Management for the regulatory	***
bodies	Understand
CO3. Acknowledge the learned values for the sake of Privatization in the Civil Services	Apply
CO4. Funds from various appropriate approaches for the city enrichment implementation towards the	A 1
growth	Apply
CO5. Financial resources for implementation of various city level	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO	PSO2	PSO
												2	1		3
CO1	S	M	L	-	M	M	M	M	M	L	-	-	L	-	M
CO2	S	S	M	L	-	M	L	M	-	-	S	L	M	L	-
CO3	S	S	-	-	L	L	-	-	-	-	S	L	-	-	S
CO4	M	L	M	-	-	M	L	M	-	L	L	-	M	-	-
CO5	-	-	-	S	-	-	-	-	-	L	L	-	-	S	-

S- Strong; M-Medium; L-Low

SYLLABUS

AN OVER-VIEW: Organization of local self governments - The 74th CAA-context and implications - Election of local body governments-need and process - Urbanization process and its Impacts on civic services - Urban development through Five Year Plans - Status of civic services in urban Sector - Investment requirements - Limitation of funds in government and private Sectors.

MUNICIPAL FINANCE: Nature and composition of income and expenditure - Limitations and need for revenue enhancements - Expenditure control methods and mechanisms - Budgetary allocation from central and state governments for urban development - Assistance from foreign donors and multilateral agencies - Non traditional sources of funding – Market access – Pool finance-prerequisite - Conditions for accessing non-traditional funds.

ADDITIONAL FUNDING SOURCES: Types of partnership approaches - Privatization of civic services - Public private partnership Mechanisms - Types of contracts and ownerships - Emerging cost- effective technology interventions - User charged projects – Pricing of services.

RESOURCES BASED ON ACHIEVEMENT OF URBAN REFORMS: Role of state government and urban local bodies - City's challenge fund - Urban Reforms implications on resources - Incentive fund - State level pooled - Finance development fund.

INSTITUTIONAL CAPACITY ENHANCEMENT: Better finance management and management process – Accounting and budgeting, Asset management and receivables management - Cost centre approach – Financial operating plan - City corporate plan - Development of urban indicators – Computerization and management information system.

TEXT BOOKS:

- 1. Narayanan, Access to Market Fund, EDATEN
- 2. Course Materials for Training Finance Officers of ULBs by TNUDP II at Anna Institute of Management, Chennai Administrative Staff College, Hyderabad HSMI, HUDCO, New Delhi.

REFERENCES:

- 1. Broadbent, 'Planning and Profit in the Urban Economy', Meuthen & Co. Ltd, U.K. 1997.
- 2. Edward J. Blakely, 'Planning Local Economic Development', SAGE Publications, New Delhi, 1994

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in

17CVES49	URBAN DESIGN PROJECT	Category	L	Т	P	Credit
		EC	3	0	0	3

This course offers the various methods of institutional mechanism in place for the governance at the local level and their functional and financial powers, capabilities and opportunities to prepare financial operating plans for the municipal bodies and suggest appropriate approaches and financial resources for implementation of various city level projects.

PREREQUISITE

Nil

COURSE OBJECTIVES 1 Read a lot of new theories and ideas 2 Connect disparate ideas and literatures 3 Brainstorm how these ideas affect our interests. 4 Be present for, contribute to, and participate in excellent discussions

At the end of this course students will be conversant with Urban Infrastructure Challenges at Present in India

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Learnt a knowledge about Infrastructure and Needs for an Infrastructure	Understand
Co2. How to manage Infrastructure Projects by using different ideas and literatures	Understand
Co3. Privatization effects in Infrastructure has been understood clearly	Understand
Co4. Case Studies has been understood for to avoid future Problems	Apply
CO5. Analyse the framework and Mitigation Managements in the Sustainable development	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	-	S	S	M	L	M	L	M	L	M	L	-	-	S	
CO1.	S	M	L	-	M	M	M	M	M	L	-	-	M		
CO2.	-	M	L	M	L	M	-	S	-	S	L	L	-	L	
CO3.	L	L	-	L	M	L	M	L	M	L	-	-	M		L
CO4.	M	L	M	L	-	S	-	-	-	L	-	L	M		L

S- Strong; M-Medium; L-Low

SYLLABUS

AN OVERVIEW OF BASIC CONCEPTS RELATED TO INFRASTRUCTURE: Introduction to Infrastructure, An overview of the power, water supply, sanitation, road, rail, air, port, telecommunications, urban & rural infrastructure sectors in India

INFRASTRUCTURE PROJECT: A Historical overview of Infrastructure Privatization-Benefits, Problems. Challenges in Privatization of water supply: A case study of Cochabamba, Bolivia. Challenges in Privitization of Power: Case study from the Philipines. Privitization of Infrastructure in India: Case study of the Tirupur Water supply project. Privitization of Road Transportation Infrastructure in India.

CHALLENGES TO SUCCESSFUL INFRASTRUCTURE PLANNING AND IMPLEMENTATION: Mapping and Facing the Landscape of Risks in Infrastructure Projects. Economic and Demand Risks: The case of the Vadodhara-Halol Expressway. Political Risks-I: The case of the Chand-Cameroon Pipeline. Political Risks-II: The Dabhol Powerplant case study. Socio-Environmental Risks-I: The case of Bujagali Dam in Uganda, Socio-Environmental Risks-II: The case of Conoco's Oil Exploration in South America. Cultural risks in International Infrastructure Projects. Legal and Contractual Issues in Infrastructure. Challenges in Construction and Maintenance of Infrastructure.

PRIVATE INVOLVEMENT IN INFRASTRUCTURE: A Historical overview of Infrastructure Privatization-Benefits, Problems. Challenges in Privatization of water supply: A case study of Cochabamba, Bolivia. Challenges in Privitization of Power: Case study from the Philipines. Privitization of Infrastructure in India: Case study of the Tirupur Water supply project. Privitization of Road Transportation Infrastructure in India.

STRATEGIES FOR SUCCESSFUL INFRASTRUCTURE PROJECT IMPLEMENTATION: Risk Management Framework for Infrastructure Projects. Shaping the Planning phase of Infrastructure Projects to mitigate risks. Designing

Sustainable Contracts, Introduction to Fair process and Negotiation. Negotiating with multiple Stakeholders on Infrastructure Projects. Sustainable development f Infrastructure. Information technology and Systems for successful Infrastructure Management. Innovative Design and Maintenance of Infrastructure Facilities. Infrastructure Modelling and Life Cycle Analysis Techniques

TEXT BOOKS:

- 1. Introduction to Urban Planning, "Anthony James catanese, James C. snyder"
- 2. Urban Infrastructure in Transition: Networks, Buildings and Plans, "Timothy Moss, Simon Marvin"
- 3. Narayanan, Access to Market Fund, EDATEN
- 4. Course Materials for Training Finance Officers of ULBs by TNUDP II at Anna Institute of Management, Chennai Administrative Staff College, Hyderabad HSMI, HUDCO, New Delhi.

REFERENCES:

- 1. Broadbent, 'Planning and Profit in the Urban Economy', Meuthen& Co. Ltd, U.K. 1997.
- 2. Edward J. Blakely, 'Planning Local Economic Development', SAGE Publications, New Delhi, 1994

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in

17CVSE50	ENVIRONMENTAL IMPACT ASSESSMENT	Category	L	Т	P	Credit
	ENVIRONMENTAL IMI ACT ASSESSMENT	EC	3	0	0	3

This Course helps in understanding the importance of EIA and gives knowledge in environmental impact prediction and mathematical modeling for the impact prediction.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	Study about the importance of EIA and EIS, and LCA assessments.
2	Study the components of EIA and the software tools used in the EIA.
3	Gain the knowledge in environmental impact prediction and mathematical modeling for the impact prediction.
4	Know about the awareness Environmental management plan and the Risk assessment.
5	To gain knowledge on EIA, report writing for various industries.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the basic concepts and importance of EIA and its documentation.	Understand
CO2. Follow the steps of EIA process and will be able to access the EIA software tools.	Understand/Apply
CO3. Work on the impact prediction, and mathematical modeling while preparing EIA assessment.	Analyze/Apply
CO4. Gain knowledge in pollution control laws and will be able to implement it in working sectors.	Remember
CO5. Prepare the EIA report for various industries.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

\sim	DO1	DO2	DO2	DO 4	DOS	DOC	DO7	DOG	DOO	DO 10	DO11	DO12	DCO1	DCO2	DCO2
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POH	PO12	PSO1	PSO2	PSO3
S															
CO16	S	M	L	-	-	M	-	-	M	-	L	-	L	M	
CO17	M	M	L	S	M	-	-	S	-	-	-	-	L		L
CO18	S	M	M	S	-	-	L	-	-	-	-	-			
CO19	S	M	M	M	-	-	-	M	-	-	L	-		L	
CO20	M	M	M	-	-	L	-	-	-	M	-	M	S		M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Environmental Impact Assessment (EIA) - Environmental Impact Statement - EIA in Project Cycle - Legal and Regulatory aspects in India according to Ministry of Environment and Forests - Types and limitations of EIA - Cross sectoral issues and terms of reference in EIA - Participation of Public and Non-Governmental Organizations in environmental decision making.

COMPONENTS AND METHODS:Components of EIA - Processes - screening - scoping setting - analysis - mitigation. Matrices - Networks - Checklists - Connections and combinations of processes - Cost benefit analysis - Analysis of alternatives - Software packages for EIA - Expert systems in EIA.

PREDICTION, ASSESSMENT OF IMPACTS AND REPORTING: Prediction tools for EIA - Mathematical modeling for impact prediction - Assessment of impacts - air - water - soil - noise - biological - socio-cultural environments - Cumulative Impact Assessment - Documentation of EIA findings - planning - organization of information and visual display materials - Report preparation.

ENVIRONMENTAL RISK ASSESSMENT AND MANAGEMENT PLAN: Environmental Management Plan - preparation, implementation and review - Mitigation and Rehabilitation Plans - Policy and guidelines for planning and monitoring programs - Post project audit - Ethical and Quality aspects of Environmental Impact Assessment. Hazard identification - Risk characterization - Risk based decision making - HAZOP analysis - Emergency Preparedness Plans - Design of risk management programs.

CASE STUDIES: Case studies related to the following sectors - Infrastructure - Mining - Industrial - Thermal Power - River valley and Hydroelectric - Nuclear Power

TEXT BOOKS:

- 1. Canter, L.W., Environmental Impact Assessment, McGraw-Hill, New York, 1996.
- 2. Lawrence, D.P., Environmental Impact Assessment Practical solutions to recurrent problems, Wiley-Interscience, New Jersey, 2003.

REFERENCES:

- 1. John G. Rau and David C. Wooten, "Environmental Impact Analysis", McGraw-Hill Book Company, 1980.
- 2. Petts, J., Handbook of Environmental Impact Assessment, Vol., I and II, Blackwell Science London. 1999.
- 3. Biswas, A.K., and Agarwala, S.B.C. Environmental Impact Assessment for Developing Countries, Butterworth Heinemann, London. 1994.
- 4. The World Bank Group, Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington, 1991.
- 5. Kolluru Rao et.al "Risk assessment and management handbook", McGraw-Hill Inc., 1996.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Mr.A.Fizoor Rahman	Asst. Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in

17CVSE51	INSTRUMENTAL MONITORING OF	Category	L	Т	P	Cre dit		
	ENVIRONMENT	EC	3	0	0	3		
	s in understanding the basics of instrumental measurer. Electro and radio analytical methods.	nems of enviro	omment a	iiu gives ki	iowieage	avout		
PREREQUISIT NIL	E							
COURSE OBJE	CCTIVES							
1 Understa	Understand the basics of instrumental measurement and its preliminary corrections while doing the experiments							

Gain knowledge on chromatographs and working principles of various types of chromatographs.

Gain knowledge on basic and working principle of Electro and radio analytical methods.

	momornig.	
COUR	SE OUTCOMES	,

3

4

5

On the successful completion of the course, students will be able to

Gain knowledge on various spectroscopic instruments

on the succession completion of the course, students will be unit to	
CO1.Perform the experiments individually for various environmental parameters	Understand
CO2. Work on the various spectrographic instruments used for environmental quality monitoring.	Analyze
CO3. Work with various chromatographs in environmental quality monitoring areas.	Analyze
CO4. Use and access various electro and radio instruments in various environmental quality monitoring area.	Apply
CO5. Understand the principles behind continuous monitoring, for analyzing the various gaseous emissions and water.	Apply

Understand the principle behind continuous monitoring and the various instruments used for continuous

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
															3
CO1	S	M	M	S	M	-	-	L	-	L	-	M	S	L	M
CO2	S	M	L	S	-	-	-	-	-	-	M	-			M
CO3	M	L	L	S	-	M	M	-	L	-	-	-	L		
CO4	M	M	M	S	-	-	-	-	-	M	L	L		S	
CO5	S	M	M	S	-	-	L	-	-	-	-		L		L

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Instrumental Methods, Selection of method, Precision and Accuracy, Errors in measuring signals, Noise/signal ratio, base line drift, Indicator tubes.

SPECTROSCOPIC METHODS: Electromagnetic radiation, matter radiation interactions, Colorimetry and spectrophotometry, fluorimetry, nephelometry and turbidimetry, flame photometry Atomic Absorption Spectrometry (AAS), Atomic Emission Spectrometry (AES) - Inductively coupled plasma (ICP) and Direct Current Plasma (DCP) spectrometry. ICP - MS (Mass spectrometry).

CHROMATOGRAPHIC METHODS: Classical methods, Column, Paper and thin layer chromatography (TLC), Gas Chromatrography (GC), GC-MS, High performance liquid chromatography (HPLC) and Ion chromatrography (IC).

ELECTRO AND RADIO ANALYTICAL METHODS: Conductometry, potentiometry, coulometry, amperometry polarography, Neutron Activation Analysis (NAA), X-ray Fluorescence (XRF) and X-ray Diffraction (XRD) methods. **CONTINUOUS MONITORING INSTRUMENTS:** Non-dispersive infra-red (NDIR) analyzer for CO,

chemiluminescent analyzer for NOx, Fluorescent analyzer for SO2, Auto analyzer for water quality using flow injection analysis; permeation devices.

TEXT BOOKS:

1. Ewing "Instrumental Methods of Chemical Analysis", 5th Edition., McGraw-Hill, New York, 1995

REFERENCES:

1. Willard, H., Merritt, L., Dean, D.A. and Settle. F.A. "Instrumental methods of analysis, 7th Edition, Worlds Worth, New York, 2004

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Mr.Sathiyaraj R	Asst.Professo r	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in

17CVCE52	INDOOD AID OUALITY	Category	L	T	P	Credit
17CVSE52	INDOOR AIR QUALITY	EC	3	0	0	3
PREAMBLE						

This Course helps in understanding the indoor air quality, its pollution level and how to control it.

PREREQUISITE

NIL

COURSE OBJECTIVES

- 1 Understand the knowledge on indoor activities and its pollution levels
- 2 Know about air pollution in indoor environments with respect to various buildings.
- 3 Gain knowledge on control of air pollutants
- 4 Understand the concepts and tools used in air pollution control.
- 5 Understand the knowledge on various air pollutants and its sources along with its control technologies.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1 Assess the levels of indoor air pollution.	Understand
Co2. Design the air circulation and ventilation of various buildings prior to ambient air quality standards.	Analyze
Co3 . Use the air pollution control measures of arresting air pollutants in various buildings.	Apply
Co4 . Use the concepts and tools in designing the ambient air pollutant control measures.	Apply
CO5. Implement pollution control technologies while designing the buildings.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	S	M	M	L	-	M	-	M	L	-	S	-	M		S
1															
CO	S	M	L	S	M	-	-	-	-	L	-	-	L	M	
2															
CO	S	M	M	S	-	-	L	-	-	-	M	-			
3															
CO	M	L	M	L	L	L	-	-	-	-	-	-		L	
4															
CO	S	L	L	S	-	L	-	M	-	M	-	L	L		M
5															

S- Strong; M-Medium; L-Low

SVLLARUS

INTRODUCTION: Indoor activities of inhabitants - residence time. Levels of many pollutants in indoor and outdoor air. Design and operation of buildings for improvements of public health. IAQ policy issues; sustainability; indoor air quality as a basic human right

INDOOR AIR POLLUTANTS: Air pollutants in indoor environments, private residences, offices, schools, sand public buildings, factors that govern pollutant indoors concentrations, including ventilation. Characteristics, Consequences **CONTROL OF POLLUTANTS:** Control of several pollutant classes, such as radon, toxic organic gases, combustion byproducts, and microorganisms such as molds and infectious bacteria. Case study by an exploration of public policy related to indoor air.

CONCEPTS AND TOOLS: Concepts and tools; exposure, material-balance models, statistical models Ventilation **INDOOR AIR POLLUTION FROM OUTDOOR SOURCES:** Indoor air pollution from outdoor sources; particulate matter and ozone; Combustion byproducts; Radon and its decay products. Volatile organic components: odors and sickbuilding syndrome, Humidity Bio-aerosols: infectious disease transmission. Special indoor environments; A/C units in indoor, museums-labs; museums-labs, Measurement methods, Control technologies, Control strategies.

TEXT BOOKS:

1. Thad Godish, Indoor air and Environmental Quality, CRC Press, 2000

REFERENCES:

1. Nazaroff W.W and L Alvarez-Cohen, Environmental Engineering Science Wiley sons, New York, 2001. 2. Moroni Marco, Seifert Bernd and Lindell Thomas, Indoor Air Quality: A Comprehensive Reference Book, Elsevier Science, Vol. 3, 1995.

COURSE	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr.Sathiyaraj R	Asst.Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

		ENVIRONMENTAL POLICIES AND	Category	L	Т	P	Credit
17CVS	E53	LEGISLATIONS	EC	3	0	0	3
	ourse helps i	n gaining knowledge about various environmental po and powers and responsibilities of pollution control b		slations	and variou	ıs article	s related to
NIL	EQUISITE						
COUR	SE OBJEC	TIVES					
1	Understand	d the various Sections and subsections of civil and cr	iminal law.				
2	Study the i	mportance of fundamental rights and directive princi	ples of our co	nstitutior	1		
3	Study the	various articles related to environmental law and pow	ers and respon	nsibilitie	s of polluti	on contr	ol board.
4	Know abou	ut the awareness of various pollution and control law	s related to wa	ter and a	ir.		
5	To gain kn	owledge on EIA, Ecolabelling, hazardous and biome	dical waste ha	ndling.			
COUR	SE OUTCO	OMES					
On the	successful c	ompletion of the course, students will be able to					
			. 11 .	1	TT 1	, 1	

CO1. Describe the importance of civil and criminal law related to environmental legislation
CO2. Gain knowledge on fundamental rights and directive principles of our constitution.

Remember/Understand

CO3. Understand the various environmental issues and handle the real time problems in industries.

Understand/Apply

CO4. Gain knowledge in pollution control laws and implement it in working sectors.

Understand/Apply
CO5. Understand and manage biomedical, hazardous waste, Ecolabelling, and EIA.

Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	M	L	-	-	-L	-	L	-L	M	-		M	
CO2	S	M	L	M	M	-	-	-	-	-	-	S	L		L
CO3	M	M	M	L	-	L	M	-	-	L	-	-	L	S	
CO4	L	-	L	L	-	-	-	M	-	-	M	-			L
CO5	L	M	L	L	L	-	-	-	-	L	-	M	M	L	M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Basics of jurisprudence - Environmental law relation with other disciplines - Criminal law - Common Law - Relevant sections of the Code of Civil Procedure, Criminal Procedure Code - Indian Penal Code

INDIAN CONSTITUTION AND ENVIRONMENT: Introduction - Fundamental Rights - Directive Principles of State Policy - Article 48 (A) and 51- A(g) Judicial enforceability - Constitution and Resources management and pollution control - Indian Forest Policy (1990) - Indian Environmental Policy (1992).

ADMINISTRATIVE REGIME & LEGAL REGIME: Administrative regulations - constitution of Pollution Control Boards Powers, functions, Accounts, Audit etc. - Formal Justice Delivery mechanism Higher and Lower of judiciary - Constitutional remedies writ jurisdiction Article 32, 226 136 special reference to Mandamus and Certiorari for pollution abatement - Equitable remedies for pollution control.

POLLUTION CONTROL LAWS: Administrative regulation under recent legislations in wear pollution control. Water (prevention & control of pollution) Act 1974 as amended by Amendment Act 1988. Water (prevention and control of pollution) Rules 1975 Water (prevention & Control or Pollution) Cess Act. 1977 as amended by Amendment Act 1987 and relevant notifications.

ENVIRONMENTAL (PROTECTION) ACT 1986: Relevant notifications in connection with Hazardous Wastes (management and handling) Biomedical wastes (management and handling), Noise pollution, Eco-labeling, and E.I.A. **TEXT BOOKS:**

1. Environmental, A., Divan and Noble M. Environmental Law and Policy in India (cases, Materials and Statutes) 1991 Tripathi Bombay.

REFERENCES:

1. Constitution of India Eastern Book Company Lucknow 12th Edition. 1997.

- Constitutional Law of India J.N. Pandey 1997 (31st Edition) Central Law Agency, Allahabad.
 Administrative Law U.P.D. Kesari 1998. Universal Book Trade, Delhi.

- 4. Environmental Law H.N. Tiwari, Allahabad Law Agency 1997.5. Environmental Policy. Forest Policy, Bare Acts Government Gazette Notification.

S	S.No	Name of the Faculty	Designation	Name of the College	Mail ID				
1	_	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com				
2)	Mr.Sathiyaraj R	Asst.Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in				

17CV	SE54	SUSTAINABLE DEVELOPMENT AND	Category	L	Т	P	Credit
		ENVIRONMENT	EC	3	0	0	3
PRE	AMBLE						
This (Course helps i	in understanding about sustainable development and e	environment.				
PREI	REQUISITE						
NIL							
COU	RSE OBJEC	TIVES					
1	Be acquair	nted with the concept of sustainable development base	ed on global e	nvironmen	tal issues	s.	
2	Be familia	r with social, economical and environmental dimension	ons of sustaina	able devel	opment.		
3	Gain know	vledge on achieving sustainability using performance	indicators.				
4	Learn the	steps of action plan for implementation of sustainable	development.				
5	Be familia	r with the contribution of developed countries on sust	ainable develo	opment.			
COU	RSE OUTCO	OMES					
On th	e successful c	completion of the course, students will be able to					
CO1.	Develop kno	wledge on sustainable development concepts			Under	stand	
CO2.	Describe soci	al, economical and environmental issues of sustainab	le developmer	ıt.	Under	stand/ap	ply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO3. Be aware of the performance indicators to asses' sustainable development.

CO5.Relate to the integrated approach for resource protection and management.

CO4.Identify the steps in action plan for implementation of sustainable development.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	M	L	-	S	-	M	-	-	-	-	L	L	L
CO2	S	M	L	L	-	S	L	-	-	-	-	-	M	L	
CO3	S	M	M	L	-	S	-	-	-	-	-	-	S	L	
CO4	S	L	S	L	-	S	-	-	M	-	-	-	-	-	M
CO5	L	M	L	L	-	M	-	-	L	-	-	-		-	M

Remember/Understand

Understand/apply

Analyze

S- Strong; M-Medium; L-Low

SYLLABUS

CONCEPT OF SUSTAINABLE DEVELOPMENT: Environment and Development - Population, Poverty and Pollution - Global and Local environmental issues - Resource Degradation - Greenhouse gases - Desertification - Industrialization -Social insecurity, Globalization and environment. History arid emergence of the concept of sustainable development -Objectives of Sustainable Development

COMPONENTS AND DIMENSIONS OF SUSTAINABLE DEVELOPMENT : Components of sustainability -Complexity of growth and equity - Social, economic and environmental dimensions of sustainable development -Environment - Biodiversity - Natural Resources - Ecosystem integrity - Clean air and water - Carrying capacity - Equity, Quality of Life, Prevention, Precaution, Preservation and Public participation-structural and functional linking of developmental dimensions

FRAMEWORK FOR ACHIEVING SUSTAINABILITY: Operational guidelines - Interconnected prerequisites for sustainable development - Empowerment of Women, Children, Youth, Indigenous People, Non-Governmental Organizations, Local Authorities, Business and Industry - Science and Technology for sustainable development -Performance indicators of sustainability and Assessment mechanism - Constraints and barriers for sustainable development.

SUSTAINABLE DEVELOPMENT OF SOCIO-ECONOMIC SYSTEMS : Demographic dynamics of sustainability - Policies for socio-economic development - Strategies for implementing eco-development programs - Sustainable development through trade - Economic growth - Action plan for implementing sustainable development - Urbanization and Sustainable Cities - Sustainable Energy and Agriculture - Sustainable Livelihoods.

SUSTAINABLE DEVELOPMENT AND INTERNATIONAL RESPONSE: Role of developed countries in the development of developing countries - International summits - Stockholm to Johannesburg - Rio Principles - Agenda 21 -Conventions - Agreements - Tokyo Declaration - Doubling statement - Transboundary issues - Integrated approach for resource protection and management.

TEXT BOOKS:

1. Jeffry Sayer and Campbell, B., The Science of Sustainable Development: Local Livelihoods and the Global Environment (Biological Conservation, Restoration & Sustainability), Cambridge University Press, London, 2003. **REFERENCES:**

1. Kirkby, J., O'Keefe, P. and Timberlake, Sustainable Development, Earthscan Publication; London, 1993.

2. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publications, London, 1998. 3. Bowers, J., Sustainability and Environmental Economics - An Alternative Text, Longman London, 1997.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	C. Nivetha	Assistant Professor	AVIT	nivethachandru92@gmail.com
2	Mr.Sathiyaraj R	Asst.Professor	Civil / VMKVEC	sathiyaraj@vmkvec.edu.in

17CVSE55	REMOTE SENSING AND GIS FOR	Category	L	Т	P	Credit		
	ENVIRONMENTAL APPLICATION	EC	3	0	0	3		
PREAMBLE	·							
This Course he	lps in gaining knowledge about remote sensing and GIS	for environment	nt applica	ation.				
PREREQUIS	TE							
NIL								
COURSE OB	JECTIVES							
1 Be ac	uainted with the concepts of Remote sensing, EMR inte	eraction with En	vironme	ntal issues	S.			
2 Be far	niliar with remote sensing platform systems, its satellites	s and sensors.						
3 Gain	nowledge on data processing using image processing so	oftware.						
4 Gain	nowledge on GIS and GIS software.							
5 Be familiar with monitoring environment using remote sensing and GIS.								
COURSE OU	TCOMES							
On the success	ful completion of the course, students will be able to							
CO1. Develop knowledge on concept of remote sensing. Understand								
	C : 1 1 C 1			** 1				

CO1. Develop knowledge on concept of remote sensing.	Understand
CO2. Be aware of remote sensing platforms and sensors.	Understand
CO3. Identify the steps in Image processing software.	Apply
CO4. Relate the problems in GIS software.	Apply
CO5 . Describe the environmental application using remote sensing and GIS.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	S	-	S	S	M	-	L	L	L
CO2	M	L	M	L	M	-	-	M	-	-	-	-	L	M	L
CO3	S	M	M	L	M	-	M	-	-	-	-	M	M		-
CO4	S	S	M	L	-	-	-	-	M	-	-	-	S	M	L
C05	S	-	M	-	M	L				L	L		_		M

S- Strong; M-Medium; L-Low

SYLLABUS

PRINCIPLES OF ELECTRO MAGNETIC RADIATION: Concepts of Remote Sensing - Energy sources and radiation principles, Energy interactions in the atmosphere - Spectral reflectance of earth surface features. **REMOTE SENSING PLATFORMS:** Aerial Photographs, Photographic Systems - Visible, Infra Red and Microwave sensing - Active and

passive sensors - Satellites and their sensors, Indian Space Program - Satellite data products

DATA PROCESSING: Photogrammetry - Satellite data analysis - Visual Interpretation, Interpretation equipments - Digital Image Processing - Image rectification, enhancement, classification, data merging and biophysical modeling - Image Processing software.

GEOGRAPHIC INFORMATION SYSTEM: Introduction to GIS concepts - Data base structure - Data analysis - GIS software

REMOTE SENSING AND GIS APPLICATIONS: Management and monitoring of environment, conservation of resources, coastal zone management - Limitations.

TEXT BOOKS:

- 1. Lillesand, T.M. and Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 2004. **REFERENCES:**
- 1. Burrough, P.A. and McDonnell, R.A., Principles of Geographic Information Systems, Oxford University Press, New York, 2001.
- 2. Lintz, J. and Simonet, Remote Sensing of Environment, Addison Wesley Publishing Company, New Jersey, 1998.

S.N	o Name of the Faculty	Designation	Name of the College	Mail ID		
1	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com		
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in		

17CVCE56	WASTE WATER MANAGEMENT	Category	L	T	P	Credit
17CVSE56	WASTE WATER MANAGEMENT	EC	3	0	0	3

This Course helps in understanding about various methods of wastewater treatment and management.

PREREQUISITE

NIL

COURSE OBJECTIVES

- Be familiar with the concept of aerobic and anaerobic treatment of waste water.
- 2 Be acquainted with the origin of various units of Aerobic treatment of waste water.
- 3 Be acquainted with the design and concepts of various units of Anaerobic treatment of waste water.
- 4 Gain knowledge on sludge treatment and disposal.
- 5 Understand the operations, maintenance and management of sewage treatment plants.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Describe the concept of aerobic and anaerobic treatment of waste water.	Understand
CO2 .Develop knowledge on the design of various unit of Aerobic treatment of waste water.	Understand/Apply
CO3. Develop knowledge on the design of various unit of Anaerobic treatment of waste water.	Understand/Analyze
CO4. Identify the ways of treatment of sludge and its disposal.	Analyze
CO5 . Be aware of the operation, maintenance and management of sewage treatment plants.	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	S	-	S	S	M	-	M	-	
CO2	M	L	M	L	M	-	-	M	-	-	-	-	L	M	L
CO3	L	L	M	M	M	-	M	-	-	-	-	M	L		-
CO4	S	S	L	L	-	-	-	-	M	-	-	-	S	L	L
C05	L	-	M	_	M	L				L	L		_		M

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION: Objectives of biological treatment - significance - aerobic and anaerobic treatment - kinetics of biological growth - Factors affecting growth attached and suspended growth - Determination of Kinetics coefficients for organics removal - Biodegradability assessment - selection of process.

AEROBIC TREATMENT OF WASTEWATER: Design of sewage treatment plant units - screen chamber, Grit chamber with proportional flow weir, sedimentation tank - Trickling filters, Rotating Biological contactor, activated sludge process & variations, aerated lagoons, waste stabilization ponds - nutrient removal systems - natural treatment systems - Disinfected disposal options - reclamation and reuse - Flow charts, layout, hydraulic profile - Recent advances.

ANAEROBIC TREATMENT OF WASTEWATER: Attached and suspended growth, Design of units - UASB, up flow filters, Fluidized beds - Septic tank and disposal - Nutrient removal systems - Layout and Hydraulic profile - Recent advances.

SLUDGE TREATMENT AND DISPOSAL: Design of Sludge management facilities, sludge thickening, sludge digestion, Biogas generation, sludge dewatering (mechanical and gravity) - upgrading existing plants - ultimate residue disposal - Recent Advances.

OPERATIONS, MAINTENANCE, MANAGEMENT AND CASE STUDIES: Operational problems - Trouble shooting, Planning, Organizing and Controlling of plant operations - capacity building, Case studies on sewage treatment plants - sludge management facilities.

TEXT BOOKS:

1. Metcalf & Eddy, Inc. "Wastewater Engineering, Treatment and Reuse, Third Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2003.

REFERENCES:

- 1. Arceivala, S.J., Wastewater treatment for pollution control, TMH, New Delhi, 1998.
- 2. Manual on "Sewerage and Sewage Treatment" CPHEEO, Ministry of Urban Development, GOI, New Delhi, 1999.
- 3. Qasim, S.R, Wastewater Treatment Plant, Planning, Design & Operation Technomic Publications, New York, 1994.

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Name of the College	Mail ID						
1	Mrs.S. Supriya	Asst. Professor	Civil / VMKVEC	jansupriyanair@gmail.com						
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in						