

Faculty of Engineering and Technology

REGULATIONS 2021

DEPARTMENT OF BIOTECHNOLOGY

Programme:

M.Tech. BIOTECHNOLOGY

REGULAR (2 Years)

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM AND SYLLABUS

(Semester I to IV)

P01	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of problems in the area of Biotechnology.
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex biotechnology- oriented problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions : Design solutions for complex bio-based problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations in the area of biotechnology.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional practice.
PO7	Environment and sustainability : Understand the impact of the professional biotechnological solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the technology practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSO)

Upon successful completion of the course the students are expected:

PSO1	To endow with methods and tools for producing industrially important metabolites and products for sociologically useful and commercially viable for the long term.
PSO2	To develop expertise towards the effects on human health and the environment, offering expert mitigation strategies that are appropriate, and putting biotechnological tools to use.
PSO3	To assess the human health and environmental issues and provide relevant professional mitigation measures and implementation of biotechnological tools.
PSO4	To perform as a multidisciplinary team, comprehend professional obligations and ethics, and be prepared to confront societal challenges.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	To inculcate the graduates to have strong foundation in Scientific fundamentals required to solve biopharmaceutical related problems
PEO2	To educate students with excellent scientific and industrial knowledge which will enable them to know, examine, design and create novel solutions and products for the health related ailments
PEO3	To inculcate students in professional ethics, scientific communication skills, teamwork skills, multidisciplinary approach, and an ability to address health related problems to broader social context.
PEO4	To develop skills in emerging areas of pharmaceutical technology and to encourage the students for interdisciplinary projects

Mapping of PEOs with POs for M. Tech. – Biotechnology

(FT) Programme

PEO\PO	1	2	3	4	5	6	7	8	9	10	11	12
1	S	М	М	М	S	S	S	L	М	М	S	М
2	S	М	S	S	S	S	S	S	М	М	S	S
3	М	М	М	S	М	М	L	S	М	S	S	М
4	М	S	S	М	М	М	L	М	S	L	М	L

S- Strong Correlation, M – Medium Correlation, L – Low Correlation

VINAYAKA MISSIONS RESEARCH FOUNDATIONS FACULTY OF ENGINEERING AND TECHNOLOGY

Credit Structure for Post Graduate Engineering Program (M.E / M.Tech – Regular-FT) -2021

S.No	Category of courses (credits)	Type of courses	Suggested break up of credits
1.	A. Foundation courses (5)	Mathematics/Applied Mathematics	3
		Research Methodology and IPR	2
2.	B. Program core courses (32)	Core courses	32
		Program electives	15
3.	C. Elective courses (18)	Open electives (Courses on emerging areas.)	3
		Project work phase I	6
	D. Employability Enhancement Courses and courses for presentation of Technical skills related to the specialization (20)	Project work phase II	12
4		Technical Seminar*	1*
4.		Research Presentation Skills*	1*
		Internship*	1*
		Any two courses on:	Zero credit
5.	E. Mandatory Courses/Audit courses	 English for Research Paper Writing Disaster Mitigation and Management Value Education Constitution of India Pedagogy Studies Personality Development Through Life Enlighten Skills 	
	Total credits to be earned for	or the award of M.E /M.Tech degree	75
	n category D, out of 20 credits minimu g courses – Technical seminar*, Resea		

CURRICULUM

M.TECH.BIOTECHNOLOGY SEMESTER I TO IV

	A. FOUNDATION COURSES - CREDITS (5)													
S. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE					
1		APPLIED MATHEMATICS FOR BIOENGINEERING	MATH	FC-BS	3	0	0	3	NIL					
2		RESEARCH METHODOLOGY AND IPR	BTE	FC-HS	2	0	0	2	NIL					

B. PROGRAM CORE COURSES												
		CORE C	OURSES CRE	EDITS (32)								
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUIS ITE			
1		ADVANCED BIOCHEMISTRY	BTE	CC	3	0	0	3	NIL			
2		MICROBIAL TECHNOLOGY	BTE	CC	3	0	0	3	NIL			
3		PRINCIPLES OF CHEMICAL ENGINEERING	BTE	CC	4	0	0	4	NIL			
4		GENETIC ENGINEERING	BTE	CC	3	0	0	3	NIL			
5		IMMUNO TECHNOLOGY	BTE	CC	3	0	0	3	NIL			
6		STEM CELL BIOLOGY	BTE	CC	3	0	0	3	NIL			
7		ADVANCED BIOPROCESS ENGINEERING	BTE	CC	3	0	0	3	NIL			
8		PROTEIN ENGINEERING	BTE	CC	3	0	0	3	NIL			
9		PLANT AND ANIMAL DISEASE AND THEIR CONTROL	BTE	CC	3	0	0	3	NIL			
10		CANCER BIOLOGY	BTE	CC	3	0	0	3	NIL			
11		GOOD MANUFACTURING AND LABORATORY PRACTICE	BTE	CC	3	0	0	3	NIL			
12		BIOFUEL TECHNOLOGY	BTE	CC	3	0	0	3	NIL			
13		FOOD AND NUTRITION	BTE	CC	3	0	0	3	NIL			

		TECHNOLOGY												
14		ADVANCED BIOCHEMISTRY LAB		BTE		CC		0	0	4	2	NIL		
15		MICROBIOLOGY LAB	BTE			CC		0	0	4	2	NIL		
16	GENETIC ENGINEERING LAB		IG BTE		,	CC		0	0	4	2	NIL		
17		IMMUNO TECHNOLOG LAB	Υ	BTE		CC		0	0	4	2	NIL		
18		ADVANCED BIOPROCE LAB	ESS	BTE	'	CC		0	0	4	2	NIL		
		PROG	RAM E	LECTIV	VES -	CREDITS	(15)			1				
S. NO	CODE	COURSE		ERING EPT.	CA	FEGORY	L	Т	1	2	С	PREREQUISITE		
1		MOELCULAR DIAGNOSTICS AND THERAPEUTICS	B	TE		EC-PS	3	0	0	3		NIL		
2		AGRICULTURE BIOTECHNOLOGY	B	TE		EC-PS	3	0	0	3		NIL		
3		MOLECULAR MODELING AND DRUG DESIGN	B	BTE		TE		EC-PS	3	0	0	3		NIL
4		BIOPHYSICS	B	TE		EC-PS	3	0	0	3		NIL		
5		GENOMICS AND PROTEOMICS	B	TE		EC-PS	3	0	0	3		NIL		
6		GREEN BIOTECHNOLOGY AND POLLUTION ABETMENT	B	TE		EC-PS	3	0	0	3		NIL		
7		BIOPHARMACEUTICAL TECHNOLOGY	B	TE		EC-PS	3	0	0	3		NIL		
8		METABOLIC ENGINEERING	B	TE		EC-PS	3	0	0	3		NIL		

9		MARINE AND AQUACULTURE BIOTECHNOLOGY	BTE	EC-PS	3	0	0	3	\ NIL
10		PLANT AND ANIMAL TISSUE CULTURE	BTE	EC-PS	3	0	0	3	NIL
11		FOOD SCIENCE AND TECHNOLOGY	BTE	EC-PS	3	0	0	3	NIL
	!	OPEN ELECTIVES (Co	OURSES ON E	MERGING ARI	EAS)	CREDI	ГS -(3)	,	L
S. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р		PREREQUISITE
1		SUSTAINABLE BUILT ENVIRONMENT	CIVIL	OE-EA	3	0	0	3	NIL
2.		ADVANCED CYBER SECURITY	CSE	OE-EA	3	0	0	3	NIL
3		SOLAR AND ENERGY STORAGE SYSTEM	EEE	OE-EA	3	0	0	3	NIL
4		METAL ADDITIVE MANUFACTURING	MECH	OE-EA	3	0	0	3	NIL
5		BIO MEMS	ECE	OE-EA	3	0	0	3	NIL
6		BIOMEDICAL PRODUCT DESIGN AND DEVELOPMENT	BME	OE-EA	3	0	0	3	NIL

D. EM	D. EMPLOYABILITY ENHANCEMENT COURSES AND COURSES FOR PRESENTATION OF TECHNICAL												
	SKILLS RELATED TO THE SPECIALIZATION												
S.NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1.		PROJECT WORK PHASE I	BTE	EE-P	0	0	12	6	NIL				
2.		PROJECT WORK PHASE II	BTE	EE-P	0	0	24	12	NIL				
3.		INTERNSHIP	BTE	PI-I	0	0	0	1	NIL				
4.		TECHNICAL SEMINAR	BTE	EE-S	0	0	0	1	NIL				
5		RESEARCH PRESENTATION SKILLS	BTE	EE-D	0	0	0	1	NIL				

	E. AUDIT COURSES (0 CREDIT)												
	ANY TWO COURSES ON:												
S.NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1.		ENGLISH FOR RESEARCH PAPER WRITING	ENG	AC	0	0	2	0	NIL				
2.		DISASTER MITIGATION AND MANAGEMENT	CIVIL	AC	0	0	2	0	NIL				
3.		VALUE EDUCATION	HS	AC	0	0	2	0	NIL				
4.		CONSTITUTION OF INDIA	LAW	AC	0	0	2	0	NIL				
5.		PEDAGOGY STUDIES	HS	AC	0	0	2	0	NIL				
6	6 PERSONALITY DEVELOPMENT THROUGH ENG AC 0 0 2 0							NIL					
Total credits to be earned for the award of M.E /M.Tech degree													

CURRICULUM

I SEMESTER

S. No.	Course Code	Subject Name	Dept. Offering the course	L	Т	Р	С
Theory	I		1		1		
1		Advanced Biochemistry	Biotechnology	3	0	0	3
2		Microbial Technology	Biotechnology	3	0	0	3
3		Applied Mathematics for Bioengineerrs	Mathematics	3	0	0	3
4		Principles of Chemical Engineering	Biotechnology	4	0	0	4
5		Biopharmaceutical Technology	Biotechnology	3	0	0	3
Practica	al						
6		Advanced Biochemistry Lab	Biotechnology	0	0	3	2
7		Microbiology Lab	Biotechnology	0	0	3	2
			TOTAL	16	0	6	20

II SEMESTER

S. No.	Course Code	Subject Name	Dept. Offering the course	L	Т	Р	С
Theory	I		11				
1		Genetic Engineering	Biotechnology	3	0	0	3
2		Immunotechnology	Biotechnology	3	0	0	3
3		Stem Cell Biology	Biotechnology	3	0	0	3
4		Plant and Animal Tissue Culture	Biotechnology	3	0	0	3
5		Agriculture Biotechnology	Biotechnology	3	0	0	3
6		Research Methodology and IPR	Biotechnology	2	0	0	2
7		Internship	Biotechnology	0	0	0	1
8		English for research paper writing	H&S	0	0	0	0
Practica	al						
9		Genetic Engineering Lab	Biotechnology	0	0	4	2
10		Immuno technology Lab	Biotechnology	0	0	4	2
			TOTAL	17	0	8	22

III SEMESTER

S. No.	Course Code	Subject Name	Dept. Offering the course	L	Т	Р	С
Theory			course				
1		Advanced Bioprocess Engineering	Biotechnology	3	0	0	3
2		Open Elective	Biotechnology	3	0	0	3
3		Diagnostics and therapeutics	Biotechnology	3	0	0	3
5		Food science and Technology	Biotechnology	3	0	0	3
6		Research paper writing seminar	H&S	0	0	0	1
7		Disaster mitigation and management	Civil	0	0	0	0
Practica	al						
8		Advanced Bioprocess Lab	Biotechnology	0	0	4	2
9		Project Work- Phase I & Viva Voce	Biotechnology	0	0	12	6
			TOTAL	16	0	16	21

IV SEMESTER

S. No.	Course Code	Subject Name	Dept. Offering the course	L	Т	Р	С
Practica	al						
1		Project Work- Phase II & Viva Voce	Biotechnology	0	0	24	12
			TOTAL	0	0	24	12

TOTAL CREDITS: 75

APPLIED MATHEMATICS
FOR BIO-ENGINEERING

CATEGORY	L	Т	Р	CREDIT
FC-BS	3	0	0	3

This course offers the knowledge of solving problems involving matrices, Differentiation, Integration and to develop skills and knowledge of standard concepts in finding approximate solution of equations, Interpolation, ordinary differential equations and to develop an understanding of the methods of probability and statistics which are used to model engineering problems.

	•	01		5.											
PREREQUISITE NIL COURSE OBJECTIVES															
COU															
1	To recail the advanced matrix knowledge to Engineering problems.														
2	2 To develop the knowledge in differential and integral calculus.														
3	To enable the students to solve ordinary and Partial differential equations.														
4		miliariz								•					
5														rtions and ure can be	d to draw used
					ore that	n two j	popula	ations a	are equa	al.					
COU	to determine if means of more than two populations are equal. COURSE OUTCOMES														
After	the suc	cessful	comple	tion of	the cou	ırse, le	earner	will be	e able to)					
CO1.	Apply	the con	cept of	Matrice	s in en	gineer	ing pr	oblem	5.					Apply	
		tools to												Apply	
CO3 .	Apply l	cnowled	lge of C	Ordinary	and p	artial o	liffere	ntial e	quation	s in bio	logical	processe	s	Apply	
CO4.	Apply	the num	nerical 1	nethods	s in pro	oblems	•							Apply	
CO5.	Apply	the con	cept of	Statistic	es and	Probal	oility.							Apply	
MAP	PPING	WITH	H PRO	GRAN	IME	OUT	СОМ	ES A	ND PF	ROGR	AMMI	E SPEC	CIFIC (DUTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L				L				L			
CO2	S	М	М	L				L				L			
CO3	S	М	М	L				L				М			
CO4	S	S	М	L				L				М			
CO5	S	Μ	Μ	L				L				М			
a an	DON	~													

S-STRONG, M-MEDIUM, L-LOW

SYLLABUS

MATRIX THEORY:

Review of Matrices and Determinants, Solution of simultaneous equations using matrix inverse and Cramer's rules,

Diagonalisation of Matrix using orthogonal transformation, Singular value decomposition

CALCULUS:

Review of Limits, Continuity, Differentiability, Meaning of derivatives, Mean Value Theorem. Taylor's Theorem, Maxima and Minima,Integration-Fundamental Theorem of Calculus, Bernoulli's formula, Improper Integrals, Applications to Area, Volume, Convergence of Sequences and Series, Power Series, Partial Derivatives, Gradient and Directional Derivatives, Chain Rule, Maxima and Minima of two variables.

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS:

First order differential equations : Exact equations, Integrating factors and Bernoulli equations, First order and second order Partial Differential equations - Application to biology, Lagrange's method and Charpits method.

NUMERICAL METHODS :

Finite Differences – Newton's Forward and Backward differences formula, Lagrangian Interpolation (Problems only), Algebraic and transcendental methods, False position, Newton Raphson's method, Solutions of Linear simultaneous equations, Gauss Elimination Method, Gauss Jordan Method and Gauss - Jacobi method ,Gauss Seidel method(Problems only).

TESTING OF HYPOTHESIS

Hypothesis testing - Non parametric test - Sign test, Wilcoxon signed rank test, Mann-Whitney test, Run test,

Kolmogorov - Smirnov test, Spearman's and Kendall's test

TEXT BOOKS

- 1. B.S.Grewal., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2020).
- 2. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).
- 3. B.S. Grewal and J.S. Grewal, "Numerical Methods in Engineering and Science", 6th edition, Khanna Publishers, New Delhi (2004).

REFERENCES

- 1. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 2. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3rd Edition, Tata Mc-Graw Hill.(New York) (2015).

COUR	COURSE DESIGNERS												
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID									
1	Dr. P.Sasikala	Professor	Mathematics	sasikala@vmkvec.edu.in									
2.	Dr. A.K.Bhuvaneswari	Assistant Professor grade-II	Mathematics	bhuvaneswari@avit.ac.in									

			RESE	EARCI	H ME	ТНО	DOL	OGY	(CATEG	GORY	L	Т		Р	CREDIT
			AND	IPR						FC-I	HS	2	0		0	2
The c		on the		ch Meth search l							echnolo	ogy. The	objecti	ve of	this	course is
PRE	REQU	JISITE	E NIL													
COU	IRSE	OBJE	CTIVE	ES												
l	То д	give an o	overvie	w of the	e resea	rch m	ethodo	logy a	nd exp	lain the	e techni	que of d	efining	a resea	irch	problem
2	Prob	lem for	mulatio	on, anal	ysis aı	nd solu	itions.									
3	Tech	nnical p	aper wr	riting / p	presen	tation	withou	ıt viola	ating p	rofessio	onal ethi	ics				
1	Pate	nt draft	ing and	filing p	atents											
COU	RSE	OUTC	OMES	5												
After	the suc	ccessful	comple	etion of	the co	ourse.	learner	will t	be able	to						
				problen											Un	derstand
				ated info											Ap	ply
CO3.	Follov	v resear	ch ethic	cs											An	alyze
CO4.	Techn	ology, ł	out tom	orrow v	vorld v	will be	ruled	by ide	as, con	cept, ai	nd creat	ivity			Ev	aluate
CO5.	Under	standin	g that	when I	PR wo	ould ta	ake suc	ch imp	oortant	place i	in grow	th of in	idividua	ls &	Un	derstand
				•						t Intelle	ectual F	Property	Right t	o be		
•		-		n gener			-									
				•	•							irther re			Cr	eate
							eation of	of nev	v and l	better p	roducts	, and in	turn br	rings		
				d social				IES /		RUCI	RAMN	1E SPE	CIFIC			OMES
	1 11 10			JUNA	VIIVII.			1120 F		NUU						J11110
	DOL	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
	PO1	1		L	-	_	_	_	-	_	_	_	L	_		_
COS		_	-		-			-	-	-	-	-	L	-		
COS	М	- M	- L		-	IVI	-						· · · ·		1	
COS CO1 CO2		- M M	- L S	L M	-	M L	-	М	-	-	-	-	М	L		-
COS CO1 CO2 CO3 CO4	M M	М	L	L				M -			-	-	M M	L L		-

SYLLABUS

RESEARCH PROBLEM AND SCOPE FOR SOLUTION

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

FORMAT

Effective literature studies approaches, analysis, Plagiarism, Research ethics. Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

PROCESS AND DEVELOPMENT

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, patenting under PCT.

PATENT RIGHTS

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

NEW DEVELOPMENTS IN IPR

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs..

TEXT BOOKS

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students" Juta Publishers, 1996.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta Publishers, 2004.
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" .

REFERENCES

- 1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 2. Mayall, "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.
- 4. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

COURSE DESIGNERS

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Devika	Associate Professor	Biotechnology	devika@avit.ac.in

ADVANCED BIOCHEMISTRY	CATEGORY	L	Т	Р	CREDIT
	CC	3	0	0	3

Advanced Biochemistry uses the knowledge and understanding gained in the prerequisite course and provides understanding of central metabolic process and role of enzymes in modulating pathways. This course also highlights the process of Biological oxidation involved in the energy production by burning the food materials and give awareness to the various diseases associated with the errors of metabolism of the biomolecules.

PREREQUISITE NIL

COURSE OBJECTIVES

	NOL	ODJE		20											
1	To di	scuss th	ne meta	bolic p	athway	vs of n	najor b	oio-mo	lecules						
2	To de	To describe the starting, intermediate and ending molecule, enzymes and cofactors in the pathways													
3	To di	To differentiate biochemical basis of various disease processes													
4	To outline the process of Biological oxidation involved in the energy production by burning the food materials														
5	To di	scuss th	ne meta	bolic p	athway	vs of n	najor b	oio-mo	lecules						
COU	RSE (OUTC	OMES	5											
After	the suc	cessful	comple	etion of	the co	ourse, l	earne	r will ł	be able	to					
CO1.	Explai	n the m	etaboli	c pathw	vays of	carbo	hydra	tes, an	nino aci	ids, nuc	leic aci	ds and li	pids	Understa	ind
CO2.	Descri	be the c	causes o	of metal	bolic d	isorde	r							Understa	ind
CO3.	Exami	ne the i	mporta	nce of 1	nolecu	les de	rived	from a	mino a	cids				Apply	
CO4.	Illustra	ate the I	ntegrat	ion of e	energy	metab	olism	of ma	cromol	ecules				Apply	
CO5.	Analy	ze and	apply	theore	etical	knowle	edge	of bic	chemi	stry for	^r desig	ning of	new	Analyze	
MAP	PING	WIT	H PRC	GRA	MME	OUT	CON	AES A	AND P	ROG	RAMN	IE SPE	CIFIC	COUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М											S	L	М
			-	-	-	-	-	-	-	-	-	-			
CO2															
CO3	S	S	М	-	Μ	-	-	-	-	-	-	Μ	-	М	-
CO4	4 S S S M S M L														
CO5	Μ	М	-	Μ	-	-	-	-	-	-	-	-	S	М	L

S- Strong; M-Medium; L-Low

SYLLABUS

BIOMOLECULES

Biochemistry: The molecular logic of life, Buffering in biological systems, Types of biomolecules, Chemical nature and biological role, Bioenergy – Thermodynamic quantities and laws, Applications of free energy functions, ATP as the main carrier of free energy in biochemical systems, Biological oxidation - reduction reactions, Oxidative phosphorylation, Vitamins and coenzymes.

CARBOHYDRATES AND ITS METABOLISM

Carbohydrates: Definition, nomenclature, classification, structure, chemistry and properties, Storage and structural polysaccharides, Metabolism of carbohydrates; Glycolysis, TCA cycle, Gluconeogenesis, HMP pathway, Glycogen metabolism, Oxidative phosphorylation, Regulation of carbohydrate metabolism. Clinical Correlation – Glycogen storage disease, Diabetes mellitus, Galactosuria, Fructosuria.

LIPIDS AND ITS METABOLISM

Lipids: Classification, nomenclature and structure of fatty acids, Storage and structural lipid; triacylglycerols, sphingolipids and phospholipids, waxes, glycolopids and sterols; Transport of lipids in blood plasma, lipoproteins, Beta-oxidation of fatty acids, Biosynthesis of fatty acids and triacylglycerols; Regulation of lipid metabolism. Clinical Correlation – Hypercholesterolemia, Atherosclerosis, Fatty Liver, Gaucher's Disease, Niemann – Pick Disease, Refusme Disease

PROTEINS AND ITS METABOLISM

Proteins: Amino Acids: structure and functional group properties, essential and non-essential amino acids; nonprotein amino acids, Acid base properties, Biosynthesis and degradation of following amino acids: alanine, serine, lysine cysteine, arginine, methionine, tryptophan, phenylalanine glutamine;. Proteins: peptides, primary, secondary, tertiary and quaternary structure of proteins; Hydrolysis of proteins: Action of different proteases; Regulation of amino acid metabolism and disorders of six essential amino acids (Met, Thr, Lys, Ile, Val, Leu).

NUCLEIC ACIDS AND ITS METABOLISM

Nucleic acids: General structure and functions of purines, pyrimidines, nucleosides and nucleotides; structure of DNA and RNA, Hydrolysis of nucleic acids; Biosynthesis of purines and pyrimidines, nucleosides and nucleotides; Degradation of purines and pyrimidines. Clinical Correlation – Gout, Lesch – Nyhan Syndrome, Orotic Aciduria.

TEXT BOOKS

- 1. Ambika Shanmugham. Text Book of Biochemistry for Medical Students.
- 2. Sathyanarayana, U. and Chakrapani, U., 2006. Biochemistry. 3rd Edn., Uppala Author Publishers Interlinks.
- 3. Jain, J.L., Sunjay Jain and Nitin Jain. Fundamentals of Biochemistry.
- 4. Rastogi, S.C. Biochemistry.
- 5. Chatterjea, M.N. and Rana Shinde, 2000. Text Book of Medical Biochemistry. 4th Edn., *Jaypee Brothers Medical Publishers Pvt. Ltd.*
- Narayanan, L.M., Nallasingam, K., Arumugam, N., Dulsy Fathima, Meyyan Pillai, R.P. and Prasanna Kumar, S. Biochemistry.
- 7. Powar Chatwal. Biochemistry.
- 8. Mallikarjuna Rao, M., 2002. Medical Biochemistry. New Age International (P) Ltd. Publishers

REFERENCES

- David L. Nelson and Michael M. Cox, 1982. Lehninger Principles of Biochemistry. W. H. Freeman and Company, 4th Edn.
- Jeremy M. Berg, John L. Tymoczke and Lubert Stryer, 2001. Biochemistry. W. H. Freeman and Company, 5th Edn.

COUR	COURSE DESIGNERS											
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID								
1	Dr. B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in								
2.	Ms.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in								

MICROBIAL TECHNOLOGY	CATEGORY	L	Т	Р	CREDIT
	CC	3	0	0	3

Microbial Biotechnology deals with the study of Microbial products, organization and function of prokaryotes. As the pioneering field in the area of microbial it clearly shows that the industrially important microbes and metabolites. Industrially important microbial metabolites were identified and they were taken to the different steps for the production of antibiotics. Genetically modified organisms are concerned with the application of microbial metabolites in pharma industry and also the types of drugs, how the biofertilizers and biopesticides are useful to the agriculture for the enormous amount of production. Classically recovery and purification of microbial products were analysed for the application in agriculture.

PREREQUISITE NIL

COURSE OBJECTIVES

1	To learn the basic principles of isolation and purification of microbial products
2	To understand the kinetics of microbial metabolites and their actions
3	To understand the recovery and product identification from the microbes
4	To know the importance and application of microbial metabolites in the Parma industry
5	To make the students to test and deepen their mastery of microbial products by applying this knowledge in a variety of problem-solving situations.

COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1: To describe the historical background and cultural characteristics of microbes	Remember
CO2: To describe the differences between culturing techniques, product purification and recovery process	Understand
CO3: To analyze the production of microbial metabolites	Analyse
CO4: To compare and contrast the production of primary and secondary metabolites	Analyse
CO5: Identify the factors that play a role in the production of antibiotics.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

~~~															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	-	L	L	L	-	L	-	-	-	-	-	L	-	-
CO2	-	М	S	S	L	-	S	-	-	-	L	-	-	-	-
CO3	-	-	L	L	S	-	-	М	-	-	L	М	-	М	-
CO4	-	-	-	-	-	-	S	-	-	-	L	Μ	-	М	-
CO5	-	-	L	-	М	-	-	-	-	-	-	S	S	М	L
S- Str	S- Strong; M-Medium; L-Low														

#### SYLLABUS

#### MICRORGANISMS AND MICROSCOPY

Characteristics of microorganisms, Historical review of the foundation of microbiology, Taxonomy methods of studying microorganisms, Microscopy – Light, Electron, Phase contrast and Laser optics systems, Micrometry, Scope of Microbiology.

#### STRUCTURAL ORGANISATION AND REPRODUCTION OF MICROORGANISMS

Structure, Organization and Reproduction of Bacteria, Yeast, Fungi, Algae, Bacteriophage and Viruses.

#### MICROBIAL NUTRITION AND ENVIRONMENT

Nutritional requirements, Growth of microorganisms in Natural and Artificial Environment, Aerobic and anaerobic growth, Different methods of enumeration of multiplying microorganisms, Growth curve, Axenic culture, Synchronus culture, Continuous culture, Methods of preservation of microbes, Effects of physical and chemical factors on microbial growth.

#### CLINICAL MICROBIOLOGY

Bacterial, Fungal, Viral and Parasitic Diseases, Clinically important microorganisms and their role in infections and immunity, Formation of toxic Substances by microorganisms.

#### CONTROL OF MICROORGANISMS AND ITS ENVIRONMENTAL APPLICATIONS

Antimicrobial agents and disinfectants, Microbes in Air, Drinking water, Waste water and Extreme Environments, Recycling of biomaterials, Leaching of ores by Microorganisms, Microbial degradation of Recalcitrant Organic Pollutants, Biofouling, Production of biogas, Application of biofertilizers and biopesticides, Microbial indicators of pollution, Food preservation, Food spoilage, Food poisoning.

#### TEXT BOOKS

- 1. Pelzar, M.J., Chan, E.C.S and Krieg, N.R. Microbiology. Tata McGraw Hill Edition. New Delhi. India.
- 2. Ananthanarayan and Jayaram Paniker, 1999. Text Book of Microbiology. Orient Longman Publishers.

#### REFERENCES

- 1. Talaro, K., Talaro A. Cassida Pelza and Reid, 1993. Foundation in Microbiology. W.C. Brown Publishers.
- 2. Prescott, Harley and Klen, 2003. Microbiology. McGraw Hill Publications. 5th Edition

#### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Balachandar	Assistant Professor	Biotechnology	balachandar.biotech@avit.ac.in
2	Dr.M. Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in

PRINCIPLES OF CHEMICAL	CATEGORY	L	Т	Р	CREDIT
ENGINEERING	СС	4	0	0	4

The course introduces the basic principles and calculation techniques in the field of chemical engineering. It provides a concrete understanding of fundamentals and applications of material balances and energy balances which help students to understand the concepts of thermodynamics and fluid mechanics. It also provides a basis for non-chemical engineers to realize the chemical engineering aspects of subsequent modules.

#### PREREQUISITE

17BTCC05- Unit Operations in Process Industries

#### **COURSE OBJECTIVES**

000	
1	To express words into diagrams and mathematical expressions.
2	To describe problem-solving skills, specifically the ability to think quantitatively by including numbers and units.
3	To interpret vague and ambiguous language in problem statements.
4	To implement judicious use of approximations and reasonable assumptions to simplify problems.
5	To compare principles of operation and design for a range of items of plant.
COU	IPSE OUTCOMES

#### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. Explain about correlation of mathematics, science and engineering principles for problem solving in process industries.	Understand
CO2. Demonstrate the fundamental concepts of dimensions, units, psychometry, steam	Understand
properties and law of conservation of mass and energy.	

CO3. Interpreting the problems in material and energy balances related to chemical and Understand bioreactors

CO4. An ability to employ knowledge to spot and create simple engineering troubles linked Apply to material balance, energy balance, thermodynamics and energy transformation

CO5. Practice material balances on unit operations and processes in various industries and Apply to evaluate humidity with/without the use of psychrometric chart.

CO6. Formulating and optimizing various parameters with respect to the industrial Evaluate processes.

### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	L	-	-	-	-	-	-	-	-	М	-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	S	-	М	L	L	-	-	-	-	-	-	-	-	-
CO4	S	S	S	L		-	-	-	-	-	-	-	-	-	-
CO5	S	М	-	М	L	-	-	-	-	-	-	L	-	-	-
CO6	S	М	М	L	L	L	-	-	-	-	-	S	-	М	L
S- Stro	S- Strong M-Medium I-Low														

S- Strong; M-Medium; L-Low

#### SYLLABUS INTRODUCTION

Role of chemical engineering in design and analysis of chemical processes, Historical and more recent developments in Chemical engineering and its role in Biological processes. Overview of unit operations and processes in the chemical industry. Units and conversion factor, Introduction to dimensional analysis (Pi – theorem).

#### THERMODYNANICS, MATERIAL AND ENERGY BALANCES 13

Concepts of chemical thermodynamics, Relation to Vapour Liquid Equilibrium (VLE), Solution thermodynamics. Stoichiometry – Overall and component material balances, Material balances without chemical reactions, Conversion and yield, Material balance calculations with chemical reactions, Recycle operations, Energy balances – Entropy, Latent heat, Combustion calculations.

#### FLUID MECHANICS

Classification and Properties of fluids, Fluid statics - forces at fluid surfaces, Pressure and measurement of pressure differences, Fluid flow concepts and basic equations of fluid flow – Continuity equation and Bernoulli's equation, Shear stress relationship and viscous effects in fluid flow – Non - Newtonian fluids, Significance of dimensionless groups in fluid flow operations

#### TRANSPORTATION OF FLUIDS

Different types of pumps, Compressors and valves, Measurement of fluid flow using hydrodynamic methods, Direct displacement method, Types of agitators, Flow patterns in agitated vessels, Calculation of power consumption, Applications in bioreactor design.

#### FUNDAMENTALS OF HEAT AND MASS TRANSFER

Heat Transfer : Mechanism of heat transfer – Conduction, Convection, Radiation, One Dimensional Steady state conduction – flat wall and cylinder, Convection – Forced and Natural Convection, Heat transfer by forced convection in laminar, turbulent flow - Empirical Equations, Heat transfer coefficients calculations, General equipments of heat transfer.

Mass Transfer : Molecular and Eddy diffusion, Role of diffusion in bioprocessing, Mass transfer theories, Liquid - solid mass transfer operations - Batch and Fixed bed adsorption, Gas - liquid mass transfer operations - Principles of Absorption, Industrial absorbers.

#### **TEXT BOOKS**

1. Bhatt, B. I. and Vora, S. M., 1977. Stoichiometry. Tata McGraw Hill Publication, 3rd Edn.

- 2. Hougen, O. A. and Watson, K. M. Chemical Process Principles. C. B. S Publication, Volume I.
- 3. Geankoplis, C. J., 2003. Transport Processes and Unit Operations. Prentice Hall, India, 3rd Edn.

#### 11

13 d.m

10

#### 13

#### **REFERENCE BOOKS**

- Himmelblau, D., 1994. Basic Principles and Calculations in Chemical Engineering. *Prentice Hall India Ltd.*, India, 5th Edn..
- McCabe, W. L., Smith, J. C. and Harriot, P., 2004. Unit Operations in Chemical Engineering. *Tata McGraw Hill Internation Publication*, 7th Edn.
- 3. Treybal, R.E., 1981. Mass Transfer Operations. 3rd Edn., *Mc Graw Hill*.

#### **COURSE DESIGNERS**

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.Subathra	Assistant Professor	Biotechnology	subathra.biotech@avit.ac.ir
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in

CENETIC ENCINEEDING	CATEGORY	L	Т	Р	CREDIT
GENETIC ENGINEERING	CC	3	0	0	3

Genetic engineering has developed genetic recombination techniques to manipulate gene sequences in plants, animals and other organisms to express specific traits. Applications for genetic engineering are increasing as engineers and scientists work together to identify the locations and functions of specific genes in the DNA sequence of various organisms. Once each gene is classified, engineers develop ways to alter them to create organisms that provide benefits such as cows that produce larger volumes of meat, fuel- and plastics-generating bacteria, and pest-resistant crops.

#### **PREREQUISITE** NIL

#### **COURSE OBJECTIVES**

1	To understand the principle of nucleic acid isolation, PCR and their uses in genetic engineering, nucleic acid hybridization
2	The students after completing this course would be aware of how to clone commercially important genes
3	The students would be aware Analysis of Gene expression
4	To discuss the gene cloning methods and the tools and techniques involved in gene cloning
5	To explain the heterologous expression of cloned genes in different hosts,
	production of recombinant proteins and its applications

#### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. . Gain knowledge on various recombinant DNA techniques and their applications.UnderstandCO2. Familiar with the problems they could encounter and how to trouble shoot them learn<br/>various types of host-vector systems and steps in creating a recombinant DNA moleculeUnderstandCO3. Monitor both in-vitro and in-vivo activity.AnalyzeCO4. Give insight into the functioning of Recombinant DNA molecules, their constructions,<br/>CO5. Know about the production of commercially important recombinant proteins.Apply

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	S	S	L	-	-	-	-	-	-	-	-	М	-	-	
CO2	S	М	S	М	-	-	-	-	-	-	-	-	S	-	-	
CO3	М	L	М	S	-	-	-	-	-	-	-	-	L	-	-	
CO4	S	М	L	S	-	-	-	-	-	-	-	-	-	-	-	
CO5	М	М	S	L	-	-	-	-	-	-	-		-	-	-	
S- Str	rong; N	M-Med	ium; L	S- Strong; M-Medium; L-Low												

#### SYLLABUS

#### **CLONING VECTORS**

Concepts of recombinant DNA technology – Cutting (Restriction enzymes) and joining of DNA, Plasmid biology, Plasmids as vectors – pBR 322, Derivatives of pBR 322, pUC vectors, Lambda vectors, In vitro packaging, M13 vectors, Cosmids, Phasmids, Retroviral vectors, Baculovirus vectors, Cloning vectors in Gram positive bacteria (p1J101), Cloning vectors in Gram negative bacterium (Col E1, R1, pT181, pSC 101), Cloning vectors in Streptomyces (SLP and SCP), Expression vectors – Prokaryotic expression vectors (E. coli, Streptomyces) and Eukaryotic expression vectors

#### CLONING STRATEGIES AND RECOMBINANT DNA TECHNOLOGY

Preparation of competent cells, Transformation, Gene transfer methods in plants and animals, Construction and screening of genomic DNA and cDNA library, Analysis of gene expression, Chromosome walking, Chromosome jumping, Transcript mapping, Gene targetting, Transposon tagging

#### **TECHNIQUES IN GENETIC ENGINEERING**

DNA Labeling – Radioactive and non - radioactive methods, DNA amplification using PCR and it's applications, Random Amplified Polymorphic DNA (RAPD), RT - PCR, Ligase chain reaction, Heteroduplexing, DNA sequencing – Maxam and Gilbert method and Sanger and Coulson enzymatic chain termination method, Nucleic acid hybridization – Southern, Western and Northern, Gene targeting vectors : Gene replacement, Gene knockout, Gene addition – Reporter gene technology, Enhancer trap technology, Phage display technology, Baculovirus Display (BUDS), Yeast one hybrid and two hybrid vectors, iRNA technology : Therpeutic potential of RNAi in metabolic diseases, Gene synthesis

#### **GENETIC ENGINEERING AND SAFETY GUIDELINES**

Mutagenesis – Deletion mutagenesis, Oligonucleotide derived mutagenesis, Site directed mutagenesis and their applications, Molecular Markers – Variable Number Tandem Repeats (VNTR's), Minisatellite sequences, Short Tandem Repeats (STR), Microsatellite sequences, Restriction mapping, DNA fingerprinting – Restriction Fragment Length Polymorphism (RFLP) analysis, Gene therapy, Molecular diagnostic methods for genetic diseases, In situ methods to locate transgenes and transcripts, Safety guidelines for recombinant DNA technology and guidelines for the disposal of bio-waste

#### APPLICATIONS OF TRANSGENIC PLANTS AND ANIMALS

Gene products : Insulin, Human Gonadotrophic Hormone (HGH), BST, Factor VIII, Interferons, Production of antibodies by genetic engineering, Targetting gene therapeutics ribozymes, Triple helix therapeutics, Oligonucleotide aptemers, Intrabodies, Genetically engineered vaccines, Biofortification (Nutraceuticals), Plantibodies and Pharmaceutical pharming, Plastics from plants, Flavr Savr tomato, Blue roses, Golden rice, Transgenic animals – Mastitis resistant cattle, Tick resistant sheep, Fast growing sheep, Fast growing fish, Antimalarial mosquitoes, Antifreeze proteins, Fat Salomon, Mutation detection fish, Spider silk from goat milk, Low phosphorus Enron pig, Vaccination for animal health, Engineering food for animals.

#### **TEXT BOOKS**

- 1. Old, R. W. and Primrose, S. B., 1993. Principles of Gene Manipulation. An Introduction to Genetic Engineering. Blackwell Scientific Publication.
- 2. Freifelder, D., 1987. Molecular Biology. Jones and Bartlett Publishers Inc.
- 3. Brown, T.A., 2012 Gene Cloning. 6th Edition, Wiley-Blackwell Publication.
- 4. Purohit, S. S., 2002. Biotechnology: Fundamentals and Applications. Agrobios (Ind), Jodhpur.
- 5. Satyanarayana, U., 2008. Biotechnology. Books and Allied Pvt. Ltd.

#### REFERENCES

- 1. Sambrook and Elliot. Molecular Cloning. Vol. III.
- 2. Lewin, B. I. Genes VIII. John Wiley and Sons, New York.
- 3. Watson, J. Recombinant DNA Technology.
- 4. Winnacker. From Genes to Clones.
- 5. Ansubel, F. M., Brent, R., Kingston, R. E. and Moore, D. D., 1988. Current Protocols in Molecular

Biology. Green Publishing Associates, New York.

6. Benjamin Lewin, 2000. Genes VI and Genes VII. Oxford University Press, Cambridge, UK, 7th Edition.

COUR	COURSE DESIGNERS												
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID									
1	Dr.A.Nirmala	Assistant Professor (Gr-II)	Biotechnology	Nirmalabt@avit.ac.in									
2.	Dr.M. Sridevi	Professor & Head	Biotechnol	sridevim@vmkvec.ed									
			ogy	u.in									

			_			~		~	CA	ГEGOF	RY	L	Т	P	CREDIT
			IN	IMUN	ΟΤΕ	CHN	OLO	GY		CC		3	0	0	3
The c antibo	ody eng		g	ne knov	vledge	on th	e type	s and	mecha	nism of	î immu	ne syste	ems, im	mune rea	actions an
				20											
COL	KSE	ORIE	CTIV	28											
1	Acqu	ire kno	wledge	on typ	es and	struct	ure of i	immuı	ne syst	ems and	divers	ity of an	tibody.		
2	Eluci	date cy	tokine	and cor	nplime	ent bas	ed acti	vatior	n and re	gulation	n of im	mune m	echanis	sms	
3	Perceive knowledge on Immunodeficiencies.														
4	Depict principles in diagnosis, HLA typing and tumor immunology.														
5	Desc	ribe ant	ibody e	enginee	ring ar	nd uses	s of im	munol	histoch	emistry					
	  RSE (	OUTC	OME	5											
			compl		the co	nirse	learner	· will ł	ne able	to					
											ns and	diversi	ty of	Understa	and
antibo	odv.									-		of im	-	Apply	
	anisms		TOKINE	anu c	ompin	nent	Uaseu	activa	ation a	illu leg	ulation	OI IIII	lliulle	Аррту	
CO3.	Percei	ve knov	vledge	on Imm	unode	ficien	cies.							Apply	
CO4.	Depict	princip	oles in c	liagnos	is, HL	A typi	ng and	l tumo	r immu	nology.				Analyze	
CO5.	Descri	be antil	odv en	gineeri	ng and	luses	of imn	unohi	istoche	mistry.				Evaluate	,
			-	-	-						RAMN	IE SPF	CIFIC	C OUTC	
							001		11 (2) 1	1001				00010	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COS		S	М	-	-	-	-	-	-	-	-	-	-	-	-
	S			1	-	-	-	-	-	-	-	-	-	-	-
CO1 CO2	S -	М	-	-						1					
CO1 CO2 CO3	- L	М	S	М	L	-	-	-	-	-	-	-	М	L	-
COS CO1 CO2 CO3 CO4 CO5	-					- -	-	-	-	-	-	- - M	M S L	L S S	-

#### SYLLABUS

#### INTRODUCTION TO IMMUNE SYSTEM

Phylogeny of immune system, Innate and acquired immunity, Hematopoiesis and differentiation, Organization and structure of lymphoid organs, Cells of immune system – B - Lymphocytes, T - Lymphocytes, Macrophages, Dendritic cells, Natural killer, Lymphocyte activated killer cells, Eosinophils, Neutrophils, Mast cells, Clonal nature of immune response, Antibody structure and function – Structural features and biological properties of IgG, IgM, IgA, IgD and IgE.

#### ASSESSMENT OF CELL MEDIATED IMMUNITY

Identification of lymphocytes and their subsets in blood, T - cell and B - cell activation, Macrophage activation, Macrophage microbicidal assays, Cytokines : Monokines, Lymphokines and Interleukines, In vitro experimentation – Application of the above technology to understand the pathogenesis of infectious diseases.

#### DISEASES AND IMMUNE SYSTEM

Immunity to virus, Bacteria, Parasites, Genetic control of immune response, MHC associated predisposition to disease, AIDS, Typhoid, Rabies, Tuberculosis, Leprosy, hepatitis virus, Malaria, Filariasis. HLASystem, Transplantation–Organ transplantation, Grafting–graft rejection and prevention, Immunosuppressive drugs, Autoimmunity– Auto antibodies in human, Pathogenic mechanism, Experimental models of Autoimmune disease, Treatment of Autoimmune disorders, Complement system, Hypersensitivity

#### **IMMUNOTECHNIQUES**

Antigen - antibody interaction, Agglutination and precipitation, Complement fixation test, Immunodiffusion, Radio Immuno Assay (RIA), Enzyme Linked Immunosorbent Assay (ELISA), Western blotting, Immunoelectrophoresis, SDS – PAGE, Purification and synthesis of antigen, Fluorescence immunoassay – Immuno Fluorescence (IF), Substrate Labelled Fluorescent Immunoassay (SLFIA), DELFIA, Fluorescence Activated Cell Sorter (FACS), Immunomics.

#### VACCINES AND IMMUNOTHERAPEUTICS

Basic principles of vaccine development, Protein based vaccines, DNA vaccines, Plant based vaccines, Recombinant antigens as vaccines, Reverse vaccinology, Engineered antibodies – Catalytic antibodies, Idiotypic antibodies, Combinatorial libraries for antibody isolation

#### TEXT BOOKS

- Lydyard, P. M., Whelan, A. and Fanger, M. W., 2003. Instant Notes in Immunology. Viva Books Private Limited, 2nd Edition.
- Talwar, G. P., and Gupta, S. K., 1992. A Handbook of Practical and Clinical Immunology. CBS Publications, Volume I and II.
- 3. Weir, D. M., 1990. Practical Immunology. Blackwell Scientific Publications, Oxford.
- 4. Dulsy Fatima. Immunology. Saras Publications.

#### REFERENCES

1.Talwar, G. P. and Gupta, S. K., 1992. A Handbook of Practical and Clinical Immunology. CBS Publications, Volume 12.

2.Richard, A., Goldsby, Thomas J. Kindt and Barbara A. Osborne, Kuby. Immunology. W. H. Freeman and Company, New York, 4th Edition.

3.Goding, J. W., 1983. Monoclonal Antibodies : Principles and Practice. Academic Press.

5 . Benjamin, E. and Leskowitz, S., 1991. Immunology - A Short Course. Wiley Liss., New York

COUR	COURSE DESIGNERS												
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID									
1.	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in									
2.	Dr.M.Sridevi	Professor & Head, VMKVEC	Biotechnolgy	sridevi@vmkvec.edu.in									

STEM CELL DIOLOCY	CATEGORY	L	Т	Р	CREDIT
STEM CELL BIOLOGY	CC	3	0	0	3

Stem cells in regenerative medicine holds promise for improving human health by restoring the function of cells and organs damaged due to degeneration or injury. Stem cell biology has potential application in several areas of biomedical research that includes drug development, toxicity testing, developmental biology, disease modeling, tissue engineering etc.

#### PREREQUISITE NIL

#### **COURSE OBJECTIVES**

1	To define topics related to stem cells and regenerative biology
2	To execute technologies in engineering stem cells
3	To organize scaffold for tissue engineering
4	To provide ideas on the technologies implied in stem cell culturing and application
5	To Assess the ethical issues in stem cell research
CO	URSE OUTCOMES

#### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to	
CO1. To identify the basic applications of stem cell in regenerative medicine	Understand
CO2. To Illustrate the latest tissue engineering concepts	Apply
CO3. Students are trained to choose the correct method and solve the problem by applying	Apply
CO4. To develop the scaffold tissue using stem cell	Analyze
CO5. To validate the research in tissue engineering.	Apply
MADDING WITH DDOCDAMME OUTCOMES AND DDOCDAMME SPECIEI	COUTCOMES

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	-	L	L	-	-	-	-	L	-	L	L	S	S	М
CO2	S	М	S	S	-	Μ	-	-	-	-	L	L	-	М	-
CO3	М	-	М	М	L	S	-	Μ	М	-	М	L	S	L	М
CO4	L	L	L	-	S	L	-	-	-	-	L	Μ	-	-	-
CO5	S	М	L	L	Μ	Μ	Μ	S	М	-	S	L	Μ	-	-
0		0													

#### SYLLABUS

#### STEM CELL AND ITS TYPES

Stem cell – Definition, Embryonic stem cells, Adult stem cells, Origin and characterization of human stem cells and potential applications for stem cell research, Plasticity of human stem cell research, Cord blood stem cells, Stem cell marker.

#### FIBROBLASTS AND THEIR TRANSFORMATIONS:

the connective-tissue cell family fibroblasts response to signals in the extracellular matrix, connective-tissue cell differentiation, fact cells signaling and production, bone remodeling, osteoblasts and bone matrix, osteoclasts and their ole to connective tissue framework and body structure.

#### ISOLATION AND CLONING OF STEM CELLS

Protocols for isolation and identification of stem cells, Culturing and subculturing human neurospheres, Differentiation of human – Neurospheres into neurons, Astocytes and Oligodentrocytes, Immunolabelling procedures, Stem cells and cloning.

#### HUMAN EMBRYONIC STEM CELLS

Human Embryonic Stem Cell Research : Possible sources for human embryonic stem cells, Growing embryonic stem cells in laboratory, Current advantages and limitations of human embryonic stem cells and human somatic stem cells, Developments regarding establishment of human stem cell banks and registries, Government of human embryonic stem cell research, Regulations in European member states and Non - European countries regarding human embryonic stem cell research, Human embryonic stem cell ethics and public policy.

#### STEM CELL TRANSPLANTATION AND APPLICATION

Types of stem cell transplantation – Autologous, Allogeneic, Syngeneic; Nuclear transplantation, Therapeutic transplantation, Embryonic stem cell transfer and Targetted gene transfer, Neural stem cells for Brain / Spinal cord repair, Miracle stem cell heart repair, Stem cell and future of regenerative medicine, Hematopoietic stem cell disorders-classification and manifestations of aplastic, myelodysplastic, myeloproliplastic disorders. Clinical applications of colony stems. Immunological principles, preservation and clinical use of blood and blood components, hemapheresis procedures and oxiplantation.

#### TEXT BOOKS

1. Bernhard Palsson, Jeffery A. Hubble, Robert P. Lonsey and Joseph D. Bronzino,

2005. Tissue Engineering, Principles and Applications in Engineering. C. R. C. Press.

2. John, R. and Master, W., 2004. A Practical Approach. Oxford University Press.

#### REFERENCES

1 Stewart Sell. Stem Cell Handbook. Humana Press.

2. Campbell, N. A. and Jane B. Reece, 2002. Biology.6th Edition. Pearson Education, Inc. San Francisco, California.

3. Freshney, R. and Ian. Alan, R. Culture of Animal Cells : A Manual of Basic Techniques. Liss Inc.

4. Gamborg, O. L. and Phillips, G. C., 1995. Plant Cell, Tissue, and Organ Culture :Fundamental Methods. Springer-Verlag, Berlin Heidelberg.

5. Modlinske, J. A., Reed, M. A., Wagner, T. E. and Karasiewicz, J., 1996. Embryonic Stem Cells : Developmental Capabilities and their Possible Use in Mammalian Embryo Cloning. Animal Reproduction Science 42 : 437 – 446.

COURSE DESIGNERS												
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID								
1.	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in								
2.	Dr.M.Sridevi	Professor & Head, VMKVEC	Biotechnolgy	sridevi@vmkvec.edu.in								

			ADVA	NCEI	<b>BIO</b>	PROC	ESS		CAT	ſEGOI	RY	L	Т	P CREDIT	CREDIT
				NEER						CC		3	0	0	3
PRE	AMB	LE													
				-					area of	f Biopro	ocess e	ngineeri	ng. Thi	is will a	also help the
			æ proje	ct in Bi	oproce	ess tec	hnolog	gy							
		JISITE													
COU	RSE	OBJE	CTIVE	ES											
1	To In	terpret	the kin	etics of	Micro	bial g	rowth	and pr	oduct f	formatio	on				
2					-								-	tion of r	netabolites
3	To ac	equaint	student	s with t	he bas	ics of	steriliz	zation	and ma	ass trans	sfer coe	efficients	5		
4	To understand the various growth kinetics, production kinetics, various reactors involved, scale up and scale down process in bioreactors														
	down	proces	s in bio	preactor	S										
5	To Execute the Methods of Online and Offline monitoring of bioprocess.														
6	To Pe	erform	the Mas	ss trans	fer pri	nciples	s in bio	oreacto	or and s	scale-up	o criteri	a.			
COU	RSE	OUTC	OME	5											
After	the suc	cessful	compl	etion of	the co	ourse, 1	learne	r will ł	be able	to					
CO1.	Identif	y the a	ppropri	ate bio	eactor	· confi	gurati	ons an	d oper	ation m	odes ba	used upo	on the	Unders	tand
nature	e of Bio	o produ	cts and	cell lin	es and	other	proces	ss crite	ria.						
				•			l for t	he ma	ximun	n produ	ction o	f metab	olites	Apply	
and bi	iocatal	yst for v	various	comme	rcial u	se									
CO3	Design	biorea	actor co	onfigura	tions	and oj	peratio	on mo	des ba	sed upo	on the	nature o	f bio	Apply	
CO4.	Model	the kin	etics of	f living	cells a	nd to	develo	op a sti	rategy (	to solve	the iss	ues eme	rging	Apply	
during	g ferme	entation	proces	ses											
				el requi	red fo	r the	micro	bial g	rowth	and car	n desig	n own	batch	Analyz	æ
		lization													
		-				•				<b>.</b>	ndustry	with s	trong	Create	
			actor de	-		-			_						
MAP					MME	OUI		AES A			RAMN				COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	-	-	-	-	-	-	-	-	Μ	-	-
CO2	S	М	L	Μ	-	-	-	-	-	-	-	-	S	-	-
CO3	S	Μ	Μ	S	-	-	-	-	-	-	-	-	L	-	-
CO4	S	M	L	S	-	-	-	-	-	-	-	-	-	Μ	-
CO5	M	M	S	Ĺ	-	-	-	-	-	-	-		S	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	-	Μ	-	-
SYL	LABU	S													

#### STERILIZATION AND INOCULUM DEVELOPMENT

Fermentation process – General requirements of fermentation processes – Bioreactor definition, Media requirements for fermentation processes – Examples of simple and complex media, Sterilization – Thermal death kinetics of micro organisms – Batch and continuous heat sterilization of liquid media – Filter sterilization of liquid media and air, Inocula development – Introduction – Criteria for the transfer of inoculum – Development of inocula for : Yeast processes, Bacterial processes, mycelial processes.

#### DESIGN AND ANALYSIS OF BIOREACTORS

Design and operation of Bioreactors- bioreactor design of agitator/agitator motor, power consumption in aerated bioreactor, design of sparger, mixing time estimation, oxygen mass transfer capability in bioreactor, Removal of Heat in bioreactor, Main parameters to be monitored and controlled in fermentation processes, Batch and continuous stirred tank reactor, Design and analysis of Packed bed and membrane bioreactors – Design and operation of Novel bioreactors – Airlift loop reactor, Fluidized bed and Trickle bed bioreactors, Immobilized enzyme bioreactors.

#### PROCESS CONTROL AND APPLICATIONS

Biologically important set points and their importance, Measurement of physical and chemical parameters in bioreactors – Monitoring and control of dissolved oxygen, pH, impeller speed and temperature in stirred tank fermenter, Types of controls, Monitoring, Control-loops, Feed back and feed forward, Self adapting controllers, Expert system approach.

#### CULTIVATION AND PRODUCT DEVELOPMENT

Culture phases, Monod kinetics, Michaelis - Menten kinetics – Modifications, Cell and product recovery and purification techniques – Micro and macro scale production – Fermentation of Ethanol, Antibiotics, Biofertilizer, Biosurfactants, Industrial enzymes, Interleukins, Interferon, Lymphokines

#### **BIOPROCESS CONSIDERATIONS IN ANIMAL AND PLANT CELL CULTURE**

Animal cell cultures – Methods used for the cultivation of animal cells, Bioreactor consideration and products. Plant cell cultures – Comparison to microbes, Bioreactor considerations – Economics of tissue culture.

#### **TEXT BOOKS**

- James E. Bailey and David F. Ollis, 1986. Biochemical Engineering Fundamentals. 2nd Edition., *Tata McGraw Hill International Edition*, New York.
- Stanbury, P.F., Whitaker, A. and Hall, S. J., 1997. Principles of Fermentation. Technology. 2nd Edition., *Aditya Books (P) Ltd.*, New Delhi.
- 3. Shuler, M. L. and Kargi, F., 2001. Bioprocess Engineering: Basic concepts. 2nd Edition., *Prentice Hal.*
- 4. O.P. Ward, 1989. Fermentation Biotechnology: Principles, Processes, and Products .*Open University Press*, Milton Keynes, UK,
- Atkinson, B. & Mavituna. F., 1993. Biochemical Engineering and Biotechnology. 2nd Edition., Handbook, McGraw Hill.

#### REFERENCES

1.SH. Aiba, A. E. Humphrey and Nancy F. Millis 1973, Biochemical Engineering Academic Press, 2nd Edition

2. Webb F.C, 1964. Biochemical Engineering. 1st Edition. Van Nostrand, London, H&G Antiquarian Books

COUR	COURSE DESIGNERS													
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID										
1.	Ms.Subathra	Assistant Professor	Biotechnology	subathra.biotech@avit.ac.in										
2.	Dr.M.Sridevi	Professor & Head, VMKVEC	Biotechnolgy	sridevi@vmkvec.edu.in										

BDOTEIN ENGINEEDING	CATEGORY	L	Т	Р	CREDIT	
PROTEIN ENGINEERING	CC	3	0	0	3	

The aim of the course is to explain the molecular mechanisms at the basis of the structure-function relationships of proteins and the experimental approaches to modulate the protein functionality and to evolve a desired function or structure. The course is also aimed to provide the most updated knowledge/skills related to the production of recombinant proteins. This course is a blend of modern discoveries and applications in protein sciences.

PRE	REQU	JISITI	E NIL												
COU	RSE (	OBJE	CTIVE	ES											
1	To	recall t	he tran	slation	and p	ost tr	anslat	ional	modifi	ication	proces	sses.			
2		discuss ts sequ		ructure	, func	tional	corre	elation	and th	ne pred	iction	of prop	erties of	f protein	based
3		illustra ractior		ole of a	analyt	ical m	ethod	ls to d	etermi	ne prot	tein str	ucture a	and prot	ein – pro	otein
4	То	observ	e the si	imilari	ties in	struct	ure a	t basal	level	in a gr	oup of	having	similar	function	,
	ther	eby pr	edictin	g the s	trateg	ies to	modi	fy and	desig	n nove	l prote	ins.			
5	To	provide	e updat	ted kno	wledg	ge abo	out rec	combi	nant p	roteins	and its	applica	ation in	therapeu	itics
COU	RSE	OUTC	OME	S											
After	the suc	cessful	compl	etion of	the co	ourse, I	learne	r will t	be able	to					
CO1.	Reco	gnize ti	he stru	cture a	nd cla	ssific	ation	of pro	teins					Rem	ember
CO2.	Descri	ibe the	amino	acid s	eauen	ce and	1 stru	cture of	of prot	eins, ai	nd rela	te		Unde	erstand
			the fu		-				r						
			charact		1			0	cids ar	nd their	r effect			Unde	erstand
		-	technie ied ger		thods	to cor	Istruc	t plasr	nids fo	or the e	xpress	ion of		An	alyze
CO5.	Valid	ate a si	imple r	esearc	h plan	for a	prote	in eng	ineeri	ng and	design	1		Eva	luate
CO1.	Reco	gnize t	he stru	cture a	nd cla	ssific	ation	of pro	teins					Rem	ember
										PROG	RAMN	/IE SPF	ECIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	М	М	-		L	-	-	-	-	-	-	L	L	-	-
CO4	М	М	-	-	S	-	L	-	-	-	-	-	-	М	-
CO5	М	М	L	L	S	S	-	L	-	-	-	-	-	L	L
S- St	rong; N	M-Med	lium; L	L-Low											

## SYLLABUS

## BONDS AND ENERGIES IN PROTEIN MAKEUP

Covalent and Non-covalent interactions in Protein structure, Translation and Post Translational Modifications

## **PROTEIN ARCHITECTURE**

Primary structure, Secondary structures, Super secondary structures, Topology diagrams, Nucleotide binding folds, Tertiary structures, Modular nature and Formation of complexes in Quaternary structures.

## PROTEIN FOLDING AND STRUCTURE DETERMINATION

Protein Denaturation and Renaturation, Protein folding pathways, Stability of folded conformation of proteins, Methods to determine primary, tertiary and quaternary structure - Peptide mapping, Peptide sequencing, Circular Dichroism, Mass spectroscopy and X-ray diffraction.

## **PROTEIN STRUCTURE - FUNCTION RELATIONSHIP**

Helix-turn-Helix motifs, Cro, Lamda and Trp repressor, Zn fingers, Tata Box binding proteins, Homeodomain, Leucine zippers, Enzyme - Understanding the catalytic design by engineering trypsin, chymotrypsin and elastase.

## PŘOTEľN ENGINEERING AND PROTEIN DESIGN

Site directed mutagenesis, Engineering of T4 Lysozyme and Recombinant Insulin, Protein design - Principles and examples.

## **TEXT BOOKS:**

1. Branden, C. and Tooze, J., 1999. Introduction to Protein structure. 2nd Garland Publishing, NY, USA. Edn.,

2. Daniel C. Liebler, "Introduction to Proteomics - Tools for the New Biology," Humana Press, 2001

## **REFERENCES:**

- 1. Moody P.C.E. and Wilkinson A.J., 1990. Protein Engineer-ing. IRL Press, Oxford, UK.
- 2. DoanaldVoet and Judith Voet, G., 2001. Biochemistry. 3rd Edn., John Wiley and Sons, 2001.
- 3. Stefan Lutz and Uwe T. Bornscheuer, 2009. Protein Engineer-ing Handbook. Vol 1 & 2, 1st Edn., Wiley Publishers.

4. Berg, J. M., Tymoczko, J. L. and Stryer, L., 2002. Biochemis-try. 5th Edn., W.H. Freeman and

Company.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1.	Dr.A.Nirmala	Assistant Professor	Biotechnology	Nirmalabt@avit.ac.in
2.	Mrs.S.Subriya	Assistant Professor	Biotechnology	subriya@vmkvec.edu.in

PLANT AND ANIMAL	CATEGORY	L	Т	Р	CREDIT
DISEASES AND THEIR CONTROL	CC	3	0	0	3

Plant and animal diseases and their control deals with the study of different types of pests and their impact on agriculture and livestocks. Plant epidemiologists will study about the fungus, bacteria, virus or nematodes that can cause damages to the plant parts above or below the ground. The farmers challenges will be solved by identifying the proper ecofriendly control measures will pave the new path in the area of plant breeding. To familiarize the students with principles of insect pest management, including concept and philosophy of IPM. Knowledge of these principles will enable students to understand the different factors that threatens the agricultural productivity and humans..

#### PREREQUISITE NIL

#### **COURSE OBJECTIVES** 1 To acquaint the students with external morphology of the insect's body i.e., head, thorax and abdomen, their appendages and functions. 2 To introduce the students about the classification of insects up to the level of families 3 To familiarize the students about nature of damage and seasonal incidence of insect pests that causes loss to major field crops and their effective management by different methods. To teach the students about the vector-plant pathogen interaction, management of vectors for controlling 4 diseases. 5 To familiarize the students with principles of insect pest management, including concept and philosophy of IPM **COURSE OUTCOMES** After the successful completion of the course, learner will be able to CO1. Analyze the impact of engineering solutions in a global and societal context Apply CO2. Discuss contemporary issues that results in environmental degradation and would Apply attempt to provide solutions to overcome those problems CO3 Highlight the importance of ecosystem and biodiversity Apply CO4. Ability to consider issues of environment and sustainable Apply CO5. Paraphrase the importance of conservation of resources. Apply CO6. Play an important role in transferring a healthy environment for future generations Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO2PO3 PO4PO7 COS PO1 PO8 PO9 PO10 PO11 PO12 PSO3 PO5 PO6 PSO1 PSO2 S S C01 М Μ S Μ М S _ _ _ _ CO2 S S S S S _ _ _ -_ _ _ _ S М S Μ S CO3 L _ _ _ _ _ _ S S CO4 S Μ S Μ Μ _ _ _ -_ _ _ _ S CO5 S Μ S М Μ S _ _ _ _ _ -

S- Strong; M-Medium; L-Low

## SYLLABUS

## ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development

## **ECOSYSTEMS AND BIO – DIVERSITY**

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

## **ENVIRONMENTAL POLLUTION**

Pollution - Definition, man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

## SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people -Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

## HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health -Human rights – Value education - Women and child welfare, Role of information technology in environment and human health

## **TEXT BOOKS**

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

## REFERENCES

Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
 Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
 Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviro

4. Environmental Science and Engineering by Dr. J. Meenambal ,MJP Publication , Chennai Gilbert M. Masters : Introduction to Environmental Engineering and Science , Pearson Education PvtLtd., II Edition, ISBN 81-297-0277-0,2004

5.MillerT.G.JrEnvironmentalScienceWadsworthPublishingCo.6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology,Blackwell Science.

COURSE DESIGNERS											
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID							
1.	Dr.A.Nirmala	Assistant Professor	Biotechnology	Nirmalabt@avit.ac.in							
2.	Mrs.S.Subriya	Assistant Professor	Biotechnology	subriya@vmkvec.edu.in							

differen	MBI								C	ATEG(	JKY	L	Т	Р	CR	EDIT
Cancer differer	MBI			CAN	CER	BIOL	.OGY	7		CC	1	3	0	0		3
differen		LE														
	Biolo	ogy is to	o learn	the fou	ndatio	n princ	ciples	in can	cer me	chanisn	ns. It cr	eates a l	broad t	base o	f kno	wledge to
to prov	ntiate	normal	and ca	ncerou	s cell a	and als	so abo	ut diff	erent t	ypes of	agents	leading	to car	cinog	enesis	s. It aims
1 °	vide t	he stre	ength to	o acqui	re an	advar	nced k	cnowle	edge an	nd und	erstandi	ng of t	the mo	olecul	ar me	echanism,
diagnos	sis, pr	reventio	on and t	herapeu	itic ma	nagen	nent									
PRER	REQU	JISITE	E NIL													
COUI	RSE (	OBJE	CTIVE	ES												
1	To de	efine the	e basic	princip	les in c	ancer	biolog	gy.								
2	To di	scuss a	bout the	e carcin	ogens.											
3	To de	emonstr	ate stud	lents or	n vario	us gen	etic ar	nd mol	ecular	change	s norma	l cells u	Inderg	o duri	ng	
	transformation into malignant cancer															
4	To outline mechanism of cancer development and progression															
5	To ha	ive an u	Indersta	unding i	n a mi	ıltidisc	ciplina	ry app	roach t	to cance	er treati	nent				
		DUTC														
After th	he suc	cessful	comple	etion of	the co	ourse, l	learner	r will t	be able	to						
CO1. F	Relate	the hall	lmarks	of canc	er.									Rem	embe	r
СО2. Г	Differe	entiate t	he type	s of get	ne mut	ations	and c	ancer	formati	on				Und	erstan	ıd
CO3. I	Demor	nstrate t	he mol	ecular 1	nechai	nisms	underl	ying tl	ne deve	elopmer	nt of car	ncer		App	ly	
CO4. C	Correla	ate the g	genomi	c know	ledge.									Ana	lyse	
CO5. I	nfer tl	ne canco	er prog	ression,	metas	tasis a	ind ne	w thera	apies.					Ana	lyse	
MAPI	PING	WIT	H PRC	<b>GRA</b>	MME	OUT	CON	AES A	ND P	PROGI	RAMN	IE SPE	ECIFI	C OI	J <b>TC</b>	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	O2	PSO3
CO1	L	L	-	L	L	L	-	L	S	-	-	-	-		-	-
CO2	М	L	-	-	-	-	-	-	-	-	-	-	-		-	-
CO3	S	S	-	М	-	-	S	-	-	-	-	-	-		-	-
CO4	М	М	L	-	-	-	-	-	М	-	-	-	-		-	-
CO5	М	М	М	L	-	-	-	-	-	-	-	L	-		-	L

## SYLLABUS

## **INTRODUCTION**

Cell cycle and check points, Cancer mechanism, Receptors, Signal molecules, Signal transduction – Modulation study, Tumour suppressor gene, Different forms of cancers, Diet and cancer. Detection using biochemical assays, Tumor markers, Molecular tools for early diagnosis of cancer.

## PRINCIPLES OF CARCINOGENESIS

Theory of carcinogenesis, Chemical carcinogenesis, Metabolism of carcinogenesis, Principles of physical carcinogenesis – X - ray radiation, Mechanism of radiation carcinogenesis...

## PRINCIPLES OF MOLECULAR CELL BIOLOGY OF CANCER

Signal targets and cancer, Activation of kinases, Oncogenes, Identification of Oncogenes, Retroviruses and oncogenes, Detection of oncogenes. Oncogenes / Proto oncogene activity. Growth factors related to transformation. Telomerases.

## PRINCIPLES OF CANCER METASTASIS

Clinical significances of invasion, Heterogeneity of metastatic phenotype, Metastatic cascade, Basement membrane disruption, Three step theory of invasion, Proteinases and tumour cell invasion, Angiogenesis..

## NEW MOLECULES FOR CANCER THERAPY

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron

Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA,

SIMS Nano-indentation

## **TEXT BOOKS**

- 1. Maly, B.W.J., 1987. Virology A Practical Approach. IRLI Press, Oxford.
- 2. Dunmock, N.J. and Primrose, S.B., 1988. Introduction to Modern Virology. Blackwell Scientific Publications, Oxford.

## REFERENCES

1. An Introduction Top Cellular and Molecular Biology of Cancer, Oxford Medical Publications, 1991.

2. Primrose, S.B. and Twyman, R.M., 2006. Principles of Gene Manipulation and Genomics. Blackwell Publishing.

3. Lewis J. Klein Smith, 2005. Principles of Cancer Biology. Benjamin Cummings.

4. Momna Hejmadi, 2000. Introduction to Cancer Biology. Asian Publishing Exchange Pvt. Ltd. 5. Leonard Maurice Franks L., Natalie N., 2007. Cellular and Molecular Biology of Cancer. Oxford University Press.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr. B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
2	Dr.M.Sridevi	Professor & Head, VMKVEC	Biotechnolgy	sridevi@vmkvec.edu.in

			GOO	D MA	NUFA	ACTU	RIN	G ANI	D	CATEG	ORY	L	Т	Р	C	REDIT
			LAB	ORAT	ORY	PRA	CTIC	E		CC		3	0	0		3
PRE	AMBI	LE														
The c	ourse v	vill emp	phasis c	on good	l manu	facturi	ing and	d labora	atory p	practice	s. Throu	ıgh kno	wledge	on te	sting	facilities,
equip	ment, t	esting	and cor	ntrols, 1	records	s, repo	rts, ar	nd prote	ocol fe	or and o	conduct	of non	-clinica	al lab	s. Ex	posure on
ethica	l issue	s and cl	nical re	gulatio	ons											
PRE	REQU	JISITI	E NIL													
COU	RSE (	OBJE	CTIVE	ES												
1	Basic	unders	standing	g of the	regula	tory re	equire	ment of	f GMF	o and G	LP					
2	To ui	nderstai	nd the	signific	ance o	f GMI	P and C	GLP								
3	Thore	ough kr	nowledg	ge on te	sting e	quipn	nent, p	rocedu	res and	d maint	ain reco	ords and	reports	5.		
4	Thorough knowledge on testing equipment, procedures and maintain records and reports.         Exposure to clinical regulations and ethical issues															
COU	RSE	OUTC	OME	5												
After	the suc	cessful	comple	etion of	f the co	ourse, 1	learner	r will b	e able	to						
CO1.	Under	rstand	that th	e area	s that	come	unde	er the	Good	Labora	atory F	ractices	are:	Rem	embe	er
persor	nnel ai	nd orga	anizatio	nal, te	sting f	aciliti	es, eq	uipmer	nt, tes	ting an	d conti	ols, rec	cords,			
report	s, and	protoco	ol for an	d cond	uct of	non-cl	inical	labs								
CO2.	Unders	stand th	e areas	of GM	P and	GLP								Unde	erstai	nd
CO3.	Knowl	ledge ai	nd pract	tices of	equip	ment p	roduct	tion pro	ocess o	control a	and pac	kaging		Unde	erstai	nd
CO4.	Regula	ations o	f clinica	al pract	ices									Und	erstai	nd
CO5.	Knowl	ledge al	oout eth	ical iss	ues an	d ame	ndmer	nts						Und	erstai	nd
MAP	PING	WIT	H PRC	OGRA	MME	COU1	<b>FCON</b>	AES A	ND F	PROG	RAMN	IE SPE	ECIFI	C <b>O</b> U	TC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	М		М			L						M			-
CO2	М	L	L			L										-
CO3	S	М												Ι	_	-
CO4			М			М							L			-
CO5	Μ		Μ													-
S- Sti	rong; l	M-Med	lium; L	L-Low												

## SYLLABUS

## Introduction to Good Manufacturing and Laboratory Practice

Introduction to Good Manufacturing and Laboratory Practice, Requirement of GLP and GMP compliance for regulatory approval,

## concept of Design of Experiment

Introduction to the concept of Design of Experiment (DOE) Application of QBD principles in Biotech product development. Case studies: Example of QBD and DOE in Process Development, Example of DOE in analytical development

## **Guidelines of regulatory affairs**

Introduction to ICH guidelines and their usage, National and international regulatory authorities and their function, Pharmaceutical Jurisprudence and Laws related to Product design, Drug Development & Approval Process.

## **Clinical and Preclinical Studies**

Regulation of Clinical and Preclinical Studies, Good Manufacturing Practices, Formulation Production Management, Authorization and marketing of drugs

## **Principles and Ethics**

Ethics in manufacturing and control, Principles of quality by design (QBD)

## TEXT BOOKS

- 1. GMP starter guide: Principles in Good Manufacturing Practices for Beginners, Emmet P. Tobin, Createspace Independent Publishing Platform, April 2016.
- 2. Good Manufacturing Practices for Pharmaceuticals: GMP in Practice, B Cooper, Createspace Independent Publishing Platform, July 2017.
- 3. Sarwar Beg and Md Saquib Hasnain, Pharmaceutical Quality by design: Principles and application, Academic press, March 2019.
- 4. Ron S. Kenett, Shelemyahu Zacks, Daniele Amberti, Modern Industrial Statistics: with applications in R, MINITAB and JMP, 2nd Edition, Wiley, January 2014.
- 5. N Politis S, Colombo P, Colombo G, M Rekkas D.Design of experiments (DoE) in pharmaceutical development, Drug Dev Ind Pharm. 2017 Jun;43(6):889-901. doi: 10.1080/03639045.2017.1291672.

## REFERENCES

1. Andrew Teasdale, David Elder, Raymond W. Nims, ICH quality guidelines - An implementation guide, Dec 2017.

2. Gajendra Singh, Gaurav Agarwal an Vipul Gupta, Drug regulatory affairs, CBS publication, 2005.

3. Marc P. Mathieu, New Drug Development: A regulatory overview, Nov 2000.

4. ICH guidelines available in the official website "https://www.ich.org

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Balalchandar	Asst.Prof G-II	Biotechnology	balachandar.biotech@avit.a c.in
2	Dr.M.Sridevi	Professor & Head, VMKVEC	Biotechnolgy	sridevi@vmkvec.edu.in

	CATEGORY	L	Т	Р	CREDIT
<b>BIOFUEL TECHNOLOGY</b>					
	CC	3	0	0	3

This course will provide an overview of existing energy utilization, production and infrastructure. We will also cover the consequences of our energy choices on the environment. The topics covered will include the chemistry of biofuels, the biology of important feed stocks, the biochemical, genetic and molecular approaches being developed to advance the next generation of biofuels and the economical and global impacts of biofuel production.

#### **PREREQUISITE** – NIL

## COURSE OBJECTIVES

- 1 Students will recognize the types and differences between existing energy resources, understand their procurement and utilization, and their impacts on society and the environment
- 2 Students will be knowledgeable of the existing and potential future sources of renewable energy, and be able to intelligently analyze reported aspects of the energy and renewable energy fields.

## COURSE OUTCOMES

After the successful completion of the course, learner will be able to

 CO1. Exposure To Understanding Of The Existing And Emerging Biomass To Energy
 Remember

 Technologies
 CO2. Understand The Concept Of 1st Generation, 2nd Generation And Advance Biofuels
 Understand

Understand

Apply

CO3. Describe Techno-Economic Analyses Of Biofuel Conversion Technologies;

CO4. Understand The Concept Of A Biorefinery System And Be Able To Develop MajorApplyUnitOperations Of An Integrated Biorefinery

CO5. Understanding Of Environmental Implications

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

									-					1	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
CO2	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L
CO3	S	Μ	_	М	-	М	_	L	L	_	_	-	S	_	L
CO4	~	C C	М	1.1	М	T	T						Ň	S	M
-	-	3	IVI	-	IVI	L	L	-	-	-	-	-	-	3	IVI
CO5	-	-	-	-	-	-	-	S	Μ	-	-	-	-	-	L
C Ctro	S. Stronger M. Modiumer I. Low														

S- Strong; M-Medium; L-Low

## SYLLABUS

## **OVERVIEW OF BIOFUELS**

Generation of biofuels – Development of biological conversion technologies – Integration of biofuels into biorefineries – Energy security and supply – Environmental sustainability of biofuels – Economic sustainability of biofuels.

#### BIODIESEL

Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

## BIOETHANOL

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

#### **BIOMETHANE AND BIOHYDROGEN**

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

#### **OTHER BIOFUELS**

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

## **TEXT BOOKS:**

1. Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015

#### **REFERENCES:**

1. Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

COURSE DESIGNERS											
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.R.Balalchandar	Assistant Professor – G-II	BioTechnology	balachandar.biotech@avit.ac.in							
2	Ms.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in							

FOOD AND NUTRITION	CATEGORY	L	Т	Р	CREDIT
TECHNOLOGY	CC	3	0	0	3

The course aims to enable the students to understand the physicochemical, nutritional, microbiological and sensory aspects, To familiarize the students about the processing and preservation techniques. To emphasize the importance of food safety, food quality, food plant sanitation, food laws and regulations, food engineering and packaging in food industry.

PREREQUISITE – NIL															
CO	URSE (	<b>)BJEC</b>	TIVE	S											
1	Unders	tand the	e tradit	ion fo	od pro	cessin	g tech	niques	and th	e basics	concep	ot of foc	d bioch	emistry	
2	Demonstrate the product development technique, quality and contaminant check														
3	To arti	culate th	neir teo	chnical	knov	vledge	for in	dustria	ıl purpo	ose					
4	Descril	e natio	nal foo	od laws	s and s	tandar	ds								
5	Laws a	nd qual	ities of	f stand	ard for	r food	produ	cts							
CO	URSE (	OUTCO	OMES												
Afte	r the su	ccessful	comp	letion	of the	course	e, learr	ner wil	l be ab	le to					
<u>CO1</u>	· Docall	ha prog	- accinat	achnia	1106 pro	eticod	in oldo	n dave	and the	biologic	al proce	200		Rememb	vor
COI	. Recall	ine proc	essing	lechinq	ues pra	cuceu	III olue	ii uays	and the	biologic	ai proce	288		Kemenn	
	. Illustra aminant	the mo	ethods	for anii	nal pro	duct de	evelopi	nent, q	uality c	ontrol ar	nd also s	creen the	e	Understa	and
	.Transfe	the tecl	nniques	s in sca	ling up	for inc	lustrial	needs						Apply	
CO4	. Interp	et and T	roubles	shoot ir	nstrume	ents to	mainta	in accu	racy					Apply	
	. Develo													Apply	
MA	PPING	WITH	PRO	GRAN	AME	OUTC	COME	ES AN	D PRC	OGRAN	IME S	PECIF	IC OUT	ГСОМЕ	S
CO			DO2	DO 4	DOS	DOC	D07	DOQ	DOO	<b>DO10</b>	DO11	DO12	DCO1	DEO2	DGO2
COS	S PO	I PO2	PO3	P04	PO5	P06	PO/	PO8	PO9	POIO	POIT	PO12	PS01	PSO2	PSO3
COI	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2 -	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S L	М	S	Μ	L	-	-	-	-	-	-	-	М	L	-
CO4	M	S	S	Μ	L	-	-	-	-	-	-	-	S	S	-
CO5	j –	S	S	Μ	Μ	-	-	-	-	-	-	М	L	S	-
S- S	trong; N	1-Medi	ım; L-	Low											

## SYLLABUS

## INTRODUCTION TO FOOD BIOTECHNOLOGY

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

**METHODS IN FOOD BIOTECHNOLOGY:** Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

## **BIOTECHNOLOGY METHODS IN FOOD PROCESSING:**

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

#### FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

#### **TEXT BOOKS:**

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers..

## **REFERENCES:**

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnolgy	nirmalabt@avit.ac,in
2	Dr.M.Sridevi	Professor & Head, VMKVEC	Biotechnolgy	sridevi@vmkvec.edu.in

I YEAR /	ADVANCED BIOCHEMISTRY LAB	L	Т	Р	С
I SEM		0	0	4	2

To develop the skills of the students by providing hands on training in various biochemical analysis.

## **OBJECTIVES**

At the end of this laboratory course, the students would have learnt about the

- Qualitative analysis.
- Biochemical analysis.
- Enzyme assay.
- Chromatography.

#### **EXPERIMENTS**

#### I. Qualitative Analysis

- (i) Carbohydrates
- (ii) Lipids
- (iii) Proteins
- (iv) Normal and abnormal constituents of urine.

#### II. Quantitative Analysis

- (i) Estimation of glucose by ortho Toluidine method
- (ii) Estimation of blood urea by Nessler's method
- (iii) Estimation of cholesterol by Zak's method
- (iv) Estimation of bilirubin by Malloy and Erelyn method
- (v) Estimation of protein by Lowry's method
- (vi) Estimation of nucleic acids by spectrophotometric method
- (vii) Estimation of haemoglobin by Shali's method.
- (viii) Determination of Erythrocyte Sedimentation Rate by using Westergren Pipette

## III. Chromatography

- (i) Separation of sugars and amino acids by Paper chromatography
- (ii) Extraction of lipids and analysis by TLC.

## IV. Enzyme assay

- (i) Determination of serum LDH activity
- (ii) Determination of Serum Glutamate Oxaloacetate Transaminase (SGOT) by Mohn and Cook method.
- (iii) Determination of Serum Glutamate Pyruvate Transaminase (SGPT) by IFCC Method

I YEAR /	MICROBIOLOGY LAB	L	Т	Р	С
I SEM		0	0	4	2

To give an opportunity of verifying the theoretical concept by experimentally in a more explicit and concentrated manner.

## **OBJECTIVES**

The students would have learnt the

- Basic concepts of Microbiology,
- Skills in the preparation, identification and quantification of microorganisms.

#### **EXPERIMENTS**

- i. Sterilisation Techniques.
- ii. Culture Media Preparations
  - a. Broth type media
  - b. Solid type media
  - c. Semi solid type media
- iii. Culturing of Micro organisms
  - a. Pure Culture techniques
  - Streak plate
  - Pour plate
- iv. Identification of Micro organisms
  - a. Staining techniques
  - Simple
  - Gram
  - Spore
  - Acid fast
  - Hanging drop
  - b. Biochemical testing
- v. Environmental Sample Analysis
  - Isolation and enumeration of microbes from sewage or soil samples.
  - Assay of Microbial growth by Substrate Utilisation Test
- vi. Food Microbiology
  - Milk
  - Fermented food
- vii. Clinical Microbiology
  - Normal Mouth Flora
  - Antibiotic Disc test Assay.

I YEAR /	GENETIC ENGINEERING LAB	L	Т	Р	С
II SEM		0	0	4	2
		-			

The course aim is to offer hands on training in the area of Cell culture and cell identification. This will serve as a prerequisite for Post graduate and specialized studies and Research.

## **OBJECTIVES**

At the end of the course from various sources, the students would have learnt the methodology

- To isolate cells and to identify them by specialized Microscopy. This will be extremely beneficial to take up project work in Cellular biology.
- To familiarize with core Nucleic acid techniques such as extraction and nucleic acid separations.
- To amplify DNA using Polymerase Chain Reaction.
- To detect and characterize Nucleic acids, through the application of gene probes and blotting techniques.
- To acquire skills in Gene cloning and screening of recombinants.
- To analyze proteins through SDS-PAGE and Western blotting.

#### **EXPERIMENTS**

- 1. Leishman staining
- 2. Giemsa staining
- 3. Osmosis and tonicity
- 4. Tryphan blue assay
- 5. Staining for different stages of mitosis in Allium cepa (Onion)
- 6. Staining for different stages of meiosis using (Grasshopper)
- 7. Blue and White selection for recombinants
- 8. Isolation of Genomic DNA from Plant / Animal / Bacterial Cells
- 9. Isolation of Total RNA
- 10. Isolation of Plasmid DNA
- 11. Quantification of DNA and RNA
- 12. Gel Electrophoresis of DNA Agarose Gel, Polyacrylamide gel.
- 13. Southern Blotting.
- 14. Polymerase Chain Reaction.
- 15. Elution of Plasmid DNA from Agarose gel.

- 16. Restriction digestion of Bacterial Genomic and Plasmid DNA.
- 17. Ligation of DNA.
- 18. Preparation of Competent Cells.
- 19. Transformation in E. Coli.
- 20. Screening and selection of Recombinants and Confirmation of Insert DNA in Plasmid.
- 21. SDS-PAGE.
- 22. Western Blotting.

#### REFERENCES

1. Kalaichelvan, P.T., 2006. Microbiology and Biotechnology. A Laboratory Manual. Lab Man Series, MJP Publishers.

2. Ralph Rapley and John M. Walker, 1998. Molecular Biomethods Handbook. Humana Press

I YEAR /	IMMUNOTECHNOLOGY LAB	L	Т	Р	С
II SEM		0	0	4	2

To develop skills of students in Immunology by performing simple experiments in the laboratory.

#### **OBJECTIVES**

At the end of the course the student would have gained knowledge to

• Perform test for blood grouping, ELISA and identification of T-cell, Immunofluorescence etc.

#### **EXPERIMENTS**

- 1. Handling of animals, immunization and raising antisera.
- 2. Identification of cells in a blood smear.
- 3. Identification of blood groups.
- 4. Immunodiffusion and immunoelectrophoresis.
- 5. Testing for Typhoid antigens by Widal test.
- 6. Enzyme Linked Immunosorbent Assay (ELISA).
- 7. Isolation and culture of peripheral blood mononuclear cells.
- 8. Isolation of monocytes from blood.
- 9. Immunofluorescence.
- 10. Identification of T-cell rossetting using sheep RBC.

## REFERENCES

1. Rajasekara Pandian M , 2007 Immunology & Immunotechnology 1st Edition, Publisher: Panima Publishing Corporation, New Delhi, India.

II YEAR /	ADVANCED BIOPROCESS LAB	L	Τ	Р	С
III SEM		0	0	4	2

To develop the skills of the students by providing hands on training in various concepts of Bioprocess Engineering.

#### **OBJECTIVES**

At the end of this laboratory course, the students would have learnt about the

- Sterilization and Inoculum development
- Design of Bioreactors.
- Process control of fermentation process
- Production of various fermentation products

#### List of Experiments

- 1. Demonstration of a Fermentor and its components.
- 2. Determination of KL a by sodium sulphite oxidation method
- 3. Centrifugation
- 4. Batch Sedimentation
- 5. Liquid-Liquid extraction
- 6. Batch Distillation
- 7. Ammonium Sulphate precipitation
- 8. Estimation of MM parameters
- 9. Effect of substrate concentration on growth of E.coli
- 10. Immobilization of Enzyme-_ amylase
- 11. Effect of temperature on enzyme activity
- 12. Effect of pH on Enzyme activity
- 13. Production of wine
- 14. Estimation of Biomass

#### REFERENCE

- 1. Kumar and Hartland. Ind. Eng. Chem. Res. 34, 3925 (1995).
- 2. Henry Z. Kister, 1992, Distillation Design, McGraw-Hill publications
- 3. Zuiderweg. F. J, 2009, Laboratory Manual of Batch Distillation, Interscience Publishers.
- 4. Karin Kovárová-Kovar and Thomas Egli,1998, Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics, Microbiol Mol Biol Rev.
- 5. G. Szasz. 1974, The Effect of Temperature on Enzyme Activity and on the affinity of enzymes to their Substrates, Z Klin Chem Klin Biochem.

# **PROGRAM ELECTIVE**

			MOL	ECUL	AR D	IAGN	IOST	ICS	(	CATEG	ORY	L	Т	Р	CREDIT
			AND	THER	APEU	UTICS	5			EC(F	PS)	3	0	0	3
PREA	AMBL	Æ													
The N	/lolecul	ar Dia	gnostics	s and T	Therap	eutics	is to	explor	the the	fundam	ental m	echanis	ms of	disease	and use the
knowl	edge to	o test, d	lesign, f	formula	te new	drugs	and c	levelop	o innov	ative dr	ug deli	very sys	tem. It	creates	technologies
and to	ols to c	ombat	disease,	, promo	te heal	th and	safeg	uard th	e envir	onment					
PREI	REQU	ISITE	NIL												
COU	RSE (	)BJE(	CTIVE	S											
1	List t	he natur	re of inf	fection,	procee	lural s	kills to	o collec	et and in	nterpret	data.				
2	Class	ify the o	cause of	f major	pathog	genic ii	nfectio	on and	their d	iagnosi	s metho	ds			
3	3 Demonstrate the genetic nature of Human diseases.														
4	4 Organize current Molecular diagnostics of infectious diseases														
5	Asses	s the bi	osafety	aspects	s invol	ved in	molec	ular di	agnosis	5.					
COU	RSE (	OUTC	OMES												
After	the suc	cessful	comple	tion of	the cou	ırse, le	arner	will be	able to	)					
		strate at the resu		ollectio	n, Tra	nsport	, Proc	essing	of san	nples ar	nd Class	sify infe	ection	Unders	tand
	•														
	-		the mos	~ ~	-									Unders	tand
CO3. 1	Identify	y the mi	icroorga	anism a	nd its 1	ole in	diseas	e diag	nosis					Apply	
CO4. 2	Make u	ise of th	ne genor	mic kno	wledg	e.								Apply	
CO5.	Assum	e the to	ol for d	isease d	liagnos	is and	plan d	iagnos	tics bas	sed on th	ne bio-s	afety as	pects	Analyz	e
MAP	PING	WITH	I PRO	GRAN	<b>IME</b>	OUT	COM	ES Al	ND PR	ROGR	AMMI	E SPEC	CIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	L	L	L	-	М	-	L	Μ	S	S
CO2	L	М	L	L	-	L	-	-	-	L	-	-	М	S	-
CO3	М	S	М	М	-	L	М	L	L	-	-	L	S	М	S
CO4	М	S	L	S	М	М	-	-	-	-	-	М	S	-	-
CO5	Μ		М	М		М	S	S	S	-	L	М	Μ	М	М
S- Str	ong; N	1-Med	ium; L·	-Low											
SYLI	ABU	S													

## SYLLABUS

## INTRODUCTION

History of infection, Mode of transmissions, Pre-disposing factors of microbial pathogenicity, Normal microbial flora of the human body, Types of infectious diseases, Host - Parasite relationships, Clinical specimens – Collection, Transport and Processing of samples, Interpretation of results.

#### **MICROBIAL, FUNGAL & VIRAL INFECTIONS**

Pathogenicity and diagnosis of major bacterial infections: *Streptococcus, Coliforms, Salmonella, Shigella, Vibrio* and *Mycobacterium*, Pathogenicity and diagnosis of major fungal infections: Dermetophytosis, Candidiosis and Aspergillosis, Pathogenicity and diagnosis of major Protozoan infections :Amoebiosis, Malaria, Trypanosomiosis, Leishmaniasis, DNA and RNA Viruses : Pox viruses, Rhabdo viruses, Hepatitis viruses, Adeno viruses and Retro viruses.

#### **MEDICAL GENETICS**

Organization of Human genome, Human Genome Project, Identifying human disease genes, Oncogenes, Tumour suppressor genes, Genetic disorders, Neonatal and Pre-natal disease diagnostics, Gender identification, Analysis of mitochondrial DNA for maternal inheritance, Gene therapy and other molecular based therapeutic approaches, Genetic counselling.

#### METHODS IN MOLECULAR DIAGNOSTICS

Isolation and purification of nucleic acids, Nucleic acid labelling, Hybridization, PCR and types, PCR based molecular typing, Molecular diagnosis of pathogens based on 18S and 16S rRNA sequences, PCR in Forensic science.

#### INSTRUMENTATION FOR MOLECULAR DIAGNOSTICS

Good Laboratory Practices, Automated DNA sequencing, Microarrays, Different levels of biosafety containments for rDNA experiments, Biosafety aspects of tissue / Cell transplantation.

#### TEXT BOOKS

- 1. Lele Buckingham and Maribeth L. Flaws, 2007. Molecular Diagnostics : Fundamentals, Methods & Clinical Applications.
- 2. David E. Bruns, Edward R. Ashwood and Carl A. Burtis, 2007. Fundamentals of Molecular Diagnostics.
- 3. Griffiths, A. J. F., Miller, J. H. and Suzuki, D. T., 2000. An Introduction to Genetic Analysis.
- 4. Jeremy M. Berg, John L. Tymoczko and LubertStryer, 2002. Biochemistry. *W.H. Freeman and Company*. 5th Edition.

#### REFERENCES

- 1. Turner, P. C., McLennan, A. G., Bates, A. D. and White, M. R. H., 2003. Instant Notes in Molecular Biology. *Viva Books Private Limited*.
- 2. Brown, T. A. Genetics A Molecular Approach.
- 3. Lodish, Berk, Zipursky, Matsudaira, Baltimore Darnell, 2000. Molecular Cell Biology. *W.H. Freeman and Company*. 4th Edition.
- 4. JamesWatson et al., 1987. Molecular Biology of Gene. The Benjamin / Cummings Publication Co. Inc., California.
- 5. Benjamin L., 2008. Genes IX. Jones and Bartlett.

COURSE DESIGNERS											
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID							
1	DrB.Prabasheelaa	Associate Professor	BioTechnology	prabasheela@avıt.ac.ın							
2	Dr.M. Sridevi	Professor & Head	Biotechnol ogy	sridevim@vmkvec.edu.in							

	AGRICULTURAL	CATEGORY	L	Т	Р	CREDIT			
	BIOTECHNOLOGY	EC(PS)	3	0	0	3			
vectors, their appli- prepare the student	about the biology of plants, plant microbe's cations and how plant act as factories for the ts for a variety of careers, including moder	ne production of van n plant biotechnolo	rious co ogy pro	ompou	nds. T	This course will			
plants, plants with improved characteristics and plants for biomolecule production <b>PREREQUISITE</b> NIL									

## **COURSE OBJECTIVES**

	1	To state the basic of cell structure and function
	2	To describe the interaction of microbes and plants
	3	To perform the novel techniques used in genetic manipulation of crops
4	4	To categories the uses of different vectors in biotechnology
•	5	To produce the different organic compounds using Plants as Factories

## **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to	
CO1. Summarize the basic information about cell structure ,functions and their nutrients	Understand
CO2. Demonstrate the plant and microbes interactions	Understand
CO3. Apply the novel techniques used in genetic engineering and genetic manipulation in	Apply
CO4. Identify the uses of different vectors and their application in biotechnology field	Apply
CO5. Examine the different organic compounds like vitamins, amino acids and proteins etc,	Analyze
using plant as a major source.	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFI	COUTCOMES

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	L	-	-	
CO2	L	М	L	L	-	L	-	-	-	-	-	L	-	-	М
CO3	S	S	M	S	M	M	M	-	-	-	-	-	М	S	S
CO4	S	S	M	S	M	M	M	L	-	-	-	-	М	S	S
CO5	M	S	M	М	M	L	S	L	L	М	-	-	М	S	М
a a.	1		. т	т											

S- Strong; M-Medium; L-Low

## SYLLABUS

## **BIOLOGY OF PLANTS**

Plant cell structure and functions. Plant nutritition, Water and mineral availability and uptake. Growth regulators-Phytohormones, auxins, cytokinens, Gibberillins, Abscisic acid, ethylene.

## PLANT –MICROBES INTERACTIONS

Biotic and Abiotic stress. Plant response to pathogens. Toxins of fungi, algae and bacteria. Systemic and induced resistance, pathogen derived resistance. Genetic engineering for biotic stress resistance

#### GENETIC MANIPULATION IN CROPS

Genetic engineering- scope and methods. Gene guns, electroporation, transformation, microinjections, CRISPR, TALEN. Types of modifications- Transgenic, cisgenic, subgenic. Stress resistance, pest resistance, herbicide tolerance and other modified traits..

#### PLASMIDS AND PROMOTERS

Ti and Ri plasmids, Antisense and RNAi in crop improvement. Disarming Ti plasmid, opines and their significance. Co integrate and binary vectors. Screenable and selectable markers. Promoters and poly A signals

## PLANTS AS BIO -FACTORIES

Seed storage proteins, essential amino acids, vitamins and minerals, heterologous protein production in transgenic plants for agriculture, industry and pharmaceuticals uses, biodegradable plastics.

## TEXT BOOKS

1. Ahindra Nag. Textbook of Agricultural Biotechnology.PHI Publisher. 2008

## REFERENCES

- 1. Adrian Slater, Nigel Scott and Mark Fowler. 2003. Plant Biotechnology: The genetic manipulation of plants. I edition, Oxford University Press.
- 2. Vidhyasekaran P. 2005.Bacterial disease resistance in plants. Molecular Biology and Biotechnological applications. Haworth food and agricultural products press. New York.
- 3. Pessarakti M. 1999. Handbook of plant and crop stress, 2nd edition. Marcel Dekkar Inc. New York.
- 4. Melvin J oliver. Agricultural Biotechnology.Wiley Blackwell. 2009

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Balalchandar	Assistant Professor – G-II	BioTechnology	balachandar.biotech@avit.ac .in
2	Dr.M. Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in

MOLECULAR MODELLING	CATEGORY	L	Т	Р	CREDIT
AND DRUG DESIGNING	EC(PS)	3	0	0	3

This course enables the students to broaden their interests to use structure-based and non-linear classification methods in drug design. This course will show how industry-leading computational molecular modeling tools are used to aid in drug discovery and design.

## PREREQUISITE NIL

#### **COURSE OBJECTIVES**

1	To list concepts involved in molecular modeling
2	To summarize molecular mechanisms involved in energy minimization
3	To execute the molecular dynamics using different models
4	To develop basic steps involved in modeling of proteins
5	To justify the molecular dynamics in drug designing and discovery

## **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to	
CO1. Recognize about molecular modeling concepts	Understand
CO2. Classify molecular mechanisms behind energy minimization problems	Apply
CO3. Illustrate the models to study the molecular dynamics	Analyze
CO4. Compare molecular dynamics with drug designing concepts	Apply
CO5. Design new techniques for the discovery of drugs	Apply

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-	-	-	-	-		-	-
CO2	L	L	-	-	-	-	-	-	-	-	-	-		Μ	-
CO3	L	Μ	-	L	-	-	-	-	-	-	-	-		-	-
CO4	S	S	М	S	Μ	-	-	-	-	-	-	L		Μ	-
CO5	S	S	S	S	Μ	L	-	-	-	-	-	L		-	_
S- Sti	mg. ]	M-Med	lium• I	-Low											

S- Strong; M-Medium; L-Low

## SYLLABUS

## QUANTUM MECHANICS & CONCEPTS IN MOLECULAR MODELING

Introduction – coordinate systems – potential energy surfaces – introduction to quantum mechanics – postulates – Schrodinger wave equation – hydrogen molecule – Born-Oppenheimer approximation, introduction to computer

hardware and software.

## MOLECULAR MECHANICS AND ENERGY MINIMIZATION

Empirical force field models – Bond stretching – angle bending – torsional term – nonbonding interactions – thermodynamics properties using a forcefield – derived and non-derived energy minimization method – simplex – sequential univariate method – steepest descent method – conjugate gradient method- Newton-Rapson method.

## MOLECULAR DYNAMICS AND MONTE CARLO SIMULATION

Introduction – Using single Model – time steps – Multiple steps – Setting up MD – energy conservation in MD Simulation Examples – Monte Carlo – Random number generation – Difference in MD & MC

## HOMOLOGY MODELING

Comparative modeling of proteins – comparison of 3D structure – Homology – steps in homology modeling – tools – databases – side chain modeling – loop modeling. Advantage and disadvantage. Ramachandran plot. Applications.

## **DRUG DESIGN**

General approach to discovery of new drugs –drug targets, lead discovery – lead modification – physiochemical principles of drug action – drug stereo chemistry –drug action - 3D database search – computer aided drug design – Mechanism based drug design – ligand based drug design – structure based drug design – pharmacophores - QSAR

## **TEXTBOOKS:**

- 1. Leach R. (1996), "Molecular Modeling Principles and Application", 2nd edition, Longman Publications.
- 2. Baxivanis D. and Foulette Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition edition, Wiely-Blackwell Publishers
- 3. Kothekar V. (2001), "Essentials of Drug Designing", Indian Edition, Dhruv Publications
- 4. Gerhard Edwin Seibold, Alexander Hillisch, Rolf, (2002) "Modern Methods of Drug Discovery", Hilgenfeld Publisher.

## **REFERENCES:**

- 1. Attwood, T K , parry-Smith, D J (2005), "Introduction to Bioinformatics", Pearson Education, 1st Edition, 11th Reprint
- 2. Alan Hinchliffe, (2003), "Molecular Modelling for Beginners", John-Wiley
- 3. "Drug Design: Cutting Edge Approaches". AngewandteChemie, International Edition, Vol.42

"Advanced Drug Design and Development" Kourounakis Taylor and Francis

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Balalchandar	Assistant Professor – G-II	BioTechnology	balachandar.biotech@avit.ac. in
2	Dr.M. Sridevi	Professor &	Biotechno	sridevim@vmkvec.e
		Head	logy	du.in

KIOPHYNICN		ORY	L T 3 0	-	Р	CREDIT
BIOPHYSICS	EC (I	PS)	3	0	0	3
REAMBLE		l			1 1	
he course lightens the structural knowledge of biological sy	stem and the	e propert	ies.			
REREQUISITE – NIL						
OURSE OBJECTIVES						
To gain structural knowledge of biological systems						
To understand transport and dynamic properties of biolo	gical systen	ns.				
OURSE OUTCOMES						
fter the successful completion of the course, learner will be	able to					
O1. To analyze the various forces responsible for biological	l molecular	structure	<b>;</b>		Remen	nber
O2. To be familiar with different levels of conformation in	hiomologula	20			Remen	bor
52. 10 be familiar with different levels of conformation in	oromolecule	28			Kennen	1001
O3. To gain the knowledge of cellular permeability and ion	transport				Unders	tand
	-					
O4. To understand the ionic conduction and transportation	among the c	cellular s	struct	ures	Unders	tand
O5. To gain knowledge in the dynamics of biological syste	ms				Unders	tand
IAPPING WITH PROGRAMME OUTCOMES AN			(F S)	DECIE		
ATTING WITH I ROGRAMINE OUTCOMES AT	VD I KUG		IE SI			ICOWIES
OS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO	09 PO10	PO11		PSO1	PSO2	PSO3
01 M M L L			12			
02 L L L L L						-
03 L M L						-
O4 M L L						-
05 L L L L						-
- Strong; M-Medium; L-Low						
YLLABUS						
<b>MOLECULAR STRUCTURE OF BIOLOGICAL S</b>						

Intramolecular bonds – covalent – ionic and hydrogen bonds – biological structures –general features – water structure – hydration – interfacial phenomena and membranes – self assembly and molecular structure of membranes.

## CONFORMATION OF NUCLEIC ACIDS

Primary structure – the bases – sugars and the phosphodiester bonds- double helical structure – the a b and z forms – properties of circular DNA – topology – polymorphism and flexibility of DNA – structure of ribonucleic acids –

hydration of nucleic acids.

## **CONFORMATION OF PROTEINS**

Conformation of the peptide bond – secondary structures – Ramachandran plots – use of potential functions – tertiary structure – folding – hydration of proteins – hydropathy index.

## **CELLULAR PERMEABILITY AND ION – TRANSPORT**

Ionic conductivity – transport across ion channels – mechanism - ion pumps- proton transfer – nerve conduction – techniques of studying ion transport and models.

## **ENERGETICS & DYNAMICS OF BIOLOGICAL SYSTEMS**

Concepts in thermodynamics – force and motion – entropy and stability – analyses of fluxes – diffusion potential – basic properties of fluids and biomaterials – laminar and turbulent flows

## **TEXT BOOKS**:

1. Biophysics ; R. Glaser, Springer Verlag , 2000. 2. Biophysics: Molecules In Motion ; R. Duane. Academic Press , 1999

## **REFERENCE:**

1. Cantror, Charles R. and Paul R. Schimmel "Biophysical Chemistry". 1-3 Vols. W.H.Freeman& Co., 1980

S. NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.A Nirmala	Asst.Professor Gr II	Biotechnology	nirmalabte@avit.ac.in
2	Mrs.S.Subriya	Assistant Professor	Biotechnology	subriya@vmkvec.edu.in

GENOMICS AND PROTEOMICS	CATEGORY	L	Т	Р	CREDIT
	EC(PS)	3	0	0	3
	•				

Genomics and Proteomics deals with a rapidly evolving scientific area that introduces students into genomes, proteomes and databases. Students would learn about genomics, proteomics and bioinformatics and offer basic knowledge of genome sequencing, major differences between prokaryotic and eukaryotic genomes, basic proteomics and its applications. Students would gain skills in applied bioinformatics, comparative, evolutionary, human genomics and functional genomics. The acquired knowledge during the course would be helpful to those students who want to work in core facilities and commercial biological and medical laboratories as well as in their postgraduate studies.

## PREREQUISITE NIL

## **COURSE OBJECTIVES**

1	To ex	xplain a	dvance	d theor	etical l	cnowle	edge o	n the c	organiz	ation ar	nd funct	ion o	of genome	\$S	
2	To ex	cecute c	lifferen	t mappi	ing tec	hnique	es.								
3	To P	erform	gene id	entifica	tion an	nd gen	e expr	ression	studies	8					
1	Тоо	utline th	ne ident	ificatio	n, sepa	ration	and s	equen	cing of	protein	S				
5	To e	valuate	the prir	nciples	of bioi	nform	atics a	nd dat	abases						
COU	RSE	OUTC	OME	S											
After	the suc	ccessful	compl	etion of	the co	ourse,	learne	r will l	be able	to					
CO1.	To des	cribe th	ne organ	nizatior	is gene	es in pr	okary	otes a	nd euka	aryotes				Understa	and
CO2.	To illu	strate v	various	genome	e mapp	ing te	chniqu	ies and	l its stra	ategies				Apply	
CO3.	To rela	ate the f	flow of	genetic	inform	nation	from	DNA	to RNA	A to pro	tein			Analyze	
		npare ti g techno		intages	and th	e draw	/backs	of va	rious p	roteomi	cs tech	nolo	gies with	Analyze	
CO5.	To ev	aluate t	he role	of prot	eomics	s in dru	ıg dise	covery						Apply	
MAP	PING	WIT	H PR(	OGRA	MME	COUT	ſCON	MES A	AND F	PROG	RAMN	1E S	SPECIFI	C OUTC	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P O	PSO1	PSO 2	PSO3
CO1	L	L	-	L	-	-	-	-	L	L	-	-	-	М	-
CO2	L	-		L	-	L	L	-	L	L	L	L	М	М	М
CO3	Μ	S	S	S	Μ	-	L	-	-	М	М	-	М	S	М
CO4	-	М	S	S	-	M	M	-	M	-	M	М	-	S S	-
CO5	Μ	Μ			Μ	Μ	Μ	L	S	-	Μ		S	1.0	-

## SYLLABUS

## **OVERVIEW OF GENOMES OF PROKARYOTES, EUKARYOTES AND HUMAN**

Organization of genes, Coding and non-coding chromosomes and high order structures, Genome relatedness, Introduction of genomics

## **MAPPING TECHNIQUES**

Mapping strategies, Maps – Physical and Genetic maps, Comparative map, Integrated map, Top down and bottom up approach, linking and jumping of clones, STS maps, Human Genome Project

## **FUNCTIONAL GENOMICS**

Gene identification and prediction, Annotation, Functional prediction, Gene expression and micro arrays, Substractive DNA library screening, differential display and representational difference analysis, SAGE.

## **PROTEOMIC TOOLS**

Edman protein microsequencing, Proteome analysis, 2D gel electrophoresis, Metabolic labeling, Detection of protein on SDS gels. Mass spectrometry – MALDI - TOF, Tandem MS - MS, Peptide mass finger printing.

## PROTEIN PROFILING AND APPLICATION OF PROTEOMICS

Protein – protein interaction, Post translational modification, Proteomics in drug discovery

## **TEXTBOOKS:**

- 1. Rastogi, S.C., Mendiratta, N. and Rastogi, P, 2008. Bioinformatics Methods and Applications. Prentice-Hall of India (Private), Limited.
- 2. Andreas D. Baxevanis and Francis Oueliette, B.F, 2004. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition. *John Wiley and Sons Inc.*

## **REFERENCES:**

- 1. Liebler, 2002. Introduction to Proteomics. Humana Prem.
- 2. Primrose and Twyman, 2003. Principles of Genome Analysis and Genomics. Blackwell Publishing Co.
- 3. David W. Mount, 2001. Bioinformatics, Sequence and Genome Analysis. *Cold Spring Harbor Laboratory Press.*
- 4. Pennington and Dunn, 2001. Proteomics. BIOS Scientific Publishers.
- 5. Ignacimuthu, S., 2005. Basic Bioinformatics. *Narosa Publishing House*. Westhead, D.R., Parish, J.H. and Twyman, R.M., 2003. Instant Notes Bioinformatics. 1stEdn.,*Viva Books Private Limited*.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Balalchandar	Assistant Professor – G-II	BioTechnology	balachandar.biotech@avit.ac. in
2	Dr.M. Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in

		BIOTECHNOLOGY	AND	Category	L	Т	Р	Credit
J	POLLUT	ION ABETMENT		EC(PS)	3	0	0	3

This is a multidisciplinary course deals with various aspects like Environmental Biotechnology, Bioremediation of various problems, Ecofriendly Bioproducts from renewable biosources to educate students within the field of Biotechnology. Students will gain theoretical and practical competence within the broad field of Biotechnology as well as with its applications.

#### PREREQUISITE - NIL

COU	RSE OI	BJECT	IVES												
1	To un	derstan	d how ]	Biotech	nology	can he	elp in n	nonitori	ng or F	Removin	g the po	llutants			
2												nergy sou	irces		
3		derstan												armful in	npact of
4			the tech	niques	of Bio	remedi	ation a	nd Bior	esorati	on					
5										ironmen	t				
COUH		UTCO		- 8				·····			-				
On the	succes	sful co	mpletic	on of th	e cours	e, stude	ents wil	ll gain l	knowle	dge aboi	ıt				
			-					he Envi		-				Unders	tand
CO2. 1	Demons	strate th	ne vario	us nov	el techi	niques	for pro	duction	of Bio	fuels				Unders	tand
CO3. 4	Apply t	he diffe	erent m	ethods	for the	waste	nanage	ement						Apply	
CO4.A	Apply th	ne techr	ologies	s in Bio	oremedi	iation a	nd Gre	en Ener	rgy					Apply	
CO5.	Employ	y the us	es of g	enetica	lly eng	ineered	organi	sm in E	Environ	mental i	ssues			Apply	
MAPI	PING V	VITH	PROG	RAMN	IE OU	TCOM	IES AN	ND PR	OGRA	MME S	SPECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-	-	-	-	-	-	-	L
CO2	L	L	L	-	L	-	L	-	-	-	-	L	L	-	L
CO3	S	S	М	М	М	-	М	-	-	-	-	-	М	М	М
		- a		L	М	L	М	М	-	-	-	-	М	М	S
CO4	S	S	S	L	141	-									5

S- Strong; M-Medium; L-Low

## SYLLABUS

#### **BIOLOGICAL WASTE TREATMENT**

Principles and design aspects of various waste treatment methods with advanced bioreactor configuration: Solid waste management: landfills, recycling and processing of organic residues, minimal national standards for waste disposal. Fundamentals of composting process: scientific aspects and prospects of biofuel production: bioethanol, biohydrogen and biodiesel; biofertilizers and biopesticides.

#### **BIODEGRADATION OF XENOBIOTIC COMPOUNDS**

Xenobiotic compounds–Definition, examples and sources. Biodegradation- Introduction, effect of chemical structure on biodegradation, recalcitrance, co metabolism and biotransformation. Factors affecting biodegradation, microbial degradation of hydrocarbons.

#### **BIOTRANSFORMATIONS AND BIOCATALYSTS**

Basic organic reaction mechanism- Common prejudices against enzymes, advantages & disadvantages of biocatalysts, isolated enzymes versus whole cell systems, biocatalytic application, catalytic antibodies; stoichiometry.

#### **BIOREMEDIATION AND BIORESTORATION**

Introduction and types of bioremediation, bioremediation of surface soil and sludge, bioremediation of subsurface material, In situ and Ex-situ technologies, phytoremediation- restoration of coal mines a case study. biorestoration: reforestation through micropropagation, use of mycorrhizae in reforestation, use of microbes for improving soil fertility, reforestation of soils contaminated with heavy metals.

#### ECO-FRIENDLY BIOPRODUCTS FROM RENEWABLE SOURCES

Fundamentals of composting process: scientific aspects and prospects of biofuel production: bioethanol, biohydrogen and biodiesel; biofertilizers and biopesticides. Biotechnology in Environment Protection: Current status of biotechnology in environment protection and its future, release of genetically engineered organisms in the environment.

#### **TEXT BOOKS**

- 1. Introduction to Wastewater Treatment- R. S. Ramalho, Academic Press.
- 2. Elements of Water Pollution Control Engineering O.P. Gupta, Khannabooks.
- 3. Energy Technology O.P. Gupta, Khannabooks, 2018.
- 4. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd.
- 5. Environmental Microbiology & Biotechnology, D.P. Singh, S.K. Dwivedi, New Age International Publishers, 2004.
- 6. Biodegradation and Bioremediation 1999 (2nd edition). Martin Alexander, Elsevier Science & Technology.

#### **REFERENCE BOOKS**

- 1. Environmental Biotechnology by Bruce Rittmann and Perry McCarty.
- 2. Environmental Processes I-III, J. Winter, 2nd ed., Wiley Publications
- 3. Environmental Biotechnology, B.C. Bhattacharya & Ritu Banerjee, Oxford Press, 2007.
- 4. Environmental Biotech, Pradipta Krimar, I.K. International Pvt. Ltd., 2006.

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Anandakumar	Assistant Professor	Biotechnology	anandakumars@vmkvec.edu.in
2.	Dr.R. Devika	Profeesor & Head	Biotechnology	devika@avit.ac.in

BIOPHARMACEUTICAL	CATEGORY	L	Т	Р	CREDIT
TECHNOLOGY	EC(PS)	3	0	0	3

Biopharmaceutical Technology is the study that how the pharmaceutical expression of certain drugs can impact their pharmacokinetic and pharmacodynamics behavior. It is branch of pharmaceutical science and technology that utilizes the concept of both biotechnology and pharmaceutical science to design, develop and manufacture pharmaceutical drugs to satisfy the constant growing demand of medicines and save the mankind from the deadly clutches of known and unknown diseases. This course is designed to prepare Professionals for employment in pharmaceutical manufacturing and related industries.

## PREREOUISITE NIL

PKE	KEQU	J <b>ISH</b>	INIL												
COU	RSE (	OBJE	CTIVE	ES											
1	То	state th	ne basic	s of bi	opharn	naceut	icals a	and the	eir sour	ces					
2	То	describ	be the m	nechani	sm of	drug a	ctions								
3	То	perform	n the b	ulk drug	g manı	ıfactuı	ring ar	nd thei	r regula	atory as	spects				
4	То	organiz	ze the p	roduct	format	ion in	manu	factur	ing ind	ustry lil	ke grow	vth fa	ictors and	hormones	
5	То	outline	the the	erapeuti	cs like	vitam	ins, A	ntibio	tics and	l Horm	ones.				
COU	RSE (	OUTC	OMES	5											
After	the suc	cessful	comple	etion of	the co	urse, 1	learne	r will l	be able	to					
CO1.	Recall	the bas	ic infor	mation	about	drug i	ndustr	ry, dru	g devel	opment	ts and c	liffer	ent	Understa	ind
CO2.	Descri	be the r	nechan	ism of o	drug ac	ction,	pharn	nacoki	netics a	and pha	rmacod	ynar	nics	Understa	ind
CO3.	Illustra	ate the c	lifferen	t steps a	and pro	ocess i	nvolv	ed in t	oulk dru	ıg manı	ufacturi	ng		Analyze	
CO4.	Appra	ise the p	product	develo	ped fro	om ma	nufact	turing	industr	У				Analyze	
		ate the and Ho			evelop	ed fro	m pha	rma ir	ndustry	like vit	amins,			Apply	
MAP	PING	WITI	H PRC	<b>GRA</b>	MME	OUI	CON	AES A	AND P	ROGI	RAMN	<b>1E S</b>	SPECIFI	C OUTC	OMES
COS	PO	PO2	PO3	PO4	PO	PO	PO	PO	PO9	PO1	PO1	P	PSO1	PSO	PSO3
CO1	M	L	-	L	-	Ĺ	-	-	-	-	-	-	-		-
CO2	L	L	-	-	L	-	-	-	-	-	-	-	-		М
CO3	Μ	L	L	L	L	L	-	-	-	-	-	-	-		М

_ S- Strong; M-Medium; L-Low

Μ

_

_

Μ

М

_

L

L

L

L

_

L

S

## **SYLLABUS**

S

S

CO4

CO5

Current status and future prospects of biopharmaceuticals - Pharmaceuticals of animal origin, plant origin and microbial origin - Sources of biopharmaceuticals.

S

S

_

_

_

_

_

_

S

S

_

М

Drug - Definition, Mechanism of drug action, Principles of drug metabolism, Drug discovery - Gene chips, Proteomics, Structural Genomics, Pharmacokinetics - Plant as a source of drugs, microbial drugs - Pre-clinical trial - Pharmacokinetics and pharmacodynamics - Toxicity studies - Clinical trial, clinical trial design, trial size and study population - Randomized control studies

Compressed tablets, Dry and wet granulation, Slugging or direct compression, Tablet presses, Coating of tablets, Capsule preparation, Oral liquids – Vegetable drugs – Topical applications, Preservation of Drugs, Analytical methods and other tests used in drug manufacture, Packing techniques, Quality management, Good Manufacturing Practice (GMP).

Haemopoietic growth factors – Granulocyte and macrophage colony stimulating factor – Insulin like growth factors – Epidermal growth factor – Platelet growth factor – Neurotrophic factors – Hormones of therapeutic interest – Insulin, glucagon – Human growth hormones – Gonadotrophins, Disease transmission – Whole blood, platelets and red blood cells – Blood substitutes – Haemostasis – Antithrombin – Thrombolytic agents Enzymes of therapeutic value Polyclonal antibody – Monoclonal antibodies – Tumour immunology – Vaccine technology, Adjuvant technology – Anti-sense oligonucleotides, uses, advantages and disadvantages of 'oligos', vitravene, an approved anitsense agent – Antigene sequences and ribozymes

#### **TEXTBOOKS:**

- 1. Gareth Thomas, 2000. Medicinal Chemistry. An introduction. John Wiley
- 2. Katzung, B.G., 1995. Basic and Clinical Pharmacology. Prentice Hall of International Publication.

#### **REFERENCES:**

- Dutton R. and Scharer J., "Advanced Technologies in Biopharmaceutical processing", Blackwell Publishing, 2007.
- 2. Gary W., "Biopharmaceuticals: Biochemistry and Biotechnology", Second Edition, John Wiley, 2003.
- Leon Lachman, 1986. Theory and Practice of Industrial Pharmacy. 3rdEdition., *Lea and Febger*. Remington, 1991. Pharmaceutical Science. *Mark Publishing and Co.*
- 4. http://ocw.kyoto-u.ac.jp/en/pharmaceutical/course01/lecturenote.htm

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Ms.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in

		CATEGORY	L	Т	Р	CREDIT
N	METABOLIC ENGINEERING	EC(PS)	3	0	0	3

Metabolic engineering involves the redesign of metabolism to enable cells to produce new products such as valuable chemicals and biofuels, and/or remediate toxins. Biotechnology industry requires skilled engineers with knowledge of how to apply engineering principles to metabolic pathways in order to analyse, design and alter cell functions. The introduction of basic concepts, current technologies, and challenges within the field will provide students with a valuable toolset to address metabolic engineering problems that are relevant to the emerging biotechnology industry.

COU	RSE	OBJE	CTIVI	ES											
1	To de	efine th	e appro	priate h	nost an	d/or m	netabo	lic pat	hways t	to prod	uce a de	esired	product or	remedia	te a toxii
2		escribe eling – o		-	he pote	ential 1	metab	olic en	gineeri	ng strat	tegies u	sing q	uantitative	e metabol	ic
3	To a	nalyze r	netabol	ic flux	and to	deterr	nine n	netabo	lic path	way ut	ilizatio	n usin	g 13C-lab	eling strat	tegies
4	To as	ssess an	d deriv	e effect	ive co	mbina	torial	metab	olic eng	gineerin	ig strate	egies			
5	To p	roduce	those st	rategies	s to im	pleme	nt gen	etic m	anipula	tions					
COU	RSE	OUTC	OME	S											
After	the suc	ccessful	compl	etion of	f the co	ourse,	learne	r will	be able	to					
CO1.	Transl	ate the	energet	ics of c	ellular	· metał	oolism	l						Underst	and
CO2.	Descri	be the s	structur	e and re	egulati	on of 1	metab	olic ne	tworks					Underst	and
CO3.	Establ	ish the	optimal	strateg	y for i	ntrodu	icing o	lirecte	d genet	ic chan	ges in t	he		Apply	
CO4.	Relate	the mo	dern bi	ology v	vith en	igineer	ing pr	inciple	es.					Apply	
		Case stression s			bolical	lly eng	gineere	ed proc	lucts ar	nd proce	esses in	l		Apply	
MAF	PPING	WIT	H PR(	OGRA	MME	E OUI	<b>FCON</b>	MES A	AND P	PROG	RAMN	AE S	PECIFIC	COUTC	OMES
COS	PO	PO2	PO3	PO4	PO	PO	PO	PO	PO9	PO1	PO1	Р	PSO1	PSO	PSO3
CO1	L	-	-	-	-	-	-	-	L	Ĺ	-	-	-	Ŵ	-
CO2	L	L	-	L	-	-	-	-	-	М	-	-	М	М	-
CO3	М	S	М	S	М	L	Μ	М	М	-	М	-	S	-	М
CO4	S	М	S	М	М	Μ	L	L	М	М	Μ	Μ	М	S	М
CO4	М	М	S	S	Μ	Μ	Μ	Μ	Μ	Μ	Μ		S	М	S

## SYLLABUS

## **REVIEW OF CELLULAR METABOLISM**

An overview of cellular metabolism, Transport processes, Fuelling reactions : Glycolysis, Fermentative pathways, Biosynthetic reactions, Polymerization, Cellular energetic

#### MATERIAL BALANCES AND DATA CONSISTENCY

Comprehensive models of cellular reactions, Stoichiometry of cellular reactions, Reaction rates, Dynamic mass balances, Yield co-efficients and linear rate equations, Analysis of over determined systems – Identification of gross measurement errors.

#### METABOLIC FLUX ANALYSIS

Theory, Over-determined systems, Under-determined systems – Linear programming, Sensitivity analysis, Methods for the experimental determination of metabolic fluxes by isotope labelling, Applications of metabolic flux analysis.

#### METABOLIC FLUX ANALYSIS

Theory, Over-determined systems, Under-determined systems – Linear programming, Sensitivity analysis, Methods for the experimental determination of metabolic fluxes by isotope labelling, Applications of metabolic flux analysis.

#### ANALYSIS OF METABOLIC NETWORKS

Control of flux distribution at a single branch point, Grouping of reactions, Case studies, Extension of control analysis to intermetabolite, Optimization of flux amplifications, Consistency tests and experimental validation.

#### **TEXTBOOKS:**

- 1. Stephanopoulas, G., et al., 1996. Introduction to Metabolic Engineering Principles and Methodologies. Elsevier Science.
- 2. Lee, S. Y. and Papoutsakis, E. T., 1998. Metabolic Engineering. Marcel Dekker.
- 3. Nielsen, J. and Villadsen, J., 2007. Bioreaction Engineering Principles. 2. ed., Kluywer Plenum, New York

#### **REFERENCES:**

1. Voit, E. O., 2000. Computational Analysis of Biochemical Systems : A Practical Guide for Biochemists and Molecular Biologist. *Cambridge University Press*.

- Scheter, T., 2001. Metabolic Engineering.(Advances in Biochemical Engineering, Biotechnology). Springer. Vol. 73.
- 3. Rhodes, P. M. and Stanbury, P. F., 1997. Applied Microbial Physiology Practical Approach. IRL Press.
- 4. Caldwell, D. R., 1995. Microbial Physiology and Metabolism. Wm. C. Brown.
- Rehm, H. J. and Reed, G., 1997. Biotechnology : Products of Primary Metabolism (Vol. 6), Biotechnology : Products of Secondary Metabolism (Vol. 7)., VCH / Wiley.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.A.Nırmala	Assistant Professor GII	Biotechnology	nırmalabt@avıt.ac,ın
2	Ms.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in

MARINE AND AQUACULTURE	CATEGORY	L	Т	Р	CREDIT						
BIOTECHNOLOGY	EC(PS)	3	0	0	3						
PREAMBLE			I		I						
This course aims to provide adequate knowledge on the Mar	ine microbial divers	sity, ap	plicati	ons of	biotechnology						
in aquaculture, Bio Medical importance of marine or	ganism, Biomateri	als an	d Ge	netical	lly engineered						
microorganism and their various applications in environme	ent. Thus, the stud	ent wil	ll have	e an ii	nsight into the						
theoretical aspects of marine organism which will be very use	ful when they work	on rea	l situat	ion							
PREREQUISITE NIL											
COURSE OBJECTIVES											
To impart knowledge on marine microbial diversity											
To describe about aquatic animals and their breeding methods											
3 Focus on the importance of marine organism in biome	Focus on the importance of marine organism in biomedical field										
4 To discuss about biomaterials, bioprocess and their va	rious uses.										
5 To evaluate the genetically engineered microorganism	and their uses in wa	aste deg	gradati	on							
COURSE OUTCOMES											
After the successful completion of the course, learner will be	able to										
CO1. Describe about basic concepts of diversity of marine mi	crobes			Und	erstand						
CO2. Interpret the aquatic animals and their breeding mechan	nism			appl	у						
CO3. Examine the applications of marine organism in Biomed				Anal	lyze						
microorganisms with the aim of obtaining better production st	trains										
CO4. Inspect about biomaterials and their potential uses				Ana	lyze						
CO5. Utilize the different microorganism for the degradation	of waste			App	ly						
various expression systems											
MAPPING WITH PROGRAMME OUTCOMES AN	D PROGRAMM	E SPI	ECIFI	Ο ΟΙ	JTCOMES						

COS	PO	PO2	PO3	PO4	PO	РО	РО	PO	PO9	PO1	PO1	Р	PSO1	PSO	PSO3
CO1	L				M		S	S				-	S		
CO2			М		S	L	S	S	L						
CO3	L	М	S		S	М	L	S	L						
CO4	М		L	М	М	L		L							
CO5	L	L	М	М	L		М	S	L						

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### INTRODUCTION TO MARINE MICROBES IN THE OCEAN

Marine Microbial Diversity – Criterion Habitats – Presences of other organisms : Symbiotic, Free Living, Biofilm, Proximity to the ocean surface or sediments – Euphotic, Mesopelagic, Bathopelagic, Benthos (Sediments) – Concentration of Nutrients and required growth substrates : Oligotrophic, Abundance and distribution of Bacterial and Viral Pathogens - Metabolic Capabilities of Marine Microbes : Adapting to Extreme Environments – Algal Blooms – Marine Bacteria. Major Fisheries in India, Fisheries Management and Fisheries related Marketing Strategies.

#### **BIOTECHNOLOGY OF AQUATIC ANIMALS**

Shell Fish and Crustacean Culture : Aqua Culture – Shrimps, Corals, Pearl Oyster, Sea weeds, Edible Mussels, Crabs, Fish Breeding and Mass Production, Induced Breeding, Artificial insemination, Transgenic Breeding, Fish Farming and Culture, Developments of Healthy Fish Diets, Disease Prevention in Fish and GM Fish and Shell Fish. Aquaculture of Marine Invertebrates such as Bryozoans, Sponges and Tunicates. Isolation, Cultivation and Fermentation of Microorganisms from their Invertebrate hosts.

Disease Associated with Cultured Shrimps and Fishes : Disease Management – Vaccines, Antibiotics, Immunostimulants, Immunomodulants, Diagnostic Kits, Probiotics.

#### **BIOMEDICAL IMPORTANCE OF MARINE ORGANISMS**

Marine Pharmocology : Pharmaceutical and Bioactive Natural Products – Microalgae as a source of Bioactive Molecules – New Antibiotics, Antiviral and Anticancer Drugs, Anti-Fungal drugs, Medicines and Marine Organisms – Potentialities in the treatment of Infectious Diseases, Osteoporosis and Alzheimer's Disease. Cynaobacterial Biotechnology – Secondary Metabolites and Biosynthetic Gene clusters of Marine Cyanobacteria – Applications in Biotechnology – Secondary Metabolites from Marine derived Fungi.

#### **BIOMATERIALS AND BIOPROCESSING**

Polymers and Biomaterials :Agarose, Agar, Alginates, Carrageaas, chitin, Chitosan, Carotene, Heparin, Marine Flavourants – Environemtnatlly Friendly Antifouling Compuounds.

Biopotential Uses of HalophilicOrganisms, Role of Halophilic Bacteria and Artemia in salt purification.

Tetrodotoxins, Conotoxins, extremozymes from Microbes, Nucleases form Marine Microbes, Exoenzymes from Benthic Flora.

#### ENVIRONMENTAL AND BIOTECHNOLOGY

Oil spillage and Oil degradation in coastal waters, Genetically Engineered Marine Organisms, algal blooms and phosphate removal, biodegradation of pesticides and heavy metals discharged coastal waters, management of solid wastes disposed into coastal waters, water quality management in Hatcheries and grow out ponds - Biofilters in recycling of water, use of microcosm.

#### **TEXTBOOKS:**

- 1. Attaway, D. H. and Zaborsky, O. R., 1993. Marine Biotechnology : Pharmaceuticals and Bioactive Natural Products. Plenum, New York, Volume 1.
- 2. Weber, P., 1993. Abandoned Seas : Reversing the Decline. World Watch.
- Powers, D. A., 1995. New Frontiers in Marine Biotechnology : Opportunities for the Twenty First Century. In : Marine Biotechnology in the Asian Pacific Region. C. G. Lundin and R. A. Zilinskas. (Eds.). *The World Bank and SIDA*, Stockholm

#### **REFERENCES:**

- 1. Rhodina, A. G., 1996. Aquatic Biotechnology.
- 2. S.Felix., 2010 .Marine and Aquaculture Biotechnology, Agrobios.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID		
1	Dr.R.Balalchandar	Assistant Professor GII	Biotechnology	balachandar.biotech@avit.ac.in		
2	Dr.M. Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in		

			PLAN	T ANI	D ANI	MAL	TISS	SUE		CATEC	GORY	L	Т	P (	CREDIT	
			CULI							EC(I	PS)	3	0	0	3	
The canima cultur PRE	l tissue e, plant <b>REQU</b> Basic in tec To ur To ill	s custor e cultur tissue c ISITE DBJEC concep hniques aderstan ustrate	e. The culture r NIL TIVES ts in ani d the dir theorigi	course nethods S imal tiss fferent t n and c	expose , anima sue cul ypes o	es the al cell o ture wi f cell a terizat	studer culture ith und and pla ion of	nts to e metho lerstand nt cult	underst ods and ding of ures tec	differer	e sterili sand tis	zation sue en	techniqu Igineering	underlying es involve g.	d in tissu	
4	To give an overview on cell quantification techniques															
5	To m	ake stuc	lents to	underst	and ar	id appl	y the t	issue e	ngineer	ring tech	nniques					
CO1. CO2. Produ	Explair Demor	of haple	sics of ti he techn bids	issue cu niques f	lture te for the	chniqu devel	ies opmen	t artifi	cial see		ryo dev	velopm	nent and	Understa Apply	nd	
		ise the		0 1			1		t cell ty	pes				Analyze		
CO4.	Inspect	the gro	wth kin	etics an	d scali	ng up f	actors							Analyze		
variou	is expre	e the tis ession sy WITH	stems	_	_			S AN	D PR(	OGRAI	MME	SPEC	CIFIC O	Apply U <b>TCOMI</b>	ES	
		DOO	PO3	PO4	РО	PO	РО	PO	PO9	PO1	PO1	Р	PSO1	PSO	PSO3	
COS	PO	PO2	100			-			-	-		Ĺ	S	Ŝ		
	PO L	L PO2	L	L	Š	L	-	-	-	-	-	L	5	5		
CO1				L M	S S	L L	-	S	-	-	L	-	S	M		
COS CO1 CO2 CO3	L S M	L M -	L S M	M L	S S			S M		-	- L -	- -		M -		
CO1 CO2	L S	L	L S	М	S		-		-	-		-	S			

Laboratory organization, Sterile techniques, Nutrition medium, Explant culture, Callus culture, Cell and organ differentiation, Cell culture, Suspension cultures - Batch and continuous cultures, Growth measurements, Photobioreactors.

Organogenesis, Somatic embryogenesis Micro propagation, Protoplast - isolation culture, regeneration, somatic hybridization, cybrid technology, Embryo culture and embryo rescue, artificial seeds overcoming crossing barriers, Somaclonal variation, *in vitro* selection of mutants, Production of haploids – Anther and Pollen culture, Triploid Production: *In vitro* Pollination and Fertilization, Germplasm storage and cryopreservation.

Origin and characterization of different cell types - differentiation - organ culture - Subculture - cell clines - Selection of medium - chemically defined and serum free media - Role of serum in cell culture - Strategies of medium optimization - commercially available medium for mammalian cell culture - different methods - long term cultivation of human adult tissue, Insect cell culture.

Cell quantification - practical consideration - growth kinetics - medium and nutrients - Types of culture system monolayer culture - Roller bottle - modification - fermenter system - Suspension culture - adaptation - static suspension culture - Scaling up factors - stirred fermenters - Air lift fermenters - Encapsulated cells, Preservation and characterization of cell lines, cytotoxicity and viability assays.

#### **TISSUE ENGINEERING**

Developmental biology, Tissue engineering : Basic principles and consideration – Cell type and source, metabolic requirements of cells, reconstruction of connective tissues, reconstruction of epithelial or endothelial surfaces – Cell embedded in extracellular matrix material, Culture on a single surface and sandwich configuration, Scaffolds and tissue engineering – Basic properties, Bioreactor design on tissue engineering – Hollow fibre systems, Microcarrier based systems, Tissue engineering of the liver.

#### **TEXTBOOKS:**

- 1. Walton, P. D., 1988. Principles and Practices. Plant cell culture. Prentice Hall.
- 2. Bhowjwani, S. S., 1990. Plant Tissue Culture : Applications and Limitations.
- 3. Gupta, P. K. 1998. Elements of Biotechnology. Rastogi Publications.

Chawla, H. S., 2002. Introduction to plant Biotechnology. *Oxford and IBH Publishing Co. Pvt. Ltd.*, New Delhi **REFERENCES:** 

- 1. John R. W. Master, 2004. Animal Cell Culture A Practical approach. Oxford University Press.
- Bernhard Palsson, Jeffery A. Hubble, Robert P. Lonsey and Joseph D. Bronzino, 2005. Tissue Engineering, Principles and Applications in Engineering. CRC Press.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Balalchandar	Assistant Professor GII	Biotechnology	balachandar.biotech@avit.ac.in
2	Dr.M. Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in

FOOD SCIENCE AND	CATEGORY	L	Т	Р	CREDIT
TECHNOLOGY	EC(PS)	3	0	0	3

#### PREAMBLE

The main aim of this course to impart knowledge to students on various areas related to Food science and technology, enable the students to understand food composition and its physicochemical, nutritional, microbiological, sensory aspects and also familiarize the students about the processing and preservation techniques.

#### PREREQUISITE NIL

COURSE (	<b>DBJECTIVES</b>
----------	-------------------

1	To understand the basic constituents of food and their functional properties
2	To study the sources and activities of microorganisms associated with food.
3	To understand the processing technology involved in food industries.
4	To choose the appropriate preservation methods
5	To apply the various techniques in food industry
CO	URSE OUTCOMES

After the successful completion of the course, learner will be able to								
CO1. Explain about the various food constituents and functional properties	Understand							
CO2. Utilize laboratory techniques to identify different microorganisms in food.	Evaluate							
CO3. Know the principles involving food processing methods	Analyze							
CO4. Able to identify and apply the suitable preservation method in industry	Apply							
CO5. Utilize advanced instruments and technologies in food process and analyze food	Apply							

products.

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	Р	PSO1	PSO	PSO3
												0		2	
CO1	Μ	-	L	L	S	Μ	S	-		-	-	Μ	L	-	М
CO2	S	-	S	Μ	S	Μ	Μ	L	-	-	-	Μ			-
CO3	-	L	S	Μ	S	L	Μ	-	-	-	-	-	М	-	-
CO4	-	S	Μ	S	S	Μ	L	-	-	-	-	-	-		-
CO5	S	Μ	Μ	L	S	Μ	L	Μ	-	-	-	-	М	-	L
C C4			in an T	Larr											

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### FOOD CHEMISTRY

Constituents of food – Carbohydrates, Lipids, Proteins, Water, Vitamins and Minerals, Texture, Flavour and Organoleptic properties of food, Dietary sources, Role and functional properties in food, Biotechnology in relation to the food industry.

#### FOOD MICROBIOLOGY

Sources and activity of microorganisms associated with food, Bacteria, Yeast and Molds – Sources, Types and Species of importance in food processing and preservation, Fermented foods – Dairy products, Meat, Fishery, Nonbeverage plant products, Beverages and related products, Single cell protein, Food fermentation, Food chemicals, Food borne diseases – Infections and intoxications, Food spoilage – Causes.

#### FOOD PROCESSING AND FOOD ADDITIVES

Raw material characteristics, Cleaning, Sorting and grading of foods, Physical conversion operations – Mixing, Emulsification, Extraction, Filtration, Centrifugation, Membrane separation, Crystallization, Heat processing, Classification, Intentional and non-intentional additives, Functional role in food processing – Meat, Fisheries, Vegetables, Food colourants – Natural and artificial, Food flavours, Enzymes as food processing aids

#### FOOD PRESERVATION AND FOOD BORNE DISEASES

Principles involved in the use of high temperatures – Sterilization, Pasteurization, Blanching, Thermal death curves of microorganisms, Canning, Frozen storage – Freezing characteristics of foods, Microbial activity at low temperature, Factors affecting quality of frozen foods, Irradiation preservation of foods, Classification, Food infections – Bacterial and other types, Food intoxications and poisonings.

#### APPLICATIONS OF FOOD BIOTECHNOLOGY

Fermented food – Batter and baked goods, Diary products – Milk processing, Cheese, butter, Yoghurt, Ice-cream, Vegetable and fruit products, Edible oils and fats, Meat, Poultry and fish products, Confectionery and beverages

#### **TEXTBOOKS:**

- 1. Coultate, T.P., 1992. Food The Chemistry of Its components. 2ndEdition., Royal Society, London.
- 2. Sivasankar, B., 2002. Food Processing and Preservation, Prentice Hall of India Pvt. Ltd., New Delhi.

#### **REFERENCES:**

- 1. Frazier, W.S. and Weshoff, D.C., 1988. Food Microbiology, 4th Edition., McGraw Hill Book Co., New York.
- 2. Jay, J.M., 1987. Modern Food Microbiology, CBS Publications, New Delhi.
- 3. Lindsay, 1988. Applied Science Biotechnology. Challenges for the flavour and Food Industry. *Willis Elsevier*.
- 4. Roger, A., Gordon, B. and John, T., 1989. Food Biotechnology.

George, J.B., 1987. Basic Food Microbiology. CBS Publishers and Distributors

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.R.Balalchandar	Assistant Professor – G-II	BioTechnology	balachandar.biotech@avit.ac. in
2	Ms.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in

## **OPEN ELECTIVE**

			S	SUSTAINABLE BUILT					ATEG	ORY	L	Т	Р	CR	REDIT
				ENV	IRONM	ENT			OE-E	A	3	0	0		3
PREA	AMBLE	£												I	
· ·				•			•		n of su	ustainab	le mater	rials. Ene	ergy man	ageme	ent by
	oring of		<u> </u>	on and	emissior	in buil	ldings.								
PREF	REQUI	SITE I	NIL												
COU	RSE O	BJEC	TIVES												
1	Explai	ning the	e role of	sustaina	able arch	itecture	e to av	oid soil	erosion	& pollu	tion con	trol meas	ures.		
2	Efficie	ency of	waste ma	anagem	ent with	respect	to wa	ter bala	nce and	water e	fficiency	′ <b>.</b>			
3	Impart	knowle	edge on g	green co	oncepts i	n desig	n, con	struction	n & ope	ration o	f buildin	gs.			
4	Intend	ing the	exposure	e to the	latest Gr	een Bu	ilding	trends &	k techno	ologies	to the stu	dents.			
5	To lear	rn abou	t the imp	ortance	and Ne	ed of In	idoor a	ir qualit	y mana	gement.					
COU	RSE O	UTCO	MES												
After t	the succe	essful co	ompletio	n of the	e course,	learner	will b	e able to	C						
CO1.	Understa	and the	importar	nce of si	te select	ion in a	achievi	ng susta	ainable	environ	ment.		Understa	und	
CO2	Applying	g the eff	ficient w	ater bal	ance cor	ncept to	achie	ve the w	ater eff	ïciency.			Apply		
	Applying	1.1		C 1	• • •	1			-		-		Apply		
CO4	Analyzir	ng the si	ustainabl	le build	ing mate	rials in	achiev	ving ene	rgy effi	ciency i	n buildir	ng.	Analyze		
	-	-		air quali	ty with r	respect	to the ]	Indian C	Codes a	nd its St	andards.		Analyze		
	s expres					TCON				A N // N // T			UTCOM	TC	
MAP	PING	WII Π	PKUG.	KAWIN	IE UU	ICON	ils a	IND PI	NUGK	AWINI	SPEC	IFIC U		E9	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3
CO1	S	L	М	L	-	S	-	М	-	-	-	-	L	L	L
CO2	S	М	L	L	-	S	L	-	-	-	-	-	М	L	
CO3	S	M	M	L	-	S	-	-	-	-	-	-	S	L	
CO4	S	L	S	L	-	S M	-	-	M	-	-	-	-	-	M
CO5	L	M	L	L	-	М	-	-	L	-	-	-		-	М
S-Str	ong; M	-Mediu	m; L-L	OW											

#### SYLLABUS

#### INTRODUCTION TO GREEN BUILDING DESIGN:

Universal Design: Key accessibility issues and Design guidelines - Integrated Approach for Green Building design: Factors for Site selection, Understanding the importance of Site Ecology & Site Analysis - Microclimate: Factors affecting microclimate & heat Islands - Strategies to handle heat island in built environment, Designing Green Spaces and Enhancing Biodiversity in built environment.

#### WATER RESOURCE AND WASTEWATER MANAGEMENT

Rainwater harvesting and utilization, Groundwater recharge techniques: Designconsiderations - Water Balance and approach for water efficiency: 3R Approach for water efficiency – Efficiency towards waste water management - Wastewater treatment & reuse, wastewater treatment technologies.

#### ENERGY EFFICEINECY IN SUSTAINABLE BUILDINGS

Introduction, Performance Evaluation and Approach for Energy Efficiency in Buildings - Energy Efficiency Standards & Codes: ECBC 2017 & EPI, ASHRAE 90.1, ASHRAE 62.1, ASHRAE 55, ASHARE 170, ISHRAE 1001, Star labelling for appliances - Efficient Building Envelope: Heating loads in buildings, Building orientation and form, Envelope Heat Transfer & Material Specifications.

#### SUSTAINABLE BUILDING MATERIALS

Attributes of Sustainable Building Materials: Recycled content, Regional material, Renewable material, Embodied energy, Embodied carbon, Material performance, Recyclability, Elimination of hazardous materials - Waste management during construction & post-occupancy: Segregation strategies, Types of waste management – organic, inorganic, e-waste, hazardous waste.

#### **INDOOR ENVIRONMENTAL QUALITY**

Indoor Air quality: Codes and Standards, Fresh air requirements, Design considerations - Approach for improving Indoor air quality: Measures to reduce sick building syndrome, Demand control ventilation, CO2 monitoring in buildings, Air quality monitoring - Enhancing occupants' Comfort, Health and Wellbeing: Thermal Comfort, Visual Comfort, Acoustics, Ergonomics, Olfactory Comfort.

#### **TEXT BOOKS:**

- 1. Guide on Green BuiltEnvironment, IGBC, 2021.
- **2.** IGBC Green Homes ratingsystem, IGBC, 2019.
- **3.** IGBC Green New Buildingsrating system, IGBC, 2016.

#### **REFERENCES:**

- 1. ECBC, Bureau of Energy Efficiency, 2017.
- 2. National Building Code, Bureau ofIndian Standards, Bureau of Indian Standards, 2016.
- 3. ASHRAE 90.1, 62.1, 55, ASHRAE, 2010.

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr.S.P.Sangeetha	Professor	Civil	sangeetha@avit.ac.in

	ADVANCED CYBER SECURITY Ca									Categor y	L	Т	Р	Credit	
											OE-EA	3	0	0	3
PREA				~ .	~ .				_						
				Cyber	Securi	ty in re	eal time	e and to	o study	technic	ques invo	lved in i	t.		
PRER COUF	-			2											
					rminol	ogies r	elated	to cybe	er secu	rity and	current of	cyber sec	urity	threat	
1	landsca				1111101	051051	cluteu		or seed.	ing und	current	eyber bet	Juing	unout	
2.	To uns	erstan	d the c	yberat	tacks th	nat targ	get com	puters	, mobil	es and p	persons				
	To und	lerstar	nd the l	egal fr	amewo	rk that	exist i	n India	for cy	ber crin	nes and p	enalties	and p	unishn	nents for
3.	such cr	rimes													
4.	To stuc	ly the	data p	rivacy	and sec	curity i	ssues r	elated	to Soci	al medi	a platfor	ms.			
5.	To und	lerstar	nd the r	nain co	mpone	ents of	cyber	securit	y plan						
COUR	RSE O	UTCO	OMES												
On the															
<b>CO1:</b> a	ble to u	inders	tand th	e basic	termii	nologie	es relat	ed to c	yber se	curity a	nd curre	Unders	tand		
cyber se	ecurity	threat	landsc	ape.											
<b>CO2:</b> <i>A</i>	Able to	comp	lete u i	n d e r	stan	ding	of the	cyberat	tacks t	hat targ	jet	Apply			
compute	ers, mo	biles	and per	rsons											
CO3: al and pen limitatio	alties a	nd pu existin	nishme 1g IT A	ents foi .ct,200	such c legal	erimes, framev	It will work th	also e nat is fo	xpose s ollowed	students	to	Apply			
countrie										•		Apply			
CO4: A security		-	-					,20198	ind dat	a privac	ey and	дрргу			
												Apply			
CO5:A	ble to	under	stand tl	he main	n comp	onents	of cyt	per secu	ırity pl	an.		r pprj			
MAPF	PING V	VITH	PRO	GRAM	IME C	OUTCO	OMES	AND	PROG	RAMN	AE SPE	CIFIC C	OUTC	OME	5
CO	PO	P	Р	Р	P	Р	Р	Р	Р	PO	PO1	PO1	PS	PS	
s	1	02	03	04	05	06	07	08	09	10	1	2	01	2	3
CO 1	М	М	М	М	-	-	-	-	-	-	-	-	Μ	Μ	М
СО	М	М	М	М	М	-	-	_	-	-	-	_	М	M	М
2														_	
CO 3	М	М	S	М	М	-	-	-	-	-	-	-	М	Μ	М
CO 4	S	М	М	М		-	-	-	-	-	-	-	М	М	S
СО	S	М	М	М	S	-	-	-	-	-	-	-	М	M	S
5 S- Stro	nσ· M₋	Medi	um• I _	Low											
3- Suc	, wi	-wieul	uIII, L-	LUW											

Cyber se	w of Cyber security			9 hours							
				bace, attack, attack vector, attack							
	-			Cyber terrorism, Protection of end							
user mae	chine, Critical IT and Nat	ional Critical Infrastructur	re, Cyberwarfare, Case	Studies.							
Cyber c	rimes			9 hours							
Cyber ci	rimes targeting Computer	systems and Mobiles- da	ta diddling attacks, spy	ware, logic bombs, DoS, DDoS,							
APTs, v	irus, Trojans, ransomwar	e, data breach., Online sca	ums and frauds- email s	scams, Phishing, Vishing,							
Smishin	g, Online job fraud, Onlin	ne sextortion, Debit/ credit	t card fraud, Online pa	yment fraud, Cyberbullying,							
website	defacement, Cybersquatt	ing, Pharming, Cyber espi	onage, Cryptojacking,	Darknet- illegal trades, drug							
trafficki	ng, human trafficking., S	ocial Media Scams & Frau	uds- impersonation, ide	entity theft, job scams,							
misinfor	mation, fake newscyber	crime against persons - cy	ber grooming, child po	rnography, cyber stalking., Social							
Enginee	ring attacks, Cyber Police	e stations, Crime reporting	g procedure, Case studi	es.							
Cyber Law 9 hours											
Cyber ci	rime and legal landscape	around the world, IT Act,2	2000 and its amendmen	nts. Limitations of IT Act, 2000.							
Cyber ci	rime and punishments, C	yber Laws and Legal and e	ethical aspects related t	o new technologies - AI/ML, IoT,							
Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.											
Data Privacy and Data Security     9     hours											
Defining data, meta-data, big data, nonpersonal data. Data protection, Data privacy and data security, Personal Data											
Protectio	on Bill and its compliance	e, Data protection principl	es, Big data security is	sues and challenges, Data							
	-			OPR),2016 Personal Information							
•	•	ents Act (PIPEDA)., Socia	•								
Cyber s	ecurity M a n a g e m e	n t , Compliance and Go	vernance	9 hours							
Cyber se	ecurity Plan- cyber securi	ty policy, cyber crises man	nagement plan., Busine	as continuity Disk assassment							
Types of	f socurity controls and the			tss communy, risk assessment,							
I ypcs 0	i security controls and the	eir goals, Cyber security a		-							
		eir goals, Cyber security a		lational cyber security policy and							
strategy.		eir goals, Cyber security a		-							
strategy. REFER	ENCES		udit and compliance, N	lational cyber security policy and							
strategy. <b>REFER</b> 1. Cyber	ENCES Security Understanding	Cyber Crimes, Computer	udit and compliance, N	-							
strategy. <b>REFER</b> 1. Cyber Nina Go	ENCES Security Understanding dbole, Wiley India Pvt. I	Cyber Crimes, Computer	udit and compliance, N	lational cyber security policy and							
strategy. <b>REFER</b> 1. Cyber Nina Go 2. Inforr	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secu	Cyber Crimes, Computer .td. :ity by Dorothy F. Dennin	udit and compliance, N Forensics and Legal Pe g, Addison Wesley.	lational cyber security policy and erspectives by Sumit Belapure and							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So	Cyber Crimes, Computer .td. rity by Dorothy F. Dennin cial Media Security Threa	udit and compliance, N Forensics and Legal Pe g, Addison Wesley.	lational cyber security policy and							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur Independ	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform	Cyber Crimes, Computer .td. rity by Dorothy F. Dennin cial Media Security Threa	udit and compliance, N Forensics and Legal Pe g, Addison Wesley. Its and Vulnerabilities	Pational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur Indepen 4. Data	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform. Privacy Principles and Pr	Cyber Crimes, Computer .td. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl	lational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space nriram, CRC Press.							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur Indepen- 4. Data 1 5. Inforr	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform Privacy Principles and Pr nation Security Governar	Cyber Crimes, Computer .td. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl	Pational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space							
strategy. <b>REFER</b> 1. Cyber Nina Go 2. Inforr 3. Secur Independ 4. Data 1 5. Inforr Wiley P	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform. Privacy Principles and Pr nation Security Governar ublication.	Cyber Crimes, Computer ttd. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara ace, Guidance for Informa	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl tion Security Manager	Vational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space miram, CRC Press. s by W. KragBrothy, 1st Edition,							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur Independ 4. Data 1 5. Inforr Wiley P 6. Audit	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform Privacy Principles and Pr nation Security Governar ublication. ing IT Infrastructures for	Cyber Crimes, Computer ttd. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara ace, Guidance for Informa	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl tion Security Manager	lational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space nriram, CRC Press.							
strategy. <b>REFER</b> 1. Cyber Nina Go 2. Inforr 3. Secur Independ 4. Data 5. Inforr Wiley P 6. Audit	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform Privacy Principles and Pr nation Security Governar ublication. ing IT Infrastructures for	Cyber Crimes, Computer ttd. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara ace, Guidance for Informa Compliance By Martin W	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl tion Security Manager Veiss, Michael G. Solor	Aational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space miram, CRC Press. s by W. KragBrothy, 1st Edition,							
strategy. <b>REFER</b> 1. Cyber Nina Go 2. Inforr 3. Secur Independ 4. Data 1 5. Inforr Wiley P	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform Privacy Principles and Pr nation Security Governar ublication. ing IT Infrastructures for	Cyber Crimes, Computer ttd. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara ace, Guidance for Informa Compliance By Martin W	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl tion Security Manager	Aational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space miram, CRC Press. s by W. KragBrothy, 1st Edition,							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur Independ 4. Data 1 5. Inforr Wiley P 6. Audit	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform Privacy Principles and Pr nation Security Governar ublication. ing IT Infrastructures for	Cyber Crimes, Computer ttd. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara ace, Guidance for Informa Compliance By Martin W	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities I amanan and Ashwin Sl tion Security Manager Veiss, Michael G. Solor	Aational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space miram, CRC Press. s by W. KragBrothy, 1st Edition,							
strategy. REFER 1. Cyber Nina Go 2. Inforr 3. Secur Independ 4. Data 1 5. Inforr Wiley P 6. Audit Learning	ENCES Security Understanding dbole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform. Privacy Principles and Pr nation Security Governar ublication. ing IT Infrastructures for g.	Cyber Crimes, Computer .td. tity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara ace, Guidance for Informa Compliance By Martin W COURSE D Designation	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities amanan and Ashwin Sl tion Security Manager Veiss, Michael G. Solor <b>DESIGNERS</b>	Vational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space miram, CRC Press. s by W. KragBrothy, 1st Edition, mon, 2nd Edition, Jones Bartlett							
strategy. <b>REFER</b> 1. Cyben Nina Go 2. Inforr 3. Secur Independ 4. Data 1 5. Inforr Wiley P 6. Audit Learning <b>S.</b>	ENCES Security Understanding obole, Wiley India Pvt. I nation Warfare and Secur ity in the Digital Age: So dent Publishing Platform. Privacy Principles and Pr nation Security Governar ublication. ing IT Infrastructures for g. Name of the	Cyber Crimes, Computer ttd. rity by Dorothy F. Dennin cial Media Security Threa actice by Natraj Venkatara nce, Guidance for Informa Compliance By Martin W	udit and compliance, N Forensics and Legal Po g, Addison Wesley. Its and Vulnerabilities amanan and Ashwin Sl tion Security Manager Veiss, Michael G. Solor <b>DESIGNERS</b>	Vational cyber security policy and erspectives by Sumit Belapure and by Henry A. Oliver, Create Space miram, CRC Press. s by W. KragBrothy, 1st Edition, non, 2nd Edition, Jones Bartlett							

		SO	LAR	AND	ENERG	GY ST	ORA	GE SY	STEM	S	L	T	P		C
PREA	MB	LE									3	0	0		3
			als wi	th the	general	concep	pt of S	olar an	d Energ	gy Stor	rage S	ystems	, and im	proveme	nt.
PRER	EQ	UISI	Г <b>Е :</b> І	Nil											
COUF	RSE	OBJ	ECT	IVE											
1.		expla	ain ba	sics of	f solar pl	notovo	ltaic s	ystems	and en	ergy st	torage	systen	1		
2.		under	stand	the co	oncepts a	ind va	rious c	compon	ents of	stand-	alone	system	1		
3.		gain t	he so	und kı	nowledge	e abou	t grid	connec	ted PV	syster	n				
4.		know	the d	esign	of variou	ıs PV-	interc	onnecte	ed syste	ems.					
5.		provi	de the	know	ledge ab	out th	e vario	ous app	licatio	ns of so	olar sy	vstem			
COUF	RSE	OUT	CON	IES											
On th	ie su	ccess	ful co	mplet	ion of th	e cour	se, stu	dents v	vill be a	able to				Un	derstand
CO1: I	Desc	cribe t	he ba	sics of	f solar sy	stem.								Un	derstand
CO2:R	leco	gnize	the co	oncept	s of stan	dalon	e PV s	ystem.						А	nalysis
CO3: I	Desi	gn the	e grid	conne	cted syst	tem fo	r vario	ous app	lication	ıs.				А	nalysis
CO4: \$	Seleo	ct the	suital	ole sto	rage syst	tem fo	r parti	cular ap	oplicati	ons.				A	nalysis
CO5: I	Reco	ognize	the v	various	applica	tions o	of sola	r syster	n.					(	Create
Mappi	ng v	vith p	rogra	mme c	outcomes	and p	orogra	mme sp	ecific (	outcon	nes				
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	М	S	S	М	-	-	L	-	М	-	М
CO2	S	S	-	-	М	S	S	М	-	_	L	-	L	-	L
CO3	S	S	L	-	S	S	S	М	-	-	М	-	М	L	L
CO4	S	М	L	М	S	S	М	М	-	-	М	-	М	_	_
COT	1			М	S	S	М	L	L		М		М		М

#### Introduction

Characteristics of sunlight: the sun and its radiation, Solar radiation, Direct and diffusion radiation, greenhouse effect, solar isolation data and estimation-semiconductors and P-N junctions: semiconductors and types, absorption of light, recombination and PN junctions –behavior of solar cells – cell properties: efficiency and losses, Top contact design, Laser grooved, Buried contact solar cell – PV cell interconnection: Module and circuit design, Environmental and thermal protection.

#### Stand-alone PV System

Solar modules – storage systems: Types, applications, requirements, efficiency, Lead acid batteries – power conditioning and regulation: Diodes, Regulators, Inverters- Balance of system components - protection – standalone PV systems design – sizing: Reliability maps, sizing for high reliability, existing methods.

#### Grid Connected PV Systems

PV systems in buildings – Utility applications for photo voltaic – design issues for central power stations – safety– Economic aspect – Efficiency and performance - International PV programs – Integration of PV and Wind –Indian Specific Standard for Integration.

#### Energy Storage Systems

Impact of intermittent generation: Wind, gas and coal integration, impacts of cycling, PSCO case studies -Battery energy storage – solar thermal energy storage – pumped hydroelectric energy storage.

#### Applications

Water pumping – battery chargers – solar car – direct-drive applications –Space – Telecommunications.

#### **Total Hours = 45**

#### **Fext book(s):**

1. Solar Energy – S.P. Sukhatme, Tata McGraw Hill, 2017.

2. Stuart R.Wenham, Martin A.Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics", 2011.

#### Reference(s):

- 1. Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2017.
- 2. S. Sumathi, "Solar PV and Wind Energy Conversion Systems (Green Energy and Technology)", L.

Ashok Kumar, P. Surekha, 2015.

8 https://nptel.ac.in/courses/112/105/112105051/

4 https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf

S.No	Name of the faculty	Designation	Department	Mail-id
1.	Mr.A.Balamurugan	AP	EEE	<u>balamurugan@vmkvec.edu.in</u>
2.	Mr.V.Rattan Kumar	AP(Gr-II)	EEE	<u>rattankumar@avit.ac.in</u>

		ETA					Categ OE·		<u> </u>		<u>Т</u> 0		<u>P</u>	Cre	
							UE-	-	3		U		U		3
Prerequ	uisite:-N	il													
Course	Objecti	ve													
	Under	stand	the ba	asic p	rincip	les, m	ethod	s, are	as of	usage	, poss	ibiliti	es and	l limita	tions and
	the en	viron	nenta	l effe	cts of	the m	etal a	dditiv	e mar	nufact	uring				
					ls for	develo	opmei	nt of p	arts u	ising a	additi	ve ma	nufac	turing	with sound
	mecha														
					es froi	m vari	ious n	netal a	ıdditiv	ve ma	nufac	turing	proc	esses a	s per the
	produ	-			ahla a		at an fi		f						huimun f
	metal							or mai	iurac	luring	and I	bost p	roces	sing tec	chniques fo
	Desig							ıfactu	ring						
	8	I							0						
Course	Outcon	nes: O	n the	e succ	essful	com	oletio	n of t	he co	urse,	stude	ents w	ill be	able to	0
	Underst						licati	ons an	ıd lim	itatio	ns me	tal	Ur	ndersta	nd
201.	additive				•			1 0							
	Underst									existi	ng or		Ur	ndersta	nd
.02.	develop new materials for additive manufacturing														
203.	Understand the working principle of various methods in MAM and their applications and limitation														
	Produce						ith an	itabla	moto	mial an	lastio	nand	4 101	<u></u>	
CO4.	post pro				-	arts w	itii su	nable	mate	nai se	lectio	n and	Apj	JIY	
			0			,	· · ·	1 .		1	•	1		1	
CO5.	Underst develop			-	-			echni	quest	to de	sign a	nd	Aţ	oply	
	uevelop	parts	using	5 101731		mqu	20								
Mappin	g with	Progr	amm	e Out	come	s and	Prog	ramn	ne Sp	ecific	Outo	comes			
CO	PO1				PO		PO			PO	PO	PO	PS	PS	PSO
		2	3	4	5	6	7	8	9	1	1	1	0	0	3
CO1	М	-	-	-	М	-	М	-	-	-	-	L	L	-	-
001		_	_			_		_	_		_	L	L	_	_
CO2	Μ	-	_		М	-	Μ	-	-	-	-	L	L	_	
$co^{2}$	М	-	-	-	м	-	М	-	-	-	-	L	L	-	Μ
CO3	IVI				M		VI					T	т		
CO4	Μ	-	-	-	М	-	М	-	-	-	-	L	L	-	М
		_	_	-		_		_	-	_	-	L	L	_	М
CO5	М				Μ		Μ								
-Stron	g;M-M	edium	n•TT	ow											
-stron	S,111-111	cuiuil	.,	0 11											
Iodule	1 Intr	oduct	ion											9	
				ivo m	anufa	oturin		accifi	ontion	and	challe	ngos	0.00	-	
itroduo	1000 $10$														
ntroduc dditive															- STL forn

Module 2	Materials and p	roperties of AM p	rinted parts		9
Equilibrium Phase diagra Methods of	and Non-equilibrams - Iron-Ca Powder Particles	ium phases for soli arbon - Aluminum	idification for A alloy - Titaniun wder Properties	eess - Solidification M n alloy - Nickel allo - Wire Properties fo	у
Module 3	Basic processes	in metal additive r	nanufacturing		9
lamination Laser theory Basics of ele Powder feed	<ul> <li>Continuous vs</li> <li>ectron beam - Ele</li> <li>lers and their clas</li> </ul>	pulsed laser - Lase ctron beam powder	er types - Laser bed fusion and y Nozzles - Pow	beam properties	aterial jetting - sheet d spreading system
Module 4	AM process par	rameters			9
MAM <b>Module 5</b> Fundamenta	<b>Design for Add</b> and principle	<b>itive Manufacturi</b> design techniques	<b>ng</b> and steps - desi	tive Manufacturing gn optimization, ma omposition methods	9 terial selection and
Key charact	eristics and consider and manufactural		gy optimization		a ation under material
1 Put Bal	olishing. asubramanian, K.	R. and Senthilkum	ar, V. eds., 2020	. Cham: Springer In . Additive Manufac	ternational turing Applications
2 for Reference		osites. IGI Global.			
		gnato, S. eds., 2020	). Precision Met	al Additive Manufac	cturing. CRC Press.
Gel	ohardt, A., "Rapid	prototyping", Han	ser Gardener Pu	blications, 2003	
		W. and Stucker, B. Digital Manufactu		ufacturing Methodo 2010	ologies: Rapid
4 Kai	mrani, A.K. and N	lasr, E.A., "Rapid I	Prototyping: The	cory and practice", S	Springer, 2006.
CourseDe	signers				
S.No Fa	cultyName	Designation	Department/ College	Emailid	
	A.Elanthirayan	Asst. Prof. G-II	AVIT	aleanthirayan@avi	it.ac.in

BIO MEMS	Category	L	Т	Р	Credit
	OE-EA	3	0	0	3

#### PREAMBLE

The rapid development of the integrated circuit (IC) industry has led to the emergence of micro electronics process engineering as a new advanced discipline. The combination of MEMS and integrated intelligence has been put forward as a disruptive technology. Gives brief knowledge about applications of Bio-MEMS technology for therapeutics and diagnostics.

#### PREREQUISITE Nil

COUR	SE OBJECTIVES							
1	To train the students in the design aspects of Bio MEMS devices and Systems.							
2	To learn the basic principles of BioMEMS/Microfluidic device manufacturing.							
3								
4	To Classify the different mechanisms of micro sensors and actuators.							
COUR	SE OUTCOMES							
On the	successful completion of the course, students will be able to							
CO1. U	Inderstand the Micro fluidic Principles and study its applications.	Understand						
CO2.	Explain the principles and applications of Micro Total Analysis.	Understand						
CO3. 1	Discuss and realize the MEMS applications in Bio Medical Engineering	Understand						
CO4.	Classifying the principles of Micro Actuators and Drug Delivery system	Apply						
COLI	Juilizing the concept of MEMS with biological applications	Analyze						

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	-	-	-	-	-	-	-	-	-	-
CO2	S	L	L	L	М	-	-	I	I	-	-	-	-	-	I
CO3	S	L	Μ	L	М	-	-	I	I	-	-	-	I	L	-
CO4	S	Μ	Μ	L	М	-	-	-	-	-	-	L	L	L	-
CO5	S	S	М	L	М	-	-	-	-	-	-	L	L	L	-

#### S- Strong; M-Medium; L-Low

#### SYLLABUS

Introduction-The driving force behind Biomedical Applications – Biocompatibility - Reliability Considerations-Regularity Considerations – Organizations - Education of Bio MEMS-Silicon Micro fabrication-Soft Fabrication techniques

Micro fluidic Principles- Introduction-Transport Processes- Electro kinetic Phenomena-Micro valves –Micro mixers-Micro pumps. SENSOR PRINCIPLES and MICRO SENSORS: Introduction-Fabrication-Basic Sensors-Optical fibers-Piezo electricity and SAW devices-Electrochemical detection-Applications in Medicine

MICRO ACTUATORS and DRUG DELIVERY: Introduction-Activation Methods-Micro actuators for Micro fluidics-equivalent circuit representation-Drug Delivery

MICRO TOTAL ANALYSIS: Lab on Chip-Capillary Electrophoresis Arrays-cell, molecule and Particle Handling-Surface Modification-Microsphere-Cell based Bioassay Systems Detection and Measurement Methods-Emerging Bio MEMS Technology-Packaging, Power, Data and RF Safety-Biocompatibility, Standards

#### Text Books/ References Books :

- 1. Steven S. Saliterman, Fundamentals of Bio MEMS and Medical Micro devices, Wiley Interscience, 2006.
- 2. Albert Folch, Introduction to Bio MEMS, CRC Press, 2012
- 3. Gerald A. Urban, Bio MEMS, Springer, 2006
- 4. Wanjun wang, steven A. Soper, Bio MEMS, 2006.
- 5. M. J. Madou, "Fundamentals of Micro fabrication",2002.

6. G.T. A. Kovacs, "Micro machined Transducers Sourcebook", 1998.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
2	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in

	<b>BIOMEDICAL PRODUCT DESIGN AND</b>	Category	L	Т	Р	Credit
	DEVELOPMENT	OE-EA	3	0	0	3
PREAMBLE						

The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

#### **PREREQUISITE** – Nil

#### COURSE OBJECTIVES

COU	JRSE OBJECTIVES	
1	To understand the global trends and development methodologies of various types of services.	products and
2	To conceptualize, prototype and develop product management plan for a new product base of the new product and development methodology integrating the hardware, softw	
3	<ul><li>electronics and mechanical systems.</li><li>To understand requirement engineering and know how to collect, analyze and arrive at red new product development and convert them in to design specification.</li></ul>	quirements for
4	To understand system modeling for system, sub-system and their interfaces and arrive at system specification and characteristics.	t the optimum
5	To develop documentation, test specifications and coordinate with various teams to valida up to the EoL (End of Life) support activities for engineering customer.	te and sustain
COU	URSE OUTCOMES	
On t	he successful completion of the course, students will be able to	
CO	1. Define, formulate and analyze a problem for the product design.	Apply
CO	2 Obtain the domain knowledge of product development and regulatory requirements for	Apply

#### in knowledge of product development and regulatory requirements for Apply the design of prototype. CO3. Explain the process of manufacturing, testing and validation for scalable product Apply development. CO4 Gain knowledge of the Innovation & Product Development process in the Business Apply Context.

CO5 Discuss the economics in product development and business strategies for turnover from Apply commercialization.

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L				М				М	S	L	М
CO2	S	S	М	L				М				М	S	L	М
CO3	S	S	М	L				М				М	S	L	М
CO4	S	S	S	L				М				М	S	L	М
CO5	S	S	S	L				М				М	S	L	М

S- Strong; M-Medium; L-Low

#### **SYLLABUS PRODUCT DESIGN**

Definition, History and Modern Practice – Designs; Design and Product Life Cycle; Design Process; What is a medical device, Challenges in medical device, Understanding the innovation cycle, Good Design Practice. Understanding, analyzing and validating user needs, Screening Needs, Technical Requirements, Concept Generation – Innovation Survey Questionnaire, Morphological Matrix, QFD, Concept Analysis and validation, Concept Modelling, Concept Screening & Validation.

#### PRODUCT DEVELOPMENT AND REGULATORY

Breakthrough Products, Platform Products, Front End of Innovations / Fuzzy Front End, Generic Product Development Process (Concept Development, System Design, Detailed Design, Test & Refinement, Production Ramp-up), Variants of Development Processes (Market Pull, Technology Push, Platform, Process-Intensive, Customized, High-Risk, Quick Build, Complex Systems), Good Documentation Practice, Prototyping Specifications, Prototyping, Medical Device standards, Quality management systems, Medical Device Classification, Design of Clinical Trials, Design Control & Regulatory Requirements, Documentation in Medical Devices, Regulatory pathways.

#### CALABLE PRODUCT DEVELOPMENT

Design for manufacturing, Design for assembly, Design for Serviceability, Design for usability, Medical Device Verification & Validation, Product Testing & Regulatory compliance, Clinical trial & validation, Device Certification.

#### MANUFACTURING AND BUSINESS STRATEGIES

Lean Manufacturing – Toyota Production System, Good Manufacturing Practices, Framework for Product Strategy – Core Strategic Vision (CSV), Characteristics of good CSV, Opportunity Identification Process & Generating Opportunities, Quality of Opportunities – Real-Win-Worth It (3M RWW), Product Planning Process, Technology S-Curve, Evaluating and Prioritizing Projects, Product-Process Change Matrix, Resource Planning, Total Available Market (Segmentation, Targeting & Positioning), Served Available Market, Product Platform Strategy, Market Platform Plan (Product Platform Management, Product Line Strategy).

#### PRODUCT ECONOMICS AND MARKET INFUSIONS

Economics/Finance in Product Development (Sales Forecasting – ATAR Model/ Bases Model, Pricing the product, Cash flow in Product Development, Categorizing the costs, Structuring Manufacturing Costs, Prototyping Costs, Development Costs, Cost Volume Profit Analysis, Breakeven Analysis, Common Return Metrics – Payback/ NPV/ IRR, Common Comparison Metrics – WACC/ RRR/ MARR). Business Model Canvas, Marketing Channels, Sales Models, Post Commercialization Surveillance, End of Life support.

#### **REFERENCES:**

- 1. Jones, J.C., Design Methods, John Wiley, 1981.
- 2. Cross, N., Engineering Design Methods, John Wiley, 1994.
- 3. Pahl, G., and Beitz, W., Engineering Design, Design Council, 1984.
- 4. Michael E. McGrath, Product Strategy for High-Technology Companies, 2nd Edition, McGraw Hill.
- 5. Ulrich, K.T., and Eppinger, S.D., Product Design and Development, Tata McGraw Hill, India.
- 6. Ehrelspiel. K, and Lindemann U Cost Efficient Design, Springer, 2007.
- 7. Paul H king, Richard C. Fries, Arthur T. Johnson, Design of Biomedical Devices and Systems. Third edition, ISBN 9781466569133.
- 8. Peter J. Ogrodnik, Medical Device Design: Innovation from Concept to Market, Academic Press Inc; Edition (2012), ISBN- 10:0123919428.
- 9. Stefanos Zenios, Josh Makower, Paul Yock, Todd J. Brinton, Uday N. Kumar, Lyn Denend, Thomas M. Krummel, Biodesign: the Process of Innovating Medical Technologies, Cambridbge University press; Edition (2009), ISBN- 10:0521517427.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor & Head	BME & ECE	hodbme@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Dr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

# CATEGORY E MANDATORY COURSES/AUDIT COURSES

			E	NGLIS PA	H FO PER V			СН	0	CATEG	GORY	L	, T	Р	CREDI	Т
						,			A	С		0	0	2	0	
PREA	AMBI	LE							•			•	•		•	
PREI	REQU	JISITE	E NIL													
COU	RSE (	OBJE	CTIVE	ES												
1	To u	nderstar	nd resea	rch pro	blem f	formul	lation.									
2	Need	to anal	yze res	earch re	elated	inform	nation									
3	Evalı	late and	l Follov	v resear	ch eth	ics										
MAP	PING	WITI	H PRC	<b>GRA</b>	MME	OUI	<b>FCON</b>	AES A	AND P	ROG	RAMN	1E S	PECIF	IC OL	<b>TCOMES</b>	S
COS	PO	PO2	PO3	PO4	РО	РО	PO	PO	PO9	PO1	PO1	Р	PSO1	P	SO PSO	)3
CO1	1		L	L	Ś	Ĺ	-	-	-	-	-	L	S		Ŝ	
CO2			S	М	S	L	-	S	-	-	L	-	S	]	M	
CO3		-	М	L	S	-	-	Μ	-	-	-	-	М		-	
CO4		М	L	S	Μ	-	-	-	-	-	-	-	-	l	M	
CO5		S	S	М	S	S	Μ	Μ	-	-	-	Μ	S	I	M	

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

#### Research

Meaning of research problem - Sources of research problem- Criteria Characteristics of a good research problem - Errors in selecting a research problem - Scope and objectives of research problem

#### **Data Analysis**

Approaches of investigation of solutions for research problem - data collection, analysis, interpretation - Necessary instrumentations

#### Plagiarism

Effective literature Reviews - approaches, analysis Plagiarism – Definition of Plagiarism – Consequences of Plagiarism – Unintentional Plagiarism – Forms of Plagiarism - Related Issues - Research ethics

#### **Research Paper Format**

Effective technical writing, how to write report, Paper Developing a Research Proposal

#### Format

Format of research proposal – Margin – Text Formatting - Heading and Title – Page Numbers – Tables and Illustrations – Corrections and Insertions – Binding – Bibliography

#### **REFERENCES:**

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

COUR	SE DESIGNERS			
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	Dr. Premkishor	Assistant Professor	AVIT	PREM.ENGLISH@avit.ac.in
2	Dr.Jennifer G Joseph	HoD-H&S	AVIT	jennifer@avit.a.cin

			DIS	SASTE	R MIT	TIGA	FION	AND	0	CATEG	ORY	L	, T	P	CRE	DIT
				M	ANAG	EME	NT			AC		0	0	2	(	)
PRE	AMBI	LE										l				
PRE	REQU	JISITE	E NIL													
COU	RSE	OBJE	CTIVE	ES												
1	To st	udy abo	out the I	Disaster	Mana	igemei	nt Cyc	les								
2	To St	udy abo	out the	Disaste	r Com	munit	y and p	olanni	ng							
3	To U	ndersta	nd the C	Challen	ges po	sed by	Disas	sters to	the co	mmuni	ty					
4	To st	udy abo	out copi	ng con	cepts f	or botl	h natui	ral and	l man n	nade dis	sasters					
5	To st	udy abo	out strer	ngtheni	ng tech	nnique	s for s	tructu	ral and	non str	uctural	meas	ures			
COU	RSE (	OUTC	OMES	5												
After	the suc	cessful	comple	etion of	the co	urse, 1	learnei	will t	be able	to						
CO1.	Unders	standing	g Disas	ters, ma	in-mac	le Haz	ards a	nd Vu	Inerabi	lities				U	nderstar	dand
															Apply	y
		standin	•		Ũ										Apply	y
CO3.	To gai	n know	ledge a	bout or	ganiza	tions i	nvolve	ed in d	isaster	commu	inity				Apply	y
CO4.	To bui	ld skills	s to resp	ond to	disaste	ers									Apply	y
CO5.	Unders	standing	g capac	ity buil	ding co	oncept	s and	planni	ng of d	isaster	manage	ment	S	U	nderstan	d and
variou	is expr	ession s	systems												Apply	У
MAP	PING	WIT	H PRC	<b>JGRA</b>	MME	OUT	CON	AES A	AND P	ROGI	RAMN	IE S	PECIF	ΙΟ ΟΙ	JTCON	1ES
СО	PO	PO2	PO3	PO4	РО	РО	РО	РО	PO9	PO1	PO1	Р	PSO1	PS	PSO	PSO
a					_		_					~		~~~	-	
CO1	L	L	L	L	L	L	M	L	L	Μ	L	Μ	M	L	L	M
CO2	M	M	L	L	M	L	S	L	L	M	M	S	S M	L	L	S
CO3 CO4	S	M	L	L	M	L	M	L	L	M	S	S	M S	L L	L L	S M
C04 C05	M S	M S	L	L	M	L L	M S	L	L	S	S	S	<u>S</u>		L L	M S
		S M-Med	L jum: I	L	S	L	3	L	L	S	М	Μ	3	L	L	3
ວ- ວແ	ong, r	vi-ivieu	iuiii, L	-LOW												

#### SYLLABUS

#### INTRODUCTION

Overview of Disaster Management – Distinguishing between an emergency and a Disaster situation. Disaster Management Cycle – Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans- Phase I: Mitigation, and strategies; hazard Identification and vulnerability analysis. Disaster Mitigation and Infrastructure, impact of disasters on development programmes, vulnerabilities caused by development, developing a draft country-level disaster and development policy Phase II: Preparedness, Disaster Risk Reduction(DRR), Emergency Operation Plan (EOP) Phases III and IV: Response and recovery, Response aims, Response Activities, Modern and traditional responses to disasters, Disaster Recovery, and Plan

#### **DISASTER PLANNING**

Disaster Planning-Disaster Response Personnel and duties, Community Mitigation Goals, Pre-Disaster Mitigation Plan, Personnel Training, Volunteer Assistance, School-based Programmes, Hazardous Materials, Ways of storing and safely handling hazardous materials, Coping with Exposure

#### DISASTER COMMUNITY

Disaster Community-Community-based Initiatives in Disaster management, need for Community-Based Approach, categories of involved organizations: Government, Nongovernment organizations (NGOs), Regional And International Organizations, Panchayaths, Community Workers, National And Local Disaster Managers, Policy Makers, Grass-Roots Workers, Methods Of Dissemination Of Information, Community-Based Action Plan, Advantages/Disadvantages Of The Community Based Approach

#### **COPING WITH DISASTER**

Coping Strategies; alternative adjustment processes - Changing Concepts of disaster management - Industrial Safety Plan; Safety norms and survival kits - Mass media and disaster management

#### **CAPACITY BUILDING**

Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity for Reducing Risk - Counter-Disaster Resources and their utility in Disaster Management - Legislative Support at the state and national levels

#### **TEXT BOOKS:**

- 1. Manual on Disaster Management, National Disaster Management, Agency Govt of India.
- 2. Ayaz, "Disaster Management: Through the New Millennium", Anmol Publications. (2009)
- 3. Dave, P. K.. "Emergency Medical Services and Disaster Management: A Holistic Approach", New Delhi: Jaypee Brothers Medical Publishers (P) Ltd., 2009
- 4. Disaster Management by Mrinalini Pandey Wiley 2014.
- 5. Goel, S. L., "Disaster Management", New Delhi: Deep & Deep Publication Pvt. Ltd. ,2008

#### **REFERENCES:**

1. Narayan, B. "Disaster Management", New Delhi: A.P.H. Publishing Corporation ,2009

2. Kumar, N.. "Disaster Management". New Delhi: Alfa Publications. ,2009

3. Ghosh, G. K., "Disaster Management", New Delhi: A.P.H Publishing Corporation. , References

S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
1	MrsJ.Srija	Assistant Professor - I	AVIT	srija.civil@avit.ac.in

			GONG			0.5.5			0	CATEG	GORY	L	, T	Р	CRE	DIT
			CONS	STITUT	LION	OF I	NDIA			AC	C	0	0	2	(	)
PREA	AMBI	LE										1		I		
PREI	REQU	JISITI	E NIL													
COU	RSE	OBJE	CTIVE	ES												
1	To u	nderstai	nd the n	ature a	nd the	Philos	ophy	of the	Constit	ution.						
2	To u	ndersta	nd the o	outstand	ding Fo	eatures	s of the	e India	an Cons	stitutior	and Na	ature	of the Fe	ederal s	system.	
3	To A	Analyse	Pancha	iyat Raj	institu	utions	as a to	ool of o	decentra	alizatio	n.					
4	To U	ndersta	nd and	analyse	the th	ree wi	ngs of	f the st	ate in t	he cont	empora	ry sc	enario.			
5	To A	nalyse	Role of	Adjudi	catory	Proce	ess.									
6	To U	nderst	and an	d Evalı	uate th	ne reo	cent t	rends	in the	Indian	Judicia	ary.				
COU	RSE (	OUTC	OMES	5												
After	the suc	ccessful	comple	etion of	the co	ourse,	learne	r will l	be able	to						
CO1.																
CO2																
CO3.																
CO4.																
CO5																
	-		systems													
	1							r					PECIF		1	1
CO	PO	PO2	PO3	PO4	PO	PO	PO	PO	PO9	PO1	PO1	Р	PSO1	PS	PSO	PSO
CO1	L	L	L	L	L	L	Μ	L	L	Μ	L	Μ	M	L	L	Ń
CO2	М	Μ	L	L	Μ	L	S	L	L	Μ	Μ	S	S			S
CO3	S	M	L	L	Μ	L	M	L	L	Μ	S	S	M			S M
CO4	M	M	L	L	M	L	M	L	L	S	S	S	S S			M S
CO5	S	S		L	S	L	S	L	L	S	Μ	Μ	C			6
5- Str	ong; I	vi-Med	lium; L	L-LOW												
SYLI												_				
INTR	RODU	CTIO	Ν													
	· · ·		т./ ч													

#### The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

#### Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

#### **Government of the States**

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

#### Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

– Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

#### **TEXT BOOKS:**

Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008 2 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

#### Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. http://www.legislative.gov.in/constitution-of-india
- 3. https://www.sci.gov.in/constitution

4. <u>https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/</u>

#### Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course	Course Instructor
		Title	
1	12910600	CONSTITUTION OF	PROF. M. K. RAMESH
		INDIA AND	NATIONAL LAW SCHOOL
		ENVIRONMENTAL	OF INDIA UNIVERSITY
		GOVERNANCE:	
		ADMINISTRATIVE	
		AND	
		ADJUDICATORY	
		PROCESS	

COURS	SE DESIGNERS			
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID
	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmail. com

				<b>DCD</b>		VCTI	וחורנ		C	ATEG	ORY	L	Т	Р	CRE	DIT
				PED	AGOG	YSIL	JDIES			AC	1	(	0 0	2		0
	AMB															
	The c	course	is desi	igned t	o pro	vide j and	pedag profe	ogica ession	l pract al deve	tices to elopme	owards ents.	acad	emic, 1	researc	ch activ	ities
		JISITE					-			1						
COU	RSE	OBJE	CTIVE	ES												
2					gogica	al prac	ctices	in for	malanc	d infor	mal cla	issroo	ms in d	leveloj	ping cou	untries
3		-		ce on tl	he effe	ective	ness c	of the	pedago	ogical p	oractice	es for	enhanc	ing te	aching a	und
4		iing me ndersta		learni	ng and	l reso	urce b	arrier	s while	e handl	ing lar	ge cla	sses			
5	To ic	lentify	critica	l evide	nce ga	aps to	guide	the d	evelop	ment						
COU	RSE (	OUTC	OMES	5												
After	the suc	cessful	comple	etion of	the co	ourse, I	learne	r will ł	be able	to						
CO1	.Ident	ify the	ories a	nd met	hodol	ogies	relate	d to c	urricul	um dev	velopn	nent ar	nd		Remen	nber
darra	1	pret pe		-											Unders	stand
CO3 teacl	Drav	y a chai	rt on th	e effec	tivene	cou ess of	ntries the pe	edagog	gical pi	ractice	s for e	nhanci	ing		App	oly
		ore the			a	nd lea	rning	meth	ods						Anal	yze
CO5	.Exan	nine cr	itical e	videnc	e gaps	to gu	ide th	ne dev	elopme	ent					Anal	yze
																<u> </u>
MAP	PING	WIT	H PRC	)GRA]	MME	OUT	CON	AES A	AND P	PROG	RAMN	AE SF	PECIF	IC OI	JTCON	IES
CO	PO	PO2	PO3	PO4	PO	PO	PO	PO	PO9	PO1	PO1	Р	PSO1	PS	PSO	PSC
S	1				5	6	7	8		0	1	0		O2	3	4
CO1			-	-	-	-	-	-	-	L	-	-	-	-	-	
CO2	L L	L L	- M	-	-	-	-	-	-	-	-	- L	- 	- L	-	
CO3 CO4			-				-	-			_	-	-		-	
		<u>S</u>	М	-	-	-	-	-	-	L	-	-	L	L	-	
CO5		-	1	1		I	1	1	1	1	1	1 I		1	1	

Introduction and Methodology, Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and searching.

Thematic overview: Pedagogical practices are being used by teachers in formaland informal classrooms in developing countries, Curriculum, Teacher education.

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the schoolcurriculum and guidance materials best support effective pedagogy, Theory of change, Strength and nature of the body of evidence for effective pedagogicalpractices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.

Professional development: alignment with classroom practices and followupsupport, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.

Research gaps and future directions, Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

#### Text Books/ References Books :

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36(3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher educationresearch project(MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning

of basic maths and reading in Africa: Does teacher preparation count? International

JournalEducational Development, 33 (3): 272–282.

COURSE DESIGNERS										
S.NO.	NAME OF THE FACULTY	DESIGNATION	DEPARTMENT	MAIL ID						
1										

			]	Person	•		-			HS	S	2	0	(	(	C
					Through Life Enlighten Skills				AC			0	2		0	
PREA	AMBI	LE.				0										
PRE	REQU	JISITE	E:NIL													
COU	RSE (	OBJE	CTIVE	ES												
1	To help the learner understand the basics of Personality and its correlation to society.															
2	To understand the role of Attitude and motivation in the enhancement of personality.															
3	To apply the concepts learnt in heightening the self esteem.															
4	To ar	nalvse t	the mo	st effic	ient r	netho	d to d	levelo	p the i	oerson	alitv aı	nd pr	epare fo	or emp	lovmer	nt.
									• •··•							
COU				r												
									1.1							
Alter	the suc	cessful	comple	etion of	the co	burse,	learne	r will c	be able	10						
	DINC									DOCI			PECIF		TTCON	
MAP	PING	r VV 1 1 1	n PKU	GKA	VIIVIE			ILS A	IND P	KUG	KAWIN	IE S	PECIFI			ILS
CO	PO	PO2	PO3	PO4	РО	PO	PO	PO	PO9	PO1	PO1	Р	PSO1	PS	PSO	PSC
s	1	102	105	104	5	6	7	8	109	0	1	1 0	1301	02	3	4
CO1	1					0	/	0		0	1	U		02		
CO2																
CO3							1									
CO3 CO4							1							1		
CO4 CO5	ong: N	M-Med	ium: L	-Low												
CO4 CO5 S- Str	rong; N L <b>ABU</b>	M-Med	ium; L	Low												

#### - Introduction to Personality Development

The concept of personality - Dimensions of personality – Theories of Freud & Erickson-Significance of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles -Factors responsible for success – What is failure - Causes of failure. SWOT analysis.

#### - Attitude & Motivation

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages -Negative attitude- Disadvantages - Ways to develop positive attitude - Differences between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self- motivation- Factors leading to de-motivation

#### -Self-esteem

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem - Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

#### -Other Aspects of Personality Development

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills -Leadership and qualities of a successful leader – Character building -Team-work – Time management -Work ethics -Good manners and etiquette.

#### **Employability Quotient**

Resume building- The art of participating in Group Discussion – Facing the Personal (HR & Technical) Interview - Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

#### Total: 45 Periods

Text Books: 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill. 2. Stephen P. Robbins and Timothy A. Judge(2014), Organizational Behavior 16th Edition: Prentice Hall.

COURSE DESIGNERS									
S.NO.	NAME OF THE	DESIGNATION	DEPARTMENT	MAIL ID					
	FACULTY								
1	Dr.Jennifer G	HoD-H&S	AVIT	Jennifer@avit.a.cin					
	Joseph								
2	Mr. Tyndale Cicil	Assistant	AVIT	tyndale.english@avit.ac.in					
		Professor							