

Faculty of Engineering and Technology

REGULATIONS 2021

Programme: REGULATIONS 2021 DEPARTMENT OF BIOTECHNOLOGY

Full Time (4 Years)

Programme:

B.Tech.BIOTECHNOLOGY CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM

(Semester I to VIII)

PROGRAMME OUTCOMES

Post Graduates will be able to:

PO1 fundamentals, and an engineering specialization for the solution of problems in the area of Biotechnology. PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex biotechnology- oriented problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. PO3 Design/development of solutions: Design solutions for complex bio-based problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and cafety, and the public second to public second the public second to
Problem analysis: Identify, formulate, review research literature, and analyze complex biotechnology- oriented problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. PO3 PO3
Problem analysis: Identify, formulate, review research literature, and analyze complex biotechnology- oriented problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex bio-based problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and cofety, and the subtural consistence are specified.
PO2 biotechnology- oriented problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex bio-based problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and cofety, and the public specified needs with appropriate consideration.
PO3 of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex bio-based problems and design system components or processes that meet the specified needs with appropriate prosection for the public health and sofety, and the sultural societal are
PO3 PO3
PO3 design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and
environmental considerations
Conduct investigations of complex problems : Use research-based knowledge and research
synthesis of the information to provide valid conclusions
Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modelling to complex
PO5 engineering activities with an understanding of the limitations in the area of
biotechnology.
The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO6 societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional practice.
Environment and sustainability: Understand the impact of the professiona
PO7 biotechnological solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development
PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the technology practice.
PO9
in diverse teams, and in multidisciplinary settings.
Communication : Communicate effectively on complex engineering activities with the
technology audience and with society at large, such as being able to comprehend and
PO10 technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give
PO10 technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO10 technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Project management and finance: Demonstrate knowledge and understanding of the
PO10technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.PO11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member
PO10technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.PO11Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

(B) PROGRAM SPECIFIC OUTCOMES (PSOs)

Upon successful completion of the course the students are expected to:

PSO1: To identify, formulate, design, analyse and develop processes and technologies for biotechnological products for societal usage and economically sustainable for the present and future **PSO2:** To expertise in implementation of modern biotechnological tools to address human health, complex engineering problems and to improve the research approach in interdisciplinary facet. **PSO3:** To recognise the knowledge, need for and the importance of bioethics, environmental and social responsibilities for life long learning in the broadest context in technological changes.

(C) PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide the biotechnology graduates to have expertise in biotechnological aspects which will enable them to have a career and professional achievements in public and private sector

PEO2: Address the nuances of biotechnology in real life on application of microorganisms in industrial production of enzymes and products, downstream processing, genetic engineering, tissue culture and applications.

PEO3: Identify, design and develop biotechnological process and technologies to meet the industrial challenges and produce tools which a sound and economically viable and sustainable.

PEO\PO	1	2	3	4	5	6	7	8	9	10	11	12
1	S	М	М	М	S	S	S	L	М	М	S	М
2	S	М	S	S	S	S	S	S	М	М	S	S
3	М	М	М	М	М	М	L	S	М	S	S	М
4	М	S	S	М	М	М	L	М	S	L	L	L

Mapping of PEOs with POs

S- Strong Correlation, M – Medium Correlation, L – Low Correlation

<u>CREDIT STRUCTURE OF COURSE CATEGORY</u> <u>STRUCTURE OF UNDERGRADUATE ENGINEERING PROGRAM – REGULAR STUDENTS</u>

SI. No.	Category of Courses	Types of Cou	irses	Suggested Breakup of Credits (min – max)					
1		Humanities an	nd Social Sciences	9-12					
1.	A. Foundation	including Ma	nagement courses						
2.	Courses	Basic Science	e courses	18-25					
2		Engineering S	cience courses including	18-24					
5.		electrical/mec	hanical/computer etc.						
4.	B. Professional	Core courses	-	48-54					
		Professional I	Electives	12					
	C. Elective Courses	Industry Desi Industry Offe courses	gned/ Industry Supported/ red/ Industry Sponsored	6					
5.		Orrer	Innovation, Entrepreneurship, Skill Development etc.	6-9					
		Electives	Emerging Areas like 3D Printing, Artificial Intelligence, Internet of Things etc.	6-9					
	D.	Project work		8					
	Courses for Presentation	Mini Project		3					
6.	of technical	Seminar		1					
	Skills related to the specialization	Internship in	industry or elsewhere	3					
		Environmenta	l Sciences, Induction	0 Credit Course					
	**E.	training, India	n Constitution, Essence of						
	Mandatory	Indian Traditi	onal Knowledge,						
7.	Courses	Employability	Enhancement Value						
		Added Course	es, NSS, RRC, YRC, Sports						
		and Games, S	tudent Clubs, Unnat Bharat						
	Minimum Credita to be sormed 160								
** Tha	credits earned in a	villi ategory (F) Co	mum Creans to be earned in urses will not be counted in	CCPA calculation for awarding					
of the	of the degree.								

CURRICULUM

B.TECH.–BIOTECHNOLOGY -SEMESTER I TO VIII

	B.TECH. – BIOTECHNOLOGY - SEMESTER I TO VIII											
		A.FOUN	DATION COUR	RSES								
	HUMANIT	TIES AND SOCIAL SCIENCES INCI	LUDING MANA	GEMENT COU	RSES	5 - CR	EDIT	S (9-1	2)			
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E			
1.		TECHNICAL ENGLISH	ENG	FC-HS	3	0	0	3	NIL			
2.		BUSINESS ENGLISH	ENG	FC-HS	3	0	0	3	NIL			
3.		PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB	ENG	FC-HS	0	0	2	1	NIL			
4.		ENGLISH LANGUAGE LAB	ENG	FC-HS	0	0	4	2	NIL			
5.		TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL			
6.		PROFESSIONAL ETHICS AND HUMAN VALUES	MANAG	FC-HS	3	0	0	3	NIL			
7.		MANAGEMENT PRINCIPLES FOR ENGINEERS	MANAG	FC-HS	3	0	0	3	NIL			
8.		UNIVERSAL HUMAN VALUES- UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL			
		BASIC SCIENC	E COURSES - (CREDITS (18 -2	5)							
1.		MATHEMATICS FOR BIO- ENGINEERING	MATH	FC-BS	2	1	0	3	NIL			
2.		PHYSICAL SCIENCES	PHY & CHEM	FC-BS	4	0	0	4	NIL			
3.		PHYSICAL SCIENCES LAB	PHY & CHEM	FC-BS	0	0	4	2	NIL			
4.		BIOSTATISTICS	MATH	FC-BS	2	1	0	3	MATHEMATICS FOR BIO- ENGINEERING			
5.		SMART MATERIALS	PHY	FC-BS	3	0	0	3	NIL			
6.		SMART MATERIALS AND NANOTECHNOLOGY	PHY	FC-BS	3	0	0	3	NIL			
7.		FUNDAMENTALS OF BIOCHEMISTRY (THEORY AND PRACTICALS)	BTE	FC-BS	3	0	2	4	NIL			
8.		MICROBIOLOGY	BTE	FC-BS	3	0	0	3	NIL			
9.		MICROBIOLOGY LAB	BTE	FC-BS	0	0	4	2	NIL			
10.		ENVIRONMENTAL SCIENCES	CHEM	FC-BS	3	0	0	3	NIL			
INCI	LUDING WO	ENGINEE	RING SCIENCE	E COURSES MECHANICAL	/CON	(PUT)	ER ET	C - 1	CREDITS (18-24)			
1.		FUNDAMENTALS OF BIOTECHNOLOGY	BTE	FC-ES	3	0	0	3	NIL			
2.		FOUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
3.		PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL			
4.		PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL			
5.		BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC-ES	4	0	0	4	NIL			
6.		BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE & ECE	FC-ES	0	0	4	2	NIL			
7.		ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	0	0	6	3	NIL			
8.		WORKSHOP PRACTICES	MECH	FC-ES	0	0	4	2	NIL			

	B. PROFESSIONAL											
		CORE CO	OURSES - CR	EDITS (48-54)								
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PRE REQUISITE			
1.		CELL AND MOLECULAR BIOLOGY (THEORY AND PRACTICALS)	BTE	CC	3	0	2	4	NIL			
2.		CLASSICAL AND MOLECULAR GENETICS	BTE	CC	3	0	0	3	NIL			
3.		UNIT OPERATIONS IN PROCESS INDUSTRIES	BTE	CC	3	0	0	3	NIL			
4.		ADVANCED BIOCHEMISTRY	BTE	CC	3	0	0	3	ESSENTIALS OF BIOCHEMISTRY			
5.		ADVANCED BIOCHEMISTRY LAB	BTE	CC	0	0	4	2	NIL			
6.		BIOORGANIC CHEMISTRY	BTE	CC	3	0	0	3				
7.		BIOORGANIC CHEMISTRY LAB	BTE	CC	0	0	4	2				
8.		BIOINSTRUMENTATION (THEORY AND PRACTICALS)	BTE	CC	3	0	2	4	NIL			
9		PRINCIPLES OF CHEMICAL ENGINEERING	BTE	CC	3	0	0	3	NIL			
10		CHEMICAL ENGINEERING LAB	BTE	CC	0	0	4	2	NIL			
11.		PLANT AND ANIMAL BIOTECHNOLOGY	BTE	CC	3	0	0	3	NIL			
12.		FOOD PROCESSING TECHNOLOGY (THEORY AND PRACTICALS)	BTE	CC	3	0	2	4	NIL			
13.		GREEN BIOTECHNOLOGY AND POLLUTION ABETMENT	BTE	CC	3	0	0	3	NIL			
14.		ENZYME ENGINEERING & TECHNOLOGY	BTE	CC	3	0	0	3	NIL			
15.		PROTEIN ENGINEERING	BTE	CC	3	0	0	3	NIL			
16.		GENETIC ENGINEERING	BTE	CC	3	0	0	3	NIL			
17.		GENETIC ENGINEERING LAB	BTE	CC	0	0	4	2	NIL			
18.		IMMUNOLOGY (THEORY AND PRACTICALS)	BTE	CC	3	0	2	4	NIL			
19.		BIOPROCESS ENGINEERING (THEORY AND PRACTICALS)	BTE	CC	3	0	2	4	NIL			
20.		DOWNSTREAM PROCESSING IN BIOTECHNOLOGY	BTE	CC	3	0	0	3	BIOPROCESS ENGINEERING			
21.		DOWNSTREAM PROCESSING IN BIOTECHNOLOGY LAB	BTE	CC	0	0	4	2	NIL			
22.		MASS TRANSFER OPERATIONS	BTE	CC	3	0	0	3	NIL			

	C.ELECTIVE COURSES											
		PROFESSIONA	L ELECTIVES	S - CREDITS (1	2)							
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISI TE			
1.		THERMODYNAMICS FOR BIOTECHNOLOGY	BTE	EC-PS	3	0	0	3	NIL			
2.		PLANT AND ANIMAL DISEASES AND THEIR CONTROL	BTE	EC-PS	3	0	0	3	MICROBIO LOGY			
3.		PRINCIPLES OF BIOINFORMATICS	BTE	EC-PS	3	0	0	3	NIL			
4.		DIAGNOSTICS AND THERAPEUTICS	BTE	EC-PS	3	0	0	3	MICROBIOLO GY			
5.		STEM CELL BIOLOGY AND TISSUE ENGINEERING	BTE	EC-PS	3	0	0	3	NIL			
6.		MICROBIAL BIOTECHNOLOGY	BTE	EC-PS	3	0	0	3	MICROBIOLO GY			
7.		CRYOPRESERVATION THEORY AND APPLICATIONS	BTE	EC-PS	3	0	0	3	NIL			
8.		FOOD MICROBIOLOGY	BTE	EC-PS	3	0	0	3	NIL			
9.		CANCER BIOLOGY	BTE	EC-PS	3	0	0	3	CELL AND MOLECULAR BIOLOGY			
10.		APPLIED BIOTECHNOLOGY	BTE	EC-PS	3	0	0	3	NIL			
11.		CLINICAL TRIALS	BTE	EC-PS	3	0	0	3	NIL			
12.		AGRICULTURAL BIOTECHNOLOGY	BTE	EC-PS	3	0	0	3	NIL			
13.		GENOMICS AND PROTEOMICS	BTE	EC-PS	3	0	0	3	GENETIC ENGINEERIN G			
14.		MOLECULAR MODELLING AND DRUG DESIGNING	BTE	EC-PS	3	0	0	3	PRINCIPLES OF BIOINFORMA TICS			
15.		NANOBIOTECHNOLOGY	BTE	EC-PS	3	0	0	3	NIL			
16.		GOOD MANUFACTURING AND LABORATORY PRACTICE	BTE	EC-PS	2	1	0	3	NIL			
17.		BIOPHYSICS	BTE	EC-PS	3	0	0	3	NIL			
18.		BASICS OF HUMAN PHYSIOLOGY	BTE	EC-PS	3	0	0	3	NIL			
19.		SKILL BASED ETHANOMEDICINE	BTE	EC-PS	3	0	0	3	NIL			

INI	INDUSTRY DESIGNED/ INDUSTRY SUPPORTED/ INDUSTRY OFFERED/ INDUSTRY SPONSORED COURSES - CREDITS (6)											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.		LEARNING IT ESSENTIALS BY DOING	INFOSYS	EC-IE	3	0	0	3	NIL			
2.		MOBILE APPLICATION DEVELOPMENT	INFOSYS	EC-IE	3	0	0	3	NIL			
3.		BIOPHARMACEUTICS	KNOVONOT	EC-IE	3	0	0	3	NIL			
4.		CLINICAL RESEARCH	KNOVONOT	EC-IE	3	0	0	3	NIL			
5.		TOOLS AND TECHNIQUES OF MODERN BIO- INFORMATICS	SIMBIOEN LABS AND SCIENTIFIC SERVICE,	EC-IE	3	0	0	3	NIL			

	OPEN ELECTIVES											
		INNOVATION, ENTREPRE	ENEURSHIP, SKILI	L DEVELOPME	NT E	ГС.CRE	DITS -	(9)				
S.N	CODE	COURSE	OFFERING DEPT	CATEGORY	L	Т	Р	С	PREREQUISITE			
1.		INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL			
2.		NEW VENTURE PLANNING AND MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL			
3.		SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL			
4		INTELLECTUAL PROPERTY RIGHTS	MANAG	OE-IE	3	0	0	3	NIL			
5.		ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL			
EM	EMERGING AREAS LIKE 3D PRINTING, ARTIFICIAL INTELLIGENCE, INTERNET OF THINGS ETC. CREDITS (9)											
SL. NO) CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E			
1		PRINCIPLES C BIOMEDICAL INSTRUMENTATION	DF BME	OE-EA	3	0	0	3	NIL			
2		BIOSENSORS AN TRANSDUCERS	D _{BME}	OE-EA	3	0	0	3	NIL			
3		3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL			
4		INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL			
5		FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE	CSE	OE-EA	3	0	0	3	NIL			
6		INTRODUCTION TO INTERNET OF THINGS	CSE	OE-EA	3	0	0	3	NIL			
7		DESIGN OF ELECTRONIC EQUIPMENT	C ECE	OE-EA	3	0	0	3	NIL			
8		INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET OF THINGS	ECE	OE-EA	3	0	0	3	NIL			
9		GREEN POWER	EEE	OE-EA	3	0	0	3	NIL			

	GENERATION SYSTEMS							
10.	INDUSTRIAL DRIVES AND AUTOMATION	EEE	OE-EA	3	0	0	3	NIL
11.	DISASTER RISK MANAGAMENT	CIVIL	OE-EA	3	0	0	3	NIL
12.	MUNICIPAL SOLID WASTE MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL
13.	BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	0	0	3	NIL
14.	PHARMACOGENOMICS	PE	OE-EA	3	0	0	3	NIL

	D. COURSES FOR PRESENTATION OF TECHNICAL SKILLS RELATED TO THE SPECIALIZATION										
	PROJECT WORK, SEMINAR AND INTERNSHIP IN INDUSTRY OR ELSEWHERE CREDITS-(15)										
SL.	CODE	COURSE	OFFERING	CATEGORY	L	Т	Р	С	PREREQUISITE		
NO			DEPT.					-			
1.		PROJECT WORK	BTE	PI-P	0	0	16	8	NIL		
2.		MINI PROJECT	BTE	PI-M	0	0	6	3	NIL		
3.		SEMINAR	BTE	PI-S	0	0	2	1	NIL		
4.		INTERNSHIP	BTE	PI-IT		3 weel	cs	3	NIL		

E. MANDATORY COURSES											
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1.		YOGA AND MEDITATION	PHED	AC	0	0	2	0	NIL		
		ANY OF T	THE FOLLOWING	TWO COURSES							
1.		NCC / NSS / RRC / YRC / STUDENT CLUBS / UNNAT BHARAT ABHIYAN/SWACTH BHARAT	GEN	AC	30 HOURS 0			NIL			
2.		SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL		
3		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL		
4		INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL		
5		GENDER EQUITY AND LAW	LAW	AC	0	0	2	0	NIL		

	SPECIALIZATION COURSES – NUTRITIONAL BIOLOGY										
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	С	PREREQUISITE		
1.		DIET THERAPY	BTE	EC-SE	3	0	0	3	NIL		
2.		FOOD COMMODITIES	BTE	EC-SE	3	0	0	3	NIL		
3.		NUTRITIONAL BIOCHEMISTRY	BTE	EC-SE	3	0	0	3	NIL		
4.		INTRODUCTION TO FOOD SAFETY	BTE	EC-SE	3	0	0	3	NIL		
5.		COMMUNITY HEALTH AND NUTRITION	BTE	EC-SE	3	0	0	3	NIL		
6.		BASIC DIETETICS	BTE	EC-SE	3	0	0	3	NIL		
7.		NUTRITIONAL BIOCHEMISTRY LAB	BTE	EC-SE	0	0	4	2	NIL		
8.		DIETETICS LAB	BTE	EC-SE	0	0	4	2	NIL		

1									
		SPH	ECIALISATION	N – BIOLOGIC	AL CC	OMPUT	ING		
S. No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1		ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS	CSE	EC (SE)	3	0	0	3	NIL
2		DATA STRUCTURES	CSE	EC (SE)	3	0	0	3	NIL
3		DATABASE MANAGEMENT SYSTEM	CSE	EC (SE)	3	0	0	3	NIL
4		INTERNET OF THINGS APPLICATIONS	CSE	EC (SE)	3	0	0	3	NIL
5		OBJECT ORIENTED PROGRAMMING	CSE	EC (SE)	3	0	0	3	NIL
6		BIOINFORMATICS TOOLS AND SOFTWARES	CSE	EC (SE)	3	0	0	3	NIL
7		BIOINFORMATICS TOOLS AND SOFTWARES LAB	CSE	EC (SE)	0	0	4	2	NIL
8		DATA STRUCTURES LAB	CSE	EC (SE)	0	0	4	2	NIL
9		OBJECT ORIENTED PROGRAMMING LAB	CSE	EC (SE)	0	0	4	2	NIL

CATEGORY A - FOUNDATION COURSES - HSS, BS AND ES COURSES - CREDITS

(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (9-12)

		TE	CHNIC	CAL E	NGLI	SH		CategoryLTP									
										FC	C (HS)	3	0	0		3	
PREA	MBLE																
Techni	cal Eng	lish is a	life skil	l cours	e nece	ssary fo	r all st	udents	of Eng	gineerin	g and T	echnology	7. It a	ims a	t deve	loping	
comm	unication	n skills i	n Englis	sh, esse	ential f	or unde	rstandi	ing and	l expre	ssing th	e ideas	of differen	nt pro	ofessi	onal co	ontext.	
The ou	itcome	of the c	ourse is	to he	lp the	students	s acqu	ire the	langu	age skil	ls of Li	stening, S	Speak	ing,	Readir	ng and	
Writin	g compe	etency in	e English	1 langu	age ar	nd there	by mal	cing th	e stude	ents con	petent a	and emplo	yable	e in t	ne glot	balised	
scenar		. N	TTT														
PKEK	EQUIS		IL														
COUR	RSE OB	JECTI	VES														
1. T	o enable	student	s to deve	elop L	SRW s	kills in I	Englis	h. (List	ening,	Speaki	ng, Read	ling, and V	Writi	ng.)			
2. T	o make t	them be	come ef	fective	e comn	nunicato	ors										
3. T	o ensure	that lea	rners us	e Elec	tronic	media n	nateria	ls for c	levelop	oing lang	guage						
4. T	o aid the	student	s with e	mploy	ability	skills.											
5. T	o develo	p the stu	idents co	ommui	nicatio	n skills i	in forn	nal and	inform	nal situa	tions						
COUF	RSE OU	TCOM	ES														
On the	success	ful com	pletion o	of the c	course,	student	s will t	be able	to								
CO1. I	Listen, re	emembe	r and res	spond	to othe	rs in dif	ferent	scenar	rio					R	ememb	ber	
CO2. U	Understa	ind and s	speak flu	ently	and co	rrectly v	with co	rrect p	ronunc	iation in	n differe	nt situatio	on.	U	ndersta	and	
CO3. 7	Γo make	the stuc	lents exp	perts ir	n profes	ssional	writing	5						A	pply		
CO4	To make	e the stu	dents in	profic	ient teo	chnical o	commu	inicato	r					A	pply		
CO5 T	o make	the stud	ents reco field	ognize	the rol	e of tec	hnical	writing	g in the	eir caree	rs in bus	siness,		A	nalyze		
	MAPI	PING W	TTH PI	ROGR	AMM	E OUT	COM	ES AN	D PR	OGRAI	MME S	PECIFIC	OU	ГСО	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC)1	PSO2	PSO3	
CO1				L	L	М	Μ	Μ		S		S	S			S	
CO2							L			S		S	Μ	[S	
CO3				L				L				L	Μ	[Μ		
CO4	L					Μ		L	Μ	S	L	S	S		Μ	S	
CO5	Μ		L	S								S	Μ	[S	
S- Stro	ong; M-N	Medium;	L-Low														

SYLLABUS

SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms -Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks, New Norms) - Extempore.

SPEAKING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

English as language of Opportunity and Employability- Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skinming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation – Technical Jargons

TECHNICAL WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae.

ТЕХТВООК

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- Grammar Builder- I, II, III, and Cambridge University Press.
 4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.
 Course Designers:

SNo	Name of the Faculty	Mail ID
	-	
1.	Dr. Jennifer G Joseph, Prof. and Head,	jennifer@avit.ac.in
	H&S	
2.	Dr.P.Saradha / Associate Professor -	saradhap@vmkvec.edu.in
	English	

		BUSI	NESS I	ENGLIS	SH						Catego	ry I		Т	Р	С	redit
											FC (HS	5) 3	3	0	0		3
PREAN Langua internat dream of	MBLE ge is one ional lan of the fut	e of the guage p ure.	most v lays a vi	alued po tal role	ossession as a proj	ns of m peller fo	en. It ac r the adv	cts as a vanceme	reposito ent of kn	ory of wis owledge	dom. Am in differen	ong all t fields	oth and	ner lang 1 as a te	guages	s Eng pe to v	lish, the view the
PRER	EQUISI	ΓE: NII															
COUR	SE OBJ	ECTIV	ES														
1 T	`o impart	and enh	nance co	rporate	commur	nication.											
2 T	`o enable	learners	s to deve	elop pres	sentation	ı skills											
3 7	To build o	confiden	ice in lea	arners to	use Eng	glish in I	Business	s context	t								
4 To	o make th	nem exp	erts in p	rofessio	nal writi	ng											
5 To	o assist st	udents u	understa	nd the r	ole of the	inking iı	n all form	ns of co	mmunic	ation							
6 To	o equip st	tudents	with emp	ployabil	ity and j	ob searc	hing ski	ills									
COUR	SE OUT	COME	S														
On the	successfi	ul compl	letion of	the cou	rse, stud	lents wil	l be able	e to									
CO1. C	ommuni	cate with	h a rang	e of form	nal and i	informal	context	t							U	Inders	stand
CO2. S	Students	will und	ergo in a	activities	s, demor	nstrating	interact	tion skill	ls and co	onsider ho	w own co	nmuni	catio	on is	A	Apply	
CO3 S	a in airre trengther	rent sce	nario ral and	written	skills in	the busi	ness con	ntext								Annly	
			.1	. 1 .	1 4	. · 1	1	•	1.	1 • 1						-pp1j	
CO4. C	reate inte	erest am	to start	with nl	$\frac{1}{2}$ about a	topic b	y explor make th	ing thou	gnts and ive diffe	1 1deas	2				P	Apply	
CO6 N	lake ther	n in hett	er perfo	rmance	in the ar	$\frac{1}{1000}$	municat	tion		fent idea.	,					Apply	
000.1			er perio	munee	in the u	t of com	intumeu	tion							1	ippij	
MAPP	ING WI	TH PR	OGRAN	AME O	UTCON	MES AN	ND PRO	GRAM	IME SP	ECIFIC	OUTCON	1ES					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO1	PS	02	PSO3
CO1	Μ		L		L	S	S		Μ	S		S		S			
CO2		Μ	S	Μ		Μ	Μ		L	S		S		Μ			
CO3	L	Μ				Μ		L		S	L	Μ			1	М	
CO4		L	Μ	Μ			L	Μ	Μ	S	L	Μ		Μ			Μ
CO5				M				M	L	S		L					
CO6		L		Μ		L	L			S		S		Μ]	M	S
S- Strop	ng; M-M	edium; 1	L-Low														

SYLLABUS

SUBJECT AND VERB AGREEMENT:

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

STRESS:

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS:

Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs - E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION:

Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

CRITICAL READING:

Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

ТЕХТВООК

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

			PR	OFES	SIONA	AL CO	MMU EVEL	UNICA	TION	AND A R	Catego	ry L	Т	Р	Cr	edit
								UI III			FC (HS	5) 0	0	2		1
PRE	AMBLE		• •						c .	11 0		.	1.	1	•	
To de	evelop stu	idents v	11th goo	d prese	ntation	and wr	iting sk	ills (Pro	ofession	hally & te	chnically	y). Artici	ilate an	d enu	nciate	e
word	s and sent	tences c	learly a	and effe	ctively.	Develo	op prop	er lister	ning ski	lls. Unde	rstand dif	ferent w	riting t	echni	ques a	and
styles	s based or	the co	mmunio	cation b	eing us	ed.										
PRE	REQUIS	ITE-N	IL													
COU	RSE OB	JECTI	VES													
1 7	To develo	p comn	nunicati	on and	persona	ılity ski	lls.									
2 7	Γo improv	ve Aptit	ude skil	lls, trair	ı to imp	rove se	lf-learn	ning / re	searchi	ng abiliti	es, preser	ntation s	kills &	techni	ical w	riting.
3]	Γo improv	ve stude	nts emp	oloyabil	ity skill	s.										
4]	To develo	p profes	ssional	with ide	ealistic,	practic	al and 1	moral v	alues.							
5 7	Го produc	e cover	letters,	resume	es and jo	ob appl	ication	strategi	es.							
COU	RSE OU	TCOM	IES													
On th	ne success	ful con	pletion	of the	course,	student	s will b	e able t	0							
CO1.	Improve	e comm	unicatio	on and p	personal	lity skil	ls.							А	pply	
CO2	Demonst	trate eff	ective u	use of te	eam wo	rk skills	s and pi	resentat	ion skil	ls to con	plete giv	en tasks.		А	pply	
CO3.	Speak w	ith clari	ity and o	confide	nce the	eby en	hancing	g emplo	yability	v skills of	the stude	ents.		А	pply	
CO4.	Have bal	lanced v	value sy	stem th	at can b	be pract	iced for	r enhan	ced pro	fessional	life.			Α	pply	
	CO5.]	Improve	e their v	vocabula	ary and	use the	m in ap	propria	te situa	tion				U	nders	stand
	MAPI	PING V	VITH H	PROGE	RAMM	E OUI	COM	ES ANI) PRO	GRAMN	AE SPEC	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PS	02	PSO3
CO1	Μ	Μ	-	-	-	Μ	Μ	-	Μ	S	-	-				
CO2	Μ	-	-	-	-	-	-	-	S	Μ	-	-				
CO3	-	-	-	-	-	-	Μ	-	S	S	-	-				
CO4	-	-	-	-	-	-	-	-	-	-	-	-				
CO5	S	-	-	-	-	-	-	-	Μ	S	-	Μ				
	S- Stro	ong; M-	Mediur	n; L-Lo	W			•		•				•		

SYLLABUS

COMMUNICATION AND SELF DEVELOPMENT:

Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication, Barriers and Filters in Listening Skill, Active and Passive listening, exposure to English language through various activities and

maintaining a vocabulary dairy improving confidence in Language usage using activities,

GRAMMAR & SYNTAX:

Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

READING AND WRITING SKILLS:

Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

SPEAKING SKILLS AND ESSENCE OF SOFT SKILLS:

Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation, Time management, Team work skills, Leadership skills, Adaptability and bettering oneself, Persuasion skills.

TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING:

Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria& Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw – Hill.

COURSE DESIGNERS

S.No.	Name of the Faculty	Mail ID
1.	Dr. Jennifer G Joseph, Prof. and Head	jennifer@avit.ac.in
2.	Dr. P.Saradha, Associate Professor	saradhap@vmkvec.edu.in

]	ENGL	ISH L	ANGU	JAGE	LAB		Cate	gory	L	Т	Р	Cre	edit
										FC	C (HS)	0	0	4		2
PREA	MBLE	2														
Englis	h Lang	uage L	aborat	ory pro	vides t	echnol	logical	support	t to stu	idents. It	t acts as	a pla	tform	n for	learr	ning,
practic	ing and	l produ	icing la	anguag	e skills	throug	gh inter	ractive 1	lesson	s and co	mmunic	ative	mod	e of	teach	ning.
PRER	EQUI	SITE:	NIL													
COUI	RSE OI	BJEC	FIVES													
1 To	unders	stand c	ommu	nicatio	n nuisa	nces in	the co	orporate	e secto	r.						
2 To	unders	stand th	he role	of mot	ther tor	igue in	second	d langua	age lea	arning aı	nd to ave	oid ir	nterfe	renc	e of	
mo	ther to	ngue.														
3 To	o impro	ve the	oral sk	tills of	the stu	dents c	commu	nicate e	effecti	vely thro	ough diff	feren	t activ	vitie	S	
4 To	o under	stand a	and app	oly the	telepho	one etic	quette									
5 Ca	ase stuc	ly to u	ndersta	ind the	practic	al aspe	ects of	commu	nicati	on						
COU	RSE O	UTCO	MES													
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	idents v	will be a	able to)						
CO1. 0	Give b	est per	forman	ice in g	roup d	iscussi	on and	intervi	ew				U	nde	rstan	d
CO2. 1	Best pe	rforma	nce in	the art	of con	versati	on and	public	speak	ing.			A	ppl	у	
CO3. (Give be	tter jol	b oppo	rtunitie	es in co	rporate	e comp	anies					A	ppl	у	
CO4.	Better	under	standi	ng of	nuanc	es of	Englis	sh lang	guage	through	audio-	visu	al A	ppl	у	
experie	ence an	d grou	p activ	ities												
CO5.	Speaki	ng sk	ills w	ith cla	arity a	nd co	nfidenc	e whice	ch in	turn e	nhances	the	ir A	ppl	у	
emplo	yability	skills														
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND P	ROG	RAMM	E SPEC	CIFIC	COU	TC	OME	S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	l P.	SO	PS	PSO
												2	1		02	3
CO1		S	Μ	S		L			S	S	Μ					Μ
CO2	М								М	S		M	N	Л		М
CO3	М									S		Μ				Μ
CO4	М									М			N	Л		Μ
CO5	М			S						М			N	Л		S
	S- Str	ong; M	-Medi	um; L-	Low		1	<u> </u>		1	I	1				L

SYLLABUS

Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation

Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual. Role Play

Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette.

Case study of Etiquette in different scenario.

Co	urse Designers:			
No	of the Faculty	Designation	Department	Mail ID
	Dr. Jennifer G Joseph,	Prof. and Head, H&S	English	jennifer@avit.ac.in
	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in

TOTAL QUALITY MANAGEMENT	Category	L	Т	Р	Credit
	FC (M)	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization Environment.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	-	М

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs – Analysis Techniques for Quality Costs – TQM Principles and Barriers & Implementation –Leadership – Concepts-Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning.

TQM PRINCIPLES AND PHILOSOPHIES

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention-Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal -Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve-Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA -Business process re-engineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Hcinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

			PR	OFES	SIONAI	ETH	ICS AN	D	Catego	ry	L	Т	Р	С	redit
				H	JMAN V	ALUE	ËS		FC (M	()	3	0	0		3
PREAMBL	E: Ethi	cs is	s a syste	em of n	noral pri	nciples	govern	ing the	appropi	riate coo	luct of a	a person o	or a grou	p. Good	Ethics
is a fundame	ental rec	luire	ement o	of any p	orofessio	n. Rega	rdless (of profe	ession, e	ethics is	an imp	ortant pa	rt of wor	k. The s	uccess
depend on	how the	e w	orkers	and the	eir deali	ng witl	h the s	ituation	s ethica	ally or	unethic	ally. Pro	ofessiona	ethics	are as
important as	s persor	al e	ethics.	Profess	ional etl	hics end	compas	s the p	ersonal	and con	rporate	standard	s of beh	avior ex	pected
by professio	nal. H	uma	an valu	es are	the feature	ures that	at guide	e peopl	e to tal	ke into	accoun	t the hun	nan elen	ent wh	en one
interacts with	th other	hu	ıman. 7	They ha	ave man	y posit	ive cha	racters	and po	ositive f	eelings	that create	ate bond	s of hu	manity
between peo	between people and thus have value for all human beings and have the effect of bonding, comforting, reassuring and														
procuring se	procuring serenity. They build space for a drive, a movement towards one another, which leads to peace.											C			
PREREQU	ISITE:	No	t Requi	red											
COURSE C)BJEC	ΓΙν	'ES:												
1. To understand the basic concept of Human Values and Ethics.															
2. To analyse the common ethical practice in the engineering professionals.															
3. To Practice various code of ethics in Engineering.															
4. To apply the rights, legal, ethical issues.															
5. To practice ethical responsibilities of a professional engineer.															
COURSE C	oful cor		1 5:	the eer	ireo etu	lanta w	:11 bo of	ala to							
CO1: Under	stand th	e m	oral va	lues the	at ought	to he pr	III be at	in engi	neering	nrofess	ion		Un	derstand	1
CO2: Analy	sethe ro	le o	of ethics	in the	field of e	enginee	ring	in engi	neering	, proiess	1011		An	alvse	L
CO3: Practic	ce the co	ode	of ethic	cs and I	ndustria	l standa	rds						Ap	plv	
CO4: Assess	s the Sa	fety	, Qualit	y Mana	agement	and Ris	sk analy	/sis					Ev	aluate	
CO5: Apply the skills and knowledgeto handle the contemporary issues. Apply															
M	APPIN	G W	VITH I	PROGI	RAMMI	E OUT	COME	S AND	PROG	GRAMN	AE SPI	ECIFIC (OUTCO	MES	
COs PO	1 PC	2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 M	[-		-	-	-	М	-	L	М	М	L	М	-	-	L
CO2 M	[-		-	-	-	S	L	М	L	М	L	М	-	-	L
CO3 M	[-		М	L	L	М	-	М	-	-	М	М	L	L	М
CO4 M	I N	I	М	-	М	L	-	М	L	L	L	М	L	М	М
CO5 M	I N	ſ	М	L	L	-	-	М	L	М	М	М	M M		М
S- Strong: M	M-Medi	um	: L-Lo	w											

SYLLABUS:

Introduction to Human Values

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy –Self-Confidence–Discrimination -Character – Challenges in the work place -Spirituality – and stress management.

Overview of Engineering Ethics

The History of Ethics-Purposes for Engineering Ethics-Engineering Ethics- Consensus and Controversy –Professional and Professionalism –Professional Roles to be played by an Engineer –Self Interest, Customs and Religion-Uses of Ethical Theories-Professional Ethics-Types of Inquiry – Engineering and Ethics-Kohlberg's Theory – Gilligan's Argument – Heinz's Dilemma.Case study: Choice of the theory.

Engineering as Social Experimentation

Engineering as Experimentation – Engineering Projects VS. Standard Experiments - Engineers as responsible Experimenters – Learning from the Past- Codes of Ethics – anticorruption-A Balanced Outlook on Law.

Safety, responsibilities and rights

Safety and Risk – Assessment of Safety and Risk – Types of Risks – Voluntary v/s Involuntary Risk - Risk Benefit Analysis and Reducing Risk – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Responsibilities- Professional Rights – Employee Rights – Intellectual Property Rights

(IPR) – Discrimination

GLOBAL ISSUES

Transnational and MNC corporations-Environmental Ethics-Computer Ethics-computers as the instrument of Unethical behaviour-computers as the object of Unethical Acts-autonomous computers-computer codes of Ethics - Weapons development and – Corporate Social ResponsibilityCase Studies

TEXT BOOK:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 3. R.S. Nagarajan, A Text Book on Professional Ethics and Human Values, New Age International (P) Limited, Publishers,2006

REFERENCES:

- 1. CharlesD.Fleddermann, "EngineeringEthics", PearsonEducation/PrenticeHall, NewJersey, 2004
- 2. CharlesEHarris,MichaelS.ProtchardandMichaelJRabins,"EngineeringEthics–Concepts and Cases",WadsworthThompsonLeatning, United States,2000
- 3. John R Boatright, "EthicsandtheConductofBusiness", PearsonEducation,NewDelhi,2003.
- 4. EdmundGSeebauerandRobertLBarry, "FundamentalsofEthicsforScientistsandEngineers", Oxford Press, 2000
- 5. R.Subramanian, "ProfessionalEthics", Oxford University Press, Reprint, 2015.

COURS	E DESIGNERS:					
S.No	Name of the Faculty	Designation	Department	mail id		
1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in		
2	T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in		

	MAN	AGE	MENT	PRI	NCIPLE	S FOR		Category	L	Т	Р	Credit
			ENG	INEE	RS			FC (M)	3	0	0	3
PREAM	IBLE:										1	
From th	ne knowle	edge o	f mana	agemen	t principle	les man	agers g	get direction	on how	to manag	e an orga	anization. The
manager	ment prind	ciples e	nable r	nanage	rs to decid	le what	should l	be done to ac	complish g	given tasks	s and to ha	ndle situations
which m	nay arise i	n mana	gemen	t.								
PREREQUISITE: Not Required												
COURS	SE OBJE	CTIVE	ES:									
1) '	To enable	the stu	idents t	o study	the evolu	tion of	Manage	ment.				
2)	To study	the fun	ctions a	and prin	nciples of 1	manage	ment.					
3) '	To learn t	he appl	lication	of the	principles	in an o	rganizat	ion.				
4) To	o enable t	he effe	ctive ar	nd barri	iers comm	unicatio	on in the	organization	۱.			
5) To study the system and process of effective controlling in the organization.												
COURS	SE OUTC	COMES	5:									
After su	ccessful o	comple	tion of	the co	ourse, stud	lents w	ill be ab	le to				
CO1:U	pon comp	oletion	of the c	course,	students w	vill be a	ble to ha	ave clear und	lerstanding	of manag	erial	Analyze
functio	ns like pla	anning,	and ha	ve sam	ne basic kn	nowledg	e on inte	ernational as	pect of ma	nagement		
С02. Т	o underst	and the	nlann	ing pro	cess in the	organi	zation					Create
002.1	o underst		plain	ing pro		organi	Lation					Understand
CO3:To understand the concept of organization												
CO4:Demonstrate the ability to directing leadership and communicate effectively										Apply		
CO5: To analysis isolate issues and formulate best control methods												Create
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOM												MES
COs	PO1	PO2	PO3	PO4	PO5 F	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		1.52	1.00			 M	101			T 1010		
COI	-	-	-	-	-	М	-	M	M	L	5	L
CO2	-	-	-	-	-	М	-	М	Μ	-	M	L

SYLLABUS:

_

-

_

-

-

-

-

_

-

-

INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills – Evolution of Management – Scientific, human relations, system and contingency approaches – Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment – Current trends and issues in Management.

-

-

-

Μ

Μ

Μ

-

S

-

-

М

-

Μ

М

Μ

Μ

М

Μ

L

L

L

PLANNING

CO3

CO4

CO5

_

-

-

S- Strong; M-Medium; L-Low

Nature and purpose of planning – planning process – types of planning – objectives – setting -Objectives – policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure– types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management , Career planning and management.

DIRECTING

Foundations of individual and group behavior – motivation – motivation theories – motivational - Techniques – job satisfaction – job enrichment – leadership – types and theories of leadership –Communication – process of communication – barrier in communication – effective communication – communication and IT.

CONTROLLING

System and process of controlling – budgetary and non-budgetary control techniques – use of Computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

Text Books:

1. Stephen P. Robbins & Mary Coulter, "Management", 10th Edition, Prentice Hall (India) Pvt. Ltd., 2009.

2. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.

Reference Books:

1 .Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.

2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.

3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.

4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID			
1	Dr. Dolly Misra	Assistant Professor	Management Studies	Dollymisra.mba@avit.ac.in			
2	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in			

		UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	Category	L T		Р	C						
			FC (M)	3	0	0	3						
PRERI	'REREQUISITE – Nil												
COUR	SE OBJI	SE OBJECTIVES											
1	1. Development of a holistic perspective based on self- exploration												
2	2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence												
3	3. Strengthening of self-reflection.												
4	4. Development of commitment and courage to act.												
5	1. Development of a holistic perspective based on self- exploration												

Syllabus

INTRODUCTION

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNDERSTANDING HARMONY IN THE HUMAN BEING

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. -Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body- Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNDERSTANDING HARMONY IN THE NATURE AND EXISTENCE

Whole existence as Coexistence -.Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS

Natural acceptance of human values -. Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic

Constitution and Humanistic Universal Order- Competence in professional ethics Total Hours: 45 Hours

TEXT BOOK

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Vice Principal (Academics)	AVIT	sangeetha@avit.ac.in
2	Dr.Jennifer G Joseph	HoD-H&S	AVIT	Jennifer@avit.a.cin

(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS) - CREDITS (18 -2)

MATHEMATICS FOR BIO-ENGINEERING	Category	L	Т	Р	Credit
	FC (BS)	2	1	0	3

PREAMBLE

Matrices have found to be of great utility in many branches of engineering applications. Many physical laws and relations can be expressed mathematically in the form of differential equations. Statistical methods are important tools which provide the engineers with both descriptive and analytical methods for dealing with the variability in observed data. This course offers the knowledge of solving optimization problems, to develop skills and knowledge of standard concepts in ordinary differential equations, to analyze Statistical data and draw conclusion from those analyses.

PREREQUISITE: -

COURSE OBJECTIVES

1 To recall the advanced matrix knowledge to Engineering problems

2 To improve their ability in solving geometrical applications of differential calculus problems and integral calculus.

3 To enable the students to solve ordinary differential equations.

4 To describes the characteristic of the entire group of data and choose the best central tendency and variability statistic for different levels of measurement

5 To compute and interpret the correlation and regression coefficients that arise in engineering problems

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Apply the matrix operations, including inverses and determinantsApplyCO2. Apply the concept of differentiation in functions of single and several variables.ApplyCO3. Apply knowledge of Ordinary differential equations in biological processes.ApplyCO4. Analyze statistical data using measures of central tendency, dispersion and location for grouped and ungrouped data cases.Apply

Apply

CO5. Apply the concept of correlation and regression in computational biology.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	L					М				L				
CO2	S	М	L					М				L				
CO3	S	М	Μ	L				М				М				
CO4	S	S	Μ	L				М				М				
CO5	S	М	М	L				М				М				

S- Strong; M-Medium; L-Low

SYLLABUS

MATRICES:

Basic properties of Matrices – Inverse – Characteristic Equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley-Hamilton theorem (Without proof)

DIFFERENTIAL CALCULUS & INTEGRATION:

Ordinary Differentiation – Basic Concepts – Slope –Second order derivates – Partial Differentiation– Maxima and Minima of a function of two variables.

Concept of integration-Integration of Rational and Trigonometric functions - Substitutions - Integration by parts.

ORDINARY DIFFERENTIAL EQUATIONS:

Formation of differential equations – Solution of first order equation – Variable separable, Solution of Linear differential

equation of the form $\frac{dy}{dx} + Py = Q$

DESCRIPTIVE STATISTICS:

Frequency distribution – Measure of Central Tendency – Mean, Median, Mode – Measures of Dispersion – Skewness, Kurtosis and Moments.

CORRELATION AND REGRESSION ANALYSIS:

Correlation – Methods of Correlation – Rank Correlation – Regression – Regression equation – Multiple and Partial Correlation –Multiple Correlation coefficients – Partial Correlation coefficients.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. S.P. Gupta, "Statistical Methods", 34th Edition, Sultan Chand & Sons Publishers (2006).

REFERENCES:

- 1. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 2. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).

COURSE DESIGNERS

1Dr.S. PunithaAsso. ProfessorMathematicspunitha@vmkvec.edu.in2Dr. S. GayathriAsst. ProfessorMathematicsgayathri@avit.ac.in	S. No	Name of the Faculty	Designation	Department	Mail ID
2Dr. S. GayathriAsst. ProfessorMathematicsgayathri@avit.ac.in	1	Dr.S. Punitha	Asso. Professor	Mathematics	punitha@vmkvec.edu.in
	2	Dr. S. Gayathri	Asst. Professor	Mathematics	gayathri@avit.ac.in

PHYSICAL SCIENCES -	Category	L	Т	Р	Credit
Part A: ENGINEERING PHYSICS	FC (BS)	2	0	0	2

PREAMBLE

Engineering Physics is the study of advanced physics concepts and their applications in various technological and engineering domains. Understanding the concepts of laser, types of lasers, the propagation of light through fibers, applications of optical fibers in communication, production and applications of ultrasonics will help an engineer to analyze, design and to fabricate various conceptual based devices.

PRERI	EQUISI	TE :	NIL												
COUR	SE OBJ	ECTI	VES												
1	To reca	all the	properti	es of la	aser an	d to ex	plain pr	rinciple	es of la	iser					
2	To ass	ess the	applicat	tions o	f laser										
3	To deta	ail the	principle	es of fi	ber op	tics									
4	To stue	dy the	applicat	ions of	fiber of	optics									
5	To exp	olain va	rious te	chniqu	es use	d in No	on-destr	uctive	testing	5					
COUR	SE OUT	ГСОМ	ES												
On th	e succes	sful co	mpletio	n of th	e cour	se, stu	dents wi	ill be a	ble to						
CO1.	CO1. Understand the principles laser, fiber optics and ultrasonics Understand														
CO2.	Underst	tand th	e constr	uction	of lase	er, fibe	r optic a	und ulti	asonic	equipn	nents			Unders	stand
CO3.	Demon	strate t	he work	ing of	laser, i	fiber o	ptic and	ultras	onic ba	ased cor	nponent	s and de	vices	Apply	
CO4.	Interpre	et the p	otential	applic	ations	of lase	r, fiber	optics	and ul	trasonic	s in vario	ous field	s	Apply	
CO5.	CO5. Differentiate the working modes of various types of laser, fiber optic and ultrasonic devices. Analyze										ze				
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М									М	М		М
CO2	S		L									М	Μ		
CO3	S			Μ			М					Μ	Μ		
CO4	S	Μ		М	М	S	М					Μ	S		М
CO5	S	М	М									М	М		
a a.	3634	r 1'	тт												

S- Strong; M-Medium; L-Low

SYLLABUS

LASERS:

Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

FIBRE OPTICS:

Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor

ULTRASONICS:

Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOKS

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

PHYSICAL SCIENCES PART-B - Category L T P Credit													
ENGINEERING CHEMISTRYFC (BS)2002													
(Common to all Branches)													
PREAMBLE													
The objective of this course is to better understand the basic concepts of chemistry and its applicat	ions in												
diverse engineering domains. It also imparts knowledge on the properties of water and its tre	atment												
methods, Electrochemistry, corrosion and batteries, properties of fuel and combustion. This cour	se also												
provides an idea to select the material for various engineering applications and their characterization.													
PREREQUISITE NIL													
COURSE OBJECTIVES													
1 To Provide the knowledge on water treatment.													
2 To explain about the importance of electrochemistry, mechanism of different corrosion and prin	ciple												
and working of batteries.													
3 To explain different types of fuel, properties and its important features.													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to understand													
CO1. Estimate the hardness of water Apply and Identify suitable water treatment methods. App	ly												
CO2. Describe terms involved in electrochemistry, the control methods of corrosion and Ana	lyse												
working of energy storage devices.													
CO3. Understand the quality of fuels from its properties and the important features of fuels Ana	lyse												
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOME													
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS0 PS0) PSO												
	3 M												
CO1 S M M L - M S M - - M M M	IVI												
CO2 S S L L - S S S S M L	М												
CO3 S M M L L L M M S - M	Μ												
S- Strong; M-Medium; L-Low													

Syllabus

WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - Galvanic cell-Electrochemical cell representation - EMF series and its significance. Corrosion – Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries, Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values- theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

TEXTBOOK

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

REFERENCES

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers:

1 Dr. A.R. Sasieekumar sasieekhumar@vmkvec.edu.ir 2 Dr. R. Nagalakshmi nagalakshmi chemistry@avit.							
2 Dr. R. Nagalakshmi nagalakshmi chemistry@avit.	du.in						
	nagalakshmi.chemistry@avit.ac.in						

PHYSICAL SCIENCES LAB: PART A – REAL	Cate
AND VIDTUAL LAD IN DEVELOS	
AND VINTUAL LAD IN FRISICS	

Т

0

Credi

t

1

Р

2

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

NIL

COURS	SE OB.	JECTI	VES												
1	To impart basic skills in taking reading with precision of physics experiments														
2	To inculcate the habit of handling equipments appropriately														
3	To gain the knowledge of practicing experiments through virtual laboratory.														
4	To know the importance of units														
5	To obtain results with accuracy														
COURSE OUTCOMES															
On the	e succes	ssful co	mpletic	on of the	e course	e, stude	nts will	be able	e to						
CO6.	CO6. Recognize the importance of units while performing the experiments, calculating the Understand physical parameters and obtaining results														
CO7.	CO7. Operate the equipments with precision Apply														
CO8.	Practic	e to han	dle the	equipn	nents in	a syste	matic n	nanner					Apply		
CO9.	Demon	strate tl	ne expe	riments	throug	h virtua	al labor	atory					Apply		
CO10.		Calcul	ate the	result v	with acc	curacy		•					Analy	ze	
MAPPI	NG W	ITH PI	ROGR	AMME	OUT	COME	S AND	PROG	RAMN	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	S	S													
CO2	S	S	М	М	S				М			М	М		Μ
CO3	S														
CO4	S	S	Μ	М	S							S	М		М
CO5	S	S													
S- Stron	9: M-N	(Iedium:	L-Lov	v											

SYLLABUS

- 1. Young's modulus of a bar Non-uniform bending
- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser
- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

C	OURSE DESIGNERS			
S.	Name of the Faculty	Designation	Department	Mail ID
Ν				
0.				
1	Dr. C. SENTHIL	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
	KUMAR			
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in

				P	HYSIC	CAL S	Categ	ory	L	Т	Р	С	redit				
		F	PART	B - EN	GINE	ERIN	G CHI	EMIST	RY L	AB							
				(C	ommo	n to A	ll Bran	ches)			FC (E	BS)	0	0	2		1
Engine	ering C	Chemist	ry Lab	experi	ments	explain	s the b	asics a	nd esse	ntials of	Engine	ering	Che	mistry.	It a	lso he	elps the
student	s to une	derstan	d the ap	oplication	ons of H	Enginee	ring Ch	nemistry	7. The e	electrodes	s, Cell a	nd ba	atterie	es study	y give	es clea	ar basic
applica	tion or	iented	knowle	dge ab	out ele	ctroche	mistry.	Water	techno	ology stu	dy give	s the	idea	about	harc	lness	and its
disadva	antages.	Now-	a-days t	he prac	tical an	d hand	ling of e	equipme	ents are	needed t	for our f	ast gi	rowin	g life s	tyle.		
PRER	EQUIS	ITE NI	L														
COUR	SE OB	JECT	IVES														
1	To impart basic skills in Chemistry so that the student will understand the engineering concept.																
2	To inc	culcate the knowledge of water and electrochemistry.															
3	To lay	To lay foundation for practical applications of chemistry in engineering aspects.															
COURSE OUTCOMES																	
On the successful completion of the course, students will be able to																	
CO1. U	Jndersta	and the	basic s	kills fo	r his/he	r future	studies					Unde	erstan	d			
CO2 A	nalyze	the wat	ter com	prehens	ively.							Appl	y				
CO3. A	Apply th	ne pract	tical kno	owledge	e in eng	gineerin	g aspec	ts				Appl	y				
MAPP	ING W	/ITH I	PROGE	RAMM	E OUT	COM	ES ANI) PRO	GRAM	ME SPE	CIFIC	OUT	rcor	MES			
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PS	502	PSO3
CO1	S	М	М	-	L	М	М	S	-	-	-]	М	-		-	-
CO2	S	М	М	-	L	М	Μ	L	-	-	-]	М	-		-	-
CO3	S	S	М	-	L	Μ	Μ	М	-	-	-]	М				
S- Stro	ng; M-l	Mediur	n; L-Lo	W													
1. Dete	rminati	on of H	Iardnes	s by EI	DTA me	thod											
2. Estir	nation o	of Hydi	rochlori	c acid l	by cond	uctome	etric me	thod									
3. Acid	Base ti	itration	by pH	method	l												
4. Estin	nation of	of Ferre	ous ion	by Pote	entiome	tric me	thod	1									
5. Dete	rminati	on of L	Jissolve	d oxyg	en by V	Vinkler	's meth	od									
6. Estil	nation (of Com	um by I sor fron	riame p	onotome	eter Solution											
7. ESII 8 Fstin	nation o	of Iron 1	ber from	trophot	ometer	Solution	1										
TEXT	BOOK		by spec	aopiiot	ometel												
1. Engi	neering	g Chem	istry La	ıb Manı	ual by V	/MU.											
COUR	SE DE	SIGN	ERS														
S.No.	Name	of the	Faculty	7				Mai	l ID								
1.	Dr.R.	Nagala	kshmi					naga	lakshm	i.chemis	try@avi	t.ac.i	n				
2	A. Gi	lbert Si	underra	i				gilbe	ertsund	erraj@vn	nkvec.e	lu.in					

			BIOSTATISTICS								ory	L	Т	Р	Credit
		(Statistical table permitted for Examination)									BS)	2	1	0	3
PREA	PREAMBLE														
The Bid clinical for dea analyzi method efficien	clinical trials. Statistical methods are important tools which provide the engineers with both descriptive and analytical methods for dealing with the variability in observed data. It introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests and designing the experiments with several factors. Statistical Quality control is a method of quality control which employs statistical methods to monitor and control a process and ensure the process operates efficiently, producing more specification-conforming product. PREREQUISITE - Mathematics for Bio-Engineering														
PRER	EQUIS	ITE - N	Mathem	atics fo	r Bio-E	ngineer	ing								
COUR	SE OB	JECTI	VES												
1	I Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries 2 Coin fundamental knowledge of the probability equapets and rendem variables with respect to how they are emplied to														
2	2 Gain fundamental knowledge of the probability concepts and random variables with respect to how they are applied to statistical data.														
3	To acquire knowledge of Testing of Hypothesis useful in making decision and test them by means of the measurements made on the sample.														
4	4 To get exposed to the statistical methods designed to contribute to the process of making scientific judgments in the face of uncertainty and variation.														
5 To understand the concept of Quality control and the use of operating characteristic (OC) curves in Acceptance sampling.															
COUR	SE OU	TCOM	IES												
On the successful completion of the course, students will be able to															
CO1. data co	Plan a ollection	statisti n and a	cal data analysis	a invest 5. Ident	igation ify and	in the l	bioscier nize th	nces an e appro	d relate opriate	d fields, sample	and pro survey	pose a m design fo	nethod fo or related	r Apply d	7
CO2.	Apply bability	probab y mode	ility rul ls	les and	probabi	lity mo	dels to	solve p	oroblem	s and tra	nslate re	al-world	problem	s Apply	7
CO3.	Apply	the co	ncepts o	of large	/small s	ample t	ests int	o real li	ife prob	lems				Apply	7
CO4. more th	Interpi an two	ret resul	lts from ndent p	Analy: Opulation	sis of V ons.	ariance	(ANO	VA), a	techniq	ue used t	o compa	ire mean	s amongs	t Apply	7
CO5.	Prepar	e Conti	ol char	ts and	decide (on the i	n-contr	ol statu	s of the	process	. Estima	te wheth	er a lot i	s Apply	7
accepta MAPP	ble or u ING W	inaccep	table ba	ased on	accepta	ince sar	npling S AND	plans.	RAM	AE SPE	CIFIC (MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M					M				M			
CO2	S	S	М	L				М				М			
CO3	S	S	М	L				М				М			
CO4	S	S	М	L				М				М			
CO5	S	Μ	Μ	L				М				Μ			
S- Stro	ng; M- ABUS	Mediu	m; L-L	OW											

INTRODUCTION TO BIOSTATISTICS:

Statistics – Collection of data – Primary & Secondary Data – Classification & Tabulation of data – Diagrammatic and Graphical representation of data – Sampling – Methods of Sampling – Random and Non-Random Sampling – Limitations of sampling.

PROBABILITY AND RANDOM VARIABLES

Probability concepts - Conditional probability - Baye's theorem - Random variables - Discrete and continuous random
variables – Expectation – Variance – Standard Distribution – Binomial, Poisson, Normal (Problems only)

TESTING OF HYPOTHESIS:

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) – Chi-square Tests for Goodness of fit – independence of attributes.

DESIGN OF EXPERIMENTS:

Analysis of Variance – One Way Classification – Two Way Classification – Completely Randomized Design – Randomized Block Design – Latin Square Design.

STATISTICAL QUALITY CONTROL:

Introduction – Process control – Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling.

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition (2017).
- 2. P.N. Arora, P.K. Malhan, "Biostatistics", Himalaya Publishing House (2010).

REFERENCES:

- 1. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition (2007).

S. No Name of the Faculty Designation Department Mail ID 1 Dr. P. Sasikala Professor Mathematics sasikala@umkuru	
1 Dr. P. Sasikala Professor Mathematics sasikala@umkuv	
	<u>ec.edu.in</u>
2 Dr. S. Gayathri Asst. Professor Mathematics <u>gayathri@avit.av</u>	<u>in</u>

	SMART MATERIALS	CATEGORY	L	Т	P	С				
	Total Contact Hours: 45									
	Prerequisite: Physical Sciences	FC (BS)	3	0	0	3				
PREAMBLE	<u>C</u>									
Smart Materi	als gives an outlook about various types of material	s having potential a	pplica	tion in	Engin	neering				
and Technology. In particular, Students learn about Properties of Crystalline Materials, Smart Materials ar										
Nanomaterial	s, and their industrial applications, characteristics	and industrial appli	cation	s of M	lagnet	ic and				
Superconduct	ting materials.									
COURSE O	BJECTIVES:									
1	To impart the basic properties of different materials.	To impart the basic properties of different materials.								
2	To understand the structure of crystalline materials.									
3	To understand the properties of smart materials and realize its industrial applications.									
4	To learn the synthesis of Nano materials and carbon	nanotubes.								
5	To learn the properties, classification and relevant a	oplications of magne	etic ma	terials.						
6	To understand the concept of superconductivity, pro	perties of super cond	luctor	and the	eir ind	ustrial				
	applications.									
COURSE O	UTCOMES:									
After success	ful completion of the course, learner will be able to									
CO1	understand the basic properties of various materials.			1	Unders	stand				
CO2	learn the structure of Crystalline Materials				App	oly				
CO3	gain the basic knowledge and recognize the applications of Smart Materials Apply									
CO4	get an exposure about the properties of Nano materials Apply									
CO5	gain the knowledge about the properties of magnetic	materials and famil	iarize		App	oly				
	their applications.									
CO6	gain the knowledge about Superconducting material	S			App	oly				

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO3	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO4	S	S	S	S	М	-	-	-	I	-	-	S	-	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO6	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-

S – strong, M- Medium, L – Low

SYLLABUS

UNIT: I

CRYSTALLINE MATERIALS

Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures – determination of interplanar distance (d).

SMART MATERIALS

Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application – SMA in Actuators and Blood clot filters, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and industrial applications (Core of the Transformer).

NANO MATERIALS

Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications; Chemical Sensors.

MAGNETIC MATERIALS

Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials – Applications of Magnetic materials (Magnets in Generators and MRI scan).

SUPER CONDUCTING MATERIALS

Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Industrial Applications of superconductors (SQUID, Cryotrons and Maglev Trains).

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. A.K. Katiyar and C.K. Pandey, Engineering Physics Theory and Practical, Wiley Publisher, 2015.

REFERENCES

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2

COURS	COURSE DESIGNERS												
Sl. No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Dr. G. Suresh	Associate Professor	Physics	suresh.physics@avit.ac.in									
2.	Dr. R. N. Viswanath	Professor	Physics	rnvishwanath@avit.ac.in									
3.	Dr. B. Dhanalakshmi	Associate Professor	Physics	dhanalakshmi.phys@avit.ac.in									

	SMART MATERIALS AND NANOTECHNOLOGY	Category	L	Т	Р	С			
	Total Contact Hours: 45	FC (BS)							
	Prerequisite: Physical Sciences – Engineering Physics		3	0	0	3			
Pream	ble:								
This sy	llabus enables the students to learn the applications of smart materi	als and uses of various sma	rt engi	ineering	g devi	ces.			
The s	yllabus also discusses about the nanomaterials, their unio	jue properties and app	icatio	ons in	vari	ous			
fields.									
Course	e Objectives:								
1	Gain the knowledge about the concepts of smart systems and variou	s smart materials.							
2	Realize about the smart sensor materials which are used for Industri	al Applications.							
3	Understand about the Industrial application oriented Smart materials	'Actuators.							
4	To learn the properties and classifications and importance of Nanom	aterials							
5	Understand the characteristic features of materials at nanoscale and	their potential applications							
COS	Course Outcomes: On the successful completion of the course, stud	lents will							
CO1	Learn the smart-properties of various functional materials]	Learn						
CO2	understand the applications of different smart materials as sensors Understand								
CO3	understand the applications of different smart materials as actuators Understand								
CO4	Gather knowledge on unique properties of nanomaterials]	Learn						
CO5	Use of Nanomaterials for industrial applications		Acquir	e					
CO6	Gain knowledge about nanomaterials in health care industry								

Mapping with Programme Outcomes and Programme Specific Outcomes

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	POS1	POS2	POS3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO3	S	М	S	S	-	-	-	-	-	-	-	S	-	-	-
CO4	S	S	S	S	М	-	-	-	-	-	-	S	-	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	S	-	-	-
CO6	S	М	М	S	М	-	-	-	-	-	-	S	-	-	-

 $S-\mbox{strong},$ M- Medium, L - Low

SYLLABUS:

Overview of Smart Materials: Introduction to Smart materials –piezoelectric materials – piezoelectricity – magnetostriction materials – magnetostriction effect– shape memory alloys (SMA) – photoelastic materials – photoelasticity.

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors - stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators –Industrial Applications: robotic artificial muscles , materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

Selected Applications of Nanomaterials: Medical diagnostics – nanomedicine – targeted drug delivery – Biosensors; Information storage – nanocomputer – molecular switch – single electron transistors; design and fabrication of MEMS and NEMS devices.

. TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-

Interscience Inc., Publication, 1st Edition, 2020.

4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY INDIA 2014.

REFERENCE BOOKS

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.
- 3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.
- 4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009

COUR	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics	Dhanalakshmi.phy@avit.ac.in
2	Dr G. SURESH	Asso. Professor	Physics	suresh.physics@avit.ac.in
3	Dr. R. N. VISWANATH	Professor	Physics	rnviswanath@avit.ac.in

			FU	NDAN	IENTAI (Theor	LS OF E y & Pra	BIOCH	IEMIS')	ΓRY	Cate	gory	L	Т	Р	Credit
									-	FC()	BS)	3	0	2	4
PREA Essent studen lipids, biomo associ PREF COUI 1 2 3 4	Essentials of biochemistry deals with the study of biomolecules found in living organism. The course exposes the students to classification, properties, basic structure and functions of biomolecules like carbohydrate, amino acid, lipids, nucleic acid and vitamins. Knowledge of this course will enable students to understand the importance of biomolecules and give awareness to the various diseases associated with the deficiency of biomolecules and its associated diseases. PRERQUISITE-NIL COURSEOBJECTIVES 1 To understand the basic structure and properties of carbohydrate, lipids, aminoacids and nucleic acids 2 To emphasize the functional importance and role of biomolecules in living organisms 3 To illustrate the nutritional importance of Minerals. 4 To illustrate the nutritional importance of Vitamins and its deficiency diseases.														
COU	RSEOU	JTCO	MES	6.1		1									
CO1. Amino	success Recall	the De and pr	finitions finitions	offheco s, classi	fication,	properti	ies and	structu	re of c	arbohydi	rates, lip	ids,	Re	ememb	ber
CO2.	Discuss	s the bi	ological	impor	tance of	biomole	cules a	nd its n	utritio	nal value	.		Ur	dersta	nd
CO3.	Identif	y abou	t the stru	ictures	of amino	oacids, p	roteins	and Nu	icleic a	acids.			Ur	dersta	nd
CO4.	Prepare	e soluti	ons and	biolog	ical buff	ers								Apply	
CO5.	Determ	ine the	e quality	and qu	antity o	f biomol	ecules						A	nalyz	e
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC 2	PS O3
CO1	М	-	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2	M	-	M	-	-	-	-	-	-	-	-	-	-	-	-
CO_{3}	rvi C	- M	M	- C	- M	- T	-	-	-	-	-	- T	- C	-	-
CO4	S	M	M	S	M	M	-	-	-	-	-	L	M	-	-
	S-Strong: M-Medium: L-Low														

SYLLABUS CARBOHYDRATE

Biological importance, Nomenclature and Definition, Classification and Properties of Monosaccharides, Formulation of monosaccharides, Disaccharides, Oligosccharides and Polysaccharides (Homopolysaccharide sand Heteropolysaccharides).

LIPIDS

Biological importance, Definition and Classification. Fattyacids: classification, nomenclature, structure and properties of saturated and unsaturated fattyacids. Essential fattyacids, Triacylglycerols: nomenclature, physical properties, chemical properties.

AMINOACIDS AND PROTEINS

Amino acids – Classification, Structure, Properties and Biological importance. Proteins – Classification, Structural organization of Proteins – Primary, Secondary (α -helix, β -pleated structure, triple helix), Tertiary and Quaternary (Myoglobin and Hemoglobin).

NUCLEIC ACIDS

Nucleosides and nucleotides, Composition of RNA and DNA, Physico-chemical properties of nucleic acids–effect of alkali, acid and heat (denaturation and renaturation), features of phosphodiester bond,. Complementary base pairing, secondary structure of RNA, features of DNA double helix (Watson-Crickmodel), Nucleoproteins–histone and non-histone.

VITAMINS & MINERALS

Nutritional importance of vitamin, classification, source, daily requirements and functions, Deficiency symptoms – hypervitaminosis of fat soluble vitamins. Nutritional importance of Minerals – classification, source, daily requirement and deficiency symptoms.

PRACTICAL'S

1. pH measurements and Buffer preparations.

TITRIMETRICEXPERIMENTS

- 2. Determination of Saponification value of Edible oil
- 3. Determination of Iodine value of Oil
- 4. Determination of Acid number of Edible oils.

BIOCHEMICALPREPARATIONS

- 5. Casein from Milk.
- 6. Starch from Potato.

TEXTBOOKS

- "Fundamentals of Biochemistry", Jain J. L., Sunjay Jain and Nitin Jain., S.Chand & Company Ltd., 6thEdition, 2005.
- Fundamentals of Biochemistry, Jain J.L., Sunjay Jain and Nitin Jain., S.Chand & Company Ltd., 6thEdition, 2005.

REFERENCES:

1. "TextBook of Biochemistry for Medical Students", Ambika Shanmugham, Lippincott Williams & Wilkins, 7th Edition, 2012.

- 2. "Biochemistry", Rastogi S.C.Mc. Graw-Hill Publishing Company Ltd, 6th Edition, 2007.
- 3. "Principles of Biochemistry", David L. Nelson and Michael M.Cox, W.H. Freeman and Company,4th Edition, 2005.
- "Text book of Biochemistry", Sathyanarayana U and Chakrapani U., Uppala Author Publishers Interlinks, 3rd Edition, 2006.

COUI	RSEDESIGNERS			
S.N	NameoftheFaculty	Designation	Department	MailID
0.				
1	Dr.S.Anandakumar	Assistant	Biotechnology	anandakumars@vmkvec.e
		Professor		du.in
2	Dr.B.Prabasheela	Associate	Biotechnology	prabasheela@avit.ac.in
		Professor		
	•	•	•	·

MICROBIOLOGY	Category	L	Т	Р	Credit
MICKODIOLOGI	FC (BS)	3	0	0	3

PREAMBLE

Microbiology deals with the study of microbes. It will cover a wide spectrum of classification, cellular organization and characteristics of microscopic organisms, diseases caused and beneficial effects, environmental damage or stress. Microbiologists often use cutting-edge techniques and sophisticated machinery along with other applied fields of research like biotechnology, genetics to study microbes and their complex mechanisms. Knowledge of these principles will enable students to understand how they react under different conditions and how they cause different diseases and their control.

PRE	PREREQUISITE - NIL														
COU	RSE OF	BJECT	IVES												
1	To descr	ribe abo	out the	evoluti	on of n	nicroor	ganism	is and r	nicrosc	opy.					
2	To Expl	ain the	Structu	are and	replica	tion in	microc	organis	ms - co	oncepts.					
3	To inter	pret the	e effect	s of Mi	crobes	in food	l and th	e clinio	cal imp	ortance	of micro	organisr	ns.		
4	To learn	about	viruses	s that ar	e life tl	hreaten	ing to 1	mankin	d such	as covid	l-19, Inf	luenza v	irus, Nip	ah virus	,
5	To outline the requirements of Microbial nutrition for growth of microorganisms and the impact of environment on its growth.														
COU	COURSE OUTCOMES														
After	the succ	essful c	comple	tion of	the cou	rse, lea	rner w	ill be a	ble to						
CO1.	CO1. Explain about historical perspective of microbiology and its developments Understand														
CO2. and c	Describe hemical	the fur method	ndamer Is	ıtal stru	cture, t	function	ns of a	cell an	d the co	ontrol of	microbe	es using	physical	Under	stand
CO3.	Demons	trate th	e micro	obial nu	itrition	al requi	irement	ts for g	rowth					Apply	
CO4.	Demons	trate th	e micro	oorgani	sm hav	e an in	dispens	sable ro	ole in th	ne enviro	onment			Apply	
CO5.	Categori	ize the	role of	microo	rganisı	ns in ei	nvironr	nental	applica	tions				Analyz	ze
MAP	PING V	ITH I	PROG	RAMM	IE OU	ТСОМ	IES AN	ND PR	OGRA	MME S	SPECIF	IC OUI	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	M	M	L	M	-	-	-	-	-	-	-	-	-	-	-
CO2	S	L	М	М	-	-	-	-	-	-	-	-	М	-	-
CO3	S	S	Μ	S	-	-	-	-	-	-	-	-	-	-	-
CO4	S	S	S	S	-	-	Μ	-	-	-	-	-	-	Μ	S
CO5	M	Μ	Μ	Μ	-	-	Μ	-	-	-	-	M	-	Μ	Μ
S- Sti	S- Strong; M-Medium; L-Low														

SYLLABUS

WORLD OF MICRORGANISMS AND MICROSCOPY

Historical review of the foundation of microbiology, Characteristics of microorganisms, Taxonomy methods of studying microorganisms, Microscopy - Light, Electron, Micrometry.

STRUCTURAL ORGANISATION OF MICROORGANISMS

General structural and cellular organization of Bacteria, virus, fungi, algae and protozoa.

MICROBIAL GROWTH AND NUTRITION

Nutritional requirements, Growth of microorganisms, Aerobic and anaerobic growth, Different methods of microbial enumeration, Methods of preservation of microbes. Effects of physical, chemical and environmental factors on microbial growth.

FOOD AND CLINICAL MICROBIOLOGY

Food spoilage and poisoning, Pandemic microorganisms- Corona virus, Influenza virus, Nipah virus and their effects on infections, Formation of toxic materials by microorganisms and their role in clinical microbiology.

CONTROL OF MICROORGANISMS

Physical and chemical control of microorganisms; host-microbe interactions; anti-bacterial, antifungal and anti-viral agents; mode of action and resistance to antibiotics; Vaccine production and its types.

TEXT BOOKS:

- Pelzar, M.J., Chan, E.C. S and Krieg, N.R. 1993.Microbiology. Tata McGraw Hill Edition. New Delhi. India.
- 2. Ananthanarayan and Jayaram Paniker, 1999. Text Book of Microbiology. Orient Longman Publishers.

REFERENCES:

- 1. Talaro, K., Talaro A. Cassida Pelza and Reid, 1993. Foundation in Microbiology. W.C. Brown Publishers.
- 2. Prescott, Harley and Klen, 2003. Microbiology. McGraw Hill Publications. 5thEdn.
- 3. Frazier, W.S. and Weshoff, D.C., 1988. Food Microbiology, 4thEdn., McGraw Hill Book Co., New York.
- 4. George, J.B., 1987. Basic Food Microbiology. CBS Publishers and Distributors.
- 5. James, M.J., 1987. Modern Food Microbiology. CBS Publishers and Distributors.

<u>COUR</u> S. No	SE DESIGNERS Name of the Faculty	Designation	Department	Mail ID
1	Ms.M.Sobana	Assistant Professor	Biotechnology	sobanam@vmkvec.edu.in
2	Dr.R.Balachandar	Assistant Professor G-II	Biotechnology	Balachandar.biotech@avit.ac.in

				М		RIAL	OCV	LAR		Categ	ory	L	Т	P	Credit
				IVI		DIUL	JGI	LAD		FC	C (BS)	0	0	4	2
PREA	MBL	E								1		-	1-		
This of perform	course ming t	incluc ests to	les pre identif	paring fy bact	staine eria ar	ed sme nd fung	ears, c gi, and	ulturin studyi	ng micro ng micr	oorganis obial gro	ms, con owth cor	ducting trol.	immuı	nology	experiments,
PREF	REQU	ISITE	– NIL	,											
COU	RSEC)BJEC	TIVE	s											
1	Des inst	cribe rumen	the sa	fe pra	ctices	in a	micro	biolog	y labor	atory ai	nd hand	ling m	ethod o	of glass	s wares and
2	Pe	rform	various	s cells	stainin	g tech	niques	•							
3	De	emonst	rate pr	oper u	sage, 1	dentity	the pa	arts/fur	nctions (of the fol	llowing	microsc	opes		
4	Pe	rform	transfe	r of liv	ring mi	icrobes	susing	asepti	c techni	que.					
5	Di	fferent	iate the	e micro	obes ei	numera	ited from	om var	ious env	vironmen	nts.				
COU	RSE (OUTC	OMES												
After	the suc	ccesstu	l comp	oletion	of the	course	e, learr	ner will	be able	to					
CO1.	Experi	iment v	with m	icrosco	ope to 1	reveal	the str	ucture	and fun	ction of	microor	ganisms	3		Apply
CO2. specir	Identi nens	ify the	meth	nods f	for iso	lation,	subc	ulture,	and n	naintena	nce of	bacteria	and and	fungal	Apply
CO3 1	Exami	ne the i	uses of	variou	is med	1a and	testing	g proto	cols wit	h tocus o	on clinic	al appli	cations.		Analyze
CO4.	Inspec	t the c	auses a	nd cor	seque	nces of	f micro	obial e	volutior	and the	generati	on ofdi	versity	as well	Analyze
as hur	nan in	pacts	on adaj	otation		-									
and co	Detern	of path	evide	nce of organ	bacter	ial and	Tunga	ii meta	bolism a	as it rela	tes to 1de	entificat	10n		Evaluate
MAP	PING	WITH	I PRO	GRAN	MME	OUTC	COME	S ANI) PRO	GRAMN	AE SPE	CIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	-	-	-	L	-	Μ	-	-	-	-	-	Μ	М	S
CO2	Μ	S	М	-	-	-	Μ	-	-	-	-	-	Μ	S	S
CO3	Μ	M	М	М	Μ	-	-	-	S	М	-	-	Μ	S	-
CO4	L	Μ	Μ	Μ	-	-	S	-	S	М	-	-	S	М	М
CO5	L	-	L		Μ	S	Μ	-	-	S	-	Μ	-	М	S
S- Str	ong; N	1-Med	um; L-	-Low											
SYLI	LABUS	S													
1. St	eriliza	tion te	chnique	es and	handli	ng me	thod o	f glass	wares a	ind instru	uments				
2. Ci	ulture	Media	Prepar	ations											
	a.]	Broth	media												
	b	Agar													
3. Ci	ulturin	g of M	icro or	ganisn	ns										
	a. 1	Pure C	ulture t	echnic	ques b.	Streak	c plate	c. Pou	r plate						
4. Is	olation	, Enur	neratio	n and l	Purific	ation c	of Mici	robes f	rom a g	iven sam	ple.				
5. Pr	eserva	tion of	Bacter	rial Cu	lture.										

- 6. Examination of quality of milk Methylene blue test
- 7. Identification of Microorganisms
 - a. Staining techniques-Simple-Gram-Spore-Hanging drop b. Biochemical identification
- 7. Quantification of microorganisms Microscopy
 - a. Serial dilution and plating
- 8. Environmental Sample Analysis-.MPN Test
- 9. Food Microbiology
 - -Milk
 - -Fermented food

10. Antibiotic Sensitivity Assay

REFERENCES:

Cappuccino, J. G. and Sherman, N., 1999. Microbiology: A laboratory Manual. 4th Edition, Addison - Wesley.
 Collee, J. G., et al., 1996. Mackie and McCartney Practical Medical Microbiology. 4th Edition, Churchill Livingstone.

3. Sundararaj, T., 2007. Microbiology laboratory manual. A swathy Sunndararaj.

4. Laboratory Manual

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.M.Sobana	Assistant Professor	Biotechnology	sobanam@vmkvec.edu.in
2	Dr.R.Balachandar	Assistant Professor G-II	Biotechnology	Balachandar.biotech@avit.ac.in

				ENV	RONN	IENTA	L SCI	ENCES	5	0	Category	L	Т	P Cr	edit											
				(C	commo	n to Al	Branc	ches)			FC(BS)	3	0	0	3											
Envir	onmen	tal scie	nce is a	n interc	lisciplir	nary fiel	ld that i	ntegrate	es physi	cal, che	mical, b	iologic	al, and	atmosp	heric											
scienc	es. En	vironm	ental st	udies d	leals wi	ith the	human	relation	ns to th	e envir	onment a	and so	cietal p	roblems	and											
conser	rving t	he env	ironme	nt for	the fu	ture. E	nvironi	nental	enginee	ering fo	ocuses o	on the	variou	ıs issue	s of											
enviro	nment	and its	manag	ement f	for sust	ainable	develo	pment	by imp	roving	the envir	onmen	tal qua	lity in e	very											
aspect	t .																									
PREF	REQUI	SITE: 1	NIL																							
COU	RSE O	BJECT	IVES																							
1 7	To incu	lcate the	e knowl	ledge of	f signifi	cance o	of enviro	onmenta	al studie	es and c	onservat	ion of t	he natu	ral												
1	resource	es.																								
2 7	To acqu	ire kno	wledge	ofecos	ystem,	biodive	rsity, it	's threa	ts and t	he need	for cons	ervatio	n													
3 7	To gain	knowle	edge abo	out envi	ironmer	ntal poll	lution, i	t's sour	ces, eff	ects and	l control	measu	res													
4	To familiarize the legal provisions and the national and international concern for the protection of environment																									
6	environ	ment																								
5	To be aware of the population on human health and environment, role of technology in monitoring human health and environment																									
1	health and environment.																									
COU	COURSE OUTCOMES																									
On the	On the successful completion of the course, students will be able to																									
CO1.	Underst	tand the	e import	ance of	enviro	nment a	and alte	rnate en	nergy re	sources				Underst	and											
CO2.	Initiate	the aw	areness	and rec	cognize	the soc	ial resp	onsibili	ty in ec	osysten	n and bio	diversi	ty	Apply												
conser	rvation																									
CO3.	To deve	elop tec	hnologi	ies to ar	nalyse tl	he air, v	vater ar	nd soil p	ollutior	n and so	lve the p	roblem	IS	Apply												
CO4.	To eval	uate the	e social	issues a	and app	ly suita	ble env	ironmeı	ntal regu	ulations	for a sus	stainab	le	Evaluat	P											
develo	opment													Lvaluat	C											
CO5.	To iden	tify and	i analys	e the ur	ban pro	oblems,	popula	tion on	human	health a	ind envir	onmen	t	Analyse	2											
MAP	PING V	NITH 1	PROGI	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	ME SP	ECIFIC	OUT	COME	S												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3											
CO1	S	М	L	-	_	S	S	S	-	-	-	S	-	-	-											
CO2	S	М	М	-	_	S	S	S	_	-	-	S	-	-	-											
CO3	O3 S L M S S S S																									
CO4	04 S S S L - S S S S																									
CO5	D5 S S M - S S S S																									
S- Str	ong; M-	Mediu	m; L-Lo)W			•			•	I		•													

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and over-exploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems –Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, Agriculture- effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems – pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation – hot-spots of biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

6 hrs

6 hrs

ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid waste- solid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis - Clean technology options, Low Carbon Life Style.

SOCIAL ISSUES AND ENVIRONMENT

Sustainable Development- Water conservation - rain water harvesting, watershed management -Resettlement and rehabilitation of people , case studies --Climate change - Global warming - Acid rain - Ozone depletion-Environment Protection Act - Air (Prevention and Control of Pollution) act - Water (Prevention and control of Pollution) act - Wildlife protection act - Forest conservation act- Pollution Control Board-central and state pollution control boards.

HUMAN POPULATION AND ENVIRONMENT

Population – Population growth & Population Explosion –Family welfare programme - Environment & human health - Human rights - Value education -AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1.Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers. 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennai Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

COURSE	COURSE DESIGNERS										
S.No.	Name of the Faculty	Mail ID									
1.	Dr. K. Sanghamitra	sanghamitra.chemistry@avit.ac.in									
2.	A. Gilbert Sunderraj	gilbertsunderraj@vmkvec.edu.in									

6 hrs

6 hrs

6 hrs

(iii) ENGINEERING SCIENCES (BASIC ENGINEERING COURSES) - CREDITS (18-24)

	FUNDAMENTALS OF BIOTECHNOLOGY Category L T P Credit EC (ES) 3 0 0 3															
											F	C (ES)	3	0	0	3
PRE Biote lifest cellul biote organ comr	AMBL chnologyle of 1 ar mat chnolog iisms an nercial 1	E gy is th iving o erials ists aro ists aro nd biop manufa	ne Cor organis are ex e used process acture	nbinati sms. E xploite in res ses. Fu of new	ion of l Bioproc d to c earch a indame	biologic esses an levelop nd deve ental pri binant I	cal scier nd path new e elopmen inciples DNA de	nces an ways, expertis nt, heal of ger erived p	d engi living se. Ad thcare, netic e product	neering microo vanced agricu ngineer	g in orde organisn l tools lture, ar ring, rD	er to un ns, plan and te nd the in NA tec	ndersta at and chnolo ndustr hnolo	and an anim ogies y to fi gy he	nd im al ce deve urthe lps to	prove the lls and/or loped by r enhance o produce
PRE	REQUI	SITE	– NIL													
COU	RSE O	BJEC	TIVE	S												
1 '	Го acqu	ire kno	owledg	e on p	rinciple	es of bio	otechnol	ogy.								
2 ' i	To study industry	y in det	tail abo	out me	chanisı	n and aj	pplicatio	ons of	genetic	engin	eering ir	n the foo	od and	lagricu	ıltura	1
3 '	To unde	rstand	impor	tance of	of biote	chnolog	gy to de	velop g	genetica	ally mo	dified a	nimals	itsapp	licatio	ons.	
4	 To apply the knowledge of biotechnology to enhance the Marine environment. To analyze in details about performance of drugs developed using rDNA technology. 															
5 '	Fo analy	ze in o	details	about	perform	nance of	f drugs	develo	ped us:	ing rDI	NA tech	nology.				
COU	COURSE OUTCOMES On the successful completion of the course, students will be able to															
On th	On the successful completion of the course, students will be able to															
CO1.	Knowl	edge al	bout fu	Indame	ental pr	inciples	about l	biotech	nology	7.				Un	dersta	and
CO2.	Acquir	ed goo	d knov	wledge	on ger	netically	[,] modifi	ed proo	ducts in	n food a	andagric	ultural	field.	Un	dersta	and
CO3. resea	Unders	tand ir develo	n detail opment	l about	the ap	plication	ns of ge	netical	ly mod	lifiedar	imals ir	1		Un	dersta	and
CO4.	Apply	the kno	owledg	ge of bi	otechn	ology to	o impro	ve Mar	ine env	vironm	ent.			Ap	ply	
CO5.	Analyz	ing in	detail	about	he perf	formanc	e of dru	ıgs pro	duced	by nov	elmetho	ds		An	alyze	
MAF	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03															
CO1	S	L	M	L	-	-	-	-	-	-	-	-	L		-	I
CO2	S	M	M	L	-	-	S	-	-	-	-	L	L		-	L
CO3	5	5		S M	-	-	M	-	-	-	-		S		S	S
CO4	2	с М	с М	1/1	S M	-	M		-	-	-	IVI	S		S	S
<u>CO5</u> S- St	ठ rong: M	-Medi	<u>м</u> um: L-	S Low	M	-	IVI	-	-	-	-	М	М	N	VI	M
	6,		2													

SYLLABUS

SCOPE AND INTRODUCTION TO BIOTECHNOLOGY $% \mathcal{A}$:

Scope of Biotechnology. Branches of Biotechnology: Conventional and Modern Biotechnology – Biotech industries. Biotechnology Tree. Biotech Policy Initiatives Biotechnology in context of Developing World Strategies of gene cloning

TOOLS IN BIOTECHNOLOGY:

Molecular Scissors, Vectors, PCR, ELISA, FACS, FISH, Chromatography, Electrophoresis, Cell culture techniques

MARINE ENVIRONMENTAL BIOTECHNOLOGY

Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial); Biological indicators (Marine microbes, algae and crustaceans). Biodegradation of natural and synthetic waste materials; Bioremediation; Separation and bio removal of pollutants.

INDUSTRIAL BIOTECHNOLOGY

Industrial Enzyme production: α-amylase, cellulase, protease and lipase, Recombinant protein production: Insulin and interferon, Antibiotic production: Penicillin- Synthetic and Semi synthetic and Bacitracin (Novartis and Genetech), Clinical Diagnosis using electronic devices (Glucometer, Biosensor).

APPLICATION IN BIOTECHNOLOGY

Biofertilizers. Biopesticides. Biorepellants. Pest control and management. Biomass (SCP). Bioplastics. Bioweapons. Bio dyes, Bio fuels – Biodiesel & Biogas. Bioindicators. Biodegradation- Role of GMO's, Genetically Modified Food – Bovine somatotropin, alpha lactalbumin & lactoferrin in milk, Edible vaccine (Cholera vaccine –potatoes & Hepatitis B vaccine - maize). Rice, Flavr – Savr Tomato, Bt- potatoes, BT Cotton and BT Brinjal

TEXT BOOKS

1. Gupta, P.K., "Elements of Biotechnology", Rastogi Publications, 2nd Edition, 2010.

- 2. Satyanarayana.U., "Biotechnology", Books and Allied Pvt Ltd., 2005.
- 3. Environmental Biotechnology and cleaner Bioprocess Olguni, E.J. et al., 2000
- 4. Environmental Biotechnology Theory and applications Evans et al., 2000.
- 5. Principles of Gene Manipulation Old & Primrose, (1989), 3rd edition

REFERENCES

- 1. John E. Smith., "Biotechnology", Cambridge Press. 3rd Edition, 2005.
- 2. Glazer A and Nikaido H., "Microbial Biotechnology Fundamentals of Applied

Microbiology", Cambridge University Press, 2nd Edition, 2007.

3. Jogdand S.N., "Environmental Biotechnology", Himalaya Publishing House, 2003.

4. Kumar H.D., "Modern Concepts and Biotechnology", Vikas Publishing House Pvt. Ltd, 1998.

5. R.C. Dubey., "Textbook of Biotechnology", S. Chand Publishing., 2001.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Protessor&Head	Biotechnology	sridevi@vmkvec.edu.in
2	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in

		FO	UNDA	TION	IS OF	COM	IPUTI	NG AN	D	Cate	gory	L	Т	P	C	redit
]	PROG	RAM	MIN(G(THE	EORY	AND		ES	5	2	0	2	í.	3
PREA	MBL	E		Pf	ACI	ICAL	5)									
This c	ourse	aims to	o prov	ide the	funda	amenta	l conc	epts of	Comp	outer op	erations	s like	hard	ware	and sof	tware
install	ation,	and e	mphas	izing _]	princip	ples pr	ogram	ming la	angua	ges. Stu	udying	the fu	Inda	menta	als data	base
langua	ages, c	omma	nds an	d inter	rnet ba	asics.										
		D IE/	- 1 111 TTTVE													
		DJE		40 11		<u> </u>				<u>c</u>		1 .1	<u></u>		_	
1.	10 pi	rovide	Dasic	KNOWI	eage c	or nard	ware c	compone	ents o	r comp	iters an	d clas	SILIC	ation	s.	
2.	To in appli	troduo cation	ce and packa	demoi ges.	nstrate	variou	ıs Ope	erating S	Syster	n functi	ons and	l softv	vare.	. Soft	ware	
3.	To st	udy P	rincipl	es of p	rogran	nming	and a	pplicati	ons of	f progra	mming	•				
4.	To le	arn ab	out va	rious I	Databa	ise Ma	nagem	nent Sys	stems	languag	ges and	comn	nand	s used	1.	
5.	To le	arn ba	sics of	Interr	net and	l Web	servic	es.								
COU	RSE C	OUTC	OMES	5												
On the	e succe	essful o	comple	etion o	f the c	ourse,	studer	nts will	be ab	le to						
CO1.	To und	lerstar	nd the	Basic	knowl	edge o	n com	puter ha	ardwa	re and i	ts funct	ions.			Under	stand
CO2.	To get	know	ledge	of Fun	damer	itals of	f vario	us Oper	rating	System	functio	ons an	id so	ft	Under	stand
wares			U					1	U							
CO3.7	CO3.To Understand the principles of programming and categories of Apply programming languages.															
rogra	CO4.To demonstrates Database Management Systems languages and their classifications. Apply															
C05.	CO5. To understands and demonstrates the Internet Basics. Apply															
МА	DDIN		TH DD		ллл	FOI	TCON		S. ND P		АММЕ	COF	CIF			MES
	POI	POZ	POS	P04	P05	PUo	P07	PU8	P09	POIU	POII	POI	.2]		PSOZ	PSU3
	8	•	•	-	-	-	-	-	-	-	-	•		<u>s</u>	M	-
CO2	S	M	M	-	M	-	-	-	-	-	-	M		S	М	M
CO3	S	S	S	-	M	-	-	-	-	-	-	-		S	-	M
CO4	S	S	S	-	S	-	-	-	-	-	-	-		S	М	М
CO5	S	Μ	Μ	-	Μ	-	-	-	-	-	-	S		S	Μ	Μ
S- Str	ong; M	I-Med	ium; L	-Low												
SYLLA	ABUS															
Introdu	ction t	o com	puters	:												
Compu	iter – C	Charac	teristic	es of	con	nputer	s -Ge	neratior	ns of	com	outers-	Types	s of	Com	puters-	Block
diagran	n of a	com	puter	– Coi	npone	nts of	a co	mputer	syste	em –Ha	ardware	and	soft	ware	definit	ions –
Catego	Categories of software – Booting.															
Softwa	re app	licatio	ns:													
Office	Autor	nation	: App	licatio	n Pacl	kages -	– Wor	d proce	essing	(MS V	Word) -	- Spre	ad s	sheet	(MS E	xcel) –
Present	tation (MS P	owerP	oint).	г 1			• ,								
Lab Co	ompone	ent-Ms	s wor	a,,Ms	Excel,	wis po	werpo	int.								
Introdu	ction t	o prog	gramm	ing												
Problei	ns Sol	lving	Techn	iques	- Prog	gram I	Develo	opment	Cycle	e – Alg	gorithm	Deve	elopi	ment	– Flov	v chart
generat	tion –F	rogra	mming	<u>g Cons</u>	tructs	(Sequ	ential,	Decisi	on-M	aking, l	lteratio	<u>1) – T</u>	ype	<u>s an</u> d	genera	tion of

programming Languages.

Fundamentals of Operating System and DBMS :

Operating Systems: Introduction, Functions of an operating System, types of Operating Systems Introduction to Database Management Systems- -File system vs DBMS, Database applications, Database users, Introduction to SQL, Classification of SQL:DDL, DML, DCL, TCL Lab Component- DDL, DML, DCL, TCL constraints

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet Basics of HTML – Applications of HTML – HTML Fonts – anchor tag and its attributes – Using images in HTML programs – list tag - Table tag.

Lab Component -HTML programs TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014

REFERENCES:

1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta, 2019.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd

Edition, Addison Wesley, 2011

COURSE DESIGNER	S		
Name of the Faculty	Designation	Department	Mail ID
K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

		PRO)GRA	MMIN	G FOI	R PRO	BLEM	I SOLV	VING		Catego	ry L	Т	Р		Credit
											FC(ES) 3	0	0		3
PREA	MBLE															
The co	ourse is	design	ned to	introdu	ce basi	c prob	lem so	lving a	nd prog	gram des	sign skill	s that a	re use	d to	create	e computer
program	ms. It g	gives e	ngineer	ing stu	dents a	in intro	duction	n to pro	ogramn	ung and	develop	ing anal	ytical	skills	s to u	ise in their
subseq	uent co	urse wo	ork and	profess	sional d	levelopi	ment. T	his cou	irse foci	uses on p	oroblem s	olving,	algorit	hm de	eveloj	pment, top-
down o	design,	modula	ar prog	rammir	ig, deb	ugging	and te	sting u	sing the	prograi	mming co	in structs	5 like 1	[10W-	contro	ol, looping,
strata	n and re	cursio	n. It pre	esents s	everal t	ecnnique de la construcción de la c	ues usii	ng com	puters to	o solve p	roblems,	mming	ig the t	use of	prog	ram design
strateg		$\frac{1001S, C}{1TE}$		argoriu	nins us		mpute	r progra	im and e	elementa	ry progra	mming (echniq	ues.		
TKEK	EQUIS		IL													
COUR	SEOB.	JECTI	VES													
1.	To ga	in basi	c know	ledge a	ibout si	imple a	lgorith	ms for	arithme	tic and l	logical pi	oblems.				
2.	To le	arn ho	w to wi	rite a pi	ogram	, syntax	k and lo	ogical e	errors.							
3.	To un	derstar	nd how	to dec	ompose	e a prot	olem in	to func	tions ar	nd synth	esize a co	omplete	progra	ım.		
COUR	SF O		MFS													
On the	On the successful completion of the course, students will be able to															
CO1: I	Formula	ate sim	ple alg	orithms	for ar	ithmetio	c and lo	ogical p	problem	IS.				U	Inders	stand
CO2: 7	CO2: Test and execute the programs and correct syntax and logical errors Apply															
CO3: 1	mplem	ent cor	nditiona	al branc	hing, i	teratior	n and re	ecursio	n.					А	pply	
CO4: I	Decomp	ose a j	problen	n into f	unctior	ns and s	synthes	ize a co	omplete	program	n.			A	nalze	¢
CO5: 1	Use arra	iys, poi	inters,	strings	and str	uctures	to form	nulate	algorith	ms and	program	3		А	pply	
	Ι	MAPPI	INGW	THPR	OGRA	MME	OUTC	OMES	ANDPR	ROGRA	MMESP	ECIFIC	OUT	COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
C01	М	М	М	М	_	-	_	_	_	-	-	-	М		М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М		М	М
CO3	М	м	S	м	_		-	_	_	_	_	_	м		м	М
CO4	CO4 S M M M A A A A A A A A A A A A A A A A															
C05	5	111	101	101	-	-	-	-	-	-	-	-	101		141	5
	S	М	М	М	-	-	-	-	-	-	-	-	М		М	S
	S-Strong; M-Medium; L-Low															

SYLLABUS

INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators,-bitwise and conditional operators-special operators- operator precedence and associativity-evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arraysinitialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms-Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functions-call by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functions-string handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of

Pointers- functions returning pointers,-Dynamic memory allocation

STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structures-structures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

	Course Designers:												
	Course Designers.												
S.No.	Name of the	Designation	Department	MailID									
	Faculty												
1.	Mrs.R.Shobana	Assistant Professor	<u>CSE</u>	shobana@avit.ac.in									
2.	Mr.B.Sundaramurthy	Assistant Professor	CSE	sundaramurthy@vmkvec.edu.in									

		P	YTHC	ON PR	OGR	AMN AND	IING	(CATE	GORY	L	Т	Р	(CREDIT
				PRAC	TIC.	ALS)			ES	5	2	0	2		3
PREAN The purp to write popular	IBLE bose of code fo and po	this c or diffe werfu	ourse : erent o l open	is to in peration source	trodu ng sys prog	ice Pyt stems a gramm	hon, a along v ing too	remar with aj	kably oplicat	powerfu ion dom	ıl dynaı ain. Py	nic pr thon l	ogram has evo	ming la	anguage n more
PRERQ	UISIT	E :NI	L												
COURS	E OB.	JECT	IVES												
1.	To pr	ovide	basic	knowle	edge	on Pyt	hon pr	ogram	ming o	concepts	s.				
2.	To in	troduc	e diffe	erent n	netho	ds in li	ist, stri	ng, tuj	ple, dic	ctionary	and set	s.			
3.	To co	omput	e diffe	rent pr	ograi	ns usir	ng pyth	non co	ntrol st	tatemen	ts.				
4.	To le	arn ab	out dif	ferent	funct	tions in	n pytho	on.							
5.	To co	omput	e the e	xceptio	on ha	ndling	functi	ons an	d file	concept	s.				
COURS	E OU'	TCON	MES												
On the s	uccessi	ful coi	npletio	on of tl	ne co	urse, s	tudents	s will l	be able	e to					
CO1. Le methods	CO1. Learn python statements, comments and indentation, tokens, input and output Understand methods using various example programs.														
CO2. Ap	CO2. Apply the different methods involved in List, String, Tuples and Dictionary. Apply														
CO3. De statemer	esign so its.	olutior	ns for c	comple	x pro	grams	using	decisi	on mal	king and	l loopir	ng		App	ly.
CO4.Ap	ply the	funct	ion pro	ograms	s with	all the	e conce	epts lil	ke lam	bda and	recursi	on.		App	ly.
CO5. Co	mpute	the ex	cception nto	n hanc	lling	progra	ums, fil	e con	cept pr	ograms	and			App	oly
MAP	PING	WITH	I PRO	GRA	MMI	E OUT	ГСОМ	ES A	ND PF	ROGRA	MME	SPE(CIFIC	OUTC	COMES
COS	DO1	DO1	DO2	DO 4	Р	DOC	DO7	DOP	DOD	DO10	DO11	PO	PSO	PSO	DEO 2
	POI	PO2	PUS	PO4	05	PU0	P07	PUð	P09	POIU	POII	12	1	2	1503
COI	S	M	M	M	M	-	-	-	-	-	-	-	M	M	M
CO2	S	M	M	M	M	-	-	-	-	-	-	-	S	M	M
CO3	M	S	S	S	M	-	-	-	-	-	-	-	M	M	M
CO4	S	S	S	S	M	-	-	-	-	-	-	-	S	S	M
CO5	S	Μ	Μ	Μ	Μ	•	-	-	•	-	-	-	S	Μ	М
				S- Strong; M-Medium; L-Low											

SYLLABUS

INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

CONTROL STATEMENTS

Flow Control-Selection control Structure- iterative control structures.

FUNCTIONS

Introduction-Declaration of function-Types of function-Types of Arguments-parameters-recursion and lambda function

FILE HANDLING AND EXCEPTION HANDLING

FILES:Open, read, write, append, close, tell and seek method, Exception Handling: errors and exceptions-Raising exceptions-user defined exception

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 2st Edition, O'Reilly Media, 2019.
- 2. Programming With Python- II 'Himalaya Publishing House Pvt Ltd, 2018.
- 3. "Dive Into Python3" by Mark Pilgrim, 2012

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in								
2	Dr.V.Amirthalingam	Assistant Professor	CSE	amirthalingam@vmkvec.edu.in								

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING A. BASIC ELECTRICAL ENGINEERING

Category	L	Т	Р	Credit
FC(ES)	2	0	0	2

Understand

Understand

PREAMBLE

It is a preliminary course which highlights the basic concepts and outline of Electrical engineering. The concepts discussed herein are projected to deliver explanation on basic electrical engineering for beginners of all engineering graduates.

PREREQUISITE - Nil

COURSE OBJECTIVES

1	To explain	the basic	laws used	in Electrical	circuits and	various types	of measuring instrume	ents.
1	· · · ·					51	8	

2 To explain the different components and function of electrical dc and ac machines.

3 To understand the fundamentals of safety procedures, Earthing and Power system.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1: Explain theelectrical quantities and basic laws of electrical engineering.	Remember
CO2: Demonstrate Ohm's and Faraday's Law.	Apply
CO3: Describe the basic concepts of measuring instruments.	Understand

CO4: Explain the operation of electrical machineries and its applications.

CO5: Explain the electrical safety and protective devices.

CO6: Compare the various types electrical power generation systems by application of conventional and non-conventional sources.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	М	-	-	М	L	-	-	-	L	М	L	S	М	L
CO2	S	Μ	М	L	М	-	-	-	S	М	М	L	S	L	-
CO3	S	Μ	М	М	М	-	-	-	-	L	М	L	S	М	L
CO4	S	М	L	L	М	L	-	-	-	L	М	L	S	L	-
CO5	S	Μ	L	-	М	S	-	-	-	L	L	L	-	-	-
CO6	S	Μ	-	-	М	L	S	L	-	L	L	L	М	L	Μ
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS

ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)-Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits-Sinusoidal steady state analysis-Power and Power factor – Single phase and Three phase balanced circuits -Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor. **ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM**

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical &Electronics Engineering", Second Edition, PHI Learning, 2007.

coch														
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in										
2	Dr. G. Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.e du.in										
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in										
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in										

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	Category	L	Т	Р	Credit
B. BASIC ELECTRONICS ENGINEERING	FC(ES)	2	0	0	2

PREAMBLE

The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, de-multiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems.

PRERQUISITE - Nil

COURSE OBJECTIVES

COUR	SE OD	JEUI	IVES												
1	To learn and identify various active and passive components and their working principles.														
2	To un	derstan	d the nu	ımber c	onversi	on syst	ems and	d worki	ng Prin	ciples of	logic ga	tes.			
3	To learn the digital logic principles and realize adders, multiplexer, etc.,														
4 To understand the application-oriented concepts in the Various communication systems.															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. Interpret working principle and application of various active and passive electronic components like resistors, capacitors, inductors, diodes and transistors.															
CO2. Construct the rectifier, Clipper, Clamper, regulator circuits and explore their operations. Apply															
CO3. Execute number system conversions and compute several digital logic operations. Apply															
CO4. Design adders, Multiplexer, De-Multiplexer, Encoder, Decoder circuits for given data input. Apply															
CO5.] gadgets	Expose s like th	the w ie UHD	orking , OLEI	princip D, HDR	oles of and va	moder rious co	n tech	nologie ication	s in de systems	eveloping s.	g applica	ation-ori	ented	Understa	nd
MAPP	'ING W	VITH P	ROGR	RAMM	E OUT	COMI	ES ANI) PRO	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO 3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	Μ	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	S	М	М	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
CO5	S	М	-	-	-	-	-	-	L	L	-	L	S	-	L

S- Strong; M-Medium; L-Low

SYLLABUS

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM, PCM, DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB A. BASIC ELECTRICAL ENGINEERING

Category	L	Т	Р	Credit
FC(ES)	0	0	2	1

PREAMBLE

It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various types of earthing methods.

PRERQUISITE – NIL

COUR	SE OBJECTIVES
1	To learn the residential wiring and various types of electrical wiring.
2	To measure the various electrical quantities.
3	To know the necessity and types of earthing and measurement of earth resistance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO 1: Implement the various types of electrical wiring.	Apply
CO 2: Measure the fundamental parameters of AC circuits.	Analyze
CO 3: Measure the earth resistance of various electrical machineries.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	М	L		S							L	М	L	
CO2	S	М	S	S					М			М	М	L	
CO3	L	S	L		S					L		L	М	L	

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring.
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Types of wiring, Joints and Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr R Devaraian	Professor	FFF/VMKVFC	devarajan@vmkvec.edu.i
1	DI. R. Devarajan	110103501		n
2	Dr. C. Bamakrishnanrahu	Associata Brofessor	FEENMENEC	ramakrishnaprabu@vmkv
Z	Dr. G. Ramakrishnaprabu	Associate Floresson	EEE/ VINK VEC	ec.edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

ENGINEERING SKILLS PRACTICES LAB PART B - BASIC ELECTRONICS ENGINEERING

Category	L	Т	Р	Cre dit
FC(ES)	0	0	2	1

PREAMBLE

This course is to provide a practical knowledge in Basic Electronics Engineering. It starts with familiarization of electronic components and electronic equipments. It enables the students to construct and test simple electronic projects

PRERQUISITE – Nil

COURSE OBJECTIVES

0001									
1	To familiarize the electronic components, basic electronic equipments and soldering techniques.								
2	To study the characteristics of Diodes, BJT and FET.								
3	To understand the principles of various digital logic gates.								
4	To understand the concept of basic modulation techniques								
COUR	SE OUTCOMES								
On the	successful completion of the course, students will be able to								
CO1. F	amiliarize with the fundamentals of soldering techniques.	Understand							
CO2. C	CO2. Construct experiments for PN and Zener diode characteristics also determine diode forward and reverse resistance Apply								
CO3. Construct clipper and clamper circuit and verify their voltage levels Apply									
CO4. C	Construct and justify operation simple voltage regulator for given Zener diode	Apply							

CO5. Verify the truth tables and characteristics of logic gates (AND, OR, NOT, NAND, NOR, XOR).

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	М	Μ	Μ	-	-	М	-	L	-	-	L	-	Μ	-
CO3	S	М	М	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	М	М	Μ	-	I	М	-	L	-	-	L	М	-	-
CO5	S	М	-	-	-	-	-	-	L	L	-	L	S	-	L

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Practicing of Soldering and Desoldering.
- 2. Characteristics of PN junction Diode and find the forward and reverse resistance
- 3. Construct and Study simple clipper and clamper circuits
- 4. Characteristics of Zener diode and determine the break down voltage and diode resistance
- 5.Construct and Study simple voltage regulator using zener diode
- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

S.No.	Name of the Faculty	Designation	Departm ent	Mail ID		
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in		
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in		
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in		
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in		

	EN	IGIN	EERIN	IG GI	RAPE	IICS A	ND		Category L T					P Credit		
				D	ESIC	ΪN				FC(ES)	0	0	6		3
Pream	ble															
Engine	ering	Graph	ics is	referred	l as l	anguag	ge of e	engine	ers. A	An eng	ineer	needs	to u	nder	stand	the
physica	al geor	netry	of any	object	throug	gh its (orthogr	aphic	or pi	ctorial j	projec	tions.	The	knov	vledg	e on
engine	ering g	graphic	es is e	ssential	in pr	oposin	g new	produ	ict th	rough c	lrawin	igs ai	nd int	erpre	eting	data
from e	xisting	drawi	ngs. T	This cour	rse de	als wit	th ortho	ograph	nic and	d pictor	ial pro	ojectio	ons, s	ectio	nal v	iews
and dev	velopm	nent of	surfac	ces.												
Prereq	uisite	NIL														
Course Objective																
1	Toin	npleme	ent the	orthogr	aphic	projec	tions of	f point	ts, stra	aight lir	ies, pla	ane su	rfaces	s and	solic	ls.
2	Toco	onstruc	et the c	orthograp	phic p	rojecti	ons of s	section	ned so	olids an	d true	shape	of the	e sect	tions.	
3	To develop lateral surfaces of the uncut and cut solids.															
4	To dr	aw the	e picto	rial proj	ection	s (isor	netric a	nd per	rspect	ive) of	simple	e solid	s.			
5	To di	aw the	e ortho	graphic	views	from	the give	en pict	torial	view.						
Course	e Outc	omes:	On th	e succes	ssful o	comple	etion of	f the c	ourse	, stude	nts wi	ill be a	able t	0		
COL	Exec	ute in	the fo	orm of c	lrawir	ng of tl	he ortho	ograpł	nic pro	ojection	is of p	oints,			App	ly
001.	straig	ght line	es, plai	ne surfac	ces an	d solid	s.									
CO^2	Dem	onstrat	te in th	e form o	of drav	ving o	f the or	thogra	aphic	projecti	ons of	f secti	oned		App	ly
002.	solid	s and t	rue sha	ape of th	ne sect	ions.										
CO3.	Develop lateral surfaces of the solid section and cut section of solids. Apply															
CO4.	Draw	the pi	ctorial	l project	ions (i	isomet	ric and	persp	ective) of sin	ple so	olids.			Apply	
CO5.	Draw	the of	rthogra	aphic vie	ews fr	om the	given	pictor	ial vie	ew.					App	ly
		Марр	ing wi	ith Prog	ramn	ne Out	tcomes	and I	Progr	amme 🕯	Specif	ic Ou	tcom	es		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PS	01	PSO2	PSO3
CO1	S	S	L	S	L								L	r		
CO2	S	S	L	S	L								L	r		
CO3	S	S	L	S	L								L	r -		
CO4	S	Μ	L	S	S								L	r		
CO5	S	S	L	S	L								L	r		
					S-	Stron	g; M-M	edium	;L-L	OW						
Syllab	us															
PLAN	E CUI	RVES	AND	DIMEN	ISION	VING									-	
Basic C	Jeome	trical c	constru	ictions,	Curve	s used	in engi	neerir	ng pra	ctices:	Conic	s - Cc	onstru	ction	of	
ellipse,	parab	ola and	d hype	rbola by	eccei	ntricity	^v metho	d - C	onstru	iction o	f cyclo	$\operatorname{oid} - \operatorname{c}$	constr	uctio	n of	
involut	es of s	quare	and cir	cle – Dr	awing	g of tar	igents a	and no	rmalt	to the al	pove c	urves	. Dim	ensio	oning	•
Project	10n of	points		IDC												
PROJ	ECTIC		SOL	IDS		1: 1.	1:1	•						1	1	
Project	1011 01	nnes, I	Project	tion of s	imple	solids	nke pri	isins, j	pyran moth	nds, cy	inder	and co	one w	nen	ne ay	18
SECT					EVEI			DE CI		CES						
Section	ing of	above	solide	AND	le ver	tical n	osition	by cut	tting r	CES Janes in	ncline	d to at	ny one	• refe	rence	A
nlane a	nd ner	nendic	ular to	, the oth	r = 0	htaini	ng true	shape	of se	nanes n		u to ai	iy on			2
Develo	nu per	of late	aral cu	rfaces of	f cimn	le and	truncat	ted sol	lide lil	Drist	ne nu	ramid	e ovl	ndor	e and	4
cones	pinem	01 140	<i>.1 a1 su</i>	fraces of	simp		unca	icu soi	nus m	xc 1 1151	ns, py	rannu	5, Cy1	nuci	s and	l
ORTH	IOGR	APHI	C VIE	WS AN	D ISC	OMET	RIC V	TEWS	S – Fi	rst anol	e proie	ection	- lav	out v	iews	_
Repres	entatio	on of 7	Chree 1	Dimensi	ional	object	s -multi	inle vi	iews f	rom nic	torial	views	of of	iects	10 10 5	
Princin	Principles of isometric View – isometric scale – Principles of isometric projection – isometric scale –															
Isomet	Isometric projections of simple solids and truncated solids – Prisms, pyramids, cylinders, cones.															
INTRO	INTRODUCTION TO AUTO CAD															
Introdu	Introduction to Auto CAD- Basic introduction and operational instructions of various commands in															
AutoC	AD. Li	mit Sy	stem-	Toleran	ce, Li	mits, I	Deviatio	on, Ac	tual D	eviatio	n, Upj	per De	eviatio	on, L	ower	

Deviati	Deviation, Allowance. Preparation of manual parts drawing and assembled sectional views from								
orthogr	aphic part drawings,								
		Text I	Books						
1	Natarajan K V, "Enginee Delhi.	ring Graphics", T	ata McGraw-Hill P	ublishing Company Ltd. New					
2	K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International Private Limited.								
3	K.R.Gopalakrishna"Engir	neering Drawing"	(Vol. I & II), Subhas	s Publications, 2014.					
4	Bhatt-N.D"Machine Drawing"-Published by R.C.Patel- Chartstar Book Stall- Anand- India- 2003								
		Reference	ce Books						
1	N.D. Bhat and V.M. Panci	hal, Engineering C	Graphics, Charotar P	ublishers 2013					
2	E. Finkelstein, "AutoCAI	D 2007 Bible", Wi	iley Publishing Inc.,	2007					
3	R.K. Dhawan, "A text boo	ok of Engineering	Drawing", S. Chand	Publishers, Delhi,2010.					
4	DhananjayA.Jolhe, "Engi Hill Publishing Company	neering Drawing v Limited, 2008.	with an Introduction	to AutoCAD", Tata McGraw					
5	G.S. Phull and H.S.Sandh	u, "Engineering G	raphics", Wiley Pub	lications, 2014.					
		Course I	Designers						
S.No	Faculty Name	Designation	Dept / College	Email id					
1	Dr. S. Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in					
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in					

Alternative NPTEL/SWAYAM Course:

S.	NPTEL Course Name	Instructor	Host	Duriation
No.			Institute	
		Prof. Naresh Varma		
	Engineering Graphics and	Datla,		
1.	Design	Prof. S. R. Kale	IIT Delhi	12 weeks
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
	En sin sonin a Drowin a and	Prof. Rajaram	IIT	
3.	Computer Graphics	Lakkaraju	Kharagpur	12 weeks

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		Categor	y	L	Т		P	Cre
			WO	RKSH	<b>JP PRA</b>	CTICE	S		FC(ES)		0	0		4	2
PREAD Worksh engined foundry its exec	MBLE hop prac ering stu y, smithy cution.	tices is dents to and w	fundam differe elding re	nental to nt types elated ex	the devoit of man the devoit of man the devoit of the devo	velopme ufacturi Also, it	nt of an ng/ fabr t will inc	ication j duce the	eering processe habit of	product. T s. It deals f selecting	This cours with m g right to	rse is in achine, ools, pla	tended fitting, nning	to ex carpe the jot	pose entry, and
PRER	EQUISI	TE –N	IL												
	SE OBJ	ECTIV	VE		1 1		•		1 .	· ·		• •			
2	Expos To ba	sure to t	the stude	ents with	hands of a service	on exper	1ence on	various	s basic el	ngineering	g practic	es in En	gineeri	ng.	
3	To ha	ve a stu ve a pra	actice on	gas we	lding, fo	undry o	peration	s and fit	ting	mponents	•				
COUR	SE OUT	ГСОМ	ES:	<u> 845 110</u>	<u>8</u> , 10	unun jo									
On the	success	ful con	pletion	of the c	ourse, s	tudents	will be	able to						-	
CO1.	Upon co own ha	ompleti nds.	on of thi	is labora	tory cou	irse, stud	dents wil	ll be abl	e to fabr	icate com	ponents	with the	r	App	oly
CO2.	22. Examine the dimensional accuracies and dimensional tolerances possible with different manufacturing App processes.										oly				
CO3. Assembling different components, they will be able to produce small devices of their interest.										App	oly				
Mappi	ng with	Progra	mme O	utcome	s and Pr	ogrami	ne Spec	ific Out	tcomes						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	М	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	M	L	L	L	-	-	-	-	-	-	-	L	-	-
S- Stro	ong; M-N	Aediun	n; L-Lov	W											
Course	e Conten	its													
1. Ma: 2. Fitt 3. Car 4. Ca 5. Tin	nufactur ing opera pentry. sting. Smithy	ing Met ations	hods - n	nachinin	g and jo	ining m	ethods.								
Lectur	res & vi	deos													
Lectures & videos         Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing         methods         Fitting operations & power tools         Carpentry         Metal casting         Welding (arc welding & gas welding)															
Work	Shop Pr	actice													
<ol> <li>Fac</li> <li>L a</li> <li>Sing</li> <li>Hal</li> <li>Lap</li> <li>Ope</li> </ol>	ing, Turn and V Fit gle piece f- Lap Jo Joint, B en Scoop	ning, St ting - I and Sp oint and utt Join , Recta	ep Turn Fitting S blit piece Dove T t and T ngle Tra	ing, Dril hop pattern ail Joint Joint – V y – Tin	ling, Su - Found - Carp Welding Smithy	rface fin Iry entry	iish –Ma	achine S	hop						

Text Books	fext Books										
1	WORKSHOP/N	MANUFACTURING P	PRACTI	CES, MANUAL							
Reference	Books										
1	Hajra Choudhury	S.K., Hajra Choudhury	y A.K. a	nd Nirjhar Roy S.K.,	"Elements of Workshop Technology",						
2	Rao P.N. "Manu	facturing Technology"	Vol La	nd Vol. II. Tata McGr	anioai naw Hill House						
3	NR Banapurmat	h Basic Mechanical Fro	voi. 1 al	vikas Publications	Noida						
3 4	K Venugonal Ba	sic Mechanical Enginee	ring Ar	y vikas i ublications,	Chennai						
Fynariments he nerformed through Virtual Labs											
Experime	http://mmccon										
1	Welding shop		vlabs.ac.in/LaserSpotWelding/Theory.html?domain=Mechani cal%20Engineering&lab=Welcome%20to%20Microma chining%20laboratory								
2	Casting		http://fabcoep. vlabs.ac.in/exp7/Theory.html?domain=Mechanical%20Engineerin g&lab=Welcome%20to%20FAB%20laboratory								
Course Des	signers										
S.No	Faculty Name	Designation		Department / Name of the College	Email id						
1	T.Raja	Asso.Prof		Mech / VMKVEC	rajat@vmkvec.edu.in						

## CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (48-54)

	Category	L	Т	P	Credit
CELL AND MOLECULAR BIOLOGY					
(THEORY & PRACTICALS)	CC	3	0	2	4

#### PREAMBLE

Cell and Molecular biology deals with the structures, organization and functions of the cells and organelles, their physiological properties, life cycle, metabolic processes, signalling pathways and their interactions with their environment at microscopic and molecular level. It gives in-depth knowledge of basic principles and Structure of DNA, RNA, DNA Replication, Transcription and Translation. The paper starts with the basic organization of the genome in prokaryotes and eukaryotes along with their discerning features. This is followed by chapters on prokaryotic and eukaryotic replication, transcription, translation processes.

## PRERQUISITE - NIL

COURS	E OBJECTIVES
1	To understand the structures and purposes of basic components of prokaryotic and eukaryotic cells,
	and the concepts benind cell division.
2	Students will understand how these cellular components are used to generate and utilize energy in cells
	and To give an overview of cell signaling molecules and their receptors.
3	To describe on Nucleic acids, structure, their characteristics and organization, biological importance,
	replication process etc.
4	Estimate the nucleic acids- RNA / DNA.
5	Acquire laboratory skills in techniques such as micro pipetting, spectrophotometry and electrophoresis.

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Differentiate fundamental features of prokaryotic and eukaryotic cells, their structure, Understand composition and role of cell membranes and the major stages of the cell cycle

Understand Understand

Understand

Apply

CO2. To illustrate about secondary messengers and signal transduction. CO3. Discuss and distinguish the replication of prokaryotic and eukaryotic DNA

_____

CO4. Quantify the nucleic acids

CO5. Illustrate the enzymatic action on nucleic acids & proteins

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	-	-	М	-	-	-	-	-	-	-	-	-	-	-
CO3	L	L	-	L	-	-	-	-	-	-	-	-	-	-	-
CO4	М	М	-	М	-	-	-	-	-	-	-	-	М	-	-
CO5	S	М	-	-	-	-	-	-	-	-	-	-	-	М	-
C Stre	Strong M Medium: L Low														

S- Strong; M-Medium; L-Low

## SYLLABUS

### CELL STRUCTURE AND FUNCTION OF THE ORGANELLES & CELL DIVISION

Prokaryotic, Eukaryotic cells, Sub-cellular organelles and functions. Principles of membrane organization, Extra cellular matrix, cell-cell junctions. Cell cycle – Mitosis, Meiosis, Molecules controlling cell cycle

## TRANSPORT ACROSS CELL MEMBRANE & SIGNAL TRANSDUCTION

Passive and Active Transport, Permeases, Ion channels, ATPase pumps.  $Na^+ / K^+ / Ca^{+2} T$  pumps, uniport, symport antiporter system. Agonists and Antagonists. autocrine / paracrine / endocrine models, Secondary messengers molecules

## SIGNAL TRANSDUCTION PATHWAYS

Signal amplification – Different models of signal amplifications, secondary messengers & its role in signal transduction, Phosphorylation of protein kinases

## REPLICATION, TRANSCRIPTION AND TRANSLATION

Replication in prokaryotes and eukaryotes – Different modes of replication, Inhibitors of replication. Structure and function of mRNA, rRNA and tRNA, Exon, Intron, Transcription in prokaryotes and eukaryotes, Inhibitors, Post transcriptional modifications, Reverse transcription. Genetic code and its features, Wobble hypothesis and its importance. Translation mechanism and regulation.

#### **REGULATION OF GENE EXPRESSION**

Organization of genes in prokaryotic and eukaryotic chromosomes, Regulation of gene expression with reference to  $\lambda$  phage life cycle. Gene regulation – Operon concept

# PRACTICALS

- 1. Isolation of Cell organelles.
- 2. Cell staining and counting Leishman staining, Tryphan blue assay
- 3. Isolation of Bacterial Genomic DNA
- 4. Isolation of plant Genomic DNA
- 5. Agarose gel electrophoresis
- 6. Quantification of RNA / DNA

## TEXT BOOKS:

- 1. De Robertis E.D.P and De Robertis E.M.F, "Cell and Molecular Biology", 8th Edition, Lippincott Williams & Wilkins, New York, USA, 2001.
- Harvey Lodish, Arnold Berk, Chirs A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, HiddePloegh and Paul Matsudaira, "Molecular Cell Biology", 6th Edition, W. H. Freeman and Company, New York, 2008.
- 3. Freifelder, D., "Molecular Biology", 2nd Edition, Narosa Publishing House, 1999.
- 4. Benjamin L., "Genes IX" Jones and Bartlett, 2008.
- 5. Jeremy M. Berg, John L. Tymoczko and LubertStryer, 2002 "Biochemistry". 5th Edition. W.H. Freeman and Company.

## **REFERENCES:**

1. Alberts B, A Johnson, J Lewis, M Raff, K Roberts and P Walter, "Molecular Biology of the Cell", (4th Edition) New York: Garland Science, 2002.

- 2. Kimball, T.W., "Cell Biology', Addision Wesley Publishers, 1989.
- 3. Geoffrey M. Cooper and Robert E. Hansman, "The Cell: A Molecular Approach", ASM Press and Sinauer Associates Inc., USA, 4th Edition, 2007.
- 4. James Watson et al., 1987. Molecular Biology of Gene. The Benjamin / CummingsPublication Co. Inc., California.

S.No.	Name of the	Designation	Department	Mail ID			
	Faculty						
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@ vmkvec.edu.in			
2	Dr.A.Nirmala	Assistant Professor(Gr-II)	Biotechnology	<u>Nirmalabt@avit.ac.in</u>			

CLASSICAL	AND	MOLECULAR	Category	L	Т	Р	Credit
GENETICS			CC	3	0	0	3

#### PREAMBLE

Genetics is a field of biology that deals with the study of genes, genetic variation, and heredity in living organisms that intersects with many other life sciences and information systems. Genetics is concerned with the problem of how the hereditary information in DNA controls, what an organism looks like and how it works. Classically this involved the use of genetic variants to upset the biological function of the cells or organisms and from the effect of these mutations, to make deductions about the way cells and organisms worked.

PREREQUISITE – NIL															
COURSE OBJECTIVES															
1	To define the basic principles of inheritance at the molecular, cellular and organisms levels.														
2	To explain on how genes, work together in biological processes.														
3	To discuss about the causal relationships between molecule/cell level phenomena ("modern" genetics) and organism-level patterns of heredity ("classical" genetics).														
4	To corr	elate th	e conc	epts of	f linka	ge and	cross	ing ov	er and	Genetic	mappi	ng of ch	iromoso	mes.	
5	To mak problen	e the s n-solvir	tudent 1g situ	s to te ations.	st and	deepe	n thei	r mast	ery of §	genetics	s by app	plying t	his kno	wledge i	n a variety of
CO	URSE C	UTCC	<b>MES</b>												
Afte	r the suc	cessful	comp	letion	of the	course	e, leari	ner wil	l be ab	le to					
CO1 gene	. Recal	the de lecular	velopr geneti	nent clics and	of gen classi	etic co cal ge	oncept netics	s, the	differe	ences b	etween	transm	ission	Remem	ber
CO2 outc	CO2. Explain the genetic data to determine the modes of inheritance, linkage and predict Understand outcomes in future generations														
CO3 inhe	. Illust ritance.	rate the	e vario	ous the	ories	of hov	v new	speci	es forn	n and th	ne mole	ecular r	ole of	Apply	
CO4 unde	CO4. Determine the factors that play a role in the process of disease development and Apply understand the genetic basis of evolutionary change.														
CO5	CO5. Explain about various genetic transfer methods   Apply														
MA	PPING	WITH	PRO	GRAN	AME	OUTC	COME	ES AN	D PRO	GRAM	IME S	PECIF	IC OU	ГСОМЕ	S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	I	-	I	-	I	-	-	-	-	-	-
CO2	M	S	Μ	S	М	М	-	-	-	-	-	-	-	-	-
CO3	S	Μ	S	Μ	Μ	-	-	-	-	-	-	-	-	М	-
CO4	· M	S	Μ	S	-	-	-	-	-	-	-	-	М	-	-
CO5	M	-	Μ	Μ	-	-	-	-	-	-	-	-	-	-	-
S-S	trong; M	l-Mediu	ım; L-	Low											
SYI BAS	SYLLABUS BASICS OF GENETICS & GENES														

Classical genetics, Mendelian laws, Patterns of Inheritance for Monogenic Traits: Autosomal inheritancedominant, recessive, sex-linked inheritance, sex-limited and sex- influenced traits and mitochondrial inheritance. Fine structure of genes, Gene as the unit of expression, Control sequences - promoter, operator, terminator and attenuator.

## KARYOLOGY

Chromosome structure and organization in prokaryotes and eukaryotes, Extra chromosomes and their inheritance, Biology of plasmids, Giant chromosomes – Polytene and Lamp brush chromosome.

#### ALLELES

Classical concept of allelomorphs, Multiple alleles, Sex linkage in Drosophila, Sex determination in Human beings, X and Y linked inheritance, Colour blindness, Haemophilia, Blood group antigens.

#### LINKAGE AND CROSSING OVER

Coupling and repulsion – Hypothesis, Test cross in maize and Crossing over, Sex chromosomes, Inherited immunodeficiency, Linkage, Crossing over and Genetic mapping of chromosomes.

#### MICROBIAL GENETIC TRANSFER

Identification of the genetic material – Classical experiments, Hershey Chase, Avery McLeod etc., Conjugation, Transduction and Transformation, Transposons- mechanism.

## **TEXT BOOKS:**

- 1. Gardner, Simmons and Snustad, Principles of genetics, John wiley and Sons, inc. New York. 8th Edition, 2005
- 2. Verma, P.S. and Agarwal, V.K., Genetics. S. Chand Publication, 2005.
- 3. Robert H. Tamarin, Principles of Genetics, 7th Edition, Tata McGraw Hill, New Delhi, 2002.

## **REFERENCES:**

- 1. David Freifelder., Microbial Genetics, Narosa Publishing House, New York, New Delhi, 2nd Edition, 2001.
- 2. Stanly R. Maloy, John E. Cronan and David Freifelder, Jr., 2006. Microbial Genetics. Narosa Publishing House.
- 3. Brown, T. A. Genetics A Molecular Approach.2011.
- 4. Snustad, D. P., 2008. Principles of Genetics. 6th Edition., John Wiley & Sons
- 5. Simmons S 2006, Principles of genetics, 4th Edition, John Wiley & Sons (Asia) Pte Ltd. New Jersey.

COURSE DESIGNERS																
S. No.	Name of the	Designation	Department	Mail ID												
	Faculty															
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@ vmkvec.edu.in												
2	Dr.R.Balachandar	Assistant Professor GII	Biotechnology	balachandar.biotech@avit.ac.in												
			UNIT OPERATIONS			IS IN	N PR	ROCES		tegory	L	Т	Р	Credit		
--------	------------------------------------------------------------------------------------------------------------------------	----------	-----------------	----------	----------	----------	----------	---------	----------	-----------	------------	-------------	-----------	---------	--------------------	--
			INDUSTRIES							CC	,	3	0	0 3		
PRE	AMBLI	£	•							•			•			
In the	Engine	ering r	elated	fields	, a uni	t opera	tion is	a bas	ic step	in a pro	ocess. Ui	nit opera	tions inv	volve	a physical change	
(or) a	chemic	al tran	sform	ation s	uch as	separa	ation, o	crystal	lizatio	n, evapo	oration, f	filtration,	polyme	erizati	on, isomerization,	
and o	other rea	actions	. For	examp	ole, in	milk j	proces	sing, l	nomoge	enizatio	n, paste	urization	, and pa	ackag	ing are each unit	
opera	operations which are connected to create the overall process. A process may require many unit operations to obtain the															
desire	desired product from the starting materials, or feedstocks. Knowledge of various unit operation principles will enable															
stude	students to understand to work in any biotechnology industries.															
PRE	REQUI	SITE -	NIL													
COU	RSE O	BJEC	<b>FIVES</b>	5												
1	To des	cribe th	ne kno	wledge	e abou	t the va	arious	modes	of hea	t transfe	er.					
2	To Car	ry out	the str	ess ana	alysis c	calcula	tions f	or vari	ous for	ces on a	a body					
3	To out	line ab	out the	e heat e	exchan	ger and	d its op	peratio	n							
4	To disc	cuss ab	out the	e fluids	s, types	s and it	s meas	sureme	ent.							
5	To eva	luate th	ne dryi	ng and	l other	mecha	nical s	separat	tion pro	ocesses	and its r	ole in ind	ustries			
COU	RSE O	UTCO	MES													
After	the suce	cessful	comp	letion	of the c	course,	learne	er will	be able	e to						
CO1.	Descrit	pe abou	ıt basi	c conc	cepts o	f vario	ous mo	odels o	of heat	transfer	, radiati	on, conv	ection	Unde	erstand	
and b	lack boo	dies and	d its ap	plicat	ion.											
CO2.	Practice	e the us	sage of	f heat e	exchan	ger, ev	aporat	ors an	d its ap	plicatio	n			App	ly	
CO3.	Demon	strate t	he nat	ure, pr	opertie	es of th	e fluid	s and i	its mea	sureme	nt.			Appl	у	
CO4.	Catego	rize ab	out dry	ving, n	nechan	ical se	paratic	on tech	niques	and its	applicati	ions		Anal	yze	
CO5.	Evalua	ate va	rious	unit	operati	ons a	nd he	eat tra	nsfer	equipm	ent in	chemica	l and	Anal	yze	
bioch	emical i	ndustri	ies.													
MAP	PING	WITH	PRO	GRAM	IME (	OUTC	OMES	S AND	PRO	GRAM	ME SPI	ECIFIC	OUTCO	OMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3	
C01	M	M	M	M		-	-	-	-	-	-	-	-	-	-	
CO2	S	M	M	L		-	-	-	-	-	-	-	-	-	-	
CO3	<u> </u>	IVI	2		M	-	-	-	-	-	-	- T	- M	-	- M	
CO4	M		S M	IVI	IVI	-	-	-	-	-	-		IVI C	- \\	IVI	
S. S+	S Strong: M Medium: L Low															
5-50	511 <u>5</u> , 111	wiculu	, L-													

## SYLLABUS

#### CONDUCTION, CONVECTION AND RADIATION

Modes of Heat Transfer – Conduction – steady state heat conduction through unilayer and multilayer walls, cylinders; Insulation, Critical Thickness of Insulation, individual and Overall Heat transfer Coefficient, Convection – Dimensional Analysis – Forced Convection and Natural convection – Boiling and condensation, Concept of Radiation, Laws of Radiation, Grey & Black Bodies

## PARTICLE CHARACTERISTICS, SIZE ANALYSIS AND SIZE REDUCTION

Introduction: General characteristics of solids, their behaviour under different external forces, agglomeration techniques for size analysis, Mohr's stress circle, flow of solids in conduits, Laws of size reduction, classification of equipment, methods of size reduction

#### HEAT EXCHANGER

Heat Exchanger – Types of Heat Exchangers – Types of Flows, LMTD, Fouling Factor, NTU concept, Types of Evaporators – Calculation for Single and Multiple Effects.

## FLUID MECHANICS

Introduction – Nature of Fluids, Properties of Fluids, Types of Fluids, Fluid Statics, Pressure measurement, Measurement of Fluid flow – Venturimeter, orifice meter, rotameter, Fluidization – Mechanism, types and its applications

#### DRYING AND MECHANICAL SEPARATION

Drying – Air properties – Drying Equipment – Drying Rates and Drying time. Classification of Mechanical Separation processes, Solid Liquid Separation – Filtration – Constant Pressure, Constant Volume, Batch and Continuous Filtration – Industrial Filter, Centrifugal Separation, Settling and Sedimentation.

#### **TEXT BOOKS:**

- Warren McCabe, Julian Smith, Peter Harriott, 2005.Unit Operations of Chemical Engineering 7th Ed., McGraw Hill Inc., New York.
- C.J. Geankoplis, 2003.Transport Processes and separation Principles: Includes Unit Operations, 4th Ed., Prentice-Hall Inc., New Jersey
- 3. Fluid Mechanics by K L Kumar, S Chand & Company Ltd

#### **REFERENCES:**

COUDSE DESIGNEDS

- 1. R.E. Traybal, Mass Transfer Operations, 3rd Ed, McGraw-Hill, New York, 1981.
- 2. Frank P. Incropera, David T. Dewitt, Theoder I. Bergman. 2013. Fundamentals of Heat and Mass Transfer and Interactive Heat Transfer. *John Wiley & Sons*.
- 3. Gavahane.K. A. 2011 Heat and Mass Transfer. Vol. II. Nirali Prakashan

COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in								
2	Ms.Subathra	Assistant Professor	Biotechnology	subathra.biotech@avit.ac.in								

									Ca	ategory		L	Т	Р	Credit
		A	DVA	NCED	BIO	CHEN	4ISTF	RY	CC	2		3	0	0	3
PREA Adva under cours mater PRE	<b>PREAMBLE</b> Advanced Biochemistry uses the knowledge and understanding gained in the prerequisite course and provides understanding of metabolism of macromolecules like carbohydrate, amino acid, lipids and nucleic acid. This course also highlights the process of Biological oxidation involved in the energy production by burning the food materials and give awareness to the various diseases associated with the errors of metabolism of the biomolecules. <b>PREREQUISITE -</b> FUNDAMENTALS OF BIOCHEMISTRY <b>COURSE OBJECTIVES</b>														
	COURSE OBJECTIVES														
1	To Discuss the metabolic pathways of major bio-molecules														
2	To Describe the starting, intermediate and ending molecule, enzymes and cofactors in the pathways														
3	3 To Differentiate biochemical basis of various disease processes														
4	To Out materia	tline t .ls	he pro	ocess	of Bio	ologica	l oxic	lation	involve	ed in tl	he ener	gy pro	duction	by bi	arning the food
COU	RSE O	UTCO	OMES												
After	the succ	cessfu	l comp	letion	of the	cours	e, lear	ner wi	ll be ab	le to					
CO1.	Explain	n the	metabo	olic pa	athway	vs of c	carboh	ydrate	s, amir	no acida	s, nucle	eic acid	ls and	Unde	rstand
CO2.	Describ	e the	causes	of me	taboli	c disoi	der							Unde	rstand
CO3.	Examin	e the	import	ance o	of mole	ecules	derive	ed from	n amino	o acids				Appl	ý
CO4.	Illustra	te the	Integra	ation o	f ener	gy me	tabolis	sm of 1	nacrom	olecule	es			Appl	y
CO5.	Infer th	e bioe	nerget	ics and	d oxida	ative p	hosph	orylat	ion con	cepts				Anal	/ze
MAP	PING V	WITH	<b>PRO</b>	GRA	MME	OUT	COM	ES AN	D PR	OGRAI	MME S	SPECI	FIC OU	TCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	М	Μ	-	М	-	-	-	-	-	-	-	-	-	-	-
CO2	М	-	Μ	М	-	-	-	-	-	-	-	-	М	Μ	-
CO3	S	S	Μ	-	М	-	-	-	-	-	-	М	-	М	-
CO4	S	-	-	М	-	-	-	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### CARBOHYDRATE METABOLISM

CO5 M M - M -

Introduction to Metabolism- Glycolysis- Citric acid cycle-Gluconeogenesis- Glycogen Metabolism-Glycogenesis-Glycogenolysis- HMP Shunt. Carbohydrate disorder - Glycogen storage diseases, Diabetes mellitus.

-

-

-

-

-

_

#### AMINO ACID METABOLISM

Introduction-Metabolism of amino acids- Transamination- Deamination-Metabolism of ammonia-Urea Cycle-Biosynthesis and degradation of amino acids- Gly, Ser and Cys;, aromatic amino acids. Important molecules derived from amino acids (auxins, DOPA, Serotonin, porphyrins, T3, T4). Amino acid disorder - Alkaptonuria, Albinism, Phenylketonuria, Gout, Cystinuria.

#### FATTY ACID METABOLISM

Introduction-Fatty acid oxidation-Ketone bodies & Ketogenesis-Biosynthesis of Fatty acids- Cholesterol Biosynthesis-Lipoproteins- Metabolism of glycolipids- Lipid disorder - Niemann Pick disease, Gaucher's disease, Fabrys disease, Tay-sach's disease.

#### NUCLEIC ACID METABOLISM

Nucleic acids: Biosynthesis of nucleotides, denovo and salvage pathways for purines and its regulation, Biosynthesis of pyrimidines & its regulatory mechanisms. Degradation of nucleic acid by exo and endo nucleases. Nucleic acid disorder - Xanthinuria, Oroticacidiuria, Leasch-Nyhan syndrome, Nucleoside Phosphorylase

## deficiency.

#### INTEGRATION OF METABOLISM & OXIDATIVE PHOSPHORYLATION

Integration of major Metabolic pathways of energy metabolism, Organ specialization and metabolic integration, metabolism in starvation. Introduction-Bioenergetics, High energy compounds, Biological Oxidation-Electron transport chain, Oxidative phospholyration, Shuttle pathway – Glycerol phosphate Shuttle, Malate aspartate Shuttle.

#### **TEXT BOOKS:**

1. Principles of Biochemistry by Lehninger, D.L., Cox, M.M., McMillan Publishers (2008) 4th edition

2. Biochemistry by Stryer, Lubert. W.H Freeman & Co., (2000) 4th edition.

3. Fundamentals of Biochemistry by Donald Voet, Judith G. Voet and Charlotte W., John Wiley & Sons (2008), 3rd edition Pratt.

#### **REFERENCES:**

1. Fundamentals of Biochemistry by Jain, J L, Jain, Nitin, Sunjay Jain, S. Chand Group, ISBN: 8121924537

2. Text book of Biochemistry by Sathyanarayana, U. and Chakrapani, U., 2006, 3rd Edition, Uppala Author Publishers Interlinks.

0001				
S.	Name of the Faculty	Designation	Department	Mail ID
No.				
1	Dr.S.Anandakumar	Assistant Professor	Biotechnology	anandakumar@vmkvec.edu.in
2	Dr.A.Nirmala	Assistant Professor (Gr-II)	Biotechnology	Nirmalabt@avit.ac.in

			ADVA	NCEI	) BIO	CHEN	<b>1ISTR</b>	RY LA	В	Cate	gory	L	Т	Р	Credit
										CC		0	0	4	2
PREAD	MBL	Æ											-		
The co	urse	focus	es on t	he gen	eral bi	lochem	ical re	eaction	s for the	e identif	ication of	of biom	olecules	. The	students also
learn at	oout	qualit	ative a	nd qua	ntitativ	ve anal	ysis of	fmacro	omolecu	les.					
PRER	EQU	ISIT	E- NIL	4											
COUR	SE (	OBJE	CTIV	ES											
1.	Dis	cuss a	about b	asic re	action	s of Bi	omole	cules							
2.	Cal	lculate	e the di	fferent	conce	entratic	on of m	nacro-r	nolecule	es					
3.	To distinguish the importance of blood sampling site and estimation of hemoglobin														
4.	To perform various techniques for separation of pigments														
COUR	RSE OUTCOMES the successful completion of the course, learner will be able to														
After th	the successful completion of the course, learner will be able to														
CO1. Io	Identify the reactions of proteins, carbohydrates and amino acids Apply														
CO2. E	Experiment with Hemoglobin concentration in the blood Apply														
CO3.D	Distinguish the plant pigments using chromatography Analyze														
CO4. C	Compare the various biomolecules Analyze														
CO5. E	Evaluate the Normal and abnormal constituents of UrineEvaluate														
MAPP	ING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS P	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1 S	5	-	-	-	L	-	М	-	-	-	-	-	М	М	S
CO2 S	5	S	М	-	-	-	М	-	-	-	-	-	-	S	S
CO3 N	Λ	-	М	М	-	-	-	-	S	М	-	-	М	S	-
CO4 L	_	М	М	М	-	-	S	-	S	М	-	-	S	М	М
CO5 L	_	-	L	-	М	S	М	-	-	S	-	М	-	М	S
S- Stro	ng; N	A-Me	dium; I	L-Low											
SYLLA	ABU	S													
1.	Qua	alitativ	ve Anal	lysis of	f Carb	ohydra	tes.								
2.	Qua	alitativ	ve Anal	lysis of	f Amir	no acid	s.								
3.	Qua	litativ	ve Anal	lysis of	f Lipid	s.									
4.	Esti	matio	on of G	lucose	by O-	toludin	e metl	nod.							
5.	Esti	matio	on of Pr	otein t	by Lov	vry's N	lethod	1							
0. 7	ESU	matio	n of U	noieste	rol by	Lak's	metho	a.							
/. Q	Esu	matio	n of U	ea DA	wi mei	.nou.									
0. Q	Sen	aratio	n of n	ent nig	ments	by col	umn c	hroma	tograph	v (Demo					
10	Der	nonsti	ration of	of Thin	laver	chrom	atogra	nhv	lograph	y (Denie	<i>,</i> ).				
REFE	REN	CES:			1			r J							
1.	Lab	orator	ry Man	ual.											
COUR	URSE DESIGNERS														
S.No	Na	me of	the Fa	culty	D	esigna	tion		De	partmen	t	Mail	ID		
1	Dr.	M.Sri	devi	Ť	P	rofesso	or and	Head	Bio	technol	ogy	sride	vim@vr	nkvec.	.edu.in
2	Dr.	A.Nir	mala		A Pi	ssistan rofesso	ıt or(Gr-I	I)	Bio	otechnol	ogy	Nirm	alabt@a	avit.ac	.in

BIOORGANIC CHEMISTRY	Category	L	Т	Р	Credit
DIOORGANIC CHEMISTRI	CC	3	0	0	3

#### PREAMBLE

Bioorganic Chemistry explains the study of living cell chemistry in an organism. The Bioorganic study gives the knowledge of proximity effects in organic chemistry, molecular recognition and the supramolecular systems. It also deals analogy between organic reaction, energy transfer and biochemical transformations. It gives the basic knowledge of enzymes, peptides, proteins amides and metals and their roles. Acquiring the knowledge of concepts and principles will facilitate students to understand how they work in the research fields and show the way to the higher levels of various fields.

## **PREREQUISITE : NIL**

COURSE OBJECTIVES	
-------------------	--

1	To acquire the knowledge of living cells chemistry.
2	To study the proximity effects in organic chemistry, molecular recognition and the supramolecular systems -
	concepts
3	To know the importance of enzyme catalysis in the living cells.
4	To understand the various reactions of metal ions in proteins and biological molecules
5	To apply the knowledge of enzymes designing in molecular theft and steroid templates.
COUD	SE OUTCOMES

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1Discuss about the chemistry of living cells

CO2Describe the Proximity effects in organic chemistry, molecular recognition and the supramolecular Understan systems - concepts d Apply

Understan

Apply

Apply

d

CO3Generalize the importance of enzyme catalysis in the living cells.

CO4Employ the various reactions of metal ions in proteins and biological molecules

# CO5Use the knowledge of designing in molecular cleft and enzymes

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
														O2	
CO1	М	М	Μ	-	-	-	-	-	-	-	-	L	L	L	L
CO2	М	М	Μ	Μ	-	-	-	-	-	-	-	-	L	Μ	L
CO3	S	М	Μ	S	-	-	-	-	-	-	-	Μ	L	L	М
CO4	М	L	Μ	-	-	-	-	-	-	-	-	-	Μ	Μ	L
CO5	М	М	S	Μ	L	-	-	-	-	-	-	М	М	S	L
aa		<b>7</b> 1'	<b>T T</b>												

S- Strong; M-Medium; L-Low

## **SYLLABUS**

## INTRODUCTION TO BIO-ORGANIC CHEMISTRY

Basic Considerations - Proximity effects in Organic chemistry -Molecular recognition and the supramolecular systems

## **BIO - ORGANIC CHEMISTRY OF AMINO ACIDS ANDPEPTIDES**

Chemistry of living cells, Analogy between organic reactions and Biochemical Transformations, Chemistry of the

peptide bond, Asymmetric synthesis of amino acids - Retrosynthetic analysis, Transition state analogues.

# **ENZYME CHEMISTRY**

Introduction to catalysis - Mutifunctional, Acid - base and Covalent catalysis, Introduction to enzymes - Chymotrypsin,

Pyruvate dehydrogenase, Ribonuclease, Lysozyme, Enzymes in synthetic organic chemistry, Design of molecularclefts.

## **ENZYME MODELS**

Host guest Complexation chemistry - Cyclodextrin, Development in Crown ether chemistry - Azo Crown ethers and Lariat Crown ethers, Enzyme design using steroid templates -, Co - enzyme chemistry- NAD, NADP, FAD and pyridoxal phosphate.

## METAL IONS IN BIOLOGICAL SYSTEMS

Metal ions in proteins and biological molecules - Carboxy peptidase and role of zinc, Hydrolysis of amino acid esters, amides and peptides, Iron and oxygen transport, Biomodels for photosynthesis and energy transfer.

## TEXT BOOK

1. Zubay, G., 1987. Biochemistry. 2nd Edn., Maxwell Macmillan International Editions.

2. Dugas, H., 1989. Bio-organic Chemistry - A Chemical Ap-proach to Enzyme Action. Springer Verlag.3. David Van

3. Vranken, Gregory A. Weiss., 2012. Introduction to Bioorganic Chemistry and Chemical Biology. (1st Edition) New York: Garland Science.

## **REFERENCE BOOKS**

1. Mathew, Van Holde and Athern, 2000. Biochemistry. Pearson Publishers Ltd.

2. Page, M. I. and Williams, A., 1997. Organic and bio-organic mechanisms. Pearson India Edition.

3. Ariya, K. and Kumtake T., 2006. Supramolecular chemistry: Fundamentals and applications. Springer India Edition.

4. Palmer, Trevor, 2004. Enzymes: Biochemistry, biotechnology, clinical chemistry. East - West Press Pvt. Ltd.

Fersht, Alan, 1998. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding.
 W. H. Freeman.

COURS	E DESIGNER			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.S.Anandakumar	Assistant Professor	Biotechnology	anadakumars@vmkvec.edu. in
2	Ms.Subathra	Assistant Professor	Biotechnology	subathra.biotech@avit.ac.in

			DIO			HEMIS		р	Categ	ory	L	Т	Р	(	Credit	
			BIU	UKGAI		HEMIS	IKILA	.в —	CC	2	0	0	4		2	
PREA	MBLE															
The put	rpose of	teachin	ig Bioo	rganic C	hemis	try is a f	undamen	tal scie	ence and I	has conti	ributed	immens	ely to t	he im	proveme	ent
of the l	ife of h	uman b	eings b	y provid	ling m	any of h	uman rec	quirem	ents and	essential	ities. T	he deve	lopmen	ts in	Bioorgai	nic
Chemis	stry duri	ing last	few de	ecades a	re phe	enomenal	l. It is a	lso see	en that th	ese deve	elopmei	nts are	crossin	g the	tradition	nal
vertical	bound	aries of	scient	$\frac{110}{100}$	iplines	s; the m	ore incli	ination	is seen	towards	biolog	ical sci	ences.	The j	practice	of
Bioorga	anic Ch	emistry	at inc	lustrial	scale	also 1s	undergo	ing ra	dical cha	inges ar	id is n	nore or	more	base	d on de	ep
		Ine pher		•												
COUR	OURSE OBJECTIVES															
1 7	Го Reco	gnize th	e basic	es of stor	ichiom	netry										
2 7	To Expr	ess the l	cnowled	lge abou	it meas	surement	s and uni	its								
3 7	To Demonstrate the students in preparation of bioorganic solutions and their material balance equations															
4 7	To Demonstrate the students in preparation of bioorganic solutions and their material balance equations To organize the Students should be able to develop their skills in the inter-conversions of one bioorganic compound															
t	to organize the Students should be able to develop their skills in the inter-conversions of one bioorganic compound o desired products.															
COUR	SE OU'	ТСОМ	ES													
After th	ne succe	ssful co	mpletic	on of the	course	e, learner	will be a	able to								
CO1. D	Describe	about t	he basi	c bioorg	anic cl	hemistry								Und	erstand	
CO2. II	llustrate	the imp	ortance	of mea	sureme	ents and	units in b	oioorga	nic reacti	on proce	edures			App	ly	
CO3. E	Estimate	the bas	ics step	s involv	red in t	he synth	nesis of v	arious	bioorgan	ic substa	nces			Anal	lyze	
CO4. E	valuate	their u	ndersta	nding sk	ills in	the inter-	-conversi	ions						App	ly	
MAPP	ING W	ITH PF	ROGRA	AMME	OUT	COMES	AND PF	ROGR	AMME S	SPECIF	IC OU	тсом	ES			
COS	PO1	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC PSC	D1	PSO2	Р
CO1	Μ	Μ	-	Μ	L	-	-	-	-	-	-	Μ	S		L	L
CO2	Μ	L	-	Μ	L	-	-	-	-	-	-	-	S		L	L
CO3	М	Μ	-	Μ	L	М	L	Μ	-	-	-	Μ	S		L	L
CO4	Μ	L	-	-	-	L	-	-	-	-	-	L	S		L	L
S- Stro	ng; M-N	ledium;	L-Low	/												
SYLLA	ABUS															
	1. Synt	hesis of	Aspiri	n												
	2. Hyd	rolysis (	of Sucro	ose		<b>.</b> .										
	3. Prep	aration	of Pyru	vic acid	from	Fartaric a	acıd.									
	4. Prep	aration	of Olei	c acid												
	5. Prep	aration	of alpha	a D- glu	copyra	inose per	itaacetate	e								
	o. Prep	aration	of L Dr	opene iro	om 10	mato pas	le									
	7. Flep	aration	of $1.25$	onne. Kadi O	Cuel	hovulidi	na alpha	D alu	cofurano	<b>60</b>						
	0. Trep	aration	of s_eth	vl hvdr	vyvhut	onate fro	me-aipiia	-D-giù acetoa	corurano	sc. na Vesst						
	10 Pre	naration	of s-et	hvl hvd	roxvhi	itonate il	sing 3 5	dinitro	benzoate	ing i casi	•					
	10.110	runun	1015-0		. on you	atonute u	5116 5,5	annu	conzoate.							
REFE	RENCE	S:														
1. Lal	boratory	Manua	1.													
	· · · · · · · · · · · · · · · · · · ·															
COUR	SE DES	SIGNE	RS			<b>D</b> '				4	1 -	<b>7</b> •1 <b>T</b>				
S.No.	Name of the Faculty Designation Department Mail ID															
1	Dr.S.	Ananda	kumar			Assistar	nt Profess	sor	Biotechr	nology	a	nadaku	mars@	vmkv	ec.edu.ir	1

Biotechnology

Assistant Professor

2

Ms.Subathra

subathra.biotech@avit.ac.in

		BIC	INST	RIM	TNT	гΔ	ION		Ca	tegory	L	Т	Р	Credi	it	
			(THEORY	( & PRAC	CTICA	LS)			CC		3	0	2	4		
PREA	AMBL	E														
The 1	Bioinstr	umentat	tion cou	urse ac	ts as	to	link	betwee	en academ	ics and i	ndustry.	Know	ledge	gained	in this	course
applie	applied on varies fields in biotechnology industry. The techniques studied in this course include principle,															
instrumentation and its applications.																
PREREOUISITE: NIL																
PREREQUISITE: NIL																
COURSE OBJECTIVES																
1	To disc	cuss abo	ut vario	us insti	ume	nts	used i	n biote	echnology.							
2	Descri	be in det	ail abou	ut the n	nolec	ula	r spect	roscoj	by techniqu	ues.						
3	To summarize about different separation and purification techniques used in biotechnology field															
4	4 To interpret the thermal analysis concepts and their use.															
5	To und	lerstand	the basi	ic conce	epts o	of I	Radiois	sotope	s techniqu	es and the	ir uses.					
COU	RSE O	UTCO	MES													
After	the suc	cessful	complet	ion of t	he co	our	se, lea	rner w	ill be able	to						
CO1.	Discus	s about	basic pr	inciples	s and	in	strume	nts in	biotechnol	ogy.			Und	erstand		
CO2.	Explain	n about :	spectros	copy te	echni	que	es in b	iotech	nology.				Und	erstand		
CO3.	Demor	istrate p	urificati	on tech	niqu	es i	in biot	echnol	logy.				App	ly		
CO4.	Identif	y the bir	nolecul	ar struc	ture	by	therma	al anal	ysis				Anal	lyze		
CO5.	Able to	o analyse	e the bio	ological	mol	ecu	iles us	ing rac	lio isotope	s.			Anal	lyze		
MAP	PING	WITH	PROGE	RAMM	ΕO	UT	COM	ES Al	ND PROG	RAMME	E SPECI	FIC O	UTC	OMES		
CO	PO1	PO2	PO3	PO4	Р	P	PO	PO	PO9	PO10	PO11	PO12	2 I	PSO1	PSO	PSO
CO	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO	S	М	L	L	-	-	-	-	-	-	-	-	Ι		-	-
CO	S	L	Μ	S	-	-	-	-	-	-	-	-	1	М	М	-
CO	М	М	М	-	-		-	-	-	S	S	Μ		Μ	-	-
CO	CO         M         M         -         -         -         -         S         S         M         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -															
S- Str	ong; M	-Mediu	m; L-Lo	W									÷			

# SYLLABUS

# **BASICS OF BIOINSTRUMENTION**

Classification and calibration of instrumental methods, Principles and Instrumentation of pH meter & Electronic balance, Gel documentation system, Turbidimetric and Nephelometric titrations.

## MOLECULAR SPECTROSCOPY

General design and components of spectroscopy, Principles, Instrumentation and applications of colorimetry, UV -

Visible - IR- Raman spectroscopy -NMR spectroscopy

## SEPERATION AND PURIFICATION TECHNIQUES:

Basic concepts of chromatography, Paper and column chromatography, Ion exchange, Size exclusion, Thin Layer Chromatography (TLC), High Performance Liquid Chromatography (HPLC). Centrifugation techniques, Types of centrifuge.

## THERMAL ANALYSIS:

Thermo-gravimetric methods, Differential thermal analysis, Differential scanning calorimetry.

## **RADIOISOTOPES TECHNIQUES:**

Radioisotopes - Basics concepts, GM counting and scintillation counting, Safety aspects and application.

## PRACTICALS

- 1. Validating Lambert Beer's law using KMnO4.
- 2. Determination of complementary color and complementary wavelength
- 3. Estimation of Al 3+ concentration using Alizarin in the spectrometer.
- 4. Turbidity meter.
- 5. Estimation of Dissolved oxygen.
- 6. Determination of Fe2+ content in fruit juices

## **TEXT BOOKS:**

1. Chatwal and Anand, 2016. Instrumental Methods of Chemical Analysis, Himalaya Publishing House,5th Edition

2. Upadhyay, Upadhyay and Nath.,2017. Himalaya Publishing House. Biophysical Chemistry (Principles & Technology,4th Edition.

3. Skoog, D., 2014. Instrumental Methods of Analysis, David Hariss, 6th Edition.

4. Willard, H.H., Merrit, J.A., Dean, L.L. and Setlle, F.A., 1986. Instrumental Methods of Analysis. CBS Publishers and Distributors.

## **REFERENCES:**

- Dinesh Kumar Chatanta and Prahlad Singh Mehra, 2012. Instrumental Methods of Analysis in Biotechnology. I K International Publishing House.
- 2. P.Asokan. 2003. Analytical Biochemistry. 2nd Edition. China publications.
- Hobart H. Willard, Lynne L. Merrit, John, A. and Frank A. Settle, 1981. Instrumental Methods of Analysis. Van Nostrand.
- 4. Campbell, I.D. and Dwek, R.A., 1986. Biological Spectroscopy, Benjamin Cummins and Company.
- 5. Sewell, P.A. and Clarke, B., 1991. Chromatographic Separations. John Wiley and Sons.
- 6. Ewing, G.W., 1989. Instrumental Methods of Chemical Analysis. McGraw Hill Book Company.

COCKSI				
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1.	Mrs.C.Nirmala	Associate professor	Biotechnology	<u>nirmala@vmkvec.edu.in</u>
2.	Dr.A.Nirmala	Assistant Professor (Gr-II)	Biotechnology	nirmalabt@avit.ac.in

PRINCIPLES ENGINEERING	OF	CHEMICAL	Category	L	Т	Р	Credit
			CC	3	0	0	3

#### PREAMBLE

The course introduces the basic principles and calculation techniques in the field of chemical engineering. It provides a concrete understanding of fundamentals and applications of material balances and energy balances which help students to understand the concepts of thermodynamics, fluid mechanics and chemical kinetics. It also provides a basis for non-chemical engineers to realize the chemical engineering aspects of subsequent modules.

#### **PREREQUISITE – NIL**

#### **COURSE OBJECTIVES**

1	To understand the stoichiometric principles, process flow sheet development for industrial proc	cess.
---	-------------------------------------------------------------------------------------------------	-------

- ² To perform the material balance calculations for unit operations and processes
- ³ To carry out the energy balance calculations for industrial unit processes
- ⁴ To interpret the vapour pressure of mixtures and humidity values of air-water vapour system
- 5 To derive the expressions for pressure drop calculation for different geometries and to understand the basic concepts of chemical kinetics

## **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. Demonstrate the stoichiometric principles for problem solving in chemical and bioprocess<br/>industriesUnderstandCO2. Perform material balance calculation for unit processes, operations and process designing of<br/>ApplyApply

 equipment
 CO3. Interpreting the problems in energy balances related to chemical and bioreactors processes and calculate the heat loads for industrial equipment and safety purpose.
 Apply

CO4. Determine the vapour pressure of mixtures using suitable methods by analytical methods and Apply predict humidity of air water system for industrial applications.

CO5. Predict the pressure drops in various industrial equipment and estimate the order of the Analyze reactions

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S	-	-	-	-	-	-	М	S	S	М
CO2	S	S	S	S	S	-	-	-	-	-	-	М	S	S	L
CO3	S	S	S	S	S	-	-	-	-	-	-	М	S	S	L
CO4	S	S	S	S	S	-	-	-	-	-	-	М	S	S	-
CO5	S	S	S	S	S	-	-	-	-	-	-	М	S	S	-
a a.		A 11	т	т											

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### **OVERVIEW OF STOICHIOMETRY**

Role of chemical engineering and Chemical engineers in biotechnology, Basic concepts of Unit process and operations, Process flow sheets, Units and dimensions, conversion factors, Stoichiometric principles- Equivalent weight, Normality, Molality, Atomic weight, Molecular mass, Composition of mixtures and solutions,

Density and specific gravity, molecular weight of mixtures, Ideal Gas law, actual gas equation; compressibility factor, Gaseous mixtures- Dalton's law of additive volumes, Amagts law, Dimensional analysis.

#### MATERIAL BALANCES

Steady state and unsteady operations and processes, Overall and component balances, Material balances without chemical reactions – Mixing, Distillation, absorption, Evaporation, Extraction, Drying, leaching, crystallization; Material balances with chemical reactions - Limiting reactant, Excess reactant concept, conversion and yield in single and multiple reactions, Recycling, purge and bypass operations; Excess air concept, Material balance of unsteady state operations; Problems in industrial applications.

#### **ENERGY BALANCE**

Law of conservation of energy, Open and closed system, , heat capacity - heat capacities of gas and liquid mixture; Heat of formation, combustion, reaction, Hess's law of summation, Latent heat; Enthalpy calculations for chemical reactions, Theoretical and adiabatic flame temperatures

#### VAPOUR PRESSURE AND HUMIDITY CALCULAITON

Vapour pressure calculation – Antoine equation, Clapeyron clausius equation; Humidity calculation –air- water vapour system; Psychometric chart.

#### FLUID MECHANICS AND CHEMICAL KINECTICS

Fluid flow, types of fluid flow –Reynolds experiment, Pressure drop calculation – flow through pipe, packed bed, Compressible fluid flow concept, Compressors and pumps, Classification of reactions, Rate law, rate constant, order and molecularity of the reaction, activation energy, first order and second order kinetics, types of reactors, Basic performance equations of ideal reactors.

#### **TEXT BOOKS:**

- 1. Bhatt B.I & SB Thakore, Stoichiometry Fifth edition Tata McGraw Hill 2012
- 2. Geankoplis C.J. "Transport process & Separation process Principles 4th edition-PHI 2006.
- 3. Octave levenspiel, Chemical reaction engineering, Third edition, Wiley India, January 2006
- 4. Warren McCabe, Julian Smith, Peter Harriott, 2005.Unit Operations of Chemical Engineering 7th Ed., McGraw Hill Inc., New York.

#### **REFERENCES:**

- 1. George T. Austine, Shreeves chemical process industries, 1984, McGraw Hill International Edition, 5th Edition.
- 2. Finlayson, B. A., Introduction to Chemical Engineering Computing, 2006, John Wiley & Sons, New Jersey.
- 3. Himmelblau. D.M "Basic principles & Calculations in Chemical Engineering" 6th edn PHI, 2006.
- 4. Nicholas Chopey, Handbook of Chemical Engineering Calculations Process Principles", Mc Graw Hill, 2004

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs.C.Nirmala	Associate Professor	Biotechnology	nirmala@vmkvec.edu.in
2.	Ms.Subathra	Assistant Professor	Biotechnology	subathra.biotech@avit.ac.in

			(	THE	MIC	AL EN	IGINI	EERIN	IG LA	В	Cate	egory	I	L T	Р	Credit
											CC		0	0	4	2
PRF	EAMB	LE														
Cher oper cher basic	mical e ations nical k c and n <b>CREQU</b>	ngi anc inet inet JIS	neerin l unit ic con e comp ITE -	g lab proc icepts blex i <b>NIL</b>	orato cesses s. It l ndus	bry foc s whic helps s trial sy	us on t h are student stems.	he der based s for t	nonstra on M he dev	ate of Iass T velopm	lab scaler ransfer tent of t	e expe and H heir sk	rimental leat Tra cills in u	l procedi nsfer, fi indersta	ures for v luid mec nding an	various unit hanics and d operating
CO	URSE	OB	JECT	IVE	S											
1	To in transf	terp er, 1	oret ch reactio	nemic on en	cal ei ginee	nginee ring a	ring pr nd part	rinciple	es and echani	their cs.	practica	ıl appl	ications	in the	areas of	mass, heat
2 To demonstrate the use of flow meters to find the discharge rate and coefficient.																
3 To perform the distillation, adsorption, extraction and sedimentation processes to separate the industrial solid and fluid mixtures in laboratory scale.																
⁴ To demonstrate the method of finding the boiling and vapour pressure of compounds.																
5	To im	par	t the k	now	ledge	of che	emical	kinetio	e studio	es and	to find t	he ord	er of an	y chemio	cal reacti	ons
CO	URSE	OU	TCO	MES												
Afte	r the su	icce	essful o	comp	letio	n of th	e cours	se, lear	mer wi	ll be a	ble to					
CO1 flow	Apply	/ in es.	dustri	al flo	ow m	neters	to find	l disch	arge c	oeffici	ents and	d volu	metric f	low rat	e of flui	d Apply
CO2 sepa	Perfor	m t d pi	the ste urify f	am a luid 1	nd si. nixtu	mple c res eff	listillat ective	tion, ao ly both	dsorpti i in lab	on , ex and la	traction	and so e units	edimenta	ation pro	ocesses t	o Apply
CO3	B Estim	ate	the Pro	essur	e dro	p for	industr	ial flui	idized	and pa	cked be	d units				Apply
CO4	Cond	ıct	experi	imen	t to f	ind Bo	oiling	and va	pour p	pressur	e of a i	ndustr	ial orga	nic and	inorgani	c Apply
com	pounds	1-4						.1	1		1		-1 1 -			A
COS		llate	e the o	rder	of a 1	ndustr	1al b10	chemic		ctions	by expe	riment	al and g	raphical	method	s Analyz
MA	PPING	W	ITH	PRO	GRA	MME	COUT	COM	ES AN	D PR	OGRAI	MME	SPECII	FIC OU	тсомі	ES
COS	5	Р	PO2	PO	PO	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO22	PSO3
COI	_	S	S	S	S	S	-	-	-	-	-	-	М	S	S	M
CO2	2	S	S	S	S	S	-	-	-	-	-	-	М	S	S	L
CO3	3	S	S	S	S	S	-	-	-	-	-	-	M	S	S	L
CO4	ŀ	S	S	S	S	S	-	-	-	-	-	-	М	S	S	-
CO5	)	S	S	S	S	S	-	-	-	-	-	-	M	S	S	-
S-S	S- Strong; M-Medium; L-Low															
SYI	LABU	S														

# **PRACTICALS:**

- 1. Flow measurement and discharge calculation using a) Orifice meter b) Venturimeter
- 2. Performance studies of double pipe heat exchanger
- 3. Simple and Steam distillation.
- 4. Liquid liquid equilibria Extraction
- 5. Solid liquid extraction leaching
- 6. Determination of Boiling point and Vapour pressure of a compound

- 7. Determination of order of a reaction mixture.
- 8. Pressure drop calculation for the fluid flow through pipe
- 9. Pressure drop calculation for the fluid flow through porous beds
- 10. Adsorption equilibrium
- 11. Batch sedimentation

#### **REFERENCE BOOKS:**

Laboratory Manual

S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mrs.C.Nirmala	Associate Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Ms.Subathra	Assistant Professor	Biotechnology	subathra.biotech@avit.ac.in

PLANT AND ANIMAL BIOTECHNOLOGY	Category	L	Т	Р	Credit
TEANT AND ANIMAL DIOTECHNOLOGI	CC	3	0	0	3

#### PREAMBLE

The course is customized to provide a perceptive of the basic concepts, techniques and methods underlying plant and animal biotechnology. The learners will gain understanding of theoretical principles enabling them to employ the knowledge to solve problems related to plant protection and disease diagnosis through biotechnological approaches.

#### **PREREQUISITE** – NIL

# COUDGE OD IE COUVES

COURSE OBJECTIVES									
1	Summarize about different types of cell culture methods								
2	Describe about the genetic transformation techniques and principles in plants and animal.								
3 To develop an understanding on transgenic plants and animals, patenting and ethical issues									
4	4 Outline cell culture technique, significance of its cultivation and its application in the disease diagnosis and protection								
CO	URSE OUTCOMES								
Afte	er the successful completion of the course, learner will be able to								
CO	1. Explain the basics of tissue culture	Understand							
CO2 sele	CO2. Demonstrate the techniques for development of transgenic plants, screening and Apply selection procedure.								
CO3. Appraise the plant tissue culture and genetic manipulation of plants Analyze									
CO4	CO4. Categorize about the different animal tissue culture and Molecular biological technique Analyze								
for 1	apid diagnosis of genetic disease.								

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO5. Inspect the animal gene transfer techniques and their ethical issues

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
CO1	М	-	-	-	L	Μ	-	-	-	-	L	Μ	М	-	-
CO2	S	S	L	S	S	L	М	L	-	-	-	-	-	S	М
CO3	М	М	М	L	S	Μ	S	М	-	-	-	-	М	Μ	-
CO4	М	S	S	М	L	-	-	L	-	-	-	-	М	S	-
CO5	М	-	S	М	L	L	-	S	L	-	М	L	S	Μ	S
S- Stro	S- Strong; M-Medium; L-Low														

Analyze

#### **SYLLABUS**

#### **BASICS OF TISSUE CULTURE**

Tissue culture media - Composition and preparation, aseptic techniques, Organogenesis, Somatic embryogenesis, Shoot-tip culture, Embryo culture and embryo rescue, totipotency.

#### GENETIC TRANSFORMATION METHODS

Protoplast isolation, Culture and regeneration, hybrids and Cybrids, Plant vectors, basic features of vectors,

Direct gene transfer methods, Agrobacterium mediated gene transfer, applications, Transplastomics and its utility.

#### TRANSGENIC PLANTS AND MOLECULAR MARKERS

Herbicide resistance-use of herbicide in modern agriculture, pest resistance-nature, insect resistant crops-Bt approach to insect resistance and food safety. Molecular markers.

#### ANIMAL CELL CULTURE

History of Animal Cell Culture, Characteristics of animal cell, metabolism, regulation and nutritional requirements, Culture Media and Growth Conditions, Development of Primary Culture and Cell Lines, Suspension Culture, Scale up of animal cell culture Characterization and maintenance of cell lines, Gene cloning techniques for mammalian cells.

#### TRANSGENIC ANIMALS AND ETHICAL ISSUES

Transgenic animals, Gene transfer methods in animals, Microinjection of recombinant DNA into fertilized eggs/stem cells, Organ Culture, Xenotransplantation, Human Embryonic Stem Cell research, Manipulation of Therapeutic proteins, patenting genetically engineered animals, Ethical Concerns and Biosafety.

## **TEXT BOOKS:**

- 1. Gupta, P.K., 1996. Elements of Biotechnology. Rastogiand Co., Meerut.
- 2. Ranga, M.M., 2002. Animal Biotechnology. Agrobios India Limited.
- 3. Ignacimuthu, S., 1996. Applied Plant Biotechnology. Tata McGraw Hill.
- 4. Gamburg, O.L. and Philips, G.C., 1995. Plant Tissue and Organ Culture Fundamental Methods. *Narosa Publications*.
- 5. Singh, B.D., 1998. Text Book of Biotechnology. Kalyani Publishers.
- 6. Ramadas, P. and Meera Rani, S., 1997. Text Book of Animal Biotechnology. Akshara Printers.

#### **REFERENCES:**

- 1. Hamond, J., McGarvey, P. and Yusibov, V., 2000. Plant Biotechnology. Springer Verlag.
- 2. Mantal, S.H., Mathews, J.A. and Mickee, R.A., 1985. Principles of Plant Biotechnology. An Introduction of Genetic Engineering in Plants. *Blackwell Scientific Publication*

S. No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mrs.C.Nirmala	Associate professor	Biotechnology	<u>nirmala@vmkvec.edu.in</u>
2	Dr.R.Balachandar	Assistant Professor GII	Biotechnology	balachandar.biotech@avit.ac. in

		FOOD PROCESSING TECHNOLOGY         Category         L										L	Т	Р	Credit	
				(THE	ORY	AND I	PRAC	TICA	LS)		CO	C	3	0	2	4
PREA Food the us artific and nu PREF COU 1. 2. 3. 4.	MBLE Processi ise of tec ial food atrients, <b>QUISI</b> <b>RSE OI</b> To exp which of To exp the she To disc	ng Ter chnolog, artific role of TE - 1 <b>BJEC</b> clain d cause f lain th lain th lf life, cuss th	chnolo gy and cial ed f funct NIL <b>FIVES</b> ifferer food b ne con- qualit e diffe	ogy dea d Engi ible ita ional f nt type orne d cepts c y, and rent fo	als with neering ems, nu oods an os of fo iseases of food other p od pro	n the s g techn ntritior nd the ods, f spoila ohysica cessin	tudy c niques a scien strates actors age an al and g meth	of food in aid ce and gies to affect d diffe sensor	l produ ding th l its Ch produc cing foo erent foo ry chara nd its a	ction, p e abov emistry ce speci od & fo od pres acteristi pplicab	processin e-mentio 7. It allo fic food pood proc servation cs of foo ility in f	ng, pack oned st ws stuck ingred lucts a n metho ods ood pro	kagii ages lents ients nd t	ng, p 3. It 5 to 1 3. he n and t pre	2 oreserva also de earn ab nicro-o their in eparatic	4 ation and eals with bout food rganisms npact on ns
5. COU	To Cho RSE OU e succes	ose ap oose th J <b>TCO</b> sful co	e mate MES	erials a	nd type	es of p	ackag udents	ing for will b	foods	and its	quality t	testing	1			
CO1.	Identify	differ	ent mi	crobes	associa	ated w	ith foo	ods, ar	nd food	borne o	liseases.				Unde	rstand
CO2.	Infer th	e role	of mic	robes	in food	spoila	ige an	d food	preser	vation					Apply	I
CO3. prepar CO4.	Illustrat ation Utilize t Inspect	e all : he mo	food p dern n	nethod	ing me s for fo	ethods ods pr	and d eservation	emons ation u	strate it sing biographics	s applic	cation in blogy.	i food j	prod	uct	Apply Apply Analy	///////////////////////////////////////
													<u>a a</u>			
MAP	PING V	VITH	PROC	JRAM	IME O	UTCO	OMES	5 ANL	PROC	JRAM	ME SPI	ECIFI		UTC	COME	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PS	01	PSO2	PSO3
CO1	L	M	-	-	L	M	L	-	-	-	-	-	Μ		-	М
CO2	M	M	M	M		L	М	-	-	-	-	-	- N/		8	-
CO3	M S	NI S	N	L S	NI S	S M	IVI I	-	-	-	-	-	IVI		- M	- M
C04	S	M	M	M	M	L	M	-	-	-	-	-	-		S	-

S- Strong; M-Medium; L-Low

## SYLLABUS

#### FUNDAMENTALS OF FOOD MICROBIOLOGY

Microbiology of different types of foods-Vegetables, fruits, milk and milk products, meat and meat products. Factors affecting the food products. Food borne diseases and causative organisms. Food intoxication.

#### FOOD SPOILAGE

Food Spoilage types & causes. Spoilage of foods and Shelf –life – Vegetables and fruits, Milk and milk products, meat and meat products, cereals and cereals products, Alcoholic beverages. Factors influencing food spoilage. Control of microbes in foods.

#### **PROCESSING OF FOODS**

Heating, boiling, oxidation, toxic inhibition, dehydration, drying-Yeast based products, Milk products, Jams and jellies, Pickles, Meat and meat products. Labeling Instructions.

## INDUSTRIALZATION

Pasteurization, Vacuum packing, irradiation, bio preservation, Modified atmosphere packing, cryopreservation, Pickling, salting, drying, freezing, refrigeration.

## FOOD ADDITIVES AND PACKAGING

Food additives- Intentional and Nonintentional additives, Food colorants- natural and artificial, food flavours, Packaging of solid and liquid foods.

- 1. Preparation of fruit squash, Jam and Jelly
- 2. Preparation of tomato ketchup
- 3. Fermented Food preparation
- 4. Experiment on preparation of fruit bar.
- 5. Preparation of bread
- 6. Preparation of food flavors

#### **TEXT BOOKS**

1. Frazier. Food Microbiology. McGraw Hill Publication.4th Edition.2001

2. Sivashankar.B.Food processing Preservation, Prenlice Hall of India.Pvt.Ltd.2002

#### **REFERENCE BOOKS**

1. James M Jay, Martin J, Loessner and David A Golden. Food Microbiology, Springer Publication, 7th Edition. 2005

2. Shetty K, Paliyath, Food Microbiology, 2nd Edition, Taylor and Francis, 2006

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
2	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in

		GRE	EN I	BIOT	ECHN	OLO	GY A	ND	Categ	ory	L	4	Т	Р	Credit
		POLI	LUTIO	ON AI	BETM	ENT			CC		3		0	0	3
PREA	MBLE	1													
This is a multidisciplinary course deals with various aspects like Environmental Biotechnology, Bioremediation of															
various	s probl	ems, E	Ecofrier	ndly B	ioprodu	ucts fro	om rene	ewable	e bioso	urces to	educat	te stude	nts with	in the	field of
Biotec	Biotechnology. Students will gain theoretical and practical competence within the broad field of Biotechnology as														
well as with its applications.															
PRER	EQUIS	SITE –	NIL												
COURSE OBJECTIVES															
1 To understand how Biotechnology can help in monitoring or Removing the pollutants															
2	To De	scribe t	he nov	el tech	niques	used in	product	tion of	Biofue	els, renev	vable er	nergy sou	irces		
3	To un pollut	derstan ants	d the k	nowled	ge to I	Develop	the stre	ess- to	lerant p	olants wh	nich can	minimiz	ze the ha	ırmful iı	npact of
4	4 To Describe the techniques of Bioremediation and Bioresoration														
5 To execute the use of genetically engineered organisms in environment															
COURSE OUTCOMES															
On the successful completion of the course, students will gain knowledge about															
CO1. (	Outline	the bas	ic infor	matior	about	mainta	ining the	e Envi	ronmer	nt				Unders	stand
CO2. I	Demons	strate th	e vario	us nov	el techr	niques f	for prod	uction	of Bio	fuels				Unders	stand
CO3. /	Apply the second	he diffe	rent me	ethods	for the	waste 1	nanager	nent						Apply	
CO4.A	apply th	e techn	ologies	s in Bio	oremedi	ation a	nd Gree	n Ener	rgy					Apply	
CO5.	Employ	the us	es of ge	enetica	lly engi	neered	organis	m in F	Environ	mental is	ssues			Apply	
MAPH	PING V	VITH I	PROG	RAMN	1E OU	TCOM	IES AN	D PR	OGRA	MME S	PECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-	-	-	-	-	-	-	L
CO2	L	L	L	-	L	-	L	-	-	-	-	L	L	-	L
CO3	S	S	М	М	М	-	М	-	-	-	-	-	М	М	М
CO4	S	S	S	L	М	L	М	М	-	-	-	-	М	М	S
CO5	S	S	М	М	S	L	S	S	L	-	-	-	М	S	S
S- Strong; M-Medium; L-Low															
SYLL	SYLLABUS														

## **BIOLOGICAL WASTE TREATMENT**

Principles and design aspects of various waste treatment methods with advanced bioreactor configuration: Solid waste management: landfills, recycling and processing of organic residues, minimal national standards for waste disposal. Fundamentals of composting process: scientific aspects and prospects of biofuel production: bioethanol, biohydrogen and biodiesel; biofertilizers and biopesticides.

## **BIODEGRADATION OF XENOBIOTIC COMPOUNDS**

Xenobiotic compounds–Definition, examples and sources. Biodegradation- Introduction, effect of chemical structure on biodegradation, recalcitrance, co metabolism and biotransformation. Factors affecting biodegradation, microbial degradation of hydrocarbons.

## **BIOTRANSFORMATIONS AND BIOCATALYSTS**

Basic organic reaction mechanism- Common prejudices against enzymes, advantages & disadvantages of biocatalysts, isolated enzymes versus whole cell systems, biocatalytic application, catalytic antibodies; stoichiometry.

## **BIOREMEDIATION AND BIORESTORATION**

Introduction and types of bioremediation, bioremediation of surface soil and sludge, bioremediation of subsurface material, In situ and Ex-situ technologies, phytoremediation- restoration of coal mines a case study. biorestoration: reforestation through micropropagation, use of mycorrhizae in reforestation, use of microbes for improving soil fertility, reforestation of soils contaminated with heavy metals.

## ECO-FRIENDLY BIOPRODUCTS FROM RENEWABLE SOURCES

Fundamentals of composting process: scientific aspects and prospects of biofuel production: bioethanol, biohydrogen and biodiesel; biofertilizers and biopesticides. Biotechnology in Environment Protection: Current status of biotechnology in environment protection and its future, release of genetically engineered organisms in the environment.

## **TEXT BOOKS**

- 1. Introduction to Wastewater Treatment- R. S. Ramalho, Academic Press.
- 2. Elements of Water Pollution Control Engineering O.P. Gupta, Khannabooks.
- 3. Energy Technology O.P. Gupta, Khannabooks, 2018.
- 4. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd.
- 5. Environmental Microbiology & Biotechnology, D.P. Singh, S.K. Dwivedi, New Age International Publishers, 2004.
- 6. Biodegradation and Bioremediation 1999 (2nd edition). Martin Alexander, Elsevier Science & Technology.

## **REFERENCE BOOKS**

- 1. Environmental Biotechnology by Bruce Rittmann and Perry McCarty.
- 2. Environmental Processes I-III, J. Winter, 2nd ed., Wiley Publications
- 3. Environmental Biotechnology, B.C. Bhattacharya & Ritu Banerjee, Oxford Press, 2007.
- 4. Environmental Biotech, Pradipta Krimar, I.K. International Pvt. Ltd., 2006.

COU	COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department	Mail ID							
1.	Dr.S.Anandakumar	Assistant Professor	Biotechnology	anandakumars@vmkvec.edu.in							
2.	Dr.R. Devika	Profeesor & Head	Biotechnology	devika@avit.ac.in							

			E	NZYN	/IE EI	NGINI	EERI	NG &		Cate	egory	L	Т	Р	Credit
				TECHNOLOGY						C	C	3	0	0	3
PRE	AMBLI	E										1	1	II	
Enzy	me Eng	ineerin	g is th	e proc	ess of	design	ning ai	nd mo	difying	enzym	es struc	tures by	altering	amino	acid sequences
using	recom	binant	DNA	techn	ology	. Kno	wledge	e of s	structur	e and t	functior	ns of pr	oteins g	gained	from advanced
bioch	emistry	can b	e app	lied h	ere to	desig	n and	modi	ify stru	icture o	of enzym	nes to	perform	differe	ent useful roles
inclu	ding enł	nanced	cataly	tic act	ivity, (	drug di	iscove	ry and	diagno	ostic app	olicatior	ns.			
PRE	REQUI	SITE ·	NIL												
COU	COURSE OBJECTIVES														
1	1 To Describe about the different classes of enzymes and their characteristics.														
2	To Ill	ıstrate	in deta	ail abo	ut me	chanisi	m and	kineti	cs of er	nzyme a	ctivity.				
3	To Ge	eneraliz	e abou	it enzy	me in	hibitio	n and	enzyn	ne imm	obilizat	ion and	its appl	ications.		
4	To co own d	rrelate esign r	in deta estrict	ils abo ions.	out pe	rforma	nce of	immo	bilized	l enzym	es in di	fferent t	ypes of t	bioreact	tors and their
5	⁵ To examine the knowledge of enzymes to enhance bioreactions and to design sensors for diagnostic														
COURSE OUTCOMES															
After the successful completion of the course, learner will be able to															
CO1.	Classif	y about	t classi	ficatio	on of e	enzyme	es and	their c	characte	eristics.					Understand
CO2.	Exemp	lify fur	ndame	ntal kr	owled	lge abo	out enz	zyme l	cinetics	and me	echanisr	n of enz	yme acti	ivity.	Understand
CO3.	Demon	strate t	he eff	ect of o	enzym	e inhil	oition	and en	zyme i	mmobil	ization.				Apply
CO4.	Utilize	the enz	zyme ł	cinetic	s to de	esign b	iosens	ors.							Apply
CO5.	Catego	rize in	detail	about	conse	quence	es of in	nmobi	lized e	nzymes	and its	effect in	1 bioreac	tors.	Analyze
MAP	PING	WITH	PRO	GRAN	IME	OUTC	COME	S AN	D PRC	OGRAN	IME SI	PECIFI	C OUT	COME	S
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	М	L	-	-	-	-	-	-	-	-	-	-	М	-	-
CO	М	-	М	-	М	-	-	-	-	-	-	-	М	-	-
CO	М	Μ	Μ	-	-	-	-	-	-	-	-	-	M	-	-
CO	<u>S</u>	<u>S</u>	S	M	S	-	-	-	-	-	-	S	S	M	-
CO S- Sti	M rong: M	M Medir	- 1		L	-	-	-	-	-	-	-	8	М	M
S- 50	SVI I ADIS														
CLASSIFICATION DIDIFICATION AND CHARACTEDIZATION OF ENZYMES FROM NATURAL															
SOURCES															
500	NULD												<b>.</b> .		

Classification of enzymes, Production and purification of crude enzyme extracts from plants, Animals and microbial sources – Case studies (Isolation and purification of lipase and protease from microbial sources), Methods of characterization of enzymes, Overview of enzymatic assays.

## MECHANISMS AND KINETICS OF ENZYME ACTION

Mechanisms of enzyme action, Concept of active site and energetics of enzyme substrate complex formation, Specificity of enzyme action, Kinetics of single substrate reactions –Michaelis – Menton kinetics, Determination of Km, Lineweaver – Burk plot, Eadie – Hofstee plot, Hanes – Woolf plot, Multi substrate reaction mechanisms (Ping – Pong, Bi – Bi and Random Bi – Bi), Monod Changeux Wyman model.

## INHIBITION OF ENZYME ACTIVITY AND ENZYME IMMOBILIZATION

Types of enzyme inhibition – Competitive inhibition, Uncompetitive inhibition, Non- competitive inhibition, Mixed inhibition, Substrate inhibition, Allosteric inhibition, Irreversible inhibition, Physical and chemical techniques for enzyme immobilization – Adsorption, Matrix entrapment, Encapsulation, Cross - linking, Covalent binding etc., Advantages and disadvantages of different immobilization techniques, Application of immobilized enzyme systems.

## IMMOBILIZED ENZYME REACTORS AND DIFFUSIONAL LIMITATIONS

Immobilized enzyme reactors – Packed bed, Fluidized bed, Membrane reactors, Air - lift bioreactors and CSTRs suited for immobilized enzymes. Diffusion effects in surface – bound enzymes on non-porous support materials, Diffusion effects in enzyme immobilized in a porous material.

#### **APPLICATIONS OF ENZYMES**

Applications of enzyme in disease diagnosis, Food industry, Pharmaceutical industry and Paper industry. Enzyme electrodes as biosensors – Calorimetric, Optical and Potentiometric biosensors, Applications of biosensors.

## **TEXT BOOKS:**

- 1. Bhatt S.M, 2014. Enzymology and Enzyme Technology. S Chand & Company, Bengaluru, Karnataka.
- 2. T. Devasena, 2010. Enzymology, Oxford University Press, Oxford, United Kingdom.
- 3. Trevor Palmer, 2008. Enzymes: Biochemistry, biotechnology and clinical chemistry. East West Press, Horwood.
- 4. Zubay, G. L., 1998. Biochemistry, McGraw-Hill Companies, Dubuque, 4thEdn.
- 5. Bailey and Ollis, D.F, 2017. Biochemical Engineering Fundamentals. McGraw Hill. New York. 2ndEdn.

## **REFERENCES:**

- 1. M. Y. Khan & Farha Khan, 2015. Principles of Enzyme Technology. PHI Learning.
- 2. Butterworth, 1995. Technological Applications of Biocatalysts. BIOTOL Series.
- 3. Cornish-Bowden, A., 1996. Analysis of Enzyme Kinetic Data. Oxford University Press.
- 4. Wiseman, A., Blakeborough, N. and Dunnill, P., 1981. Enzymatic and Nonenzymatic catalysis. Vol. 5, Ellis and Harwood, UK.
- 5. Wiseman, A. Topics in Enzyme and Fermentation Biotechnology. Vol.5 Ellis and Harwood, UK.
- Kolot, F.B. 1998 Immobilized Microbial Systems, Principles, Techniques and Industrial applications. R.R Krieger Publications.

COUR	COURSE DESIGNERS											
S. No	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.R.Devika	Professor and Head	Biotechnology	devika@avit.ac.in								
2	Mrs.C.Nirmala	Associate Professor	Biotechnology	nirmala@vmkvec.edu.in								

PROTEIN ENCINEEDING	Category	L	Т	Р	Credit
	CC	3	0	0	3

## PREAMBLE

PREPENIISITE _NII

The aim of the course is to explain the molecular mechanisms at the basis of the structure-function relationships of proteins and the experimental approaches to modulate the protein functionality and to evolve a desired function or structure. The course is also aimed to provide the most updated knowledge/skills related to the production of recombinant proteins. This course is a blend of modern discoveries and applications in protein sciences.

INDA															
COURSE OBJECTIVES															
1	To reca	ll the bo	nds in pr	otein stru	cture.										
2	To discu	uss the s	tructure,	functiona	al correla	tion and	the pred	iction o	of prop	erties of	protein	based on	its sequ	ence.	
3	To illustrate the role of analytical methods to determine protein structure and protein – protein interactions														
4	To observe the similarities in structure at basal level in a group of having similar function, thereby predicting the strategies to modify and design novel proteins.														
5	5 To provide updated knowledge about recombinant proteins and its application in therapeutics														
COUR	COURSE OUTCOMES														
After the successful completion of the course, learner will be able to															
CO1. Describe the importance of bonds in protein structure Understand															
CO2.Id	entify the	e amino	acid seq	uence and	d structu	re of pro	teins, an	d relat	e this i	nformat	ion to tl	ne functio	n Und	lersta	nd
of prote	eins strate	egies.		1.1					1.0					1	
CO3. II	lustrate t	he foldii	ng pathw	ay and the	eir impoi	rtance on	the stru	icture a	ind fun	ction of	proteins	5	App	oly	
CO4. C	orrelate t	the Struc	cture-fun	ction corr	elations	of protein	n with ot	her mo	lecules	8			App	oly	
CO5. E	mploy ne	ew meth	odologie	s for prot	ein engin	leering a	nd protei	n desig	gn.				Ana	lyse	
MAPP	ING WI	TH PRO	OGRAM	ME OU	ГСОМЕ	S AND	PROGR	AMM	E SPE	CIFIC	OUTCO	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	РО	PO	PO1	PO1	PO12	PSO	Р	Р
CO1	L	М	L	L	L	-	-	-	-	-	-	-	-	-	-
CO2	L M M L M S														
CO3	S	М	М	М	S	S	-	-	-	-	-	L	S	Μ	-
CO4	S	М	S	S	S	S	L	-	L	-	-	-	S	S	-
CO5	М	S	S	S	М	М	-	L	-	-	-	L	М	Μ	Μ
S- Strop	S- Strong; M-Medium; L-Low														

#### SYLLABUS

#### BONDS AND ENERGIES IN PROTEIN MAKEUP

Covalent and Non-covalent interactions in Protein structure, Post Translational Modifications, Protein interaction.

#### **PROTEIN ARCHITECTURE**

Primary structure, Secondary structures, Super secondary structures (Alpha-turn-alpha, beta-turn beta (hairpin), betasheets, alpha-beta-alpha, topology diagrams, up and down and TIM barrel structures ), prediction of substrate binding sites. Topology diagrams, Nucleotide binding folds, Tertiary structures, Quaternary structures.

## PROTEIN FOLDING AND STRUCTURE DETERMINATION

Protein Denaturation and Renaturation, Protein folding pathways, Stability of folded conformation of proteins, Protein folding errors: Alzheimer's, prions and Mad Cow (BSE, CJD), Cystic Fibrosis and cancer. Methods to determine primary, tertiary and quaternary structure - Peptide mapping, Peptide sequencing, Circular Dichroism, Mass spectroscopy and X-ray diffraction.

## **PROTEIN STRUCTURE - FUNCTION RELATIONSHIP**

Helix-turn-Helix motifs, Cro, Lamda and Trp repressor, Zn fingers, Tata Box binding proteins, Homeodomain, Leucine zippers, Structure-function correlations in the context of protein ligand interactions & protein protein/carbohydrate interactions.

## PROTEIN ENGINEERING AND PROTEIN DESIGN

Site directed mutagenesis, Engineering of T4 Lysozyme and Recombinant Insulin, Protein design - Principles and examples.

#### **TEXT BOOKS:**

1. Branden, C. and Tooze, J., 1999. Introduction to Protein structure. 2nd Garland Publishing, NY, USA. Edn.,

2. Daniel C. Liebler, "Introduction to Proteomics - Tools for the New Biology," Humana Press, 2001

## **REFERENCES:**

1. Moody P.C.E. and Wilkinson A.J., 1990. Protein Engineer-ing. IRL Press, Oxford, UK.

2. DoanaldVoet and Judith Voet, G., 2001. Biochemistry. 3rd Edn., John Wiley and Sons, 2001.

3. Stefan Lutz and Uwe T. Bornscheuer, 2009. Protein Engineering Handbook. Vol 1 & 2, 1st Edn., Wiley Publishers.

4. Berg, J. M., Tymoczko, J. L. and Stryer, L., 2002. Biochemis-try. 5th Edn., W.H. Freeman and Company.

COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID					
1	Dr.M.Sridevi	Professor& Head	Biotechnology	sridevi@vmkvec.edu.in					
2	Dr.A.Nirmala	Assistant Professor - GII	Biotechnology	nirmalbt@avit.ac.in					

				CE	NET	T ENG	TNIE	DIN	n		Categ	ory	L	Т	Р	Credit
				GE	NEII	- ENG	JINEI	LKIN	G		CC		3	0	0	3
PREA	MBLE															
Geneti	c enginee	ering h	nas dev	veloped	l genet	ic reco	ombin	ation t	echniqu	ues to r	nanipula	ate ger	ne sequ	uence	es in	plants, animals
and ot	her organ	nisms	to exp	oress s	pecific	traits.	Appl	icatio	ns of g	enetic	engineer	ring a	re inci	easir	ng as	engineers and
scienti	sts work	togeth	ner to	identif	y the	locatio	ons an	d fun	ctions of	of spec	ific gen	es in	the D	NA s	seque	nce of various
organi	organisms. Once each gene is classified, engineers develop ways to alter them to create organisms that provide benefits															
such as cows that produce larger volumes of meat, fuel- and plastics-generating bacteria, and pest-resistant crops.																
PRERQUISITE –NIL																
COURSE OBJECTIVES																
1	1 To understand the principle of nucleic acid isolation, nucleic acid labelling and hybridization and also aware of cloning vectors															
2	To discuss the gene cloning methods and the tools and techniques involved in gene cloning															
3	The students would be aware gene modification and types of PCR															
4	To explain the preparation of rDNA molecule															
5	To demo	nstrate	e gene	clonin	g and s	creeni	ng of 1	recom	binants							
COU	RSE OUT	ГСОМ	IES													
On the	successf	ul con	npletio	n of th	e cours	e, stuc	lents v	vill be	able to							
CO1. 1	Identify t	he pro	blems	they c	ould er	count	er and	how t	o troub	leshoot	and lear	rn vari	ious	A	pply	
types of	of host-ve	ctor sy	ystems	and st	eps in o	creatin	ig a re	combi	nant Dl	NA mol	lecule					
CO2:	Develop	the co	nstruct	tion of	librarie	es and	strateg	gies of	clonin	g				A	nalyz	e
CO3. 1	Illustrate (	the gei	ne moo	lificati	ons and	1 DNA	ampl	ificati	ons usi	ng PCR				A	nalyz	e
CO4. I	Employ th	ne met	hods o	of plasr	nid DN	A isol	ation	and Re	estrictio	on diges	stion			A	pply	
<u>CO5.</u> 1	Employ g	ene clo	oning a	and scr	reening	of rec	ombir	ants.						A	pply	
MAPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO1         PSO1         PSO2         PSO3															
CO1	L	L	L	L	S	L	-	-	-	-	-	L	S		S	-
CO2	S	Μ	S	M	S	L	-	S	-	-	L	-	S		M	-
CO3	M	-	M	L	S	-	-	Μ	-	-	-	-	Μ	<u> </u>	-	-
CO4	S	M	L	S	Μ	-	-	-	-	-	-	-	-	<u> </u>	M	-
CU5	<u>CO5   S   M   S   -   -   -   -   -   -   -   -   S   -   -</u>															
2- 2tro	ong; M-M	leaium	1; L-L0	)W												

# SYLLABUS

## TOOLS IN GENETIC ENGINEERING

Restriction enzymes -Cutting and joining of DNA, Design of linkers and adaptors, DNA sequencing - Maxam and Gilbert method and Sanger and Coulson enzymatic chain termination method; DNA labelling Methods; Nucleic acid hybridization techniques – Southern, Northern and Western.

# **CLONING AND EXPRESSION VECTORS**

Characteristics of cloning and expression vectors, Plasmids as vectors – pBR 322, pUC vectors, Lambda vectors,, M13 vectors, Cosmids, Phasmids, Vectors for insect, yeast and mammalian system, Introduction of recombinant DNA

in to host cells and selection methods.

## GENE LIBRARIES AND GENE MAPPING

Construction and screening of Genomic DNA and cDNA Library; Screening of DNA libraries using nucleic acid probes and antisera.; Chromosome walking, Chromosome jumping; DNA probes; Molecular markers - Variable Nucleotide Tandem Repeats (VNTR's), Short Tandem Repeats (STR); Mini and Microsatellite sequences; Restriction mapping, Hybridization mapping, Radiation Hybrid Maps, Optical mapping.

## **CLONING STRATEGIES**

Construction of recombinant DNA; Preparation of competent cells- Transformation and Transfection; Selection and screening of recombinants; Gene transfer - Shotgun method, Electroporation, Particle bambartment, Nuclear injection method; Cloning in plants-Ti Plasmids of *Agrobacterium* 

## GENE MODIFICATIONS AND AMPLIFICATION

Mutagenesis – Deletion mutagenesis, Oligonucleotide derived mutagenesis, Site directed mutagenesis and their applications; DNA Fingerprinting - RFLP analysis; - DNA amplification using PCR & its Types Applications of recombinant DNA technology for the production of recombinant proteins – Insulin, Interferon and Growth hormones;

Guidelines for the disposal of recombinant product wastes

#### **TEXT BOOKS:**

- 1. Primrose SB and R. Twyman "Principles of Gene Manipulation & Geneomics Blackwell Science Publications, 2006.
- 2. Principles of Genome Analysis and Genomics by S.B.Primrose and R.M.Twyman, Third Edition (Blackwell Publishing), 2003.

#### **REFERENCES:**

- 1. Winnacker, Ernst L. "From Genes to Clones: Introduction to Gene Technology", Panima, 2003.
- 2. Glover, D. M., 1984. Gene cloning: The mechanism of DNA manipulation. IRC Press, Oxford University.
- 3. Jose Cibelli, Robert P. Lanza, Keith H.S. Campbell, Michael D. West, 2002. Principles of cloning. Academic Press.
- Glick, B.R. and J.J. Pasternak "Molecular Biotechnology: Principles and Applications of Recombinant DNA", 3rd Edition, ASM, 2003.
- 5. Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols in Molecular Biology "Greene Publishing Associates, NY, 1988.
- 6. Berger Sl, Kimmer AR, "Methods in Enzymology", Vol 152, Academic Press, 1987.
- 7. Genomes 3 by T.A.Brown, Third Edition (Garland Science Publishing), 2007
- 8. Sambrook and Elliot. Molecular Cloning. Vol. III.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
2	Dr.Balachandar	Assistant professor –GII	Biotechnology	balchandar@avit.ac.in

PREAMBLE	2								
PREAMBLE									
r REAMDLE									
To understand and develop the skills involved in rDNA Technology.									
PRERQUISITE – NIL									
COURSE OBJECTIVES									
1 To explain the preparation of recombinant DNA molecule									
To construct a method for amplifying a gene									
To perform DNA fingerprinting using RAPD									
To demonstrate gene cloning and screening of recombinants									
To differentiate proteins through SDS-PAGE									
COURSE OUTCOMES									
On the successful completion of the course, students will be able to									
CO1. Describe core Nucleic acid techniques such as extraction, nucleic acid separations and Understand									
elution.									
CO2. Illustrate DNA amplification using Polymerase Chain Reaction Apply									
CO3. Classify the methods of Nucleic acids characterization, through the application of Apply									
gene probes									
CO4. Employ Gene cloning and screening of recombinants. Apply									
CO5 Company the proteins through SDS DACE									
COS. Compare the proteins through SDS-PAGE. AND PROCEAMME SPECIFIC OUTCOMES	1								
VIAPPING WITH PROGRAMMINE OUTCOMES AND PROGRAMMINE SPECIFIC OUTCOMES	<u> </u>								
	303								
CO1 S L S M S -	-								
CO2         S         M         L         L         -         -         -         S         -         -         -         M	-								
CO3 M L M M S	-								
CO4         S         L         M         S         -         -         -         -         -         L         -           CO5         M         L         S         M         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <td>-</td>	-								
	-								

# SYLLABUS

- 1. Isolation of Plasmid DNA.
- 2. Polymerase Chain Reaction.
- 3. Electro elution of DNA from Agarose gel.
- 4. Restriction digestion of  $\lambda$  DNA.
- 5. Ligation of DNA.
- 6. Preparation of Competent Cells Calcium chloride Method.
- 7. Transformation in *E. coli* by Heat Shock Induction Method.
- 8. SDS Poly Acrylamide Gel Electrophoresis.
- 9. Blotting techniques Southern, Western.
- 10.Blue and white screening of recombinant

# **REFERENCES:**

- 1. Laboratory Manual.
- Sambrook, Joseph and David W. Russell "The Condensed Protocols: From Molecular Cloning; A Laboratory Manual" Cold Spring Harbor Laboratory Press, 2006.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in
2	Dr RBalachandar	Asst Professor	Biotechnology	Balaclone1@avit.ac.in

CC       3       0       2       4         PREAMBLE         The course aims in imparting the fundamental knowledge in the science of immunology and a detailed study of various types of immune systems and their classification, structure, and mechanism of immune activation. It discusses about the principles of microbial pathogenesis, production of new drugs and diagnostic methods.         REROUISITE – NIL         COURSE DBJECTIVES         1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COL Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         COL Explain the general concepts of antigens and antibodies, cell mediated immunity         COL Segle the various antigen-antibody interact						IMN	MUN	DLOG	ĞΥ			Cate	gory	L	Т	Р	Credit
PREAMBLE       The course aims in imparting the fundamental knowledge in the science of immunology and a detailed study of various types of immune systems and their classification, structure, and mechanism of immune activation. It discusses about the principles of microbial pathogenesis, production of new drugs and diagnostic methods.         PRERQUISITE - NIL.       COURSE OBJECTIVES         1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         C01. Explain the general concepts of antigens and antibodies, cell mediated immunity         C02. Identify the mechanisms behind transplantation immunology, autoimmunity andUnderstand hypersensitivity         C02. Identify the mechanisms behind transplantation immunology, autoimmunity andUnderstand hypersensitivity         C03. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods       Apply					(TH	IEORY	<b>&amp; P</b>	RACT	TICAI	LS)		CC		3	0	2	4
The course aims in imparting the fundamental knowledge in the science of immunology and a detailed study of various types of immune systems and their classification, structure, and mechanism of immune activation. It discusses about the principles of microbial pathogenesis, production of new drugs and diagnostic methods.         PRERQUISITE – NIL         COURSE OBJECTIVES         1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COL. Explain the general concepts of antigens and antibodies, cell mediated immunity         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COL. Explain the general concepts of antigens and antibodies, cell mediated immunity         COL Explain the general concepts of antigens and attribudies, cell mediated immunity         COL Explain the general concepts of antigens and attribudies, cell mediated immunity         COL Explai	PRE	AMBLE	2														
various types of immune systems and their classification, structure, and mechanism of immune activation. It discusses about the principles of microbial pathogenesis, production of new drugs and diagnostic methods. PRERQUISITE – NIL COURSE OBJECTIVES 1 To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity 2 To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology. 3 To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research. 4 To summarize the techniques like blood grouping, PBMC cells. 5 To compare the various Immunological techniques and its applications. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Explain the general concepts of inmune system, describe the cells and organs of theUnderstand immune system, and describe the properties of antigens and antibodies, cell mediated immunity CO2. Identify the mechanisms behind transplantation immunology, autoimmunity andUnderstand hypersensitivity CO3. Inspect the various antigen-antibody interactions and techniques. Vaccine production and Apply explore the diagnostic methods CO4. Employ the knowledge for isolation of PBMC, blood grouping. MAPPLY CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions. MAPPLY CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions. MAPPLY CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions. MAPPLY CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions. MAPPLY CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions. MAPPLY CO5. S S S M M M L c c c c c c c c c M M M S S CO4 S M M M C S S M c c c c c c c c c c M M M S S CO4 S M M M C C S M C C c c c c c c	The c	course ain	ns in ii	nparti	ng the	fundan	nental	know	ledge	in the s	science	of immı	inology	and a	ı det	ailed	study of
discusses about the principles of microbial pathogenesis, production of new drugs and diagnostic methods.          PRERQUISITE – NIL         COURSE OBJECTIVES         1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.         MAPPING WTTH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS PS	vario	us types o	of imn	nune s	ystem	s and t	heir c	lassifi	cation	, struct	ure, an	d mecha	nism of	imn	nune	activ	vation. It
PRERQUISITE – NIL         COURSE OBJECTIVES         1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.         Apply         CO5. Assess the Immuno assay to understand complement fixation system and other         Apply         CO4. Employ the knowledge for isolation of	discu	sses abou	t the p	rincipl	es of n	nicrobi	al patł	ogene	esis, pi	roductio	on of ne	w drugs	and dia	gnost	ic m	ethoo	ls.
COURSE OBJECTIVES         1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COL. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         COVES ADPROGRAMME SPECIFIC OUTCOMES         COURES (OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES (CO1. Explain the knowledge for isolation of PBMC, blood grouping.         Apply         CO1. Explain the knowledge for isolation of PBMC, blood grouping.         Apply <td< td=""><td>PRE</td><td>RQUISIT</td><td>$\Gamma E - N$</td><td>IL</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	PRE	RQUISIT	$\Gamma E - N$	IL													
1       To gain knowledge about the general concepts of immune system, immune organ and cell mediated immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO5. Assess the Immuno assay to understand complement fixation system and other         Analyze         COS         CO PO3       PO4       PO5       PO6       PO7       PO8       PO10       PO11       PO12       PS01       PS       PS03         COS	COU	RSE OB.	JECT	IVES													
immunity         2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO2       S       M       M       L       s       s       s       s       s       s         CO2. Identify the mechanisms beind transplantation       immunology, autoimmunity and Understand hypersensitivity <td< td=""><td>1</td><td>To gain 1</td><td>knowl</td><td>edge a</td><td>about</td><td>the ger</td><td>neral o</td><td>concep</td><td>ots of</td><td>immur</td><td>ne syste</td><td>em, imn</td><td>nune or</td><td>gan a</td><td>and</td><td>cell</td><td>mediated</td></td<>	1	To gain 1	knowl	edge a	about	the ger	neral o	concep	ots of	immur	ne syste	em, imn	nune or	gan a	and	cell	mediated
2       To learn the mechanisms related to complement system, hypersensitivity and transplantation immunology.         3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.         Apply         CO5. Assess the Immuno assay to understand complement fixation system and other         Analyze         CO5         CO5         CO5         CO4         CO5         CO5         CO5		immunity															
3       To acquire knowledge on the principles of microbial pathogenesis the concepts and principle of Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.         Apply         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.         MAPPINE WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO3         Q         Q         Q         Q         Q         Q         Q         Q </td <td>2</td> <td>To learn t</td> <td>he me</td> <td>chanis</td> <td>ms rela</td> <td>ated to</td> <td>compl</td> <td>ement</td> <td>syste</td> <td>m, hype</td> <td>ersensit</td> <td>ivity and</td> <td>l transpl</td> <td>antati</td> <td>on i</td> <td>mmu</td> <td>nology.</td>	2	To learn t	he me	chanis	ms rela	ated to	compl	ement	syste	m, hype	ersensit	ivity and	l transpl	antati	on i	mmu	nology.
Immune assay techniques in routine diagnosis, research.         4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO5. Assess the Immuno assay to understand complement fixation system and other         Analyze         CO5         ON PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PS03         CO1       S       M       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>3</td> <td>To acquir</td> <td>e knov</td> <td>vledge</td> <td>on the</td> <td>princi</td> <td>ples of</td> <td>f micro</td> <td>obial p</td> <td>oathoge</td> <td>nesis th</td> <td>e conce</td> <td>pts and p</td> <td>orinci</td> <td>ple o</td> <td>of</td> <td></td>	3	To acquir	e knov	vledge	on the	princi	ples of	f micro	obial p	oathoge	nesis th	e conce	pts and p	orinci	ple o	of	
4       To summarize the techniques like blood grouping, PBMC cells.         5       To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COI. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO5       S       S       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <		Immune a	issay to	echniq	ues in	routine	diagn	losis, r	esearc	ch.							
To compare the various Immunological techniques and its applications.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         COI. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods       Apply         CO4. Employ the knowledge for isolation of PBMC, blood grouping.       Apply         CO5. Assess the Immuno assay to understand complement fixation system and other       Analyze         CO5       PO1       PO2       PO6       PO7       PO8       PO1       PO1       PS       PSO1         ON       PO6       PO7       PO8       PO1       PO1       PS       PS <td>4</td> <td>To summ</td> <td>arize t</td> <td>he tecł</td> <td>nniques</td> <td>s like b</td> <td>lood g</td> <td>roupir</td> <td>ng, PB</td> <td>MC cel</td> <td>lls.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4	To summ	arize t	he tecł	nniques	s like b	lood g	roupir	ng, PB	MC cel	lls.						
Ourse ourse, students will be able to         COURSE OUTCOMES         COURSE OUTCOMES         COL Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.         Apply         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO5       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO1       PO1       PO1       PS PS03         CO2       S       S       M       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	5	To compa	re the	variou	ıs Imm	unolog	ical te	chniqu	ues an	d its ap	plicatio	ons.					
On the successful completion of the course, students will be able to         CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO2       S       S       M       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>COU</td> <td>RSE OU</td> <td>TCON</td> <td>AES</td> <td></td>	COU	RSE OU	TCON	AES													
CO1. Explain the general concepts of immune system, describe the cells and organs of the Understand immune system, and describe the properties of antigens and antibodies, cell mediated immunity       Understand         CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity       Onderstand         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods       Apply         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.       Analyze         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PS03         CO1       M       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	On th	e success	ful cor	npletio	on of tl	ne cour	se, stu	dents	will b	e able t	0						
immune system, and describe the properties of antigens and antibodies, cell mediated immunity CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods CO4. Employ the knowledge for isolation of PBMC, blood grouping. CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.  MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 S O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS PSO3 CO1 M - L S S M M M CO2 S S M M M L M M M M S M CO3 M M M M - M - M M - M M S M CO5 S S S S S S - S - S M S M S M CO5 S S S S S S S - S M S M CO5 S S S S S S S	CO1.	Explain	the ge	eneral	conce	pts of	immu	ne sys	stem,	describ	e the c	ells and	lorgans	of t	heU	nders	tand
CO2. Identify the mechanisms behind transplantation immunology, autoimmunity and Understand hypersensitivity       Understand         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods       Apply         CO4. Employ the knowledge for isolation of PBMC, blood grouping.       Apply         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.       Analyze         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES       Analyze         CO2       S       S       M       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	immu	ine systen	n, and	descril	be the	propert	ies of	antige	ens and	antibo	odies, ce	ell media	ated imm	nunity	7		
hypersensitivity         CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply explore the diagnostic methods         CO4. Employ the knowledge for isolation of PBMC, blood grouping.       Apply         CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions.       Analyze         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES       Analyze         CO2       S       M       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>CO2.</td> <td>Identify</td> <td>the</td> <td>mech</td> <td>anism</td> <td>s behi</td> <td>nd tr</td> <td>anspla</td> <td>ntatio</td> <td>n imr</td> <td>unolog</td> <td>y, auto</td> <td>immuni</td> <td>ty a</td> <td>ndU</td> <td>nders</td> <td>tand</td>	CO2.	Identify	the	mech	anism	s behi	nd tr	anspla	ntatio	n imr	unolog	y, auto	immuni	ty a	ndU	nders	tand
CO3. Inspect the various antigen-antibody interactions and techniques, Vaccine production and Apply       Apply         explore the diagnostic methods       Apply         CO4. Employ the knowledge for isolation of PBMC, blood grouping.       Apply         CO5. Assess the Immuno assay to understand complement fixation system and other       Analyze         diseased conditions.       Apply <b>MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES</b> CO2       S       S       M       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PSO3         CO1       M       -       -       L       S       S       -       -       -       -       -       -         CO2       S       S       M       M       L       -       -       -       -       M       M       -         CO3       M       M       -       S       M       -       -       M       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	hypeı	rsensitivit	У														
explore the diagnostic methods CO4. Employ the knowledge for isolation of PBMC, blood grouping. Apply CO5. Assess the Immuno assay to understand complement fixation system and other diseased conditions. MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS PSO3 CO1 M L S S CO2 S S M M M L M M	CO3.	Inspect t	he var	ious a	ntigen-	antibo	dy inte	eractio	ons and	d techn	iques, V	Vaccine	product	ion a	ndA	pply	
CO4. Employ the knowledge for isolation of PBMC, blood grouping.       Apply         CO5. Assess the Immuno assay to understand complement fixation system and other       Analyze         diseased conditions.       MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         CO5       P01       P02       P03       PO4       P05       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PS03         CO1       M       -       -       L       S       S       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>explo</td> <td>ore the dia</td> <td>gnosti</td> <td>c meth</td> <td>ods</td> <td></td>	explo	ore the dia	gnosti	c meth	ods												
CO5. Assess the Immuno assay to understand complement fixation system and other       Analyze         MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PSO3         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PSO3         CO1       M       -       -       L       S       S       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>CO4.</td><td>Employ t</td><td>he kno</td><td>owledg</td><td>ge for i</td><td>solatio</td><td>n of P</td><td>BMC,</td><td>blood</td><td>groupi</td><td>ng.</td><td></td><td></td><td></td><td>A</td><td>pply</td><td></td></t<>	CO4.	Employ t	he kno	owledg	ge for i	solatio	n of P	BMC,	blood	groupi	ng.				A	pply	
COS: Assess the finitum of assay to understand complement fixation system and outer	C05	Assess th	e Imr		seav to	under	stand o	omnle	ment	fivatio	n eveter	n and of	her		Δ	nalvz	0
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PS03         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PS03         CO1       M       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       M       M       -       -       -       M       M       -       -       -       M       M       N       N       -       -       -       M	disea	sed condit	tions	iuno a	ssay 10	unders		ompre	Jinein	IIAdiloi	li syster.				Λ	maryz	
COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01       PS       PS03         CO1       M       -       -       L       S       S       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>изса МАР</td> <td>PPINC W</td> <td></td> <td>PROC</td> <td><b>BAM</b></td> <td>ME OI</td> <td>TTCO</td> <td>MES</td> <td></td> <td>PROC</td> <td>RAM</td> <td>AF SPF</td> <td>CIFIC</td> <td></td> <td></td> <td>MES</td> <td></td>	изса МАР	PPINC W		PROC	<b>BAM</b>	ME OI	TTCO	MES		PROC	RAM	AF SPF	CIFIC			MES	
CO3       IO1       IO2       IO3       IO4       IO3       IO6       IO7       IO3       IO3       IO1       IO12       ISO1       ISO1 </td <td></td> <td></td> <td></td> <td>PO3</td> <td></td> <td></td> <td>POG</td> <td>PO7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DSU.</td> <td>1</td> <td>PC</td> <td>PSO3</td>				PO3			POG	PO7						DSU.	1	PC	PSO3
CO1       M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	C03	M	102	105	I O4	s 105	s s	10/	100	10)			-	150	1	-	-
CO2       S       S       M       M       L       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	$\frac{1}{1}$		- S	M	M	I	2	_	_	-	_	-	_		ſ	M	-
OOS $M$ $M$ $M$ $N$ $S$ $M$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $M$ $M$ $C$ $M$ $C$ <t< td=""><td>$CO^2$</td><td>M</td><td>M</td><td>M</td><td>141</td><td>C C</td><td>M</td><td>_</td><td>_</td><td>-</td><td>-</td><td></td><td>M</td><td>1V.</td><td>1</td><td>с Г</td><td>- C</td></t<>	$CO^2$	M	M	M	141	C C	M	_	_	-	-		M	1V.	1	с Г	- C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO3	 	M	M		M	-	_	_	M		_	-	N/	1	-	-
S- Strong: M-Medium: L-Low	C05	S	S	S	S	-	S	_	_	S	_	-	M	S	-	М	_
	S- Sti	rong: M-N	/ /Iediur	n: L-L	ow												

## SYLLABUS

# INTRODUCTION TO IMMUNE SYSTEM

Cells Of Immune System, Innate And Acquired Immunity, Clonal Nature Of Immune Response, Organization And Structure Of Lymphoid Organs, Antigens: Chemical And Molecular Nature, Haptens, Adjuvants, Cells of Immune System– Haematopoiesis And Differentiation– B-Lymphocytes, T - Lymphocytes, Macrophages, Dendrite Cells, T Cell Maturation, Activation, Differentiation And B Cell Maturation, Activation, Differentiation.

## HUMORAL AND CELL MEDIATED IMMUNITY

Immunoglobulins, Classes and subclasses, Organisation and expression of Immunoglobulin genes, Immunoglobulin gene rearrangement, antibody diversity, B-cell development and activation. TCR, TCR diversity, T cell receptor gene arrangement, T-cell development & activation, Classes, molecular structure and assembly of MHC, HLA genetic loci, Antigen Presenting cells.

## TRANSPLANTATION, AUTOIMMUNITY AND HYPERSENSITIVITY

HLASystem, Transplantation–Organtransplantation, Grafting–graft rejection and prevention, Immunosuppressive drugs, Autoimmunity–Autoantibodies in human, Pathogenic mechanism, Experimental models of Autoimmune disease, Treatment of Autoimmune disorders, Complement system, Hypersensitivity.

## MOLECULAR IMMUNOLOGY

Immunity to virus, Bacteria, Parasites, Genetic control of immune response, MHC associated predisposition to disease,

Vaccine – Principle & production, Principles and strategy for developing vaccines, Newer methods of vaccine

production, Antigen-antibody interaction, Agglutination and precipitation Immuno deficiency diseases.

## IMMUNOTECHNOLOGY

Hybridoma Technology, Production and Purification of Monoclonal Antibodies, Polyclonal Antibodies, Antibody engineering, Immuno techniques: complement fixation test, Immuno diffusion, Immuno electrophoretic, RIA, Enzyme Linked Immuno sorbent Assay (ELISA), Fluorescenceimmunoassay– Immuno Fluorescence(IF),

Fluorescence Activated Cell Sorter, Immunodiagnostics, Immunotherapeutics, Current trends and its Application

## PRACTICE SYLLABUS

## DEMO

- 1. Handling of animals, immunization and raising antisera.
- 2. Identification of cells in a blood smear.

# PRACTICALS

- 1. Identification of blood groups.
- 2. Immuno diffusion Single Radial and Ouchterlony Double Diiffusion
- 3. Immunoelectrophoresis Rocket Immuno electrophoresis.
- 4. Testing for Typhoid antigens by Widal test.
- 5. Enzyme Linked Immuno Sorbent Assay (ELISA).
- 6. Western Blotting.

#### TEXT BOOKS:

1. Lydyard, P.M., Whelan, A. and Fanger, M.W., 2003. Instant Notes in Immunology. 2ndEdn., Viva Books Private Limited.

2 Richard A., Goldsby, Thomas J.Kindt and Barbara A, Osborne, Kuby, Immunology. IV Edition,

W.H. Freeman and Company, New York.

#### **REFERENCES:**

1. Talwar, G.P. and Gupta, S.K., 1992.A Handbook of Practical and Clinical Immunology. Volume 12. CBS Publications.Dulsy Fatima and Arumugam N., 2014.

3. Goding, J.W., 1983. Monoclonal Antibodies: Principles and Practice, Academic Press.

4. Benjamin, E. and Leskowitz, S., 1991. Immunology – A Short Course. Wiley Liss., New York.

5. Kuby J, Immunology, WH Freeman & Co., 7th Edition 2012.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in
2	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in

CC       3       0       2       4         PREAMBLE       This course aims to develop the skills of students in the area of Bioprocess engineering. This will also help the students to undertake project in Bioprocess technology       This course aims to develop the skills of students in the area of Bioprocess engineering. This will also help the students to undertake project in Bioprocess technology         PRERQUISITE- NIL       The student of Bioprocess technology
PREAMBLE This course aims to develop the skills of students in the area of Bioprocess engineering. This will also help the students to undertake project in Bioprocess technology PRERQUISITE- NIL
This course aims to develop the skills of students in the area of Bioprocess engineering. This will also help the students to undertake project in Bioprocess technology <b>PRERQUISITE- NIL</b>
the students to undertake project in Bioprocess technology <b>PRERQUISITE- NIL</b>
PRERQUISITE- NIL
COURSE OBJECTIVES
1. To Explain about the historical development of Bioprocess technology, Design and construction of
fermenter.
2. To Interpret the kinetics of Microbial growth and product formation
^{3.} To Summarize the knowledge on Design and operation of Bioreactors
4. To Perform the optimization on growth medium.
5. To Execute the Methods of enzyme immobilization and enzyme kinetic study.
COURSE OUTCOMES
On the successful completion of the course, students will be able to
CO1. Explain the appropriate bioreactor configurations, operation modes based upon the Understand
nature of Bio products, cell lines and other process criteria.
CO2. Illustrate about modeling and simulation of bioprocesses so as to reduce costs and Understand
to enhance the quality of products and systems.
CO3. Plan a research career to work in the biotechnology industry with strong Apply
CO4. Apply the knowledge about optimization on medium and organisms growth. Apply
CO5. Utilize the knowledge of Enzyme Immobilized to use in bioreactors and Review Apply
Information on activity of enzyme and parameters affects enzyme activity.
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3
CO1 L L L
CO2 L L L
CO3 S S M M M M L M M -
CO4 S M - L
S- Strong; M-Medium; L-Low

SYLLABUS INTRODUCTION TO BIOPROCESS AND KINETICS Historical development of the fermentation industry, Basic configuration of fermenter and ancillaries, Kinetics of Batch, Fed batch and Continuous culture processes, Comparison of batch and continuous culture in industrial process.

# **KINETIC MODELS AND MONOD EQUATIONS**

Introduction to structured and unstructured models –Substrate limited growth (Monod equation and alternatives to Monod equation), Models with growth inhibitors (Substrate, Product inhibition and Inhibition by toxic compounds).

# DESIGN OF BIOREACTORS

Classification of bioreactors- Design of bioreactors – Aseptic operation and containment, Body construction, Aeration and agitation Types of agitators and spargers, Sterilization of Media, Fermentor, Air supply and Exhaust, Thermal death kinetics of microorganisms, Design of Sterilization Equipment – Batch and Continuous.

## **BIOREACTOR SCALE-UP**

Scale up of fermentation process – Factors involved in scale-up, Scale-up of aeration / agitation,

Oxygenmass transfer in bioreactors,

## MASS TRANSFER AND MONITORING

Determination of KLa values Main parameters to be monitored and controlled in fermentation processes. Methods of measuring process variables – Online and offline analysis, Control systems – Manual and automatic control.

# PRACTICALS

- 1. Growth of microorganism Estimation of Monod parameters.
- 2. Medium optimization Plackett Burman design.
- 3. Enzyme activity Effect of pH.
- 4. Enzyme activity Effect of temperature.
- 5. Enzyme Immobilization Gel Entrapment.
- 6. Production of Wine by Yeast.

## **TEXT BOOKS**

- 1. Shuler and Kargi, 1992. Bioprocess Engineering. Prentice Hall.
- 2. James E. Bailey and David F. Ollis, 1986. Biochemical Engineering Fundamental. 2nd Edn. *Mc Graw Hill*.

#### **REFERENCES:**

- 1. Trevan, Boffey, Goulding and Stanbury. Biotechnology. *Tata Mc Graw Hill Publishing Co.* Anton Moser. Bioprocess Technology, Kinetics and Reactors. *Springer Verlag*.
- 2. James M. Lee. Biochemical Engineering. PHI, USA.
- 3. Atkinson. Handbook of Bioreactors.
- 4. Harvey W. Blanch, Douglas S. Clark. Biochemical Engineering. Marcel Decker Inc
- 5. Pauline M. Doran, 2002. Bioprocess Engineering Principles. Academic Press

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms.M.Sobana	Assistant Professor	Biotechnology	<u>sobanam@vmkvec.edu.in</u>
2	Ms.M.Subathra	Assistant Professor	Biotechnology	Subathra.biotech@avit.ac.in

			DOW	NSTR	EAM	P	ROCI	ESSIN	GI	N C	ategory	L	Т	Р	Credit
			BIOT	ECHN	IOLO	GY				С	C	3	0	0	3
PREAM Downstre completio antibiotic purificatio PRERQU	BLE am pron of t s, ent on, and UISIT	rocessing the ferme zymes, 1 l packagi <b>E -</b> BIOP	is def ntation normor ng of th ROCE	ined a or bi nes, e ne fern SS EN	us var otrans etc., f nented GINE	ious s forma from fe produ ERINO	tages tion to erment icts	of ca o reco tation	scade cover and broth.	or nor purif Dowr	a-cascade y syntheti stream p	process c bio p rocessin	s that or roducts ng inclu	incluc des s	after the les drugs, eparation,
COURSI	E OBJ	ECTIVE	S												
1	To int	erpret rol	e of do	wnstre	eam pr	ocessi	ng in	biotec	nnology	•					
2	To ex	plain in d	etail al	out th	e phys	ical m	ethod	s of se	paration	l <b>.</b>					
3	To su	mmarize	the kno	wledg	e on is	solatio	n of p	roduct	s.						
4	To ex	ecute pro	duct fra	actiona	ation a	nd pui	ificati	on.							
5	To im	plement	he kno	wledg	e of fo	ormula	tion o	f the fi	nal proc	luct a	nd finishin	g.			
COURS	E OUI	COMES	5												
After the	succes	sful com	oletion	of the	cours	e, lear	ner wi	ll be a	ble to						
CO1. Exp	olain tł	e knowle	dge ab	out Ro	ole and	l impo	rtance	of Do	wnstrea	m pro	cessing in	biotech	nology	Unc	erstand
CO2.Sun	ımariz	e the fund	lament	al kno	wledg	e abou	it the p	ohysica	al metho	ods of	separation	•		Und	erstand
CO3.App	ly the	various d	ownstr	eam p	rocess	ing tec	hniqu	es for	theisola	tion o	fproducts			App	ly
CO4.Sele	ct the	methods	for pro	duct fr	action	ation a	and pu	rificat	ion					App	ly
CO5. Con	npare	the variou	is tech	niques	to for	mulate	e the fi	inal pr	oduct.					Ana	lyze
MAPPIN	IG WI	TH PRO	GRAN	AME	OUT	COMI	ES AN	D PR	OGRAI	MME	SPECIFI	C OUT	COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	) PO11	PO12	PSO1	PSO	2 PSO3
CO1	Μ	Μ	-	Μ	-	-	-	-	-	-	-	-	М	-	М
CO2	М	М	-	М	-	-	-	-	-	-	-	L	S	S	-
CO3	S	S	Μ	S	-	-	-	-	-	-	-	-	М	-	S
CO4	S	М	Μ	S	-	-	-	L	-	-	-	-	-	Μ	-
CO5	М	M	Μ	М	L	-	-	-	-	-	-		S	S	S
S- Strong	; M-M	edium; L	-Low												
SYLLAP DOWNS	BUS TREA	M PRO	CESSI	NG IN	N BIO	TECH	INOL	OGY							

Role and importance of Downstream processing in biotechnological processes, Characteristic of Biomolecules and Bioprocesses, Cell disruption for product release - Mechanical, Enzymatic and Chemical methods. Pre-treatment and stabilization of bioproducts.

## PHYSICAL METHODS OF SEPARATION

Unit operation for solid liquid separation - Removal of Insoluble, Biomass, Flocculation, sedimentation, Centrifugation and Filtration methods.

# **ISOLATION OF PRODUCTS**

Adsorption, Liquid - Liquid extraction, Aqueous two-phase extraction, Membrane separation - Ultra filtration and Reverse osmosis, Dialysis, Precipitation of proteins by Various methods – Salting out, Isoelectric point, Organic solvents, Polyelectrolytes, Polyvalent metallic ions and Non – ionic hydrophilic polymers.

## **PRODUCT FRACTIONATION / PURIFICATION**

Partition Chromatography – single dimensional and Two-dimensional Chromatography –Thin layer chromatography, Gas liquid chromatography, Adsorption Chromatography – Column chromatography and Ion Exchange Chromatography, High performance liquid Chromatography (HPLC) and Hybrid separation Technology.

## PRODUCT FORMULATION AND FINISHING OPERATION

Crystallization - Basic concepts, Crystal size distribution, Batch crystallisation, Continuous crystallization of pharmaceuticals and Solution crystallization, Drying - Drying equipment - Conduction dryers, Adiabatic dryers, Drying rate and Drying time, Zone refining, Lyophilization in final product formulation. Stabilization of bioproducts: Formulation. Integration of reaction and separation

## **TEXT BOOKS:**

- 1. H. Sivasankaran. Bioseparation
- 2. Asenjo, J.M., 1993. Separation Processes in Biotechnology. Marcel Dekker Inc.
- 3. Belter, P.A., Cussler, E.L. and Wei Houhu, 1988. Bioseparations Downstream
- 4. Processing for Biotechnology. Wiley Interscience Publications.

## **REFERENCE BOOKS:**

- 1. Wankat, P.C., 1990. Rate Controlled Separation. Elsevier.
- 2. Satinder Ahuja., 2000 Volume 2 Handbook of Bioseparations, Academic Press.
- 3. Janson, J.C. and Ryden, L., 1989. Protein Purification Principles, High Resolution Methods and Applications. VCH Publication.
- 4. Scopes, R.K., 1994.Protein Purification Principles and Practice. Narosa Publication.
- 5. Jenkins, R.O., 1992. Product Recovery in Bioprocess Technology Biotechnology by Open Learning Series. Butterworth -Heinemann.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in
2	Dr.R.Devika	Professor & Head	Biotechnology	devika@avit.ac.in

DOWNSTREAM         PROCESSING IN BIOTECHNOLOGY LAB         Image: Construct of the second seco
CC         0         0         4         2           PREAMBLE           Downstream processing laboratory is used to provide the understanding and knowledge on techniques like Solid-liquid separation, Cell disruption, High resolution purification, Product polishing of bio-products from fermenter. This course provides deeper understanding about the techniques in downstream processing.           PRERQUISITE -Nil           COURSE OBJECTIVES           1         To explain the importance of downstream processing in biotechnology.         2           2         To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.           3         To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.           4         To demonstrate in detail about Chromatography techniques for product purification.           5         To demonstrate the knowledge of extraction techniques to separate biomolecules.           COURSE OUTCOMES           0         the successful completion of the course, students will be able to           CO1. Illustrate the role and importance of downstream processing in biotechnology.         Apply           CO2. Apply the knowledge about the solid-liquid separation to acquire the product.         Apply           CO3. Compute the information on cell disruption techniques for separation of biomolecules.         Apply           CO4. Focus the knowl
PREAMBLE         Downstream processing laboratory is used to provide the understanding and knowledge on techniques like Solid-liquid separation, Cell disruption, High resolution purification, Product polishing of bio-products from fermenter. This course provides deeper understanding about the techniques in downstream processing.         PRERQUISITE -Nil         COURSE OBJECTIVES         1       To explain the importance of downstream processing in biotechnology.         2       To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques for product purification.         5       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES       On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography Analyze       Apply
Downstream processing laboratory is used to provide the understanding and knowledge on techniques like Solid-liquid separation, Cell disruption, High resolution purification, Product polishing of bio-products from fermenter. This course provides deeper understanding about the techniques in downstream processing.         PRERQUISITE -Nil         COURSE OBJECTIVES         1       To explain the importance of downstream processing in biotechnology.         2       To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.         4       To demonstrate in detail about Chromatography techniques to separate biomolecules.         South Secourcomes         On the successful completion of the course, students will be able to         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.         Apply       CO3. Compute the information on cell disruption techniques for separation of biomolecules.         Apply       CO4. Focus the knowledge about product fractionation and purification by chromatography
liquid separation, Cell disruption, High resolution purification, Product polishing of bio-products from fermenter. This course provides deeper understanding about the techniques in downstream processing. <b>PRERQUISITE -</b> Nil <b>COURSE OBJECTIVES</b> 1 To explain the importance of downstream processing in biotechnology. 2 To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration. 3 To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules. 4 To demonstrate in detail about Chromatography techniques for product purification. 5 To demonstrate the knowledge of extraction techniques to separate biomolecules. <b>COURSE OUTCOMES</b> On the successful completion of the course, students will be able to CO1. Illustrate the role and importance of downstream processing in biotechnology. CO2. Apply the knowledge about the solid-liquid separation to acquire the product. Apply CO3. Compute the information on cell disruption techniques for separation of biomolecules. Apply CO4. Focus the knowledge about product fractionation and purification by chromatography Analyze
This course provides deeper understanding about the techniques in downstream processing.         PRERQUISITE -Nil         COURSE OBJECTIVES         1       To explain the importance of downstream processing in biotechnology.         2       To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.         4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography Analyze       Analyze
PRERQUISITE -Nil         COURSE OBJECTIVES         1       To explain the importance of downstream processing in biotechnology.       2         2       To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.         4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         0n the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography Analyze       Analyze
1       To explain the importance of downstream processing in biotechnology.         2       To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.         4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography       Analyze
1       To explain the importance of downstream processing in biotechnology.         2       To describe in detail about the Solid-Liquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.         4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography Analyze       Implication by chromatography
2       To describe in detail about the Solid-Elquid Separation methods such as Centrifugation, Microfiltration.         3       To describe the knowledge on cell disruption techniques to extractvaluablebiomolecules.         4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography       Analyze
3       To describe the knowledge of cell disruption techniques to extractivaluablebioinfolecules.         4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography       Analyze
4       To demonstrate in detail about Chromatography techniques for product purification.         5       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES         On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography       Analyze
S       To demonstrate the knowledge of extraction techniques to separate biomolecules.         COURSE OUTCOMES       On the successful completion of the course, students will be able to         CO1. Illustrate the role and importance of downstream processing in biotechnology.       Apply         CO2. Apply the knowledge about the solid-liquid separation to acquire the product.       Apply         CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography       Analyze
COURSE OUTCOMESOn the successful completion of the course, students will be able toCO1. Illustrate the role and importance of downstream processing in biotechnology.ApplyCO2. Apply the knowledge about the solid-liquid separation to acquire the product.ApplyCO3. Compute the information on cell disruption techniques for separation of biomolecules.ApplyCO4. Focus the knowledge about product fractionation and purification by chromatographyAnalyze
CO1. Illustrate the role and importance of downstream processing in biotechnology.ApplyCO2. Apply the knowledge about the solid-liquid separation to acquire the product.ApplyCO3. Compute the information on cell disruption techniques for separation of biomolecules.ApplyCO4. Focus the knowledge about product fractionation and purification by chromatographyAnalyze
CO1. Illustrate the role and importance of downstream processing in biotechnology.ApplyCO2. Apply the knowledge about the solid-liquid separation to acquire the product.ApplyCO3. Compute the information on cell disruption techniques for separation of biomolecules.ApplyCO4. Focus the knowledge about product fractionation and purification by chromatographyAnalyze
CO2. Apply the knowledge about the solid-liquid separation to acquire the product.ApplyCO3. Compute the information on cell disruption techniques for separation of biomolecules.ApplyCO4. Focus the knowledge about product fractionation and purification by chromatographyAnalyze
CO3. Compute the information on cell disruption techniques for separation of biomolecules.       Apply         CO4. Focus the knowledge about product fractionation and purification by chromatography       Analyze
CO4. Focus the knowledge about product fractionation and purification by chromatography Analyze
Technique.
CO5. Test the knowledge of flocculation and aqueous two phase extraction to extract living or Analyze
non-living cells / intracellular materials such as enzymes, proteins, etc.
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
CO         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO         PSO         PSO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

# SYLLABUS

- 1. Solid-Liquid Separation Centrifugation, Microfiltration.
- 2. Mechanical cell disruption homogeneizer
- 3. Cell Disruption Techniques Ultra sonication.
- 4. Downstream processing of the yeast fermented product (Sedimentation, Filtration, Pasteurization)
- 5. Separation of Pigments by Thin Layer Chromatography.
- 6. Precipitation Ammonium Sulphite Precipitation.
- 7. Ultra Filtration Separation.
- 8. Aqueous Two Phase Extraction of Biologicals.
- 9. Flocculation
#### **TEXT BOOKS**

- 1. Wankat, P.C., 1990. Rate Controlled Separation. Elsevier.
- 2. Satinder Ahuja., 2000 Volume 2 Handbook of Bioseparations, Academic Press.
- 3. Asenjo, J.M., 1993. Separation Processes in Biotechnology. Marcel Dekker Inc.
- 4. Belter, P.A., Cussler, E.L. and Wei Houhu, 1988. Bioseparations Downstream
- 5. Processing for Biotechnology. Wiley Interscience Publications.

#### **REFERENCE BOOKS**

- 1. Janson, J.C. and Ryden, L., 1989. Protein Purification Principles, High Resolution Methods and Applications. VCH Publication.
- 2. Scopes, R.K., 1994. Protein Purification Principles and Practice. Narosa Publication.
- 3. Jenkins, R.O., 1992. Product Recovery in Bioprocess Technology Biotechnology by Open Learning Series. Butterworth -Heinemann.

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mrs.C.Nirmala	Associate Professor	Biotechnology	Nirmala@vmkvec.edu.in		
2	Dr.R.Devika	Professor & Head	Biotechnology	devika@avit.ac.in		

		Ι	MASS	TRA	NSFEI	R OPE	CRATI	ONS		Cate	gory	L	T	P	Credit
	(DI	_								CC		3	0	0	3
PREAN Maga tr	<b>IBL</b>	E Tan ia	tha n	at mos		ofm	ana fr		10004		ally ma		traama	nhaaa	fraction on
Mass tr	ansi	er is	the ne	Moor	vement	for of	lass Ir	om or	le locat	ion, usi	any me	aning s	stream,	pnase,	ion drying
precipit	ent,	to al	notner.	filtro	tion a	nd die	tillatic	in ma	ny proc	for is u	sod by	difforon	t scient	ific di	ciplines for
differen	t pro	i, illei	norance	mech	non, a	The	nhrase	$\frac{1}{1}$ is co	mmonly	used i	n engine	ering f	or phys	ical pr	ocesses that
involve	diffi	isive	and co	nvecti	ve frai	1 sport	of che	mical	species	within r	hvsical	systems	s Mass	transfe	r operations
include separation of chemical components in distillation columns, absorbers such as scrubbers or stripping,															
absorbers such as activated carbon beds, and liquid-liquid extraction.															
PRERQUISITE-NIL															
COURSE OBJECTIVES															
1	1   To Explain the Mass transfer principles														
2	To Demonstrate the principles of adsorption, absorption, leaching and drying extraction														
3	To Perform the distillation, crystallization operations														
4	To Express the concept of Liquid – Liquid Extraction														
5 To Study the concept of Solid – Fluid operation															
COURS	SE C	DUTC	OME	S											
On the s	succe	essful	compl	etion of	of the c	ourse,	studer	nts will	be able	to					
CO1. Ill	ustra	ate the	e princ	iples o	f diffu	sion ar	nd app	ly the o	concepts	of inter	phase m	ass tran	sfer	Unders	stand
CO2. N system	Iake	use t	the co	ncept	of abs	orption	n in b	ioproc	ess indu	istries a	nd mult	i comp	onent	Apply	
CO3.Co	onstru	uct the	e distil	lation	and m	ılti sta	ge tray	tower						Apply	
CO4.Ex	amir	ne the	variou	is prin	ciples (	of liqu	id-liqu	uid equ	ilibriun	and Di	fferentia	l extrac	tor	Analyz	ze
CO5.Co	ontra	st the	applic	ation p	rocess	of ext	ractior	n proce	ss in bio	otech ind	lustries			Analyz	ze
MAPPI	NG	WIT	H PR(	OGRA	MME	OUT	COM	ES AN	D PRO	GRAM	ME SPI	ECIFIC	COUT	COME	S
COS P	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 M	[	М	-	М	-	-	М	-	М	-	-	-	Μ	М	М
CO2 S		S	М	S	-	-	-	-	-	-	-	L	S	S	-
CO3 S		S	М	S	-	-	-	-	-	-	-	-	М	-	S
CO4 M	[	М	-	Μ	-	-	Μ	-	М	-	-	-	-	Μ	-
CO5 M	[	M	М	М	L	-	-	-	-	-	-		S	S	S
S- Stron	S- Strong; M-Medium; L-Low														
CVI I A	DT 10	n													

## DIFFUSION

Molecular diffusion in fluids, Mass transfer coefficients, Diffusion in solids, Interphase mass transfer, Multicomponent diffusion and diffusivity in solids

## SOLID-FLUID OPERATION

Adsorption equilibria-Liquids, Single gases and vapours, Leaching-Unsteady state operation, Steady state continuous operation.

## **GAS-LIQUID OPERATION**

Equipment for gas liquid operation, Principles of gas absorption, Equilibrium solubility of gases in liquid, One component transfer material balance, Counter current multistage operation, Continuous contact equipment, Multicomponent system, Absorption with chemical reaction.

## DISTILLATION

Vapour-Liquid Equilibria, Single stage-Flash vaporization, Differential or simple distillation, Continuous rectification-Binary system, Multistage tray towers-McCabe- Thiele and Ponchon Savarit principles. Multi component distillation

## LIQUID-LIQUIDEXTRACTION

Liquid-Liquid Equilibria, Stage wise contact, Stage type extractor, Differential extractor

## **TEXTBOOKS**

- Treybal, R.E., 1981. Mass Transfer Operations. 3rdEdn., *McGraw Hill*.
   Geankoplis, C. J., 2002. TransportProcessesandUnitOperations.3rdEdn., *Prentice* HallofIndia.

- 1. Coulsonand Richardson's, 1998. Chemical Engineering. Vol. I & II, Asian Books Pvt. Ltd.
- 2. Badgerand Banchero. Introduction to Chemical Engineering. Tata McGraw Hill, New Delhi.
- 3. Mc Cabe, W.L., Smith, J.C., Harriot, P., 1993. Unit Operations in Chemical Engineering. 5 Edn., McGraw Hill Book Co., New York.
- 4. Pauline M. Doran, 2002. Bioprocess Engineering Principles. Academic Press.
- 5. Butterworth-Heinemann, 1992. Bioprocess Technology: Modelling and Transport Phenomena.

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in							
2	Ms.M.Subathra	Assistant Professor	Biotechnology	Subathra.biotech@avit.ac.in							

## CATEGORY C – ELECTIVE COURSES - CREDITS (12)

## (i) PROGRAMME ELECTIVES (CLASS ROOM OR ONLINE) - CREDITS (12)

				TH	ERMC	)DYN	AMIO	CS FO	R		Catego	ory	L	Т	Р	Credit
					BIOT	ECHN	NOLO	GY			EC (P	S)	3	0	0	3
PREA Therm variou	MBLE nodynam is laws,	nics fo	or Bio netric a	technol	logy d tions, 1	eals w Phase	vith th equili	e bas bria ai	ic laws nd Cher	and it mical F	applic Reaction	cation Equi	n. This ilibria,	s cou Kno	irse dea wledge	ls with of this
biotec	e will en hnology	able si	tudent	s to un	derstan	d the	impor	tance	of therm	nodyna	mics and	d its a	applica	ation	s in the	field of
PREF PRIN	PRERQUISITE PRINCIPLES OF CHEMICAL ENGINEERING.															
COU	COURSE OBJECTIVES															
1 7	1 To list fundamental laws of thermodynamics.															
2 7	o interp	oret its	applic	ation t	o simp	le biol	ogical	system	ms.							
3 1	3 To discuss properties of pure fluids and property changes in fluid mixtures.															
4 7	4 To implement the concepts to phase and reaction equilibria.															
5 To formulate the equilibrium criteria for the chemical reactions																
COURSE OUTCOMES																
On the	e succes	sful co	mplet	ion of t	the cou	rse, st	udents	s will t	be able t	to						
CO1.	Summai	rize the	e fund	amenta	ls of th	ermoo	lynam	ics an	d laws o	of therr	nodynar	nics.			Unders	stand
CO2.	Explain	the lay	ws of t	hermo	dynam	ics to	differe	ent sys	tems an	d proce	esses				Unders	stand
CO3.	Describ	e the t	hermo	dynam	nics con	ncepts	to exp	olain th	ne prope	erties o	f pure fl	uids a	and the	eir	Unders	stand
CO4.	Deduce	the co	ncepts	of the	rmodyı	namic	to pha	ise equ	ilibriun	n.					Analyz	ze
CO5.	Apprais	e and a	adapt l	oiocher	nical re	eaction	n equil	ibriun	n to biol	logical	systems				Analyz	ze
MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSO	1	PSO2	PSO3
C01	L	L	-	-	-	-	-	-		-	-	-	N	1	-	-
CO2	-	Μ	L	-	-	-	-	-	L	-	-	-	-		М	-
CO3	-	Μ	L	-	-	-	-	-	L	-	-	-	-		-	-
CO4	-	Μ	L	-	-	-	-	-		L	-	-	N	1	-	М
CO5	-	M	L	-	-	-	-	-	L	L	-	-	-		S	S
S- Str	S- Strong; M-Medium; L-Low															

#### LAWS OF THERMODYNAMICS AND ITS APPLICATIONS

Introduction - Work, Energy, Heat, Internal energy, Extensive and intensive properties, State and path functions, First law of thermodynamics, Energy balance for closed systems, Equilibrium, The reversible process, Constant - v and Constant - p processes, Enthalpy, Heat capacity, Application of First law to Steady state flow processes, Entropy and Second law of thermodynamics – Limitations of First law, Third law of Thermodynamics. Heat engines, Thermodynamic temperature scale, Power cycles, Calculation of Ideal work.

#### **VOLUMETRIC AND THERMODYNAMIC PROPERTIES OF FLUIDS**

Ideal gas law, Isobaric, Isochoric, Isothermal, Adiabatic and Polytropic process. P-V-T relations of fluid, Equation of state for gases, Compressibility factors, Compressibility charts, The principles of corresponding states, Acentric factor. Thermodynamic properties of fluids – Reference properties, Energy properties, Derived properties, Maxwell's relations. Heat capacity relations, Effect of pressure and volume on heat capacities.

#### SOLUTION THERMODYNAMICS

Partial molar properties, Concepts of chemical potential and fugacity; Activity and activity co-efficient, Gibbs Duhem equation, Margules activity model, Ideal and non-ideal solut ions, Excess properties of mixtures, Composition models.

#### PHASE EQUILIBRIA

Phase equilibrium – Criteria for phase equilibria, Phase equilibria in single and multi-component systems, Vapour Liquid Equilibria (VLE), Liquid – Liquid Equilibria (LLE), Solid – Liquid Equilibrium.

#### CHEMICAL REACTION EQUILIBRIA

Equilibrium criteria for homogeneous chemical reactions, Evaluation of equilibrium constant, Effect of temperature and pressure on equilibrium constant, Calculation of equilibrium conversion for single and multiple reactions, Heterogeneous reaction equilibria.

#### **TEXT BOOK:**

- 1. Narayanan, K.V., 2001. A Text Book of Chemical Engineering Thermodynamics. Prentice Hall India.
- 2. Smith, J.M., Van Ness, H.C. and Abbot, M.M., 2001. Chemical Engineering Thermodynamics. 6thEdn., McGraw-Hill.

- 1. Rao, Y.V.C. Chemical Engineering Thermodynamics.
- 2. Sandler, S.I., 1989. Chemical and Engineering Thermodynamics. John Wiley and Sons.
- 3. Roels, J.A., 1983. Kinetics and Energetics in Biotechnology. Elsevier.
- 4. Donald T. Haynie. Biological Thermodynamics. Cambridge.
- 5. Volker Hessel, 2005. Chemical Microprocess Engineering. John Wiley and Sons.
- 6. Irving J. Dunn and Eth Zurich, 2003. Biological Reaction Engineering. John Wiley.

COURS	COURSE DESIGNERS												
S. No.	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Mrs Subathra M	Assistant Professor	Biotechnology	Subathra.biotech@avit.ac.in									
2	Mrs.C.Nirmala	Associate Professor	Biotechnology	nirmala@vmkvec.edu.in									

PLANT AND ANIMAL DISEASES AN	Category	L	Т	Р	Credit
THEIR CONTROL	EC (PS)	3	0	0	3

Plant and animal diseases and their control deals with the study of different types of pests and their impact on agriculture and live stocks. Students will learn about the fungus, bacteria, virus or nematodes that can cause damages to the plant parts above or below the ground. The farmers challenges will be solved by identifying the proper ecofriendly control measures will pave the new path in the area of plant breeding. To familiarize the students with principles of insect pest management, including concept and philosophy of Integrated Pest Management. Knowledge of these principles will enable students to understand the different factor that threatens the agricultural productivity and humans.

PREREQUISITE: MICROBIOLOGY															
COUR	RSE OF	BJECT	IVES												
1	To re	ecogniz	e the pe	est morp	hology	and its	corresp	ponding	g pestici	des					
2	To de	escribe	the pes	t in agri	culture	and the	eir conti	rol mea	sures.						
3	To cl	To choose the appropriate pest control method													
4	То о	utline tl	ne vecto	or plant	pathog	en inter	action a	and mai	nageme	nt of vec	tors for c	controllin	g disease	es.	
5	To formulate the different sampling methods and monitoring protocol														
COUR	COURSE OUTCOMES														
After the successful completion of the course, learner will be able to															
CO1. Demonstrate the common plant pathogens in agriculture Understand															
CO2. I	CO2. Discuss about epidemiology of diseases caused by pests in plant and animals. Understand														
CO3. (	Classify	about	the plar	nt and a	nimal d	isease &	& integr	rated co	ontrol m	easures.		Apply			
CO4. E	Examin	e the di	seases i	n plant	s and ar	nimal &	its con	trol				Analyz	e		
CO5. I	nfer the	e differe	ent sam	plings 1	nethods	5						Analyz	e		
MAPP	ING V	VITH I	PROGE	RAMM	E OUT	COMI	ES ANI	) PRO	GRAM	ME SPE	ECIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	L	L	-	L	L	-	L	-	-	L	М	М	-
CO2	M M M L L M L - M L - S S M														
CO3	S       S       -       L       -       M       L       M       -       -       L       -       M       -														
CO4	S M M M L M S M S - L M S M S														
CO5	М	M L - S M M S S S M S S M													
S- Stro	Strong: M Medium: L Low														

#### SVI I ADIIS

## SYLLABUS

#### CLASSIFICATION OF PESTS AND PESTICIDES

Pests – Definition, Morphology and Life cycle, classification of pests – Vertebrate pests, Invertebrate pests and plant pests, Classification of pesticides on chemical nature and according to target species, mode of action.

#### AGRICULTURAL PESTS AND THEIR CONTROL

Concept of Pest and Types of pests in agricultural products - stored grains- veterinary- forestry and nursery. Major insect pests of agricultural- importance -Marks of identification- life cycle- nature of damage, chestnut blight, potato late blight, downy mildew, Damage economic threshold level and control measures.

#### PEST CONTROL PRACTICES

Issues, Challenges and Opportunities in the Control of Insects in Vegetable Crops, Control measures- Cultural, Physical, Mechanical, Chemical, Herbal and Biological control. Pheromonal and autocidal control.

#### EMERGING CONCEPTS AND PRACTICES IN INTEGRATED CONTROL MEASURES

The integrated control/IPM concept, Damage thresholds, Forecasting, Increasing agro-ecosystem resistance, Pesticide selectivity, Eradication versus control, Pests and humans – direct pests and vectors of plant and animal diseases, potential human practices and the occurrence of pests, Prevention of communicable diseases after the disaster.

#### SAMPLING AND MONITORING ARTHROPODS

Methods of sampling and monitoring, Components of a sampling plan, Types of sampling plans, Allocation of Sampling units. Monitoring of arthropods, Monitoring techniques, monitoring methods, Importance of monitoring.

#### **TEXT BOOKS:**

- 1. Principles and procedures of plant protection, 1993. S.B.Chattopadhyay, Oxford-IBH.
- 2. Agricultural pests of India and south East Asia A. S. Atwal, 1986. Kalyani Publishers.
- Francisco Prieto Garcia, Sandra Y. Cortés Ascencio, John C. GaytanOyarzun, Alejandra Ceruelo Hernandez and 3Patricia Vazquez Alavarado (2012) Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks. Journal of Research in Environmental Science and Toxicology (Vol. 1(11) pp. 279-293.

- 1. Agricultural insect pests of the crops and their control-D.S.Hill, Cambridge Univ. Press Insect pest of crops S.Pradhan, National Book trust.
- 2. Healthy Roses: Environmentally friendly ways to manage pests and disorders in your garden and landscape, 2nd Edition , John Karlik, Mary Louise Flint, and Deborah Golino.
- Hayes' Handbook of Pesticide Toxicology, Editor-in-Chief: Robert Krieger, University of California, Riverside, U.S.A. Published by January 2010, imprint: Academic Press, ISBN: 978-0-12-374367-1.

COURSI	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.A.Nirmala	Assistant Professor	Biotechnology	Nirmalabt2@avit.ac.in								
2	Mrs.M.Sobana	Assistant Professor	Biotechnology	sobanam@vmkvec.edu.in								

<b>DDINCIDIES OF BIOINFORMATICS</b>	Category	L	Т	Р	Credit
I KINCH LES OF BIOINFORMATICS	EC (PS)	3	0	0	3

Principles of Bioinformatics is an interdisciplinary field that combines Computer Science, Molecular Biology, Genetics, Mathematics, Statistics and Engineering etc. to analyze and interpret biological data. Bioinformatics has been used for *in silico* analyses of biological queries using <u>mathematical</u> and statistical techniques. This course includes the use <u>computer programming</u> as part of their methodology, in the field of <u>genomics</u>, the identification of candidate <u>genes</u>, genetic basis of disease etc. leading to specific drug discovery by molecular modelling.

PREREQUISITE -- NIL

COUH	COURSE OBJECTIVES														
1	Defin	e the b	asis of	Bioinf	ormati	cs in th	e biolo	gical f	ïeld						
2	Expla	ins the	in-sili	<i>co</i> anal	lysis of	biolog	ical qu	ieries u	ising m	nathemat	ical and	statistic	cal techn	iques.	
3	Imple	ment t	he Bioi	inform	atics so	oftware	and to	ols bas	sed on	its appli	cations				
4	Construct the phylogenetic tree based on the biological information and queries using bioinformatics tools.														
5	Develop bioinformatics tools in various field like medicine, agriculture etc.,														
COUH	COURSE OUTCOMES														
After t	ter the successful completion of the course, learner will be able to														
CO1. I	CO1. Relate the basics of computer science and interdisciplinary subjects related to Bioinformatics Understand														
CO2.Demonstrate the importance of biological databases and their significance in Biotechnology Understand															
CO3. 0	Constru	ict vari	ous too	ols and	softwa	are whi	ch can	be add	pted in	n differe	nt fields	of Biot	echnolog	gy Ap	ply
CO4. 1	Build th	ne evol	utiona	ry traits	s using	Bioinf	ormati	cs tool	s and s	oftware				Ap	ply
CO5. 4	Apply t	he var	ious bio	oinforr	natics t	ools in	differ	ent fiel	ds					Ap	ply
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L L L L - M M														
CO2	202 L L L - L - L M M														
CO3	S	S	Μ	Μ	Μ	М	-	-	Μ	-	-	L	Μ	Μ	-
CO4	S	Μ	S	S	L	Μ	L	-	Μ	-	L	L	S	S	М

S- Strong; M-Medium; L-Low

## SYLLABUS

## INTRODUCTION TO BIOINFORMATICS

CO5 S M M S L S L L L

Introduction, Scope of bioinformatics – Introduction to UNIX- Files and processes, Basic UNIX commands for listing files and directories, Making directories, Changing to a different directory, Copying and moving files, Removing files in directories, Clear, CAT and Less commands, Word count, Help, Redirection, Access rights, Running background process and killing processes, ftp, telnet, Internet, http, Search engines.

S

L

Μ

Μ

Μ

#### DATABASES

Introduction to databases – Flat files, Relational databases, Object oriented databases and hypertext databases, Biological databases and their uses, Introduction to EMB net and NCBI, Classification of biological databases; Primary nucleic acid sequence databases – Gen Bank, EMBL, DDBJ; Primary protein sequence databases – PIR, SWISS-PROT; Composite databases – NRDB, OWL, SWISS-PROT+TrEMBL; Secondary databases – PROSITE, PRINTS; Structural databases – PDB, MMDB.

#### SEQUENCE ALIGNMENT

Introduction to sequence alignment and its significance, Types – Global, Local, Pairwise and Multiple alignment. DOT PLOTS, Scoring matrices – PAM, BLOSSUM. Dynamic programming algorithms, BLAST, FASTA. Multiple sequence alignment by PSI- BLAST. GOLD, CLUSTERS

#### PHYLOGENETIC ANALYSIS

Terminology and basics of Phylogenetics – Clades, Taxons, Baranches, Nodes; Orthologs and Paralogs. Steps to construct a Phylogenetic tree – Constructing a Multiple Sequence Alignment, Determining the substitution model, Tree building and tree evaluation.

#### APPLICATION OF BIOINFORMATICS

Application of bioinformatics in various fields – IT, Pharrmaovigilence, Drug discovery, Medicine, Agriculture and Industries.

#### **TEXT BOOKS:**

- Rastogi, S.C., NamitaMendiratta, ParagRastogi. 2006. Bioinformatics Concepts, Skills, Application. CBS Publications.
- 2. Westhead, D.R., Parish, J.H., Twyman, R.M., 2000. Instant Notes in Bioinformatics.

BIOS Scientific Publishers.

3. Teresa, K., Attwood and David J. Parry-Smith, 2007. Introduction to Bioinformatics. Pearson Education Ltd.

- 1. Bergeran, B., 2002. Bioinformatics Computing. PHI.
- 2. Richard Durbin, Sean Eddy, Anders Krogh and Graeme Mitchison, 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. *Cambridge University Press*.
- 3. Bishop, M.J., Rawlings, C.J., 1997. DNA and Protein Sequence Analysis. A Practical Approach. IRL Press, Oxford.
- 4. Gibas, C. and Jambeck, P., 1999. Developing Bioinformatics Skills. O'Reilly.
- 5. Dan Gusfield, 2007. Algorithms on Strings Tree and Sequence. Cambridge University Press.
- 6. Baldi, P. and Brunak, S., 1998. Bioinformatics: A Machine Learning Approach. MIT Press
- 7. Essential Bioinformatics. Jin Xiong. Cambridge University Press. 2006.
- 8. An Introduction ti Bioinformatics Algorithms. Neil C Jones, Pavel A Pevzner. MIT Press.2004.

9.	The New Avenue in Bioinformatics. Joseph SeckbeckEitan Rubin. Springer.2010.

COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID					
1	Dr.R.Devika	Professor	Biotechnology	devika@avit.com					
2	Mrs.C.Nirmala	Associate Professor	Biotechnology	nirmala@vmkvec.edu.in					

DIA CNOSTICS AND THED A DEUTICS	Category	L	Т	Р	Credit
DIAGNOSTICS AND THERAPEUTICS	EC (PS)	3	0	0	3

The Diagnostics and Therapeutics is to explore the fundamental mechanisms of disease and use the knowledge to design, test and evaluate new drugs and develop innovative drug delivery and release strategies. It creates technologies and tools to combat disease, promote health, and safeguard the environment. The Knowledge gained will help in realization of physical systems at scales and dimensions similar to biological entities such as bacterial and mammalian cells, viruses, spores, etc.

## PREREQUISITE: MICROBIOLOGY

	-														
COURS	SE OB	JECT	IVES												
1	List tl	he natu	re of in	nfection	n, proc	edural	skills t	o colle	ct and	interpre	t data.				
2	Class	ify the	cause	of infe	ction a	nd the	pathog	ens.							
3	Demo	onstrate	e the ge	enetic r	nature o	of Hum	nan dise	eases.							
4	Organize current Molecular diagnostics of infectious diseases.														
5	Assess the biosafety aspects involved in molecular diagnosis.														
COURS	SE OU	TCOM	<b>IES</b>												
After the	e succe	essful c	omplet	tion of	the cou	urse, le	arner v	vill be	able to						
CO1. Re	CO1. Recall about infection, sample collection, transport and the data. Remember										nber				
CO2. Ex	xplain a	about t	he mos	st appro	priate	infecti	ous age	ent.						Unders	stand
CO3. D	emonst	rate th	e micro	oorgan	ism hav	ve an ii	ndisper	nsable i	role in	disease	Diagnos	sis		App	oly
CO4. A	ppraise	the ge	nomic	knowl	edge.									Anal	yze
CO5. Cl	hoose t	he tool	for dis	sease d	iagnos	is.								Evalu	iate
MAPPI	NG W	ITH P	ROGI	RAMN	IE OU	TCON	MES A	ND PI	ROGR	AMME	SPECI	FIC OU	UTCON	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	-	-	-	-	-	-	-	-	-	-	-
CO2	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	Μ	L	-	М	-	I	М	-	-	-	-	L	-	-	-
CO4	L	L	L	-	-	-	-	-	S	-	-	Μ	-	-	-
CO5	S	M	L	L	M	-	-	-	-	-	-	S	-	-	-

S- Strong; M-Medium; L-Low

## SYLLABUS

## INTRODUCTION TO DIAGNOSTICS AND THERAPEUTICS

Mode of transmissions of infection, Pre-disposing factors of microbial pathogenicity, Normal microbial flora of the human bod of infectious diseases, Host - Parasite relationships, Clinical specimens Collection, Transport and Processing of samples, Inter of results., Cystic Fibrosis, Neonatal and Pre-natal disease diagnostics, Gender identification, Analysis of mitochondrial I maternal inheritance, Genetic counselling. Normal microbial flora of the human body, Host - Parasite relationships

## METHODS IN MOLECULAR DIAGNOSTICS

Isolation and purification of nucleic acids, Nucleic acid labelling, Hybridization, PCR and types, PCR based molecular typing, M Diagnosis of Bacteria (Mycobacterium), DNA virus (HBV/H1N1), RNA virus (HIV/HCV), Parasite (Malaria).Diagnosis of Prote diseases: Amoebiosis, Malaria, Trypnosomiosis, Leishmaniasis. Study of helminthic diseases- Fasciola hepatica and Ascarislumbricoides. Filariasis and Schistosomiasis

## MICROBIAL INFECTIONS AND DIAGNOSIS

Pathogenicity and diagnosis of major bacterial infections: Streptococcus, Coliforms, Salmonella, and Mycobacterium, Pathogen diagnosis of major fungal infections: Dermetophytosis, Candidiosis and Aspergillosis, Pathogenicity and diagnosis of major P infections: Amoebiosis, Malaria, Leishmaniasis, DNA and RNA Viruses: Pox viruses, Hepatitis viruses, Adeno viruses at viruses. Infection – mode of transmission in infections, factors predisposing to microbial pathogenicity, types of infectious bacterial, viral, fungal, protozoans and other parasites

## MEDICAL GENETICS

Organization of Human genome, Identifying human disease genes, Genetic disorders - Sickle cell anemia, Duchenne muscular Dystrophy, Retinoblastomadiagnosis of pathogens based on 18S and 16S rRNA sequences, Automated DNA sequencing, Microa types and applications. · Neonatal and Prenatal disease diagnostics. Gender identification using amelogenin gene locus. Amplific Y chromosome specific Short Tandem Repeats (Y-STR). Analysis of mitochondrial DNA for maternal inheritance. Molecular dis for early detection of cerebral palsy, Down syndrome etc.

## **BIOSAFETY FOR MOLECULAR DIAGNOSTICS**

Good Laboratory Practices, Different levels of biosafety containments for rDNA experiments, Biosafety aspects of tissue / Cell transplantation.

## **TEXT BOOKS:**

- 1. Lele Buckingham and Maribeth L. Flaws, 2007. Molecular Diagnostics: Fundamentals, Methods & Clinical Applications.
- 2. David E. Bruns, Edward R. Ashwood and Carl A. Burtis, 2007. Fundamentalsof MolecularDiagnostics.
- 3. Griffiths, A. J. F., Miller, J. H. and Suzuki, D. T., 2000. An Introduction to GeneticAnalysis.
- 4. Jeremy M. Berg, John L. Tymoczko and LubertStryer, 2002. Biochemistry. W.H. Freeman andCompany.5thEdn.
- 5. Parasitology, Chatterjee K.D, Chatterjee MedicalPublishers

## **REFERENCES:**

- 1. Lodish, Berk, Zipursky, Matsudaira, Baltimore Darnell, 2000. Molecular Cell Biology. W.H. Freeman and Company.4thEdn.
- 2. Benjamin L., 2008. Genes IX. Jones and Bartlett.
- 3. Turner, P. C., McLennan, A. G., Bates, A. D. and White, M. R. H., 2003. Instant Notes in Molecular Biology. *Viva Book PrivateLimited*

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr A Nirmala	Assistant Professor Gr II	Biotechnology	nirmalabt2@avit.ac.in
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

		STE	м се	LL BI	OLOG	Y AN	D TISS	SUE	Cate	egory	L	Т	Р	Credit
				ENG	GINEERING			EC	(PS)	3	0	0	3	
<b>PREAMBLE</b> Stem cells in regenerative medicine holds promise for improving human health by restoring the function of cells and organs damaged due to degeneration or injury. Stem cell biology has potential application in several areas of biomedical research that includes drug development, toxicity testing, developmental biology, disease modeling, tissue engineering etc. <b>PREREQUISITE –</b> NIL														
COU	RSE O	BJEC	<b>FIVES</b>											
1	To de	fine to	pics rel	ated to	stem c	ells an	d regei	nerative	e biolog	gy				
2	To de	scribe	Stem c	ell basi	ics and	their a	pplicat	ions fo	r the be	enefit of	mankin	ıd.		
3	To ex	ecute t	echnol	ogies i	n engin	eering	stem c	ells						
4 To organize scaffold for tissue engineering														
5 To Assess the ethical issues in stem cell research														
COU	RSE O	UTCO	MES											
After	the suc	cessful	compl	etion o	f the co	ourse, l	earner	will be	able to	)				
CO1. '	To outl	ine the	basics	of ster	n cell									Understand
CO2. '	To ider	ntify the	e basic	applic	ations o	of stem	cell in	regene	erative	medicin	e			Apply
CO3. '	To mak	ke use o	of the la	atest tis	ssue en	gineeri	ng con	cepts						Apply
CO4. '	To dev	elop tł	ne scaff	fold tis	sue usi	ng sten	n cell							Apply
CO5. '	To infe	r the re	esearch	in tiss	ue engi	neering	g.							Analyze
MAP	PING	WITH	PROC	GRAM	ME O	UTCO	MES A	AND P	ROGE	RAMMI	E SPEC	TFIC O	UTCON	AES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L	L	-	-	-	-	-	-	-	М	-	-	-	Μ
CO2	Μ	L	М	М	-	L	L	-	Μ	-	-	-	S	Μ
CO3	S	Μ	S	S	Μ	Μ	Μ	M	-	-	Μ	M	Μ	Μ
CO4       S       S       S       M       M       M       M        M       M       S											S			
CO5	M	М	М	L	М	-	S	Μ	S	М	-	L	М	-
S- Strong; M-Medium; L-Low														
SYLL	ABUS													

## INTRODUCTION TO STEM CELL BIOLOGY

Definition and concepts of stem cell terminology. Classification of stem cells. Basic biology of stem cells - Types & sources of stem cell with characteristics. Stem cells in embryonic and adult tissues. Overview of basic and translational research of stem cells modeling disease states, gene/cell therapies,

### EMBRYONIC STEM CELLS AND INDUCED PLURIPOTENT STEM CELLS

Early steps in human reproduction (Zygote to blastocyst stage), Totipotent vs Pluripotent stem cells, Embryonic stem cells: Sources, characterization and experimental manipulations, Discovery of Induced pluripotent stem cells (iPSC) and its experimental differentiation into specific tissue types, Generation and characterization of pluripotent stem cells. Experimental breakthroughs and limitations.

#### ADULT STEM CELLS

Multipotent stem cells from adult tissues and organ systems, stem cell niches. Advantages and disadvantages for use, characterization, experimental manipulations, Immune markers and tissue/organ rejection, Hematopoietic stem cells - characteristics and differentiation pathways, Lymphoid vs myeloid cell pathways and stem cells ,Cord blood transplantation, Mesenchymal stem cells – Isolation, characterization and functional assessment.

#### TISSUE REGENERATION AND BIOENGINEERING OF TISSUE AND ORGANS

Overview of regeneration and bioengineering of tissues. Role of stem cells in controlling tissue regeneration. Experimental strategies to bioengineer tissues and organs from cultured stem cells. 3-D organoid cultures and tissue scaffolds. Characterization of functional bioengineered organs.

#### ETHICAL, POLITICAL AND SOCIETAL IMPLICATIONS

Future innovations, trends and misconceptions of using human stem cells. Practicalities and feasibilities of using stem cells to treat human disease and injuries. Commercialization of stem cell-based therapies.

## **TEXT BOOKS:**

- 1. Robert Lanza, John Gearhart, BrigidHogan,Douglas Melton, Roger Pedersen, James ThomsonE and Donnall Thomas. Essentials of Stem cell Biology. Elsevier Academic press.
- 2. Robert Lanza, Robert Langer and Joseph Vacanti, "Principles of Tissue Engineering", Academic Press, 2007

## **REFERENCES:**

- 1. Scudellari, Megan "A decade of iPS cells" Nature, 534: 310-312.
- 2. Bredenoord, AL, Clevers, H, Knoblich J (2017) "Human tissues in a dish: The research and ethical implications of organoid technology" Science 355. [57]
- 3. ThomsonE and DonnallThomas.Essentials of Stem Cell Biology. Elsevier Academic press.
- 4. Stewart Sell. Stem Cell Handbook, 2004. Humana Press.
- 5. Freshney, R. and Ian. Alan, R. Culture of Animal Cells : A Manual of Basic Techniques. Liss Inc.
- 6. Modlinske, J.A., Reed, M., A., Wagner, T.E. and Karasiewicz, J., 1996. Embryonic Stem Cells: Developmental Capabilities and their Possible Use in Mammalian Embryo Cloning. *Animal Reproduction Science* 42: 437 446.

S.No.	Name of the Faculty	Designation	Department	Mail ID
	_	_	_	
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

MICROBIAL BIOTECHNOLOGY	Category	L	Т	Р	Credit
	EC (PS)	3	0	0	3

Microbial Biotechnology deals with the study of Microbial products, organization and function of prokaryotes. As the pioneering field in the area of microbial it clearly shows that the industrially important microbes and metabolites. Industrially important microbial metabolites were identified and they were taken to the different steps for the production of antibiotics. Genetically modified organisms are concerned with the application of microbial metabolites in pharma industry and also the types of drugs, how the biofertilizers and biopesticides are useful to the agriculture for the enormous amount of production. Classically recovery and purification of microbial products were analysed for the

application in agriculture.

## **PREREQUISITE:** MICROBIOLOGY

#### **COURSE OBJECTIVES**

1 To learn the basic principles of isolation and purification of microbial products

² To understand the kinetics of microbial metabolites and their actions

³ To understand the recovery and product identification from the microbes

4 To know the importance and application of microbial metabolites in the Parma industry

- 5 To make the students to test and deepen their mastery of microbial products by applying this
- knowledge in a variety of problem-solving situations.

#### COURSE OUTCOMES

After the successful completion of the course, learner will be able to

CO1: To describe the historical background and cultural characteristics of microbes	Remember
CO2: To describe the differences between culturing techniques, product purification	Understand
and recovery process	
CO3: To analyze the production of microbial metabolites	Analyse
CO4: To compare and contrast the production of primary and secondary metabolites	Analyse
CO5: Identify the factors that play a role in the production of antibiotics.	Evaluate

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	-	L	L	L	-	L	-	-	-	-	-	L	-	-
CO2	-	М	S	S	L	-	S	-	-	-	L	-	-	-	-
CO3	-	-	L	L	S	-	-	Μ	-	-	L	Μ	-	М	-
CO4	-	-	-	-	-	-	S	-	-	-	L	Μ	-	Μ	-
CO5	-	-	L	-	Μ	-	-	-	-	-	-	S	S	М	L
S- Strong; M-Medium; L-Low															

## MICROBES AND APPLICATION

Introduction, aims and scope: Organization and function of prokaryotes, primary and seconday screening of industrially important microorganisms from different sources. Extremophiles and their applications: Characteristics of selected groups of microbes. Classify industrially important microorganisms, Culture concept and cultural characteristics

## ISOLATION OF INDUSTRIALLY IMPORTANT MICROBES

Methods in microbiology- Pure culture techniques, Microbial nutrition and growth principles. Growth measurement techniques: Isolation of microorganisms from various sources, long term preservation and improvement of cultures. Design and Preparation of Media- fermentation processes. Study of various methods of biomass measurement- Growth curve studies of microbes in Batch culture and continuous culture. Determination of yield coefficient and Monod's constant

## INDUSTRIALLY IMPORTANT MICROBIAL METABOLITES

Industrially important microbial metabolites- Process technology for the production of primary metabolites e.g. enzymes (Amylases, Proteases, Lactases, Pectinase and Lipases), baker's yeast, ethanol, citric acid, polysaccharides, nucleosides and bioplastics. Production of secondary metabolites- penicillin, Tetracycline, streptomycin, vitaminsetc

## APPLICATIONS OF GREEN CONCEPTS

Applications of microbial metabolites: Pharmaceutical industry, Therapeutics, and Clinical analysis- glucose isomerase, aminopeptidase; amylase, cellulase, penicillin acylase, lipase, oxido-reductase; protease etc. for the production of different types of drugs and drugs intermediates. Biogenic synthesis of nanoparticles from microbes-mechanism, characterization, and applications. Microbes in environmental management, pollution and waste water control management, Biocontrol, Biofertilizers, and biopesticides

## **RECOVERY AND PURIFICATION OF MICROBIAL PRODUCTS**

Removal of microbial cells- Precipitation, filtration, centrifugation. Cell disruption- extraction and chromatography, Separation of insoluable products, separation of soluable products, Chromatographic techniques, Ultra and micro filtration, Drying and crystallization

## TEXT BOOKS:

- 1. Michael T. Madigan, John M. Martinko, Paul V. Dunlap, and David P. Clark "Brock Biology of microorganisms", Prentice Hall, 12th Edition,2008
- 2. Michael J. Pelczar, S. Chan, and Noel R. Krieg "Microbiology", McGraw Hill, 7th Edition, 2011 3.
- 3. Richard Harvery, Cynthia NauCornelissen, Bruce D Fisher, 2011, Microbiology, Lippincott illustrated Reviews:Microbiology.
- Stanier Y. Roger, Adelberg A. Edward, and Ingraham John "General Microbiology", Prentice Hall, 5th Edition, 1986.

## **REFERENCES:**

1. Geo Brooks, Karen C. Carroll, Janet Butel, and Stephen Morse "Medical Microbiology", McGraw-Hill Medical, 26th Edition, 2012 6.

2. Lansing M. Prescott, Donald A. Klein, and John P. Harley, "Microbiology", McGraw Hill, 5th Edition, 2002 7.

3. G. Reed, Prescott and Dunn's, "Industrial Microbiology", 4th Edition, CBS Publishers, 2009.

4. P. E. Stanbury, A. Whitaker, and S. J. Hall, "Principles of Fermentation Technology", Indian Edition, Hall

Books, 2007										
COUR	COURSE DESIGNERS									
S.No.	Name of the	Designation	Department	Mail ID						
	Faculty	_								
1	Dr. R Balachandar	Asst. Professor	Biotechnology	balaclone1@gmail.com						
2	Ms.C.Nirmala	Associate	Biotechnology	nirmala@vmkvec.edu.in						
2		Professor								

CRYOPRESERVATION THEORY	Category	L	Т	Р	Credit
AND APPLICATIONS	EC (PS)	3	0	0	3

Cryopreservation Theory and Applications subject deals with the basic knowledge in the preservation techniques. The course often use cutting-edge techniques and sophisticated machinery along with other applied fields of research to study how the eggs and sperm are preserved for later uses. Knowledge of these principles will enable students to understand the various free drying preservation techniques and its usefulness.

COURSE OBJECTIVES										
1 To recognise the basics of cryopreservation and effects caused by it.										
2 Summarize about different types cryopreservation										
3 To implement cryopreservation in fertilization process.										
To outline the knowledge of cryopreservation in therapeutics and other fertilization process										
5 To assess the role of cryopreservation in therapeutics.										
COURSE OUTCOMES										
After the successful completion of the course, learner will be able to										
CO1. Generalize the basic principle cryopreservation. Understand										
CO2. Discuss about different types of cryopreservation. Understand										
CO3. Practice the cryopreservation techniques in fertilization process Apply										
CO4. Illustrate the cryopreservation techniques for storage system Apply										
CO5. Establish the importance of cryopreservation process.     Apply										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES										
COS PO PO PO PO4 PO5 PO PO PO PO PO1 PO1 PO12 PSO PSO P										
1 2 3 6 7 8 9 0 1 1 2 S										
CO1 L L L M -										
CO2 L L L L L M M -										
CO3       S       M       L       L       S       M       -       -       M       M       L       -       M       M       S										
CO4       S       M       M       S       S       -       -       L       M       -       -       S										
CO5       S       M       M       -       -       S       -       -       L       -       L       S       M       S										
S- Strong; M-Medium; L-Low										

## SYLLABUS INTRODUCTION

Cryopreservation – History and Definition, temperature factor – normal biochemical reaction leading to death, Damages caused by general freezing of cell and tissues, Natural cryopreservation, Gaia theory (James Love Lock), freezing and refrigeration.

## VARIATION IN CRYOPRESERVATION

Cryobiology, Cryogenics, Frozen zoo, ex situ conservation, Long time preservation.

## **TECHNOLOGY OF CRYOPRESERVATION**

General Biotechnology in cryopreservation, Cellular cryobiology and hydrobiology, Deep freezing damages, *in vitro* storage and cryopreservation.

## **CRYOPRESERVATION AND FERTILITY**

Fertility failures, Embryo cryofreezing, techniques in embryo freezing, Storage thawing, retrieval, Cryoprotectant solution.

## **CRYOPRESERVATION MAN'S HOPE**

Cryopreservation of egg, Sperm of *Homosapiens*, Techniques employed in aquaculture (Fish Plankton), Cawthron collection, Design and use of thermal transport containers for cryopreservation, Role of cryopreservation in therapeutics.

## **TEXT BOOKS:**

- 1. AnnamariaPardo, John M. Baust and Todd Upton, 2005. Improving Quality in Cryopreserved Cells.
- 2. Gardner, Weissman, Howles and Shoham, 2009. Textbook of Assisted Reproductive Technology. Informa Health Care. 3rd Edn.

- 1. Walvekar, V. R., Jassawalla, M. J., Anjaria, P. H. And Wani, R. J., 2001. Reproductive Endocrinology. Federation of OGS of India. Jaypee Publications. 2nd Edn.
- 2. Benson, E., Paul T. Lynch and Glyn N. Stacey, 1998. Advance in Plant Cryopreservation Technology Current Application. Erica.
- 3. Peter R. Brinsden, 2005. Textbook of in vitro Fertilization and Assisted Reproduction Guide to Clinical Lab Practice. Taylor & Francis. 3rd Edn.
- 4. Steven R. Bayer, Michael M. Alperand Alan S. Perzias, 2007. Handbook of Infertility. Informa Health Care. 2nd Edn.
- 5. Igor I. Katkov, 2012. Current Frontiers in Cryopreservation. Intech Publishe

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. R Balachandar	Asst. Professor	Biotechnology	balaclone1@gmail.com							
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in							

FOOD MICROBIOLOGY	Category	L	Т	Р	Credit
	EC (PS)	3	0	0	3

NIII

Food microbiology is the study of the microorganisms that inhibit, create, or contaminate food, including the study of microorganisms causing food spoilage, pathogens that may cause disease especially if food is improperly cooked or stored, those used to produce fermented foods such as cheese, yogurt, bread, beer, and wine, and those with other useful roles such as producing probiotics. Knowledge of these principles will enable practice well in handling food substances carefully. PREPEOUISITE

I NĽN	EQU	19111		_											
COUF	RSE (	)BJE(	CTIVE	ËS											
1	To r	ecogn	ize the	basic k	nowled	ge on fo	ood safe	ety level	ls.						
2	To d	liscuss	variou	is factor	rs affect	ting the	growth	n of mici	roorga	nisms.					
3	To c	lassify	y the ro	ole of fo	od pres	ervatio	n techni	iques							
4	To c	ategoi	rise the	fermen	ted dai	ry produ	ucts								
5	To c	heck a	and pre	event the	e ways o	of food	spoilag	ge substa	ances						
COUF	RSE (	DUTC	OMES	5											
After t	he suo	ccessfi	ul com	pletion	of the c	ourse, l	earner	will be a	able to						
CO1: I	Recall	the va	arious	food sat	fety leve	els.								Reme	mber
CO2: I	Explai	in the	various	s factors	s affecti	ng grov	wth of n	nicroorg	ganism	IS				Under	stand
CO3: I	denti	fy the	role of	food p	eservat	ion tech	nniques							Under	stand
CO4: /	Analy	ze the	risk in	volved	in ferm	ented d	airy pro	oducts						Ana	lyse
CO5: I	Differ	entiate	e the va	arious fo	ood spo	ilage su	bstance	es						Ana	lyse
CO6: I	Practio	ce the	safety	procedu	ire in la	b and o	thers re	esearch i	institu	tions.				Ap	ply
MAPF	PING	WIT	H PRC	OGRAN	IME O	UTCO	MES A	ND PR	ROGR	AMMI	E SPEC	CIFIC (	OUTCO	OMES	
COS	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	L	L	L	L	-	-	-	-	-	M	-	L	S	М	-
CO2	M	L	-	М	-	-	-	-	-	-	Μ	L	-	-	M
CO3	S	-	Μ	L	L	-	-	M	-	-	-	-	-	-	-
CO4	M	S	L	М	L	-	-	S	-	-	-	-	-	M	-
CO5	S	M	L	-	L	-	-	-	-	-	-	-	-	-	-
C06	M	S   L   L   -   -   S   -   -   L   -   -   -													
S- Stro	ong; N	1-Med	lium; L	L-Low											

## SYLLABUS

## History and development of Food microbiology

Common Food borne Bacteria, Molds and yeasts. Role, and Significance of Microorganisms in Foods. Methods for detection of microorganisms in food: Meat diary, sea foods, vegetables. Physical, Chemical Immunological and biochemical assays.

## FACTORS AFFECTING THE GROWTH OF MICROORGANISMS

Factors Affecting the Growth and Survival of Micro-organisms in Foods. -Microbial Growth, Intrinsic Factors-Nutrient Content, pH and Buffering Capacity, Redox Potential, Antimicrobial Barriers and Constituents, Water Activity and Extrinsic Factors - Relative Humidity, Temperature and GaseousAtmosphere

## FOOD PRESERVATION

The Microbiology of Food Preservation - Heat Processing, Irradiation, High-pressure Processing –

Pasteurization, Low-temperature Storage and Chemical Preservatives.

## FERMENTED DIARY PRODUCTS

Production of fermented dairy products: Cheese, yoghurt, butter milk, sour cream Fermented vegetables; Sauerkraut, pickles, olives and soy sauce. Fermented meat, Fermented Indian foods - leavening of bread.

**OUALITY AND SAFETY ASSURANCE** Quality and safety assurance in food and dairy industry Good manufacturing practice, hazard analysis and critical control point (HACCP) concept. BIS Laboratory services

## TEXT BOOKS:

- a. Adams, M.R. and Moss, M.O. 2008. Food Microbiology, RSC Publishing, Cambridge, UK.
- b. Benwart, G.J. 1987. Basic Food Microbiology, CBS Publishers & Distributors, NewDelhi.
- c. Blackburn C. de W. 2006, Food spoilage microorganisms, WoodheadPublishing, Cambridge,UK
- d. Frazier, W.C., and Westhoff, D.C. 1988. Food Microbiology (Reprint 1995), Tata McGrawHill Publishing Ltd., NewDelhi

## **REFERENCES:**

- 1. Garbutt, J. 1997. Essentials of Food Microbiology, Arnold International Studentsedition, London.
- 2. Jay J.M. 2000. Modern Food Microbiology. 6th Edition. 2000. Chapman & Hall, NewYork.
- 3. Prescott, L.M., Harley, J.P. and Helin, D.A. 2008. Microbiology, Fifth Edition, McGraw Hill,

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R Balachandar	Asst. Professor	Biotechnology	balaclone1@gmail.com
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

				C	ANCE	R BIC	DLOG	V		Cate	gory	L	Т	Р	(	Credit
				Ċ.			200	•		EC	C (PS)	3	0	0		3
PREA	MBL	Æ										I.				
Ca	Cancer Biology is to learn the foundation principles in cancer mechanisms. It creates a broad base of															
know	ledge	to diffe	erentiat	e norm	al and	cance	rous c	ell and	i also	about c	lifferen	t types	of ag	gent	s lead	ing to
carcin	ogene	sis. It	aims to	o provid	le the s	strengt	h to ac	quire	an adv	anced k	nowled	ge and	unde	rsta	nding	of the
molec	ular n	nechani	ism, dia	ignosis,	prevei	ntion a	nd the	rapeuti	c mana	igement	t					
Pl	RERQ	UISIT	TE: MC	DLECU	LAR B	IOLO	GY									
C	OURS	SE OB.	BJECTIVES													
1	,	To define the basic principles in cancer biology.														
2	To discuss about the carcinogens.															
2	,	To den	nonstrat	te stude	nts on	variou	s genet	tic and	molec	ular cha	anges no	ormal ce	ells u	nde	rgo du	ring
3	tran	sforma	tion int	o malig	nant ca	ancer	-				-				-	-
4	,	To outl	line me	chanisn	n of car	ncer de	evelopi	ment a	nd prog	gressior	1					
5	,	To hav	e an un	derstan	ding in	a mul	tidiscij	plinary	appro	ach to <i>c</i>	cancer t	reatmen	ıt			
C	OURS	SE OU'	тсом	ES												
O	n the s	uccess	ful com	pletion	of the	course	e, stude	ents wi	ll be at	ble to						
C	01. Su	ımmari	ze the l	hallmar	ks of ca	ancer.								Ur	ndersta	nd
C	D2. Di	scuss a	about th	e Carci	nogens	5.								Ur	ndersta	nd
C	03. Id	entify t	he type	s of gen	ne mut	ations	and ca	ncer fo	ormatio	n				Aŗ	oply	
C	04. Ut	ilize th	e mole	cular m	echani	sms ur	nderlyi	ng the	develo	pment of	of cance	er,		Ar	oply	
C	O5. In	fer abo	ut canc	er prog	ression	, meta	stasis a	and nev	w thera	pies.		*		Ar	nalyse	
Μ	APPI	NG W	ITH P	ROGR	AMM	E OU'	ГСОМ	IES AI	ND PR	OGRA	MME	SPECI	FIC	OU'	TĊON	1ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	L	L	M	L	L	Ι	L	-	L	L	-	M		Μ	-	М
CO2	-	L	L	-	-	L	-	-	-	М	-	L		Μ	М	М
CO3	L	S	L	M	М	L	L	L	M	M	M	L		S	-	Μ
CO4	Ν	S	-	M	М	L	-	-	L	-	L	L		-	М	S
CO5	N	-	M	L	М	Μ	S	Ν	S	М	M	M		Μ	S	S

#### FUNDAMENTALS OF CANCER BIOLOGY

Cell cycle and check points, Cancer mechanism, Receptors, Signal molecules, Signal transduction – Modulation study, Tumour suppressor gene, Different forms of cancers, Diet and cancer. Detection using biochemical assays, Tumor markers, Molecular tools for early diagnosis of cancer.

#### PRINCIPLES OF CARCINOGENESIS

Theory of carcinogenesis, Chemical carcinogenesis, Metabolism of carcinogenesis, Principles of physical carcinogenesis -X – ray radiation, Mechanism of radiation carcinogenesis.

#### PRINCIPLES OF MOLECULAR CELL BIOLOGY OF CANCER

Signal targets and cancer, Activation of kinases, Oncogenes, Identification of Oncogenes, Retroviruses and oncogenes, Detection of oncogenes.Oncogenes / Proto oncogene activity. Growth factors related to transformation. Telomerases.

#### PRINCIPLES OF CANCER METASTASIS

Clinical significances of invasion, Heterogeneity of metastatic phenotype, Metastatic cascade, Basement membrane disruption, Three step theory of invasion, Proteinases and tumour cell invasion, Angiogenesis.

#### NEW MOLECULES FOR CANCER THERAPY

Different forms of therapy, Chemotherapy, Radiation therapy, Detection of cancers, Prediction of aggressiveness

of cancer, Advances in cancer detection, Use of signal targets towards therapy of cancer, Gene therapy

#### TEXTBOOKS

1. Maly, B.W.J., 1987. Virology A Practical Approach. IRLI Press, Oxford.

2.Dunmock, N.J. and Primrose, S.B., 1988. Introduction to Modern Virology. Blackwell Scientific Publications, Oxford.

#### **REFERENCES:**

1. An Introduction Top Cellular and Molecular Biology of Cancer, Oxford Medical Publications, 1991.

2. Primrose, S.B. and Twyman, R.M., 2006. Principles of Gene Manipulation and Genomics. Blackwell Publishing.

3. Lewis J. Klein Smith, 2005. Principles of Cancer Biology. Benjamin Cummings.

4. MomnaHejmadi, 2000. Introduction to Cancer Biology. Asian Publishing Exchange Pvt. Ltd.

5. Leonard Maurice Franks L., Natalie N., 2007. Cellular and Molecular Biology of Cancer. Oxford University Press.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.B.Prabasheela	Professor & Head	Biotechnology	prabasheela@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.ac.in

	Category	L	Т	Credit
APPLIED BIOTECHNOLOGY	EC (PS)	3	0	3

This is a multidisciplinary course deals with various aspects like plant and animal biotechnology, medical biotechnology, Biopharmaceutical technology, Bioprocess and Environmental biotechnology to educate students within the field of Biotechnology. Students will gain theoretical and practical competence within the broad field of Biotechnology, both in the molecular level as well as with itsapplications.

#### PREREQUISITE

PLANT AND ANIMAL BIOTECHNOLOGY

1	To list	the basi	c techni	ques of	plant ti	ssue cu	lture fo	r crop i	mprove	ement.					
2	To Des	cribe th	e novel	techniqu	les use	d in me	dical bi	iotechn	ology						
3	To outl	ine the	recombi	nant the	rapeuti	cs in pl	harmace	eutical	industry	у					
4	To dist	inguish	the uses	of diffe	erent m	icrobes	in vari	ous ind	ustry						
5	To exe	cute the	use of g	genetica	lly engi	neered	organis	sms in e	environ	ment					
On the	successf	ful com	oletion of	of the co	urse, st	udents	will be	able to							
CO1. R	ecall the	e basic i	nformat	ion abo	ut plant	tissue	culture	technic	lues						
CO2. D	emonst	rate the	various	novel te	chniqu	es used	in med	lical fie	ld				Ι	Rememb	er
CO3. V	alidate 1	the diffe	erent me	thods fo	or the p	roducti	on of th	erapeut	tics age	ents in			ι	Jndersta	nd
pharma	ceutical	industr	У												
CO4.E	kamine t	he uses	of gene	tically e	ngineer	red mic	robes in	n Indus	trial ap	plication	l			Evaluat	e
CO5. E	mploy t	he uses	of genet	tically e	ngineer	ed orga	anism ii	n Envir	onment	al issues				Analyz	e
On the	successf	ful com	oletion of	of the co	urse, st	udents	will be	able to						Apply	
MA	APPING	WITE	I PROC	GRAMN	AE OU	TCOM	IES AN	ND PRO	OGRA	MME S	PECIFI	C OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	S	-	S	-	Μ	S	-	-	-	Μ	-	-	-
CO2	S	М	М	-	S	-	Μ	-	-	-	-	L	-	-	-
CO3	S	М	-	S	М	S	-	S	-	-	-	Μ	-	-	-
CO4	М	L	М	-	S	М	М	S	-	-	-	L	-	-	-
CO5	М	-	-	_	М	L	S	S	-	_	_	L	_	-	-

## SYLLABUS

## PLANT AND ANIMAL BIOTECHNOLOGY

Plant tissue culture and application of transgenic for crop improvement in agriculture, Embryo culture and embryo rescue method, in vitro pollination and fertilization, Plantibodies, plastic from plant, genetically modified soybean, transgenic animals and its uses.

## MEDICAL BIOTECHNOLOGY

Gene therapy – gene delivery methods, New approaches, Applications of stem cell in the treatment for major diseases in reparative medicine, Hematopoietic Stem Cell transplantation, Applications of tissue engineering – reconstruction of connective tissues, epithelial and endothelial surfaces, DNA fingerprinting, DNA based diagnosis of Genetic disease.

## **BIOPHARMACEUTICAL TECHNOLOGY**

Production of recombinant pharmaceutical products – Biotechnology derived products (Therapeutic proteins): Study of hematopoietic growth factor, Interferon's and Interleukins, Insulin, Growth hormones, Vaccines and Monoclonal antibody-based pharmaceuticals, Anti sense therapyRNAi. Drug designing process, receptor–ligand interaction, ligand docking-Bioinformatics tools.

### **BIOPROCESS TECHNOLOGY**

Basic outline of upstream and downstream process. Isolation and preservation of industrially important organisms, Application of microbes in industry – Industrial Processing, recovery, extraction and purification, Production of antibiotics, solvents, organic acids, amino acids, enzymes, vitamins, single cell protein, food substances from brewing and dairyindustry.

#### ENVIRONMENTAL BIOTECHNOLOGY

Use of genetically engineered organisms, bioleaching and its applications in environmental science, Fuel technology – Ethanol and Biogas. Biotechnological applications in waste management, Novel methods for pollution control, Biosensors, Biodegradable plastics, Biotechnology in Pesticide, Tannery and Paper industry. Bioremediation- Insitu and Exsitu- bioventing, Biosparging and Phytoremediation. Role of microbes in improving soil fertilityMycorrhiza

#### TEXT BOOKS

- 1. Gupta, P.K., 2015. Elements of Biotechnology. RastogiPublications.
- 2. VaidyanathPratapReddy and SathyaPrasad, 2004. Introduction toApplied Biology and Biotechnology. 1st Edn., *B. S. Publications*. Hyderabad.
- 3. Gary Walsh. Biopharmaceutical: Biochemistry and Biotechnology. 2nd Edn., John Wiley & sonsLtd.
- 4. Samuel E. Lynch and Be Roberts J. Geng. TissueEngineering.

#### **REFERENCE BOOKS**

- 1. Maulikand Patel, 1996. Molecular Biotechnology TherapeuticApplications and Strategies. *Wiley &Sons*.
- 2 Cruger, W.and Cruger, A., 2004. Biotechnology: ATextBook of Industrial Microbiology. 2nd Edn

				-
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.B.Prabasheela	Professor & Head	Biotechnology	prabasheela@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.ac.in

			(	CLINI	CALTI	RIALS	1		Cat	tegory		L	Т	Р	Credit
									EC	C (PS)		3	0	0	3
PREA	MBLE												•	•	
Clinica	al Trial	is to e	xpose	the stu	dents to	literat	ure sur	vey an	d to u	nderstan	d resear	ch obje	ctives, le	arn the a	idvanced
instrur	nental te	chniqu	es to be	e used i	in reseat	ch, and	l comp	utationa	al appli	cation in	1 Pharm	aceutica	l and Me	dicinal C	hemistry
researc	ch. The s	students	should	l also b	e made a	aware c	of the re	esearch	ethics,	principl	es and co	onduct of	of clinical	trials for	medical
researce DDFD	on and In		iai Prop r	erty Ri	gnt.										
	SE OB		L VFS												
		vize the	racaar	h objec	otivos										
1 $1$ $1$ $2$ $T$	o discus	s with t	he esse	ntial co	mpoper	ts nece	ccarv to	condu	ct clini	cal trial 1	research				
2 I 3 T	o uiscus	nstrate	the has	ic princ	inles for	· design	of clin	ical tris	ale		cscaren				
<u> 3</u> Т 4 Т	o Execu	$\frac{11511 \text{ atc}}{16 \text{ toyic}}$	cologics	l studie	<u>s</u>	uesign			115						
<del>т</del> 1 5 Т	Chock	the int	orvonti	ana	25										
	SE OU	TCOM	ET VEILLO	5115											
On the		ful com	nletion	of the	course	students	s will b	e able t	0						
CO1	Review t	he rese	arch wo	ork	eouise, .	Judent		<u>e uore r</u>	0				Underst	and	
CO2. 5	Select th	e resear	ch com	ponent									Underst	and	
CO3.1	Prepare t	he proc	edures	for clin	ical tria	1							Apply		
CO4	Annraise	the rol	e of tox	icology	v in drug	, develo	nment						Analyze	ć	
CO5. 0	Organize	a Clini	ical tria	1	,	, 40 / 010	pinene						Analyze	2	
MAPI	PING W	TTH P	ROGR	AMM	E OUTO	COMES	S AND	PROG	RAM	ME SPE	CIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO/	PO5	PO6	PO7	PO8	PO0	PO10	PO11	PO12	PSO1	PSO2	PSO3
005	101	102	105	104	105	100	107	100	109	1010	1011	1012	1501	1502	1505
CO1	L	-	-	L	-	L	-	L	L	L	L	L	М	М	-
CO2	Μ	М	L	-	L	L	-	L	-	-	L	L	-	М	М
CO3	S	S	S	S	S	Μ	Μ	М	Μ	-	Μ	L	S	S	S
CO4	Μ	М	S	М	-	-	S	Μ	S	Μ	Μ	Μ	-	М	М
CO5	Μ	S	S	S	Μ	Μ	S	Μ	S	L	Μ	Μ	S	S	S
S- Stro	S- Strong: M-Medium: I -I ow														

## PURPOSE OF RESEARCH

Research –Meaning, Purpose, Types, (Educational, Clinical, Experimental, Historical Descriptive, Basic applied and Patent oriented research), Objectives of research, Literature survey –Use of Library, Books and Journals–Medline's–Internet, Patent Search and Reprints of articles as a source for Literature survey, Selecting a problem and preparing research proposals.

## BASIC TERMINOLOGY USED IN CLINICAL RESEARCH

Research - Meaning, Purpose, Research - Meaning, Purpose. Basic terminology - Adverse event, arm assessment ,

background therapy, blinding, cross over trial, double blind, early patient withdrawal, Informed consent, confidentiality,

Interventional study, observational study.

#### CLINICAL TRIALS

New drug discovery process – Purpose, Main steps involved in new drug discovery process, Timelines of each steps, Advantages and purposes of each steps, Ethics in clinical research, Unethical trials, Thalidomide tragedy, Phase – I, II, III, IV trials (Introduction and designing, Various phases of clinical trials, Post marketing surveillance, Methods, Principles of sampling, Inclusion and exclusion criteria, Methods of allocation and randomization, Informed consent process in brief, Monitoring treatment outcome, Termination of trial, Safety monitoring in clinical trials).

#### PRECLINICAL TOXICOLOGY

General principles, Systemic toxicology (Single dose and repeat dose toxicity studies), Carcinogenicity, Mutagenicity, Teratogenicity, Reproductive toxicity, Local toxicity, Genotoxicity, Animal toxicity requirements.

#### APPLICATIONS

Study of various clinical trials (completed or ongoing), Clinical trial applications in India Import and export of drug in India, Investigational New Drug application (IND), Abbreviated New Drug Application (ANDA), and New Drug Application (NDA).

#### TEXTBOOKS

- 1. Katzung, B. G. Basic and Clinical Pharmacology. Prentice Hall International.
- 2. Laurence, D. R. And Bennet, P. N. Clinical Pharmacology. Scientific Book Agency.
- 3. Krishna, D. R. And Klotz, V. Clinical Pharmacokinetics. Springer Verlab.
- 4. Lippincott, Williams and Wilkins. Remington Pharmaceutical Sciences.
- 5. KvenStockley and Hamsten. Drug interaction.

#### **REFERENCES:**

- 1. Ethical Guidelines for Biomedical Research on Human Subjects. Indian Council of Medical Research, New Delhi, 2000.
- 2. Rick, N.G., 2004. Drug from Discovery to Approval. John Wiley & Sons Inc..
- 3. Mehra, J. K. Drug interaction. Basic Bussiness Publication.
- 4. Grahame smith and Aronson. Clinical Pharmacology and Drug Therapy.
- 5. Richard A. Helms. Text Book of Therapeutics Drug and Disease Management. Hardbound.
- 6. Herfindal, E. T., Hirschman, J. L., Williams and Wilkins. Clinical Pharmacy and Therapeut

COURSE	DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.ac.in

AGRICULTURAL BIOTECHNOLOGY	CATEGORY	L	Т	Р	С
AGRICULTURAL BIOTECHNOLOGY	EC (PS)	3	0	0	3

#### Preamble

This course deals about the biology of plants, plant microbe's interaction, genetic manipulation of crops, different vectors, their applications and how plant act as factories for the production of various compounds. This course will prepare the students for a variety of careers, including modern plant biotechnology processes, breeding of healthy plants, plants with improved characteristics and plants for biomolecule production.

#### Prerequisite

Nil

COURS	E OBJECTIVES
1	To state the basic of cell structure and function
2	To describe the interaction of microbes and plants
3	To perform the novel techniques used in genetic manipulation of crops
4	To categories the uses of different vectors in biotechnology
5	To produce the different organic compounds using Plants as Factories

#### **Course Outcomes**

On the successful completion of the course, students will be able to

CO1:	Summarize the basic information about cell structure ,functions and their nutrients	Understand
CO2:	Demonstrate the plant and microbes interactions	Understand
CO3:	Apply the novel techniques used in genetic engineering and genetic manipulation in crop improvement	Apply
CO4:	Identify the uses of different vectors and their application in biotechnology field	Apply
CO5:	Examine the different organic compounds like vitamins, amino acids and proteins etc, using plant as a major source.	Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	L	-	-	
CO2	L	М	L	L	-	L	-	-	-	-	-	L	-	-	М
CO3	S	S	М	S	М	М	М	-	-	-	-	-	М	S	S
CO4	S	S	M	S	М	М	М	L	-	-	-	-	М	S	S
CO5	М	S	М	М	М	L	S	L	L	М	-	-	М	S	М
S- Strong	S- Strong; M-Medium; L-Low														

#### Syllabus

## **BIOLOGY OF PLANTS**

Plant cell structure and functions. Plant nutritition, Water and mineral availability and uptake. Growth regulators- Phytohormones, auxins, cytokinens, Gibberillins, Abscisic acid, ethylene.

## PLANT –MICROBES INTERACTIONS

Biotic and Abiotic stress. Plant response to pathogens. Toxins of fungi, algae and bacteria. Systemic and induced resistance, pathogen derived resistance. Genetic engineering for biotic stress resistance

## GENETIC MANIPULATION IN CROPS

Genetic engineering- scope and methods. Gene guns, electroporation, transformation, microinjections, CRISPR, TALEN. Types of modifications- Transgenic, cisgenic, subgenic. Stress resistance, pest resistance, herbicide tolerance and other modified traits.

## PLASMIDS AND PROMOTERS

Ti and Ri plasmids, Antisense and RNAi in crop improvement. Disarming Ti plasmid, opines and their significance. Co integrate and binary vectors. Screenable and selectable markers. Promoters and poly A signals.

## PLANTS AS BIO -FACTORIES

Seed storage proteins, essential amino acids, vitamins and minerals, heterologous protein production in transgenic plants for agriculture, industry and pharmaceuticals uses, biodegradable plastics.

## TEXTBOOK

1. Ahindra Nag. Textbook of Agricultural Biotechnology.PHI Publisher. 2008

- 1. Adrian Slater, Nigel Scott and Mark Fowler. 2003. Plant Biotechnology: The genetic manipulation of plants. I edition, Oxford University Press.
- 2. Vidhyasekaran P. 2005.Bacterial disease resistance in plants. Molecular Biology and Biotechnological applications. Haworth food and agricultural products press. New York.
- 3. Pessarakti M. 1999. Handbook of plant and crop stress, 2nd edition. Marcel Dekkar Inc. New York.
- 4. Melvin J oliver. Agricultural Biotechnology.Wiley Blackwell. 2009

GENOMICS AND P	Categ	gory L	Т	Р	Credit
	EC (I	PS) 3	0	0	3

Genomics and Proteomics deals with a rapidly evolving scientific area that introduces students into genomes, proteomes and databases that store various data about genes, proteins, genomes and proteomes. Students would learn about genomics, proteomics and bioinformatics and offer basic knowledge of genome sequencing, major differences between prokaryotic and eukaryotic genomes, basic proteomics and its applications. Students would gain skills in applied bioinformatics, comparative, evolutionary, human genomics and functional genomics. The acquired knowledge during the course would be helpful to those students who want to work in core facilities and commercial biological and medical laboratories as well as in their postgraduate studies.

## PREREQUISITE

GENETIC ENGINEERING

## **COURSE OBJECTIVES**

1 To explain advanced theoretical knowledge on the organization and function of genomes

2 To execute different mapping techniques.

3 To Perform gene identification and gene expression studies

To outline the identification, separation and sequencing of proteins 4

5 To evaluate the principles of bioinformatics and databases

## **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. To describe the organisations genes in prokaryotes and eukaryotes	Understand										
CO2. To illustrate various genome mapping techniques and its strategies.	Apply										
CO3. To relate the flow of genetic information from DNA to RNA to protein											
CO4. To compare the advantages and the drawbacks of various proteomics technologies with the emerging technologies											
CO5. To evaluate the role of proteomics in drug discovery	Evaluate										
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUT											
COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO       PO1       PO11       PO12       PS01	PSO2 PSO 3										

COI	Μ	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	L	L	L	L	-	L	-	-	-	-	L	L	L	L
CO3	Μ	L	-	L	L	L	-	-	-	-	-	-	-	L	-
CO4	L	L	L	-	L	-	L	-	L	-	-	-	L	-	-
CO5	S	Μ	L	L	-	-	-	-	L	-	-	-	S	М	L
S- Strong	S- Strong: M-Medium: L-Low														

18,

## OVERVIEW OF GENOMES OF PROKARYOTES, EUKARYOTES AND HUMAN

Organisation of genes, Coding and non-coding chromosomes and high order structures, Genome relatedness, Introduction of genomics.

## MAPPING TECHNIQUES

Mapping strategies, Maps – Physical and Genetic maps, Comparative map, Integrated map, Top down and bottom up approach, linking and jumping of clones, STS maps, Human Genome Project, Identification and classification using molecular markers-16S rRNA typing/sequencing, EST's and SNP's

## FUNCTIONAL GENOMICS

Gene identification and prediction, Annotation, Functional prediction, Gene expression and micro arrays, Substractive DNA library screening, differential display and representational difference analysis, SAGE. **PROTEOMIC TOOLS** 

Edman protein microsequencing, Proteome analysis, 2D gel electrophoresis, Metabolic labeling, Detection of protein on SDS gels. Mass spectrometry – MALDI - TOF, Tandem MS - MS, Peptide mass finger printing.Protein analysis (includes measurement of concentration, aminoacid composition, Nterminal sequencing); 2-D electrophoresis of proteins; Microscale solution isoelectricfocusing; Peptide fingerprinting

## PROTEIN PROFILING AND APPLICATION OF PROTEOMICS

Protein – protein interaction, Post translational modification, Proteomics in drug discovery. High throughput screening in genome for drug discovery identification of gene targets, Pharmacogenetics and drug development

## TEXT BOOKS:

- 1. Rastogi, S.C., Mendiratta, N. and Rastogi, P, 2008. Bioinformatics Methods and Applications. Prentice-Hall of India (Private),Limited.
- 2. Andreas D. Baxevanis and Francis Oueliette, B.F, 2004. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition. *John Wiley and Sons Inc.*

- 1. David W. Mount, 2001. Bioinformatics, Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press.
- 2. Pennington and Dunn, 2001. Proteomics. BIOS ScientificPublishers.
- 3. Liebler, 2002. Introduction to Proteomics. HumanaPrem.
- 4. Primrose and Twyman, 2003. Principles of Genome Analysis and Genomics. Blackwell PublishingCo.
- 5. Westhead, D.R., Parish, J.H. and Twyman, R.M., 2003. Instant Notes Bioinformatics. 1stEdn., *Viva Books PrivateLimited*.
- 6. Ignacimuthu, S., 2005. Basic Bioinformatics. *Narosa PublishingHouse*.

COURSE DE	SIGNERS

Name of thenFaculty	Designation	Department	Mail ID
Dr.R Balachandar	Assistant Professor	Biotechnology	Balaclobne1@gmail.com
Ms.C.Nirmala	Associate Professor	Biotechnology	nirmala@vmkvec.edu.in

											Catego	ry	L	Т	Р	Ī
		MOL	ECULA	R MOD	ELLING	5 ANI	) DRU(	G DESIG	NING		EC (PS	5)	3	0	0	Ì
PREA This c method	<b>MBLE</b> ourse ena	ables the	students	to broade	en their ir	nterest	s to use	structure-	based a	nd non-	linear c	lassifica	ation			1
PRER PRINC	EQUISI CIPLES (	TE DF BIOIN	IFORMA	ATICS												
COUR	RSE OBJ	ECTIVE	ES													
1	To list c	concepts	involved	in molec	ular mod	elling										
2	To sum	marize m	olecular	mechanis	sms invo	lved ir	n energy	[,] minimiza	tion							
3	To exec	ute the n	nolecular	dynamic	s using d	ifferei	nt mode	ls								
4	To deve	elop basic	steps in	volved in	modelin	g of p	roteins									
5	To justi	fy the mo	olecular d	lynamics	in drug o	lesign	ing and	discovery								
COUR	RSE OUT	<b>COME</b>	<b>S</b>													
After t	he succes	sful com	pletion o	f the cou	rse, learn	er wil	l be able	e to								
CO1.	Recogniz	e about r	nolecula	modelli	ng conce	pts										
CO2. 0	Classify n	nolecular	mechani	isms behi	nd energ	y mini	mizatio	n problem	IS							
CO3. I	Illustrate	the mode	ls to stud	ly the mo	lecular d	ynami	cs									
CO4.	Compare	molecul	ar dynam	ics with	drug desi	gning	concep	ts								
CO5. I	Design ne	w techni	ques for	the disco	very of d	rugs										
MAPF	PING WI	TH PRO	OGRAM	ME OU	ГСОМЕ	S AN	D PRO	GRAMM	E SPEC	CIFIC	OUTCO	OMES				
COS	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO1	PSO1			
CO1	L	L	_	-	-	-	-	-	-	-	-	-	М			
CO2	L	L	-	-	-	-	-	-	-	-	-	-				
CO3	L	М	-	L	-	-	-	-	-	-	-	-	M			
CO4	S	S	M	S	M	-	-	-	-	-	-	L	-			
CO5	S	S	S	S	M	L L	I _	_	- 1	-	-	L L	M			

S- Strong; M-Medium; L-Low

## SYLLABUS

## QUANTUM MECHANICS & CONCEPTS IN MOLECULAR MODELING

Introduction – coordinate systems – potential energy surfaces – introduction to quantum mechanics – postulates – Schrodinger wave equation – hydrogen molecule – Born-Oppenheimer approximation, introduction to computer hardware and software.

## MOLECULAR MECHANICS AND ENERGY MINIMIZATION

Empirical force field models – Bond stretching – angle bending – torsional term – nonbonding interactions – thermodynamics properties using a forcefield – derived and non-derived energy minimization method – simplex – sequential univariate method – steepest descent method – conjugate gradient method- Newton-Rapson method.

## MOLECULAR DYNAMICS AND MONTE CARLO SIMULATION

Introduction – Using single Model – time steps – Multiple steps – Setting up MD – energy conservation in MD Simulation Examples – Monte Carlo – Random number generation – Difference in MD & MC

## HOMOLOGY MODELING

## DRUG DESIGN

General approach to discovery of new drugs –drug targets, lead discovery – lead modification – physiochemical principles of drug action – drug stereo chemistry –drug action - 3D database search – computer aided drug design – Mechanism based drug design – ligand based drug design – structure based drug design – pharmacophores - QSAR

## **TEXTBOOKS:**

- 1. Leach R. (1996), "Molecular Modeling Principles and Application", 2nd edition, Longman Publications.
- 2. Baxivanis D. and Foulette Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition edition, Wiely-Blackwell Publishers
- 3. Kothekar V. (2001), "Essentials of Drug Designing", Indian Edition, Dhruv Publications
- 4. Gerhard Edwin Seibold, Alexander Hillisch, Rolf, (2002) "Modern Methods of Drug Discovery", Hilgenfeld Publisher.

- 1. Attwood, T K , parry-Smith, D J (2005), "Introduction to Bioinformatics", Pearson Education, 1st Edition, 11th Reprint
- 2. Alan Hinchliffe, (2003), "Molecular Modelling for Beginners", John-Wiley
- 3. "Drug Design: Cutting Edge Approaches". AngewandteChemie, International Edition,Vol.42 "Advanced Drug Design and Development" Kourounakis Taylor and Francis

COURS	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr R Devika	Professor & Head	Biotechnology	devika@avit.ac.i n										
2	Mrs.M.Sobana	Assistant Professor	Biotechnology	sobanam@vmkv ec.edu.in										

			NANOPIOTECHNOLOCY C								Catego	ory I		Т	Р	Credit
				N	ANOBI	OTEC	CHNOL	.OGY			EC (PS	S) 3	3 (	0	0	3
PREA One of by set moder betwee PREA	PREAMBLE       One of major applications of nanoscience is in biotechnology field. In various disciplines, a single course which starts by sensitizing students from a varied background about the biological/biotechnological basics and culminates into modern day applications of nanoscience in biotechnology field will be highly useful. This course will act as a bridge between students from non-biology course at all levels       PREREQUISITE – NIL															
COURSE OBJECTIVES																
1 To define about the basic concepts of Nanotechnology.																
2	To explain about the Fabrication and Characterization of nanomaterials															
3	To classify the nanoscale elements delivery inBiosystems															
4	To outline the interaction of Microorganism in Nanobiotechnology.															
5 To design the novel drug delivery system for <i>in vivo</i> studies																
COU	RSE OU'	TCOM	IES													
After	the succe	ssful c	omplet	ion of t	he cour	se, lear	ner will	be able	e to							
CO1.	Explain t	he tern	ns and	properti	ies of na	anopart	icles							U	ndersta	nd
CO2.	Interpret	and ch	aracter	ise the I	nanopai	ticles								U	ndersta	nd
CO3.	Identify t	he pro	perties	of nano	particle	e in sigi	nalling	pathwa	у					A	pply	
CO4.	Examine	the rol	e of m	icroorga	anisms i	in Nanc	biotecl	nnology	,					A	nalyse	
CO5.	Correlate	the ro	le of N	ano par	ticles in	treatm	ent of o	lisease						A	nalyse	
MAP	PING W	ITH P	ROGE	RAMM	E OUT	COM	ES ANI	) PRO	GRAM	ME SP	ECIFIC	COUT	CON	ИE	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	Р	PSO3
CO1	L	-	L	-	-	-	-	-	-	L	-	-	-		-	М
CO2	L	L	М	L	-	-	L	-	L	L	L	-	S		М	М
CO3	S	S	М	S	М	-	-	-	-	-	М	L	Μ		S	М
CO4	М	М	М	Μ	М	-	S	-	M	S	М	М	S		М	М
CO5	M	M	M	М	М	М	S	L	М	S	Μ	М	S		S	М
S- Str	ong; M-N	/ledium	n; L-Lo	W												

## INTRODUCTION TO NANOBIOTECHNOLOGY

Introduction to types and properties of nanoparticles, Overview of nanodevices and techniques, Inorganic nanoscale systems for biosystems–Nanostructured materials–Fullerenes: Properties and characterization – Carbon nanotubes: Characterisation application–Quantum dots and wires–Gold Nanoparticles –Nanopores

## FABRICATION AND CHARACTERISATION

Synthesis –Top-down and Bottom-up Methods, Epitaxial growth, Characterization: X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM), Scanning Electron Microscopy (SEM), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Energy Dispersive of X ray spectrum (EDS)

## NANOMOLECULES IN BIOSYSTEMS

DNA, RNA, Proteins and Lipids–Nanoscaleelements for delivery of materials into cells, Nanotechnology in cell–Cell motility: Nanomotorsand cellular navigation– Chemotaxis–Transmembranesignallingand related proteins.

## MICROORGANISMS AND NANOBIOTECHNOLOGY

Nanobiotechnology and microorganisms – Polyhydroxyalkanotes (PHA) Cyanophycininclusions– Magnetosomes– Alginates s-layer proteins –Bacteriorhodopsin.

## APPLICATIONS OF NANOBIOTECHNOLOGY

Nanomedicine, Nanobiosensor–Electrochemical DNA sensors, Nanobiochips, Nanocrystalsin Biological Detection, Small scale systems for *in vivo* drug delivery, Nanotechnology for diagnosis and treatment (Cancer and Leprosy), Commercializing Nanobiotechnology. Nanotechnology for disaster relief – Decontamination Emergency equipment, Lab on a chip and sustainability.

## **TEXT BOOKS:**

- 1. BhushanBharat (Ed.). Hand book of Nanotechnology. Springer 3rd Edition (2010)
- 2. AjayanP.A. and SchadlerL, Braun P. V., NanocompositeScience and Technology. Wiley-VCH (2003).
- 3. Nlemeyer, C.M. (Ed.)andMirkin, C.A. (Ed.) Nanobiotechnology–Concepts, Applications and Perspectives. *Wiley–VCH* (2004)
- 4. GeoffOzinand Arsenault, A., Nanochemistry: A Chemical Approach to Nanomaterials. 1stEdn., *Royal Society* of Chemistry (2005)
- 5. Charles P. Poole and Junior Frank J. Owens, Introduction to Nanotechnology. John Wiley and Sons (2003).

## **REFERENCES:**

- 1. Rosenthal, S.J. and Wright, D.W. NanobiotechnologyProtocols in methods in Molecular Biology Series. *Humana Press* (2005).
- 2. Michael Crichton. Understanding Nanotechnology. Scientific American Publisher (2002).
- 3. RalphS.Greco,FritzB.Prinzand LaneSmithm,R., NanoscaleTechnology in Biological systems. *CRC Press* (2005).

COURSE	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. R. Balachandar	Assistant professor	Biotechnolog y	Balaclone1@avit.ac.in									
2	Ms.C.Nirmala	Assistant Professor	Biotechnolog y	<u>nirmala@vmkvec.edu.i</u> <u>n</u>									

			<b>GOO</b>	DD MANUFACTURING AND Category L T P										Credit		
			LA	BOR	ATO	RY Pl	RACI	TICE		EC (	(PS)	2	1	0		3
PREA The c facilit Expo	AMBL ourse v ties, eq sure on	E will en uipme ethic	nphas ent, tea al issu	is on g sting a les an	good 1 1nd co d clnic	manuf ntrols cal reg	acturi , reco gulatic	ng an rds, re ons.	d labor eports,	atory p and pro	oractice otocol	es. Thro for and	ough kn conduc	owle et of :	dge oi non-cl	n testing inical labs.
PRE	REQU	ISITI	E - NI	L												
COU	RSE C	<b>)BJE</b>	CTIV	ES												
1 E	Basic understanding of the regulatory requirement of GMP and GLP															
2 To understand the significance of GMP and GLP																
3 Thorough knowledge on testing equipment, procedures and maintain records and reports.																
4 E	Exposure to clinical regulations and ethical issues															
COURSE OUTCOMES																
After the successful completion of the course, learner will be able to																
CO1 perso recor	Unders nnel a ds, repo	stand nd or orts, a	that th ganiza nd pro	ne area ationa otocol	as that l, test for ar	t come ting fand con	e unde acilitie duct o	er the es, ec of non	Good Juipme -clinic	Labora nt, tes al labs	atory P ting an	ractice nd cor	s are: atrols,	Rem	ember	
CO2. Understand the areas of GMP and GLP Understand							1									
CO3. packa	Know ging	ledge	and p	ractice	es of e	quipn	nent p	roduc	tion pr	ocess o	control	and		Und	erstand	1
CO4.	Regu	lation	s of cl	inical	practi	ces								Und	erstand	1
CO5.	Know	ledge	abou	t ethic	al issu	ies an	d ame	ndme	nts					Und	erstand	1
MAP	PING	WIT	H PR	OGR	AMM	ΕΟ	JTCO	MES	AND	PROC	GRAM	ME SI	PECIFI	<b>C O</b>	UTCO	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	Μ		М			L						М			-
CO2	Μ	L	L			L										-
CO3	S	Μ													L	-
<u>CO4</u>			M			Μ							L			-
<u>CO5</u>	M	( ) (		гт												-
3- Sti	ong; N	1-Mec	num;	L-LOV	V											

Introduction to Good Manufacturing and Laboratory Practice

Introduction to Good Manufacturing and Laboratory Practice, Requirement of GLP and GMP compliance for regulatory approval,

concept of Design of Experiment

Introduction to the concept of Design of Experiment (DOE) Application of QBD principles in Biotech product development. Case studies: Example of QBD and DOE in Process Development, Example of DOE in analytical development

## **Guidelines of regulatory affairs**

Introduction to ICH guidelines and their usage, National and international regulatory authorities and their function, Pharmaceutical Jurisprudence and Laws related to Product design, Drug Development & Approval Process.
#### **Clinical and Preclinical Studies**

Regulation of Clinical and Preclinical Studies, Good Manufacturing Practices, Formulation Production Management, Authorization and marketing of drugs.

#### **Principles and Ethics**

Ethics in manufacturing and control, Principles of quality by design (QBD)

## **TEXT BOOKS:**

1. GMP starter guide: Principles in Good Manufacturing Practices for Beginners, Emmet P. Tobin, Createspace Independent Publishing Platform, April 2016.

2. Good Manufacturing Practices for Pharmaceuticals: GMP in Practice, B Cooper, Createspace Independent Publishing Platform, July 2017.

3. Sarwar Beg and Md Saquib Hasnain, Pharmaceutical Quality by design: Principles and application, Academic press, March 2019.

4. Ron S. Kenett, Shelemyahu Zacks, Daniele Amberti, Modern Industrial Statistics: with applications in R, MINITAB and JMP, 2nd Edition, Wiley, January 2014.

5. N Politis S, Colombo P, Colombo G, M Rekkas D.Design of experiments (DoE) in pharmaceutical development, Drug Dev Ind Pharm. 2017 Jun;43(6):889-901. doi: 10.1080/03639045.2017.1291672. **REFERENCES:** 

1. Andrew Teasdale, David Elder, Raymond W. Nims, ICH quality guidelines- An implementation guide, Dec 2017.

2. Gajendra Singh, Gaurav Agarwal an Vipul Gupta, Drug regulatory affairs, CBS publication, 2005.

3. Marc P. Mathieu, New Drug Development: A regulatory overview, Nov 2000.

4. ICH guidelines available in the official website "https://www.ich.org

COU	COURSE DESIGNERS											
<b>S.</b>	Name of the	Designation	Department	Mail ID								
No.	Faculty											
1	Dr.R.Balalchandar	Asst.Prof G-II	Biotechnology	Balachandar.biotech@avit.ac.in								
2	Mrs.S.Subriya	Assistant Professor	Biotechnology	subriya@vmkvec.edu.in								

			BIOPHYSICS Category L 7											Р	Credit
				1	SIUP	<b>115</b>	CS			EC (	(PS)	3	0	0	3
PREA	MBLE	2													
The co	The course lightens the structural knowledge of biological system and the properties.														
PRER	PREREQUISITE – NIL														
COURSE OBJECTIVES															
1 To gain structural knowledge of biological systems															
2 To	2 To understand transport and dynamic properties of biological systems.														
COUR	COURSE OUTCOMES														
After t	After the successful completion of the course, learner will be able to														
CO1. To analyze the various forces responsible for biological molecular structure Remember															
CO2. To be familiar with different levels of conformation in biomolecules Remember															
CO3. 1	To gain	the kr	nowled	lge of	cellula	ır pern	neabili	ty and	ion tra	nsport				Unde	erstand
CO4. '	To und	erstan	d the i	onic c	onduct	ion an	d trans	sportat	tion am	ong the	cellula	r strucu	tres	Unde	erstand
005	<del>.</del>	1	1 1	• .1	1	· .		• 1						<b>TT</b> 1	. 1
CO5.	To gair	i know	vledge	in the	dynar	nics of	b1010	gical s	ystems					Unde	erstand
MAPP	ING V	VITH	PRO	GRAN	AME (	OUTC	COME	S AN	D PRO	GRAM	IME SI	PECIF	IC OUT	COM	IES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3
<u>CO1</u>	M		М			T			T						
C01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
CO3	L	Ľ		М			L	Ľ							
CO4	M		L		L									1	_
CO5		L				L		L							-
S- Stro	ng; M-	Mediu	ım; L-	Low						I I				1	1

#### MOLECULAR STRUCTURE OF BIOLOGICAL SYSTEMS

Intramolecular bonds – covalent – ionic and hydrogen bonds – biological structures –general features – water structure – hydration – interfacial phenomena and membranes – self assembly and molecular structure of membranes.

#### CONFORMATION OF NUCLEIC ACIDS

Primary structure – the bases – sugars and the phosphodiester bonds- double helical structure – the a b and z forms – properties of circular DNA – topology – polymorphism and flexibility of DNA – structure of ribonucleic acids – hydration of nucleic acids.

#### **CONFORMATION OF PROTEINS**

Conformation of the peptide bond – secondary structures – Ramachandran plots – use of potential functions – tertiary structure – folding – hydration of proteins – hydropathy index.

#### **CELLULAR PERMEABILITY AND ION – TRANSPORT**

Ionic conductivity – transport across ion channels – mechanism - ion pumps- proton transfer – nerve conduction – techniques of studying ion transport and models.

# **ENERGETICS & DYNAMICS OF BIOLOGICAL SYSTEMS**

Concepts in thermodynamics – force and motion – entropy and stability – analyses of fluxes – diffusion potential – basic properties of fluids and biomaterials – laminar and turbulent flows

#### TEXT BOOKS:

1. Biophysics ; R. Glaser, Springer Verlag , 2000. 2. Biophysics: Molecules In Motion ; R. Duane. Academic Press , 1999

#### **REFERENCE:**

1. Cantror, Charles R. and Paul R. Schimmel "Biophysical Chemistry". 1-3 Vols. W.H.Freeman & Co., 1980

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A Nirmala	Asst.Professor Gr II	Biotechnology	nirmalabte@avit.ac.in
2	Mrs.S.Subriya	Assistant Professor	Biotechnology	subriya@vmkvec.edu.in

BASICS OF HUMAN PHYSIOLOGY	Category	L	Т	Р	Credit
	EC-PS	3	0	0	3

# PREAMBLE

The principle focus of human physiology is, at the level of organs and systems within human body. The science of physiology is concerned with the function of the body. The prime concern of this syllabus is to integrate the individual functions of all the cells and tissues and organs into functional whole, the human body. In a typical undergraduate setting, this course would fulfill requirements for students applying to professional health science programs like medical coding.

PRER	PREREQUISITE – Nil														
COURSE OBJECTIVES															
1	To re	call the	basic	termino	ologies	, cells,	tissues	s and o	rgans i	n huma	n body.				
2	To un	derstar	nd the	basics	of resp	oiratory	v syster	n and c	ardiov	ascular s	system				
3	To ill	ustrate	the fur	nctions	of ner	vous ai	nd mus	cular s	ystem.						
4	To de	To describe the basic anatomy and functions of digestive and excretory system													
5	To outline the role of hormones and various functions in the body														
COURSE OUTCOMES															
On the	On the successful completion of the course, students will be able to														
CO1.	Define the basic terminologies and identify the different cells, tissues and organs and their function Remember														
CO2.	Describe about the respiratory and cardiovascular system and their functions Understand														
CO3.	Students would be understand working physiology of nervous system and musculoskeletal systemApply														
CO4.	Students would able to comprehend physiology of digestive, excretory systems. Analyze														
CO5.	Analy impor	ze the tance	functio	ns of h	ormon	es witł	n physi	ologica	al proce	ess and t	heir clir	nical	Analy	ze	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES A	AND P	ROGI	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L							Μ			L		М	
CO2	М	L							Μ			L		М	М
CO3	S	S	М			S			S			S	S	S	S
CO4	S	S	Μ			S			S			S	S	S	S
CO5	S	S S M S S S S S S													
S- Strong; M-Medium; L-Low															
SYLL	ABUS														

# INTRODUCTION TO CELL AND ORGANELLS

Structure and functions of Cell and organelles. Overview of organ systems. Membrane - Transport across membrane, Origin of cell membrane potential, Action potential. Blood - Properties and functions, Cellular Components: RBC, WBC, platelets, Blood Groups.

# RESPIRATORY SYSTEMS AND CARDIOVASCULAR SYSTEM

Respiratory Organs, Mechanism of respiration, Carbon dioxide and oxygen transport, Regulation of respiration, Volumes and capacities of lung. Structure of heart, Blood vessels, Conduction system of heart, Physiology of Cardiac Muscle, Cardiac cycle, Heart Sound, Cardiac output, Blood pressure and its regulation.

# NERVOUS SYSTEM AND MUSCULOSKELETAL SYSTEM

Neurons, Synapse and neurotransmitters, Central nervous system: Structure and functions of brain. Peripheral nervous system: Classification of peripheral nervous system, Autonomic nervous system, Reflex action. Muscular System: Classification of muscles. Bone: Types, Functions, Anatomy of long bone – Formation, growth and repair, Structural and functional classification of joints.

# DIGESTIVE AND EXCRETORY SYSTEM

Digestive: Organs of Digestive system – Digestion and Absorption. Urinary: Structure of Kidney and Nephron – Mechanisms of Urine formation – Regulation of Blood pressure by Urinary System, Composition of Urine. Skin and Sweat Gland.

# **ENDOCRINE GLANDS:**

**Endocrine system:** Structure and functions of Pituitary gland, Thyroid gland, Parathyroid gland, Adrenal gland, Pancreas, Pineal gland, Thymus, Ovaries and Testes.

#### **TEXT BOOKS:**

- 3. Arthur C. Guyton, John E. Hall, **"Textbook of Medical Physiology"**, W.B. Saunders Company, Twelfth Edition, 2006.
- 4. Ranganathan, T.S. "Text Book of Human Anatomy", S.Chand & Co. Ltd., Delhi, 1996.

# **REFERENCES:**

- 1. Ross & Wilson, "Anatomy & Physiology for Health and Illness", Elsevier, 11th Edition, 2010.
- 2. Stuart I. Fox, "Human Physiology", Tata McGraw Hill, 9th Edition, 2006.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.A.Nirmala	Assistant Professor(Gr-II)	Biotechnology	nirmalabt@avit.ac.in								
2	Dr.M.Sridevi	Professor	Biotechnology	sridevi@vmkvec.edu.in								

										Categor	у	L	Т	Р	Credit
		SKI	LL B	ASED	ETH	NO MI	EDIC	INE		EC(PS)	-	3	0	0	3
PREA	MBLE														
Ethno	medici	ne cou	rse dea	ls with	the in	teraction	on of r	people	and pla	ants with	n a broa	d surve	y on d	iversity of	f plants
describ	described both scientifically and culturally. Students learn about the social impact of plants on culture and also gain														
knowle	knowledge on identification, characterization and the uses of different medicinal plants in treating various diseases.														
	-										-		-		
PREREOUISITE – NIL															
COUF	COURSE OBJECTIVES														
1	1 To state the scope and history of people and plant interaction from the past														
2	To explain the functions and uses of plants														
3	To demonstrate the different tribal medicine used for disease diagnosis and treatment.														
4	To develop an understanding of the importance of plants in our daily lives														
5	5 To produce cosmetics using medicinal plants														
COUF	RSE OU	UTCO	MES		0	•									
After t	he succ	essful	comple	tion of	the cou	ırse, le	arner w	ill be a	ble to						
CO1. I	Recall	the bas	sic info	rmatio	n and e	thnic k	nowled	lge abo	ut plan	ts			F	lemember	
CO2. I	Demons	strate th	ne knov	vledge	about t	he uses	of me	dicinal	plants				U	Inderstand	l
CO3.	Illustra	te the	uses of	differe	nt triba	l medi	cine for	r diseas	se diagi	nosis and	l treatme	ent	A	pply	
CO4. /	Apprais	e the tr	adition	al knov	vledge	and uti	lity of	some c	ommoi	nly used	medici	nal plant	s A	nalyze	
CO5. I	Develop	the co	osmetic	s using	medic	inal pla	nts						A	nalyze	
MAPI	PING V	VITH	PROG	RAMN	AE OU	TCON	AES A	ND PR	ROGRA	AMME	SPECII	FIC OU	ГСОМ	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1	_			S		-	-	-	-	_	_	_	Μ	M	M
CO2	М	М				М	-	-	-	-	-	-	-	_	-
CO3	М		М		-	-	-	-	-	-	-	-	-	-	-
CO4	М			S	М	S	-	-	-	-	-	-	Μ	S	S
CO5	М			S	М	S	-	-	-	-	-	-	S	-	-

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### INRODUCTION TO ETHNOMEDICINE

Ethno medicine – definition, history and its scope – Inter disciplinary approaches in ethno botany – Collection of ethnic information.

#### MEDICINAL PLANTS AND HEALTH CARE

Importance of medicinal plants – role in human health care – health and balanced diet (Role of proteins, carbohydrates, lipids and vitamins).

#### TRIBAL MEDICINE

Tribal medicine – Plants in folk religion – Aegle marmelos, Ficus benghalensis, Curcuma domestica, Cyanodon dactylon and Sesamum indicum- methods of disease diagnosis and treatment.

#### MEDICINAL PLANTS IN DAY TO DAY LIFE

Traditional knowledge and utility of some medicinal plants in Tamilnadu – Solanum trilobatum, Cardiospermum halicacabum, Vitex negundo, Adathoda vasica, Azadirachta indica, Gloriosa superba, Eclipta alba, Aristolochia indica, Phyllanthus fraternus and Boerhaavia diffusa. Ocimum sanctum, Centella asiatica, Solanum trilobatum, Cassia auriculata, Aloe vera.

#### HERBAL PLANTS USED IN COSMETICS

Plants used as a cosmetics-Almond (*Prunus dulcis*), Aloe (*Aloe vera*), Argan Tree (*Argania spinosa*), Buriti Palm (*Mauritia flexuosa*), Cinnamon (*Cinnamomum verum*), Grape (*Vitis vinifera*), Lemonbalm (*Melissa officinalis*), Malabar Tamarind (*Garcinia cambogia*)

#### **TEXT BOOKS:**

- 1. Ethnobiology R.K.Sinha & Shweta Sinha 2001. Surabhe Publications Jaipur.
- 2. Swapan Kumar Kolay, Ethno-medicine for Traditional Health Care, 2016,

Publisher B.R. Publishing Corporation

#### **REFERENCES:**

Mrs. C.Nirmala

2

1. Tribal medicine - D.C. Pal & S.K. Jain 1998, Naya Prakash, 206, Bidhan Sarani, Calcutta - 700 006.

2. Contribution to Indian ethnobotany – S.K. Jain 1995, 3rd edition, Scientific publishers, P.B.No. 91, Jodhpur, India.

Biotechnology

Nirmala@vmkvec.edu.in

3. A Manual of Ethnobotany – S.K.Jain, 1995, 2nd edition.

# COURSE DESIGNERSS.No.Name of the FacultyDesignationDepartmentMail ID1Dr. A.NirmalaAssistant ProfessorBiotechnologynimmi_aruna@yahoo.com

Assistant Professor

# (i) <u>INDUSTRY DESIGNED/ INDUSTRY SUPPORTED/INDUSTRY OFFERED/INDUSTRY</u> <u>SPONSORED COURSES - CREDITS (6 )</u>

			LEA	ARNIN	IG IT F	ESSEN	TIALS	BYD	OING		Categor	ry L	Т	P C	redit
											EC-IE	E 3	0	0	3
<b>PREAMBLE</b> The proposed elective course exposes the non-CS/IT students to IT Essentials. The core modules of this Elective includes programming, Database and web Technology amongst other related topics. This course refers to the basic tools and technologies for the right type of website development and enable student to create simple web applications															
PREREQUISITE – NIL															
COURSE OBJECTIVES															
1	To learn about the essentials of Information Technology														
2	To get an idea about the scripting languages.														
3	To get an idea about the internet protocols														
COUF	COURSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1 Understand the networking concept internet protocols, network routing Understand															
CO2. Understand the fundamentals of web applications and its modeling Understand															
CO3. l applic	CO3. Understand and learn the scripting languages with design of web applications Understand														
CO4. /	Analyze	the pro	ocess of	f mobil	e comn	nunicat	ion and	l netwo	rk techr	nologies	A	Analyze			
CO5. applica	Build sintions.	imple i	nteract	ive app	olication	ns, data	abase a	pplicat	ions an	d multir	nedia A	Analyze			
MAPI	PING W	ITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAN	MME SI	PECIFIC	COUTC	OMES	)	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	-	-	-	-	-	-	-	М	S	М	М
CO2	S	М	М	М	-	-	-	-	-	-	-	М	S	-	М
CO3	CO3 S M M M M S M M								М						
CO4	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO5	CO5 M M M M S M - M M														
S- Stro	ong; M-I	Mediur	n; L-Lo	ow											

#### Fundamentals of Computer architecture

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

#### **Operating system**

Introduction – memory management schemes Process management Scheduling – threads.

Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

#### RDBMS

 $\label{eq:constraint} \begin{array}{l} Data \ processing - the \ database \ technology - data \ models-ER \ modeling \ concept \ -notations - Extended \ ER \ features \ -Logical \ database \ design \ -normalization \ -SQL - DDL \ statements - DML \ statements - DCL \ statements \ -DCL \ statements \ statements$ 

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

#### **Objected oriented concepts**

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

#### **Client server computing**

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

#### REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Course	Course Designers:												
S.No.	Name of the Faculty	Designation	Designation Department Mail I										
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in									
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in									

MOBILE APPLICATION DEVELOPMENT	Category	L	Т	Р	Credit
	EC-IE	3	0	0	3

#### PREAMBLE

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

#### **PRE REQUISITE** – NIL

Understand system requirements for mobile applications											
2. Generate suitable design using specific mobile development frameworks											
3. Generate mobile application design											
4. Implement the design using specific mobile development frameworks											
5. Deploy the mobile applications in marketplace for distribution											
COURSE OUTCOMES											
On the successful completion of the course, students will be able to											
CO1. Expose to technology and business trends impacting mobile applications Understand											
CO2. Understand enterprise scale requirements of mobile applications Understand											
<b>CO3.</b> Familiarize in the Graphics used for Android application development Apply											
<b>CO4.</b> Competent with the characterization and architecture of mobile applications Apply											
<b>CO5.</b> Competent with designing and developing mobile applications using one application development framework.											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02         PS03											
CO1         S         M         M         M         -         -         M         -         -         M         S         M         M											
CO2         S         M         M         M         -         -         M         -         -         M         S         M         M											
CO3         S         M         L         M         L         -         -         M         -         -         L         S         M         M											
04 S M M M M M M S M M											
CO5         S         M         M         M         L         -         -         M         -         -         L         S         M         M											
S- Strong; M-Medium; L-Low											

# INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications – Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

# **BASIC DESIGN**

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

# ADVANCED DESIGN

Designing applications with multimedia and web access capabilities - Integration with GPS and

social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

## **TECHNOLOGY I – ANDROID**

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

# TECHNOLOGY II –IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

# TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

# REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

#### **Course Designers:**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mrs. S. Leelavathy	Assistant Professor (G-II)	CSE	leelavathy@avit.edu.in

SOFT SKILLS

				F	NUDI	PHARMACEUTICS Category L T										Credit
				L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		IACI	2011	20		EC-I	E 3	3 (	)	0	3
PREA	AMBI	LE														
This of	course	will	enable	e the s	studen	ts to ]	know	about	both	the ph	armacol	kinetic	and d	lyn	amic	principles of
drug a	action.	It als	o elab	orates	differ	ent do	sage	forms	and d	rug del	ivery sy	stems.				
PRE	REQU	ISIT	E - N	IL												
COU	COURSE OBJECTIVES															
1	To o	utline	the va	rious	routes	of ad	minis	tration	ı, drug	absor	ption and	d distril	oution	L		
2	2 To understand the process of drug metabolism and excretion															
3	3 To demonstrate the types of dosage forms															
4	4 To compare the pharmacokinetic models and to infer the volume of distribution of drug in human															
	body 5 To understand the relationship between biologics and bioginality															
5	5 To understand the relationship between biologics and biosimilars															
COURSE OUTCOMES																
After the successful completion of the course, learner will be able to																
CO1:	CO1: Outline the various routes of administration, drug absorption and distribution Understand															
CO2:	Under	rstand	the pr	cocess	of dru	ıg met	abolis	sm and	l excre	etion					Under	rstand
CO3:	Use N	Aichae	elis-M	enton	kineti	cs in d	lrug n	netabo	lism						Apply	1
CO4:	Comp	are di	fferen	t phar	macol	kinetic	mode	els							Analy	/se
CO5:	Comp	are bi	oavai	lability	y of a	drug v	vhen i	t is fo	rmulat	ted in c	lifferent	dosage	form	L	Analy	/se
MAP	PING	WIT	'H PR	OGR	AMM	E OU	TCO	MES	AND	PROC	GRAMN	AE SPI	ECIF	IC	OUT	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO2	PSO3
CO1	L	L	L	_	-	-	_	-	L	L	L	L	L			L
CO2	M	M	L	М	-	L	L	L	-	-	-	L	-	+	L	-
CO3	L	-	-	S	L	L	-	L	-	-	-	-	-		L	-
CO4	D4 L - L															
CO5	-	_	-	_	L	S	L	S	-	-	-	-	-		-	-
S- Str	ong; N	И-Ме	dium;	L-Lov	N											

# Introduction to biopharmaceuticals

Introduction to biotechnology and biopharmaceuticals, historical perspective of pharmaceutical biotechnology, process of transforming new molecular entities into drugs, current trends in drug development, biotechnology industry perspective on drug development.

# **Drug Development process**

Drug discovery approaches, modulatory effects, binding strength, effective and inhibitory concentration, side effects, ADME, Lipinski rule, action of drugs on humans, pharmacokinetics, pharmacodynamics, routes of drug administrations, patenting, phases of clinical studies, design and conduct of clinical trials,

case studies of drug discovery.

# **Biopharmaceutical technologies**

Role of manufacturing process, process evaluation, drug substance manufacturing, drug product manufacturing, cell banking, expression systems, batch and continuous processes, sterility and sterile technology, raw material and processing aids, purification of product, formulation and filling, labelling and packaging, product analytics, quality criteria of analytical methods, process analytics, validation of analytical methods.

## Quality assurance and quality control

Fundamental of quality assurance, benefits, structure of quality management, documentation, audits, quality assurance in manufacturing, measures to cross contamination and product confusion, equipment qualification, process validation, product release, product recall.

## **Regulatory bodies**

Field of pharmaceutical laws, authorities, institutions and their regulation, drug approval steps and processes, FDA, EMEA, German, Japanese and Indian regulatory bodies.

# **TEXT BOOKS**

- 1. Rosenbaum, S. E. "Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations", 2nd Edition, John Wiley & Sons, 2016.
- 2. Brahmankar, D.M. and Jaiswal, S.B. "Biopharmaceutics and Pharmacokinetics: a Treatise", 3rd Edition, Vallabh Prakashan, 2015.
- Chatwal, G.R. "Biopharmaceutics and Pharmacokinetics", 2ndEdition, Himalaya Publishing House, 2014.

# REFERENCES

- 1. Biopharmaceuticals: Biochemistry and Biotechnology by Gary Walsh, Publisher: Wiley-Blackwell, ISBN10: 0470843276
- 2. Manufacturing of Pharmaceutical Proteins (from technology to Economy) by Dr.-Ing. Stefan Behme, Wiley-VCH Verlag GmbH & Co. ISBN 978-3-527-32444-6
- 3. Biochemistry by Lubert Stryer, W.H.Freemanand Company. ISBN 13:978-1-4292-7635-1

COU	<b>KSE DESIGNERS</b>			
S.	Name of the	Designation	Organization	Mail ID
No.	Faculty			
1	Mr. P. Jeyaprakash	Managing Director	Konovonat	jpknovonat15@gmail.com

				CUNICAL RESEARCH							Catego	ory	L	Т	Р	Cr	redit
				C		CAL	<b>NE</b> 51	LAINC	-11	-	EC-I	E	3	0	0		3
PRE Clini succe main subr clinic	AMB cal res essfully tained nitted f cal tria	LE earch y pass durin or the ls, ma	is a s es in g the regul nagem	tudy vivo a study atory	whic and i whic bodi nd et	h deal in vitr ch are es for hical s	s witl o eva e esser approstanda	h new luation ntial f oval. 7 rds ree	drugs ns. Th or eva The stu quired	which is cou: luating udents to con	n are tes rse also g the qu will acc duct clir	ted in elabor ality o quire k	hun ates f re now ials.	nan the sear vledg	volunt docui ch wh ge in a	eers a nents ich is ll asp	after it to be to be pect of
PRE	REQU	JISIT	E – N														
1 ] a	To lear n oppo	n the cortunit	liffere y to c	nt typ	es ar tualiz	nd desi ze, con	igns o nduct,	f clini mana	cal tria ge and	lls, req	uiremen t clinical	ts for a trials.	conc	lucti	ng clir	nical t	rials,
2 To get familiarize with the conceptualizing, designing, conducting, managing and documenting the clinical trials																	
3 7 i	3 To learn the clinical trial management and to gain knowledge with ethical principles for the new insights in the field of clinical research																
4 ] c	4 To develop drug safety data in pre-clinical and the basis of informed consent and maintaining the quality control standards in clinical research																
5 To focus on the global scenario of pharmacovigilance in different methods that can be used to generate safety data and maintenance of reporting in clinical trials																	
COL After	TRSE (		COMI ful con	<u>±S</u> npleti	on o	f the c	ourse	, learn	er will	be abl	e to						
CO1 demo	. Outlin	ne the	e regul ypes c	atory of clini	requiical t	iremer rial de	nts foi signs	cond	ucting	clinica	al trials a	und			U	nders	stand
CO2 safet	. Illusti y moni	rate th toring	e resp , repo	onsibi rting,	lities close	s of ke e-out a	y play ctivit	vers in ies etc	volvec	l in cli	nical tria	als and	exe	cute		App	ly
CO3 resea	. Appl arch	y the ]	Projec	t Man	agen	nent a	nd eth	ical p	rincipl	es for	conducti	ing clir	nical	1		App	ly
CO4 safet	. Asses y and t	s the heir as	detail ssessn	s abou nent	ıt In	forme	d Con	sent a	and va	lidate (	he regul	lations	and	]		Analy	yze
CO5 react	. Expl ions	ain the	e princ	ciples	of ph	armad	covigi	lance	and E	xamin	e new ac	lverse	druş	g		Evalu	late
MAP	PPING	WITH	I PRO	GRAN	MMF	E OUT	COM	ES AN	ND PRO	OGRA	MME S	PECIF	IC (	OUT	COMI	ES	
COS	PO1	PO2	PO3	PO4	Р	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	SO1	PSO2	I	PSO3
CO1		- T		-	- T		L c	-	-	L		L		-	-		-
CO2			M	M	L	11/1	ь м	- M	- M	-			-	-	- T		-
CO4				-	-	- T	IVI S	IVI	1VI	- N/	-	L M	_	-	L M		-
C05		T			M		-	_	M	-	Ī	S		_	M		_
<u>c c</u>			dine		141	_	_		141	-	L	5			141		
JC - G	iong, i	v1-1v1C	uiuiii,	L-L0	vv												

#### **INTRODUCTION TO CLINICAL TRIALS - TYPES, DESIGN AND PRACTICES**

Fundamentals of clinical trials; Clinical trials in practice; Experimental Study - Randomized Control Trial and Non Randomized Control Trial, Single blinded and double blinded studies, Observation Study: Cohort, Case Control, Cross sectional Clinical Trial Studies. Reporting and reviewing clinical trials; Legislation and good clinical practice; Origin and Principles of the International Committee on Harmonisation (ICH)-GCP and guidelines – Good Clinical Practice - Ethical Committee: Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant - Schedule Y.

## **REGULATIONS AND DOCUMENTATION OF CLINICAL TRIALS**

Drug development and trial planning - pre-study requirements for clinical trials; Regulatory approvals for clinical trials - WHO, FDA, EMEA, CDSCO, ICMR and their regulatory terminologies; Consort statement; Trial responsibilities and protocols - roles and responsibilities of investigators, sponsors and others; Requirements of clinical trials protocols; Guidelines to the preparation of documents and protocol, Investigator Brochure, Case Report Forms, Clinical Study Report, Clinical Trial Monitoring - Safety Monitoring in CT.

## MANAGEMENT AND ETHICS OF CLINICAL TRIALS

Project management in clinical trials - principles of project management; Application in clinical trial management; Risk assessment; Research ethics and Bioethics - Principles of research ethics; Ethical issues in clinical trials; Ethical committee system including a historical overview; Introduction to ethical codes and conduct; Introduction to animal ethics; Animal rights and use of animals in the advancement of medical technology; Introduction to laws and regulation regarding use of animals in research.

# INFORMED CONSENT & QUALITY CONTROL IN CLINICAL TRIALS

Informed Consent and data protection- the principles of informed consent; Consent processes; Data protection; Legislation and its application; Data management – Introduction to trial master files and essential documents; Data management. Quality assurance and governance - quality control in clinical trials; Monitoring and audit; Inspections; Research governance; Trial closure and pitfalls-trial closure; Reporting and legal requirements; Common pitfalls in clinical trial management.

#### PHARMACOVIGILANCE AND ADR REPORTING

Roles & responsibilities and Guidelines in Pharmacovigilance, Significance of safety monitoring, Establishing pharmacovigilance centres, National programmes related to pharmacovigilance. Adverse Drug Reactions: Types, Regulatory terminologies, Detection and reporting methods, Severity and seriousness assessment, Predictability and preventability assessment. Spontaneous reporting system and Reporting to regulatory authorities & ADR Management.

#### TEXT BOOKS

- Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.
- A textbook of Clinical Pharmacy Practice: Essential Concepts and Skills. Second Edition, 2012, University Press
- 3. Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health; 2001.
- International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice. E6; May 1996.230
- Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi.
- Textbook of Pharmacovigilance: Concept and Practice. G. P. Mohanta and P. K. Manna. 2016, Pharma Med Press.

## REFERENCE

- Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 2. Handbook of clinical Research. Julia Lloyd and Ann Raven Ed. Churchill Livingstone.
- 3. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes.
- 4. Blaisdell, Peter, "Twenty First Century Pharmaceutical Development", Interpharm Press, 2001.
- 5. Gad, Shayne C. "Drug Safety Evaluation", John Wiley & Sons, 2002.
- Lee, Chi-Jen; etal., "Clinical Trials or Drugs and Biopharmaceuticals." CRC / Taylor & Francis, 2011.
- Matoren, Gary M. "The Clinical Research Process in the Pharmaceutical Industry." Marcel Dekker, 1984.

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Organization	Mail ID
1.	Mr.P.Jeyaprakash	Managing Director	Knovonat	jpknovonat15@gmail.com

		ТО	TOOLS AND TECHNIQUES OF MODERN BIO- Category I											Р	Credit
		INI	FORM	IATIC	5					I	EC-IE	3	0	0	3
PREA	MBLI	E												I	
This o	course	is an ii	ntrodu	ction to	bioinf	ormatio	es for l	biology	and b	iomedic	al stude	ents. It i	ntroduce	es bioinfo	ormatics
metho	nethodology and technologies without relying on any prerequisites. The aim of this course is for students to be in a														
positi	position to understand important notions of bioinformatics and tackle simple bioinformatics-related problems.														
Analysis scripts and reproducible analysis reports to interrogate, visualize and understand data in a tidy tabular format.															
PREF	PRERQUISITE - NIL														
COU	COURSE OBJECTIVES														
1	To understand the basics of Bioinformatics database management														
2	To emphasize the gene sequence mapping and screening														
3 To illustrate the structure prediction of protein															
4	To correlate the Bioactivity Predictions, Physiochemical properties prediction.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	Recall	the bas	ic data	base m	anagen	nent, typ	pes of c	latabase	e				Remen	nber	
CO2.	Discuss	s about	the or	nics, ali	ignmen	t and to	ol hand	dling					Under	stand	
CO3.	Identify	y the ge	ene, m	apping,	expres	sion							Under	stand	
CO4.	Correla	te the s	structu	re pred	iction, f	folding	and an	alysis					Analys	se	
CO5.	Illustra	te the a	minoa	cid resi	due pre	ediction	, physi	ochemi	cal pro	perty pr	rediction		Apply		
MAP	PING V	WITH	PRO	GRAM	ME OU	UTCO	MES A	ND PR	OGR	AMME	SPECI	FIC OU	тсом	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO02	PSO3
CO1	L	L	L	S	-	L	М	-	L	-	М	-	М	-	М
CO2	L	S	-	L	-	-	-	S	-	-	-	-	-	-	-
CO3	-	-	-	L	L	-	М	-	-	-	-	S	-	-	-
CO4	-	-	-	S	-	-	-	-	-	-	-	S	-	-	-
CO5	L	М	L	L	-	S	L	-	-	-	-	L	-	-	L
S- Str	ong M	-Strong: M-Medium: L - L ow													

#### **BASICS OF BIOINFORMATICS**

Introduction to Bioinformatics, Database development and management, Various Biological data and its formats, Different types of Database – Primary, Secondary and Tertiary Database

# **INTRODUCTION TO GENOMICS & GENOME INFORMATICS**

Gene: Retrieval, Handling & processing, Gene sequence Matching: Alignment and Handling, Genome Scan, Alignment Tools – Blast, ClusterW, Omega

#### **PROTEOMICS: PROTEIN EXPRESSION**

ORF Mapping, Gene Mapping: Gene Scan, Gene screening for protein Expression, Proteomics: Six frame translation

#### FOLD RECOGNITION AND SECONDARY STRUCTURE PREDICTION

Secondary Structure Predictions – Fold recognition – Homology modelling, Stability Analysis, Ramachandran plot, Q mean Value

# PROTEIN PHYSIOCHEMICAL PROPERTY PREDICTIONS & BIOACTIVITY PREDICTIONS

Active site Predictions, Physiochemical properties prediction – Denaturation temperature, Molecular weight,  $\lambda$ max absorbance, Amino acid residue predictions, Bioactivity Predictions – Antibacterial, antiviral and Anticancer properties.

#### **REFERENCES:**

- Bult, Carol J. "Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins." Science 282, no. 5389 (1998): 635-636.
- Srinivasa, K. G., G. M. Siddesh, and S. R. Manisekhar, eds. Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications. Springer Nature, 2020.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Mr. K. K. Prashanth	Director	Bioinformatics								

# II ) OPEN ELECTIVE Electives from Innovation, Entrepreneurship, Skill Development etc. Credits – 9

		INNO	VATION	, PROD	UCT DE	VELOP	MENT	Cate	gory	L	Т	Р	Credit
			AND CO	OMMER	CIALIZ	LATION		OE	-IE	3	0	0	3
PREA	MBLE										1 1		
commercialization of innovation and new products in fast-paced, high-tech markets and matching													
tech	nologica	l innovati	ion to ma	irket oppo	ortunities								
PRER	EQUISI	TE - No	t Require	d									
COU	RSE OBJ	JECTIV	ES										
1	To mak	e student	ts unders	tand mult	iple-pers	spective a	pproach	in organi	zation to	capture	kno	wled	ge and
	creativi	ty to de	evelop s	uccessful	produc	ts and s	ervices	for Vol	atile, Ur	icertain,	Co	mple	x and
	Ambiguous (VUCA) world.												
2	2 Inculcate a disruptive thought process to generate ideas for concurrent and futuristic problems of												
	society in general and markets in particular which focus on commercialization												
3	3 Improved understanding of organizational best practices to transform exciting technology into												
	success	ful produ	icts and s	ervices		1	1	•	·	•	11	<u>c</u>	
4	4 Critically assess and evaluate innovation policies and practices in organizations especially from a												
<ul> <li>cultural and leadership point of view</li> <li>5 Explain why innovation is essential to organizational strategy – especially in a global environment</li> </ul>													
COURSE OUTCOMES													
COURSE OUTCOMES													
On the successful completion of the course, students will be able to													
CO1:	Understa	and the ro	ole of inn	ovation i	n gaining	and mair	ntaining	competit	ive advar	ntage		Unde	erstand
CO2: 1	Integrate	the innov	vation ba	sis and it	s role in o	decision r	naking e	specially	under un	ncertainty	/	Appl	у
CO3: 4	Analyze	business	challenge	es involvi	ng innov	vation mai	nagemen	ıt				Appl	у
CO4: 1	Having p	roblem s	olving ab	oility – so	lving soc	cial issues	and bus	iness pro	blems			Appl	у
CO5: 0	Compreh	end the d	lifferent s	sources of	f innovat	ion						Appl	у
MAPI	PING W	ITH PRO	OGRAM	IME OU	TCOME	ES AND H	PROGR	AMME	SPECIF	IC OUT	CO	MES	5
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	Р	011	P012
CO1	М	-	-	-	-	М	S	S	-	М		-	-
CO2	S	S	S	М	М	М	-	-	-	-		-	-
CO3	S	S	S	M	Μ	М	-	-	-	-		-	-
CO4	S	S	S	М	М	М	-	-	-	-		-	-
CO5         S         S         M         M         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -													
S- Strong; M-Medium; L-Low													
Pre-lau	unch, dur	ing launc	ch and Po	st launch	l								
prepar	ations;												1
SYLL	ABUS:				, <del>.</del>		<b>T</b> 71 . • • •	0.11.7		о т			9
Introd	luction t	o Innova	tion Ma	nagemen	t - Inno	vation $-V$	What it is	s? Why i	t Matters	? - Innov	atio	on as	a Core
Busine	ess Proce	ss – syste	em thinki	ng tor ini	novation	<ul> <li>Framev</li> </ul>	vork for	System 1	hinking	- system	thi	nkıng	tools

**Creating New Products and Services** - Product and Service Innovation – Exploiting Open Innovation and Collaboration –The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking

Capturing Innovation Outcome - New Venture - Benefits of Innovation, and Learning from Innovation -

Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

**New Product Brand Development and Pricing Strategies** - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

**The Product offer** Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

#### **Text Book:**

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and Organizational Change, 5th edition, Wiley.

#### **Reference Books:**

1. Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.

2. Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

**5.** Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

S. No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in
2	T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

#### **COURSE DESIGNERS:**

		NEV	V VEN	TURE	PLAN	NING A	ND	Cat	egory	L	Т	Р	Credit
			Μ	IANAG	EMEN	T		0	E-IE	3	0	0	3
PREAM Conte ventu	PREAMBLE Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a new venture and creation of a business plan												
PRERI	EQUIS	ITE - N	lot Requ	uired									
COUR	SE OB	JECTI	VES										
1	An op	portunit	v for se	elf-analy	vsis, and	1 how th	is relat	es to suc	cess in an	entrepreneur	ial en	viron	ment.
2	Inform	nation a	nd unde	erstandi	ng nece	ssarv to	launch	and gro	w an entrer	preneurial ve	enture.		
3	A real	istic pre	eview of	fownin	g and o	nerating	an enti	repreneu	rial venture				
4	4 An entrepreneur must understand the diversity, emotional involvement, and workload necessary to												
	succeed.												
5	5 The opportunity to develop a business plan.												
COUR	COURSE OUTCOMES												
On the	On the successful completion of the course, students will be able to												
CO1: Explain the concept of new venture planning, objectives and functions and its Understand													
compor	components.												
CO2: A	nalyze	the bus	iness pl	an issu	es and 1	emunera	ation p	ractices i	in startups	business.		App	oly
CO3: E	xplore a	an entre	preneur	ial idea	to the	point wh	ere you	a can int	elligently a	nd decide		Apr	oly
whether	r to "go	for it"	or not.			L	2		0,00			11	5
CO4: C	lompare	and co	ntrast tl	ne diffe	rent for	ms entre	preneu	rial envi	ronment in	terms of the	eir	App	oly
key diff	ferences	and sin	nilaritie	es.		-	1					11	5
CO5: E	xplore (	the busi	ness pla	an and t	ousiness	s model o	canvas	for your	idea.			App	oly
MAPP	ING W	ITH PI	ROGR	AMME	OUTO	COMES	AND	PROGR	AMME S	PECIFIC O	UTC	OME	S
COs	P 01	B ₂	Post Post	Po 04	Pos	P 06	P 07	PO 8	PO9	PO10	РО	11	P012
CO1	M	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	S	S	Μ	М	М	-	-	_	-	-		-
CO4	CO4 S S S M M M												
CO5	S	S	S	М	М	М	-	_	-	_			-
S- Stroi	ng; M-N	/ledium	; L-Lov	V									
SYLLA	<b>BUS</b> :												
STAR	STARTING NEW VENTURE: Opportunity identification - Search for new ideas - Sources of innovative												
ideas - '	Technic	ues for	generat	ting ide	as - Ent	repreneu	irial im	aginatio	n &creativ	ity - The rol	e of cr	eativ	e

thinking - Developing your creativity - Impediments to creativity.

**METHODS TO INITIATE VENTURES:** Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

**THE SEARCH FOR ENTREPRENEURIAL CAPITAL:** The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

**THE MARKETING ASPECTS OF NEW VENTURE:** Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

**BUSINESS PLAN PREPARATION FOR NEW VENTURE:** Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

# **Text Book:**

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

# **Reference Books:**

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

- 2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. Business Model Generation by Osterwalder and Pigneur.

#### **COURSE DESIGNERS:**

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

		50	CIAL I	NTDE	DDFN	FUDSI	IID	Cat	tegory	L T		Р	Credit
		50	CIALI			LUNSI	111	O	E-IE	3	0	0	3
PREAM Social entrep	<b>IBLE</b> l entrep preneur	oreneurs ship.	ship inv	olves th	ne creat	ivity, im	naginati	on and i	nnovation o	often associa	ted w	ith	
PRERE	QUIS	ITE - N	lot Requ	uired									
COURS	SE OB.	JECTI	VES										
1	To pro social	ovide s entrepr	tudents eneursh	with a ip	worki	ng knov	vledge	of the c	concepts, o	pportunities	and	challe	enges of
2	To der	nonstra	te the r	ole of s	ocial e	ntrepren	eurship	in creat	ting innova	tive respons	es to	critica	al social
2	needs	(e.g., hi	unger, p	overty,	inner c	ity educ	ation, g	global wa	arming, etc	) doretondina	of the		taxt and
5	domai	n of soc	a cona	epreneu	rship	ng proc		levelop	a better un	iderstanding	or the		lext and
4	To hel	p prepa	re you j	persona	lly and	professi	ionally	for mear	ningful emp	ployment by	reflec	ting o	on the
5	1ssues Engag	$\frac{\text{of social}}{\text{o with } c}$	al entrep	oreneur	ship.	alantra	nranaur						
COURS	OURSE OUTCOMES												
On the s		ful com	nletion	of the c	ourse	students	will be	able to					
CO1: Ex	CO1: Explain the concept social entrepreneurship and distinguish its elements from across a Understand												
continuu	continuum of organizational structures from traditional nonprofits to social enterprises to												
tradition	traditional for profits												
CO2: Analyze the operations of a human service organization using social entrepreneurial Apply orientation and industry assessment and diagnostic tools													
CO3: Ap	pply th	e Socia	l Busine	ess Mod	lel Can	vas and	lean sta	irtup met	thods for p	lanning,		App	oly
developi	ing, tes	ting, la	unching	and ev	aluating	g social	change	venture	s	_			
CO4: Co	ompare	fundin	g option	ns for se	ocial ch	ange ve	ntures.	11	· ·	• 1		App	<u>ply</u>
problem	ne outc	omes of cularly t	t social	who ar	eneursn e marg	inalized	or poo	on addre r.	essing persi	stent social		Ар	bly
MAPPI	NG W	ITH P	ROGR	AMME		COMES	5 AND	PROGR	RAMME S	PECIFIC C	OUTC	OME	ËS
COs	P 01	B ₂	P ₃	P ₄	P ₅	P O6	P ₇	PO 8	PO9	PO10	PO	11	P012
CO1	M	-	-	-	-	M	S	S	-	М	-		-
CO2	S	S	S	М	М	М	-	-	-	-	-		-
CO3	S	<u>S</u>	S	M	M	M	-	-	-	-	-		-
C04 C05	2	<u>S</u>	<u> </u>	M	M	M	-	-	-	-	-	•	-
CO3 S Stron	COS         S         S         M         M         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -												
SYLLA	S- Strong; M-Medium; L-Low												
SYLLABUS: Social entrepreneurship – dimensions of social entrepreneurship – social change theories – equilibrium and													
complexity – theory of social emergence													
Social	entrep	reneur	<b>s</b> – n	nindset,	chara	cteristic	s and	compet	encies –	developing	a so	ocial	venture
sustaina	bility n	nodel –	feasibil	ity stud	ly – pla	nning –	market	ing chall	lenges for s	ocial ventur	es		
Microfi	nance-	- MFI (	Micro I	Finance	Institut	tions) in	India -	– regulat	ory framev	vork of MFI	– Bai	nks ai	nd MFIs
– sustair	– sustainability of MFI – Self Help Groups– successful MFI models												

**Angel Investors & Venture Capitalists** – difference – valuation of firm – negotiating the funding agreement – pitching idea to the investor

**Corporate entrepreneurship** – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

# **Text Book:**

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

# **Reference Books:**

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

# COURSE DESIGNER

S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

				INT	ELLEC	TIAL	PROP	PERTY		Cat	egory	L	Т	Р	Credit
						R	RIGHT	S		 	.С М)	3	0	0	3
PREAM	IBLE:	The cou	urse is	design	ed to in	ntroduc	e fund	amenta	l aspect	ts of Inte	ellectual	property	y Rights	to stude	nts
who are	going	to play a	a majo	r role l	ii devei	opmen	t and n	nanager	nent of	mnova	ive proje		laustries	S.	
PRERE	QUIS	TE: No	ot Req	uired											
COURS	SE OB.	JECTIV	VES:												
1. To int	roduce	e fundai	menta	l aspec	cts of I	ntellec	ctual p	roperty	Right	ts					
2. To dis	semin	ate kno	wledg	ge on p	oatents	and co	opyrig	hts							
3. To dis	semin	ate kno	wledg	ge on t	radema	arks, E	Design	and G	eograp	hical Ir	dicatio	n (GI),			
4. To dis	4. To disseminate knowledge on Plant Variet, Layout Design Protection and create awareness about														
	current trends in IPR														
5. To dis	5. To disseminate knowledge on Legislation of IPRs and Alternate Dispute Resolution														
COURS	COURSE OUTCOMES:														
After su	After successful completion of the course, students will be able to														
CO1: U	Jnderst	and the	impor	tant of	intellec	ctual pi	operty	rights						Un	derstand
CO2: A	Apply f	or the pa	atents	<u>c (1</u>		1.								Ap	ply
CO3: U	Indersta	and and	apply	for the	copyri	ghts								Un	derstand
C04.	nuersi	and the	mpor		f IDD a	arks nd its r	alatad	iccular						Ap	ply dometand
MA	PPIN	G WI	<b>ГН Р</b>	ROGE	RAMN	<u>1E OI</u>		MES /	ANDF	PROGE	RAMM	E SPE			
							100							0010	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	М	-
CO2	L	S	S	М	М	L	-	-	-	-	-	L	М	L	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	L	-
CO4	L	S	S	S	М	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	М	-	L	-	-	-	-	-	L	М	L	-
S- Stro	ng; M	-Mediu	ım; L	-Low											
SYLLA	BUS:														
Overvi	ew of ]	Intellec	tual ]	Prope	rty										
Introdu	otion	and the	nood	l for i	ntallac	tuol n	ronart	w right		) Vin	de of	Intalla	tual Dr	onartu	Diahtar

Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark, Design, Geographical Indication, Plant Varieties and Layout Design – Genetic Resources and Traditional Knowledge – Trade Secret - IPR in India : Genesis and development – IPR in abroad - Major International Instruments concerning Intellectual Property Rights: Paris Convention, 1883, the Berne Convention, 1886, the Universal Copyright Convention, 1952, the WIPO Convention, 1967,the Patent Co-operation Treaty, 1970, the TRIPS Agreement, 1994.

# Patents & Copyright

**Patents** - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application -Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

**Copyright** - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

# Trademarks, Design and Geographical Indication (GI)

**Trademarks:** Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

**Design:** Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

**Geographical Indication** (GI): Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

# Plant Varieties, Layout Design and Indian National Intelectual Property Policy

**Plant Variety Protection:** Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

**Layout Design Protection:** Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

**Indian National Intelectual Property Policy:** India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

# Legislation of IPRs and Alternate Dispute Resolution

**Legislation of IPRs:** The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration

- Effective Mechanism for Business Issues.

#### **Text Books:**

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

#### **Reference Book**:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis. COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	P. S. Balaganapathy	Associate Professor	Management	dydirectormanagementstudies@avit.ac.in
2	A. Mani	Associate Professor	Management	<u>mani@vmkvec.edu.in</u>

		EN	GINE	ERIN	IG ST.	ARTU	<b>IPS</b> A	ND	(	Category	Y	L	Т	Р		Credit
			EN	TREI MAN	PREN. AGEN	EURL ⁄IENT		OE-IE		3	0	0		3		
PREAN	<b>IBLE:</b>															
A startu	A startup means company initiated by individual innovator or entrepreneurs to search for a repeatable and															
scalable	scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a															
viable b	viable business model to meet a marketplace needs or wants in an optimum manner.															
PRERE	PREREQUISITE: Not Required															
COURSE OBJECTIVES:																
	1. To	under	stand	the bas	sics of	Startu	ps Ma	nagem	ent an	d comp	onents	•				
	2. To	analy	ze the	startuj	os func	l mana	igemer	nt pract	tices							
	3. To	practi	ice the	variou	ıs kind	ls of st	ocks a	nd emp	oloym	ent con	siderat	ions ir	startu	ps.		
	4. To	apply	the in	nporta	nce of	intelle	ctual p	propert	y righ	ts and i	ts proc	edures	•			
5. To explore the entrepreneurial mindset and culture.																
COURSE OUTCOMES:																
After successful completion of the course, students will be able to																
CO1: Explain the concept of engineering startups, objectives and functions and its Understand																
components.																
CO2: /	CO2: Analyze the startups funding issues and remuneration practices in startups business. Analyse															
CO3: /	Analyz	e the v	various	kinds	of sto	cks an	d emp	loymer	nt opp	ortuniti	es and	consid	leration	n in	Ana	lyse
startups	s busin	ess.														
CO4:	Co	mpare	and c	ontras	t the	variou	s forn	ns of	intelle	ctual p	roperty	/ prot	ection	and	Ana	lyse
practice	e.															
CO5: I	Explor	e the e	ntrepro	eneuria	al mino	lset an	d culti	ure that	t has b	een de	velopin	g in			Eval	luates
(	compa	nies of	fall siz	es and	l indus	tries.										
Μ	APPI	NG W	ITH F	PROG	RAM	ME O	UTCO	OMES	AND	PROG	RAM	ME SI	PECIF	IC O	UTC	COMES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	1 PS	502	PSO3
CO1	М	-	-	-	-	М	М	S	-	М	-	М	-		L	L
CO2	S	S	М	М	М	L	-	-	-	-	-	М	L		L	-
CO3	S	S	S	М	М	М	-	-	-	-	-	М	L		-	М
CO4	S	S	S	М	М	М	-	-	-	-	-	М	-		М	L
CO5	S	S	-	М	М	М	-	-	-	-	-	М	М	[	Μ	М
S- Stro	S- Strong; M-Medium; L-Low															

**Elements of a successful Start up:** Startup Process – Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service – preparation of business plan - specific problems and challenge in startup.

**Funding Issues and Remuneration Practices:** Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

**Stock Ownership & startup Employment Considerations:** Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares – Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

**Protecting Intellectual Property:** Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

## Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

#### **Text Book:**

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

# **Reference Books:**

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

	S.No	Name of the Faculty	Designation	Department	Mail ID
ŀ	1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
	2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in

# **COURSE DESIGNERS:**

#### (iii) OPEN ELECTIVE – EMERGING AREAS (CLASS ROOM OR ONLINE) - CREDITS (9)

					PRI	NCIPI	LES O	F			Categor	y L	Т	P (	Credit
				I	BIO NSTR	OMED UMEN	ICAL NTATI	ION		F	OE	3	0	0	3
PREAT To enal	MBLE ble the s	students	s to dev	elop kn	owledg	e of pri	nciples	, design	and ap	plication	EA s of the B	iomedic	al Inst	ruments	
PRER	EQUIS	ITE – I	NIL												
COUR	COURSE OBJECTIVES														
1 To know about bioelectric signals, electrodes and its types.															
2	2 To know the various Biopotential recording methods.														
3 To study about patient monitoring concept and various Physiological measurements methods.															
4	4 To study the principle of operation blood flow meter, blood cells counter.														
5	5 To study about bio chemical measurements and details the concept of biotelemetry and patient safety.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	CO1. Explain the different Bio signal or biopotential. Understand														
CO2.	Discus	s the w	orking	princip	les of di	iagnosti	ic and t	herapeu	itic equi	pments.			Und	erstand	
CO3.	Exami	ne the v	various	instrum	nents lik	te as EC	CG, EM	G, EEG	G, X-ray	machine	e.		App	ly	
CO4.	Illustr	ate med	lical ins	strumen	its based	d on pri	nciples	and ap	plicatio	n used in	hospital.		Ana	lyze	
CO5.	Analyz	ze and o	calibrat	e funda	mental	biomed	ical ins	trument	ation u	sed in ho	spital.		Ana	lyze	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	CO4 S M M M L L S L S M S S											S			
CO5	S	S	М	М	L	М		L	S	L		S	М	S	S
S- Stro	ng; M-N	CO3         S         M         M         L         M          L         S         L          S         M         S         S           S- Strong; M-Medium; L-Low                S         M         S          S            S         M         S         S            S         M         S         S           S         M         S         S           S         M         S         S         S           S         M         S         S         S           S         M         S         S         S           S         M         S         S         S           S         M         S         S         S           S         M         S         S         S           S         M         S         S         S          S         M         S         S         S													

#### **SYLLABUS**

**BIOELECTRIC SIGNALS AND ELECTRODES** Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

**BIO AMPLIFIER AND BIOMEDICAL RECORDERS** Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

**PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS** System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

**BLOOD FLOW METERS, BLOOD CELL COUNTERS** Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

#### **BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY**

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

#### **TEXT BOOKS:**

1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.

2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements",

Prentice-Hall India, 2nd Edition, 1997.

#### **REFERENCES:**

1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Édition, 1997. **COURSE DESIGNERS** 

#### S.No. Mail ID Name of the Faculty Designation Department 1 Dr. N.Babu Professor **BME** babu@vmkvec.edu.in 2 BME Mr.V.Prabhakaran Assistant Professor (Gr-II) prabhakaran.bme@avit.ac.in Mrs. S. Vaishnodevi 3 Assistant Professor BME vaishnodevi@vmkvec.edu.in 4 Ms. Lakshmi Shree Assistant Professor BME lakshmishree.bme@avit.ac.in

			BIOSENSOI	RS AN	D TRA	NSDUCI	ERS	Categ	gory	L	Т	Р	CR EDI T			
								OE -EA	ł	3	0	0	1		3	
PREAMI The cours for the det biosensors	PREAMBLE The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.															
PREREQ	UISIT	E – Nil														
COURSE OBJECTIVES																
1	1 To use the basic concepts of transducers, electrodes and its classification.															
2	To discuss the various types of electrodes.															
3	To determine the recording of biological components.															
4	To employ the knowledge in electrochemical and optical biosensors.															
5 To outline the various biological components using biosensors.																
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
<b>CO1.</b> D	escribe	the working	g principles of	transdu	icers.									Unc	lerstand	
СО2. Е	xplain t	he various t	ypes of electro	odes.										Unc	lerstand	
<b>CO3.</b> U	tilize va	arious FET s	sensors for rec	ording	of biol	ogical cor	mpon	ents.						App	ply	
<b>CO4.</b> D	istingui	sh various b	oiosensors like	electro	ochemi	cal and op	otical	biosen	sors.					Ana	alyze	
<b>CO5.</b> A	nalyze	the biologic	al components	s using	biosens	sors in va	rious	applica	ations.					Ana	alyze	
MAPPIN	G WIT	TH PROGR	AMME OUT	COM	ES AN	D PROG	RAN	AME S	PECI	FIC (	)UT	COME	S			
COS	PO1	PO2	PO3	PO4	PO5	PO6 F	207	PO8	PO9	PO10	)	PO11	PO	PS	PSO2	PSO
CO1	М	L		М		М			L				M	-	М	
CO2	М	L		М		М			L				M	-	М	
CO3	S	М	L	S		S	М	М	M				М	M	М	М
CO4	S	S	L	S		S	М	М	S				М	M	М	S
CO5	S	S	L	S		S	М	М	S				S	M	М	S
S- Strong;	M-Me	dium; L-Lov	W		l			1	<u> </u>				1	<u> </u>		I

**INTRODUCTION:** General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

**TRANSDUCERS:** Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

**BIO POTENTIAL ELECTRODES:** Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

#### **BIOSENSORS:**

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

#### **APPLICATIONS OF BIOSENSORS:**

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

#### **TEXT BOOKS:**

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

#### **REFERENCES:**

1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.

2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint). Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications, 2008.

COUR	<b>SE DESIGNERS</b>			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	Prabhakaran.bme@avit.ac.in
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

		31	D PR AP	INTI PLIC	NG A	ND I ONS	TS	Cate	gory	L		Т	Р	Cr	edit						
								OE-I	EA	3		0	0		3						
<b>Prean</b> The cor applica	<b>uble</b> urse is tions.	design	ed to i	impar	t knov	vledge	and sk	tills rela	ited to	3D pri	nting to	echno	logies its	type							
Prerec	quisite	– NI	L																		
Cours	e Obj	ective																			
1	To Kno	ow the	impo	rtance	of 3L	) print	ing in l	Manufa	cturing	2											
2	2 To know about Vat Photo Polymerization & Material Jetting.																				
3	To kno	w abo	ut bin	der je	etting	mater	rial ext	trusion	& she	eet lam	inatio	n									
4	To kno	w abo	ut the	meth	ods f	or pov	wder b	ed fusi	on &	direct	energy	/ dep	osition.								
5	To kno	w abo	ut the	applic	cation	s of 3I	) Printi	ing.													
Co	ourse (	Outco	mes:	On t	he su	iccess	ful co	mpleti	on of	the co	ourse,	stud	ents wil	l be ab	ole to						
CO1	CO1. Importance of 3D printing in Manufacturing Remember																				
CO2	CO2. Vat Photo Polymerization & Material Jetting. Understand																				
CO3	. Binde	er jetti	ing m	ateria	l extr	usion	& she	et lami	natio	n			U	ndersta	nd						
CO4	. Powc	ler bec	d fusi	on &	direc	t ener	gy dep	osition	۱.				U	ndersta	nd						
CO5	. Appli	cations	s of 31	D Prin	ting.								U	ndersta	nd						
-	M	appin	g wit	th Pr	ograr	nme	Outco	mes a	nd Pr	ogran	me S	pecif	ic Outc	omes							
CO	РО	РО	PO	РО	РО	PO	PO	PO	PO	PO1	PO1	PO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3						
CO1	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-						
CO2	М	L	Μ	-	S	М	М	-	-	-	-	-	М	M-	М						
CO3	Μ	L	М	-	S	Μ	М	-	-	-	-	-	М	M-	М						
CO4	М	L	М	-	S	М	М	-	-	-	-	-	- M M- M								
CO5	Μ	L	L	-	-	-	-	-	-	-	-	-									
					S- \$	Stron	g; M-	Mediu	m; L	-Low											
#### INTRODUCTION

Need - Development of AM systems – AM process chain -Classification of AM processes- Applications-Advantages of AM and Types of materials for AM.Introduction to STL format, Pre & Post-processing of STL files, Various slicing methods, Part orientation and support generation, Support structure design, Tool path generation

# VAT PHOTO POLYMERIZATION & MATERIAL JETTING

Vat Photo polymerization - Stereo lithography process, working principle, advantages and disadvantages, Material Jetting - process, working principle, advantages and disadvantages.

#### BINDER JETTING-MATERIAL EXTRUSION & SHEET LAMINATION

Binder Jetting- process, working principle, advantages and disadvantages. Material Extrusion –Fused Deposition Modeling process, working principle, advantages and disadvantages. Sheet Lamination – Laminated Object Manufacturing process, working principle, advantages and disadvantages.

### POWDER BED FUSION & DIRECT ENERGY DEPOSITION

Powder Bed Fusion – Selective Laser Sintering process, working principle, advantages and disadvantages, Direct Energy Deposition- process, working principle, advantages and disadvantages.

#### APPLICATIONS OF 3D PRINTING

Applications for 3D Printing - Use of 3D Printing-Limitations of 3D Printing and Further Development of Medical 3D Printing Applications. Use of Multiple Materials in 3D Printing-Embedded Component 3D Printing, Commercial Applications Using Multiple Materials, Future Directions, Business Opportunities and Future Directions.

		Т	ext Books									
1	1       Ian Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, NY, 2015.											
2	Venuvinod, Patri K., a & Business Media, 20	and Weiyin Ma. Rapid pro 13.	ototyping: laser-based and o	other technologies. Springer Science								
	Reference Books											
1	1 Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.											
2	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.											
3	Kumar, L. Jyothish, P technologies. Singapor	ulak M. Pandey, and Dav re: Springer, 2019.	id Ian Wimpenny, eds. 3D	printing and additive manufacturing								
		Cou	rse Designers									
Sl.No	Faculty Name	Designation	Department/ Name of the college	Email id								
1	S.Kalyanakumar Assistant Professor Mech / AVIT kalyanakumar@avit.ac.in											

								С	ategoi	ry ]	L	Т	Р		Credit
			INDU	STR	IAL R	ROBO	TICS		)E-EA		3	0	0		3
Preamble	e 	C .1 .		• ,		. 1		1	. • 1	. • 1	1 /	c .1 .			
The object	ctive of	t this o	course	e is to	ımpai	rt knov	vledg	e aboi	ut indu	istrial	robots	for them	contro	andde	esign.
Prerequ NI	uisite: L														
Course O	)bjecti [,]	ve													
1 То	introdu	ice bas	sic coi	ncepts	, parts	of robo	ots and	l types	s of rob	oots					
2 То	learn a	bout R	Robot	kinem	atics a	nd dyna	amics								
3 То	learn d	ifferer	nt type	es of se	ensors	used in	robo	ts and	its con	trol					
4 To	unders	tand th	ne diff	erent t	vnes o	of actua	tion s	vstems	s used i	n robo	ts				
5 5					<u>, , , , , , , , , , , , , , , , , , , </u>										
5 To	unders	tand th	ne rob	ot cont	rol Sy	stems,	progr	ammır	ng of ro	bots a	nd its A	pplicatio	ons.		
Course O	Outcom	es: O	n the	succ	essful	comp	letior	n of tł	ne cou	rse, st	udents	s will be	able to	0	
CO1.	Under	stand	the b	asic c	onfig	uration	is and	l kine	matic s	system	ns of ro	bots	Under	rstand	
CO2.	Solve	proble	ems o	f robo	t kine	ematics	and	dynar	nics				Apply	/	
CO3.	Under their a	stand pplica	the d tions	liffere , diffe	nt typ rent ty	es of se ypes of	ensor f cont	s usec rol sy	l in rol stems	oot sys used i	stems a n robot	nd ts	Under	rstand	
CO4.	Under robot s	stand systen	and ans	applic	ations	s of the	diffe	rent t	ypes o	f actua	ators us	sed in	Under	rstand	
CO5.	Under	stand	the F	Robot	Appli	cations	s in v	arious	fields	5			Under	rstand	
Mapping	with Pr	ogra	mme	Outc	omes	and P	rogra	amme	Speci	fic Ou	itcome	es			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	Μ	L	-	-	L	-	-	-	-	-	-	S	-	L
CO2	S	S	М	М	-	М	-	-	-	-	-	-	S	-	L
CO3	S	Μ	Μ	Μ	-	Μ	-	-	-	-	-	-	S	-	L
CO4	S	S	Μ	М	-	L	-	-	-	-	-	-	S	-	L
CO5	S	S	L	S	-	S	-	-	-	-	-	•	S	-	L
						S- Stron	ng; M·	Mediu	ım; L-I	LOW					

#### INTRODUCTION TO ROBOTICS

Introduction to Automation and Robotics- Basic concepts, Need, Law, History, Anatomy, specifications classification, present and future applications. Components of the Industrial Robotics: common types of arms.

Components, Architecture, degrees of freedom, Precision of Movement: Resolution, Accuracy and Repeatability, Speed of Response and Load Carrying Capacity.

#### **ROBOT ARM KINEMATICS**

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point to point, Continuous Path Control

#### GRIPPERS AND SENSORS FOR ROBOTICS

Grippers for Robotics - Types of Grippers, Guidelines for design for robotic gripper, Force analysis for various basic gripper system. Sensors for Robots - Types of Sensors used in Robotics, Classification and applications of sensors, Characteristics, Selections of sensors. Necessity for sensors and vision system in the working and control of a robot.

#### **ROBOT ACTUATION SYSTEMS**

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison of Actuators, Feedback components: position sensors – potentiometers, resolvers, encoders – Velocity sensors, Tactile and Range sensors, Force and Torque sensors – End Effectors and Tools

#### ROBOT APPLICATIONS

Robot Application in Manufacturing: Material Transfer – Material handling, loading and unloading-Processing – spot and continuous arc welding & spray painting – Assembly and Inspection. Applications in Medical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Micro and Nano robots, Future Applications.

Text	Books											
1	Saha, S.K., "Introduction	n to Robotics, 2nd H	Edition, McGraw-Hill Hig	her Education, New Delhi, 2014.								
2	Mikell P Groover, Nich Technology programmi	olas G Odrey, Mitc ng and Application	hel Weiss, Roger N Nagel s", McGraw Hill, 2012.	, Ashish Dutta, "Industrial Robotics,								
3	Mittal R.K. and Nagrath I.J., "Robotics and Control", Tata McGraw Hill.											
Refe	eference Books											
1	Ghosal, A., "Robotics",	Oxford, New Delhi,	2006.									
2	Niku Saeed B., "Introduc	ction to Robotics: A	nalysis, Systems, Applicat	tions", PHI, New Delhi.								
3	Steve Heath, "Embedded	l System Design", 2	nd Edition, Newnes, Burl	ington, 2003								
4	Merzouki R., Samantara Modeling, Control and E	y A.K., Phathak P.N Diagnosis", Springer	1. and Bouamama B. Ould	, "Intelligent Mechatronic System:								
		(	Course Designers									
S.N	S.No Faculty Name Designation of the College Email id											
1	S.No         Faculty Name         Designation         of the Conege         Email full           1         P.KUMARAN         AP-II         MECH/AVIT         kumaranp@avit.ac.in											

			FUND	AMEN	TALS	OF AR	RTIFIC	CIAL		Ca	tegory	L	Т	Р	(	Credit
				IN	FELLI	GENC	E			O	E - EA	3	0	0		3
<b>PREA</b> This sy contain and its	PREAMBLE         This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Game playing. Thus, this syllabus focuses on to know about AI and its concepts .         PREREQUISITE :NIL															
PREF	REQUI	SITE	:NIL													
COU	RSE OI	BJECT	<b>FIVES</b>													
1.	To inti	oduce	the basi	ic princi	iples, te	chnique	es, and	applica	tions of	Artific	ial Intellig	ence.				
2.	To hav	ve knov	wledge	of gener	ric prob	lem-sol	ving m	ethods	in Artifi	cial Int	elligence.					
3.	To des	ign so	ftware a	gents to	solve a	a proble	em.									
4.	Apply	the kn	owledge	e of algo	orithms	to solv	e arithn	netic pr	oblems.							
5.	Assem	ble an	efficien	t code f	or engi	neering	proble	ms.								
COU	RSE O	JTCO	MES													
On the	e succes	sful co	ompletio	n of the	course	e, studer	nts will	be able	to							
<b>CO1:</b> .	Identify	the di	fferent a	igent an	d its ty	pes to s	olve the	e proble	ems			Underst	and			
CO2: k	know ab	out the	e proble	m solvii	ng techi	nique in	Artific	ial Inte	lligence			Apply				
CO3: 0	Construe	et the n	ormal f	orm and	l repres	ent the	knowle	dge.				Apply				
CO4: t enviror	o know ment.	about	extensic	on of co	ndition	probabi	ility and	d how t	o apply	in the r	eal time	Apply				
СО5: Т	To lean a	about I	nformat	ion Ret	rieval a	nd Spee	ech Rec	ognitio	n			Underst	and			
MAP	PING V	VITH	PROG	RAMM	E OUT	ГСОМІ	ES ANI	D PRO	GRAM	ME SI	PECIFIC	OUTCO	MES			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO12	PSO 1	PS 2	0	PSO 3
CO 1	М	М	М	М	М	-	-	-	-	-	-	М	S	М	I	-
CO 2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	I	М
CO 3	М		s	М	М	-	-	-	-	-	-	М	S	-		М
CO 4	S	М	М	М	М	-	-	-	-	-	-	М	S	М	I	М
CO 5	s	М	М	М	М	-	-	-	-	-	-	М	S	М	ſ	-
S- Str	ong; M-	Mediu	m; L-Lo	OW				L	1 1			1		1		

#### INTRODUCTION

What is AI? – AI Problems – What is an AI technique – Defining the problem as a state space search – Production system – Production system – Characteristics – Problem Characteristics?

#### HEURISTIC SEARCH TECHNIQUES

Generate and test – Hill Climbing – Best first Search – Problem Reduction – Constraints satisfaction – Means end analysis.

#### **KNOWLEDGE REPRESENTATION**

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

#### REPRESENTING KNOWLEDGE USING RULES

Procedural versus – Declarative Knowledge – logic Programming – Forward versus Backward Reasoning – Matching

#### GAME PLAYING

The Minimax search procedure – Adding Alpha Beta cut offs – Addition Refinements – Waiting for Quiescence – Secondary Searches – Using Book moves.

#### TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011..

#### REFERENCES

1.David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

			INTR	ODUC	TION	ΓΟ ΙΝΊ	rerne	ET		Catego	ory	L	Т	Р	Crea	lit
				0	FTHL	NGS				OE-E	А	3	0	0		3
PREA Introdu languag	MBLE action to ge.	2 o IoT	for stati	stical d	ata mai	nipulati	on and	analysis	s. It wa	s inspire	d by and	is most o	compat	ible	with the	statistical
PREF NIL	PREREQUISITE       NIL       COURSE OBJECTIVES															
			IVLO													
1	To le	arn Intr	oductio	on to Io	Т											
2	To Study methodology of IoT															
3	To Develop IoT applications using Arduino and Intel Edition															
COU	COURSE OUTCOMES															
On the	e succes	sful co	mpletio	n of the	course	, studer	nts will	be able	to							
CO1: ' string f	To Und functior	erstand 1s	the bas	ics in I	ntroduc	tion to	IoT in	terms of	of const	ructs, co	ntrol stat	ements,	Ur	nders	tand	
<b>CO2:</b>	To Und	erstand	the use	of Intr	oductio	n to Io'	Γ fund	amenta	ls.				Ur	ders	tand & A	Apply
CO3:	Learn to	o apply	Introdu	ction to	o IoT f	for Com	munica	ting Se	quentia	l Process	8		Ur	nders	tand & A	Apply
<b>CO4:</b>	Able to	apprec	iate and	apply	the Intro	oductio	n to Io'	T from	a statis	stical per	spective		Ur	nders	tand & A	Apply
CO5 7	To learn	Introdu	action to	o IoT (	Challen	ges							Ur	nders	tand & A	Apply
MAP	PING V	VITH	PROG	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	IME SPI	ECIFIC	OUTCO	MES			
COs	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12	PSO1	PS	502	PSO3
CO1	S	S	М	М	L	S	S	М	S	L	S	-	S		М	S
CO2												М	Μ		М	S
CO3	М	S	Μ	М	М	S	S	М	S	Μ	М	-	M		-	S
CO4												М	M		S	М
CO5	S	S	S	S	М	S	S	S	S	Μ	S	S	Μ		М	М
S- Str	ong; M-	Mediu	m; L-Lo	)W												

#### SYLLABUS -INTRODUCTION to IoT

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

### - IoT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network – **Network & Communication aspects** 

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

– Domain specific applications of IoT

Design challenges, Development challenges, Security challenges, Other challenges

#### - Reflection, Low-Level Programming

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python

#### TEXT BOOKS

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice" **REFERENCES**
- 1. Macro Schewartz, "Internet of Things with the Arduino Yun" Packet Publishing, 2014.

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Jayachandran	Professor	CSE	jayachandran@avit.ac.in
2	Dr.M.Nitya	Professor	CSE	nithya@vmkvec.edu.in

		E	DESIG	N OF E	LECT	RONIC		Cate	gory	I		Т	Р	Cre	edit
			]	EQUIP	MENT			OE	-EA		3	0	0		3
PREA	MBLF	C								•			•		
The ob	ojective	of this	course	is to se	ensitise	a registr	rant to	variou	s aspec	cts of an	electron	ics produ	ict. Spec	ifically o	on non-
Electri	cal asp	ects lik	te mech	nanical	design	and deta	ailing.	Startin	ig from	n a need	translate	ed into s	pecificati	ions, lead	ding to
design	and pr	ototypi	ng and	ending	up in a	manufac	cturab	le phys	ical pro	ototype.					
PRER	EREQUISITE – BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING														
COU	RSE OI	BJECT	IVES												
1	To un	derstan	d the v	arious (	Concept	t of Indus	strial	Design	proces	s.					
2	To ap	ply the	basic (	Concept	of elec	tronic Pr	roduct	design	s meth	odology.					
3	To cla	assify tł	ne Conc	cept of I	Ergono	mics & a	aesthe	tics in p	product	design.					
4	To un	derstan	d the K	nowled	lge rega	arding the	e desi	gn of p	roduct	packagin	ig and w	orking ei	nvironme	ent.	
5	To un	derstan	d the K	Inowled	lge of d	ifferent i	indust	rial sta	ndard a	nd value	analysis				
COUH	RSE O	UTCO	MES												
On the	succes	ssful co	mpletic	on of the	e course	e, student	ts will	l be abl	e to						
CO1. 7	Visualiz	ze the c	oncept	for pro	duct de	sign with	h resp	ect to en	rgonon	nics and a	aesthetic	s.		Remen	ıber
CO2. 4	Analyze	e, desig	n and i	mpleme	ent cont	rol panel	ls of e	electron	ic equi	pment				Apply	
CO3.	Apply	creativi	ty in th	ne desig	gn of sy	ystem by	y form	nulating	archit	ecture w	ith prop	er placer	nent of	Apply	
compo	onents.			• 1					1					. 1	
CO4. /	Apply t	he conc	cept of	visual c	ommur	nication t	techni	ques in	produc	et design.				Apply	
CO5. 4	Apply t	he proc	ess of v	value ar	nalysis	n existin	ng pro	duct.						Арріу	
MAPI	PING V	NITH ]	PROG	RAMM	IE OU	ГСОМЕ	ES AN	D PRO	OGRA	MME SI	PECIFI	C OUTC	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	L	-	-	S	-	-	L	М	L	-	-	S	-	-
CO2	Μ	L	-	М	S	-	-	L	М	L	-	-	S	-	-
CO3	Μ	L	-	М	S	-	-	L	М	L	-	L	S	-	Μ
CO4	S	Μ	L	-	S	-	-	L	Μ	L	-	L	S	Μ	Μ
CO5	S	М	L	-	S	-	-	М	L	L	-	L	S	М	Μ
S- Stro	ong. M-	Medim	m· L-L	ow											

#### **INTRODUCTION**

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development

process, ID process, Product innovations, tools and methods.

#### **PRODUCT PROTOTYPES**

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

#### PRODUCT DESIGN AND PLANNING

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation. Product

planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

### ERGONOMICS

Ergonomics: Ergonomics of electronic equipment, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

#### CASE STUDIES

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

#### **TEXTBOOKS:**

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

#### **REFERENCE BOOKS:**

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial Design and Engineering Design", Council, London and Springer Verlag, 1983

COU	COURSE DESIGNERS													
S.No	Name of the Faculty	Designation	Department	Mail ID										
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in										
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in										
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in										

# INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL<br/>INTERNET OF THINGSCategoryLTPCreditOE-EA3003

#### PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

#### PREREQUISITE

Basic knowledge of computer and internet

#### **COURSE OBJECTIVES**

- 1 Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.

³ Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.

⁴ HoT links the automation system with enterprise, planning and product lifecycle.

⁵ Real case studies

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able toCO1. Apply & Analyzing the transformation of industrial process by various techniques.AnalyzeCO2. Evaluate the transformation technologies are considered to be the different drivers.ApplyCO3. Existing industrial systems will adopt the applications of IIoT.ApplyCO4. Intensive contributions over automation system with enterprise, planning and product life cycleAnalyzeCO5. Analyze of various Real time case studies.Analyze

MAPPL	NG WIT	'H PRO	GRAN	AME O	UTCON	MES AI	ND PRO	OGRAI	MME S	PECIFI	C OUTC	OMES			
COS	PO	PO2	PO3	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PS
	1			4	5	6	7	8	9	10	11	12			0 3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO3	S	S	S	М	М	-	-	-	-	-	-	М	S	М	М
CO4	S	S	S	М	М	-	-	-	-	-	-	М	S	М	Μ
CO5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S- Stron	g; M-Me	dium; L	-Low												

**INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGS**Introduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

#### INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

#### IIoT COMMUNICATION

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

#### IIoT BIG DATA & SDN APPLICATIONS

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, and Industrial IoT-Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

#### APPLICATIONS & REAL TIME CASE STUDIES

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

#### **TEXT BOOKS:**

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

#### **REFERENCE BOOKS:**

- 1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016
- 2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. L.K.Hema	Professor &Head	ECE	hodece@avit.ac.in								
2	Dr.T.Muthumanickam	Professor& Head	ECE	hodece@vmkvec.edu.in								

GREEN POWER GENERATION SYSTEMS	Category	L	Т	Р	Credit
	OE-EA	3	0	0	3

#### PREAMBLE

The course presents the various sources of renewable energy including wind, solar, and biomass as potential sources of energy and investigates the contribution they can make to the energy profile of the nation. The technology used to harness these resources will be presented. Discussions of economic, environment, politics and social policy are integral components of the course.

# PREREQUISITE: NIL

COU	RSE OB	JECTI	VES												
1	Understa	ind the	nexus be	etween	energy,	enviro	nment,	and susta	ainable o	levelopn	nent				
2	Apprecia	te ener	gy ecosy	stems	and its	impact	on env	ironment							
3	Learn ba	sics of	various t	ypes of	f renew	able an	d clean	energy t	echnolo	gies					
4	Serve as	bridge	to advan	ced co	urses in	renew	able en	ergy							
COU	RSE OU	тсом	ES												
On th	the successful completion of the course, students will be able to														
CO1:	CO1: Explain renewable energy sources & systems. Understand														
CO2: Hydr	CO2: Apply engineering techniques to build solar, wind, tidal, geothermal, biofuel, fuel cell, Hydrogen, and sterling engine.														
CO3: probl	Analyze ems perta	and ev	aluate tl solar ra	he imp diation	lication geome	of ren	ewable wind e	e energy. energy sy	Concep stems.	ts in sol	ving nu	merical		Analyze	e
CO4	Demonst	rate sel	f -learni	ng capa	bility t	o desig	n & est	ablish rei	newable	energy s	systems.			Analyze	9
CO5: syste	Conduct	experi	ments to	o asses	s the p	erform	ance of	f solar P	V, solai	therma	1 and b	iodiesel		Apply	
MAF	PPING W	ITH P	ROGRA	MME	OUTO	COME	S AND	PROGR	RAMME	E SPECI	FIC OU	UTCOM	IES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	М	-	L	L	-	-	-	-	М	-	-
CO2	S	М	S	L	М	-	L	М	-	М	-	-	-	-	-
CO3	S	-	-	-	М	-	-	М	М	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

_

М

Μ

Μ

_

_

_

L

_

S

L

L

_

Μ

_

_

_

Μ

Μ

_

-

М

-

L

_

_

_

Μ

S

S

#### SYLLABUS

CO4

CO5

ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario.

Energy consumption models – Specific Energy Consumption

#### ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

#### **RENEWABLE SOURCES OF ENERGY**

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

#### BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

#### OTHER ENERGY SOURCES AND SYSTEMS

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

#### **TEXTBOOKS:**

- 1. Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 2. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.
- **3.** Figueiredo, 'Green Power: Perspectives On Sustainable Electricity Generation', Taylor & Francis Exclusive(Cbs), 2014

#### **REFERENCE BOOKS:**

- 1. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 2. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE	sathish@vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

	INDUSTRIAL DRIVES AND AUTOMATION											ry ]	L	Т	Р	C	
		<b>JINI</b> A		IVES	AND	AUIC	JNIAI					OE-EA	<b>\</b>	3	0	0	3
Preamb	le																
To intro	duce for	indatic	on on t	he prin	ciples	of driv	ves &	automa	ation a	nd thei	r elem	ents with	n the ir	nple	emen	tatio	n.
PRERE	QUISI	<b>ГЕ :</b> N	TL														
COURS	COURSE OBJECTIVES																
1	1 To explore the various AC,DC & Special Machine Drives for industrial Application												ation				
2	To stu	ly abo	ut the	various	s Open	loop a	and clo	osed lo	op cor	ntrol sc	hemes	for drive	es				
3	To kno	w abo	ut hard	lware i	mplen	nentati	on of	the cor	ntroller	s using	g PLC						
4	To stuc	ly the	concep	ots of I	Distrib	uted C	ontrol	Syster	n								
5 To understand the implementation of SCADA and DCS																	
COURS	COURSE OUTCOMES																
On successful completion of the course, the students will be able to																	
CO 1	To und and sele	erstand ection c	l worki riteria.	ng prir	ciples	of var	ious ty	pes of	motors	, differ	rences,	character	ristics	1	Unde	rstar	nd
CO 2	To app various	ly the industi	knowle rial app	edge in lication	select:	ion of	motors	, heati	ng effe	cts and	brakir	ng concep	ots in		Ap	ply	
CO 3	To expl	ain cor	ntrol me	ethods	of spec	ial driv	res							1	Unde	rstar	nd
CO 4	To carr industri	y out p es.	rogram	iming u	ising P	LC and	l use of	f variou	is PLC	s to Au	tomatio	on problei	ms in	1	Unde	rstar	nd
CO 5	To disc automa	uss sup tion are	perviso: eas	ry cont	rol and	l data a	acquisi	tion me	ethod a	nd use	the sar	ne in con	nplex	1	Unde	rstar	nd
Mapping	g with P	rogran	nme ou	itcome	s and I	Progra	mme S	Specifi	c Outc	omes			1				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	PSO2	PS	503
CO1	S	S	L	_		S	S	-		L	-	-	-		-		L
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												L	+	-	+	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													+	М			
CO3	M	-	M	-	5		M	T						$\square$			
CO4	S	-	S	-	S	M	M		-	L	M	-	-		-		L
CO5	S	М	S	S	S	М	S	-	М	L	L	М	-		L		Μ

#### INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

#### **INDUSTRIAL DRIVES**

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

#### PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic – Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

#### DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

#### SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

#### TEXTBOOK

- 1. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 2. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 3. M.S.Berde, Electric Motor Drives Khanna publishers.2008.
- 4. Fundamentals Of Industrial Drives by B. N. Sarkar, PHI Learning, 2011

#### REFERENCES

- 1. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 2. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 3. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 4. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 5. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 6. Andrew Parr, Industrial drives, Butterworth Heineaman

COURSE DESIGNERS												
Sl No	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.L.Chitra	Professor	EEE/AVIT	chitra@avit.ac.in								
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in								

				DISA	STER	RISK	MANA	AGEM	NT	Cate	gory	L	Т	Р	Credit
										OE-	EA	3	0	0	3
Preamble											·				
This cours built struc various haz	e dea ures ards	als v , an suc	with th d Haza ch that	ne vario ard Ass their in	ous dis essmer npact o	asters ant proce	and to edure in munit	expose 1 India. ies is re	the stu This c educed	udents a ourse als	bout the so deals	e measur with the	es, its e method	ffect a s of mi	gainst tigating
Prerequisi	te														
									N	IL					
Course Ou	Course Outcomes														
1 To U	1     To Understand basic concepts in Disaster Management														
2 To U	2 To Understand Definitions and Term in ologies used in Disaster Management														
3 To U	3 To Understand the Challenges posed by Disasters														
4 To Understand Impacts of Disasters															
COURSEOUTCOMES															
On the successful completion of the course, students will be able to															
Disasters.	ersta: Atmo	na t osph	ne var eric D	isasters	pes of Geology, Geology	disaste	er viz I Mass N	Ayaroi Aovem	ogical, ent and	Land D	isasters.	arine	Ur	dersta	nd
Wind and	Nate	r Di	riven l	Disaste	ers.						-~ -~ ,				
CO2.Ident and Sugge	ify th st sui	he p itab	otentia le rem	al defic iedial r	ciencie neasur	s of ex es.	isting	buildin	gs for	Earthqu	ake disa	aster	Ur	Idersta	nd
CO3.Deriv	e the	gui disa	deline	s for th	e preca	utionar	y meas	sures a	nd reha	bilitatio	n measu	res		Apply	
CO4 Deri	vo th		rotecti	on ma	o curac	against	flood	e vel	ona lar	ndelidae				Apply	
CO5 Unda	reton	nd th	ho offe	on mea	disasta	rs on h	uilt et	s, cych	o in Inc				Ur	dersta	nd
MAI	PIN	IG U	NITH	PROG		ME OI	TCO	MES A	ND PI	ROGRA	MME	SPECIF	IC OUT	ГСОМ	ES
COS PO	F	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
		2												2	
CO1 M L													L	-	-
<u>CO2</u> M M L L - M												-	L	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-		
CO4 5	O4 S M S - L M L - O5 L L M L -														
S-Strong:	CO5       L       L       -       -       -       -       -       -       L       -       -         S-Strong: M-Medium: L-Low       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <														

**INTRODUCTION:** Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etcDos and Don'ts during various types of Disasters.

**RISK ASSESSMENT AND VULNERABILITY ANALYSIS:** Response time, frequency and for warning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards.

**DISASTER MANAGEMENT MECHANISM:** Concepts of risk management and crisis management ; Disaster management cycle; Response and Recovery; Development, Prevention, Mitigation and Preparedness; Planning for relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster

**DISASTER RESPONSE:** Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management; Minimum Standards of Relief; Managing Relief; Funding.

**DISASTER MANAGEMENT IN INDIA:** Strategies for disaster management planning; Steps for formulating adisaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

#### **TEXTBOOKS:**

1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2.

2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10:1259007367, ISBN-13: 978-1259007361]

- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

#### **REFERENCES:**

- 1. AbarquezI. &MurshedZ. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, UnwinHyman, London 1990.
- 3. Goswami, S.C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manualon Natural Disaster Management in India, NCDM, NewDelhi,2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, NewDelhi, 2011.
- 6. National Policy on Disaster Management, NDMA, NewDelhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, NewDelhi, 2005.

#### **Course Designers**

S.No.	NameoftheFaculty	Designation	Department	MailID
1	Ms.S.IsparaXavier	AssistantProfessor	Civil/AVIT	isparaxavier.civil@avit.ac.in

			MUNICIPAL SOLID WASTE Category														Credit	
						MAN	AGE	CMEN	T			OE	EA	3	0	0		3
PRE	AMBI	Æ																
The p	orimar	y go	al of	solid v	vaste	manag	gemer	nt is re	educii	ng and	d elim	inating	g adve	rse in	npacts	of was	te n	naterials on
huma	n heal	th ar	nd the	enviro	onmen	t to sı	ipport	econ	omic	devel	opmei	nt and	superi	or qua	lity of	f life		
PRE	REQ	JIS	ITE -	Nil														
COU	COURSE OBJECTIVES																	
1	1 To make the students conversant with the types, sources, generation, storage, collection, transport,																	
processing and disposal of municipal solid waste.																		
2	The s	tude	ent is e	expecte	d to k	now a	about	the va	rious	effect	ts and	dispos	sal opt	ions f	or the	munici	pal s	solid waste.
3	5 to identify any potential environmental impacts from the generation of waste at the site;																	
4 To introduce and aware students to real concerns of environment and its sustainability																		
5 The student is expected to know the treatment and disposal of waste and harmful impacts																		
COU	COURSE OUTCOMES																	
	Upon completion of this course, the student will be able to																	
CO:	l ur re	regulatory requirements regarding municipal solid waste management. Understand																
CO:	2 Re	Reduction, reuse and recycling of waste Understand																
CO:	3 ab	ility pos	/ to p al of 1	olan ar munici	nd de pal so	sign s lid wa	systen iste.	ns foi	stor	age,	collec	tion, 1	ranspo	ort, p	rocess	ing and	d 4	Apply
CO:4	4 kr	iowl rspe	ledge ctive.	on the as wel	issu l as in	es on the lo	solid ocal a	l wast nd int	e ma ernati	nagen onal c	nent f	from a t.	in inte	grate	d and	holisti	c	Apply
CO:	5 D	esig	n and	operat	ion of	sanita	ary la	ndfill.									1	Understand
	MA	PP	ING V	WITH	PRO	GRA	MMF	E OUT	<b>ICON</b>	MES A	AND	PROG	RAM	ME S	SPEC	IFIC O	UT	COMES
COS	P	)	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	SO	PSC	C	PSO
	0'		02	03	04	05	06	07	08	09	10	11	12	0	1	02		03
CO:	I L	,							L									
CO:	2		S	L						М								
CO:	CO:3 L M M L L																	
CO:4	4 M L M L M																	
CO:	D:5 S L L L S																	
	<u>S</u> –	STF	RONC	Б. М –	MED	IUM :	and L	-LO	W									•

#### SOURCES AND CHARACTERISTICS

Sources and types of municipal solid wastes- Public health and environmental impacts of improper

disposal of solid wastes- sampling and characterization of wastes - factors affecting waste generation rate and characteristics - Elements of integrated solid waste management – Requirements and salient features of Solid waste management rules (2016) — Role of public and NGO's- Public Private participation – Elements of Municipal Solid Waste Management Plan.

#### SOURCE REDUCTION, WASTE STORAGE AND RECYCLING

Waste Management Hierarchy - Reduction, Reuse and Recycling - source reduction of waste – On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – case studies under Indian conditions – Recycling of Plastics and Construction/Demolition wastes.

#### **COLLECTION AND TRANSFER OF WASTES**

Methods of Residential and commercial waste collection – Collection vehicles – Manpower –Collection routes – Analysis of waste collection systems; Transfer stations –location, operation and maintenance; options under Indian conditions – Field problems- solving.

#### PROCESSING OF WASTES

Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

#### WASTE DISPOSAL

Dumping of solid waste; sanitary landfills - site selection, design and operation of sanitary

 $land fills-Leachate\ collection\ \&\ treatment$ 

#### TEXT BOOK (S)

1. illiam A. Worrell, P. Aarne Vesilind (2012) Solid Waste Engineering, Cengage Learning, 2012.

2. John Pitchel (2014), Waste Management Practices-Municipal, Hazardous and industrial – CRC Press, Taylor and Francis, New York.

3. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-Hill Publishers, 2002.

#### **REFERENCE BOOKS**

1.CPHEEO (2014), "Manual on Municipal Solid waste management, Central Public Health

and Environmental Engineering Organisation, Government of India, New Delhi.

2 George Tchobanoglous and Frank Kreith (2002). Handbook of Solid waste management,

McGraw Hill, New York.

3.R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes - problems and Solutions", Lewis Publishers, 1997.

#### **COURSE DESIGNERS**

Name of the Faculty	Designation	Department	E-Mail ID
Mr.C.Kathirvel	Asso. Professor & Head	Civil / VMKVEC	kathirvel@vmkvec.edu.in

BIOMOLECULES - STRUCTURE, FUNCTION	Category	L	Т	Р	С
	OE-EA	3	0	0	3

#### PREAMBLE

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

PRERI	EQUIS	SITE	N	VIL											
COUR	SE OB	<b>JEC</b>	<b>FIVE</b>	5											
1	To giv	e an c	overvie	ew of	impor	tance	of bio	molecu	les						
2	Toela	horate	the st	noture	e of pro	oteins	and nu	icleic ac	eide an	d its rol	e in dise	2260			
2	10 010	Joraic	the su	ucture	or pro	JULIIS			ius an	u 113 101		Jase.			
5	To en	umera	te the	role o	f carb	ohydr	ates a	nd their	cellu	lar func	tion in	physiolo	ogy and	pathol	ogy
4	To em	umera	te the	role o	f lipid	s and	their c	ellular	functi	on in pł	ysiolog	gy and p	atholog	у.	
5	To br	iefly c	holest	erol a	nd its	role in	n disea	ises							
COUR	SE OU	JTCO	MES												
After th	ne succ	essful	comp	letion	of the	cours	se, lear	mer wil	l be a	ble to					
CO1. Relate the basics of biomolecules in and around him Understand															
CO2. U	CO2. Understand the structure of biomolecules such as proteins and nucleic acids Understand														
CO3. D	oiscove	r the r	ole of	carbo	hydra	tes in	health	y and d	isease	d condi	tions			Apply	/
CO4. R	elate d	isfunc	tionin	g of li	pids v	vith di	sease							Analys	se
CO5. C	riticize	the re	ole of	choles	sterol	in dise	eases.							Evalua	te
MAP	PING	WITH	H PR(	OGRA	MM	E OU'	ГСОМ	AES A	ND PI	ROGR	AMME	SPEC	FIC O	UTCO	MES
				_											
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5	S	-	L	L	-	М	-	-	-	-	-	S	S	М	-
S- Stro	ng: M-	Mediu	m: L-	Low				•			•				•

# **SYLLABUS**

# **PROTEINS**

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

# NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucelic acids in Health and disease

# CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

# FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

# CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

# TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

COURSE DESIGNERS												
S.No	Name of the	Designation	Department	Mail ID								
•	Faculty											
1	Dr.P.David	Assistant professor	Pharmaceutical									
1	Annaraj	Assistant professor	Engineering	davidannaraj@vmkvec.edu.in								
2	Ms.S.Sowmiya	Assistant Professor	Pharmaceutical	sowmiya ymkyac@ymrf.adu in								
2		Assistant Floresson	Engineering	sowninya.vinkvee@vinin.edu.in								

				РН	ARM		GEN	OMIC	S	Ca	tegory	L	Т	Р	0	Credit
							0211	011220	2	OE	E-EA	3	0	0		3
PREA Pharm respon a sing	AMBLE nacogenon nse to a dr le gene an	nics inv ug. Pha d its res	volves armaco sponse	the stu genetic to a dr	idy of cs, a co rug.	the re ompon	elations ent of	ship bet pharma	tween	an inc nomics,	lividual's is the st	s genetic udy of t	c make he relat	up an ionshi	dhis ip be	or her etween
PREI	REQUISI	$\Gamma E - N$	IL													
COU	RSE OBJ	ECTIV	<b>ES</b>													
1	Discuss at application	oout the	basic I	knowle ion and	edge ab d toxic	oout pł ity.	narmac	cogenon	nics a	nd drug	g design	using ge	nomic			
2	Perform he while redu	ow indi cing un	viduali wante	ization d drug	of dru effects	g thera	apy car	n be ach	nieved	based	on a pers	son's gei	netic ma	akeup		
3	<ul> <li>Outline the Pharmacogenomics studies on how genetic differences between individuals can affect responses to various drugs.</li> <li>Formulate on modicine skills acquired by the student and his action in different activity below.</li> </ul>															
4	Formulate	on me	dicine	skills a	acquire	ed by t	he stuc	lent and	l his a	ction in	h differer	nt pathol	ogies			
5	Develop a adverse re	cquire l actions	cnowle of the	dge ab drugs,	out the from a	e influe persp	ence of ective	f genetio of indiv	c alter vidual	rations (	on the th erapy.	erapeuti	c effect	and		
COU	RSE OUT	COMI	ES													
After	the succes	sful cor	npletic	on of th	e cour	se, lea	rner w	ill be at	ole to							
CO1.	Recognize	the effe	ect of g	genetic	differ	ences l	betwee	en indiv	iduals	s in the	outcome	e of		Rei	nem	ber
drug t	herapy and	d in dru	g effic	acy and	d toxic	ity.										
CO2.	Describe	the rol	e of s	ingle	nucleo	tide p	olymo	rphism	as a	biomai	rker for	the		Unc	lerst	and
predic	ction of ris	k, thera	peutic	respon	se and	progn	osis of	f malign	nancie	es.						
CO3.	Utilize an	d mana	ige the	e new g	genom	ics bas	sed too	ols as th	ney be	ecome a	available	e as		Unc	derst	and
well a	is make be	st treatr	nent cl	noices.												
CO4.	Examine t	he appl	ication	is of g	enomio	es prin	ciples	in drug	action	n and to	oxicology	y		A	nalyz	ze
CO5.	Validation	of case	e studio	es relat	ed to p	harma	cogen	omics						A	nalyz	ze
MA	APPING	WITH	PRO	GRA	MME	OUT	COM	IES AN	ND P	ROGF	RAMM	E SPEC	CIFIC	OUT	COI	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	02	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L		
CO2	M	M	M	M	L	-	-	-	M	-	L	L	L	L	4	-
CO3	S			S M		-	-	-	M S	-	L			L	4	_
CO4	IVI	IVI	IVI	IVI	IVI S	-	-	-	<u>ь</u> М	-	L M	L M	IVI S		, 1	-
				L	5	S- Stro	ong; M	I-Medi	um; l	L-Low	141	141	5	17.	•	

# PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

# HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

# ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

# GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

# PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs,

chemotherapeutic agents for cancer treatment.

### TEXT BOOKS

- Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Societyof Health-System Pharmacists, 2017.
- 2. Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

#### REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- 2. Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell,2012

	· · · · · · · · · · · · · · · · · · ·	LOURSE DESIGNERS		
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmk vec.edu.in

COUDER DESIGNEDS

# CATEGORY E MANDATORY COURSES (OCREDIT)

YOGA AND MEDITATION	Category	L	Т	Р	Credit
	МС	0	0	2	

Yoga is derived from a Sanskrit word "yuj" which loosely means "union." It is a path through which an individual unites with the entire existence. Sounds heavy, right? It basically means how you are not a separate entity but part of a greater energy. It increases your consciousness and makes yourealize your true self-clearing the clutter of all that you imbibed as part of your culture, family, and education. It makes you realize that there is something more than what you see around. It is a deeply spiritual practice that is part philosophy, religion, science, and exercise.

COURSE CONTENT	
1 Surya namaskar, Padmasana, Navasana, Pavana Mukatasana Savasana.	
2 Sheetalipranayama, Chandra Pranayama ,AnulomVilom, Sheetkari	
3 Yoga mudra, Mahamudra, Shanmukhimudra.	
4 Kapalabathikriya,Bhastrika.	
5 Simple Meditation, MantraMeditation, Mindfulness meditation	
OUTCOMES :	
1 It incorporates breathing exercises, meditation and poses designed to encourage relaxation and re	duce stress.
2 Practicing yoga is said to come with many benefits for both mental and physical health.	
3 Yoga is known for its ability to ease stress and promote relaxation.	
4 Many people begin practicing yoga as a way to cope with feelings of anxiety.	
5 Could Improve Heart Health	
6 Improves Quality of Life.	
7 Could Promote Sleep Quality.	
8 Improves Flexibility and Balance.	
9 Could Help Improve Breathing.	
10 Promotes Healthy Eating Habits.	
11 Can Increase Strength.	
TEXT BOOK:	
1. Dr.AsanaAndiappan, Ashtanga Yoga, Asana Publications, 2009.	
REFERENCES:	
1. Dr.V.Krishnamoorthy, <i>Simple Yoga for Health</i> , Sri MathiNilayam, 2012.	
2. Dr.AnandaBalayogiBhavanani, A Primer of Yoga Theory, Dhivyananda Creation	1s,2008.
3. Dr.S.Hema, Easy <i>Yoga for Beginners</i> , Tara yoga Publications, 2008.	
4. YogacharyaSundaram, <i>Sundra Yoga Therapy</i> , Asana Publications, 2009	
5. GeetaIyer, Illuminating Lives with Yoga,www.geetayoga.com	
Daniel Lacerda, 2100 Asanas,	

Course Code	Course Title	Category	L	Т	P	С
	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	MC	0	0	2	0

#### **Course Objectives:**

- 1. To facilitate the students with the concepts of Indian traditional knowledge and tomake them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and applyit totheir day to day life

#### **Course Outcomes:**

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

**Introduction to traditional knowledge:** Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

**Protection of traditional knowledge:**The need for protecting traditional knowledgeSignificance of TK Protection, value of TK in global economy, Role of Government to harnessTK.

**Legal framework and TK:** The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

**Traditional knowledge and intellectual property:** Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

**Traditional Knowledge in Different Sectors:** Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

#### **Text Books:**

Traditional Knowledge System in India, by Amit Jha, 2009. **Reference Books:** 

Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2. Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

Course Code	Course Title	category	L	Т	
	INDIAN CONSTITUTION	МС	0	0	

# **Course Objectives:**

On completion of this course, the students will be able:

- 1 To understand the nature and the Philosophy of the Constitution.
- 2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.3
- To Analyse Panchayat Raj institutions as a tool of decentralization.
- 4 To Understand and analyse the three wings of the state in the contemporary scenario.5
- To Analyse Role of Adjudicatory Process.
- 5 To Understand and Evaluate the recent trends in the Indian Judiciary.

#### **COURSE CONTENT**

#### The Constitution - Introduction

The Historical background and making of the Indian Constitution –Features of the Indian Constitution-Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties –Directive Principles State Policy

# -Government of the Union

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and RajyaSabha

# -Government of the States

The Governor –Role and Powers - Cheif Minister and Council of Ministers- State Legislature

#### - Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

#### - Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

# **TEXTBOOKS AND REFERENCE BOOKS:**

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 20082 The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

# **Total Hours: 30 hours**

#### Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. <u>http://www.legislative.gov.in/constitution-of-india</u>
- 3. <u>https://www.sci.gov.in/constitution</u>

4. <u>https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of</u> india/ Alternative NPTEL/SWAYAM

Course:

NPTEL ID	NPTEL Course Title	Course Instructor
12910600	CONSTITUTION OF INDIA AND ENVIRONMENTAL GOVERNANCE: ADMINISTRATIVE AND ADJUDICATORY PROCESS	PROF. M. K. RAMESH NATIONAL LAW SCHOOL OF INDIA UNIVERSITY

COURSE DES	IGNER			
S.NO	NAME OFTHE FACULTY	DESIGNATION	NAME OF THE INSTITUTION	MAIL ID
1	Dr.Sudhe er	Principal	AV School of Law	Sudheersurya18@gma il.com

	Genc (Con	ler Equ imon to	uty and 5 all Bra	Law anches)	)			Ca	tegory	L	Т	Р		Cred	it
								N	<u>/</u> /C	0	0	2		(	)
	Gende	er Equ	ity is t	he pro	vision	of fair	ness a	nd justi	ice in 1	the d	istrib	ution	of be	enefits	and
respo	onsibiliti	es betw	veen ,M	en, Wo	omen, T	Transgen	nder, ar	nd Gend	ler non-	binar	y indi	vidua	ls. Ge	nder e	quity
is in	portant	because	e, histor	rically,	societie	es aroun	d the v	vorld ha	ave deer	ned f	emale	es, tra	ansgen	der pe	ople,
and	nonbina	ry peop	ole as "	weaker	" or le	ss impo	rtant tl	han mal	les.Gend	ler eo	quity	emph	nasizes	respe	cting
indiv	viduals v	without	discrin	nination	, regar	dless of	f their	gender.	There	are	legal	provi	sions	thatad	dress
issue	s like in	equaliti	ies that	limit a											
oppo	perso: ortunity b	n''s abi	ility to their g	access ender.	s oppo	rtunities	to a	chieve	better l	nealth	ı, edı	ıcatio	on, and	d eco	nomic
PREI	REQUIS	SITE: N	IL												
COU	RSE OB	SJECTI	IVES												
1. T	o sensiti	ze the s	tudents	regardi	ng the i	ssues of	gende	r and the	egender	inequ	alitie	s prev	valent	in soci	ety.
2. Т	o raise a	nd deve	lop soc	ial cons	ciousne	ess abou	t gende	er equity	/ among	thest	udent	s.			
3. T	o build a	ı dialogı	ueand b	ring a fi	resh per	rspective	e on tra	nsgende	er and g	ender	non-o	confo	rming	indivi	duals.
4. T	o create	awaren	ess amo	ng the s	students	s and to	help th	em face	gender	stere	otype	issue	s.		
5. 7	Го help t	he stud	entsund	erstand	the var	ious leg	al prov	isions tl	hat are a	vaila	ble in	our s	ociety	•	
COU	RSE OU	JTCON	IES												
On the	e success	sful con	npletion	of the	course,	student	s will b	e able to	0						
CO1.1	Understa	nd the i	importa	nce of g	gender e	equity						Une	derstar	nd	
CO2 gend	.Initiate er equity	the awa	reness a	and reco	ognize t	the socia	l respo	nsibility	y with re	gards	s to	App	ly		
CO3 with	.To deve out anyd	elop a se iscrimit	ense of a nation.	inclusiv	veness a	and toler	ance to	wards v	various g	gende	rs	App	ly		
CO4	. To eva	luate the	e social	issues a	and app	ly suital	ole gen	der-rela	ted regu	latior	ıs	Eva	aluate		
CO5	.To iden	tify and	analyz	e the ex	isting g	gender ir	nequalit	y probl	ems face	ed in		Anal	vse		
varic	ous instit	utions.					-					mai	lyse		
MA	PPING	WITH	PROGI	RAMM	E OUI	ГСОМЕ	ES ANI	D PRO	GRAM	ME S	PEC	IFIC	OUT	COME	ES
01	02	03	04	05	06	07	08	09	010	011	0	] 12	<b>SO1</b>	SO2	<b>SO3</b>
												S			
												S			
												S			
												S			
												~			
						S_ Stron		[edium:				S			
						S Suon	8, 11-11	.cuiuiii,	, L L0W						

# SYLLABUS <del>INTRO</del>DUCTION TO GENDER AND SEX

Definition of Sex – Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles – GenderStereotypes - GenderDivision of Labour - Patriarchy, Masculinity and Gender Equality - Feminism and Patriarchy.

# GENDER BIAS

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And

Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

# GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS 6 hrs

**Gender Sensitization** -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - GenderSensitization in School Curriculum.

# SEXUAL OFFENCES AGAINST WOMEN 6 hrs

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

# **ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT**

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) -Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

# TEXT BOOKS

1.IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU

Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

# **REFERENCES:**

- Women"s Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books(2020).
- 2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).
- 3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).
- Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).
- Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009)
   Chatterjee, Mohini, Feminism andGender Equality, Aavishkar, Jaipur,2005.
- 6. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

	COUR	SE DESIGNERS
S No	Name of the Faculty	Mail ID
1	Gnana Sanga Mithra.S	sangamithra@avil.edu.in
2	Aarthy.G	aarthy@avil.edu.in

# SPECIALISATION – NUTRITIONAL BIOLOGY

		DIE		N 4 1917	Catego	ory		L	Т	Р	Credi	t	
		DIE	ГТНЕК	KAPY	EC (SI	E)		3	0	0			3
<b>PREAMBLE:</b>					1								
Obtain the kno	wledge of	clinical	nutrition	and dieter	tics, and	work in	ndepend	lently	as selfdr	iven, life	elong	learne	rs and
innovators so as	to prevent	or treat	diseases	being faced	l by the h	umans.							
PREREQUISI	TE: Not Re	equired											
COURSE OBJ	ECTIVES	:											
To enable the st	udents to k	now the	effect of	the various	s life style	e disease	es on nu	trition	al status	of indivi	duals.	•	
To enhance the	knowledge	on dieta	ry requir	ements for	differen	t disease	e condit	ions					
To overview the	e types of d	isease, t	their sym	ptoms and	managen	nent mea	asures						
To know the dif	ferent disea	ase occu	r in liver	and biliary	system								
To analyse the g	general pero	ceptions	of anaer	nia and diet	t manage	ment							
COURSE OUT	COMES:												
After successfu	l completi	on of th	e course,	students v	vill be at	ole to							
CO1: .Apply th	e principle	s of diet	and deter	rmine the d	ietary ess	sentials t	for reco	very fr	om critic	al illness	5	Unde	erstand
CO2: Plan and	prepare me	nu for th	ne given o	disease con	dition							Unde	erstand
CO3: Identify a	and describ	e the etio	ology, sy	mptoms and	d complie	cations of	of any li	fe styl	e disease	S		Unde	erstand
CO4: Differen	tiate the dis	ease con	ndition ar	nd finding s	uitable fo	eeding to	echniqu	es.				Anal	yze
CO5: Interpret	the factors	causes a	naemia a	nd diet reco	ommenda	ation for	anaemi	ic patie	ent			Anal	yze
Μ	APPING V	VITH P	ROGRA	MME OU	TCOME	ES AND	PROG	RAM	ME SPE	CIFIC (	OUTC	OME	S
Os Ol	02 03	O4	O5	O6 O7	O8	O9	O10	011	O12	SO1	SO2	s	603
01													
O2													
03													
03													
04								ļ			_		
05													
S- Stro	ng; M-Meo	lium; L	-Low		•				•		•		
SVIT ADUS.													

#### SYLLABUS:

#### **BASIC CONCEPTS OF DIET THERAPY:**

Therapeutic adaptations - normal diet, principles and classification of therapeutic diets. Approach to health care, Assessment of Patient's needs.

#### **ROUTINE DIETS, FEEDINGS:**

Diets for different febrile conditions - influenza, malaria and typhoid. Regular, light, soft, fluid, parenteral and enteral feeding.

#### ETIOLOGICAL FACTORS, SYMPTOMS, AND MANAGEMENT:

Etiology, symptoms and management of intestinal diseases: Diarrhoea, steatorrhoea, inflammatory bowel disease, Ulcerative Colitis, Constipation, Irritable Bowel Syndrome. Common diseases of stomach-Gastritis and Peptic ulcer.

#### DISEASES OF THE LIVER AND BILIARY SYSTEM:

Liver function tests. Etiology, symptoms, dietary care and general management of Viral Hepatitis and Cirrhosis of liver. Dietary care and management of Gall Bladder diseases –Cholecystitis and Cholelithiasis.

#### ANAEMIAS:

General concept, aetiology, classification and dietary management of Nutritional anaemia.

#### **TEXT BOOKS:**

1. Fundamentals of Foods, Nutrition and Diet Therapy, S.R.Mudambi, M.V.Rajagopal, 5th Edition, New age International Publishers.

2. William's Essentials of Nutrition and Diet Therapy, Eleanor Schlenker, Joyce Ann Gilbert, 12th Edition, Elsevier

#### **REFERENCE BOOKS:**

- 1. Fundamentals of Clinical Nutrition, Morgan, Sarah L, Weinsier, Roland L, 2nd Edition, Elsevier Health Sciences Division.
- 2. Galen on Food and Diet, Galen, Grant, Mark, Routledge Publisher.
- 3. Applications in medical nutrition therapy, Zeman, Frances J, Denise M, Bock, Margaret Ann, 3rd Edition, Prentice Hall Higher Education Publisher.

	<b>COURSE DESIGNERS:</b>			
.No	Name of the Faculty	Designation	Depar tment	Mail ID
	Dr. J.Madhusudhanan	Associate Professor	Biotechnology	madhusudhanan.biotech@avit.ac.in
	Dr.R.Balachandar	Assistant Professor	Biotechnology	Balachandar.biotech@avit.ac.in

	FOOD COMMODITIES	Category	L	Т	Р	Credit
		EC (SE)	3	0	0	3
PREAMBLE:						
Applying principles of die	et when planning food and nutrition p	rogrammes and suj	pervising n	neal prepara	tions	s in hospitals
and other food service est	ablishments.					
PREREQUISITE: Not F	Required					
COURSE OBJECTIVE	S:					
1.To understand the histor	ry and evolution of food processing.					
2.To study the structure, c	composition, nutritional quality and p	ost harvest changes	of various	s plant foods		
3. To study the properties	of diary and bakery products					
4. To study the structure a	and composition of various animal for	od				
5. To study the different n	nethods of processing Vegetables, fru	its and sweeteners				
COURSE OUTCOMES	:					
CO1: Cite and explain the	chemistry, structure and composition	n underlying the pr	operties of	various	U	Jnderstand
food components						
CO2:Ascertain the major	chemical reactions that occur during	food preparation ar	nd storage		ι	Jnderstand
CO3: Apply food science	knowledge to describe functions of in	ngredients in food			l	Jnderstand
CO4: Plan appropriate set	nsory evaluation tests to answer spec	fic questions rega	rding food	attributes o	r A	Analyze
consumer preferences						
CO5: Describe technique	s that can be used to monitor quali	ty of raw ingredie	nts and fir	nal package	1 E	Evaluates
products						
MAPPING	WITH PROGRAMME OUTCOM	ES AND PROGR	AMME S	PECIFIC O	UT	COMES

Os	01	O2	O3	04	05	O6	07	08	O9	O10	011	012	SO1	SO2	SO3
01															
02															
03															
04															
05															
	S- Str	ong; N	I-Med	ium; L	-Low	1			1						

#### **CEREALS, MILLETS AND BEVERAGES:**

Structure, processing, storage, use in various preparation, variety, selection and cost. Cereal products in breakfast, fast food Beverages: Tea; Coffee. Chocolate and Cocoa Powder-Processing, cost and nutritional aspects, other beverages and juice **PULSES AND LEGUMES:** 

Pulses and legumes storage, Processing, use in different preparations, Nutritional aspects and cost. Food Adjuncts: Spices, condiments, herbs, extracts; concentrates essences, food colours.

#### MILK AND MILK PRODUCTS, RAISING AGENTS:

Composition, Classification, Selection Quality and Cost, Processing, Storage and uses in different preparations, Nutritional aspects, shelf life and spoilage. Raising and Leavening agents: Types, constituents, uses in cookery, bakery and storage.

#### EGGS, MEAT, FISH, POULTRY:

Egg - Production, grade, quality selection, storage and spoilage, cost nutritional aspects and use in different preparations. Meat, Fish and Poultry: Types, Selection, Purchase, Storage, Uses, preparations Cost, Spoilage of fish Poultry and meat. **VEGETABLES, FRUITS, SUGAR PRODUCTS:** 

Variety, Selection, purchase, storage, availability causes and nutritional aspects of raw and processed products. Sugar and sugar Products: Types of natural sweeteners, manufacture, selection, storage and use as preservatives, stages in sugar cookery.

#### **TEXT BOOK**

1. Food commodities, Bernard Davis, 1991, Butterworth-Heinemann Publisher.

#### **REFERENCE BOOKS**

Food and beverage management, Bernard Davis, Andrew Lockwood, LoannisPantelidis, Peter 1. Alcott, 5th edition, Wilmington Media.

Irradiation of Food commodities, Loannis Arvanitoyannis, 1st Edition, Elsevier. 2.

#### **COURSE DESIGNERS:**

.No	Name of the Faculty	Designat ion	Department	Mail ID										
	Dr. J.Madhusudhanan	Associate Professor	Biotechnology	madhusudhanan.biotech@avit.ac.in										
	Dr.R.Balachandar	Assistant Professor	Biotechnology	balachandar.biotech@avit.ac.in										
							Category	/	L	Т	Р	Credit		
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------	-------------------------------------------------------------	----------	-------------	------------	------------	------------	----------	----------	-----------	----------	-----------	-----	--
	NUTRI	JTRITIONAL BIOCHEMISTRY     EC (SE)     3     0     0     3												
PREAMBLE:														
Exhibiting const	ant enha	ncemer	nt in t	heir pro	ofession	thre	ough life	e-long	learning	g thereby	v escala	ating hur	nan	
wellness either as sovereig	gn patient	counse	ellors o	or as a tea	am with	mul	tidiscipli	inary he	althcare	e approac	h			
PREREQUISITE: Not F	lequired													
COURSE OBJECTIVE	S:													
1. Augment the knowledg	e of bioch	nemistr	y acqu	ired at th	ne under	grad	luate leve	el.						
2. Understand the mechan	isms adoj	oted by	the hu	man bod	dy for rea	gula	tion of n	netaboli	c pathw	ays				
3. Develop an insight into	interrelat	ionship	os betw	een vari	ious meta	abol	ic pathw	ays						
4. Understand integration	of cellula	r level	metabo	olic even	nts to nut	tritic	onal diso	rders an	d imbal	ances				
5. Become proficient for s	pecializat	ion in	nutritic	on										
COURSE OUTCOMES	DURSE OUTCOMES:													
CO1.Understand integrati	on of cell	ular lev	vel met	abolic ev	vents to	nutr	itional di	isorders	and		Unde	erstand		
imbalances.			•	••••							TT. 1.			
CO2.Become proticient for specialization in nutritionUnderstandCO3.Gain in-depth knowledge of the physiological and metabolic role of macronutrients, fat solubleUnderstand														
vitamins and electrolytes and their importance in human nutrition.														
CO4.Enable the understa	nding of	basis	of hun	nan nutr	ritional 1	requ	irements	and re	comme	ndations	Unde	erstand		
through the life cycle and	translate	the kno	wledge	e into pra	actical g	uide	elines for	dietary	needs					
CO4.Familiarize with the	e recent a	dvance	es in n	utrition	and app	oly 1	this know	wledge	in plan	ning for	Anal	yze		
public health programmes														
MAPPING	WITH P	ROGR	AMM	E OUT(	COMES	5 AN	D PRO	GRAM	ME SP	ECIFIC	OUTC	OMES		
			1							1		1	1	
Os O1 O2 O3	O4	05	O6	07	08 0	<b>D</b> 9	O10	011	012	SO1	SO2	SO3		
01														
02														
													1	
04													-	
05														
S- Strong; M-Me	aıum; L·	LOW												

# SYLLABUS:

#### **INTRODUCTION:**

Definition, objectives, scope and inter relationship between biochemistry and other biological science. **ENZYMES:** 

Definition, types and classification of enzymes, definition and types of coenzymes, Functions of coenzymes and cofactors, Specificity of enzymes, Isozymes,

#### **ENZYME KINETICS:**

Factors affecting enzyme action, velocity of enzyme catalysed reactions, regulations of enzyme activity, zymogen, allosteric enzymes, enzyme inhibition.

#### **INTERMEDIARY METABOLISM:**

Carbohydrate Metabolism, Glycolysis, TCA cycle & energy generation, HMP Shunt pathway, gluconeogenesis, glycogenesis, glycogenolysis, blood sugar regulation.

#### LIPIDS:

Oxidation and biosynthesis of fatty acids (saturated & mono-unsaturated), Synthesis and utilization of ketone bodies, Ketosis, fatty livers, Essential Fatty acids, Cholesterol and its clinical significance.

#### **TEXT BOOK:**

1. Nutritional Biochemistry and Metabolism, Maria C. Linder, 2nd Edition, 1985, Prentice Hall Publisher.

#### **REFERENCE BOOKS:**

1. 2. Introduction of Nutrition and Metabolism, David A. Bender, Shauna M.C.Cunninghan, 6th Edition, CRC Press.

3. Introduction to Nutrition and Metabolism, David A. Bender, 5th Edition, CRC Press

#### **COURSE DESIGNERS:**

.No	Name of the Faculty	Designat ion	Department	Mail ID
	Dr. J.Madhusudhanan	Associate Professor	Biotechnolog y	madhusudhanan.biotech@avit.ac.in
	Dr.R.Balac handar	Assistant Professor	Biotechnolog y	Balachandar.biotech@avit.ac.in

		IN	FRODI	ICTIO	N TO	FOOD	) SAFI	ETY		Cate	gory	L	Т	Р	Crec	lit
						1002				EC (SE	E)	3	0	0	3	
	PREA	MBL	E		_							_				
	Food	l is an	indispen	sable pa	art of oi	ur life a	nd safe	ety of f	food is	s of mo	re con	cern. I	Hence	e this	cours	e aims to
provid	le funda	menta	ls about	food sa	fety me	asures,	storage	e and f	ood. T	his pro	gramr	ne is a	lso d	esign	ed to a	levelop a
practio	cal "han	ds on	training"	in food	l safety	and qua	ality.									
	PREI	RQUIS	SITE – N	Nil												
	COU	RSE (	OBJECT	IVES												
		То	understa	nd abou	it the in	portan	t param	eters of	of food	l safety	syste	ms.				
		То	Demonst	trate pro	oper per	sonal h	ygiene	proce	dures	with reg	gard to	o food	hand	ling		
	To build fundamental knowledge of food additives; provide role of factors influencing the activity of food additives in food															
	COURSE OUTCOMES															
	On the successful completion of the course, students will be able to															
-	CO1	$\frac{1}{T_{0}}$	essiul co	mpletio	$\frac{1}{t/iden}$	$\frac{1}{1}$ course	, stude	nts wil	I be at	ble to					Un	dorstand
	CO1. To explain the concept/idea of food safety Understand															
	CO2.	To des	scribe the	e major	causes	and imp	pact of	food s	afety						Un	derstand
busine	CO3. ss oper	To ide	entity the	e challe	enges to	o food	safety	in th	eır pa	rticular	kind	of fo	od		Ap	ply
	CO4.	To illı	istrate by	v examp	ole the t	ypes of	food st	orage	and th	eir dist	inguis	hing			Ap	ply
charac	$\frac{\text{ceristics}}{\text{CO5}}$	s Fo Ch	aracterist	ics of f	ood con	taminat	tion								An	alvze
		PING	WIIH	PROG	KAMIN			ES AF	ND PR			E SPE	CIFI			DMIES
OS	01	PO2	O3	F O4	O5	O6	07	08	O9	PO10	011	PO12	P	801	SO2	SO3 P
01		-		-								-	2	S		-
O2		М	]	L								М	2	S		М
03		М		s								-	]	М		М
CO4	CO4 S N - S L															
05		М	]	N								S	3	S		М
	S- Strong; M-Medium; L-Low															

## SYLLABUS

INTRODUCTION : PHN Definition of PHN, Levels of health care services

**FOOD SAFETY AND STORAGE**: Concept of food safety, Key terms, factors affecting food, safety, recent concerns Food safety measures: basic concept of HACCP. Safe food handling practices and storing food safety, Food additives.

#### FOOD ADULTERATION:

PFA definition of food adulteration, Adulterants in commonly consumed food items. Accidental contamination: botulism, staphylococcal and aflatoxin intoxication

#### FOOD PACKAGING AND LABELLING

Food packaging and its need, selection of packaging material, Package environment, Importance of food labels in processed foods and nutritional labelling

#### FOOD LAWS:

Food laws, regulations and standards- Codex Alimentarius - Prevention of Food Adulteration (PFA) Act - Agmark

- Fruit Products Order (FPO) - Meat Products Order (MPO) - Bureau of Indian Standards (BIS) - MMPO - FSSAI

#### **TEXT BOOKS:**

1. Sethi P and lakra P Aahaar vigyaan , Poshan evam Suruksha, Elite Publishing house, 2015.

2.Khanna K et al. Textbook of Nutrition and Dietetics;2013; Phoenix Publisher.

#### **REFERENCE BOOKS:**

1.Sharma S, Wadhwa A. Nutrition in the Community- A textbook; 2003; ElitePublishing House Pvt. Ltd. 2.Srilakshmi B. Dietetics; Fourth Ed; 2002; New Age International (P) Ltd.

3. Bamji MS, Rao NP, and Reddy V. Text Book of Human Nutrition; 2009;Oxford & IBH Publishing Co. Pvt Ltd. 4. The Food Safety and Standards Act along with Rules and Regulations. Delhi:□ Commercial Law Publishers (India) Pvt Ltd, 20116.Reddy V, Prahlad RaoN, Sastry G and Nath KK, Nutrition trends in India, Hyderabad, NIN,1993

	<b>COURSE DESIGNERS</b>								
S. No.	Name of the Faculty	Designation	De	epartment			Mail	ID	
		Associate	Bio	otechnolog		praba	asheela	@avit.	ac.
	Dr.B.Prabasheela	Professor	У	_	in	_			
	Dr.M.Sridevi	Professor &	Bio	otechnolog		sride	vi@vm	kvec.a	ıc.i
		Head	У		n				
	COMMUNI	<b>FY HEALTH AND</b>		Ca	ategor				

		NU	<b>FRITI</b>	DN						У					redit
											EC (SE)				3
in con	PREA This nmunity	MBLE course for health an	ocuses ond the pr	on comm reventive	unity we	ellness a tive and	nd also curativ	empha e role o	nzises ti of diet i	he role of r n health	nutrition	as a ma	jor mo	difia	ble factor
	PRER	QUISIT	<b>FE – Ni</b>	1											
	COU	RSE O	BJECT	IVES											
		Unde	erstand	the conc	ept of l	nealth fi	rom the	indivi	dual a	nd commu	inity per	spectiv	e.		
	and j	Unde preventi	erstand	the com	mon nu	tritiona	l probl	ems of	the co	mmunity	their cau	ises, sy	mpton	ns, tr	eatment
		To k	now the	e scheme	es, prog	rammes	s and p	olicies	of Go	vernment	of India	to Con	ibat M	alnu	trition
	COU	RSE O	UTCO	MES											
	On the	e succes	ssful co	mpletion	n of the	course,	studer	nts will	be abl	e to					
comn	CO1. nunity.	To unc	lerstand	l the co	ncept o	of healt	h care	delive	ery at	different	levels i	n a		Unde	erstand
comn	CO2. nunicabl	To desc le diseas	ribe the ses and	e major o their pa	causes a	und imp	act of c	commu	nicabl	e and non-	-			Unde	erstand
health	CO3.7	Fo asseness and	ess and d factor	underst s contrib	and the	e healtl o health	h statu promo	s of p otion a	opulat nd dise	ion, deter ase prevei	minants ntion	of		Appl	IJ
comn	CO4. nunities,	To iden using c	tify and clinical,	l monito dietary,	r malnu anthro	itrition pometri	and hu	nger in piocher	indivi nical n	duals and neasures				Appl	IJ
	CO5.7	Fo asses	ss, mon	itor and	evaluat	e the in	npact of	f publi	c healt	h program	s .			Anal	yze
	MAP	PING V	WITH 1	PROGR	AMM	E OUT	COMI	ES AN	D PR(	OGRAM	AE SPE	CIFIC	OUT	CO	MES
COS	PO1	PO2	PO3	PO4	05	O6	07	08	09	P O10	011	012	I SO1	S O 2	P SO3
CO1	S									-	-		-		-
CO2	S									-	-		1		М
CO3	S									-	-		-		М
CO4	S									-	-		-		М
CO5	S									-	-		5		М
S- Sti	ong; M	-Mediu	m; L-Lo	ow		1	1		I			1	1		
SYLI CON factor	ABUS CEPT O s affectir	F COM	MUNIT of the c	<b>ГҮ НЕА</b> communi	<b>LTH &amp;</b> ty. Heal	NUTR th Care-	<b>ITION</b> Levels	<b>CONC</b> of heal	EPT C	<b>)F COMM</b> - Primary H	UNITY Iealth Ca	- Types are- Prin	of com	mun alth	uity, care,

health care delivery, National immunization schedule, Role of public nutritionist in health care delivery.

# **NUTRITIONAL PROBLEM OF COMMUNITY NUTRITIONAL AND NON- NUTRITIONAL-** Incidence of nutritional problems, signs, symptoms and treatment- Protein Energy Malnutrition-Micro Nutrient deficiencies (Vit-A, Iron, Iodine and Zinc), Fluorosis. Communicable Diseases -cholera, polio, measles, HIV. Impact of NCD's on public health :Obesity, DM 2, CVD, Cancers and Osteoporosis and hip fractures.

**DEMOGRAPHY, NUTRITION AND QUALITY OF LIFE** Demographic cycle- Population trends in India- Population structure- sex composition Age composition- Fertility behavior- Vital statistics in vulnerable groups ,population growth (Maternal Mortality rate, Infant Mortality Rate, Net Reproduction Rate). Causes of malnutrition, consequences of malnutrition, Intervention in malnutrition- Food security- PDS ,Food production- Food Pricing

**METHODS OF ASSESSING NUTRITIONAL STATUS**: Sampling techniques, Identifications of risk groups, Direct assessment - Diet surveys, anthropometric, clinical and biochemical estimation. Indirect assessment- Food balance sheet, ecological parameters and vital statistics. Improvement of nutrition of a community: Modern methods of improvement or nutritional quality of food, food fortification, enrichment and nutrient supplementations. Nutrition education themes and messages in nutrition and health, Antenatal and postnatal care.

**NATIONAL AND INTERNATIONAL AGENCIES IN UPLIFTING THE NUTRITIONAL STATUS** -WHO, UNICEF, CARE, ICMR, ICAR, CSIR, CFTRI. Various nutrition related welfare programmes, ICDS, SLP, MOM, NIPPCD Fortification and Enrichment of foods.

#### **TEXT BOOKS:**

1. Bamji SM, Rao NP and Reddy V, Text book of human nutrition, oxford and IBH publishing co., New Delhi.

2. Gopalan C,Combating undernutrition-basic issues and practical approaches, Nutrition Foundation of India,1987. **REFERENCE BOOKS:** 

1. Michael.J.G,Barrie.M.M:Public health nutrition,Blackwell publishing,2005.

2. Nweze Eunice Nnakwe.,Community Nutrition – planning health promotion and disease prevention., Jones And Bartlett publishers, 2009.

3. Park.K,Park's textbook of preventive and social medicine.,12th edition.M/S Banarsidas bhanot publishers,2009.

4. 6.Reddy V, Prahlad RaoN, Sastry G and Nath KK, Nutrition trends in India, Hyderabad, NIN,1993

	COURSE DESIGNERS			
S . No.	Name of the Faculty	Designation	Department	Mail ID
	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.ac.in

				BAS	IC DI	ETET	ICS			Categ	gory	L	Т	Р	Credit
										EC (	SE)	3	0	0	3
PREAM	MBLE		(1	1	1.		41 - 1 -			<b>f</b> 1'- 4			т	<b>.</b>	
I nis co	ourse ei	nables	the stu	dents t	o unde	erstand	the ba	sic pr	incipie	es of diet	and die	et thera	ipy. I	nis pi	rogramme
is also c	lesigne	d to dev	velop a	practica	al "hand	ls on tra	aining"	in diet	tary the	erapies.					
PRER(	QUISIT	T <b>E</b> – Ni	i1												
COUR	COURSE OBJECTIVES														
	1 To understand the foundation sciences which underpin therapeutic dietetic practice, the principles of disease prevention and health promotion, the principles of therapeutic intervention practice														
$\begin{array}{ c c } 2 & T \\ c \\ c \\ \end{array}$	2 To understand the organization, management and provision of healthcare both in the hospital and in primary care														
3 G	3 Gain knowledge about aetiology, risk factors, clinical features and hospital dietary management														
COUR	COURSE OUTCOMES														
On the s	On the successful completion of the course, students will be able to														
CO1. T	CO1. To understand the dietary treatment related to pathophysiology. Understand														
CO2. T	CO2. To describe the choice of dietary need to various disease patients in the hospital Understand														
CO3.To and fact	o assess tors con	and un	nderstar ng to he	nd the halth pro	nealth somotion	tatus of and di	f popul sease p	ation, reventi	determ ion	inants of	health a	nd illn	ess	Apply	r
CO4. To making to nutrit	o apply skills v tion inte	technic vhen as erventic	cal skill sessing on.	s, know and ev	vledge o aluating	of healt	h behav tritiona	vior, cla al statu	inical j s of dis	udgment, seases an	and dec d their r	ision- esponse	e 4	Apply	,
CO5. T	o provi	de nutri	ition co	unselin	g and e	ducatio	n to inc	lividua	ls,.				4	Analy	ze
MAPPI	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO	GRAN	AME SPI	ECIFIC	OUTC	COMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	$1 \frac{\text{PS}}{\text{O2}}$	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	S	М	-
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO3	S	М	S	-	S	-	-	-	-	-	-	-	Μ	-	М
CO4	CO4 S S M - S S M L														
CO5	S	М	М	-	М	-	-	-	-	-	-	S	S	Μ	М
S- Stror	S- Strong; M-Medium; L-Low														

#### SYLLABUS

**ROLE OF DIETARIAN**: The hospital & community,Basic concepts of diet therapy. Principles of diet therapy & therapeutic nutrition for changing needs. Adaptation of normal diet for changing needs.

**ROUTINE HOSPITAL DIETS** - Regular diet, light diet, full liquid and tube feeding. Modification of diet -Febrile conditions, infections and surgical conditions. Diets for gastro - intestinal disorders, constipation, diarrhoea, peptic ulcer. Diet for renal diseases - Nephritis, Nephrotic syndrome and renal failure.Diet for obesity and cardiovascular disorders. Diet for Diabetes mellitus.Diet & nutrition in kidney diseases. Nutrition in cancer. Nutrition in Immune system dysfunction, AIDS & Allergy.Nutrition support in metabolic disorders. Nutrition in burns and surgery. Nutrition - Addictive behaviour in annorexia, nervosa, bulimia & alcoholism. Nutrient drug interaction.

**FEEDING THE PATIENTS** - Psychology of feeding the patient, assessment of patient needs. Feeding infants & children - problems in feeding children in hospitals. Nutrition & diet clinics - Patients checkup and dietary counseling, educating the patient and follow up.

#### **TEXT BOOKS:**

- 1. Textbook of Human Nutrition by Agrawal, Udipi
- 2. Textbook of Nutrition & Dietetics by Kumud Khanna
- 3. Basics of Clinical Nutrition by Y.K.Joshi.

#### **REFERENCE BOOKS:**

- 1. Nutrition and Diet Therapy by Corroll lutz & Karen Przytulski
- 2. Antia, F.P. (2005): Clinical Nutrition and Dietetics, Oxford University Press, Delhi
- 3. Dietetics by B .Srilakshmi
- 4. Principles of Nutritional Assessment by Rosalind S. Gibso

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.ac.in

	NUTRITIONA	L BIOCHEMISTR	Y LAB	Category	L	Т	Р	Credit		
				EC (SE)	0	0	4	2		
<ol> <li>Quar</li> <li>Quar</li> <li>Quar</li> <li>Quar</li> <li>Estin</li> <li>Estin</li> <li>Estin</li> <li>Estin</li> <li>Estin</li> </ol>	ntitative estimation of Sugars ntitative estimation of lactose ntitative estimation of starch nation of acid value, nation of iodine value, nation of saponification valu nation of blood Glucose nation of serum cholesterol	e e of fats								
COUR	SE DESIGNERS									
S. No.	Name of the Faculty	Designation	Depa	rtment		Mail	ID			
1	Dr. J.Madhusudhanan	Associate Professor	Biotechno	ology t	madhusu t.ac.in	dhanan	.biot	ech@avi		
2	2 Dr.R.Balachandar Assistant Professor Biotechnology Balachandar.biotech@avit.ac									

		DI	ETETICS LAB	Category	r	L	Т	Р	Credit	
					EC (SE)		0	0	4	2
PRAC	TICAL	1 1				•				
	I. Stan	dardization of commo	on food preparations.							
	2. Plan	ning, preparation and	calculation of followin	g diets :						
	a) Norr	nal diet.								
	b) Liqu	id diet								
	c) Soft	diet								
	d) High	and low caloric diet								
	e) Blan	d diet for peptic ulcer	ſ							
	f) Diet	for Viral hepatitis and	d cirrhosis							
	g) Die	t for Diabetes mellitu	s							
	h) Die	t for Hypertension								
	i) Anae	emia								
COUR	SE DES	SIGNERS								
S. No.	Nan	ne of the Faculty	Designation	Depa	rtment			Mail	ID	
	Dr IN	Iadhusudhanan	Associate Professor	Biotechno	logy	mad	lhusud	hanan	.biot	ech@avi
	D1. J.N	naunusuunanan	155001400 1 10105501	Biotechine	105y	t.ac.	in			
		Palachandar	Assistant Professor	Riotochno	logy	Bala	achanc	lar.bio	tech	@avit.ac
2		alacilaliual	Biotechnology		.in					
L	1									

# SPECIALISATION – BIOLOGICAL COMPUTING

			ART	IFICIA EX	L INT	ELLIC SYSTI	GENCE	E AND			Category		T	Р	Credit
					ILNI	51511					EC (SE)		0	0	3
PREAN This syl contains represen know ab PRERE COURS	<b>IBLE</b> labus is intellig tout AI a <b>QUIST</b> <b>E OBJ</b> To iden	intend gent ag ledge an and its o <b>TE</b> <b>ECTIV</b> itify the	ed for ent, Ki nd in m concept /ES kind o	the Eng nowledg achine s, appli	gineerin ge Repu learnin cation.	g stude resentat g conta	ents and tion an in som	l enable d Mach e impor using A	e them nine lea rtant pr AI techn	to lean arning, ediction	about Arti and applic method. 7	ficial Int cation. V Thus, thi relation	telligend Vhich is s syllab between	ce. This s useful us focus	syllabus to how es on to other
2.	To have	e knowl	ledge of	generi	c proble	em-solv	ving me	thods in	ı AL.						
3.	TO Des	sign sof	tware a	gents to	$\sim$ solve a	a proble	em.								
4.	Apply t	he know	wledge	of algo	rithms t	o solve	arithm	etic pro	blems.						
5.	Assemt	ole an e	fficient	code fo	or engin	eering	problen	ns.							
COURS	SE OUT	COM	ES				p100101								
On the s	uccessf	ul comp	oletion	of the c	ourse, s	tudents	will be	able to	)						
<b>CO1:</b> . ]	Identify	the di	fferent	agent	and its	types	to solve	e the p	roblem	S		Underst	and		
<b>CO2:</b> k	now at	out the	e probl	em sol	ving te	chniqu	e in Ar	tificial	Intelli	gence.		Apply			
CO3: (	Constru	ct the r	ormal	form a	nd repr	resent	the kno	wledg	e.			Apply			
CO4: to time en	o know vironm	about ent.	extensi	on of c	conditio	on prol	bability	and h	ow to a	apply in	the real	Apply			
<i>CO5:</i> to	lean ab	out Info	ormatio	n Retrie	eval and	l Speec	h Recog	gnition				Underst	and		
	MAF	PPING	WITH	PROG	RAMN	AE OU	TCOM	IES AN	D PRO	OGRAN	AME SPE	CIFIC (	OUTCO	OMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М		L					L	L	L	L		
CO2	М	М	L	L	L					М		L		L	S
CO3	М	М	L	L		М				L				М	
CO4	М	S	L			L				L		М	Μ		М
CO5	М	L				М				М	М	L	S		
S- Stron	g; M-M	edium;	L-Low												

#### **INTRODUCTION**

#### Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents- simplex reflex agent, model based agent, utilized based agent, learning agent, agent environments.

#### **PROBLEM SOLVING**

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

#### **KNOWLEDGE REPRESENTATION**

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

#### MACHINE LEARNING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-SupervisedLearning.

#### **APPLICATIONS OF AI IN BIOTECHNOLOGY**

Drug discovery-diagnosis of disease -radiation therapy planning process-Evidence based medicine and clinical decision support systems designed on the machine learning platform-Medication Management

#### **TEXT BOOKS**

1. S. Russell and P. Norvig, "Artificial Intelligence - A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc: 4th Edition, 2011.

2. Artificial Intelligence in Biotechnology Hardcover – Import, 30 December 2020by Preethi Kartan

#### REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press. 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.
2	Dr.Nithya	Professor	CSE	Nithya@vmkv.ac.in

# 9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

				ПАТ	л сті	топ	TIRES		(	CATEG	GORY	L	Т	Р	CRI	EDIT
				DAL	A 011	NUCI	UKES		EC (SE) 3 0 0 3							
PRE. This struct	<b>PREAMBLE</b> This course aims at understanding the basic concepts in programming structures, linear structures and non linear structures															
PRE NIL	RQUIS	ITE														
COU	RSE O	BJEC	TIVES	5												
1.	I.         I o remember and understand the basic concepts in linear structures           2.         To been about tree structures															
2.	To learn about tree structures.															
3.	To understand about balanced trees															
4.	To leas	rn abo	ut hash	ing and	sets.											
5.	To leas	rn and	unders	tand abo	out gra	phs										
COU	RSE O	UTCO	OMES													
On th	e succe	ssful c	complet	ion of th	ne cour	se, stu	dents wil	ll be ab	le to							
CO1.	O1. Able to remember the basic concepts in linear structures       Remember and Understand															
CO2.	CO2. Able to learn about tree structures and tree traversals Understand															
CO3.	CO3. Able to understand about balanced trees Understand															
CO4.	CO4. Able to learn about hashing and sets. Remember and Understand															
CO5.	Able t	o lear	n and u	nderstar	nd abou	ıt grap	hs				A	pply				
MAP	PING	WITH	I PROG	GRAM	ME OU	JTCO	MES AN	ND PR	OGRA	MME	SPECI	FIC C	OUTCO	MES		
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12 PS	501	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S		L	L
CO2	S	М	L	-	-	-	-	-	-	-	-	-	S		L	L
CO3	S	М	М	-	М	-	-	-	-	-	-	-	S		М	-
CO4	S	М	М	-	М	-	-	-	-	-	-	-	S		L	-
CO5	S	М	М	-	М	-	-	М	М	-	-	М	S		L	-
S- St	rong; M	-Medi	um; L-	Low												<u>.</u>
SYL	LABUS															
Linea imple – cir	<b>Linear Structures :</b> Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.															
Tree	<b>Tree Structures :</b> Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.															

Balanced Trees : AVL Trees – Splay Trees – B-Tree - heaps – binary heaps – applications of binary Heaps .

Hashing and Set : Hashing - Separate chaining - open addressing - rehashing - extendible hashing -Disjoint Set ADT - dynamic equivalence problem - smart union algorithms - path compression applications of Set.

Graphs: Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree - Prim's and Kruskal's algorithms - Depth-first traversal - bi-connectivity - Euler circuits applications of graphs.

#### **TEXT BOOKS**:

1. M. A. Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education.

#### **REFERENCES:**

- 1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First Edition Reprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition,

COU	RSE DESIGNERS			
S.N	Name of the Faculty	Designation	Department	Mail ID
0.				
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Mrs. R. Latha	Assistant Professor	CSE	rlatha@avit.ac.in
3.	Dr. M. Nithya	Prof & Head	CSE	nithya@vmkvec.edu.in
4.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam @ vmkvec.edu.in

		БАТ	TARAS	F MAN	JAGEN	/FNT	SVSTE	м	Cate	gory	L	Т	Р	Cr	edit
		DAI	ADAS		AUEN		SISIE		EC (	SE)	3	0	0		3
PREAM	PREAMBLE:														
This cour	se aims	at facil	litating	the stuc	lent to u	underst	and the v	various	concep	ots and fu	inctiona	alities of	Databa	se	
Managen	nent Sys	tems, t	he meth	nod and	model	to store	e data an	d how	to mani	ipulate th	em thr	ough que	ry lang	uages, t	he
effective	designii	ng of re	elational	l databa	ise and	how the	e system	manag	ges the	concurre	nt usag	e of data	in mult	i user	
environm	ent.	TT.													
NIL	QUISI	IE:													
COURS	E OBJ	ECTI	VES												
1	Descrit	oe a rela	ational	databas	e and o	bject-o	riented d	latabas	e.						
2	Create,	mainta	in and	manipu	late a re	elationa	ıl databa	se usin	g SQL.						
3	Descrit	be ER r	nodel a	nd norn	nalizati	on for c	latabase	design	•						
4	Examir	ne issue	es in dat	a storag	ge and c	luery p	rocessing	g and c	an forn	nulate ap	propria	te solutio	ons.		
5 Design and build database system for a given real world problem.															
COURSE OUTCOMES															
On the s	uccessf	ul con	pletior	n of the	cours	e, stud	ents wil	l be al	ble to						
CO1. Illı	istrate t	he data	abase d	esign fo	or appli	cation	s and us	e of El	R Diagi	am.		Apply			
CO2. Bu	ild and	manipu	late rela	ational	databas	e using	s Structu	red Qu	ery Lan	iguage ar	nd	Apply			
$CO_{2}$ Do	valor	ges.	lized de	tabasa	for a gi	uon onr	liantion	huina	ornorati	navorio	10	Apply			
constrain	ts like ii	ntegrity	and va	lue con	straints	ven app	meation	by me	orporati	ing vario	us	nppiy			
CO4. Ap	ply con	curren	cy cont	rol & r	ecover	y mech	anism f	or data	base pi	oblems.		Apply			
CO5. Co	nstruct	data st	ructure	s like i	ndexes	and ha	sh table	s for tl	ne fast i	etrieval	of	Apply			
data.															
MAPPI	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	-	S	S	-
CO2	S	S	-	-	-	L	-	-	-	-	-	-	S	L	L
CO3	М	S	-	-	-	-	-	-	-	-	-	-	S	L	-
CO4	CO4 S S - L - L L S S -														
CO5	CO5 S S S M -														
S- Strong	g; M-M	ledium	; L-Lo	W			· · · · ·								
SYLLA	BUS														

#### INTRODUCTION

Database System Applications - Views of data - Data Models - Database Languages -Modification of the Database - Database System Architecture - Database users and Administrator- Introduction to relational databases - Structure of Relational Databases - Entity-Relationship model (E-R model) - E-R Diagrams.

#### **RELATIONAL APPROACH**

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals - Structure of SQL Queries SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases.

#### DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies -

Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form- Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

#### TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery - Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols - Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

#### STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing -Query Processing - Catalog Information for Cost Estimation – Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

#### **TEXT BOOKS:**

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fourth Edition, Tata McGraw Hill, 2002.

#### **REFERENCES:**

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fourth Edition, Addision weskey, 2002.
- 2. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management, Fifth Edition, Thompson Learning, Course Technology, 2003.

COURSE DESIGNERS											
S.No	Name of the faculty	Designation	Department	Mail Id							
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@ vmkvec.edu.in							
2	Mrs. T. Geetha	Assistant Professor	CSE	geethat@vmkvec.edu.in							

			INTF	CRNE	Г ОF Т	HING	S API	PLICA	TION	s c	Category	L	Т	Р	Credit
											EC (SE)	) 3	0	0	3
<b>PREAN</b> To study	<b>IBLE</b> y and un	derstan	d the te	chnolog	gies inv	olved i	n Intern	et of T	hings (I	oT) and a	pply the	m practic	ally.		
PRERE	QUISI	TE: NI	L												
COURS	SE OBJ	ECTIV	/ES												
1.	To unde	erstand	the bas	ic conce	epts of l	IOT									
2.	• To study the methodology of IOT														
3.	To Dev	elop IO	) T appli	cations	using F	Raspber	ry PI								
4.	4. To Develop IOT applications using Arduino and Intel Edison														
5.	<ol> <li>To apply IoT concept in various areas.</li> </ol>														
COURS	SE OUT	COM	ES												
On the s	uccessf	ul com	oletion	of the c	ourse, s	tudents	will be	able to	)						
<b>CO1:</b> A	Able to	unders	tand ba	isics in	IOT							Understa	and		
<b>CO2:</b> A	Able to	unders	tand M	lethod	ology i	n IOT						Understa	and		
<b>CO3:</b> A	Able to	design	IOT a	pplicat	ions us	sing Ra	spberr	у				Design			
<b>CO4</b> : A	ble to	design	IOT ap	oplicati	ons usi	ing Au	rdino a	and Inte	el Ediso	on		Design			
<b>CO5:</b> A	Able to a	pply IC	DT in he	ealth, ag	ricultu	e etc.,						Apply			
	MAP	PPING	WITH	PROG	RAMN	IE OU	TCOM	IES AN	D PRC	OGRAM	ME SPE	CCIFIC (	OUTCO	OMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSC	2 PSO3
CO1	M	M	100		100	200	10.	100	107	L	L	L	М	L	
CO2	М	М		L						М		L	L	М	
CO3	М	М	L	L		М				М				Μ	М
CO4	Μ	S	L			L				L		М	Μ		
CO5	М	L				М					S	L			Μ
S- Stron	g; M-M	edium;	L-Low												

### SYLLABUS

#### INTRODUCTION

Introduction-Characteristics-Physical design - Protocols – Logical design – Enabling technologies – IoT Levels – Domain Specific IoTs – IoT vs M2M.

#### IOT METHODOLOGY

 $IoT\ systems\ management-IoT\ Design\ Methodology-Specifications\ Integration\ and\ Application\ Development.$ 

#### IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

#### IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

#### APPLICATIONS

Home automation, Smart cities, Environment, Energy, Retail Management, Logistics, Agriculture, Industry applications, Oil and gas, Big data, Health and Lifestyle Surveillance applications, Green house.

#### **TEXT BOOKS**

Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.
 Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

#### REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

UUUKSE	
000101	

S. N 0.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.				

OBJECT ORIENTED	Category	L	Т	Р	Credit
PROGRAMMING	EC (SE)	3	0	0	3

#### PREAMBLE

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions.

#### PRERQUISITE Nil

<b>COURSE</b>	OBJECTIVES
COCHOL .	

1	To implement the concepts of object oriented programming.
2	To learn the syntax and semantics of C++ programming language
3	To design C++ classes for code reuse, Constructors and member functions
4	To learn how inheritance and virtual function implement dynamic binding with polymorphism
5	To learn and implement the concepts of Templates and Exception handling

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

 CO1. Construct object-oriented programs for a given scenario using the concepts of abstraction, message-passing and modularity.
 Apply

 CO2. Develop object-oriented programs for a given application using the concepts of compile-time and run-time polymorphism.
 Apply

 CO3. Construct object-oriented programs for a given application by using constructors
 Apply

 CO4. Develop object-oriented applications that can handle exceptions.
 Apply

CO5. Construct object-oriented applications for a given scenario to persist data using files and Apply object-serialization.

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	-	-	-	-	М	М	L	L	L	S	М	-
CO2	S	S	М	-	-	-	-	М	М	L	L	L	S	S	L
CO3	S	S	М	-	-	-	-	М	М	L	L	L	S	L	L
CO4	S	S	L	-	-	-	-	М	М	L	L	L	S	S	-
CO5	S	S	М	-	-	-	-	М	М	L	L	L	S	М	-
a a.															

#### S- Strong; M-Medium; L-Low

#### SYLLABUS

### INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

#### **OBJECT INITIALIZATION AND FRIEND FUNCTION**

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

#### **OVERLOADING AND GENERIC PROGRAMMING**

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keyword- limitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

#### INHERITANCE AND VIRTUAL FUNCTION

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function .

#### **EXCEPTION HANDLING AND STREAMS**

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file-file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

#### **TEXT BOOKS:**

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

#### **REFERENCES:**

1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

#### **COURSE DESIGNERS**

0001				
S.No	Name of the faculty	Designation	Department	Mail Id
1	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

<b>BIOINFORMATICS TOOLS AND</b>	<b>SOFTWARES</b> Category	L	Т	Р	Credit
	EC (SE)	3	0	0	3

#### PREAMBLE

Bioinformatics is information technology applied to the management and analysis of biological data with the aid of computers. It is the science of using information to understand biology. It is a field in which biological information collected, compared, studied and analyses to find the interrelation between them for solving structural, functional and evolutionary problems using computational technologies. The biological information stored in various databases is available online through internet. Bioinformatics refers to the creation and development of databases, software, computational and statistical techniques and theory to solve problems generated from the management and analysis of biological data. Specific biological problem using computers, carried out with experimental or simulated data. with the primary goal of discovery and the advancement of biological knowledge.

#### **PREROUISITE - NIL**

#### **COURSE OBJECTIVES**

To understandthe most important computer organization and basic concepts, methods and tools used in bioinformatics 1 2

To elucidate the function of genes and proteins based on its structure and utilization of these concepts, algorithms

To illustrate the sequence information sources and to understand the structure of each source

To predict the use of bioinformatics tools to solve the problems on their own research 4

#### **COURSE OUTCOMES**

3

On the successful completion of the course, students will be able to

CO1. To recall the protein sequencing their interaction, activity, modification and their analysis Remember CO2. Find the molecular interactions, gene expression, analysis and prediction Understand

CO3. Analyze, separate, annotate DNA, Protein using tools for further modeling

CO4. Correlate the sequences, analyze with various tools and to find the distances by various methods Analyze CO5. Illustrate the applications in different field, design libraries and to generate molecular libraries Apply

useful for drug discovery

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO02	PSO3	
CO1	S	L	М	-	М	-	-	-	М	-	М	-	L	-	-	
CO2	L	-	L	-	-	-	Μ	-	-	-	-	М	-	L	L	
CO3	Μ	-	М	-	-	-	-	Μ	-	-	L	-	-	-	-	
CO4	L	L	L	S	М	L	-	-	-	-	-	М	-	-	-	
CO5	М	L	М	S	-	М	-	-	-	-	S	-	S	М	М	
a a.	141	A / T 1 ·	тт													

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

#### Introduction to Genes, Proteins and search engines:

Genome Sequences, ORFs, Genes, Introns, Exons, Splice Variants, DNA/RNA Secondary Structure Triplet CodingProtein Sequences, Protein Structure: Secondary, Tertiary, Ouaternary, The notion of Homology, WWW, HTML, URLs, Browsers: Netscape / Opera / Explorer, Search Engines Google, PUBMED, EMBL, GENBANK, Entrez, Unigene, PDB, SwissProt, TrEMBL.

#### Strings, Graphs, Algorithms, alignments:9 hours

Strings, Graphs, Algorithms, Algorithms, Pairwise, Global, Local, Star, tree, Scoring functions, General gap and affine gap penalty, Statistical significance, Multiple Sequence alignment, SP (Sum of Pairs) measure, Motifs and Profile, Alignment Representation and Applications.

#### **Applications of Perl in Bioinformatics:**9 hours

Concatenating DNA Fragments, Transcription: DNA to RNA, Reading Protein Files, Finding Motifs, Simulating DNA, Generating Random DNA, Analysing DNA, Translating DNA to Proteins, Reading DNA from Files in FASTA format, Separating Sequence and Annotation, Parsing Annotation, Parsing PDB files, Parsing BLAST output, Bio-perl. 9 hours

#### Database homology, Modeling of sequence, Structure analysis;

Scoring matrices, BLAST algorithm, Blast versions : Blastp, Blastx, tBlastn, tbalstx, PSI and PHI Blast, Independent and indentically distributed sequences, Markov Chain models, Restriction site, Finding repeats, General Pattern search, DNA and Protein motifs search -Transfac, Prosite, Stem and Loop structure, RNA fold algorithm, Distances and Parsimony methods, Clustering methods, Rooted and Unrooted tree, Bootstrap analysis, PHYLIP.

#### **Applications and Chemoinformatics:9 hours**

#### 9 hours

Understand

Graph theoretical applications in chemistry, Diversity searches and diversity analysis, Algorithms for diversity analysis, Estimation of Physical andChemical properties, Chemometrics, Design of chemical (combinatorial) libraries – Examples of chemoinformatics software. Web based chemoinformatics: Molecular data generated in modern drug discovery efforts, Data, structured numerical annotation /text – overview.

#### **TEXT BOOKS:**

- 1. Arthur M. Lesk (2002) "Introduction to Bioinformatics" Oxford University Press
- 2. T. K. Attwood & D. J. Parry-Smith (2001), "Introduction to Bioinformatics", Pearson Education Ltd, Low Price Edition.
- R. Durbin, S. Eddy, A. Krogh and G. Mitchison, "Biological sequence analysis: Probablistic models of proteins and nucleic acids", Cambridge University Press, 1998 Indian low pricededition.
- 4. Stuart Brown (2000) "Bioinformatics A biologists guide to Biocomputing and Internet". Eaton Publishing
- 5. Bioinformatics: Sequence and Genome Analysis. D. W. Mount (2001) Cold Spring Harbor Laboratory Press.
- 6. Cynthia Gibas and Per Jambeck (2001), "Developing Bioinformatics Computer Skills". O'Reilly press, Shorff Publishers and Distributors Pvt. Ltd., Mumbai.
- 7. J. Gasteiger "Chemoinformatics: A text book" John Wiley and Sons 2003

#### **REFERENCES:**

- 1. Neil C. Jones and Pavel A Pevzner. An introduction to Bioinformatics algorithms MIT Press reprinted by Ane Books, New Delhi 2005.
- 2. Ian korf, Mark yandell& Joseph Bedell. "BLAST". O'Reilly press 2003.
- 3. Bryan Bergeron MD (2003), "Bioinformatics Computing". Prentice Hall India (Economy Edition)
- 4. Setubal Joao and Meidanis Joao, "Introduction to Computational Molecular Biology", PWS Publishing Company (An International Thomson Publishing Company), 1997, Indian lowpriced edition.
- 5. Warren Ewens and Gregory R. Grant, "Statistical Methods in Bioinformatics: An Introduction" Springer-Gerlag 2001.
- 6. Chemoinformatics (Methods in Molecular Biology) Vol. 275 Ed. By Jurgenbajorath. Humana Press 2004

COI	URSE DESIGNERS			
S.	Name of the Faculty	Designation	Department	Mail ID
No				
•				
1.	Dr. J. Madhusudhanan		Biotechnology	madhusudhanan.biotech@avit.ac.in
2.				

														-				
		В	IOINF	ORMA	TICS 2	FOOLS	AND S	OFTW	ARES	Ca	tegory	L	Т	Р		Credit		
						LAB				E	C (SE)	0	0	4		2		
PREA Bioinf and so multic	MBLE formatics oftware lisciplina	s tools a tools fo ary rese	and sof or unde arch is	tware w erstandii commu	ithout r ng biolo nication	elying o ogical da	n any pi ata. Thi	rerequis s ought	ites sind to be	ce it is an on data	n interdis skills is	ciplinary that a n	v field t totable	hat deve difficult	lops y in	methods modern,		
PREF	RQUISI	FE - NI	L															
COU	RSE OU	JTCOM	IES															
On the	e success	sful con	npletion	n of the	course,	students	s will be	able to					1					
CO1.	CO1. To recall the computer basics - hardware, browser, search engines network Remember																	
CO2.	202. To understand the database, their uses and installation													Understand				
CO3.	CO3. To analyze the biomolecules using databases Analyze																	
CO4. To correlate the sequences, structures with software and tools Apply																		
CO5.	Illustrate	e the app	plicatio	ons of al	ignment	t by usin	ig differ	ent web	tool an	d analyz	e		Apply	7				
MAP	PING W	ITH P	ROGE	RAMM	E OUT	COMES	S AND I	PROGR	RAMM	E SPEC	IFIC OU	JTCOM	ES					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSC	002	PSO3		
CO1	Μ	М	L	М	L	М	-	-	-	-	-	-	-	-	-	-		
CO2	L	-	Μ	L	L	-	-	-	-	-	-	-	Μ		-	L		
CO3	S	M	L	M	L	М	-	-	-	-	-	-	-	I	-	М		
CO4	Μ	L	-	M	Μ	-	-	-	-	-	-	-	L		-	-		
CO5	M	-	M	L	-	L	-	-	-	-	-	-	-	N	1	-		
S- Str	ong; M-l	Medium	n; L-Lo	W														
SYLI List o 1. ( 2. 1	ABUS f Experi Comput engines	iments ter basi , LAN surfin	ic kno conne g and	wledge ections, search	; hardv setting	ware, co g up the ormatic	onnecti e IP ado on, dow	ion cab dress, r nloadin	les, typ networ ng and	oing, W k securi installi	indows ity. ing softw	98/XP, ware, U	Interne	et brow	sers, Pub]	, search Med		
	latabas	e.																

- 3. Analysis of protein and gene sequences from protein and nucleotide databases.
- 4. Getting and analysis of primary and secondary protein structure.
- 5. Pair-wise and multiple sequence alignment by using ClustalW.
- 6. Introduction of BioEdit Pairwise and Multiple sequence alignment.
- 7. Phylogenetic analysis using web tool

#### **REFERENCES:**

- 1. D. Baxevanis and F. Oulette, (2002) "Bioinformatics : A practical guide to the analysis of genes and proteins", Wiley Indian Edition
- 2. Stephen A. Krawtz and David D. Womble "Introduction to Bioinformatics: a theoretical and practical approach. Humana Press.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. J. Madhusudhanan		Biotechnology	madhusudhanan.biotech@avit.ac.in
2.				

		I	плтл	STD	псті	DECI	LVB		Cate	egory	L	Т	Р	Cr	edit
		1	DATA	SIN		ILS I	LAD		EC	(SE)	0	0	4	2	
PREAM This lab impleme PRERQ	PKEANIBLE         Fhis laboratory enables the students clearly understand the concepts of data structures. Also mplement the searching and sorting algorithms.         PRERQUISITE         NIL													student	s can
COURS	NIL COURSE OUTCOMES														
On the su	On the successful completion of the course, students will be able to														
<b>CO1</b> . D	evelop	algorit	hms for	r the co	oncepts	of data	a struct	ures.						Apply	
CO2. At	ole to A	pply se	earchin	g and s	orting	technic	ques							Apply	
CO3. Co	onstruct	imple	mentati	ons for	Abstr	act Dat	ta Type	es (AD	Г) usin	g approp	oriate Da	nta Struc	tures	Apply	
CO4. As complex	sess th ities of	e suital differe	oility of ont oper	f a data ations	on the	ure to s data st	olve a ructure	problei	n, base	ed on the	time an	id space		Apply Analys	, is
<b>CO5.</b> Implement algorithms which use sorting, searching and/or selection as sub-procedures.(CO5) Apply															
MAPPI	NG WI	TH PI	ROGR	AMM	E OUT	COM	ES AN	D PR(	OGRA	MME S	PECIF	IC OUT	COMI	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	L	-	-	-	-	L	L	М	-	L	S	L	

CO1	L	М	L	-	-	-	-	L	L	М	-	L	S	L	
CO2	-	-	-	-	-	-	-	-	-	L	L-	-	S	М	
CO3	S	S		S	-	М	S	-	-	М	-L	М	S	L	L
CO4										М		L	S	М	
CO5	S	S		S		М	S			L			S	М	S
0 0															

S- Strong; M-Medium; L-Low

#### LIST OF EXPERIMENTS:

- 1. Exercises using Objects, Classes, Inheritance
- 2. Operator Overloading and Polymorphism
- **3.** Array implementation of List Abstract Data Type (ADT)
- 4. Linked list implementation of List ADT
- **5.** Cursor implementation of List ADT
- 6. Array implementations of Stack ADT
- 7. Linked list implementations of Stack ADT
- 8. Queue ADT
- **9.** Search Tree ADT Binary Search Tree
- 10. Heap Sort
- 11. Quick Sort

#### **REFERENCES:**

- **1.** Laboratory Reference Manual.
- **2.** Balaguruswami. E, "Programming in C", TMH Publications, 1997
- **3.** Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 4. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 5. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

# **COURSE DESIGNERS**

				r
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Associate Professor	Computer science and engineering	jaichandran@avit.ac.in
2	Mrs. R. Latha	Assistant Professor	Computer science and engineering	rlatha@avit.ac.in
3	Dr. M. Nithya	Prof & Head	Computer science and engineering	nithya@vmkvec.edu.in
4	Dr.V.Amirthalingam	Associate Professor	Computer science and engineering	amirthalingam @ vmkvec.edu.in

			OBJECT ORIENTED PROGRAMMING         Category         L         T         P         Credit													edit
					]	LAB				EC (	SE)	0	0	4		2
PREA With a oriente progra	MBLE a dynar ed way amming	nic lea	rn-by-o probler nalysis	doing f n solv	ocus, t ing. T	his lab 'his co	oratory ourse	/ course challen	e encou ges st	urages s udents	tudents to exer	to uno cise	lerst theii	and the crea	e use of tivity in	object both
PRER NIL	QUISI	ГЕ														
COUR	SE OB	JECT	IVES													
1.	To be capable of explaining procedure as well as object oriented programming concepts & their differences.															
2.	To be able to implement inline and friend function very well.															
3.	To be familiar with how to make programs using function overloading & operator overloading															
4.	To get the capability to implement the different types of inheritance & done problems related to them															
COUR	JRSE OUTCOMES															
On the	the successful completion of the course, students will be able to															
CO1. ( abstrac	Construe tion, e	ct objec ncapsu	ct-orien lation,	ted prog messag	grams fo ge-passi	oragiv ing an	en scen d modu	ario ı larity.	using th	ie concep	ots of	Ар	ply,	Analys	sis	
CO2. I compil	Develop e-time a	object and run	-oriente -time p	ed progr olymor	ams foi ohism.	a give	n applic	cation u	sing the	e concept	s of	Ар	ply			
CO3. C the ir	Construenter-rela	ct obje tionshi	ect-orie p bety	nted p ween	rograms classes	s for a using	given inherit	applic	cation d aggre	by demo gation.	nstrating	; Ap	ply			
CO4. I	Develop	object	-oriente	d appli	cations	that can	n handl	le excej	ptions			Ap	ply			
and ob	ject-seri	ct objectialization	ot-orien	ted app	lication	s for a g	given so	cenario 1	to persi	st data u	sing files	Ар	ply			
MAPP	ING W	ITH F	PROGR	AMM	E OUT	COME	ES AND	PROC	GRAM	ME SPE	CIFIC (	OUTC	OM	ES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	PSO1	PSO2	PSO3
CO1	S	S	S	-	-	-	-	М	М	-	-	L		S	S	М
CO2	S	S	S	М	L	L	-	L	М	L	L	L		S	S	L
CO3	S	S	S	M	L	-	-	L	L	L	L	L		S	M	S
C04 C05	S c	S	S C	M		-	-	M M	L M	L	L	L		5	M M	S I
S- Stro	ng: M-l	S Mediur	<u> </u>	w -	-	-	-	101	191	L	L	L		3	101	L
2 540			, ב בס													

### LIST OF EXPERIMENTS

1. Write a program to illustrate function overloading feature

2. Write a program to illustrate the overloading of various operators Ex. Binary operators, Unary operators, New and Delete operators.

3. Write a program to illustrate the use of following functions: a) Friend functions b) Inline functions c) Static Member functions d) Function with default arguments

4. Write a program to illustrate the use of destructor and the various types of constructors (no arguments, constructor,

constructor with arguments, copy constructor etc).

5. Write a program to illustrate the various forms of inheritance: Ex. Single, Multiple, multilevel, hierarchical inheritance etc.

6. Write a program having student as on abstract class and create many derived classes such as Engg. Science, Medical, etc. from student's class. Create their objects and process them.

7. Write a program to illustrate the use of virtual functions.

8. Write a program to illustrate the use of virtual base class.

9. Write a program to illustrate file handling operations: Ex. a) Copying a text files b) Displaying the contents of the file etc.

10. Write a program to illustrate how exceptions are handled (ex: division-by-zero, overflow and underflow in stack etc).

#### **REFERENCES:**

**1.** H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2010.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

**3.** B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.

4. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.

**5.** Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.

6. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.

7. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.

8. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

COURSE	COURSE DESIGNERS											
S.No	Name of the faculty	Designation	Department	Email Id								
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in								
2.	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in								

# **CATEGORY D**

### <u>Courses for presentation of technical skills related to the specialization</u> <u>PROJECT + MINI PROJECT + SEMINAR + INDUSTRY INTERNSHIP OR ELSEWHERE</u> (P + I + I) CREDITS (15)

	(1 + 1 + 1) CREDITS (13)												
	Project Work, Seminar and Internship in Industry or elsewhere Credits-(15)												
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE				
1.		PROJECT WORK	BTE	PII	0	0	20	8	NIL				
2.		MINI PROJECT	BTE	PII	0	0	0	3	NIL				
3.		SEMINAR	BTE	PII	0	0	0	1	NIL				
4.		INTERNSHIP IN INDUSTRY OR ELSEWHERE	BTE	PII	0	0	0	3	NIL				